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Preface to the Second Edition

The field of generalized inverses has grown much since the appearance of
the first edition in 1974 and is still growing. I tried to account for these
developments while maintaining the informal and leisurely style of the first
edition. New material was added, including a preliminary chapter (Chap-
ter 0), a chapter on applications (Chapter 8), an Appendix on the work of
E.H. Moore, and new exercises and applications.

While preparing this volume I compiled a bibliography on generalized
inverses, posted in the webpage of the International Linear Algebra Society

http://www.math.technion.ac.il/iic/research.html

This on-line bibliography, containing over 2000 items, will be updated from
time to time. For reasons of space, many important works that appear in
the on-line bibliography are not included in the bibliography of this book.
I apologize to the authors of these works.

Many colleagues helped this effort. Special thanks go to R. Bapat, S.
Campbell, J. Miao, S.K. Mitra, Y. Nievergelt, R. Puystjens, A. Sidi, G.-R.
Wang, and Y. Wei.

Tom Greville, my friend and coauthor, passed away before this project
started. His scholarship and style marked the first edition and are sadly
missed.

I dedicate this book with love to my wife Yoki.

Piscataway, New Jersey Adi Ben-Israel
January 2002

v



This page intentionally left blank 



From the Preface to the First Edition

This book is intended to provide a survey of generalized inverses from a
unified point of view, illustrating the theory with applications in many ar-
eas. It contains more than 450 exercises at different levels of difficulty,
many of which are solved in detail. This feature makes it suitable either
for reference and self–study or for use as a classroom text. It can be used
profitably by graduate students or advanced undergraduates, only an ele-
mentary knowledge of linear algebra being assumed.

The book consists of an introduction and eight chapters, seven of which
treat generalized inverses of finite matrices, while the eighth introduces gen-
eralized inverses of operators between Hilbert spaces. Numerical methods
are considered in Chapter 7 and in Section 9.7.

While working in the area of generalized inverses, the authors have had
the benefit of conversations and consultations with many colleagues. We
would like to thank especially A. Charnes, R.E. Cline, P.J. Erdelsky, I.
Erdélyi, J.B. Hawkins, A.S. Householder, A. Lent, C.C. MacDuffee, M.Z.
Nashed, P.L. Odell, D.W. Showalter, and S. Zlobec. However, any errors
that may have occurred are the sole responsibility of the authors.

This book is dedicated to Abraham Charnes and J. Barkley Rosser.

Haifa, Israel Adi Ben-Israel
Madison, Wisconsin Thomas N.E. Greville
September 1973
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Glossary of Notation

Γ(p) – Gamma function, 320
η(u,v,w), 96
γ(T ), 334
λ† – Moore–Penrose inverse of

the scalar λ, 43
λ(A) – spectrum of A, 13
〈α〉 – smallest integer ≥ α, 278
µ(A, B), 251
µW,Q(A), 254
ν(λ) – index of eigenvalue λ, 36
1, n – the index set {1, 2, . . . , n}, 5
π−1 – permutation inverse to π, 22
π

(t)
i – probability of Xt = i, 305

ρ(A) – spectral radius of A, 20
σ(A) – singular values of A (see foot-

note, p. 13), 14
σj(A) – the j th singular value of A, 14
τ(i) – period of state i, 304

A/A11 – Schur complement of A11 in
A, 30

A � O, 80
A{1}T,S – {1}-inverses of A associated

with T, S, 71
A{i, j, . . . , k}s – matrices in A{i, j, . . . , k}

of rank s, 56
A∗ – adjoint of A, 12
A

(−1)
(L) – Bott–Duffin inverse of A with

respect to L, 92
A1/2 – square root of A, 222
AD – Drazin inverse of A, 163, 164
A{2}T,S – {2}-inverses with range T ,

null space S, 73
A{i, j, . . . , k} – {i, j, . . . , k}-inverses of

A, 40
A

(−1)
α,β – α-β generalized inverse of A,

134
A

(1)
T,S – a {1}-inverse of A associated

with T, S, 71
A(i,j,... ,k) – an {i, j, . . . , k}-inverse of

A, 40
A# – group inverse of A, 156
A† – Moore–Penrose inverse of A, 40
‖ A ‖∞ – ∞-norm of a matrix, 20
‖ A ‖α,β – least upper bound of A with

respect to {α, β}, 143

Â, 98
Ã – perturbation of A, 238
‖ A ‖1 – 1-norm of a matrix, 20
‖ A ‖2 – spectral norm of a matrix, 20
A :B – Anderson–Duffin parallel sum of

A, B, 283
A⊗B – Kronecker product of A, B, 53
A � B – Löwner ordering, 80, 286, 287

A
∗
< B – ∗-order, 84

A±B – Rao–Mitra parallel sum of A, B,
283

A[β ← Iα], 128
‖ A ‖F – Frobenius norm, 19
A[I, ∗], 10
AI∗, 10
A[I, J ], 10
AIJ , 10
A[∗, J ], 10
A∗J , 10
A[j ← b] – A with j th–column replaced

by b, 30
A(k) – best rank-k approximation of A,

213
A〈k〉 – generalized k th power of A, 249
A(N) – nilpotent part of A, 170
‖ A ‖p – p-norm of a matrix, 20
A[S] – restriction of A to S, 89
A(S) – S-inverse of A, 173
A{U,V} – matrix representation of A

with respect to {U ,V}, 11
A{V} – matrix representation of A with

respect to {V,V}, 11
A

(1,2)
(W,Q) – {W, Q} weighted {1, 2}-inverse

of A, 119, 121, 255

B(H1,H2) – bounded operators in
L(H1,H2), 332

B(p, q) – Beta function, 321
B(x0, r) – ball with center x0 and ra-

dius r, 296

C – complex field, 6
C[a, b] – continuous functions on [a, b],

348
C(H1,H2) – closed operators in

L(H1,H2), 332
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xiv GLOSSARY OF NOTATION

Ck(A) – k compound matrix, 32
Cm×n – m× n complex matrices, 10
C

m×n
r – m × n complex matrices with

rank r, 23
Cn – n-dimensional complex vector space,

6
cond(A) – condition number of A, 204
cos{L, M}, 233
CovX – covariance of X, 284
C(T ), 331

D+ – positive diagonal matrices, 126
d(A) – diagonal elements in UDV ∗-

decomposition, 209
det A – determinant of A, 28
diag (a11, . . . , app) – diagonal matrix,

10
dist(L, M) – distance between L, M , 233
D(T ), 331

e – vector of ones, 303
Ei(α), Eij(β), Eij – elementary opera-

tions of types 1,2,3 respectively, 22
En – standard basis of Cn, 11
EP – matrices A with R(A) = R(A∗),

157
EPr, 157
EX – expected value of X, 284
ext B – extension of B to Cn, 89

F – field, 6
f̂(x1, . . . , xn−1, p), 316
f
(n)
ij – probability of first transition i→

j in n th step, 304
F(A) – functions f : C→ C analytic on

λ(A), 68
fl – floating point, 106
Fm×n – m× n matrices over F, 10
Fn – n-dimensional vector space over F,
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G(x1, . . . ,xn) – Gram matrix, 29
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L
⊥⊕M – orthogonal direct sum of L, M ,

12, 331
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110
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Introduction

1. The Inverse of a Nonsingular Matrix

It is well known that every nonsingular matrix A has a unique inverse,
denoted by A−1, such that

A A−1 = A−1A = I, (1)

where I is the identity matrix. Of the numerous properties of the inverse
matrix, we mention a few. Thus,

(A−1)−1 = A,

(AT )−1 = (A−1)T ,

(A∗)−1 = (A−1)∗,

(AB)−1 = B−1A−1,

where AT and A∗, respectively, denote the transpose and conjugate trans-
pose of A. It will be recalled that a real or complex number λ is called
an eigenvalue of a square matrix A, and a nonzero vector x is called an
eigenvector of A corresponding to λ, if

Ax = λx.

Another property of the inverse A−1 is that its eigenvalues are the recipro-
cals of those of A.

2. Generalized Inverses of Matrices

A matrix has an inverse only if it is square, and even then only if it is
nonsingular or, in other words, if its columns (or rows) are linearly inde-
pendent. In recent years needs have been felt in numerous areas of applied
mathematics for some kind of partial inverse of a matrix that is singular
or even rectangular. By a generalized inverse of a given matrix A we shall
mean a matrix X associated in some way with A that:

(i) exists for a class of matrices larger than the class of nonsingular
matrices;

(ii) has some of the properties of the usual inverse; and
(iii) reduces to the usual inverse when A is nonsingular.

Some writers have used the term “pseudoinverse” rather than “generalized
inverse.”

As an illustration of part (iii) of our description of a generalized inverse,
consider a definition used by a number of writers (e.g., Rohde [704])to the

1



2 INTRODUCTION

effect that a generalized inverse of A is any matrix satisfying

AXA = A. (2)

If A were nonsingular, multiplication by A−1 both on the left and on the
right would give, at once,

X = A−1.

3. Illustration: Solvability of Linear Systems

Probably the most familiar application of matrices is to the solution of
systems of simultaneous linear equations. Let

Ax = b (3)

be such a system, where b is a given vector and x is an unknown vector. If
A is nonsingular, there is a unique solution for x given by

x = A−1b.

In the general case, when A may be singular or rectangular, there may
sometimes be no solutions or a multiplicity of solutions.

The existence of a vector x satisfying (3) is tantamount to the statement
that b is some linear combination of the columns of A. If A is m× n and
of rank less than m, this may not be the case. If it is, there is some vector
h such that

b = Ah.

Now, if X is some matrix satisfying (2), and if we take

x = Xb,

we have

Ax = AXb = AXAh = Ah = b,

and so this x satisfies (3).
In the general case, however, when (3) may have many solutions, we

may desire not just one solution but a characterization of all solutions. It
has been shown (Bjerhammar [103], Penrose [635]) that, if X is any matrix
satisfying AXA = A, then Ax = b has a solution if and only if

AXb = b,

in which case the general solution is

x = Xb + (I −XA)y, (4)

where y is arbitrary.
We shall see later that for every matrix A there exist one or more

matrices satisfying (2).
Exercises

Ex. 1. If A is nonsingular and has an eigenvalue λ, and x is a corresponding
eigenvector, show that λ−1 is an eigenvalue of A−1 with the same eigenvector x.

Ex. 2. For any square A, let a “generalized inverse” be defined as any matrix
X satisfying Ak+1X = Ak for some positive integer k. Show that X = A−1 if A
is nonsingular.
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Ex. 3. If X satisfies AXA = A, show that Ax = b has a solution if and only if
AXb = b.

Ex. 4. Show that (4) is the general solution of Ax = b. [Hint : First show that
it is a solution; then show that every solution can be expressed in this form. Let
x be any solution; then write x = XAx + (I −XA)x.]

Ex. 5. If A is an m×n matrix of zeros, what is the class of matrices X satisfying
AXA = A?

Ex. 6. Let A be an m×n matrix whose elements are all zeros except the (i, j) th

element, which is equal to 1. What is the class of matrices X satisfying (2)?

Ex. 7. Let A be given, and let X have the property that x = Xb is a solution
of Ax = b for all b such that a solution exists. Show that X satisfies AXA = A.

4. Diversity of Generalized Inverses

From Exercises 3, 4, and 7 the reader will perceive that, for a given matrix
A, the matrix equation AXA = A alone characterizes those generalized
inverses X that are of use in analyzing the solutions of the linear system
Ax = b. For other purposes, other relationships play an essential role.
Thus, if we are concerned with least-squares properties, (2) is not enough
and must be supplemented by further relations. There results a more re-
stricted class of generalized inverses.

If we are interested in spectral properties (i.e., those relating to eigen-
values and eigenvectors), consideration is necessarily limited to square ma-
trices, since only these have eigenvalues and eigenvectors. In this connec-
tion, we shall see that (2) plays a role only for a restricted class of matrices
A and must be supplanted, in the general case, by other relations.

Thus, unlike the case of the nonsingular matrix, which has a single
unique inverse for all purposes, there are different generalized inverses for
different purposes. For some purposes, as in the examples of solutions of
linear systems, there is not a unique inverse, but any matrix of a certain
class will do.

This book does not pretend to be exhaustive, but seeks to develop
and describe in a natural sequence the most interesting and useful kinds
of generalized inverses and their properties. For the most part, the dis-
cussion is limited to generalized inverses of finite matrices, but extensions
to infinite-dimensional spaces and to differential and integral operators are
briefly introduced in Chapter 9. Generalized inverses on rings and semi-
groups are not discussed; the interested reader is referred to Bhaskara Rao
[94], Drazin [233], Foulis [284], and Munn [587].

The literature on generalized inverses has become so extensive that it
would be impossible to do justice to it in a book of moderate size. We
have been forced to make a selection of topics to be covered, and it is
inevitable that not everyone will agree with the choices we have made.
We apologize to those authors whose work has been slighted. A virtually
complete bibliography as of 1976 is found in Nashed and Rall [597]. An
on-line bibliography is posted in the webpage of the International Linear
Algebra Society

http://www.math.technion.ac.il/iic/research.html



4 INTRODUCTION

5. Preparation Expected of the Reader

It is assumed that the reader has a knowledge of linear algebra that would
normally result from completion of an introductory course in the subject. In
particular, vector spaces will be extensively utilized. Except in Chapter 9,
which deals with Hilbert spaces, the vector spaces and linear transforma-
tions used are finite-dimensional, real or complex. Familiarity with these
topics is assumed, say at the level of Halmos [365] or Noble [615], see also
Chapter 0 below.

6. Historical Note

The concept of a generalized inverse seems to have been first mentioned
in print in 1903 by Fredholm [290], where a particular generalized inverse
(called by him “pseudoinverse”) of an integral operator was given. The class
of all pseudoinverses was characterized in 1912 by Hurwitz [435], who used
the finite dimensionality of the null spaces of the Fredholm operators to give
a simple algebraic construction (see, e.g., Exercises 9.18–9.19). Generalized
inverses of differential operators, already implicit in Hilbert’s discussion in
1904 of generalized Green functions, [418], were consequently studied by
numerous authors, in particular, Myller (1906), Westfall (1909), Bounitzky
[124] in 1909, Elliott (1928), and Reid (1931). For a history of this subject
see the excellent survey by Reid [685].

Generalized inverses of differential and integral operators thus ante-
dated the generalized inverses of matrices, whose existence was first noted
by E.H. Moore, who defined a unique inverse (called by him the “general
reciprocal”) for every finite matrix (square or rectangular). Although his
first publication on the subject [575], an abstract of a talk given at a meet-
ing of the American Mathematical Society, appeared in 1920, his results
are thought to have been obtained much earlier. One writer, [496, p. 676],
has assigned the date 1906. Details were published, [576], only in 1935
after Moore’s death. A summary of Moore’s work on the general reciprocal
is given in Appendix A. Little notice was taken of Moore’s discovery for
30 years after its first publication, during which time generalized inverses
were given for matrices by Siegel [762] in 1937, and for operators by Tseng
([816]–1933, [819],[817],[818]–1949), Murray and von Neumann [589] in
1936, Atkinson ([27]–1952, [28]–1953) and others. Revival of interest in
the subject in the 1950s centered around the least squares properties (not
mentioned by Moore) of certain generalized inverses. These properties were
recognized in 1951 by Bjerhammar, who rediscovered Moore’s inverse and
also noted the relationship of generalized inverses to solutions of linear sys-
tems (Bjerhammar [102], [101], [103]). In 1955 Penrose [635]sharpened
and extended Bjerhammar’s results on linear systems, and showed that
Moore’s inverse, for a given matrix A, is the unique matrix X satisfying
the four equations (1)–(4) of Chapter 1. The latter discovery has been so
important and fruitful that this unique inverse (called by some writers the
generalized inverse) is now commonly called the Moore–Penrose inverse.

Since 1955 thousands of papers on various aspects of generalized in-
verses and their applications have appeared. In view of the vast scope
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of this literature, we shall not attempt to trace the history of the sub-
ject further, but the subsequent chapters will include selected references on
particular items.

7. Remarks on Notation

Equation j of Chapter i is denoted by (j) in Chapter i, and by (i.j) in
other chapters. Theorem j of Chapter i is called Theorem j in Chapter i,
and Theorem i.j in other chapters. Similar conventions apply to Sections,
Corollaries, Lemmas, Definitions, etc.

Many sections are followed by Exercises, some of them solved. Exercises
are denoted by “Ex.” (e.g., Ex. j, Ex. i.j), to distinguish from Examples
(e.g., Example j, Example i.j) that appear inside sections.

Some of the abbreviations used in this book:
k, � – the index set {k, k + 1, . . . , �}; in particular,
1, n – the index set {1, 2, . . . , n};
BLUE – best linear unbiased estimator;
e.s.c. – essentially strictly convex;
LHS(i.j) – the left-hand side of equation (i.j);
LUE – linear unbiased estimator;
MSE – mean square error;
o.n. – orthonormal;
PD – positive definite;
PSD – positive semidefinite;
RHS(i.j) – the right-hand side of equation (i.j);
RRE – ridge regression estimator;
RV – random variable;
SVD – singular value decomposition; and
TLS – total least squares.

Suggested Further Reading

Section 2. A ring R is called regular if for every A ∈ R there exists an
X ∈ R satisfying AXA = A. See von Neumann [838], [841, p. 90], Murray and
von Neumann [589, p. 299], McCoy [538], Hartwig [379].

Section 4. For generalized inverses in abstract algebraic setting see also
Davis and Robinson [215], Gabriel [291], [292], [293], Hansen and Robinson
[373], Hartwig [379], Munn and Penrose [588], Pearl [634], Rabson [662], Rado
[663].



CHAPTER 0

Preliminaries

For ease of reference we collect here facts, definitions, and notations that are
used in successive chapters. This chapter can be skipped in first reading.

1. Scalars and Vectors

1.1. Scalars are denoted by lowercase letters: x, y, λ, . . . . We use
mostly the complex field C, and specialize to the real field R as necessary.
A generic field is denoted by F.

1.2. Vectors are denoted by bold letters: x,y,λ, . . . . Vector spaces
are finite-dimensional, except in Chapter 9. The n-dimensional vector
space over a field F is denoted by Fn, in particular, Cn [Rn] denote the
n-dimensional complex [real] vector space.

A vector x ∈ Fn is written in a column form

x =

x1
...

xn

 , or x = (xi) , i ∈ 1, n, xi ∈ F.

The n-dimensional vector ei with components

δij =
{

1, if i = j,
0, otherwise,

is called the i th unit vector of Fn. The set En of unit vectors {e1, e2, . . . , en}
is called the standard basis of Fn.

1.3. The sum of two sets L, M in Cn, denoted by L + M , is defined
as

L + M = {y + z : y ∈ L, z ∈M}.
If L and M are subspaces of Cn, then L + M is also a subspace of Cn. If,
in addition, L ∩M = {0}, i.e., the only vector common to L and M is the
zero vector, then L + M is called the direct sum of L and M , denoted by
L⊕M . Two subspaces L and M of Cn are called complementary if

Cn = L⊕M. (1)

When this is the case (see Ex. 1 below), every x ∈ Cn can be expressed
uniquely as a sum

x = y + z (y ∈ L, z ∈M). (2)

We shall then call y the projection of x on L along M .

6
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1.4. Inner product. Let V be a complex vector space. An inner
product is a function: V × V → C, denoted by 〈x,y〉, that satisfies:

(I1) 〈αx + y, z〉 = α〈x, z〉+ 〈y, z〉 (linearity);
(I2) 〈x,y〉 = 〈y,x〉 (Hermitian symmetry); and
(I3) 〈x,x〉 ≥ 0, 〈x,x〉 = 0 if and only if x = 0 (positivity);

for all x,y, z ∈ V and α ∈ C.
Note:

(a) For all x,y ∈ V and α ∈ C, 〈x, αy〉 = α〈x,y〉 by (I1)–(I2).
(b) Condition (I2) states, in particular, that 〈x,x〉 is real for all x ∈ V .
(c) The if part in (I3) follows from (I1) with α = 0, y = 0.

The standard inner product in Cn is

y∗x =
n∑

i=1

xi yi, (3)

for all x = (xi) and y = (yi) in Cn. See Exs. 2–4.

1.5. Let V be a complex vector space. A (vector) norm is a function:
V → R, denoted by ‖x‖, that satisfies:

(N1) ‖x‖ ≥ 0, ‖x‖ = 0 if and only if x = 0 (positivity);
(N2) ‖αx‖ = |α| ‖x‖ (positive homogeneity); and
(N3) ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality);

for all x,y ∈ V and α ∈ C.
Note:

(a) The if part of (N1) follows from (N2).
(b) ‖x‖ is interpreted as the length of the vector x. Inequality (N3) then

states, in R2, that the length of any side of a triangle is no greater than
the sum of lengths of the other two sides.

See Exs. 3–11.
Exercises
Ex. 1. Direct sums. Let L and M be subspaces of a vector space V . Then the
following statements are equivalent:

(a) V = L⊕M .
(b) Every vector x ∈ V is uniquely represented as

x = y + z (y ∈ L, z ∈M).

(c) dimV = dimL+ dimM, L ∩M = {0}.
(d) If {x1,x2, . . . ,xl} and {y1,y2, . . . ,ym} are bases for L and M , respec-

tively, then {x1,x2, . . . ,xl,y1,y2, . . . ,ym} is a basis for V .

Ex. 2. The Cauchy–Schwartz inequality. For any x,y ∈ Cn

|〈x,y〉| ≤
√
〈x,x〉

√
〈y,y〉 (4)

with equality if and only if x = λy for some λ ∈ C.
Proof. For any complex z,

0 ≤ 〈x + zy,x + zy〉, by (I3),

= 〈y,y〉|z|2 + z〈y,x〉+ z〈x,y〉+ 〈x,x〉, by (I1)–(I2),

= 〈y,y〉|z|2 + 2�{z 〈x,y〉}+ 〈x,x〉,
≤ 〈y,y〉|z|2 + 2|z||〈x,y〉|+ 〈x,x〉. (5)
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Here � denotes real part. The quadratic equation RHS(5) = 0 can have at most
one solution |z|, proving that |〈x,y〉|2 ≤ 〈x,x〉 〈y,y〉, with equality if and only if
x + zy = 0 for some z ∈ C. �
Ex. 3. If 〈x,y〉 is an inner product on Cn, then

‖x‖ :=
√
〈x,x〉 (6)

is a norm on Cn. The Euclidean norm in Cn

‖x‖ =

√√√√ n∑
j=1

|x|2, (7)

corresponds to the standard inner product. [Hint : Use (4) to verify the triangle
inequality (N3) in §1.5 above.]

Ex. 4. Show that to every inner product f : Cn × Cn → C there corresponds a
unique positive definite matrix Q = [qij ] ∈ Cn×n such that

f(x,y) = y∗Qx =
n∑

i=1

n∑
j=1

yi qijxj . (8)

The inner product (8) is denoted by 〈x,y〉Q. It induces a norm, by Ex. 3,

‖x‖Q =
√

x∗Qx,

called ellipsoidal, or weighted Euclidean norm. The standard inner product (3),
and the Euclidean norm, correspond to the special case Q = I.
Solution. The inner product f and the positive definite matrix Q = [qij ] com-
pletely determine each other by

f(ei, ej) = qij , (i, j ∈ 1, n),

where ei is the ith unit vector. �
Ex. 5. Given an inner product 〈x,y〉 and the corresponding norm ‖x‖ =
〈x,x〉1/2, the angle between two vectors x,y ∈ Rn, denoted by ∠{x,y}, is defined
by

cos ∠{x,y} =
〈x,y〉
‖x‖‖y‖ . (9)

Two vectors x,y ∈ Rn are orthogonal if 〈x,y〉 = 0. Although it is not obvious
how to define angles between vectors in Cn, see, e.g., Scharnhorst [725], we define
orthogonality by the same condition, 〈x,y〉 = 0, as in the real case.

Ex. 6. Let 〈·, ·〉 be an inner product on Cn. A set {v1, . . . ,vk} of Cn is called
orthonormal (abbreviated o.n.) if

〈vi,vj〉 = δij , for all i, j ∈ 1, k. (10)

(a) An o.n. set is linearly independent.
(b) If B = {v1, . . . ,vn} is an o.n. basis of Cn, then for all x ∈ Cn,

x =
n∑

j=1

ξjvj , with ξj = 〈x,vj〉, (11)

and

〈x,x〉 =
n∑

j=1

|ξj |2. (12)
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Ex. 7. Gram–Schmidt orthonormalization. Let A = {a1,a2, . . . , an} ⊂ Cm

be a set of vectors spanning a subspace L, L =
{∑n

i=1 αi ai : αi ∈ C
}
. Then

an o.n. basis Q = {q1,q2, . . . ,qr} of L is computed using the Gram–Schmidt
orthonormalization process (abbreviated GSO) as follows.

q1 =
ac1

‖ac1‖
, if ac1 �= 0 = aj for 1 ≤ j < c1, (13a)

xj = aj −
k−1∑
�=1

〈aj ,q�〉q�, j = ck−1 + 1, ck−1 + 2, . . . , ck, (13b)

and

qk =
xck

‖xck‖
, if xck �= 0 = xj for ck−1 + 1 ≤ j < ck, k = 2, . . . , r. (13c)

The integer r found by the GSO process is the dimension of the subspace L. The
integers {c1, . . . , cr} are the indices of a maximal linearly independent subset
{ac1 , . . . , acr} of A.

Ex. 8. Let ‖ ‖(1), ‖ ‖(2) be two norms on Cn and let α1, α2 be positive scalars.
Show that the following functions:

(a) max{‖x‖(1), ‖x‖(2)};
(b) α1‖x‖(1) + α2‖x‖(2);

are norms on Cn.

Ex. 9. The �p-norms. For any p ≥ 1 the function

‖x‖p = (
n∑

j=1

|xj |p)1/p (14)

is a norm on Cn, called the �p-norm.
Hint : The statement that (14) satisfies (N3) for p ≥ 1 is the classical Minkowski
inequality; see, e.g., Beckenbach and Bellman [55].

Ex. 10. The most popular �p-norms are the choices p = 1, 2, and ∞,

‖x‖1 =
n∑

j=1

|xj |, the �1-norm, (14.1)

‖x‖2 = (
n∑

j=1

|xj |2)1/2, the �2-norm or the Euclidean norm, (14.2)

‖x‖∞ = max{|xj | : j ∈ 1, n}, the �∞-norm or the Tchebycheff norm. (14.∞)

Is ‖x‖∞ = limp→∞ ‖x‖p?

Ex. 11. Let ‖ ‖(1), ‖ ‖(2) be any two norms on Cn. Show that there exist
positive scalars α, β such that

α‖x‖(1) ≤ ‖x‖(2) ≤ β‖x‖(1), (15)

for all x ∈ Cn.
Hint : α = inf{‖x‖(2) : ‖x‖(1) = 1}, β = sup{‖x‖(2) : ‖x‖(1) = 1}.

Remark 1. Two norms ‖ ‖(1) and ‖ ‖(2) are called equivalent if there exist
positive scalars α, β such that (15) holds for all x ∈ Cn. From Ex. 11, any two
norms on Cn are equivalent. Therefore, if a sequence {xk} ⊂ Cn satisfies

lim
k→∞

‖xk‖ = 0 (16)

for some norm, then (16) holds for any norm. Topological concepts like con-
vergence and continuity, defined by limiting expressions like (16), are therefore



10 0. PRELIMINARIES

independent of the norm used in their definition. Thus we say that a sequence
{xk} ⊂ Cn converges to a point x∞ if

lim
k→∞

‖xk − x∞‖ = 0

for some norm.

2. Linear Transformations and Matrices

2.1. The set of m× n matrices with elements in F is denoted Fm×n.
In particular, Cm×n [Rm×n] denote the class of m × n complex [real]

matrices.
A matrix A ∈ Fm×n is square if m = n, rectangular otherwise.
The elements of a matrix A ∈ Fm×n are denoted by aij or A[i, j].
We denote by

Qk,n = {(i1, i2, . . . , ik) : 1 ≤ i1 < i2 < · · · < ik ≤ n}.
the set of increasing sequences of k elements from 1, n, for given integers
0 < k ≤ n. For A ∈ Cm×n, I ∈ Qp,m, J ∈ Qq,n we denote

AIJ (or A[I, J ]), the p× q submatrix (A[i, j]), i ∈ I, j ∈ J,

AI∗ (or A[I, ∗]), the p× n submatrix (A[i, j]), i ∈ I, j ∈ 1, n,

A∗J (or A[∗, J ]), the m× q submatrix (A[i, j]), i ∈ 1, m, j ∈ J.

The matrix A is:
diagonal if A[i, j] = 0 for i �= j;
upper triangular if A[i, j] = 0 for i > j; and
lower triangular if A[i, j] = 0 for i < j.

An m × n diagonal matrix A = [aij ] is denoted A = diag (a11, . . . , app)
where p = min{m, n}.
Given a matrix A ∈ Cm×n, its:

transpose is the matrix AT ∈ Cn×m with AT [i, j] = A[j, i] for all i, j;
and its

conjugate transpose is the matrix A∗ ∈ Cn×m with A∗[i, j] = A[j, i] for
all i, j.

A square matrix is:
Hermitian [symmetric] if A = A∗ [A is real, A = AT ];
normal if AA∗ = A∗A; and
unitary [orthogonal ] if A∗ = A−1 [A is real, AT = A−1].

2.2. Given vector spaces U, V over a field F, and a mapping T : U →
V , we say that T is linear, or a linear transformation, if T (αx + y) =
αTx + Ty, for all α ∈ F and x,y ∈ U . The set of linear transformations
from U to V is denoted L(U, V ). It is a vector space with operations T1+T2
and αT defined by

(T1 + T2)u = T1u + T2u, (αT )u = α(Tu), ∀ u ∈ U.

The zero element of L(U, V ) is the transformation O mapping every u ∈ U
into 0 ∈ V . The identity mapping IU ∈ L(U, U) is defined by IUu =
u, ∀ u ∈ U . We usually omit the subscript U , writing the identity as I.
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2.3. Let T ∈ L(U, V ). For any u ∈ U , the point Tu in V is called
the image of u (under T ). The range of T , denoted R(T ) is the set of all
its images

R(T ) = {v ∈ V : v = Tu for some u ∈ U}.
For any v ∈ R(T ), the inverse image T−1(v) is the set

T−1(v) = {u ∈ U : Tu = v}.
In particular, the null space of T , denoted by N(T ), is the inverse image of
the zero vector 0 ∈ V ,

N(T ) = {u ∈ U : Tu = 0}.
2.4. T ∈ L(U, V ) is one-to-one if for all x,y ∈ U , x �= y =⇒ Tx �=

Ty or, equivalently, if for every v ∈ R(T ) the inverse image T −1v is a
singleton. T is onto if R(T ) = V . If T is one-to-one and onto, it has an
inverse T−1 ∈ L(V, U) such that

T−1(Tu) = u and T (T−1v) = v, ∀ u ∈ U, v ∈ V, (17a)

or, equivalently,

T−1T = IU , TT−1 = IV , (17b)

in which case T is called invertible or nonsingular.

2.5. Given:
• a linear transformation A ∈ L(Cn, Cm); and
• two bases U = {u1, . . . ,um} and V = {v1, . . . ,vn} of Cm and Cn,

respectively;
the matrix representation of A with respect to the bases {U, V } is the m×n
matrix A{U,V} = [aij ] determined (uniquely) by

Avj =
m∑

i=1

aij ui, j ∈ 1, n. (18)

For any such pair of bases {U ,V}, (18) is a one-to-one correspondence be-
tween the linear transformations L(Cn, Cm) and the matrices Cm×n, allow-
ing the customary practice of using the same symbol A to denote both the
linear transformation A : Cn → Cm and its matrix representation A{U,V}.

If A is a linear transformation from Cn to itself, and V = {v1, . . . ,vn}
is a basis of Cn, then the matrix representation A{V,V} is denoted simply
by A{V}. It is the (unique) matrix A{V} = [aij ] ∈ Cn×n satisfying

Avj =
n∑

i=1

aij vi, j ∈ 1, n. (19)

The standard basis of Cn is the basis En consisting of the n unit vectors

En = {e1, . . . , en}.
Unless otherwise noted, linear transformations A ∈ L(Cn, Cm) are repre-
sented in terms of the standard bases {Em, En}.
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For any A ∈ Cm×n we denote, as in Section 2.3 above,

R(A) = {y ∈ Cm : y = Ax for some x ∈ Cn}, the range of A, (20a)

N(A) = {x ∈ Cn : Ax = 0}, the null space of A. (20b)

2.6. Let 〈·, ·〉 denote the standard inner product. If A ∈ Cm×n then

〈Ax,y〉 = 〈x, A∗y〉, for all x ∈ Cn, y ∈ Cm. (21)

H ∈ Cn×n is Hermitian if and only if

〈Hx,y〉 = 〈x, Hy〉, for all x, y ∈ Cn. (22)

If 〈Ax,x〉 = 〈x, Ax〉 for all x, then A need not be Hermitian. Example: A =(
1 1
0 0

)
.

2.7. Let 〈·, ·〉Cn and 〈·, ·〉Cm be inner products on Cn and Cm, respec-
tively, and let A ∈ L(Cn, Cm). The adjoint of A, denoted by A∗, is the
linear transformation A∗ ∈ L(Cm, Cn) defined by

〈Av,u〉Cm = 〈v, A∗u〉Cn (23)

for all v ∈ Cn, u ∈ Cm. Unless otherwise stated, we use the standard inner
product, in which case adjoint = conjugate transpose.

2.8. Given a subspace L of Cn, define

L⊥ := {x ∈ Cn : x is orthogonal to every vector in L}. (24)

Then L⊥ is a subspace complementary to L. L⊥ is called the orthogonal
complement of L. If M ⊂ L⊥ is a subspace, then L ⊕ M is called the

orthogonal direct sum of L, M and denoted by L
⊥⊕M . In particular, Cn is

the orthogonal direct sum of L, L⊥,

Cn = L
⊥⊕ L⊥. (25)

With any matrix A ∈ Cm×n there are associated four subspaces

N(A), R(A∗) in Cn,

N(A∗), R(A) in Cm.

An important result is that these pairs form orthogonal complements.
Theorem 1. For any A ∈ Cm×n,

N(A) = R(A∗)⊥, (26)

N(A∗) = R(A)⊥. (27)

Proof. Let x ∈ N(A). Then LHS(21) vanishes for all y ∈ Cm. It follows
then that x ⊥ A∗y for all y ∈ Cm or, in other words, x ⊥ R(A∗). This proves
that N(A) ⊂ R(A∗)⊥.

Conversely, let x ∈ R(A∗)⊥, so that RHS(21) vanishes for all y ∈ Cm. This
implies that Ax ⊥ y for all y ∈ Cm. Therefore Ax = 0. This proves that
R(A∗)⊥ ⊂ N(A), and completes the proof.

The dual relation (27) follows by reversing the roles of A, A∗. �
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2.9. A (matrix ) norm of A ∈ Cm×n, denoted by ‖A‖, is defined as a
function: Cm×n → R that satisfies

‖A‖ ≥ 0, ‖A‖ = 0 only if A = O, (M1)

‖αA‖ = |α|‖A‖, (M2)

‖A + B‖ ≤ ‖A‖+ ‖B‖, (M3)

for all A, B ∈ Cm×n, α ∈ C. If, in addition,

‖AB‖ ≤ ‖A‖‖B‖ (M4)

whenever the matrix product AB is defined, then ‖ ‖ is called a multiplica-
tive norm. Some authors (see, e.g., Householder [432, Section 2.2]) define
a matrix norm as having all four properties (M1)–(M4).

2.10. If A ∈ Cn×n, 0 �= x ∈ Cn, and λ ∈ C are such that

Ax = λx, (28)

then λ is an eigenvalue of A corresponding to the eigenvector x. The set
of eigenvalues of A is called its spectrum, and is denoted by1 λ(A). If λ is
an eigenvalue of A, the subspace

{x ∈ Cn : Ax = λx} (29)

is the corresponding eigenspace of A, its dimension is called the geometric
multiplicity of the eigenvalue λ.

2.11. If H ∈ Cn×n is Hermitian, then:
(a) the eigenvalues of H are real;
(b) eigenvectors corresponding to different eigenvalues are orthogonal;
(c) there is an o.n. basis of Cn consisting of eigenvectors of H; and
(d) the eigenvalues of H, ordered by

λ1 ≥ λ2 ≥ · · · ≥ λn,

and corresponding eigenvectors,

Hxj = λjxj , j ∈ 1, n,

can be computed recursively as

λ1 = max {〈Hx,x〉 : ‖x‖ = 1} = 〈Hx1,x1〉,
λj = max {〈Hx,x〉 : ‖x‖ = 1 , x ⊥ {x1,x2, . . . ,xj−1}}

= 〈Hxj ,xj〉, j ∈ 2, n.

2.12. A Hermitian matrix H ∈ Cn×n is positive semidefinite (PSD for
short) if 〈Hx,x〉 ≥ 0 for all x or, equivalently, if its eigenvalues are nonneg-
ative. Similarly, H is called positive definite (PD for short), if 〈Hx,x〉 > 0
for all x �= 0 or, equivalently, if its eigenvalues are positive. The set of n×n
PSD [PD] matrices is denoted by PSDn [PDn].

1The spectrum of A is often denoted elsewhere by σ(A), a symbol reserved here for
the singular values of A.
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2.13. Let A ∈ Cm×n and let the eigenvalues λj(AA∗) of AA∗ (which
is PSD) be ordered by

λ1(AA∗) ≥ · · · ≥ λr(AA∗) > λr+1(AA∗) = · · · = λn(AA∗) = 0. (30)

The singular values of A, denoted by σj(A) or σj , j ∈ 1, r, are defined as

σj(A) = +
√

λj(AA∗), j ∈ 1, r, (31a)

or, equivalently,

σj(A) = +
√

λj(A∗A), j ∈ 1, r, (31b)

and are ordered, by (30),

σ1 ≥ σ2 ≥ · · · ≥ σr > 0. (32)

The set of singular values of A is denoted by σ(A).

2.14. Let A and {σj} be as above, let {ui : i ∈ 1, m} be an o.n. basis
of Cm made of eigenvectors of AA∗,

AA∗ui = σ2
i ui, i ∈ 1, r, (33a)

AA∗ui = 0, i ∈ r + 1, m, (33b)

let

vj =
1
σj

A∗uj , j ∈ 1, r, (34)

and let {vj : j ∈ r + 1, n} be an o.n. set of vectors, orthogonal to {vj :
j ∈ 1, r}. Then the set {vj : j ∈ 1, n} is an o.n. basis of Cn consisting of
eigenvectors of A∗A,

A∗Avj = σ2
i vj , j ∈ 1, r, (35a)

A∗Avj = 0, j ∈ r + 1, n. (35b)

Conversely, starting from an o.n. basis {vj : j ∈ 1, n} of Cn satisfying
(35a)–(35b), we construct an o.n. basis of Cm with (33a)–(33b) by

ui =
1
σi

Avj , i ∈ 1, r, (36)

and completing to an o.n. set. See Theorem 6.1.

2.15. Let A, {ui : i ∈ 1, m} and {vj : j ∈ 1, n} be as above. Then
(36) can be written as

A[v1 · · · vr

...vr+1 · · · vn]

= [u1 · · · ur

...ur+1 · · · um]



σ1
...

. . .
... O

σr

...
· · · · · · · · · · · · · · ·

O
... O


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or

AV = U Σ, where Σ =



σ1
...

. . .
... O

σr

...
· · · · · · · · · · · · · · ·

O
... O


, (37)

and U = [u1 · · · um], V = [v1 · · · vn]. Since V is unitary,

A = U Σ V ∗, (38)

called a singular value decomposition (abbreviated SVD) of A. See Theo-
rem 6.2.

Exercises

Ex. 12. Let L,M be subspaces of Cn, with dim L ≥ (k+ 1), dim M ≤ k. Then
L ∩M⊥ �= {0}.
Proof. Otherwise L+M⊥ is a direct sum with dimension = dim L+dim M⊥ ≥
(k + 1) + (n− k) > n. �

Ex. 13. The QR factorization. Let the o.n. set {q1, . . . ,qr} be obtained from
the set of vectors {a1, . . . , an} by the GSO process described in Ex. 7, and let
Q̃ =

[
q1, . . . ,qr

] ∈ Cm×r and A =
[
a1, . . . , an

] ∈ Cm×n be the corresponding
matrices. Then

A = Q̃R̃, (39)

where the columns of Q̃ are an o.n. basis of R(A) and R̃ ∈ Cr×n
r is an upper

triangular matrix. If r < m, it is possible to complete Q̃ to a unitary matrix
Q = [Q̃ Z], where the columns of Z are an o.n. basis of N(A∗). Then (39) can
be written as

A = QR (40)

where R =
[
R̃
O

]
is upper triangular.

The expression (40) is called a QR-factorization of A. By analogy, we call
(39) a Q̃R̃-factorization of A.

Ex. 14. Let U and V be finite-dimensional vector spaces over a field F and let
T ∈ L(U, V ). Then the null space N(T ) and range R(T ) are subspaces of U and
V , respectively.
Proof. L is a subspace of U if and only if

x,y ∈ L, α ∈ F =⇒ αx + y ∈ L.
If x,y ∈ N(T ), then T (x + αy) = Tx + αTy = 0 for all α ∈ F, proving that
N(T ) is a subspace of U . The proof that R(T ) is a subspace is similar. �

Ex. 15. Let Pn be the set of polynomials with real coefficients, of degree ≤ n,

Pn = {p : p(x) = p0 + p1x+ · · ·+ pnx
n, pi ∈ R}. (41)

The name x of the variable in (41) is immaterial.
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(a) Show that Pn is a vector space with the operations

p + q =
n∑

i=0

pix
i +

n∑
i=0

qix
i =

n∑
i=0

(pi + qi)xi, αp =
n∑

i=0

(αpi)xi,

and the dimension of Pn is n+ 1.
(b) The set of monomials Un = {1, x, x2, . . . , xn} is a basis of Pn. Let T be

the differentiation operator, mapping a function f(x) into its derivative
f ′(x). Show that T ∈ L(Pn, Pn−1). What are the range and null space
of T? Find the representation of T with respect to the bases {Un,Un−1}.

(c) Let S be the integration operator, mapping a function f(x) into its in-
tegral

∫
f(x) dx with zero constant of integration. Show that S ∈

L(Pn−1, Pn). What are the range and null space of S? Find the repre-
sentation of S with respect to {Un−1,Un}.

(d) Let TUn,Un−1 and SUn−1,Un be the matrix representations in parts (b)
and (c). What are the matrix products T{Un,Un−1}S{Un−1,Un} and
S{Un−1,Un}T{Un,Un−1}? Interpret these results in view of the fact that
integration and differentiation are inverse operations.

Ex. 16. Let U = {u1, . . . ,um} and V = {v1, . . . ,vn} be o.n. bases of Cm and
Cn, respectively. Then for any A ∈ L(Cn,Cm):

(a) The matrix representation A{U,V} = [aij ] is given by

aij = 〈Avj ,ui〉, ∀ i, j.
where 〈·, ·〉 is the inner product on Cm (in which U is an o.n. basis.)

(b) The adjoint A∗ is represented by the matrix A∗
{V,U} = [bk�] where bk� =

a�k, i.e., the matrix A∗
{V,U} is the conjugate transpose of A{U,V}.

Ex. 17. The simplest matrix representation. Let O �= A ∈ L(Cn,Cm). Then
there exist o.n. bases U = {u1, . . . ,um} and V = {v1, . . . ,vn} of Cm and Cn,
respectively, such that

A{U,V} = diag (σ1, . . . , σr, 0, . . . , 0) ∈ R
n×m, (42)

a diagonal matrix, whose nonzero diagonal elements σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are
the singular values of A.

Ex. 18. Let V = {v1, . . . ,vn} and W = {w1, . . . ,wn} be two bases of Cn.
Show that there is a unique n× n matrix S = [sij ] such that

wj =
n∑

i=1

sij vi, j ∈ 1, n, (43)

and S is nonsingular. Using the rules of matrix multiplication we rewrite (43) as

[w1,w2, . . . ,wn] = [v1,v2, . . . ,vn]

s11 · · · s1n

...
...

sn1 · · · snn

 = [v1,v2, . . . ,vn]S, (44)

i.e.,

[v1,v2, . . . ,vn] = [w1,w2, . . . ,wn]S−1. (45)

Ex. 19. Similar matrices. We recall that two square matrices A,B are called
similar if

B = S−1AS (46)

for some nonsingular matrix S. If S in (46) is unitary [orthogonal ], then A,B are
called called unitarily similar [orthogonally similar ].
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Show that two n × n complex matrices are similar if and only if each is a
matrix representation of the same linear transformation relative to a basis of Cn.
Proof. If : Let V = {v1,v2, . . . ,vn} and W = {w1,w2, . . . ,wn} be two bases
of Cn and let A{V} and A{W} be the corresponding matrix representations of
a given linear transformation A : Cn → Cn. The bases V and W determine a
(unique) nonsingular matrix S = [sij ] satisfying (43). Rewriting (19) as

A[v1,v2, . . . ,vn] = [v1,v2, . . . ,vn]A{V}. (47)

we conclude, by substituting (45) in (47), that

A[w1,w2, . . . ,wn] = [w1,w2, . . . ,wn]S−1A{V}S,

and by the uniqueness of the matrix representation,

A{W} = S−1A{V}S.

Only if : Similarly proved. �

Ex. 20. Schur triangularization. Any A ∈ Cn×n is unitarily similar to a trian-
gular matrix. (For proof see, e.g., Marcus and Minc [534, p. 67]).

Ex. 21. Perron’s approximate diagonalization. Let A ∈ Cn×n. Then for any
ε > 0 there is a nonsingular matrix S such that S−1AS is a triangular matrix

S−1AS =



λ1 b12 · · · · · · b1n

0 λ2
...

...
. . .

. . .
...

...
. . .

. . .
...

0 · · · · · · 0 λn


with the off-diagonal elements satisfying∑

ij

|bij | ≤ ε (Bellman [56, p. 205]).

Ex. 22. A matrix in Cn×n is:

(a) normal if and only if it is unitarily similar to a diagonal matrix; and
(b) Hermitian if and only if it is unitarily similar to a real diagonal matrix.

Ex. 23. For any n ≥ 2 there is an n × n real matrix which is not similar to a
triangular matrix in Rn×n.
Hint. The diagonal elements of a triangular matrix are its eigenvalues.

Ex. 24. Denote the transformation of bases (43) by W = V S. Let {U ,V} be
bases of {Cm,Cn}, respectively, and let {Ũ , Ṽ} be another pair of bases, obtained
by

Ũ = U S, Ṽ = V T,
where S and T are m ×m and n × n matrices, respectively. Show that for any
A ∈ L(Cn,Cm), the representations A{U,V} and A{Ũ,Ṽ} are related by

A{Ũ,Ṽ} = S−1A{U,V} T. (48)

Proof. Similar to the proof of Ex. 19. �
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Ex. 25. Equivalent matrices. Two matrices A,B in Cm×n are called equivalent
if there are nonsingular matrices S ∈ Cm×m and T ∈ Cn×n such that

B = S−1AT. (49)

If S and T in (49) are unitary matrices, then A,B are called unitarily equivalent.
It follows from Ex. 24 that two matrices in Cm×n are equivalent if, and only

if, each is a matrix representation of the same linear transformation relative to a
pair of bases of Cm and Cn.

Ex. 26. Let A ∈ L(Cn,Cm) and B ∈ L(Cp,Cn), and let U ,V, andW be bases of
Cm,Cn, and Cp, respectively. The product (or composition) of A and B, denoted
by AB, is the transformation Cp → Cm defined by

(AB)w = A(Bw), for all w ∈ C
p.

(a) The transformation AB is linear, i.e., (AB) ∈ L(Cp,Cm).
(b) The matrix representation of AB relative to {U ,W} is

(AB){U,W} = A{U,V}B{V,W},

the (matrix) product of the corresponding matrix representations of A
and B.

Ex. 27. The matrix representation of the identity transformation I in Cn,
relative to any basis, is the n× n identity matrix I.

Ex. 28. For any invertible A ∈ L(Cn,Cn) and any two bases {U ,V} of Cn,
the matrix representation of A−1 relative to {V, U} is the inverse of the matrix
A{U,V},

(A−1){V, U} = (A{U,V})
−1.

Proof. Follows from Exs. 26–27. �
Ex. 29. The real matrix A =

(
0 1

−1 0

)
has the complex eigenvalue λ = i, with

geometric multiplicity = 2, i.e., every nonzero x ∈ R2 is an eigenvector.
Proof. [

0 1
−1 0

] [
x1

x2

]
= λ

[
x1

x2

]
=⇒ λ2 = −1,

unless x1 = x2 = 0. �
Ex. 30. Let A ∈ L(Cm,Cn). A property shared by all matrix representations
A{U,V} of A, as U and V range over all bases of Cm and Cn, respectively, is an
intrinsic property of the linear transformation A. Example: If A,B are similar
matrices, they have the same determinant. The determinant is thus intrinsic to
the linear transformation represented by A and B.

Given a matrix A = (aij) ∈ Cm×n, which of the following items are intrinsic
properties of a linear transformation represented by A?

(a) if m = n:
(a1) the eigenvalues of A;
(a2) their geometric multiplicities;
(a3) the eigenvectors of A;

(b) if m,n are not necessarily equal:
(b1) the rank of A;
(b2) the null space of A;
(b3)

∑m
i=1

∑n
j=1 |aij |2.
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Ex. 31. Let Ũn = {p̃1, . . . , p̃n} be the set of partial sums of monomials

p̃k(x) =
k∑

i=0

xi, k ∈ 1, n.

(a) Show that Ũn is a basis of Pn, and determine the matrix A, such that
Ũn = AUn, where Un is the basis of monomials, see Ex. 15.

(b) Calculate the representations of the differentiation operator (Ex. 15(b))
with respect to to the bases {Ũn, Ũn−1}, and verify (48).

(c) Same for the integration operator of Ex. 15(c).

Ex. 32. Let L and M be complementary subspaces of Cn. Show that the
projector PL,M , which carries x ∈ Cn into its projection on L along M , is a linear
transformation (from Cn to L).

Ex. 33. Let L and M be complementary subspaces of Cn, let x ∈ Cn, and let y
be the projection of x on L along M . What is the unique expression for x as the
sum of a vector in L and a vector in M? What, therefore, is PL,M y = P 2

L,M x,
the projection of y on L along M? Show, therefore, that the transformation PL,M

is idempotent.

Ex. 34. Matrix norms. Show that the functions

(
m∑

i=1

n∑
j=1

|aij |2)1/2 = (trace A∗A)1/2 (50)

and

max{|aij | : i ∈ 1,m, j ∈ 1, n} (51)

are matrix norms. The norm (50) is called the Frobenius norm, and denoted
‖A‖F . Which of these norms is multiplicative?

Ex. 35. Consistent norms. A vector norm ‖ ‖ and a matrix norm ‖ ‖ are called
consistent if for any vector x and matrix A such that Ax is defined,

‖Ax‖ ≤ ‖A‖‖x‖. (52)

Given a vector norm ‖ ‖∗ show that

‖A‖∗ = sup
x�=0

‖Ax‖∗
‖x‖∗ (53)

is a multiplicative matrix norm consistent with ‖x‖∗ and that any other matrix
norm ‖ ‖ consistent with ‖x‖∗ satisfies

‖A‖ ≥ ‖A‖∗, for all A. (54)

The norm ‖A‖∗ defined by (53), is called the matrix norm corresponding to the
vector norm ‖x‖∗, or the bound of A with respect to K = {x : ‖x‖∗ ≤ 1}; see,
e.g., Householder [432, Section 2.2] and Ex. 3.66 below.

Ex. 36. Show that (53) is the same as

‖A‖∗ = max
‖x‖∗≤1

‖Ax‖∗
‖x‖∗ = max

‖x‖∗=1
‖Ax‖∗. (55)

Ex. 37. Given a multiplicative matrix norm, find a vector norm consistent with
it.
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Ex. 38. Corresponding norms.

Vector norm on C
n Corresponding matrix norm on C

m×n

(14) ‖x‖p = (
n∑

j=1

|xj |p)1/p, ‖A‖p = max
‖x‖p=1

‖Ax‖p ; (56)

(14.1) ‖x‖1 =
n∑

j=1

|xj |, ‖A‖1 = max
1≤j≤n

m∑
i=1

|aij |; (56.1)

(14.∞) ‖x‖∞ = max
1≤j≤n

|xj |, ‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij |; (56.∞)

(14.2) ‖x‖2 = (
n∑

j=1

|xj |2)1/2, ‖A‖2 = max{
√
λ : λ an eigenvalue of A∗A}.

(56.2)

Note that (56.2) is different from the Frobenius norm (50), which is the Euclidean
norm of the mn-dimensional vector obtained by listing all components of A. The
norm ‖ ‖2 given by (56.2) is called the spectral norm.
Proof. Equation (56.1) follows from (55) since, for any x ∈ Cn,

‖Ax‖1 =
m∑

i=1

|
n∑

j=1

aijxj | ≤
m∑

i=1

n∑
j=1

|aij ||xj |

≤
n∑

j=1

|xj |
m∑

i=1

|aij |

≤ ( max
1≤j≤n

m∑
i=1

|aij |)(‖x‖1)

with equality if x is the k th unit vector, where k is any j for which the maximum
in (56) is attained

m∑
i=1

|aik| = max
1≤j≤n

m∑
i=1

|aij |.

Equation (56.∞) is similarly proved and (56.2) is left as exercise. �
Ex. 39. For any matrix norm ‖ ‖ on Cm×n, consistent with some vector norm,
the norm of the unit matrix satisfies

‖In‖ ≥ 1.

In particular, if ‖ ‖∗ is a matrix norm, computed by (53) from a corresponding
vector norm, then

‖In‖∗ = 1. (57)

Ex. 40. A matrix norm ‖ ‖ on Cm×n is called unitarily invariant if, for any two
unitary matrices U ∈ Cm×m and V ∈ Cn×n,

‖UAV ‖ = ‖A‖, for all A ∈ C
m×n.

Show that the matrix norms (50) and (56.2) are unitarily invariant.

Ex. 41. Spectral radius. The spectral radius ρ(A) of a square matrix A ∈ Cn×n

is the maximal value among the n moduli of the eigenvalues of A,

ρ(A) = max{|λ| : λ ∈ λ(A)}. (58)



2. LINEAR TRANSFORMATIONS AND MATRICES 21

Let ‖ ‖ be any multiplicative norm on Cn×n. Then, for any A ∈ Cn×n,

ρ(A) ≤ ‖A‖. (59)

Proof. Let ‖ ‖ denote both a given multiplicative matrix norm and a vector
norm consistent with it. Then Ax = λx =⇒ |λ|‖x‖ = ‖Ax‖ ≤ ‖A‖‖x‖. �
Ex. 42. For any A ∈ Cn×n and any ε > 0, there exists a multiplicative matrix
norm ‖ ‖ such that

‖A‖ ≤ ρ(A) + ε (Householder [432, p. 46]).

Ex. 43. If A is a square matrix,

ρ(Ak) = ρk(A), k = 0, 1, . . . . (60)

Ex. 44. For any A ∈ Cm×n, the spectral norm ‖ ‖2 of (56.2) equals

‖A‖2 = ρ1/2(A∗A) = ρ1/2(AA∗). (61)

In particular, if A is Hermitian, then

‖A‖2 = ρ(A). (62)

In general, the spectral norm ‖A‖2 and the spectral radius ρ(A) may be quite
apart; see, e.g., Noble [615, p. 430].

Ex. 45. Convergent matrices. A square matrix A is called convergent if

Ak → O, as k →∞. (63)

Show that A ∈ Cn×n is convergent if and only if

ρ(A) < 1. (64)

Proof. If : From (64) and Ex. 42 it follows that there exists a multiplicative
matrix norm ‖ ‖ such that ‖A‖ < 1. Then

‖Ak‖ ≤ ‖A‖k → 0, as k →∞,
proving (63).
Only if : If ρ(A) ≥ 1, then by (60), so is ρ(Ak) for k = 0, 1, . . . , contradicting
(63). �
Ex. 46. A square matrix A is convergent if and only if the sequence of partial
sums

Sk = I +A+A2 + · · ·+Ak =
k∑

j=0

Aj

converges, in which case it converges to (I −A)−1, i.e.,

(I −A)−1 = I +A+A2 + · · · =
∞∑

j=0

Aj (Householder [432, p. 54]). (65)

Ex. 47. Let A be convergent. Then

(I +A)−1 = I −A+A2 − · · · =
∞∑

j=0

(−1)jAj . (66)

Ex. 48. Stein’s Theorem. A square matrix is convergent if and only if there
exists a PD matrix H such that H − A∗HA is also PD (Stein [776], Taussky
[799]).
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3. Elementary Operations and Permutations

3.1. Elementary operations. The following operations on a matrix:
(1) multiplying row i by a nonzero scalar α, denoted by Ei(α);
(2) adding β times row j to row i, denoted by Eij(β) (here β is any

scalar); and
(3) interchanging rows i and j, denoted by Eij , (here i �= j);

are called elementary row operations of types 1, 2, and 3, respectively.2

Applying an elementary row operation to the identity matrix Im results
in an elementary matrix of the same type. We denote these elementary
matrices also by Ei(α), Eij(β), and Eij . Elementary matrices of types 1,
2 have only one row that is different from the corresponding row of the
identity matrix of the same order. Examples for m = 4,

E2(α)=


1 0 0 0
0 α 0 0
0 0 1 0
0 0 0 1

 , E42(β)=


1 0 0 0
0 1 0 0
0 0 1 0
0 β 0 1

 , E13 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 .

Elementary column operations and the corresponding elementary matrices
are defined analogously.

Performing an elementary row [column] operation is the same as mul-
tiplying on the left [right] by the corresponding elementary matrix. For
example, E25(−3)A is the matrix obtained from A by subtracting 3× row
5 from row 2.

3.2. Permutations. Given a positive integer n, a permutation of order
n is a rearrangement of {1, 2, . . . , n}, i.e., a mapping: 1, n −→ 1, n. The
set of such permutations is denoted by Sn. It contains:

(a) the identity permutation π0{1, 2, . . . , n} = {1, 2, . . . , n};
(b) with any two permutations π1, π2, their product π1π2, defined as π1

applied to {π2(1), π2(2), . . . , π2(n)}; and
(c) with any permutation π, its inverse, denoted by π−1, mapping

{π(1), π(2), . . . , π(n)} back to {1, 2, . . . , n}.
Thus Sn is a group, called the symmetric group.

Given a permutation π ∈ Sn, the corresponding permutation matrix Pπ

is defined as Pπ = [δπ(i),j ], and the correspondence π ←→ Pπ is one-to-one.
For example,

π{1, 2, 3} = {2, 3, 1} ←→ Pπ =

0 1 0
0 0 1
1 0 0

 .

Products of permutations correspond to matrix products:

Pπ1π2 = Pπ1Pπ2 , ∀ π1, π2 ∈ Sn.

A transposition is a permutation that switches only a pair of elements, for
example, π{1, 2, 3, 4} = {1, 4, 3, 2}. Every permutation π ∈ Sn is a product
of transpositions, generally in more than one way. However, the number of

2Only operations of types 1, 2 are necessary, see Ex. 49(b). Type 3 operations are
introduced for convenience, because of their frequent use.
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transpositions in such a product is always even or odd, depending only on
π. Accordingly, a permutation π is called even or odd, if it is the product
of an even or odd number of transpositions, respectively. The sign of the
permutation π, denoted signπ, is defined as

signπ =
{

+1, if π is even,
−1, if π is odd.

The following table summarizes the situation for permutations of order 3:
Permutation Inverse Product of sign π

π π−1 transpositions
π0 {1, 2, 3} π0 π1π1, π2π2, etc. +1
π1 {1, 3, 2} π1 π1 −1
π2 {2, 1, 3} π2 π2 −1
π3 {2, 3, 1} π4 π1π2 +1
π4 {3, 1, 2} π3 π2π1 +1
π5 {3, 2, 1} π5 π5 −1

Multiplying a matrix A by a permutation matrix Pπ on the left [right]
results in a permutation π [π−1] of the rows [columns] of A. For example,0 1 0

0 0 1
1 0 0

a11 a12
a21 a22
a31 a32

 =

a21 a22
a31 a32
a11 a12

 ,

[
b11 b12 b13
b21 b22 b23

]0 1 0
0 0 1
1 0 0

 =
[
b13 b11 b12
b23 b21 b22

]
.

Exercises

Ex. 49. Elementary operations.

(a) The elementary matrices are nonsingular, and their inverses are

Ei(α)−1 = Ei(1/α), Eij(β)−1 = Eij(−β), (Eij)−1 = Eij . (67)

(b) Type 3 elementary operations are expressible in terms of the other two
types:

Eij = Ei(−1)Eji(1)Eij(−1)Eji(1). (68)

(c) Conclude from (b) that any permutation matrix is a product of elementary
matrices of types 1, 2.

Ex. 50. Describe a recursive method for listing all n! permutations in Sn.
Hint : If π is a permutation in Sn−1, mapping {1, 2, . . . , n− 1} to

{π(1), π(2), . . . , π(n− 1)}, (69)

then π gives rise to n permutations in Sn obtained by placing n in the “gaps”
{�π(1) � π(2) � . . . � π(n− 1)�} of (69).

4. The Hermite Normal Form and Related Items

4.1. Hermite normal form. Let Cm×n
r [Rm×n

r ] denote the class of
m× n complex [real] matrices of rank r.
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Definition 1. (Marcus and Minc [534, § 3.6]). A matrix in Cm×n
r is

said to be in Hermite normal form (also called reduced row-echelon form)
if:

(a) the first r rows contain at least one nonzero element; the remaining
rows contain only zeros;

(b) there are r integers

1 ≤ c1 < c2 < · · · < cr ≤ n, (70)

such that the first nonzero element in row i ∈ 1, r, appears in
column ci; and

(c) all other elements in column ci are zero, i ∈ 1, r. �
By a suitable permutation of its columns, a matrix H ∈ Cm×n

r in
Hermite normal form can be brought into the partitioned form

R =
[
Ir K
O O

]
, (71)

where O denotes a null matrix. Such a permutation of the columns of H can
be interpreted as multiplication of H on the right by a suitable permutation
matrix P . If Pj denotes the j th column of P , and ej the j th column of In,
we have

Pj = ek, where k = cj , j ∈ 1, r,

the remaining columns of P are the remaining unit vectors {ek : k �=
cj , j ∈ 1, r} in any order. In general, there are (n − r)! different pairs
{P, K}, corresponding to all arrangements of the last n− r columns of P .

In particular cases, the partitioned form (71) may be suitably inter-
preted. If R ∈ Cm×n

r , then the two right-hand submatrices are absent in
the case r = n, and the two lower submatrices are absent if r = m.

4.2. Gaussian elimination. A Gaussian elimination is a sequence of
elementary row operations that transform a given matrix to a desired form.

The Hermite normal form of a given matrix can be computed by Gauss-
ian elimination. Transpositions of rows (i.e., elementary operations of type
3) are used, if necessary, to bring the nonzero rows to the top. The pivots
of the elimination are the leading nonzeros in these rows. This is illustrated
in Ex. 51 below.

Let A ∈ Cm×n and let Ek, Ek−1, . . . , E2, E1 be elementary row opera-
tions, and let P be a permutation matrix such that

E AP =
[
Ir K
O O

]
, (72)

where

E = EkEk−1 · · ·E2E1, (73)

in which case A is determined to have rank r. Equation (72) can be rewrit-
ten as

A = E−1
[
Ir K
O O

]
P−1. (74)
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4.3. Bases for the range and null space of a matrix. Let A ∈ Cm×n

and let R(A) and N(A) be as in (20).
A basis for R(A) is useful in a number of applications, such as, for

example, in the numerical computation of the Moore–Penrose inverse, and
the group inverse to be discussed in Chapter 4.

The need for a basis of N(A) is illustrated by the fact that the general
solution of the linear inhomogeneous equation

Ax = b

is the sum of any particular solution x0 and the general solution of the
homogeneous equation

Ax = 0.

The latter general solution consists of all linear combinations of the elements
of any basis for N(A).

A further advantage of the Hermite normal form EA of A (and its
column-permuted form EAP ) is that from them bases for R(A), N(A), and
R(A∗) can be read off directly.

A basis for R(A) consists of the c1
th, c2

th, . . . , cr
th columns of A, where

the {cj : j ∈ 1, r} are as in Definition 1. To see this, let P1 denote the
submatrix consisting of the first r columns of the permutation matrix P of
(72). Then, because of the way in which these r columns of P were chosen,

EAP1 =
[
Ir

O

]
. (75)

Now, AP1 is an m× r matrix, and is of rank r, since RHS(75) is of rank r.
But AP1 is merely the submatrix of A consisting of the c1

th, c2
th, . . . , cr

th

columns.
It follows from (74) that the columns of the n× (n− r) matrix

P

[−K
In−r

]
(76)

are a basis for N(A). (The reader should verify this.)
Moreover, it is evident that the first r rows of the Hermite normal form

EA are linearly independent, and each is some linear combination of the
rows of A. Thus, they are a basis for the space spanned by the rows of A.
Consequently, if

EA =
[
G
O

]
, (77)

then the columns of the n× r matrix

G∗ = P

[
Ir

K∗

]
are a basis for R(A∗).

4.4. Full-rank factorization. A nonzero matrix can be expressed as
the product of a matrix of full column rank and a matrix of full row rank.
Such factorizations turn out to be a powerful tool in the study of generalized
inverses.
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Lemma 1. Let A ∈ Cm×n
r , r > 0. Then there exist matrices F ∈ Cm×r

r

and G ∈ Cr×n
r , such that

A = FG. (78)

Proof. The Q̃R̃ factorization, Ex. 13, is a case in point. Let F be any matrix
whose columns are a basis for R(A). Then F ∈ Cm×r

r . The matrix G ∈ Cr×n

is then uniquely determined by (78), since every column of A is uniquely rep-
resentable as a linear combination of the columns of F . Finally, rankG = r,
since

rankG ≥ rankFG = r. �
The columns of F can, in particular, be chosen as any maximal linearly

independent set of columns of A. Also, G could be chosen first as any matrix
whose rows are a basis for the space spanned by the rows of A, and then F
is uniquely determined by (78).

A factorization (78) with the properties stated in Lemma 1 is called a
(full -)rank factorization of A. When A is of full (column or row) rank, the
most obvious factorization is a trivial one, one factor being a unit matrix.

A rank factorization of any matrix is easily read off from its Hermite
normal form. Indeed, it was pointed out in §4.3 above that the first r rows
of the Hermite normal form EA (i.e., the rows of the matrix G of (77))
form a basis for the space spanned by the rows of A. Thus, this G can also
serve as the matrix G of (78). Consequently, (78) holds for some F . As
in §4.3, let P1 denote the submatrix of P consisting of the first r columns.
Because of the way in which these r columns were constructed,

GP1 = Ir.

Thus, multiplying (78) on the right by P1 gives

F = AP1,

and so (78) becomes

A = (AP1)G, (79)

where P1 and G are as in §4.3. (Indeed it was already noted there that the
columns of AP1 are a basis for R(A).)

Exercises

Ex. 51. Transforming a matrix into Hermite normal form. Let A ∈ Cm×n

and let T0 = [A Im]. A matrix E transforming A into a Hermite normal form
EA can be found by Gaussian elimination on T0 where, after the elimination is
completed,

ET0 = [EA E],

E being recorded as the right-hand m×m submatrix of ET0. We illustrate this
procedure for the matrix

A =

0 2i i 0 4 + 2i 1
0 0 0 −3 −6 −3− 3i
0 2 1 1 4− 4i 1

 , (80)
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marking the pivots by boxes,

T0 =


0 2i i 0 4 + 2i 1

... 1 0 0

0 0 0 −3 −6 −3− 3i
... 0 1 0

0 2 1 1 4− 4i 1
... 0 0 1

 ,
T1 = E31(−2)E1( 1

2i
)T0

=


0 1 1

2 0 1− 2i − 1
2 i

... − 1
2 i 0 0

0 0 0 −3 −6 −3− 3i
... 0 1 0

0 0 0 1 2 1 + i
... i 0 1

 ,
T2 = E32(−1)E2(− 1

3 )T1

=


0 1 1

2 0 1− 2i − 1
2 i

... − 1
2 i 0 0

0 0 0 1 2 1 + i
... 0 − 1

3 0

0 0 0 0 0 0
... i 1

3 1

 .
From T2 = [EA E] we read the Hermite normal form

EA =


0 1 1

2 0 1− 2i − 1
2 i

0 0 0 1 2 1 + i
· · · · · · · · · · · · · · · · · ·
0 0 0 0 0 0

 , (81)

where

E = E32(−1)E2(− 1
3 )E31(−2)E1( 1

2i
) =

− 1
2 i 0 0
0 − 1

3 0
i 1

3 1

 , (82)

and r = rankA = 2.

Ex. 52. (Ex. 51 continued). To bring the Hermite normal form (81) to the
standard form (72), use

P =



0 0
... 1 0 0 0

1 0
... 0 0 0 0

0 0
... 0 1 0 0

0 1
... 0 0 0 0

0 0
... 0 0 1 0

0 0
... 0 0 0 1


,

to get EAP =
[
I2 K
O O

]

with K =
[
0 1

2 1− 2i − 1
2 i

0 0 2 1 + i

]
.

(83)

In this example there are 4! different pairs {P,K}, corresponding to all arrange-
ments of the last four columns of P .

Ex. 53. (Ex. 51 continued). Consider the matrix A of (80), and its Hermite
normal form (81) where the two unit vectors of C2 appear in the second and
fourth columns. Therefore, the second and fourth columns of A form a basis for
R(A).



28 0. PRELIMINARIES

Using (76) with P and K selected by (83), we find that the columns of the
following matrix form a basis for N(A):

P

[−K
In−r

]
=



0 0
... 1 0 0 0

1 0
... 0 0 0 0

0 0
... 0 1 0 0

0 1
... 0 0 0 0

0 0
... 0 0 1 0

0 0
... 0 0 0 1





0 − 1
2 −1 + 2i 1

2 i
0 0 −2 −1− i
· · · · · · · · · · · · · · ·
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



=


1 0 0 0
0 − 1

2 −1 + 2i 1
2 i

0 1 0 0
0 0 −2 −1− i
0 0 1 0
0 0 0 1


Ex. 54. If A ∈ Cm×m is nonsingular, then the permutation matrix P in (72) can
be taken as the identity (i.e., permutation is unnecessary). Therefore E = A−1

and

A = E−1
1 E−1

2 · · ·E−1
k−1E

−1
k . (84)

(a) Conclude that A is nonsingular if and only if it is a product of elementary
row matrices.

(b) Compute the Hermite normal forms of

A =

1 2 3
4 5 6
7 8 8

 and B =

1 2 3
4 5 6
7 8 9

 ,
and illustrate (84).

Ex. 55. Consider the matrix A of (80). Using the results of Exs. 51–52, a rank
factorization is computed by (79),

A = (AP1)G =

2i 0
0 −3
2 1

[0 1 1
2 0 1− 2i − 1

2 i
0 0 0 1 2 1 + i

]
. (85)

Ex. 56. Given a nonzero m × n matrix A = [a1 . . . an], a full-column rank
submatrix F = [ac1 . . . acr ] can be found by Gram–Schmidt orthonormalization,
see Ex. 7. Indeed, applying the GSO process to the columns of A gives the integers
{c1, . . . , cr}.
Ex. 57. Use the GSO process to compute a Q̃R̃ factorization of the matrix A of
(80).

5. Determinants and Volume

5.1. Determinants. The determinant of an n × n matrix A = [aij ],
denoted detA, is customarily defined as

det A =
∑

π∈Sn

signπ

n∏
i=1

aπ(i),i, (86)
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see, e.g., Marcus and Minc [534, § 2.4]. We use here an alternative defini-
tion.

Definition 2. The determinant is a function det: Cn×n → C such
that:

(a) det (Ei(α)) = α, for all α ∈ C, i ∈ 1, n; and
(b) det(AB) = det(A) det(B), for all A, B ∈ Cn×n.
The reader is referred to Cullen and Gale [212] for proof that Defini-

tion 2 is equivalent to (86). See also Exs. 58–59 below.
The Binet–Cauchy formula. If A ∈ Ck×n, B ∈ Cn×k, then

det(AB) =
∑

I∈Qk,n

det AI∗ det B∗I . (87)

For proof see, e.g., Gantmacher [296, Vol. I, p. 9].

5.2. Gram matrices. The Gram matrix of {x1,x2, . . . ,xk} ⊂ Cn is
the k × k matrix of inner products (unless otherwise noted, 〈·, ·〉 is the
standard inner product)

G(x1,x2, . . . ,xk) = [〈xi,xj〉]. (88)

The determinant of G(x1,x2, . . . ,xk) is called the Gramian of {x1,x2, . . . ,xk}.
If X ∈ Cn×k is the matrix with columns {x1,x2, . . . ,xk}, then by the

Binet–Cauchy formula,

det G(x1, . . . ,xn) = detX∗X =
∑

I∈Qk,n

|det XI∗|2.

5.3. Volume. The matrices in this section are real. Given A ∈ Rm×n
r ,

we denote

I(A) = {I ∈ Qr,m : rankA(I, ∗) = r},
J (A) = {J ∈ Qr,n : rankA(∗, J) = r},
N (A) = {(I, J) : I ∈ Qr,m, J ∈ Qr,n, A(I, J) is nonsingular},

or I, J , N if A is understood. I and J are the index sets of maximal
submatrices of full row rank and full column rank, respectively, and N is
the index set of maximal nonsingular submatrices.

The (r-dimensional) volume of a matrix A ∈ Rm×n
r , denoted vol A or

volr A, is defined as 0 if r = 0, and otherwise

vol A :=
√ ∑

(I,J)∈N (A)

det2 AIJ . (89)

see also Ex. 69 below.
Exercises
Ex. 58. Properties of determinants.

(a) detEij(β) = 1, for all β ∈ C, i, j ∈ 1, n; and
(b) detEij = −1, for all i, j ∈ 1, n. (Hint : Use (68) and Definition 2.)
(c) If A is nonsingular, and given as product (84) of elementary matrices,

then

detA = det(E−1
1 ) det(E−1

2 ) · · · det(E−1
k−1) det(E−1

k ). (90)

(d) Use (90) to compute the determinant of A in Ex. 54(b).
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Ex. 59. The Cramer rule. Given a matrix A and a compatible vector b, we
denote by A[j ← b] the matrix obtained from A by replacing the j th column by
b.

Let A ∈ Cn×n be nonsingular. Then for any b ∈ Cn, the solution x = [xj ] of

Ax = b (91)

is given by

xj =
detA[j ← b]

detA
, j ∈ 1, n. (92)

Proof (Robinson [700]). Write Ax = b as

AIn[j ← x] = A[j ← b], j ∈ 1, n,

and take determinants

detA det In[j ← x] = detA[j ← b]. (93)

Then (92) follows from (93) since

det In[j ← x] = xj . �

See an extension of Cramer’s rule in Corollary 5.6.

Ex. 60. The Hadamard inequality. Let A = [a1 a2 · · · an] ∈ Cn×n. Then

| det A| ≤
n∏

i=1

‖ai‖2, (94)

with equality if and only if the set of columns {ai} is orthogonal or if one of the
columns is zero.
Proof. LHS(94) = the volume of the parallelepiped defined by the columns of
A ≤ the volume of the cube with sides of lengths ‖ai‖2 = RHS(94). �
Ex. 61. The Schur complement (Schur [732]). Let the matrix A be partitioned
as

A =
[
A11 A12

A21 A22

]
, with A11 nonsingular. (95)

The Schur complement of A11 in A, denoted A/A11, is defined by

A/A11 := A22 −A21A
−1
11 A12. (96)

(a) If A is square, its determinant is

detA = detA11 det(A/A11). (97)

(b) The quotient property. If A11 is further partitioned as

A11 =
[
E F
G H

]
, with E nonsingular, (98)

then

A/A11 = (A/E)/(A11/E) (Crabtree and Haynsworth [210]). (99)

(c) If A, A11, and A22 are nonsingular, then

A−1 =
[

(A/A22)−1 −A−1
11 A12(A/A11)−1

−A−1
22 A21(A/A22)−1 (A/A11)−1

]
. (100)
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Proof. (a) follows from[
A11 A12

A21 A22

] [
I −A−1

11 A12

O I

]
=
[
A11 O
A21 A/A11

]
.

(b) is left for the reader, after noting that A11/E is nonsingular (since A11

and E are nonsingular, and detA11 = detE det(A11/E) by (97)).
(c) is verified by multiplying A and RHS(100). �

Ex. 62. The set S = {x1, . . . ,xk} are linearly independent if, and only if, the
Gram matrix G(S) is nonsingular.
Proof. If S is linearly dependent, then

k∑
i=1

αi xi = 0 (101)

has a nonzero solution (α1, . . . , αk). Therefore

k∑
i=1

αi〈xi,xj〉 = 0, j ∈ 1, k, (102)

showing G(S) is singular. Conversely, writing (102) as

〈
k∑

i=1

αi xi,xj〉 = 0, j ∈ 1, k,

multiplying by αj , and summing we get

〈
k∑

i=1

αi xi,

k∑
i=1

αi xi〉 = 0

proving (101). �

Ex. 63. For any set of vectors S = {x1, . . . ,xk} ⊂ Cn, det G(S) is independent
of the order of the vectors. Moreover, det G(S) ≥ 0 and det G(S) = 0 if and only
if the set S is linearly dependent.

Ex. 64. Let A ∈ Cm×n
r have a rank-factorization A = CR, C ∈ Cm×r

r , R ∈
Cr×n

r . Then:

(a) I(A) = I(C).
(b) J (A) = J (R).
(c) N (A) = I(A)× J (A).

Proof. (a) and (b) are obvious, as is N (A) ⊂ I(A)× J (A). The converse

N (A) ⊃ I(A)× J (A),

follows since every AIJ is the product

AIJ = CI∗R∗J . (103)
�

Ex. 65. If the matrix C is of full-column rank r then, by the Binet–Cauchy
theorem,

vol2r(C) = det CTC, (104)

the Gramian of the columns of C. Similarly, if R is of full-row rank r,

vol2r(R) = det RRT . (105)
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Ex. 66. Let A ∈ Rm×n
r , r > 0, and let A = CR be any rank factorization. Then

vol2r (A) =
∑
I∈I

vol2r (AI∗) , (106a)

=
∑
J∈J

vol2r (A∗J) , (106b)

= vol2r (C) vol2r (R) . (106c)

Proof. Follows from Definition (89), Ex. 64(c), and (103). �
Ex. 67. A generalized Hadamard inequality. Let A ∈ Rm×n

r be partitioned into
two matrices A = (A1, A2), Ai ∈ Rm×ni

ri
, i = 1, 2, with r1 + r2 = r. Then

volr A ≤ volr1A1 volr2A2, (107)

with equality if and only if the columns of A1 are orthogonal to those of A2.
Proof. The full-rank case ni = ri, i = 1, 2, was proved in [296, Vol. I, p. 254].
The general case follows since every m × r submatrix of rank r has r1 columns
from A1 and r2 columns from A2. �
A statement of (107) in terms of the principal angles [3] between R(A1) and
R(A2) is given in [549].

6. Some Multilinear Algebra

The setting of multilinear algebra is natural for the matrix volume, allowing
simplification of statements and proofs.

Let V = Rn, U = Rm. We use the same letter to denote both a linear
transformation in L(V, U) and its matrix representation with respect to
fixed bases in V and U .

Let
∧k

V be the k th exterior space over V , spanned by exterior products
x1 ∧ · · · ∧ xk of elements xi ∈ V , see, e.g., [531], [532], and [585]. For
A ∈ Rm×n

r , r > 0 and k = 1, . . . , r, the k compound matrix Ck(A) is an
element of L(

∧k
V,

∧k
U), given by

Ax1 ∧ · · · ∧Axk = Ck(A) (x1 ∧ · · · ∧ xk), ∀ xi ∈ V, (108)

see, e.g., [532, § 4.2, p. 94]. Then Ck(A) is an
(
m
k

) × (
n
k

)
matrix of rank(

r
k

)
, see Ex. 6.22.
To any r-dimensional subspace W ⊂ V there corresponds a unique one-

dimensional subspace
∧r

W ⊂ ∧r
V , spanned by the exterior product

w∧ = w1 ∧ · · · ∧wr, (109)

where {w1, . . . ,wr} is any basis of W , e.g., [585]. The
(
n
r

)
components of

w∧ (determined up to a multiplicative constant) are the Plücker coordinates
of W .

Results relating volumes, compound matrices, and full-rank factoriza-
tions are collected in the following lemma. The proofs are omitted.

Lemma 2 (Volume and Compounds). Let r > 0, A ∈ Rm×n
r , C ∈

Rm×r
r have columns c(j) and let R ∈ Rr×n

r have rows r(i). Then,

Cr(R) (r(1) ∧ · · · ∧ r(r)) = vol2 R, (110a)

Cr(CT ) (c(1) ∧ · · · ∧ c(r)) = vol2 C. (110b)
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If A = CR is a rank factorization of A, then

Cr(A) = (c(1) ∧ · · · ∧ c(r))(r(1) ∧ · · · ∧ r(r)) (110c)

is a full-rank factorization3 of Cr(A). Moreover, the volume of A is given
by the inner product,

〈c(1) ∧ · · · ∧ c(r), Ar(1) ∧ · · · ∧Ar(r)〉 = vol2 A, (111)

and

vol2r A = vol21 Cr(A) = vol21 Cr(C) vol21 Cr(R). (112)

Exercises

Ex. 68. Consider the 3× 3 matrix of rank 2, with a full-rank factorization

A =

1 2 3
4 5 6
7 8 9

 = CR =

1 2
4 5
7 8

[1 0 −1
0 1 2

]
. (113)

Then the 2-compound matrix is

C2(A) =

−3 −6 −3
−6 −12 −6
−3 −6 −3

 = C2(C)C2(R)

=

−3
−6
−3

 [1 2 1],

a full-rank factorization. The volume of A is calculated by (112),

vol22 A = vol21(C) vol21(R) = (9 + 36 + 9)(1 + 4 + 1) = 324.

Ex. 69. For k = 1, . . . , r, the k-volume of A is defined as the Frobenius norm
of the k th compound matrix Ck(A),

volk A :=
√ ∑

I∈Qk,m, J∈Qk,n

|det AIJ |2 (114a)

or, equivalently,

volk A =

√√√√ ∑
I∈Qk,r

(∏
i∈I

σ2
i (A)

)
, (114b)

the square root of the k th symmetric function of {σ2
1(A), · · · , σ2

r(A)}. We use
the convention

volk A := 0, for k = 0 or k > rankA. (114c)

Ex. 70. Let S ∈ Rm×m, A ∈ Rm×n
m . Then

volm(SA) = | det S| vol A. (115)

3This is a restatement of (103).
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Proof. If S is singular, then both sides of (115) are zero. Let S be nonsingular.
Then rank(SA) = m, and

volm (SA) =
√ ∑

J∈Qm,n

det2 (SA)∗J

=
√ ∑

J∈Qm,n

det2 S det2A∗J

= | det S| vol A. �

7. The Jordan Normal Form

Let the matrices A ∈ Cn×n, X ∈ Cn×k
k , and the scalar λ ∈ C satisfy

AX = XJk(λ), where Jk(λ) =



λ 1 0 · · · 0

0 λ 1
. . .

...
...

. . . . . . . . . 0
...

. . . λ 1
0 · · · · · · 0 λ


∈ Ck×k, (116)

or, writing X by its columns, X = [x1 x2 · · · xk],

Ax1 = λx1, (117)

Axj = λ xj + xj−1, j = 2, . . . , k. (118)

It follows, for j ∈ 1, k, that

(A− λ I)j xj = 0, (A− λ I)j−1 xj = x1 �= 0, (119)

where we interpret (A−λ I)0 as I. The vector x1 is therefore an eigenvector
of A corresponding to the eigenvalue λ. We call xj a λ-vector of A of
grade j or, following Wilkinson [872, p. 43], a principal vector4 of A of
grade j associated with the eigenvalue λ. Evidently, principal vectors are a
generalization of eigenvectors. In fact, an eigenvector is a principal vector
of grade 1.

The matrix Jk(λ) in (116) is called a (k×k) Jordan block corresponding
to the eigenvalue λ. The following theorem, stated without proof (that can
be found in linear algebra texts, see, e.g., [495, Chapter 6]), is of central
importance:

Theorem 2 (The Jordan Normal Form). Any matrix A ∈ Cn×n is
similar to a block diagonal matrix J with Jordan blocks on its diagonal,
i.e., there exists a nonsingular matrix X such that

X−1AX = J =


Jk1(λ1) O · · · O

O Jk2(λ2) · · · O
...

...
. . .

...
O O · · · Jkp(λp)

 , (120)

and the matrix J is unique up to a rearrangement of its blocks. �
4The vectors xj , j ∈ 2, k, are sometimes called generalized eigenvectors associated

with λ, see, e.g., [678, p. 74].
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The matrix J is the Jordan normal form of A. The scalars {λ1, . . . , λp}
in (120) are the eigenvalues of A. Each Jordan block Jkj (λj) corresponds
to kj principal vectors, of which one is an eigenvector.

Writing (120) as

A = XJX−1, (121)

we verify

As = XJsX−1, for all integers s ≥ 0, (122)

and, for any polynomial p,

p(A) = Xp(J)X−1. (123)

Using (120) and (127) below we verify

(A− λ1 I)k1 = X


O O · · · O
O ? · · · O
...

...
. . .

...
O O · · · ?

X−1,

where exact knowledge of the ? blocks is not needed. Continuing in this
fashion we prove

Theorem 3 (The Cayley–Hamilton Theorem). For A as above,

(A− λ1 I)k1(A− λ2 I)k2 · · · (A− λp I)kp = O. (124)

Proof.

LHS(124) =

X


O O · · · O
O ? · · · O
...

...
. . .

...
O O · · · ?




? O · · · O
O O · · · O
...

...
. . .

...
O O · · · ?

 · · ·


? O · · · O
O ? · · · O
...

...
. . .

...
O O · · · O

 X−1.

�

This result can be stated in terms of the polynomial

c(λ) = (λ− λ1)k1(λ− λ2)k2 · · · (λ− λp)kp , (125)

called the characteristic polynomial of A, see Ex. 72. Indeed, LHS(124)
is obtained by substituting A for the variable λ, and replacing λi by λi I.
The n roots of the characteristic polynomial of A are the eigenvalues of
A, counting multiplicities. The Cayley–Hamilton theorem states that a
matrix A satisfies the polynomial equation c(A) = O, where c(λ) is its
characteristic polynomial.

If an eigenvalue λi is repeated in q Jordan blocks,

Jj1(λi), Jj2(λi), . . . , Jjq (λi), with j1 ≥ j2 ≥ · · · ≥ jq,

then the characteristic polynomial is the product of factors

c(λ) = c1(λ) c2(λ) · · · cp(λ), with
{

ci(λ) = (λ− λi)ai ,
ai = j1 + j2 + · · ·+ jq.

The exponent ai is called the algebraic multiplicity of the eigenvalue λi. It
is the sum of dimensions of the Jordan blocks corresponding to λi. The
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dimension of the largest block, j1, is called the index of the eigenvalue λi,
and denoted ν(λi). By (127) below it is the smallest integer k such that

(Jj1(λi)− λi Ij1)
k =O, (Jj2(λi)− λi Ij2)

k =O, · · · , (Jjq (λi)− λi Ijq )
k =O,

see also Ex. 82.
Let mi(λ) = (λ− λi)ν(λi). Then the polynomial

m(λ) = m1(λ) m2(λ) · · ·mp(λ)

satisfies m(A) = O, and has the smallest degree among such polynomials.
It is called the minimal polynomial of A.
Exercises
Ex. 71. Let A ∈ Cn×n have the Jordan form (120). Then the following state-
ments are equivalent:

(a) A is nonsingular;
(b) J is nonsingular; and
(c) 0 is not an eigenvalue of A.

If these hold, then

A−1 = XJ−1X−1, (126)

and (122) holds for all integers s, if we interpret A−s as
(
A−1)s.

Ex. 72. Let A ∈ Cn×n. Then the characteristic polynomial of A is c(λ) =
(−1)n det(A− λ I).
Ex. 73. Let A ∈ Cn×n. Then λ is an eigenvalue of A if and only if λ is an
eigenvalue of A∗.
Proof. det(A∗ − λ I) = det(A− λ I). �
Ex. 74. Let A be given in Jordan form

A = X


J3(λ1) O O O O O
O J2(λ1) O O O O
O O J2(λ1) O O O
O O O J1(λ1) O O
O O O O J2(λ2) O
O O O O O J2(λ2)

 X−1.

Then the characteristic polynomial of A is c(λ) = (λ − λ1)8(λ − λ2)4 and the
minimal polynomial is m(λ) = (λ − λ1)3(λ − λ2)2. The algebraic multiplicity
of λ1 is 8, its geometric multiplicity is 4 (every Jordan block contributes an
eigenvector), and its index is 3.

Ex. 75. A matrix N is nilpotent if Nk = O for some integer k ≥ 0. The smallest
such k is called the index of nilpotency of N . Let Jk(λ) be a Jordan block and
let j ∈ 1, k. Then

(Jk(λ)− λ Ik)j = Jk(0)j =

=



0 1 · · · · · · 0
...

. . . 1
...

...
. . .

. . .
...

...
. . . 1

0 · · · · · · · · · 0



j

=



0 · · · 1 · · · 0
...

. . .
...

... 1

...
...

0 · · · · · · · · · 0


, (127)
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with ones in positions {(i, i + j) : i ∈ 1, k − j }, zeros elsewhere. In particular,
(Jk(λ)−λ Ik)k−1 �= O = (Jk(λ)−λ Ik)k, showing that (Jk(λ)−λ Ik) is nilpotent
with index k.

Ex. 76. Let Jk(λ) be a Jordan block and let m be a nonnegative integer. Show
that the power (Jk(λ))m is

(Jk(λ))m =



λm mλm−1 (
m
2

)
λm−2 · · · (

m
k−1

)
λm−k+1

0 λm mλm−1 . . .
...

...
. . .

. . .
(

m
2

)
λm−2

... λm mλm−1

0 · · · · · · 0 λm


(128a)

=
k−1∑
j=0

(
m

j

)
λm−j(Jk(λ)− λ Ik)j (128b)

=
k−1∑
j=0

p(j)(λ)
j!

(Jk(λ)− λ Ik)j , (128c)

where p(λ) = λm, p(j) is the j th derivative, and in (128),
(

m
�

)
is interpreted as

zero if m < �.

Ex. 77. Let Jk(λ) be a Jordan block and let p(λ) be a polynomial. Then p(Jk(λ)
is defined by using (128)

p(Jk(λ)) =



p(λ) 1
1!p

′(λ) 1
2!p

′′(λ) · · · 1
(k−1)!p

(k−1)(λ)

0 p(λ) 1
1!p

′(λ)
. . .

...

...
. . .

. . . 1
2!p

′′(λ)
... p(λ) 1

1!p
′(λ)

0 · · · · · · 0 p(λ)


(129)

=
k−1∑
j=0

p(j)(λ)
j!

(Jk(λ)− λ Ik)j , as in (128c).

Ex. 78. ([365, p. 104]). Let Pn be the set of polynomials with real coefficients, of
degree ≤ n, and let T be the differentiation operator Tf(x) = f ′(x), see Ex. 15(b).
The solution of f ′(x) = λf(x) is f(x) = eλx, which is a polynomial only if λ = 0,
the only eigenvalue of T . The geometric multiplicity of this eigenvalue is 1, its
algebraic multiplicity is n+ 1.

Ex. 79. Let the n× n matrix A have the characteristic polynomial

c(λ) = λn + cn−1λ
n−1 + · · ·+ c2λ

2 + c1λ+ c0.

Then A is nonsingular if and only if c0 �= 0, in which case

A−1 = − 1
c0

(
An−1 + cn−1A

n−2 + · · ·+ c2A+ c1I
)
.
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Ex. 80. Let A be a nonsingular matrix. Show that its minimal polynomial can
be written in the form

m(λ) = c(1− λ q(λ)) (130)

where c �= 0 and q is a polynomial, in which case

A−1 = q(A). (131)

See also Ex. 6.87 below.

Ex. 81. Let the 2× 2 matrix A have eigenvalues ±i. Find A−1.
Hint : Here c(λ) = m(λ) = λ2 + 1. Use Ex. 79 or Ex. 80.

Ex. 82. For a given eigenvalue λ, the maximal grade of the λ-vectors of A is the
index of λ.

8. The Smith Normal Form

Let Z denote the ring of integers 0,±1,±2, . . . and let:
Zm be the m-dimensional vector space over Z;
Zm×n be the m× n matrices over Z; and
Zm×n

r be the same with rank r.
Any vector in Zm will be called an integral vector. Similarly, any element
of Zm×n will be called an integral matrix.

A nonsingular matrix A ∈ Zn×n whose inverse A−1 is also in Zn×n is
called a unit matrix ; e.g., Marcus and Minc [534, p. 42].

Two matrices A, S ∈ Zm×n are said to be equivalent over Z if there
exist two unit matrices P ∈ Zm×m and Q ∈ Zn×n such that

PAQ = S. (132)

Theorem 4. Let A ∈ Zm×n
r . Then A is equivalent over Z to a matrix

S = [sij ] ∈ Zm×n
r such that:

(a) sii �= 0, i ∈ 1, r;
(b) sij = 0 otherwise; and
(c) sii divides si+1,i+1 for i ∈ 1, r − 1.

Remark. S is called the Smith normal form of A, and its nonzero elements
sii (i ∈ 1, r) are the invariant factors of A; see, e.g., Marcus and Minc [534,
pp. 42–44].
Proof. The proof given in Marcus and Minc [534, p. 44] is constructive and
describes an algorithm to:

(i) find the greatest common divisor of the elements of A;
(ii) bring it to position (1, 1); and
(iii) make zeros of all other elements in the first row and column.

This is done, in an obvious way, by using a sequence of elementary row and
column operations consisting of

interchanging two rows [columns], (133)

subtracting an integer multiple of one row [column]
from another row [column]. (134)

The matrix B = [bij ] so obtained is equivalent over Z to A, and
b11 divides bij (i > 1, j > 1);
bi1 = b1j = 0 (i > 1, j > 1).
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Setting s11 = b11, one repeats the algorithm for (m−1)×(n−1) matrix [bij ] (i >
1, j > 1), etc.

The algorithm is repeated r times and stops when the bottom right (m −
r)× (n− r) submatrix is zero, giving the Smith normal form.

The unit matrix P [Q] in (132) is the product of all the elementary row
[column] operators, in the right order. �
Exercises

Ex. 83. Two matrices A,B ∈ Zm×n are equivalent over Z if and only if B
can be obtained from A by a sequence of elementary row and column operations
(133)–(134).

Ex. 84. Describe in detail the algorithm mentioned in the proof of Theorem 4.

9. Nonnegative Matrices

A matrix A = [aij ] ∈ Rn×n is:
(a) nonnegative if all aij ≥ 0; and
(b) reducible if there is a permutation matrix Q such that

QT AQ =
[
A11 A12
O A22

]
, (135)

where the submatrices A11, A22 are square, and is otherwise irre-
ducible.

Theorem 5 (The Perron–Frobenius Theorem). If A ∈ Rn×n is non-
negative and irreducible then:

(a) A has a positive eigenvalue, ρ, equal to the spectral radius of A.
(b) ρ has algebraic multiplicity 1.
(c) There is a positive eigenvector corresponding to ρ.

Suggested Further Reading

Section 4.4. Bhimasankaram [97], Hartwig [380].
Section 5. Schur complements: Carlson [166], Cottle [207], Horn and

Johnson [428], Ouellette [624].
Section 6. Finzel [273], Marcus [531],[532], Mostow and Sampson [584],

Mostow, Sampson, and Meyer [585], Niu [613].
Section 9. Berman and Plemmons [91], Lancaster and Tismenetsky [495,

Chapter 15].



CHAPTER 1

Existence and Construction of Generalized
Inverses

1. The Penrose Equations

In 1955 Penrose [635] showed that, for every finite matrix A (square or rect-
angular) of real or complex elements, there is a unique matrix X satisfying
the four equations (that we call the Penrose equations)

AXA = A, (1)

XAX = X, (2)

(AX)∗ = AX, (3)

(XA)∗ = XA, (4)

where A∗ denotes the conjugate transpose of A. Because this unique gen-
eralized inverse had previously been studied (though defined in a different
way) by E.H. Moore [575], [576], it is commonly known as the Moore–
Penrose inverse, and is often denoted by A†.

If A is nonsingular, then X = A−1 trivially satisfies the four equations.
It follows that the Moore–Penrose inverse of a nonsingular matrix is the
same as the ordinary inverse.

Throughout this book we shall be much concerned with generalized
inverses that satisfy some, but not all, of the four Penrose equations. As
we shall wish to deal with a number of different subsets of the set of four
equations, we need a convenient notation for a generalized inverse satisfying
certain specified equations (see also Notes on Terminology in p. 51.)

Definition 1. For any A ∈ Cm×n, let A{i, j, . . . , k} denote the set of
matrices X ∈ Cn×m which satisfy equations (i), (j), . . . , (k) from among
equations (1)–(4). A matrix X ∈ A{i, j, . . . , k} is called an {i, j, . . . , k}-
inverse of A, and also denoted by A(i,j,... ,k).

In Chapter 4 we shall extend the scope of this notation by enlarging the
set of four matrix equations to include several further equations, applicable
only to square matrices, that will play an essential role in the study of
generalized inverses having spectral properties.

Exercises

Ex. 1. If A{1, 2, 3, 4} is nonempty, then it consists of a single element (Penrose
[635]).

40
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Proof. Let X,Y ∈ A{1, 2, 3, 4}. Then

X = X(AX)∗ = XX∗A∗ = X(AX)∗(AY )∗

= XAY = (XA)∗(Y A)∗Y = A∗Y ∗Y

= (Y A)∗Y = Y. �
Ex. 2. By means of a (trivial) example, show that A{2, 3, 4} is nonempty.

2. Existence and Construction of {1}-Inverses

It is easy to construct a {1}-inverse of the matrix R ∈ Cm×n
r given by

R =
[
Ir K
O O

]
. (0.71)

For any L ∈ C(n−r)×(m−r), the n×m matrix

S =
[
Ir O
O L

]
is a {1}-inverse of (0.71). If R is of full column [row] rank, the two lower
[right-hand] submatrices are interpreted as absent.

The construction of {1}-inverses for an arbitrary A ∈ Cm×n is sim-
plified by transforming A into a Hermite normal form, as shown in the
following theorem:

Theorem 1. Let A ∈ Cm×n
r and let E ∈ Cm×m

m and P ∈ Cn×n
n be such

that

EAP =
[
Ir K
O O

]
. (0.72)

Then, for any L ∈ C(n−r)×(m−r), the n×m matrix

X = P

[
Ir O
O L

]
E (5)

is a {1}-inverse of A. The partitioned matrices in (0.72) and (5) must be
suitably interpreted in case r = m or r = n.
Proof. Rewriting (0.72) as

A = E−1
[
Ir K
O O

]
P−1, (0.74)

it is easily verified that any X given by (5) satisfies AXA = A. �
In the trivial case of r = 0, when A is therefore the m× n null matrix,

any n×m matrix is a {1}-inverse.
We note that since P and E are both nonsingular, the rank of X is the

rank of the partitioned matrix in RHS(5). In view of the form of the latter
matrix,

rankX = r + rankL. (6)

Since L is arbitrary, it follows that a {1}-inverse of A exists having any
rank between r and min{m, n}, inclusive (see also Fisher [274]).

Theorem 1 shows that every finite matrix with elements in the complex
field has a {1}-inverse, and suggests how such an inverse can be constructed.
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Exercises

Ex. 3. What is the Hermite normal form of a nonsingular matrix A? In this case,
what is the matrix E and what is its relationship to A? What is the permutation
matrix P? What is the matrix X given by (5)?

Ex. 4. An m× n matrix A has all its elements equal to 0 except for the (i, j) th

element, which is 1. What is the Hermite normal form? Show that E can be
taken as a permutation matrix. What are the simplest choices of E and P?
(By “simplest” we mean having the smallest number of elements different from
the corresponding elements of the unit matrix of the same order.) Using these
choices of E and P , but regarding L as entirely arbitrary, what is the form of the
resulting matrix X given by (5)? Is this X the most general {1}-inverse of A?
(See Exercise 6, Introduction, and Exercise 11 below.)

Ex. 5. Show that every square matrix has a nonsingular {1}-inverse.

Ex. 6. Computing a {1}-inverse. This is demonstrated for the matrixA of (0.80),
using (5) with E as computed in (0.82), and an arbitrary L ∈ C(n−r)×(m−r). Using
the permutation matrix P selected in (0.83), and the corresponding submatrix
K, we write

EAP =


1 0

... 0 1
2 1− 2i − 1

2 i

0 1
... 0 0 2 1 + i

· · · · · ·
... · · · · · · · · · · · ·

0 0
... 0 0 0 0

 , and take L =


α
β
γ
δ

 ∈ C
4×1,

since m = 3, n = 6, r = 2. A {1}-inverse of A is, by (5),

X = P

[
Ir O
O L

]
E

=



0 0
... 1 0 0 0

1 0
... 0 0 0 0

0 0
... 0 1 0 0

0 1
... 0 0 0 0

0 0
... 0 0 1 0

0 0
... 0 0 0 1





1 0
... 0

0 1
... 0· · · · · · · · ·

0 0
... α

0 0
... β

0 0
... γ

0 0
... δ



− 1
2 i 0 0
0 − 1

3 0
i 1

3 1



=



iα 1
3α α

− 1
2 i 0 0
iβ 1

3β β
0 − 1

3 0
iγ 1

3γ γ

iδ 1
3δ δ

 . (7)

Note that, in general, the scalars iα, iβ, iγ, iδ are not pure imaginaries since
α, β, γ, δ are complex.

3. Properties of {1}-Inverses

Certain properties of {1}-inverses are given in Lemma 1. For a given matrix
A, we denote any {1}-inverse by A(1). Note that, in general, A(1) is not a
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uniquely defined matrix (see Ex. 8 below). For any scalar λ we define λ†

by

λ† =
{

λ−1, if λ �= 0,
0, if λ = 0.

(8)

It will be recalled that a square matrix E is called idempotent if E2 =
E. Idempotent matrices are intimately related to generalized inverses, and
their properties are considered in some detail in Chapter 2.

Lemma 1. Let A ∈ Cm×n
r , λ ∈ C. Then:

(a) (A(1))∗ ∈ A∗{1}.
(b) If A is nonsingular, A(1) = A−1 uniquely (see also Ex. 7 below).
(c) λ†A(1) ∈ (λA){1}.
(d) rankA(1) ≥ rankA.
(e) If S and T are nonsingular, T−1A(1)S−1 ∈ SAT{1}.
(f) AA(1) and A(1)A are idempotent and have the same rank as A.

Proof. These are immediate consequences of the defining relation (1); (d) and
the latter part of (f) depend on the fact that the rank of a product of matrices
does not exceed the rank of any factor. �

If an m×n matrix A is of full-column rank, its {1}-inverses are its left
inverses. If it is of full row rank, its {1}-inverses are its right inverses.

Lemma 2. Let A ∈ Cm×n
r . Then:

(a) A(1)A = In if and only if r = n.
(b) AA(1) = Im if and only if r = m.

Proof. (a) If : Let A ∈ Cm×n
r . Then the n×n matrix A(1)A is, by Lemma 1(f),

idempotent and nonsingular. Multiplying (A(1)A)2 = A(1)A by (A(1)A)−1 gives
A(1)A = In.
Only if : A(1)A = In =⇒ rankA(1)A = n =⇒ rankA = n, by Lemma 1(f).
(b) Similarly proved. �
Exercises

Ex. 7. Let A = FHG where F is of full-column rank and G is of full-row rank.
Then rankA = rankH. (Hint : Use Lemma 2.)

Ex. 8. Show that A is nonsingular if and only if it has a unique {1}-inverse,
which then coincides with A−1.
Proof. For any x ∈ N(A) [y ∈ N(A∗)], adding x [y∗] to any column [row] of
an X ∈ A{1} gives another {1}-inverse of A. The uniqueness of the {1}-inverse
is therefore equivalent to

N(A) = {0}, N(A∗) = {0},
i.e., to the nonsingularity of A. �
Ex. 9. Show that if A(1) ∈ A{1}, then R(AA(1)) = R(A), N(AA(1)) = N(A),
and R((A(1)A)∗) = R(A∗).
Proof. We have

R(A) ⊃ R(AA(1)) ⊃ R(AA(1)A) = R(A),

from which the first result follows.
Similarly,

N(A) ⊂ N(A(1)A) ⊂ N(AA(1)A) = N(A)
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yields the second equation.
Finally, by Lemma 1(a),

R(A∗) ⊃ R(A∗(A(1))∗) = R((A(1)A)∗) ⊃ R(A∗(A(1))∗A∗) = R(A∗). �

Ex. 10. More generally, show that R(AB) = R(A) if and only if rankAB =
rankA and N(AB) = N(B) if and only if rankAB = rankB.
Proof. Evidently, R(A) ⊃ R(AB), and these two subspaces are identical if
and only if they have the same dimension. But, the rank of any matrix is the
dimension of its range.

Similarly, N(B) ⊂ N(AB). Now, the nullity of any matrix is the dimension
of its null space, and also the number of columns minus the rank. Thus, N(B) =
N(AB) if and only if B and AB have the same nullity, which is equivalent, in
this case, to having the same rank, since the two matrices have the same number
of columns. �
Ex. 11. The answer to the last question in Ex. 4 indicates that, for particular
choices of E and P , one does not get all the {1}-inverses of A merely by varying
L in (5). Note, however, that Theorem 1 does not require P to be a permutation
matrix. Could one get all the {1}-inverses by considering all nonsingular P and
Q such that

QAP =
[
Ir O
O O

]
? (9)

Given A ∈ Cm×n
r , show that X ∈ A{1} if and only if

X = P

[
Ir O
O L

]
Q (10)

for some L and for some nonsingular P and Q satisfying (9).
Solution. If (9) and (10) hold, X is a {1}-inverse of A by Theorem 1.

On the other hand, let AXA = A. Then, both AX and XA are idempotent
and of rank r, by Lemma 1(f). Since any idempotent matrix E satisfies E(E−I) =
O, its only eigenvalues are 0 and 1. Thus, the Jordan canonical forms of both
AX and XA are of the form [

Ir O
O O

]
,

being of orders m and n, respectively. Therefore, there exist nonsingular P and
R such that

R−1AXR =
[
Ir O
O O

]
, P−1XAP =

[
Ir O
O O

]
.

Thus,

R−1AP = R−1AXAXAP = (R−1AXR)R−1AP (P−1XAP )

=
[
Ir O
O O

]
R−1AP

[
Ir O
O O

]
.

It follows that R−1AP is of the form

R−1AP =
[
H O
O O

]
,

where H ∈ Cr×r
r , i.e., nonsingular. Let

Q =
[
H−1 O
O Im−r

]
R−1.
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Then (9) is satisfied. Consider the matrix P−1XQ−1. We have[
Ir O
O O

]
(P−1XQ−1) = (QAP )(P−1XQ−1) = QAXQ−1

=
[
H−1 O
O Im−r

] [
Ir O
O O

] [
H O
O Im−r

]
=
[
Ir O
O O

]
and

(P−1XQ−1)
[
Ir O
O O

]
= (P−1XQ−1)(QAP ) = P−1XAP

=
[
Ir O
O O

]
.

From the latter two equations it follows that

P−1XQ−1 =
[
Ir O
O L

]
for some L. But this is equivalent to (10). �

4. Existence and Construction of {1, 2}-Inverses

It was first noted by Bjerhammar [103] that the existence of a {1}-inverse
of a matrix A implies the existence of a {1, 2}-inverse. This easily verified
observation is stated as a lemma for convenience of reference.

Lemma 3. Let Y, Z ∈ A{1}, and let

X = Y AZ.

Then X ∈ A{1, 2}.
Since the matrices A and X occur symmetrically in (1) and (2), X ∈

A{1, 2} and A ∈ X{1, 2} are equivalent statements, and in either case we
can say that A and X are {1, 2}-inverses of each other.

From (1) and (2) and the fact that the rank of a product of matrices
does not exceed the rank of any factor, it follows at once that if A and X
are {1, 2}-inverses of each other, they have the same rank. Less obvious is
the fact, first noted by Bjerhammar [103], that if X is a {1}-inverse of A
and of the same rank as A, it is a {1, 2}-inverse of A.

Theorem 2 (Bjerhammar). Given A and X ∈ A{1}, X ∈ A{1, 2} if
and only if rankX = rankA.
Proof. If : Clearly R(XA) ⊂ R(X). But rankXA = rankA by Lemma 1(f)
and so, if rankX = rankA, R(XA) = R(X) by Ex. 10. Thus,

XAY = X

for some Y . Premultiplication by A gives

AX = AXAY = AY,

and therefore

XAX = X.

Only if : This follows at once from (1) and (2). �
An equivalent statement is the following:
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Corollary 1. Any two of the following three statements imply the
third:

X ∈ A{1},
X ∈ A{2},

rankX = rankA. �
In view of Theorem 2, (6) shows that the {1}-inverse obtained from the

Hermite normal form is a {1, 2}-inverse if we take L = O. In other words,

X = P

[
Ir O
O O

]
E (11)

is a {1, 2}-inverse of A where P and E are nonsingular and satisfy (0.72).
Exercises

Ex. 12. Show that (5) gives a {1, 2}-inverse of A if and only if L = O.

Ex. 13. Let A = [aij ] ∈ Cm×n be nonzero and upper triangular, i.e., aij = 0 if
i > j. Find a {1, 2}-inverse of A.
Solution. Let P,Q be permutation matrices such that

QAP =
[
T K
O O

]
where T is upper triangular and nonsingular (the K block, or the zero blocks, are
absent if A is of full-rank.) Then

X = P

[
T−1 O
O O

]
Q

is a {1, 2}-inverse of A (again, some zero blocks are absent if A is of full-rank.)
Note that the inverse T−1 is obtained from T by back substitution. �

5. Existence and Construction of {1, 2, 3}-, {1, 2, 4}-, and
{1, 2, 3, 4}-Inverses

Just as Bjerhammar [103] showed that the existence of a {1}-inverse implies
the existence of a {1, 2}-inverse, Urquhart [824] has shown that the exis-
tence of a {1}-inverse of every finite matrix with elements in C implies the
existence of a {1, 2, 3}-inverse and a {1, 2, 4}-inverse of every such matrix.
However, in order to show the nonemptiness of A{1, 2, 3} and A{1, 2, 4} for
any given A, we shall utilize the {1}-inverse not of A itself but of a related
matrix. For that purpose we shall need the following lemma:

Lemma 4. For any finite matrix A,

rankAA∗ = rankA = rankA∗A.

Proof. If A ∈ Cm×n, both A and AA∗ have m rows. Now, the rank of any
m-rowed matrix is equal to m minus the number of independent linear relations
among its rows. To show that rankAA∗ = rankA, it is sufficient, therefore, to
show that every linear relation among the rows of A holds for the corresponding
rows of AA∗, and vice versa. Any nontrivial linear relation among the rows of
a matrix H is equivalent to the existence of a nonzero row vector x∗ such that
x∗H = 0. Now, evidently,

x∗A = 0 =⇒ x∗AA∗ = 0,



5. {1, 2, 3}-, {1, 2, 4}-, AND {1, 2, 3, 4}-INVERSES 47

and, conversely,

x∗AA∗ = 0 =⇒ 0 = x∗AA∗x = (A∗x)∗A∗x

=⇒ A∗x = 0 =⇒ x∗A = 0.

Here we have used the fact that, for any column vector y of complex elements
y∗y is the sum of squares of the absolute values of the elements, and this sum
vanishes only if every element is zero.

Finally, applying this result to the matrix A∗ gives rankA∗A = rankA∗ and,
of course, rankA∗ = rankA. �

Corollary 2. For any finite matrix A,

R(AA∗) = R(A) and N(AA∗) = N(A).

Proof. This follows from Lemma 4 and Ex. 10. �
Using the preceding lemma, we can now prove the following theorem:
Theorem 3 (Urquhart [824]). For every finite matrix A with complex

elements,

Y = (A∗A)(1)A∗ ∈ A{1, 2, 3} (12a)

and

Z = A∗(AA∗)(1) ∈ A{1, 2, 4}. (12b)

Proof. Applying Corollary 2 to A∗ gives

R(A∗A) = R(A∗),

and so,

A∗ = A∗AU (13)

for some U . Taking conjugate transpose gives

A = U∗A∗A. (14)

Consequently,

AY A = U∗A∗A(A∗A)(1)A∗A = U∗A∗A = A.

Thus, Y ∈ A{1}. But rankY ≥ rankA by Lemma 1(d) and rankY ≤ rankA∗ =
rankA by the definition of Y . Therefore

rankY = rankA,

and, by Theorem 2, Y ∈ A{1, 2}. Finally, (13) and (14) give

AY = U∗A∗A(A∗A)(1)A∗AU = U∗A∗AU,

which is clearly Hermitian. Thus, (12a) is established.
Relation (12b) is similarly proved. �
A {1, 2}-inverse of a matrix A is, of course, a {2}-inverse and, simi-

larly, a {1, 2, 3}-inverse is also a {1, 3}-inverse and a {2, 3}-inverse. Thus, if
we can establish the existence of a {1, 2, 3, 4}-inverse, we will have demon-
strated the existence of an {i, j, . . . , k}-inverse for all possible choices of
one, two, or three integers i, j, . . . , k from the set {1, 2, 3, 4}. It was shown
in Ex. 1 that if a {1, 2, 3, 4}-inverse exists, it is unique. We know, as a mat-
ter of fact, that it does exist, because it is the well-known Moore–Penrose
inverse, A†. However, we have not yet proved this. This is done in the next
theorem.
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Theorem 4 (Urquhart [824]). For any finite matrix A of complex
elements,

A(1,4)AA(1,3) = A†. (15)

Proof. Let X denote LHS(15). It follows at once from Lemma 3 that X ∈
A{1, 2}. Moreover, (15) gives

AX = AA(1,3), XA = A(1,4)A.

But, both AA(1,3) and A(1,4)A are Hermitian, by the definition of A(1,3) and
A(1,4). Thus

X ∈ A{1, 2, 3, 4}.
However, by Ex. 1, A{1, 2, 3, 4} contains at most a single element. Therefore, it
contains exactly one element, namely A† and X = A†. �

6. Explicit Formula for A†

C.C. MacDuffee apparently was the first to point out, in private communi-
cations about 1959, that a full-rank factorization of a matrix A leads to an
explicit formula for its Moore–Penrose inverse, A†.

Theorem 5 (MacDuffee). If A ∈ Cm×n
r , r > 0, has a full-rank factor-

ization

A = FG, (16)

then

A† = G∗(F ∗AG∗)−1F ∗. (17)

Proof. First, we must show that F ∗AG∗ is nonsingular. By (16),

F ∗AG∗ = (F ∗F )(GG∗), (18)

and both factors of the right member are r × r matrices. Also, by Lemma 4,
both are of rank r. Thus, F ∗AG∗ is the product of two nonsingular matrices and,
therefore, nonsingular. Moreover, (18) gives

(F ∗AG∗)−1 = (G∗G)−1(F ∗F )−1.

Denoting by X the right member of (17), we now have

X = G∗(GG∗)−1(F ∗F )−1F ∗, (19)

and it is easily verified that this expression for X satisfies the Penrose equations
(1)–(4). As A† is the sole element of A{1, 2, 3, 4}, (17) is therefore established. �
Exercises

Ex. 14. Theorem 5 gives an alternative proof of the existence of the {1, 2, 3, 4}-
inverse (previously established by Theorem 4). However, Theorem 5 excludes the
case r = 0. Complete the alternative existence proof by showing that if r = 0,
(2) has a unique solution for X, and this X satisfies (1), (3), and (4).

Ex. 15. Compute A† for the matrix A of (0.80).

Ex. 16. What is the most general {1, 2}-inverse of the special matrix A of Ex. 4?
What is its Moore–Penrose inverse?

Ex. 17. Show that if A = FG is a rank factorization, then

A† = G†F †. (20)
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Ex. 18. Show that for every matrix A:
(a) (A†)† = A; (b) (A∗)† = (A†)∗;
(c) (AT )† = (A†)T ; (d) A† = (A∗A)†A∗ = A∗(AA∗)†.

Ex. 19. If a and b are column vectors, then
(a) a† = (a∗a)†a∗; (b) (ab∗)† = (a∗a)†(b∗b)†ba∗.

Ex. 20. Show that if H is Hermitian and idempotent, H† = H.

Ex. 21. Show that H† = H if and only if H2 is Hermitian and idempotent and
rankH2 = rankH.

Ex. 22. If D = diag (d1, d2, . . . , dn), show that D† = diag (d†
1, d

†
2, . . . , d

†
n).

Ex. 23. Let Jk(0) be a Jordan block corresponding to the eigenvalue zero. Then
(Jk(0))† = (Jk(0))T , showing that, for a square matrix A, A† is in general not a
polynomial in A (if it were, then A and A† would commute).

Ex. 24. Let A,B ∈ Cn×n be similar, i.e., B = S−1AS for some nonsingular S.
Then, in general, B† �= S−1A†S.

Ex. 25. If U and V are unitary matrices, show that

(UAV )† = V ∗A†U∗

for any matrix A for which the product UAV is defined.
In particular, if A,B ∈ Cn×n are unitarily similar, i.e., B = U−1AU for some

unitary matrix U , then B† = U−1A†U .

7. Construction of {2}-Inverses of Prescribed Rank

Following the proof of Theorem 1, we described A.G. Fisher’s construction
of a {1}-inverse of a given A ∈ Cm×n

r having any prescribed rank between
r and min(m, n), inclusive. From (2) it is easily deduced that

rankA(2) ≤ r.

We note also that the n × m null matrix is a {2}-inverse of rank 0, and
any A(1,2) is a {2}-inverse of rank r, by Theorem 2. For r > 1, is there a
construction analogous to Fisher’s for a {2}-inverse of rank s for arbitrary
s between 0 and r? Using full-rank factorization, we can readily answer the
question in the affirmative.

Let X0 ∈ A{1, 2} have a rank factorization

X0 = Y Z.

Then, Y ∈ Cm×r
r and Z ∈ Cr×n

r , and (2) becomes

Y ZAY Z = Y Z.

In view of Lemma 2, multiplication on the left by Y (1) and on the right by
Z(1) gives (see Stewart [780])

ZAY = Ir. (21)

Let Ys denote the submatrix of Y consisting of the first s columns and let
Zs denote the submatrix of Z consisting of the first s rows. Then, both Ys

and Zs are of full rank s, and it follows from (21) that

ZsAYs = Is. (22)
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Now, let

Xs = YsZs.

Then, rankXs = s, by Ex. 7 and (22) gives

XsAXs = Xs.

Exercises

Ex. 26. For

A =


1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1


find elements of A{2} of ranks 1, 2, and 3, respectively.

Ex. 27. With A as in Ex. 26, find a {2}-inverse of rank 2 having zero elements
in the last two rows and the last two columns.

Ex. 28. Show that there is at most one matrix X satisfying the three equations
AX = B, XA = D, XAX = X (Cline; see Cline and Greville [202]).

Ex. 29. Let A = FG be a rank factorization of A ∈ Cm×n
r , i.e., F ∈ Cm×r

r , G ∈
Cr×n

r . Then:

(a) G(i)F (1) ∈ A{i} (i = 1, 2, 4); (b) G(1)F (j) ∈ A{j} (j = 1, 2, 3).

Proof.

(a), i = 1:

FGG(1)F (1)FG = FG,

since

F (1)F = GG(1) = Ir, by Lemma 2.

(a), i = 2:

G(2)F (1)FGG(2)F (1) = G(2)F (1),

since

F (1)F = Ir, G(2)GG(2) = G(2).

(a), i = 4:

G(4)F (1)FG = G(4)G = (G(4)G)∗.

(b) Similarly proved, with the roles of F and G interchanged. �

Ex. 30. Let A,F,G be as in Ex. 29. Then

A† = G†F (1,3) = G(1,4)F †.
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Notes on Terminology

Some writers have adopted descriptive names to designate various classes of
generalized inverses. However there is a notable lack of uniformity and consis-
tency in the use of these terms by different writers. Thus, X ∈ A{1} is called
a generalized inverse (Rao [671]), or pseudoinverse (Sheffield [749]), or inverse
(Bjerhammar [103]). X ∈ A{1, 2} is called a semi-inverse (Frame [285]), or
reciprocal inverse (Bjerhammar), or reflexive generalized inverse (Rohde [705]).
X ∈ A{1, 2, 3} is called a weak generalized inverse (Goldman and Zelen [301]).
X ∈ A{1, 2, 3, 4} is called the general reciprocal (Moore [575], [576]), or general-
ized inverse (Penrose [635]), or pseudoinverse (Greville [324]), or natural inverse
(Lanczos [497, p. 124]), or Moore–Penrose inverse (Ben-Israel and Charnes [77]).
In view of this diversity of terminology, the unambiguous notation adopted here
is considered preferable. This notation also emphasizes the lack of uniqueness of
many of the generalized inverses considered.

Suggested Further Reading

Section 1. Urquhart [825].
Section 2. Rao [671], Sheffield [749].
Section 3. Rao [670], [673].
Section 4. Deutsch [228], Frame [285], Greville [330], Hartwig [378],

Przeworska–Rolewicz and Rolewicz [653].
Section 5. Hearon and Evans [410], Rao [673], Sibuya [757].
Section 6. Sakallioğlu and Akdeniz [721].



CHAPTER 2

Linear Systems and Characterization of
Generalized Inverses

1. Solutions of Linear Systems

As already indicated in Section 3 of the Introduction, the principal appli-
cation of {1}-inverses is to the solution of linear systems, where they are
used in much the same way as ordinary inverses in the nonsingular case.
The main result of this section is the following theorem of Penrose [635],
to whom the proof is also due.

Theorem 1. Let A ∈ Cm×n, B ∈ Cp×q, D ∈ Cm×q. Then the matrix
equation

AXB = D (1)

is consistent if and only if, for some A(1), B(1),

AA(1)DB(1)B = D, (2)

in which case the general solution is

X = A(1)DB(1) + Y −A(1)AY BB(1) (3)

for arbitrary Y ∈ Cn×p.
Proof. If (2) holds, then X = A(1)DB(1) is a solution of (1). Conversely, if X
is any solution of (1), then

D = AXB = AA(1)AXBB(1)B = AA(1)DB(1)B.

Moreover, it follows from (2) and the definition of A(1) and B(1) that every matrix
X of the form (3) satisfies (1). On the other hand, let X be any solution of (1).
Then, clearly

X = A(1)DB(1) +X −A(1)AXBB(1),

which is of the form (3). �
The following characterization of the set A{1}, in terms of an arbitrary

element A(1) of the set, is due essentially to Bjerhammar [103].

Corollary 1. Let A ∈ Cm×n, A(1) ∈ A{1}. Then

A{1} = {A(1) + Z −A(1)AZAA(1) : Z ∈ Cn×m}. (4)

Proof. The set described in RHS(4) is obtained by writing Y = A(1) +Z in the
set of solutions of AXA = A as given by Theorem 1. �

Specializing Theorem 1 to ordinary systems of linear equations gives:

52



1. SOLUTIONS OF LINEAR SYSTEMS 53

Corollary 2. Let A ∈ Cm×n, b ∈ Cm. Then the equation

Ax = b (5)

is consistent if and only if, for some A(1),

AA(1)b = b, (6)

in which case the general solution of (5) is1

x = A(1)b + (I −A(1)A)y (7)

for arbitrary y ∈ Cn. �
The following theorem appears in the doctoral dissertation of C.A.

Rohde [704], who attributes it to R.C. Bose. It is an alternative character-
ization of A{1}.

Theorem 2. Let A ∈ Cm×n, X ∈ Cn×m. Then X ∈ A{1} if and only
if, for all b such that Ax = b is consistent, x = Xb is a solution.
Proof. If : Let aj denote the j th column of A. Then

Ax = aj

is consistent and Xaj is a solution, i.e.,

AXaj = aj (j ∈ 1, n).

Therefore

AXA = A.

Only if : This follows from (6). �
Exercises
Ex. 1. Consider the matrix A of (0.80) and the vector

b =

 14 + 5i
−15 + 3i
10− 15i

 .
Use (1.7) to show that the general solution of Ax = b can be written in the form

x =


0

5
2 − 7i

0
5− i

0
0

 +


1 0 0 0 0 0
0 0 − 1

2 0 −1 + 2i 1
2 i

0 0 1 0 0 0
0 0 0 0 −2 −1− i
0 0 0 0 1 0
0 0 0 0 0 1




y1
y2
y3
y4
y5
y6


where y1, y2, . . . , y6 are arbitrary.
Note: y2 and y4 do not matter, since they multiply zero columns, showing the
general solution to have four degrees of freedom, in agreement with (1.7).

Ex. 2. Kronecker products. The Kronecker product A ⊗ B of the two matrices
A = (aij) ∈ Cm×n, B ∈ Cp×q is the mp × nq matrix expressible in partitioned
form as

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
· · · · · · · · · · · ·

am1B am2B · · · amnB

 .
1See also Theorem 7.1, p. 258.
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The properties of this product (e.g., Marcus and Minc [534]) include

(A⊗B)∗ = A∗ ⊗B∗, (A⊗B)T = AT ⊗BT , (8)

and

(A⊗B)(P ⊗Q) = AP ⊗BQ (9)

for every A,B, P,Q for which the above products are refined.
An important application of the Kronecker product is rewriting a matrix

equation

AXB = D (1)

as a vector equation. For any X = (xij) ∈ Cm×n, let the vector vec(X) = (vk) ∈
Cmn be the vector obtained by listing the elements of X by rows. In other words,

vn(i−1)+j = xij (i ∈ 1,m; j ∈ 1, n).

For example,

vec
[
1 2
3 4

]
=


1
2
3
4

 .
The energetic reader should now verify that

vec(AXB) = (A⊗BT ) vec(X). (10)

By using (10), the matrix equation (1) can be rewritten as the vector equation

(A⊗BT ) vec(X) = vec(D). (11)

Theorem 1 must therefore be equivalent to Corollary 2 applied to the vector
equation (11). To demonstrate this we need the following two results:

A(1) ⊗B(1) ∈ (A⊗B){1} (follows from (9)), (12)

(A(1))T ∈ AT {1}. (13)

Now (1) is consistent if and only if (11) is consistent, and the latter statement

⇐⇒ (A⊗BT )(A⊗BT )(1)vec(D) = vec(D) (by Corollary 2),

⇐⇒ (A⊗BT )(A(1) ⊗ (B(1))T ) vec(D) = vec(D) (by (12), (13)),

⇐⇒ (AA(1) ⊗ (B(1)B)T ) vec(D) = vec(D) (by (9)),

⇐⇒ AA(1)DB(1)B = D (by (10)).

The other statements of Theorem 1 can be similarly shown to follow from their
counterparts in Corollary 2. The two results are thus equivalent.

Ex. 3. (A⊗B)† = A† ⊗B† (Greville [326]).
Proof. Upon replacing A by A⊗B and X by A†⊗B† in (1.1)–(1.4) and making
use of (8) and (9), it is easily verified that (1.1)–(1.4) are satisfied. �
Ex. 4. The matrix equations

AX = B, XD = E, (14)

have a common solution if and only if each equation separately has a solution
and

AE = BD.

Proof. (Penrose [635]). If : For any A(1), D(1),

X = A(1)B + ED(1) −A(1)AED(1)
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is a common solution of both equations (14) provided AE = BD and

AA(1)B = B, ED(1)D = E.

By Theorem 1, the latter two equations are equivalent to the consistency of
equations (14) considered separately.
Only if : Obvious. �
Ex. 5. Let equations (14) have a common solution X0 ∈ Cm×n. Then, show
that the general solution is

X = X0 + (I −A(1)A)Y (I −DD(1)) (15)

for arbitrary A(1) ∈ A{1}, D(1) ∈ D{1}, Y ∈ Cm×n.
Hint : First, show that RHS(15) is a common solution. Then, if X is any common
solution, evaluate RHS(15) for Y = X −X0.

2. Characterization of A{1, 3} and A{1, 4}
The set A{1} is completely characterized in Corollary 1. Let us now turn
our attention to A{1, 3}. The key to its characterization is the following
theorem:

Theorem 3. The set A{1, 3} consists of all solutions for X of

AX = AA(1,3), (16)

where A(1,3) is an arbitrary element of A{1, 3}.
Proof. If X satisfies (16), then clearly

AXA = AA(1,3)A = A,

and, moreover, AX is Hermitian since AA(1,3) is Hermitian by definition. Thus,
X ∈ A{1, 3}.

On the other hand, if X ∈ A{1, 3}, then

AA(1,3) = AXAA(1,3) = (AX)∗AA(1,3) = X∗A∗(A(1,3))∗A∗

= X∗A∗ = AX,

where we have used Lemma 1.1(a). �
Corollary 3. Let A ∈ Cm×n, A(1,3) ∈ A{1, 3}. Then

A{1, 3} = {A(1,3) + (I −A(1,3)A)Z : Z ∈ Cn×m}. (17)

Proof. Applying Theorem 1 to (16) and substituting Z + A(1,3) for Y gives
(17). �

The following theorem and its corollary are obtained in a manner anal-
ogous to the proofs of Theorem 3 and Corollary 3.

Theorem 4. The set A{1, 4} consists of all solutions for X of

XA = A(1,4)A.

Corollary 4. Let A ∈ Cm×n, A(1,4) ∈ A{1, 4}. Then

A{1, 4} = {A(1,4) + Y (I −AA(1,4)) : Y ∈ Cn×m}.
Other characterizations of A{1, 3} and A{1, 4} based on their least-

squares properties will be given in Chapter 3.
Exercises

Ex. 6. Prove Theorem 4 and Corollary 4.
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Ex. 7. For the matrix A of (0.80), show that A{1, 3} is the set of matrices X of
the form

X = 1
38


0 0 0
−10i 3 9

0 0 0
2i −12 2
0 0 0
0 0 0

 +


1 0 0 0 0 0
0 0 − 1

2 0 −1 + 2i 1
2 i

0 0 1 0 0 0
0 0 0 0 −2 −1− i
0 0 0 0 1 0
0 0 0 0 0 1

 Z,

where Z is an arbitrary element of C6×3.

Ex. 8. For the matrix A of (0.80), show that A{1, 4} is the set of matrices Y of
the form

Y = 1
276


0 0 0
0 20− 18i 42
0 10− 9i 21
0 −29− 9i −9− 27i
0 −2 + 4i 24 + 30i
0 −29 + 30i −36 + 3i

+ Z

1 − 1
3 i −i

0 0 0
0 0 0

 ,

where Z is an arbitrary element of C6×3.

Ex. 9. Using Theorem 1.4 and the results of Exs. 7 and 8, calculate A†. (Since
any A(1,4) and A(1,3) will do, choose the simplest.)

Ex. 10. Give an alternative proof of Theorem 1.4, using Theorem 3 and 4.
(Hint : Take X = A†.)

Ex. 11. By applying Ex. 5 show that if A ∈ Cm×n and A(1,3,4) ∈ A{1, 3, 4},
then

A{1, 3, 4} = {A(1,3,4) + (I −A(1,3,4)A)Y (I −AA(1,3,4)) : Y ∈ C
n×m}.

Ex. 12. Show that if A ∈ Cm×n and A(1,2,3) ∈ A{1, 2, 3}, then

A{1, 2, 3} = {A(1,2,3) + (I −A(1,2,3)A)ZA(1,2,3) : Z ∈ C
n×m}.

Ex. 13. Similarly, show that if A ∈ Cm×n and A(1,2,4) ∈ A{1, 2, 4}, then

A{1, 2, 4} = {A(1,2,4) +A(1,2,4)Z(I −AA(1,2,4)) : Z ∈ C
m×m}.

3. Characterization of A{2}, A{1, 2}, and Other Subsets of A{2}
Since

XAX = X (1.2)

involves X nonlinearly, a characterization of A{2} is not obtained by merely
applying Theorem 1. However, such a characterization can be reached by
using a full-rank factorization of X. The rank of X will play an important
role, and it will be convenient to let A{i, j, . . . , k}s denote the subset of
A{i, j, . . . , k} consisting of matrices of rank s.

We remark that the sets A{2}0, A{2, 3}0, A{2, 4}0 and A{2, 3, 4}0 are
identical and contain a single element. For A ∈ Cm×n this sole element is
the n ×m matrix of zeros. Having thus disposed of the case of s = 0, we
shall consider only positive s in the remainder of this section.

The following theorem has been stated by G.W. Stewart [780], who
attributes it to R.E. Funderlic.
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Theorem 5. Let A ∈ Cm×n
r and 0 < s ≤ r. Then

A{2}s = {Y Z : Y ∈ Cn×s, Z ∈ Cs×m, ZAY = Is}. (18)

Proof. Let

X = Y Z, (19)

where the conditions on Y and Z in RHS(18) are satisfied. Then Y and Z are of
rank s and X is of rank s by Ex. 1.7. Moreover,

XAX = Y ZAY Z = Y Z = X.

On the other hand, let X ∈ A{2}s and let (19) be a full-rank factorization. Then
Y ∈ Cn×s

s , Z ∈ Cs×m
s and

Y ZAY Z = Y Z. (20)

Moreover, if Y (1) and Z(1) are any {1}-inverses, then by Lemma 1.2

Y (1)Y = ZZ(1) = Is.

Thus, multiplying (20) on the left by Y (1) and on the right by Z(1) gives

ZAY = Is. �
Corollary 5. Let A ∈ Cm×n

r . Then

A{1, 2} = {Y Z : Y ∈ Cn×r, Z ∈ Cr×m, ZAY = Ir}.
Proof. By Theorem 1.2,

A{1, 2} = A{2}r. �
The relation ZAY = Is of (18) implies that Z ∈ (AY ){1, 2, 4}. This

remark suggests the approach to the characterization of A{2, 3} on which
the following theorem is based.

Theorem 6. Let A ∈ Cm×n
r and 0 < s ≤ r. Then

A{2, 3}s = {Y (AY )† : AY ∈ Cm×s
s }.

Proof. Let X = Y (AY )†, whereAY ∈ Cm×s
s . Then we have

AX = AY (AY )†. (21)

The right member is Hermitian by (1.3), and

XAX = Y (AY )†AY (AY )† = Y (AY )† = X.

Thus, X ∈ A{2, 3}. Finally, since X ∈ A{2}, A ∈ X{1}, (21) and Lemma 1.1(f)
give

s = rankAY = rankAX = rankX.

On the other hand, let X ∈ A{2, 3}s. Then AX is Hermitian and idempotent
and is of rank s by Lemma 1.1(f), since A ∈ X{1}. By Ex. 1.20

(AX)† = AX,

and so

X(AX)† = XAX = X.

Thus X is of the form described in the theorem. �
The following theorem is proved in an analogous fashion:
Theorem 7. Let A ∈ Cm×n

r and 0 < s ≤ r. Then

A{2, 4}s = {(Y A)†Y : Y A ∈ Cs×m
s }.
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Exercises

Ex. 14. Could Theorem 6 be sharpened by replacing (AY )† by (AY )(i,j,k) for
some i, j, k? (Which properties are actually used in the proof?) Note that AY
is of full column rank; what bearing, if any, does this have on the answer to the
question?

Ex. 15. Show that, if A ∈ Cm×n
r ,

A{1, 2, 3} = {Y (AY )† : AY ∈ C
m×r
r },

A{1, 2, 4} = {(Y A)†Y : Y A ∈ C
r×m
r }.

(Compare these results with Exs. 12 and 13.)

Ex. 16. The characterization of A{2, 3, 4} is more difficult, and will be postponed
until later in this chapter. Show, however, that if rankA = 1, A{2, 3, 4} contains
exactly two elements, A† and O.

4. Idempotent Matrices and Projectors

A comparison of (1) in the Introduction with Lemma 1.1(f) suggests that
the role played by the unit matrix in connection with the ordinary inverse
of a nonsingular matrix is, in a sense, assumed by idempotent matrices in
relation to generalized inverses. As the properties of idempotent matrices
are likely to be treated in a cursory fashion in an introductory course in
linear algebra, some of them are listed in the following lemma:

Lemma 1. Let E ∈ Cn×n be idempotent. Then:
(a) E∗ and I − E are idempotent.
(b) The eigenvalues of E are 0 and 1. The multiplicity of the eigenvalue

1 is rankE.
(c) rankE = trace E.
(d) E(I − E) = (I − E)E = O.
(e) Ex = x if and only if x ∈ R(E).
(f) E ∈ E{1, 2}.
(g) N(E) = R(I − E).

Proof. Parts (a) to (f) are immediate consequences of the definition of idem-
potency: (c) follows from (b) and the fact that the trace of any square matrix
is the sum of its eigenvalues counting multiplicities; (g) is obtained by applying
Corollary 2 to the equation Ex = 0. �

Lemma 2 (Langenhop [499]). Let a square matrix have the full-rank
factorization

E = FG.

Then E is idempotent if and only if GF = I.
Proof. If GF = I, then clearly

(FG)2 = FGFG = FG. (22)

On the other hand, since F is of full column rank and G is of full row rank,

F (1)F = GG(1) = I

by Lemma 1.2. Thus if (22) holds, multiplication on the left by F (1) and on the
right by G(1) gives GF = I. �
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Let PL,M denote the transformation that carries any x ∈ Cn into its
projection on L along M ; see §0.1.3. It is easily verified that this transfor-
mation is linear (see Ex. 0.33). We shall call the transformation PL,M the
projector on L along M , or, oblique projector.

We recall, see §0.2.5, that every linear transformation from one finite-
dimensional vector space to another can be represented by a matrix, which
is uniquely determined by the linear transformation and by the choice of
bases for the spaces involved. Except where otherwise specified, the basis
for any finite-dimensional vector space, used in this book, is the standard
basis of unit vectors. Having thus fixed the bases, there is a one-to-one cor-
respondence between Cm×n, the m× n complex matrices, and L(Cn, Cm),
the space of linear transformations mapping Cn into Cm. This correspon-
dence permits using the same symbol, say A, to denote both the linear
transformation A ∈ L(Cn, Cm) and its matrix representation A ∈ Cm×n.
Thus the matrix–vector equation

Ax = y (A ∈ Cm×n, x ∈ Cn, y ∈ Cm)

can equally be regarded as a statement that the linear transformation A
maps x into y.

In particular, linear transformations mapping Cn into itself are repre-
sented by the square matrices of order n. Specializing further, the next
theorem establishes a one-to-one correspondence between the idempotent
matrices of order n and the projectors PL,M where L⊕M = Cn. Moreover,
for any two complementary subspaces L and M , a method for computing
PL,M is given by (27) below.

Theorem 8. For every idempotent matrix E ∈ Cn×n, R(E) and N(E)
are complementary subspaces with

E = PR(E),N(E). (23)

Conversely, if L and M are complementary subspaces, there is a unique
idempotent PL,M such that R(PL,M ) = L, N(PL,M ) = M .
Proof. Let E be idempotent of order n. Then it follows from Lemma 1(e) and
(g), and from the equation

x = Ex + (I − E)x, (24)

that Cn is the sum of R(E) and N(E). Moreover, R(E) ∩N(E) = {0}, since

Ex = (I − E)y =⇒ Ex = E2x = E(I − E)y = 0,

by Lemma 1(d). Thus, R(E) and N(E) are complementary and (24) shows that,
for every x, Ex is the projection of x on R(E) along N(E). This establishes (23).

On the other hand, let {x1,x2, . . . ,x�} and {y1,y2, . . . ,ym} be any two
bases for L and M , respectively. Then PL,M , if it exists, is uniquely determined
by {

PL,M xi = xi, (i ∈ 1, �),
PL,M yi = 0, (i ∈ 1,m).

(25)

Let X = [x1 x2 · · · x�] denote the matrix whose columns are the vectors xi.
Similarly, let Y = [y1 y2 · · · ym]. Then (25) is equivalent to

PL,M [X Y ] = [X O]. (26)
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Since [X Y ] is nonsingular, the unique solution of (26), and therefore of (25), is

PL,M = [X O][X Y ]−1. (27)

Since (25) implies

PL,M [X O] = [X O],

PL,M as given by (27) is clearly idempotent. �
The relation between the direct sum (0.1) and the projector2 PL,M is

given in the following:

Corollary 6. Let L and M be complementary subspaces of Cn. Then,
for every x ∈ Cn, the unique decomposition (0.2) is given by

PL,M x = y, (I − PL,M )x = z.

If A(1) ∈ A{1}, we know from Lemma 1.1(f) that both AA(1) and A(1)A
are idempotent and, therefore, are projectors. It is of interest to find out
what we can say about the subspaces associated with these projectors. In
fact, we already know from Ex. 1.9 that

R(AA(1)) = R(A), N(A(1)A) = N(A), R((A(1)A)∗) = R(A∗). (28)

The following is an immediate consequence of these results:

Corollary 7. If A and X are {1, 2}-inverses of each other, AX is
the projector on R(A) along N(X), and XA is the projector on R(X) along
N(A).

An important application of projectors is to the class of diagonable
matrices. (The reader will recall that a square matrix is called diagonable
if it is similar to a diagonal matrix.) It is easily verified that a matrix
A ∈ Cn×n is diagonable if and only if it has n linearly independent eigen-
vectors. The latter fact will be used in the proof of the following theorem,
which expresses an arbitrary diagonable matrix as a linear combination of
projectors.

Theorem 9 (Spectral Theorem for Diagonable Matrices). Let A ∈
Cn×n with s distinct eigenvalues λ1, λ2, . . . , λs. Then A is diagonable if

2Our use of the term “projector” to denote either the linear transformation PL,M

or its idempotent matrix representation is not standard in the literature. Many writers
have used “projection” in the same sense. The latter usage, however, seems to us to
lead to undesirable ambiguity, since “projection” also describes the image PL,M x of
the vector x under the transformation PL,M . The use of “projection” in the sense of
“image” is clearly much older (e.g., in elementary geometry) than its use in the sense
of “transformation.” “Projector” describes more accurately than “projection” what is
meant here, and has been used in this sense by Afriat [3], de Boor [117], Bourbaki [125,
Ch. I, Def. 6, p. 16], [126, Ch. VIII, Section 1], Greville [323], Przeworska–Rolewicz
and Rolewicz [653], Schwerdtfeger [735], and Ward, Boullion, and Lewis [851]. Still
other writers use “projector” to designate the orthogonal projector to be discussed in
Section 7. This is true of Householder [432], Yosida [882], Kantorovich and Akilov
[467], and numerous other Russian writers. We are indebted to de Boor for several of
the preceding references.
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and only if there exist projectors E1, E2, . . . , Es such that

EiEj = δij Ei, (29a)

In =
s∑

i=1

Ei, (29b)

A =
s∑

i=1

λi Ei. (29c)

Proof. If : For i ∈ 1, s, let ri = rankEi and let Xi ∈ Cn×ri be a matrix whose
columns are a basis for R(Ei). Let

X = [X1 X2 · · · Xs ].

Then, by Lemma 1(c), the number of columns of X is
s∑

i=1

ri =
s∑

i=1

trace Ei = trace
s∑

i=1

Ei = trace In = n,

by (29b). Thus X is square of order n. By the definition of Xi, there exists for
each i a Yi such that

Ei = XiYi.

Let

Y =


Y1

Y2

...
Ys

 .
Then

XY =
s∑

i=1

XiYi =
s∑

i=1

Ei = In,

by (29b). Therefore X is nonsingular. By Lemma 1(e),

EiXi = Xi,

and therefore, by (29a) and (29c),

AX =
s∑

i=1

λiEiXi = [λ1X1 λ2X2 · · · λsXs ]

= XD, (30)

where

D = diag (λ1Ir1 , λ2Ir2 , . . . , λsIrs) . (31)

Since X is nonsingular, it follows from (30) that A and D are similar.
Only if : If A is diagonable,

AX = XD, (32)

where X is nonsingular and D can be represented in the form (31). Let X
be partitioned by columns into X1, X2, . . . , Xs in conformity with the diagonal
blocks of D and, for i = 1, 2, . . . , s, let

Ei = [O · · · O Xi O · · · O ]X−1.
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In other words, Ei = X̃iX
−1, where X̃i denotes the matrix obtained from X by

replacing all its columns except the columns of Xi by columns of zeros. It is then
easily verified that Ei is idempotent and that (29a) and (29b) hold. Finally,

s∑
i=1

λi Ei = [λ1X1 λ2X2 · · · λsXs ]X−1 = XDX−1 = A,

by (32). �
The idempotent matrices {Ei : i ∈ 1, s} (shown in Ex. 24 below to be

uniquely determined by the diagonable matrix A) are called its principal
idempotents or Frobenius covariants. Relation (29c) is called the spectral
decomposition of A. Further properties of this decomposition are studied
in Exs. 24–26.

Note that R(Ei) is the eigenspace of A (space spanned by the eigen-
vectors) associated with the eigenvalue λi while, because of (29a), N(Ei) is
the direct sum of the eigenspaces associated with all eigenvalues of A other
than λi.
Exercises

Ex. 17. Show that In{2} consists of all idempotent matrices of order n.

Ex. 18. If E is idempotent, X ∈ E{2} and R(X) ⊂ R(E) show that X is
idempotent.

Ex. 19. Let E ∈ Cn×n
r . Then E is idempotent if and only if its Jordan canonical

form can be written as [
Ir O
O O

]
.

Ex. 20. Show that PL,M A = A if and only if R(A) ⊂ L and APL,M = A if and
only if N(A) ⊃M .

Ex. 21. AB(AB)(1)A = A if and only if rankAB = rankA and B(AB)(1)AB =
B if and only if rankAB = rankB. (Hint : Use Exs. 20, 1.9, and 1.10.)

Ex. 22. A matrix A ∈ Cn×n is diagonable if and only if it has n linearly
independent eigenvectors.
Proof. Diagonability of A is equivalent to the existence of a nonsingular matrix
X such that X−1AX = D, which in turn is equivalent to AX = XD. But the
latter equation expresses the fact that each column of X is an eigenvector of A,
and X is nonsingular if and only if its columns are linearly independent. �

Ex. 23. Show that I − PL,M = PM,L.

Ex. 24. Principal idempotents. Let A ∈ Cn×n be a diagonable matrix with s
distinct eigenvalues λ1, λ2, . . . , λs. Then the idempotents E1, E2, . . . , Es satisfy-
ing (29a)–(29c) are uniquely determined by A.
Proof. Let {Fi : i ∈ 1, s} be any idempotent matrices satisfying

FiFj = O, if i �= j, (29a∗)

In =
s∑

i=1

Fi, (29b∗)

A =
s∑

i=1

λi Fi. (29c∗)
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From (29a) and (29c) it follows that

EiA = AEi = λiEi (i ∈ 1, s). (33)

Similarly, from (29a∗) and (29c∗),
FiA = AFi = λiFi (i ∈ 1, s), (33∗)

so that

Ei(AFj) = λjEiFj

and

(EiA)Fj = λiEiFj ,

proving that

EiFj = O, if i �= j. (34)

The uniqueness of {Ei : i ∈ 1, s} now follows:

Ei = Ei

s∑
j=1

Fj , by (29b∗),

= EiFi, by (34),

= (
s∑

j=1

Ej)Fi, by (34),

= Fi, by (29b). �

Ex. 25. Let A ∈ Cn×n be a diagonable matrix with s distinct eigenvalues
λ1, λ2, . . . , λs. Then the principal idempotents of A are given by

Ei =
pi(A)
pi(λi)

(i ∈ 1, s), (35)

where

pi(λ) =
s∏

j=1
j �=i

(λ− λj). (36)

Proof. Let Gi (i ∈ 1, s) denote RHS(35) and let E1, E2, . . . , Es be the principal
idempotents of A. For any i, j ∈ 1, s,

GiEj =
1

pi(λi)

s∏
h=1
h�=i

(A− λhI)Ej

=
1

pi(λi)

s∏
h=1
h�=i

(λj − λhI)Ej , by (33),

=
{
O, if i �= j,
Ei, if i = j.

Therefore, Gi = Gi

∑s
j=1Ej = Ei (i ∈ 1, s). �

Ex. 26. Let A be a diagonable matrix with p distinct eigenvalues λi and
principal idempotents Ei, i ∈ 1, s. Then:



64 2. LINEAR SYSTEMS AND GENERALIZED INVERSES

(a) If p(λ) is any polynomial,

p(A) =
s∑

i=1

f(λi)Ei.

(b) Any matrix commutes with A if and only if it commutes with every Ei

(i ∈ 1, s).

Proof. (a) Follows from (29a), (29b), and (29c).
(b) Follows from (29c) and (35) which express A as a linear combination of

the {Ei : i ∈ 1, s} and each Ei as a polynomial in A. �
See Corollary 8 for polynomials in general square matrices.

Ex. 27. Prove the following analog of Theorem 5 for {1}-inverses: Let A ∈ Cm×n
r

with r < s ≤ min(m,n). Then

A{1}s =
{
Y Z : Y ∈ C

n×s
s , Z ∈ C

s×m
s , ZAY =

[
Ir O
O O

]}
. (37)

Proof. Let X = Y Z, where the conditions on Y and Z in RHS(37) are satisfied.
Then rankX = s by Ex. 1.7. Let

Y = [Y1 Y2], Z =
[
Z1

Z2

]
,

where Y1 denotes the first r columns of Y and Z1 the first r rows of Z. Then (37)
gives

Z1AY1 = Ir, Z1AY2 = O. (38)

Let X1 = Y1Z1. Then it follows from the first equation (38) that X1 ∈ A{2}.
Since by Ex. 1.7, rankX1 = r = rankA, X1 ∈ A{1} by Theorem 1.2. Thus

AXA = AX1AXA = AY1(Z1AY )ZA = AY1[Ir O]
[
Z1

Z2

]
A

= AY1Z1A = AX1A = A.

On the other hand, let X ∈ A{1}s and let X = UV be a full-rank factorization.
Then U ∈ Cn×s

s , V ∈ Cs×m
s , and

V AUV AU = V AU

and so V AU is idempotent and is of rank r by Ex. 1.7. Thus, by Ex. 19, there is
a nonsingular T such that

TV V AUT−1 =
[
Ir O
O O

]
.

If we now take

Y = UT−1, Z = TV,

then

Y ∈ C
n×s
s , Z ∈ C

s×m
s ,

ZAY =
[
Ir O
O O

]
, and Y Z = UV = X. �
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5. Matrix Functions

Let f(z) be a complex scalar function or a mapping f : C→ C. If A ∈ Cn×n

and if f is analytic in some open set containing λ(A), then a corresponding
matrix function f(A) can be defined. We study here matrix functions, and
the correspondence

f(z) ←→ f(A). (39)

As an example, consider the (scalar) inhomogeneous linear differential equa-
tion

ẋ + ax = b(t),

and its general solution

x(t) = e−aty + e−at

∫ t

easb(s)ds,

where y is arbitrary. The corresponding (vector) differential equation, with
given A ∈ Cn×n and b(t) ∈ Cn,

ẋ(t) + Ax(t) = b(t) (40)

has the analogous general solution

x(t) = e−Aty + e−At

∫ t

eAsb(s) ds (41)

with arbitrary y. The matrix function e−At plays here the same role as the
scalar function e−at, see Ex. 31.

If a matrix A ∈ Cn×n is diagonable and if a function f is defined
in λ(A), then a reasonable definition of the matrix function f(A) is, by
Theorem 9,

f(A) =
∑

λ∈λ(A)

f(λ)Eλ, (42)

where Eλ is the principal idempotent associated with λ. We study here
matrix functions for general matrices and obtain (42) as a special case.

Let A ∈ Cn×n have s distinct eigenvalues {λ1, . . . , λs}, and a Jordan
form

A = XJX−1 = XJY

= [X1 X2 · · · Xs ]


J(λ1) O · · · O

O J(λ2) · · · O
...

...
. . .

...
O O · · · J(λs)




Y1
Y2
...

Ys


=

s∑
i=1

Xi J(λi) Yi, (43)
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where X and Y = X−1 are partitioned in agreement with the partition of
J and

J(λi) =


Jj1(λi) O · · · O

O Jj2(λi) · · · O
...

...
. . .

...
O O · · · Jjq (λi)

 , j1 ≥ j2 ≥ · · · ≥ jq, (44)

are the Jordan blocks corresponding to λi, i ∈ 1, s. Let

Eλi
:= XiYi. (45)

Since AXi = XiJ(λi), it follows that AEi = Xi J(λi)Yi and, therefore, by
(43),

A =
s∑

i=1

λi Ei +
s∑

i=1

(A− λiI) Ei. (46)

Note that the second terms (A− λiI) Ei in (46) are zero for eigenvalues λi

of index 1.
An analog of Theorem 9 for general square matrices is:

Theorem 10 (Spectral Theorem for Square Matrices). Let the matrix
A ∈ Cn×n have s distinct eigenvalues. Then there exist s unique projectors
{Eλ : λ ∈ λ(A)} such that

EλEµ = δλµEλ, (29a)

In =
∑

λ∈λ(A)

Eλ, (29b)

A =
∑

λ∈λ(A)

λ Eλ +
∑

λ∈λ(A)

(A− λI)Eλ, (46)

AEλ = EλA, for all λ ∈ λ(A), (47)

Eλ(A− λI)k = O, for all λ ∈ λ(A), k ≥ ν(λ). (48)

Proof. By definition and properties of the inverse matrix, the matrices Eλi =
XiYi are projectors and satisfy (29a), (29b), and (46). The commutativity (47)
is a consequence of (29b) and (46), see also Ex. 29. Equation (48) follows from
Ex. 0.75. Uniqueness is proved as in Ex. 24. �

As in the previous section, the projectors {Eλ : λ ∈ λ(A)} are called
the principal idempotents or Frobenius covariants of A, and (46) is called
the spectral decomposition of A. The principal idempotents of A are poly-
nomials in A, see Ex. 29.

Example 1. Let

A =


0 −2 0 −5 2
0 −1 0 −2 0
0 0 0 2 0
0 1 0 2 0
−2 −2 1 −8 4

 .
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Then the Jordan form of A is A = XJX−1, with:

J =

J1(1)
J2(2)

J2(0)

 =


1

2 1
0 2

0 1
0 0

 (zero blocks omitted),

X =



1
...−2 1

... 1 0

−1
... 0 0

... 0 −2

2
... 0 0

... 2 0

1
... 0 0

... 0 1

2
...−2 0

... 0 1


=
[
X1

...X2
...X0

]
.

Then

Y = X−1 =



0 1 0 2 0
· · · · · · · · · · · · · · ·
0 1

2 0 3
2 − 1

2
1 1 − 1

2 3 −1
· · · · · · · · · · · · · · ·
0 −1 1

2 −2 0
0 −1 0 −1 0


=


Y1

· · ·
Y2

· · ·
Y0

 .

and the projectors E0, E1, E2 are, by (45),

E0 = X0Y0 =


0 −1 1

2 −2 0
0 2 0 2 0
0 −2 1 −4 0
0 −1 0 −1 0
0 −1 0 −1 0

 , E1 = X1Y1 =


0 1 0 2 0
0 −1 0 −2 0
0 2 0 4 0
0 1 0 2 0
0 2 0 4 0

 ,

E2 = X2Y2 =


1 0 − 1

2 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −1 0 −3 1

 .
One can verify all statements of Theorem 10. In particular, (46) is verified by

A = AE0 + E1 + 2E2 + (A− 2I)E2.

See also Ex. 30 below.

For any polynomial p, the matrix p(A), can now be computed.

Corollary 8. Let A ∈ Cn×n and let p be a polynomial with complex
coefficients. Then

p(A) =
∑

λ∈λ(A)

Eλ

ν(λ)−1∑
k=0

p(k)(λ)
k!

(A− λ In)k, (49)

where ν(λ) is the index of λ.

Proof. Use (0.123) and Ex. 0.77. �
Matrix functions are defined analogously.
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Definition 1. For any A ∈ Cn×n with spectrum λ(A), let F(A) denote
the class of all functions f : C → C which are analytic in some open set
containing λ(A). For any scalar function f ∈ F(A), the corresponding
matrix function f(A) is defined by

f(A) =
∑

λ∈λ(A)

Eλ

ν(λ)−1∑
k=0

f (k)(λ)
k!

(A− λ In)k. (50)

Note that (46) is a special case, with f(λ) = λ.
Definition (50) is equivalent to

f(A) = p(A), (51a)

where p(λ) is a polynomial satisfying

p(k)(λ) = f (k)(λ), k = 0, 1, . . . , ν(λ)− 1, for each λ ∈ λ(A), (51b)

i.e., p(λ) is the polynomial interpolating the spectral data {f (k)(λ) : λ ∈
λ(A), k = 0, . . . , ν(λ) − 1}. Given the spectral data, the interpolating
polynomial of degree ≤∑

λ∈λ(a) ν(λ)− 1 is unique; see Ex. 35.
If f : C → C is analytic in an open set U and the boundary Γ of U is

a closed rectifiable Jordan curve, oriented in the customary way, then, for
any λ ∈ U , Cauchy’s formula gives

f(λ) =
1

2πi

∫
Γ

f(z)
z − λ

dz. (52)

An analogous expression for matrix functions is given in the following:
Theorem 11 (Cartan, see [691, p. 399]). Let A ∈ Cn×n, let f ∈ F(A)

be analytic in a domain containing the closure of an open set U containing
λ(A), and let the boundary Γ of U consist of finitely many closed rectifiable
Jordan curves, oriented in the customary way. Then f(A) is a Riemann
contour integral over Γ,

f(A) =
1

2πi

∫
Γ

f(z)(zI −A)−1 dz. (53)

Proof. LetA have eigenvalues {λ1, . . . , λs} with corresponding indices {ν1, . . . , νs}
and let Γ =

⋃s
j=1 Γj where Γj surrounds λj and no other eigenvalue. Substituting

(57) in (53),

1
2πi

∫
Γ
f(z)(zI −A)−1 dz =

s∑
j=1

Eλj

νj−1∑
k=0

(A− λjI)k

∫
Γj

dz

(z − λj)k+1

=
s∑

j=1

Eλj

νj−1∑
k=0

(A− λj I)k f
(k)(λj)
k!

,

by Cauchy’s formula. �
Exercises

Ex. 28. (Dunford and Schwartz [246, Theorem 3, p. 556]). Let p and q be
polynomials and let A ∈ Cn×n. Then p(A) = q(A) if and only if p− q has a zero
of order ν(λ) at each point λ ∈ λ(A).
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Ex. 29. (Schwerdtfeger [734]). LetA ∈ Cn×n have distinct eigenvalues λ1, . . . ,λs

with respective indices ν1, . . . , νs, and let m(z) be the minimal polynomial of A.
Then the principal idempotents Eλi are polynomials of A,

Eλi = gi(A),

where the gi’s are defined from the partial fractions expansion

1
m(z)

=
s∑

j=1

hj(z)
(z − λj)νj

, as gi(z) =
hi(z)m(z)
(z − λi)νi

.

Ex. 30. For the matrix A of Example 1, the minimal polynomial is m(z) =
z2(z − 1)(z − 2)2 and

1
m(z)

= −
(

1 + 2z
4

)
1
z2 +

1
z − 1

+
(

5− 2z
4

)
1

(z − 2)2
.

Therefore,

g0(z) = −
(

1 + 2z
4

)
(z − 1)(z − 2)2, E0 = g0(A)

= − 1
4 (2A+ I)(A− I)(A− 2I)2,

g1(z) = z2(z − 2)2, E1 = g1(A) = A2(A− 2I)2,

g2(z) =
(

5− 2z
4

)
z2(z − 1), E2 = g2(A)

= − 1
4 (2A− 5I)A2(A− I).

Ex. 31. The exponential function eAt is, by (50),

eAt =
∑

λ∈λ(A)

Eλ

ν(λ)−1∑
k=0

eλttk

k!
(A− λ I)k. (54)

For any A ∈ Cn×n, and s, t ∈ C:
(a) eAseAt = eA(s+t); and
(b) eAt is nonsingular and

(
eAt
)−1 = e−At.

Ex. 32. We compute eAt, for A of Example 1, in two ways:
Method 1: Definition (50). Given the projectors E0, E1, E2 (computed in Exam-
ple 1 or Ex. 30),

f(A) = f(0)E0 + f ′(0)AE0 + f(1)E1 + f(2)E2 + f ′(2)(A− 2I)E2,

for any f ∈ F(A).

∴ eAt = E0 + tAE0 + etE1 + e2tE2 + te2t(A− 2I)E2.

Method 2: Interpolating polynomial. The eigenvalues of At are λ0 = 0, λ1 =
t, λ2 = 2t, with indices ν0 = 2, ν1 = 1, ν2 = 2. The polynomial p(z) = α +
βz + γz2 + δz3 + εz4 interpolating f(t) = eλt is given by

f(0) = 1 = α,

f ′(0) = t = β,

f(t) = et = α+ β + γ + δ + ε,

f(2t) = e2t = α+ 2β + 4γ + 8δ + 16ε,

f ′(2t) = t e2t = β + 4γ + 12δ + 32ε,

a system that can be solved for α, β, γ, δ, ε. Then

eAt = αI + βA+ γA2 + δA3 + εA4.
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See also Moler and Van Loan [573].

Ex. 33. (Dunford and Schwartz [246, Lemma 6, p. 568]). Let A ∈ Cn×n. The
resolvent of A, denoted R(λ,A), is defined by

R(λ,A) = (λI −A)−1, ∀ λ �∈ λ(A). (55)

It satisfies the following identity, known as the resolvent equation:

R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A). (56)

Proof. Multiply both sides of

(µI −A)(λI −A) [R(λ,A)−R(µ,A)] = (µ− λ)I

by R(λ,A)R(µ,A). �
Ex. 34. Let A ∈ Cn×n have spectrum λ(A) = {λ1, λ2, . . . , λs} and let z �∈ λ(A).
Then

(zI −A)−1 =
s∑

j=1

ν(λj)−1∑
k=0

(A− λjI)k

(z − λj)k+1 Eλj . (57)

Ex. 35. (Lagrange interpolation). Let A ∈ Cn×n have s distinct eigenvalues
λ1, . . . , λs with respective indices ν1, . . . , νs,

∑s
i=1 νi = ν ≤ n. The interpolating

polynomial of degree ≤ ν − 1 is obtained as follows:
(a) If s = 1, then

p(z) = f(λ1) +
ν1−1∑
i=1

f (i)(λ1)
i!

(z − λ1)i.

(b) If ν1 = ν2 = · · · = νs = 1, then

p(z) =
s∑

i=1

f(λi)

∏
j �=i

(z − λj)∏
j �=i

(λi − λj)
.

(c) In the general case, the interpolating polynomial p(z) is obtained from

p(z) =
s∑

i=1

∏
j �=i

(z − λi)νi

νi−1∑
k=0

1
k!
q
(k)
j (λj)(z − λj)k,

where

qj(z) =
p(z)∏

i�=j

(z − λi)νi
.

Ex. 36. (Fantappiè [268]). The correspondence

f(z) ←→ f(A) (39)

to be useful, must satisfy certain formal conditions. The following four conditions
are due to Fantappiè:

I If f(z) = k, then f(A) = kI.
II If f(z) = z, then f(A) = A.
III If f(z) = g(z) + h(z), then f(A) = g(A) + h(A).
IV If f(z) = g(z)h(z), then f(A) = g(A)h(A).

A fifth condition serves to assure consistency of compositions of matrix functions:
V If f(z) = h(g(z)), then f(A) = h(g(A)).

Matrix functions given by Definition 1 satisfy the above conditions, see Rinehart
[691] and Robinson [696].
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6. Generalized Inverses with Prescribed Range and Null Space

Let A ∈ Cm×n and let A(1) be an arbitrary element of A{1}. Let R(A) = L
and let N(A) = M . By Lemma 1.1(f), AA(1) and A(1)A are idempotent.
By (28) and Theorem 8,

AA(1) = PL,S , A(1)A = PT,M ,

where S is some subspace of Cm complementary to L, and T is some sub-
space of Cn complementary to M .

If we choose arbitrary subspaces S and T complementary to L and M ,
respectively, does there exist a {1}-inverse A(1) such that N(AA(1)) = S
and R(A(1)A) = T? The following theorem (parts of which have appeared
previously in the works of Robinson [697], Langenhop [499], and Milne
[555]) answers the question in the affirmative.

Theorem 12. Let A ∈ Cm×n
r , R(A) = L, N(A) = M, L ⊕ S = Cm,

and M ⊕ T = Cn. Then:
(a) X is a {1}-inverse of A such that N(AX) = S and R(XA) = T if

and only if

AX = PL,S , XA = PT,M . (58)

(b) The general solution of (58) is

X = PT,MA(1)PL,S + (In −A(1)A)Y (Im −AA(1)), (59)

where A(1) is a fixed (but arbitrary) element of A{1} and Y is an
arbitrary element of Cn×m.

(c) A
(1,2)
T,S = PT,MA(1)PL,S is the unique {1, 2}-inverse of A having
range T and null space S.

Proof. (a) The “if” part of the statement follows at once from Theorem 8 and
Lemma 1(e), the “only if” part from Lemma 1.1(f), (28) and Theorem 8.

(b) By repeated use of Ex. 20, along with (28), we can easily verify that (58)
is satisfied by X = PT,MA(1)PL,S . The result then follows from Ex. 5.

(c) Since PT,MA(1)PL,S is a {1}-inverse of A, its rank is at least r by
Lemma 1.1(d), while its rank does not exceed r, since rankPL,S = r by (58)
and Lemma 1.1(f). Thus it has the same rank as A, and is therefore a {1, 2}-
inverse, by Theorem 1.2. It follows from parts (a) and (b) that it has the required
range and null space.

On the other hand, a {1, 2}-inverse of A having range T and null space S
satisfies (58) and also

XAX = X. (1.2)

By Ex. 1.28, these three equations have at most one common solution. �
Corollary 9. Under the hypotheses of Theorem 12, let A

(1)
T,S be some

{1}-inverse of A such that R(A(1)
T,SA) = T, N(AA

(1)
T,S) = S, and let A{1}T,S

denote the class of such {1}-inverses of A. Then

A{1}T,S = {A(1)
T,S + (In −A

(1)
T,SA)Y (Im −AA

(1)
T,S) : Y ∈ Cn×m}. (60)

For a subspace L of Cm, a complementary subspace of particular in-
terest is the orthogonal complement, denoted by L⊥, which consists of all
vectors in Cm orthogonal to L. If, in Theorem 12, we take S = L⊥ and
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T = M⊥, the class of {1}-inverses given by (60) is the class of {1, 3, 4}-
inverses and A

(1,2)
T,S = A†.

The formulas in Theorem 12 generally are not convenient for compu-
tational purposes. When this is the case, the following theorem (which
extends results due to: Urquhart [824]) may be resorted to:

Theorem 13. Let A ∈ Cm×n
r , U ∈ Cn×p, V ∈ Cq×m, and

X = U(V AU)(1)V,

where (V AU)(1) is a fixed, but arbitrary element of (V AU){1}. Then:

(a) X ∈ A{1} if and only if rankV AU = r.
(b) X ∈ A{2} and R(X) = R(U) if and only if rankV AU = rankU .
(c) X ∈ A{2} and N(X) = N(V ) if and only if rankV AU = rankV .
(d) X = A

(1,2)
R(U),N(V ) if and only if rankU = rankV = rankV AU = r.

Proof. (a) If : We have rankAU = r, since

r = rankV AU ≤ rankAU ≤ rankA = r.

Therefore, by Ex. 1.10, R(AU) = R(A) and so A = AUY for some Y . Thus by
Ex. 21,

AXA = AU(V AU)(1)V AUY = AUY = A.

Only if : Since X ∈ A{1},
A = AXAXA = AU(V AU)(1)V AU(V AU)(1)V A,

and therefore rankV AU = rankA = r.
(b) If : By Ex. 21,

XAU = U(V AU)(1)V AU = U,

from which it follows that XAX = X and also rankX = rankU . By Ex. 1.10,
R(X) = R(U).

Only if : Since X ∈ A{2},
X = XAX = U(V AU)(1)V AU(V AU)(1)V.

Therefore

rankX ≤ rankV AU ≤ rankU = rankX.

(c) Similar to (b).
(d) Follows from (a), (b), and (c). �
Note that if we require only a {1}-inverse X such that R(X) ⊂ R(U)

and N(X) ⊃ N(V ), part (a) of the theorem is sufficient.
Theorem 13 can be used to prove the following modified analog of

Theorem 12(c) for all {2}-inverses, and not merely {1, 2}-inverses.

Theorem 14. Let A ∈ Cm×n
r , let T be a subspace of Cn of dimension

s ≤ r, and let S be a subspace of Cm of dimension m − s. Then, A has a
{2}-inverse X such that R(X) = T and N(X) = S if and only if

AT ⊕ S = Cm, (61)

in which case X is unique.
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Proof. If : Let the columns of U ∈ Cn×s
s be a basis for T and let the columns

of V ∗ ∈ Cm×s
s be a basis for S⊥. Then the columns of AU span AT . Since it

follows from (61) that dim AT = s,

rankAU = s. (62)

A further consequence of (61) is

AT ∩ S = {0}. (63)

Moreover, the s× s matrix V AU is nonsingular (i.e., of rank s) because

V AUy = 0 =⇒ AUy ⊥ S⊥ =⇒ AUy ∈ S
=⇒ AUy = 0, (by (63),

=⇒ y = 0, (by (62).

Therefore, by Theorem 13,

X = U(V AU)−1V

is a {2}-inverse of A having range T and null space S (see also Stewart [780]).
Only if : Since A ∈ X{1}, AX is idempotent by Lemma 1.1(f). Moreover, AT =
R(AX) and S = N(X) = N(AX) by (28). Thus (61) follows from Theorem 8.
Proof of uniqueness: Let X1, X2 be {2}-inverses of A having range T and null
space S. By Lemma 1.1(f) and (28), X1A is a projector with range T and AX2

is a projector with null space S. Thus, by Ex. 20,

X2 = (X1A)X2 = X1(AX2) = X1. �

Corollary 10. Let A ∈ Cm×n
r , let T be a subspace of Cn of dimension

r, and let S be a subspace of Cm of dimension m− r. Then, the following
three statements are equivalent:

(a) AT ⊕ S = Cm.
(b) R(A)⊕ S = Cm and N(A)⊕ T = Cn.
(c) There exists an X ∈ A{1, 2} such that R(X) = T and N(X) = S.
The set of {2}-inverses of A with range T and null space S is denoted

A{2}T,S .
Exercises
Ex. 37. Show that A(1,2)

T,S is the unique matrix X satisfying the three equations

AX = PL,S , XA = PT,M , XPL,S = X.

(For the Moore–Penrose inverse this was shown by Petryshyn [641]. Compare
Ex. 1.28.)

Ex. 38. For any given matrix A, A† is the unique matrix X ∈ A{1, 2} such that
R(X) = R(A∗) and N(X) = N(A∗).

Ex. 39. Derive the formula of Mitra [559] and Zlobec [891],

A† = A∗Y A∗,

where Y is an arbitrary element of (A∗AA∗){1}.
Ex. 40. Derive the formula of Decell [224],

A† = A∗XA∗Y A∗,

where X and Y are any {1}-inverses of AA∗ and A∗A, respectively.
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Ex. 41. Penrose [635] showed that the Moore–Penrose inverse of a product
of two Hermitian idempotent matrices is idempotent. Prove this, using Zlobec’s
formula (Ex. 39).

Ex. 42. Let A be the matrix of (0.80) and let

S = R

0
0
1

 , T = R




0 0
0 0
1 0
0 1
0 0
0 0



 .

Calculate A(1,2)
T,S .

Ex. 43. If E is idempotent and the columns of F and G∗ are bases for R(E)
and R(E∗), respectively, show that E = F (GF )−1G.

Ex. 44. If A is square and A = FG is a full-rank factorization, show that A has
a {1, 2}-inverse X with R(X) = R(A) and N(X) = N(A) if and only if GF is
nonsingular, in which case X = F (GF )−2G (Cline [201]).

7. Orthogonal Projections and Orthogonal Projectors

Given a vector x ∈ Cn and a subspace L of Cn, there is in L a unique
vector ux that is “closest” to x in the sense that the “distance” ‖x − u‖
is smaller for u = ux than for any other u ∈ L. Here, ‖v‖ denotes the
Euclidean norm of the vector v,

‖v‖ = +
√
〈v,v〉 = +

√
v∗v = +

√√√√ n∑
j=1

|vj |2,

where 〈v,w〉 denotes the standard inner product, defined for v,w ∈ Cn by

〈v,w〉 = w∗v =
n∑

j=1

wjvj .

Not surprisingly, the vector ux that is “closest” to x of all vectors in L is
uniquely characterized (see Ex. 47) by the fact that x − ux is orthogonal
to ux, which we shall denote by

x− ux ⊥ ux.

We shall therefore call the “closest” vector ux the orthogonal projection of
x on L. The transformation that carries each x ∈ Cn into its orthogonal
projection on L we shall denote by PL and shall call the orthogonal projector
on L. Comparison with the earlier definition of the projector on L along
M (see Section 4) shows that the orthogonal projector on L is the same as
the projector on L along L⊥. (As previously noted, some writers call the
orthogonal projector on L simply the projector on L.)

Being a particular case of the more general projector, the orthogonal
projector is representable by a square matrix which, in this case, is not only
idempotent but also Hermitian.

In order to prove this, we shall need the relation

N(A) = R(A∗)⊥, (0.26)
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which, in fact, arises frequently in the study of generalized inverses.
Let L and M be complementary orthogonal subspaces of Cn and con-

sider the matrix P ∗
L,M . By Lemma 1(a), it is idempotent and therefore a

projector, by Theorem 8. By the use of (0.26) and its dual

N(A∗) = R(A)⊥ (0.27)

it is readily found that

R(P ∗
L,M ) = M⊥, N(P ∗

L,M ) = L⊥.

Thus, by Theorem 8,

P ∗
L,M = PM⊥,L⊥ (64)

from which the next lemma follows easily.

Lemma 3. Let Cn = L ⊕M . Then M = L⊥ if and only if PL,M is
Hermitian.

Just as there is a one-to-one correspondence between projectors and
idempotent matrices, Lemma 3 shows that there is a one-to-one correspon-
dence between orthogonal projectors and Hermitian idempotents. Matrices
of the latter class have many striking properties, some of which are noted
in the remainder of this section (including the Exercises).

For any subspace L for which a basis is available, it is easy to construct
the matrix PL. The basis must first be orthonormalized (e.g., by Gram–
Schmidt orthogonalization). Let {x1,x2, . . . ,xl} be an o.n. basis for L.
Then

PL =
l∑

j=1

xjx∗
j . (65)

The reader should verify that RHS(65) is the orthogonal projector on L
and that (27) reduces to (65) if M = L⊥ and the basis is o.n..

In the preceding section diagonable matrices were studied in relation to
projectors. The same relations will now be shown to hold between normal
matrices (a subclass of diagonable matrices) and orthogonal projectors.
This constitutes the spectral theory for normal matrices. We recall that a
square matrix A is called normal if it commutes with its conjugate transpose

AA∗ = A∗A.

It is well known that every normal matrix is diagonable. A normal matrix
A also has the property (see Ex. 54) that the eigenvalues of A∗ are the
conjugates of those of A, and every eigenvector of A associated with the
eigenvalue λ is also an eigenvector of A∗ associated with the eigenvalue λ̄.

The following spectral theorem relates normal matrices to orthogonal
projectors, in the same way that diagonable matrices and projectors are
related in Theorem 9.

Theorem 15 (Spectral Theorem for Normal Matrices). Let A ∈ Cn×n

with k distinct eigenvalues λ1, λ2, . . . , λk. Then A is normal if and only if
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there exist orthogonal projectors E1, E2, . . . , Ek such that

EiEj = O, if i �= j, (66)

In =
k∑

i=1

Ei, (67)

A =
k∑

i=1

λi Ei. (68)

Proof. If : Let A be given by (68) where the principal idempotents are Hermit-
ian. Then

AA∗ =
( k∑

i=1

λi Ei

)( k∑
j=1

λ̄j Ej

)

=
k∑

i=1

|λi|2 Ei = A∗A.

Only if : Since A is normal, it is diagonable; let E1, E2, . . . , Ek be its principal
idempotents. We must show that they are Hermitian. By Ex. 54, R(Ei), the
eigenspace of A associated with the eigenvalue λi is the same as the eigenspace of
A∗ associated with λ̄i. Because of (66), the null spaces of corresponding principal
idempotents of A and A∗ are also the same (for a given i = h, N(Eh) is the direct
sum of the eigenspaces R(Ei) for all i �= h, i.e.,

N(Eh) =
k∑

i=1
i�=h

⊕R(Ei) (h ∈ 1, k).

Therefore, A and A∗ have the same principal idempotents, by Theorem 8. Con-
sequently,

A∗ =
k∑

i=1

λ̄iEi,

by Theorem 9. But taking conjugate transposes in (68) gives

A∗ =
k∑

i=1

λ̄iE
∗
i ,

and it is easily seen that the idempotents E∗
i satisfy (66) and (67). Since the

spectral decomposition is unique by Ex. 24, we must have

Ei = E∗
i , i ∈ 1, k. �

Exercises

Ex. 45. Let A,B be matrices and let a,b be vectors of appropriate dimensions.
Then

Ax = a =⇒ Bx = b

if and only if there is a matrix Y such that

B = Y A, b = Y a.

Proof. If : Obvious.
Only if : The general solution of Ax = a is

x = A†a + PN(A)y, y arbitrary.
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Substituting in Bx = b we get

BA†a +BPN(A)y = b, y arbitrary.

Therefore BPN(A) = O, i.e., B = Y A for some Y and b = Y a follows. �
Ex. 46. Orthogonal subspaces or the Pythagorean theorem. Let Y and Z be
subspaces of Cn. Then Y ⊥ Z if and only if

‖y + z‖2 = ‖y‖2 + ‖z‖2, for all y ∈ Y, z ∈ Z. (69)

Proof. If : Let y ∈ Y, z ∈ Z. Then (69) implies that

〈y,y〉+ 〈z, z〉 = ‖y‖2 + ‖z‖2 = ‖y + z‖2
= 〈y + z,y + z〉 = 〈y,y〉+ 〈z, z〉+ 〈y, z〉+ 〈z,y〉

and, therefore,

〈y, z〉+ 〈z,y〉 = 0. (70)

Now, since Z is a subspace, iz ∈ Z, and replacing z by iz in (70) gives

0 = 〈y, iz〉+ 〈iz,y〉 = i〈y, z〉 − i〈z,y〉. (71)

(Here we have used the fact that 〈αv,w〉 = α〈v,w〉 and 〈v, βw〉 = β̄〈v,w〉.) It
follows from (71) that

〈y,y〉 − 〈z, z〉 = 0,

which, in conjunction with (70), gives

〈y,y〉 = 〈z, z〉 = 0,

i.e., y ⊥ z.
Only if : Let Y ⊥ Z. Then, for arbitrary y ∈ Y, z ∈ Z,

‖y + z‖2 = 〈y + z,y + z〉
= 〈y,y〉+ 〈z, z〉, since 〈y, z〉 = 〈z,y〉 = 0,

= ‖y‖2 + ‖z‖2. �

Ex. 47. Orthogonal projections. Let L be a subspace of Cn. Then, for every
x ∈ Cn, there is a unique vector ux in L such that, for all u ∈ L different from
ux,

‖x− ux‖ < ‖x− u‖.
Among the vectors u ∈ L, ux is uniquely characterized by the fact that

x− ux ⊥ ux.

Proof. Let x ∈ Cn. Since L and L⊥ are complementary subspaces, there exist
uniquely determined vectors x1 ∈ L, x2 ∈ L⊥ such that

x = x1 + x2. (72)

Therefore, for arbitrary u ∈ L,

‖x− u‖2 = ‖x1 + x2 − u‖2

= ‖x1 − u‖2 + ‖x2‖2, (73)

by Ex. 46, since x1 − u ∈ L, x2 ∈ L⊥. Consequently, there is a unique u ∈ L,
namely ux = x1, for which (73) is smallest.

By the uniqueness of the decomposition (72), ux = x1 is the only vector
u ∈ L satisfying

x− u ⊥ u. �
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Ex. 48. Let L be a subspace of Cn, let V ∈ Cn×r be a matrix whose columns
{v1, . . . ,vr} are a basis of L, and let G(v1, . . . ,vr) be the corresponding Gram
matrix, see § 0.5.2. Then, for any x ∈ Cn,

PL x =
r∑

j=1

ξj vj (74)

where

ξj =
det V ∗V [j ← x]

det G(v1, . . . ,vr)
, j ∈ 1, r. (75)

Proof. Since (x− PLx) ⊥ L we get from (74) the system

〈x−
r∑

j=1

ξj vj ,vk〉 = 0, k ∈ 1, r,

or
r∑

j=1

ξj 〈vj ,vk〉 = 〈x,vk〉, k ∈ 1, r,

whose solution, by Cramer’s rule, is (75). �
Ex. 49. Let L and {v1, . . . ,vr} be as in Ex. 48. Then the Euclidean norm of
PL⊥x is given by

‖PL⊥x‖2 =
det G(v1, . . . ,vr,x)
det G(v1, . . . ,vr)

. (76)

For proof see Ex. 51 below, or Gantmacher [296, Vol. I, p. 250].

Ex. 50. Simplify the results of Exs. 48–49 if the basis {v1, . . . ,vr} is o.n.

Ex. 51. Orthogonal projections. Let L be a subspace of Rn of dimension r and
let L be spanned by vectors {v1, . . . ,vk}. Let x ∈ Rn be written as x = xL+xL⊥
where xL ∈ L and xL⊥ is orthogonal to L. Then

‖xL⊥‖ =
volr+1(v1, . . . ,vk,x)

volr(v1, . . . ,vk)
, (77)

where (v1, . . . ,vk) is the matrix with vj as columns.
Proof. If x ∈ L, then both sides of (77) are zero. If x /∈ L, then

vol2r+1(v1, . . . ,vk,x) = vol2r+1(v1, . . . ,vk,xL⊥),

by properties of determinants,

= vol2r(v1, . . . ,vk) vol21(vL⊥), by Ex. 0.67,

which completes the proof since vol21(xL⊥) = ‖xL⊥‖2. �
Note that (76) is a special case of (77).

Ex. 52. Let x ∈ Cn and let L be an arbitrary subspace of Cn. Then

‖PLx‖ ≤ ‖x‖, (78)

with equality if and only if x ∈ L. See also Ex. 67.
Proof. We have

x = PLx + (I − PL)x = PLx + PL⊥x,

by Ex. 23. Then, by Ex. 46,

‖x‖2 = ‖PLx‖2 + ‖PL⊥x‖2,
from which (78) follows.
Equality holds in (78) if and only if PL⊥x = 0, which is equivalent to x ∈ L. �
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Ex. 53. Let A be a square singular matrix, let {u1,u2, . . . ,un} and {x1,x2, . . . ,
xn} be o.n. bases of N(A∗) and N(A), respectively, and let {α1, α2, . . . , αn} be
nonzero scalars. Then the matrix

A0 = A+
n∑

i=1

αi uix∗
i

is nonsingular and its inverse is

A−1
0 = A† +

n∑
i=1

1
αi

xiu∗
i .

Proof. Let X denote the expression given for A−1
0 . Then, from x∗

i xj = δij (i, j ∈
1, n), it follows that

A0X = AA† +
n∑

i=1

xi x∗
i

= AA† + PN(A∗), by (65),

= AA† + (In −AA†), by Lemma 1(g),

= In.

Therefore, A0 is nonsingular and X = A−1
0 . �

Ex. 54. If A is normal, Ax = λx if and only if A∗x = λ̄x.

Ex. 55. If L is a subspace of Cn and the columns of F are a basis for L, show
that

PL = FF † = F (F ∗F )−1F ∗.

(This may be simpler computationally than orthonormalizing the basis and using
(65).)

Ex. 56. Let L be a subspace of Cn. Then

PL⊥ = In − PL.

(See Ex. 23.)

Ex. 57. Let A ∈ Cm×n, X ∈ Cn×m. Then X ∈ A{2} if and only if it is of the
form

X = (EAF )†,

where E and F are suitable Hermitian idempotents (Greville [330]).
Proof. If : By Ex. 38,

R((EAF )†) ⊂ R(F ), N((EAF )†) ⊃ N(E).

Therefore, by Ex. 20,

X = (EAF )† = F (EAF )† = (EAF )†E.

Consequently,

XAX = (EAF )†EAF (EAF )† = (EAF )† = X.

Only if : By Theorem 12(c) and Ex. 38,

X† = PR(X∗)APR(X),

and, therefore, by Ex. 1.18,

X =
(
PR(X∗)APR(X)

)†
. (79)

�
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Remark. Equation (79) states that if X ∈ A{2}, then X is the Moore–Penrose
inverse of a modification of A obtained by projecting its columns on R(X∗) and
its rows on R(X).

Ex. 58. It follows from Exs. 37 and 1.28 that, for arbitrary A, A† is the unique
matrix X satisfying

AX = PR(A), XA = PR(A∗), XAX = X.

Ex. 59. By means of Exs. 58 and 20, derive (79) directly from XAX = X

without using Theorem 12(c).

Ex. 60. Prove the following amplification of Penrose’s result stated in Ex. 41:
A square matrix E is idempotent if and only if it can be expressed in the form

E = (FG)†

where F and G are Hermitian idempotents. (Hint : Use Ex. 17.)
In particular, derive the formula (Greville [330])

PL,M = (PM⊥PL)† = ((I − PM )PL)† . (80)

Ex. 61. Let S and T be subspaces of Cm and Cn, respectively, such that

AT ⊕ S = C
m,

and let A(2)
T,S denote the unique {2}-inverse of A having range T and null space

S (see Theorem 14). Then

A
(2)
T,S = (PS⊥APT )† .

Ex. 62. Show that PL +PM is an orthogonal projector if and only if L ⊥M , in
which case

PL + PM = PL+M .

Ex. 63. Show that PLPM is an orthogonal projector if and only if PL and PM

commute, in which case

PLPM = PL∩M .

Ex. 64. Show that L = L ∩M ⊕ L ∩M⊥ if and only if PL and PM commute.

Ex. 65. For any matrix A ∈ Cn×n we denote by A � O the fact

〈x, Ax〉 ≥ 0, for all x ∈ C
n. (81)

For any two matrices A,B ∈ Cn×n, A � B denotes that (A − B) � O. This is
called the Löwner ordering on Cn×n. It is transitive (A � B,B � C =⇒ A �
C) and is antisymmetric (A � B,B � A =⇒ A = B) if A,B are Hermitian,
see Chipman [186].

Similarly, we denote by A � O the fact that

〈x, Ax〉 > 0, for all 0 �= x ∈ C
n. (82)

A Hermitian matrix H ∈ Cn×n is:
positive semidefinite (PSD) if H � O; and
positive definite (PD) if H � O.

The set of n× n PSD [PD] matrices is denoted by PSDn [PDn].
If A,B ∈ Cn×n are Hermitian, then A � B is equivalent to A−B = L∗L for

some L ∈ Cn×n [379, p. 223]. See also Ex. 79 below.

Ex. 66. Let PL and PM be orthogonal projectors on the subspaces L and M of
Cn, respectively. Then the following statements are equivalent:
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(a) PL − PM is an orthogonal projector; (b) PL � PM ;
(c) ‖PLx‖ ≥ ‖PMx‖ for all x ∈ Cn; (d) M ⊂ L;
(e) PLPM = PM ; (f) PMPL = PM .

Ex. 67. Let P ∈ Cn×n be a projector. Then P is an orthogonal projector if and
only if

‖Px‖ ≤ ‖x‖, for all x ∈ C
n. (83)

Proof. P is an orthogonal projector if and only if I−P is an orthogonal projector.
By the equivalence of statements (a) and (c) in Ex. 66, I − P is an orthogonal
projector if and only if (83) holds. �

Note that for any non-Hermitian idempotent P (i.e., for any projector P
which is not an orthogonal projector) there is by this exercise a vector x whose
length is increased when multiplied by P , i.e., ‖Px‖ > ‖x‖. For P =

(
1 1
0 0

)
such

a vector is x =
(

1
1

)
.

Ex. 68. Let P ∈ Cn×n. Then P is an orthogonal projector if and only if

P = P ∗P.

Ex. 69. It may be asked to what extent the results of Exs. 62–64 carry over
to general projectors. This question is explored in this and the two following
exercises. Let

C
n = L⊕M = Q⊕ S.

Then show that PL,M + PQ,S is a projector if and only if M ⊃ Q and S ⊃ L, in
which case

PL,M + PQ,S = PL+Q,M∩S .

Solution. Let P1 = PL,M , P2 = PQ,S . Then

(P1 + P2)2 = P1 + P2 + P1P2 + P2P1.

Therefore, P1 + P2 is a projector if and only if

P1P2 + P2P1 = O. (84)

Now, if M ⊃ Q and S ⊃ L, each term of LHS(84) is O.
On the other hand, if (84) holds, multiplication by P1 on the left and on the

right, respectively, gives

P1P2 + P1P2P1 = O = P1P2P1 + P2P1.

Subtraction then yields

P1P2 − P2P1 = O, (85)

and (84) and (85) together imply

P1P2 = P2P1 = O,

from which it follows by Lemma 1(e) that M ⊃ Q and S ⊃ L. It is then fairly
easy to show that

P1 + P2 = PL+Q,M∩S .

Ex. 70. With L,M,Q, S as in Ex. 69 show that if PL,M and PQ,S commute,
then

PL,MPQ,S = PQ,SPL,M = PL∩Q,M+S . (86)
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Ex. 71. If only one of the products in (86) is equal to the projector on the right,
it does not necessarily follow that the other product is the same. Instead we have
the following result: With L,M,Q, S as in Ex. 69, PL,MPQ,S = PL∩Q,M+S if and
only if Q = L ∩ Q ⊕M ∩ Q. Similarly, PQ,SPL,M = PL∩Q,M+S if and only if
L = L ∩Q⊕ L ∩ S.
Proof. Since L∩M = {0}, (L∩Q)∩(M ∩Q) = {0}. Therefore L∩Q+M ∩Q =
L ∩Q⊕M ∩Q. Since M + S ⊃M +Q and L+ S ⊃ L ∩Q, Ex. 69 gives

PL∩Q,M+S + PM∩Q,L+S = PT,U ,

where T = L ∩Q⊕M ∩Q, U = (L+ S) ∩ (M + S). Clearly Q ⊃ T and U ⊃ S.
Multiplying on the left by PL,M gives

PL,MPT,U = PL∩Q,M+S . (87)

Thus, if T = Q, we have U = S, and

PL,MPQ,S = PL∩Q,M+S . (88)

On the other hand, if (88) holds, (87) and (88) give

PQ,S = PT,U +H, (89)

where PL,MH = O. This implies R(H) ⊂ M . Also, since T ⊂ Q, (89) implies
R(H) ⊂ Q and, therefore, R(H) ⊂M∩Q. Consequently, R(H) ⊂ T and therefore
(89) gives PT,UPQ,S = PQ,S . This implies rankPQ,S ≤ rankPT,U . Since Q ⊃ T

it follows that T = Q. This proves the first statement and the proof of the second
statement is similar. �
Ex. 72. The characterization of A{2, 3, 4} was postponed until orthogonal pro-
jectors had been studied. This will now be dealt with in three stages in this exer-
cise and in Exs. 73 and 75. If E is Hermitian idempotent show that X ∈ E{2, 3, 4}
if and only if X is Hermitian idempotent and R(X) ⊂ R(E).
Proof. If : Since R(X) ⊂ R(E), EX = X by Lemma 1(e), and taking conjugate
transposes gives XE = X. Since X is Hermitian, EX and XE are Hermitian.
Finally, XEX = X2 = X, since X is idempotent. Thus, X ∈ E{2, 3, 4}.

Only if : Let X ∈ E{2, 3, 4}. Then X = XEX = EX∗X. Therefore R(X) ⊂
R(E). Then EX = X by Lemma 1(e). But EX is Hermitian idempotent, since
X ∈ E{2, 3}. Therefore X is Hermitian idempotent. �
Ex. 73. Let H be Hermitian and PSD, and let

H =
k∑

i=1

λi Ei. (90)

be its spectral decomposition as in (68), with orthogonal projectors as the prin-
cipal idempotents. Then X ∈ H{2, 3, 4} if and only if

X =
k∑

i=1

λ†
i Fi, (91)

where, for each i, Fi ∈ Ei{2, 3, 4}.
Proof. If : Since Ei is Hermitian idempotent, R(Fi) ⊂ R(Ei) by Ex. 72. There-
fore (29a) gives

EiFj = FjEi = O (i �= j), (92)

and, by Lemma 1(e),

EiFi = FiEi = Fi (i ∈ 1, k).
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Consequently,

HX =
k∑

i=1
λi �=0

Fi = XH.

Since each Fi is Hermitian by Ex. 72, HX = XH is Hermitian. Now,

FiFj = FiEjFj = O (i �= j),

by (92) and, therefore,

XHX =
k∑

i=1

λ†
iF

2
i = X

by (91), since each Fi is idempotent.
Only if : Let X ∈ H{2, 3, 4}. Then, by (29b),

X = IXI =
k∑

i=1

k∑
j=1

EiXEj . (93)

Now, (90) gives

HX =
k∑

i=1

λiEiX =
k∑

i=1

λiX
∗Ei, (94)

since HX = X∗H. Similarly,

XH =
k∑

i=1

λiXEi =
k∑

i=1

λiEiX
∗. (95)

Multiplying by Es on the left and by Et on the right in both (94) and (95) and
making use of (29a) and the idempotency of Es and Et gives

λsEsXEt = λtEsX
∗Et, (96)

λtEsXEt = λsEsX
∗Et (s, t ∈ 1, k). (97)

Adding and subtracting (96) and (97) gives

(λs + λt)EsXEt = (λs + λt)EsX
∗Et, (98)

(λs − λt)EsXEt = −(λs − λt)EsX
∗Et. (99)

The λi are distinct, and are also nonnegative because H is Hermitian and PSD.
Thus, if s �= t, neither of the quantities λs + λt and λs − λt vanishes. Therefore,
(98) and (99) give

EsXEt = EsX
∗Et = −EsXEt = O (s �= t). (100)

Consequently, (93) reduces to

X =
k∑

i=1

EiXEi. (101)

Now, (90) gives

X = XHX =
k∑

i=1

λiXEiX,



84 2. LINEAR SYSTEMS AND GENERALIZED INVERSES

and, therefore, by (100),

EsXEs = λsEsXEsXEs = λs(EsXEs)2, (102)

from which it follows that EsXEs = O if λs = 0. Now, take

Fi = λiEiXEi (i ∈ 1, k). (103)

Then (101) becomes (91), and we have only to show that Fi ∈ Ei{2, 3, 4}. This
is trivially true for that i, if any, such that λi = 0. For other i, we deduce from
(96) that it is idempotent. Finally, (103) gives R(Fi) ⊂ R(Ei), and the desired
conclusion follows from Ex. 72. �
Ex. 74. Prove the following corollary of Ex. 73. If H is Hermitian PSD and
X ∈ H{2, 3, 4}, then X is Hermitian PSD, and every nonzero eigenvalue of X is
the reciprocal of an eigenvalue of H.

Ex. 75. For every A ∈ Cm×n,

A{2, 3, 4} = {Y A∗ : Y ∈ (A∗A){2, 3, 4}}.

Ex. 76. A{2, 3, 4} is a finite set if and only if the nonzero eigenvalues of A∗A
are distinct (i.e., each eigenspace associated with a nonzero eigenvalue of A∗A is
of dimension 1). If this is the case and if there are k such eigenvalues, A{2, 3, 4}
contains exactly 2k elements.

Ex. 77. Show that the matrix

A = 1
10


9− 3i 12− 4i 10− 10i
3− 3i 4− 4i 0
6 + 6i 8 + 8i 0

6 8 0


has exactly four {2, 3, 4}-inverses, namely,

X1 = A† = 1
70

 0 6 + 6i 12− 12i 12
0 8 + 8i 16− 16i 16

35 + 35i −5− 15i −30 + 10i −20− 10i

 ,
X2 = 1

60

 −9− 3i 3 + 3i 6− 6i 6
−12− 4i 4 + 4i 8− 8i 8
25 + 25i −5− 15i −30 + 10i −20− 10i

 ,
X3 = 1

420

63 + 21i 15 + 15i 30− 30i 30
84 + 28i 20 + 20i 40− 40i 40
35 + 35i 5 + 15i 30− 10i 20 + 10i

 ,
X4 = O.

Ex. 78. The ∗-order. A partial order on Cm×n, called the ∗-order and denoted
∗
<, is defined as follows:

A
∗
< B ⇐⇒

{
AA∗ = AB∗,
A∗A = A∗B.

(104)

The ∗-order was introduced by Drazin [234] for semigroups with involution.
For A,B ∈ Cm×n, the following statements are equivalent:

(a) A
∗
< B.

(b) AA†B = A = BA†A.

(c) A† ∗
< B†.
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Ex. 79. (Hartwig [382]). Exercise 78(c) shows that the Moore–Penrose inverse
preserves the ∗-ordering. This is not the case for the Löwner-ordering, as shown
by the example

B =
(

1 1
0 0

)
, A =

(
0 1
0 0

)
with B � A, but B† −A† = 1

2

(
1 0

−1 0

)
.

In fact, the Moore–Penrose inverse may reverse the Löwner-ordering even for PSD
matrices. A precise statement is:
Let A,B ∈ PSDn with B � A. Then:

(a) A† � B† ⇐⇒ R(A) ⊂ R(B).
(b) B† � A† ⇐⇒ A2 = AB.

8. Efficient Characterization of Classes of Generalized Inverses

In the preceding sections, characterizations of certain classes of generalized
inverses of a given matrix have been given. Most of these characterizations
involve one or more matrices with arbitrary elements. In general, the num-
ber of such arbitrary elements far exceeds the actual number of degrees of
freedom available.

For example, in Section 1 we obtained the characterization

A{1} = {A(1) + Z −A(1)AZAA(1) : Z ∈ Cn×m}. (4)

Now, as Z ranges over the entire class Cn×m, every {1}-inverse of A will
be obtained repeatedly an infinite number of times unless A is a matrix of
zeros. In fact, the expression in RHS(4) is unchanged if Z is replaced by
Z + A(1)AWAA(1), where W is an arbitrary element of Cn×m. We shall
now see how in some cases this redundancy in the number of arbitrary
parameters can be eliminated. The cases of particular interest are A{1}
because of its role in the solution of linear systems, A{1, 2} because of the
symmetry inherent in the relation

X ∈ A{1, 2} ⇐⇒ A ∈ X{1, 2},
and A{1, 3} and A{1, 4} because of their minimization properties, which
will be studied in the next chapter.

As in (4), let A(1) be a fixed, but arbitrary element of A{1}, where
A ∈ Cm×n

r . Also, let F ∈ C
n×(n−r)
n−r , K∗ ∈ C

m×(m−r)
m−r , B ∈ Cn×r

r be
given matrices whose columns are bases for N(A), N(A∗), and R(A(1)A),
respectively. We shall show that the general solution of

AXA = A (1.1)

is

X = A(1) + FY + BZK, (105)

where Y ∈ C(n−r)×m and Z ∈ Cr×(m−r) are arbitrary.
Clearly AF = O and KA = O. Therefore RHS(105) satisfies (1.1).

Since R(In − A(1)A) = N(A) and R((Im −AA(1))∗) = N(A∗) by (28) and
Lemma 1(g), there exist uniquely defined matrices G, H, D such that

FG = In −A(1)A, HK = Im −AA(1), BD = A(1)A. (106)

Since these products are idempotent, we have, by Lemma 2,

GF = DB = In, KH = Im. (107)
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Moreover, it is easily verified that

GB = O, DF = O. (108)

Using (107) and (108), we obtain easily from (105)

Y = G(X −A(1)), Z = D(X −A(1))H. (109)

Now, let X be an arbitrary element of A{1}. Upon substituting in (105)
the expression (109) for Y and Z, it is found that (105) is satisfied. We
have shown, therefore, that (105) does indeed give the general solution of
(1.1).

We recall that A(1), F, G, H, K, B, D are fixed matrices. Therefore, not
only does (105) give X uniquely in terms of Y and Z, but also (109) gives
Y and Z uniquely in terms of X. Therefore, different choices of Y and
Z in (105) must yield different {1}-inverses X. Thus, the characterization
(105) is completely efficient, and contains the smallest possible number of
arbitrary parameters.

It is interesting to compare the number of arbitrary elements in the
characterizations (4) and (105). In (4) this is mn, the number of elements
of Z. In (105) it is mn − r2, the total number of elements in Y and Z.
Clearly, (105) contains fewer arbitrary elements, except in the trivial case
r = 0, as previously noted.

The case of A{1, 3} is easier. If, as before, the columns of F are a basis
for N(A), it is readily seen that (17) can be written in the alternative form

A{1, 3} = {A(1,3) + FY : Y ∈ C(n−r)×m}. (110)

This is easily shown to be an efficient characterization. Here the number of
arbitrary parameters is m(m− r). Evidently, this is less than the number
in the efficient characterization (105) of A{1}, unless r = m, in which case
every {1}-inverse is a {1, 3}-inverse, since AA1 = Im by Lemma 1.2.

Similarly, if the columns of K∗ are a basis for N(A∗),

A{1, 4} = {A(1,4) + Y K : Y ∈ Cn×(m−r)}, (111)

where A(1,4) is a fixed, but arbitrary element of A{1, 4}.
Efficient characterization of A{1, 2} is somewhat more difficult. Let

A(1,2) be a fixed, but arbitrary element of A{1, 2}, and let

A(1,2) = Y0Z0

be a full-rank factorization. As before, let the columns of F and K∗ form
bases for the null spaces of A and A∗, respectively. Then we shall show
that

A{1, 2} = {(Y0 + FU)(Z0 + V K) : U ∈ C(n−r)×r, V ∈ Cr×(m−r)}. (112)

Indeed, it is easily seen that (1.1) and (1.2) are satisfied if X is taken as
the product expression in RHS(112). Moreover, if

FG = In −A(1,2)A, HK = Im −AA(1,2),

it can be shown that

U = GXAY0, V = Z0AXH. (113)
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It is found that the product in RHS(112) reduces to X if the expressions
in (113) are substituted for U and V .

Relation (112) contains r(m + n − 2r) arbitrary parameters. This is
less than the number in the efficient characterization (105) of A{1} by
(m− r)(n− r), which vanishes only if A is of full (row or column) rank, in
which case every {1}-inverse is a {1, 2}-inverse.

Exercises

Ex. 80. In (106) obtain explicit formulas for G, H, and D in terms of A, A(1),
F , K, B, and {1}-inverses of the latter three matrices.

Ex. 81. Consider the problem of obtaining all {1}-inverses of the matrix A
of (0.80). Note that the parametric representation of Ex. 1.6 does not give all
{1}-inverses. (In this connection see Ex. 1.11.) Obtain in two ways parametric
representation that do in fact give all {1}-inverses: first by (4) and then by (105).
Note that a very simple {1}-inverse (in fact, a {1, 2}-inverse) is obtained by taking
all the arbitrary parameters equal to zero in the representation of Ex. 1.6. Verify
that possible choices of F and K are

F =


1 0 0 0
0 1 −1 + 2i 0
0 −2 0 i
0 0 −2 −1− i
0 0 1 0
0 0 0 1

 , K = [3i 1 3].

Compare the number of arbitrary parameters in the two representations.

Ex. 82. Under the hypotheses of Theorem 12, let F and K∗ be matrices whose
columns are bases for N(A) and N(A∗), respectively. Then, (59) can be written
in the alternative form

X = A
(1,2)
T,S + FZK, (114)

where Z is an arbitrary element of C(n−r)×(m−r). Moreover,

rankX = r + rankZ. (115)

Proof. Clearly the right member of (114) satisfies (58). On the other hand,
substituting in (59) the first two equations (106) gives (114) with Z = GYH.

Moreover, (114) and Theorem 12(c) give

XPL,S = A
(1,2)
T,S ,

and, therefore,

X(Im − PL,S) = FZK.

Consequently, R(X) contains the range of each of the two terms of RHS(114). Fur-
thermore, the intersection of the latter two ranges is {0}, since R(F ) = N(A) =
M , which is a subspace complementary to T = R(A(1,2)

T,S ). Therefore, R(X) is the
direct sum of the two ranges mentioned and, by statement (c) of Ex. 0.1, rankX
is the sum of the ranks of the two terms in RHS(114).

Now, the first term is a {1, 2}-inverse of A and its rank is therefore r by
Theorem 1.2, while the rank of the second term is rankZ by Ex. 1.7. This
establishes (115). �
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Ex. 83. Exercise 82 gives

A{1}T,S = {A(1,2)
T,S + FZK : Z ∈ C

(n−r)×(m−r)},
where A{1}T,S is defined in Corollary 9. Show that this characterization is effi-
cient.

Ex. 84. Show that if A ∈ Cm×n, A{1}T,S contains matrices of all ranks from r

to min{m,n}.
Ex. 85. Let A = ST be a full-rank factorization of A ∈ Cm×n

r , let Y0 and Z0 be
particular {1}-inverses of T and S, respectively, and let F and K be defined as
in Ex. 82. Then, show that:

S{1} = {Z0 + V K : V ∈ C
r×(m−r)},

T{1} = {Y0 + FU : U ∈ C
(n−r)×r},

AA{1} = SS{1} = {S(Z0 + V K) : V ∈ C
r×(m−r)},

A{1}A = T{1}T = {(Y0 + FU)T : U ∈ C
(n−r)×r},

A{1} = {Y0Z0 + Y0V K + FUZ0 + FWK :

U ∈ C
(n−r)×r, V ∈ C

r×(m−r),W ∈ C
(n−r)×(m−r)},

= A{1, 2}+ {FXK : X ∈ C
(n−r)×(m−r)}.

Show that all the preceding characterizations are efficient.

Ex. 86. For the matrix A of (0.80), obtain all the characterizations of Ex. 85.
Hint : Use the full-rank factorization of A given in (0.85), and take

Z0 =
[− 1

2 i 0 0
0 − 1

3 0

]
.

9. Restricted Generalized Inverses

In a linear equation

Ax = b,

with given A ∈ Cm×n and b ∈ Cm, the points x are sometimes constrained
to lie in a given subspace S of Cn, resulting in a “constrained” linear equa-
tion

Ax = b and x ∈ S. (116)

In principle, this situation presents no difficulty since (116) is equivalent to
the following, “unconstrained” but larger, linear system[

A
PS⊥

]
x =

[
b
0

]
, where PS⊥ = I − PS .

Another approach to the solution of (116) that does not increase the size
of the problem is to interpret A as representing an element of L(S, Cm),
the space of linear transformations from S to Cm, instead of an element of
L(Cn, Cm), see, e.g., Sections 4 and 6.1. This interpretation calls for the
following definitions.
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Let A ∈ L(Cn, Cm) and let S be a subspace of Cn. The restriction of
A to S, denoted by A[S], is a linear transformation from S to Cm defined
by

A[S]x = Ax, x ∈ S. (117)

Conversely, let B ∈ L(S, Cm). The extension of B to Cn, denoted by extB,
is the linear transformation from Cn to Cm defined by

(ext B)x =

{
Bx, if x ∈ S,

0, if x ∈ S⊥.
(118)

Restricting an A ∈ L(Cn, Cm) to S and then extending to Cn results in
ext(A[S]) ∈ L(Cn, Cm) given by

ext(A[S])x =

{
Ax, if x ∈ S,

0, if x ∈ S⊥.
(119)

From (119) it should be clear that if A ∈ L(Cn, Cm) is represented by the
matrix A ∈ Cm×n, then ext(A[S]) is represented by APS . The following
lemma is then obvious:

Lemma 4. Let A ∈ Cm×n, b ∈ Cm, and let S be a subspace of Cn. The
system

Ax = b, x ∈ S, (116)

is consistent if and only if the system

APSz = b (120)

is consistent, in which case x is a solution of (116) if and only if

x = PSz,

where z is a solution of (120). �
From Lemma 4 and Corollary 2 it follows that the general solution of

(116) is

x = PS(APS)(1)b + PS(I − (APS)(1)APS)y, (121)

for arbitrary (APS)(1) ∈ (APS){1} and y ∈ Cn.

We are thus led to study generalized inverses of ext(A[S]) = APS , and from
(121) it appears that PS(APS)(1), rather than A(1), plays the role of a {1}-
inverse in solving the linear system (116); hence the following definition:

Definition 2. Let A ∈ Cm×n and let S be a subspace of Cn. A matrix
X ∈ Cn×m is an S-restricted {i, j, . . . , k}-inverse of A if

X = PS(APS)(i,j,... ,k) (122)

for any (APS)(i,j,... ,k) ∈ (APS){i, j, . . . , k}.
The role that S-restricted generalized inverses play in constrained prob-

lems is completely analogous to the role played by the corresponding gen-
eralized inverse in the unconstrained situation. Thus, for example, the
following result is the constrained analog of Corollary 2.
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Corollary 11. Let A ∈ Cm×n and let S be a subspace of Cn. Then
the equation

Ax = b, x ∈ S, (116)

is consistent if and only if

AXb = b,

where X is any S-restricted {1}-inverse of A. If consistent, the general
solution of (116) is

x = Xb + (I −XA)y

with X as above, and arbitrary y ∈ S. �
Exercises
Ex. 87. Let I be the identity transformation in L(Cn,Cn) and let S be a
subspace of Cn. Show that

ext(I[S]) = PS .

Ex. 88. Let A ∈ L(Cn,Cm). Show that A[R(A∗)], the restriction of A to R(A∗),
is a one-to-one mapping of R(A∗) onto R(A).
Solution. We show first that A[R(A∗)] is one-to-one on R(A∗). Clearly it suffices
to show that A is one-to-one on R(A∗). Let u,v ∈ R(A∗) and suppose that
Au = Av, i.e., u and v are mapped to the same point. Then A(u− v) = 0, i.e.,

u− v ∈ N(A).

But we also have

u− v ∈ R(A∗),

since u and v are in R(A∗). Therefore,

u− v ∈ N(A) ∩R(A∗)

and by (0.26), u = v, proving the A is one-to-one on R(A∗).
We show next that A[R(A∗)] is a mapping onto R(A), i.e., that

R(A[R(A∗)]) = R(A).

This follows since, for any x ∈ Cn,

Ax = AA†Ax = APR(A∗)x = A[R(A∗)]x.

Ex. 89. Let A ∈ Cm×n. Show that

ext(A[R(A∗)]) = A. (123)

Ex. 90. From Ex. 88 it follows that the linear transformation

A[R(A∗)] ∈ L(R(A∗), R(A))

has an inverse

(A[R(A∗)])
−1 ∈ L(R(A), R(A∗)).

Show that this inverse is the restriction of A† to R(A), namely

(A†)[R(A)] = (A[R(A∗)])
−1. (124)

Solution. From Exs. 88, 38, and 58 it follows that, for any y ∈ R(A), A†y is
the unique element of R(A∗) satisfying

Ax = y.
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Therefore

A†y = (A[R(A∗)])
−1y, for all y ∈ R(A).

Ex. 91. Show that the extension of (A[R(A∗)])−1 to Cm is the Moore–Penrose
inverse of A,

ext((A[R(A∗)])
−1) = A†. (125)

Compare with (123).

Ex. 92. Let each of the following two linear equations be consistent

A1x = b1, (126a)

A2x = b2. (126b)

Show that (126a) and (126b) have a common solution if and only if the linear
equation

A2PN(A1)y = b2 −A2A
(1)
1 b1

is consistent, in which case the general common solution of (126a) and (126b) is

x = A
(1)
1 b1 + PN(A1)(A2PN(A1))

(1)(b2 −A2A
(1)
1 b1) +N(A1) ∩N(A2)

or, equivalently,

x = A
(1)
2 b2 + PN(A2)(A1PN(A2))

(1)(b1 −A1A
(1)
2 b2) +N(A1) ∩N(A2).

Hint. Substitute the general solution of (126a),

x = A
(1)
1 b1 + PN(A1)y, y arbitrary,

in (126b).

Ex. 93. Exercise 92 illustrates the need for PN(A1)(A2PN(A1))(1), an N(A1)-
restricted {1}-inverse of A2. Other applications call for other, similarly restricted,
generalized inverses. The N(A1)-restricted {1, 2, 3, 4}-inverse of A2 was studied
for certain Hilbert space operators by Minamide and Nakamura [556] and [557],
who characterized it as the unique solution X of the five equations

A1X = O,

A2XA2 = A2 on N(A1),

XA2X = X,

(A2X)∗ = A2X,

and

PN(A1)(XA2)∗ = XA2 on N(A1).

Show that PN(A1)(A2PN(A1))† is the unique solution of these five equations.

10. The Bott–Duffin Inverse

Consider the constrained system

Ax + y = b, x ∈ L, y ∈ L⊥, (127)

with given A ∈ Cn×n, b ∈ Cn, and a subspace L of Cn. Such systems
arise in electrical network theory; see, e.g., Bott and Duffin [120] and Sec-
tion 13 below. As in Section 9 we conclude that the consistency of (127) is
equivalent to the consistency of the following system:

(APL + PL⊥)z = b (128)
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and that
[
x
y

]
is a solution of (127) if and only if

x = PLz, y = PL⊥z = b−APLz, (129)

where z is a solution of (128).
If the matrix (APL + PL⊥) is nonsingular, then (127) is consistent for

all b ∈ Cm and the solution

x = PL(APL + PL⊥)−1b, y = b−Ax,

is unique. The transformation

PL(APL + PL⊥)−1

was introduced and studied by Bott and Duffin [120], who called it the
constrained inverse of A. Since it exists only when (APL + PL⊥) is nonsin-
gular, one may be tempted to introduce generalized inverses of this form,
namely

PL(APL + PL⊥)(i,j,... ,k) (1 ≤ i, j, . . . , k ≤ 4),

which do exist for all A and L. This section, however, is restricted to the
Bott–Duffin inverse.

Definition 3. Let A ∈ Cn×n and let L be a subspace of Cn. If
(APL + PL⊥) is nonsingular, the Bott–Duffin inverse of A with respect to
L, denoted by A

(−1)
(L) , is defined by

A
(−1)
(L) = PL(APL + PL⊥)−1. (130)

Some properties of A
(−1)
(L) are collected in

Theorem 16 (Bott and Duffin [120]). Let (APL+PL⊥) be nonsingular.
Then:

(a) The equation

Ax + y = b, x ∈ L, y ∈ L⊥, (127)

has for every b, the unique solution

x = A
(−1)
(L) b, (131a)

y = (I −AA
(−1)
(L) )b. (131b)

(b) A, PL, and A
(−1)
(L) satisfy

PL = A
(−1)
(L) APL = PLAA

(−1)
(L) , (132a)

A
(−1)
(L) = PLA

(−1)
(L) = A

(−1)
(L) PL. (132b)

Proof. (a) This follows from the equivalence of (127) and (128)–(129).
(b) From (130), PLA

(−1)
(L) = A

(−1)
(L) . Postmultiplying A(−1)

(L) (APL +PL⊥) = PL

by PL gives A(−1)
(L) APL = PL. Therefore A(−1)

(L) PL⊥ = O and A
(−1)
(L) PL = A

(−1)
(L) .

Multiplying (131b) by PL gives (PL − PLAA
(−1)
(L) )b = 0 for all b, thus PL =

PLAA
(−1)
(L) ). �
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From these results it follows that the Bott–Duffin inverse A
(−1)
(L) , when-

ever it exists, is the {1, 2}-inverse of (PLAPL) having range L and null
space L⊥.

Corollary 12. If APL + PL⊥ is nonsingular, then:

(a) A
(−1)
(L) = (APL)(1,2)

L,L⊥ = (PLA)(1,2)
L,L⊥ = (PLAPL)(1,2)

L,L⊥ ; and

(b) (A(−1)
(L) )(−1)

(L) = PLAPL.

Proof. (a) From (132a), dimL = rankPL ≤ rankA(−1)
(L) . Similarly, from (132b),

rankA(−1)
(L) ≤ dimL, R(A(−1)

(L) ) ⊂ R(PL) = L, and N(A(−1)
(L) ) ⊃ N(PL) = L⊥.

Therefore,

rankA(−1)
(L) = dimL (133)

and

R(A(−1)
(L) ) = L, N(A(−1)

(L) ) = L⊥. (134)

Now A
(−1)
(L) is a {1, 2}-inverse of APL:

APLA
(−1)
(L) APL = APL, by (132a),

and

A
(−1)
(L) APLA

(−1)
(L) = A

(−1)
(L) , by (132a) and (132b).

That A(−1)
(L) is a {1, 2}-inverse of PLA and of PLAPL is similarly proved.

(b) We show first that (A(−1)
(L) )(−1)

(L) is defined, i.e., that (A(−1)
(L) PL + PL⊥) is

nonsingular. From (132b), A(−1)
(L) PL +PL⊥ = A

(−1)
(L) +PL⊥ , which is a nonsingular

matrix since its columns span L + L⊥ = Cn, by (134). Now PLAPL is a {1, 2}-
inverse of A(−1)

(L) , by (a), and therefore by Theorem 1.2 and (133),

rankPLAPL = rankA(−1)
(L) = dimL.

This result, together with

R(PLAPL) ⊂ R(PL) = L, N(PLAPL) ⊃ N(PL) = L⊥,

shows that

R(PLAPL) = L, N(PLAPL) = L⊥,

proving that

PLAPL = (A(−1)
(L) )(1,2)

L,L⊥

= (A(−1)
(L) )(−1)

(L) . �
Exercises

Ex. 94. Show that the following statements are equivalent, for any A ∈ Cn×n

and a subspace L ⊂ Cn:

(a) APL + PL⊥ is nonsingular.
(b) Cn = AL ⊕ L⊥, i.e., AL = {Ax : x ∈ L} and L⊥ are complementary

subspaces of Cn.
(c) Cn = PLR(A)⊕ L⊥.
(d) Cn = PLAL⊕ L⊥.
(e) rankPLAPL = dimL.
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Thus, each of the above conditions is necessary and sufficient for the existence of
A

(−1)
(L) , the Bott–Duffin inverse of A with respect to L.

Ex. 95. A converse to Corollary 12. If any one of the following three {1, 2}-
inverses exist

(APL)(1,2)
L,L⊥ , (PLA)(1,2)

L,L⊥ , (PLAPL)(1,2)
L,L⊥ ,

then all three exist, APL + PL⊥ is nonsingular, and

(APL)(1,2)
L,L⊥ = (PLA)(1,2)

L,L⊥ = (PLAPL)(1,2)
L,L⊥ = A

(−1)
(L) .

Hint. Condition (b) in Ex. 94 is equivalent to the existence of (APL)(1,2)
L,L⊥ .

Ex. 96. Let K be a matrix whose columns form a basis for L. Then A(−1)
(L) exists

if and only if K∗AK is nonsingular, in which case

A
(−1)
(L) = K(K∗AK)−1K∗ (Bott and Duffin [120]).

Proof. Follows from Corollary 12 and Theorem 13(d). �
Ex. 97. If A is Hermitian and A(−1)

(L) exists, then A(−1)
(L) is Hermitian.

Ex. 98. Using the notation

A = [aij ] (i, j ∈ 1, n)

A
(−1)
(L) = [tij ] (i, j ∈ 1, n)

dA,L = det(APL + L⊥), (135)

ψA,L = log dA,L (136)

show that:

(a)
∂ψA,L

∂aij
= tji (i, j ∈ 1, n).

(b)
∂tkl

∂aij
= tkitjl (i, j, k, l ∈ 1, n). (Bott and Duffin [120, Theorem 3]).

Bott and Duffin called dA,L the discriminant of A and ψA,L the potential of A(−1)
(L) .

Ex. 99. Let A ∈ Cn×n be nonsingular and let L be a subspace of Cn. Then
A

(−1)
(L) exists if and only if A(−1)

(L⊥) exists.

Hint. Use A−1PL⊥ + PL = A−1(APL + PL⊥) to show that (A−1PL⊥ + PL)−1 =
(APL + PL⊥)−1A.

Ex. 100. Let A ∈ Cn×n be nonsingular, let L be a subspace of Cn, let dA,L and
ψA,L be given by (128) and (136), respectively, and similarly define

dA−1,L⊥ = det(A−1PL⊥ + PL),

ψA−1,L⊥ = log dA−1,L⊥ .

Then:

(a) dA−1,L⊥ =
dA,L

detA
.

(b) (A−1)(−1)
(L⊥) = A−AA(−1)

(L) A. (Bott and Duffin [120, Theorem 4]).

Ex. 101. If �〈Au,u〉 > 0 for every nonzero vector u, then

dA,L �= 0, �〈A(−1)
(L) u,u〉 ≥ 0

for every vector u and �(tii) ≥ 0, where A(−1)
(L) = [tij ] (Bott and Duffin, [120,

Theorem 6]).
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Ex. 102. Let A,B ∈ Cn×n and let L be a subspace of Cn such that both A(−1)
(L)

and B(−1)
(L) exist. Then

B
(−1)
(L) A

(−1)
(L) = (APLB)−1

(L).

11. An Application of {1}-Inverses in Interval Linear
Programming

For two vectors u = (ui),v = (vi) ∈ Rm, let

u ≤ v

denote the fact that ui ≤ vi for i = 1, . . . , m. A linear programming
problem of the form

maximize{cT x : a ≤ Ax ≤ b}, (137)

with given a,b ∈ Rm, c ∈ Rn, A ∈ Rm×n, is called an interval linear
program (also a linear program with two-sided constraints) and denoted
by IP(a,b, c, A) or simply by IP. Any linear programming problem with
bounded constraint set can be written as an IP, see, e.g., Robers and Ben-
Israel [694].

In this section, which is based on the work of Ben-Israel and Charnes
[79], the optimal solutions of (137) are obtained by using {1}-inverses of A,
in the special case where A is of full row rank. More general cases were stud-
ied by Zlobec and Ben-Israel [893], [894] (see also Exs. 103 and 104), and
an iterative method for solving the general IP appears in Robers and Ben-
Israel [694]. Applications of interval programming are given in Ben-Israel,
Charnes, and Robers [80], and Robers and Ben-Israel [693]. References for
other applications of generalized inverses in linear programming are Pyle
[661] and Cline and Pyle [203].

The IP (137) is called consistent (also feasible) if the set

F = {x ∈ Rn : a ≤ Ax ≤ b} (138)

is nonempty, in which case the elements of F are called the feasible solutions
of IP(a,b, c, A). A consistent IP(a,b, c, A) is called bounded if

max{cT x : x ∈ F}
is finite, in which case the optimal solutions of IP(a,b, c, A) are its feasible
solutions x0 which satisfy

cT x0 = max{cT x : x ∈ F}.
Boundedness is equivalent to c ∈ R(AT ) as the following lemma shows:

Lemma 5. Let a,b ∈ Rm, c ∈ Rn, A ∈ Rm×n be such that IP(a,b, c, A)
is consistent. Then IP(a,b, c, A) is bounded if and only if

c ∈ N(A)⊥. (139)

Proof. From (138), F = F +N(A). Therefore,

max{cT x : x ∈ F} = max{cT x : x ∈ F +N(A)}
= max{(PR(AT )c + PN(A)c)T x : x ∈ F +N(A)}, by (0.26),

= max{cTPR(AT )x : x ∈ F}+ max{cT x : x ∈ N(A)},
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where the first term

max{cTPR(AT )x : x ∈ F} = max{cTA†Ax : a ≤ Ax ≤ b}

is finite and the second term

max{cT x :x ∈ N(A)}

is finite if and only if c ∈ N(A)⊥. �
We introduce now a function η: Rm × Rm × Rm → Rm, defined for

u,v,w ∈ Rm by

η(u,v,w) = [ηi] (i ∈ 1, m),

where

ηi =


ui, if wi < 0,

vi, if wi > 0,

λiui + (1− λi)vi, where 0 ≤ λi ≤ 1, if wi = 0.

(140)

A component of η(u,v,w) is equal to the corresponding component of u or
v, if the corresponding component of w is negative or positive, respectively.
If a component of w is zero, then the corresponding component of η(u,v,w)
is the closed interval with the corresponding components of u and v as
endpoints. Thus η maps points in Rm × Rm × Rm into sets in Rm, and
any statement below about η(u,v,w) is meant for all values of η(u,v,w),
unless otherwise specified.

The next result gives all the optimal solutions of IP(a,b, c, A) with A
of full row rank.

Theorem 17 (Ben-Israel and Charnes [79]). Let a,b ∈ Rm, c ∈
Rn, A ∈ Rm×n be such that IP(a,b, c, A) is consistent and bounded and
let A(1) be any {1}-inverse of A. Then the general optimal solution of
IP(a,b, c, A) is

x = A(1)η(a,b, A(1)T c) + y, y ∈ N(A). (141)

Proof. From A ∈ Rm×n
m it follows that R(A) = Rm, so that any u ∈ Rm can

be written as

u = Ax (142)

where

x = A(1)u + y, y ∈ N(A), by Corollary 2. (143)

Substituting (142) and (143) in (137) we get, by using (139), the equivalent IP

max{cTA(1)u : a ≤ x ≤ b}
whose general optimal solution is, by the definition (140) of η,

u = η(a,b, A(1)T c)

which gives (141) by using (143). �
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Exercises

Ex. 103. Let a,b ∈ Rm, c ∈ Rn, A ∈ Rm×n be such that IP(a,b, c, A) is
consistent and bounded. Let A(1) ∈ A{1} and let z0 ∈ N(AT ) satisfy

zT η0 ≤ 0

for some η0 ∈ η(a,b, (A(1)PR(A))T c + z0). Then

x0 = A(1)PR(A)η0 + y, y ∈ N(A)

is an optimal solution of IP(a,b, c, A) if and only if it is a feasible solution (Zlobec
and Ben-Israel [894]).

Ex. 104. Let b ∈ Rm, c ∈ Rn, A ∈ Rm×n and let u ∈ Rn be a positive vector
such that the problem

min{cT x : Ax = b,0 ≤ x ≤ u} (144)

is consistent. Let z0 ∈ R(AT ) satisfy

zT η0 ≤ zTA†b

for some η0 ∈ η(0,u, PN(A)c + z0). Then

x0 = A†b + PN(A)η0

is an optimal solution of (144) if and only if it is a feasible solution (Zlobec and
Ben-Israel [894]).

12. A {1, 2}-Inverse for the Integral Solution of Linear Equations

We use the notation Z, Zm, Zm×n, Zm×n
r of Section 0.8.

Any vector in Zm will be called an integral vector. Similarly, any ele-
ment of Zm×n will be called an integral matrix.

Let A ∈ Zm×n,b ∈ Zm and let the linear equation

Ax = b (5)

be consistent. In many applications one has to determine if (5) has integral
solutions, in which case one has to find some or all of them. If A is a unit
matrix (i.e., A is nonsingular and its inverse is also integral) then (5) has
the unique integral solution x = A−1b for any integral b.

In this section, which is based on the work of Hurt and Waid [434],
we study the integral solution of (5) for any A ∈ Zm×n and b ∈ Zm.
Using the Smith normal form of A (Theorem 0.4), a {1, 2}-inverse is found
(Corollary 13) which can be used to determine the existence of integral
solutions, and to list all of them if they exist (Corollaries 14 and 15).

Corollary 13 (Hurt and Waid [434]). Let A ∈ Zm×n. Then there is
an n×m matrix X satisfying

AXA = A, (1.1)

XAX = X, (1.2)

AX ∈ Zm×m, XA ∈ Zn×n. (145)
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Proof. Let

PAQ = S (0.132)

be the Smith normal form of A and let

Â = QS†P. (146)

Then

PAQ = S = SS†S = PAQS†PAQ = PAÂAQ,

proving A = AÂA. ÂAÂ = Â is similarly proved. The integrality of AÂ and ÂA
follows from that of PAÂ = SS†P and ÂAQ = QS†S, respectively. �

In the rest of this section we denote by Â, B̂ the {1, 2}-inverses of A, B
as given in Corollary 13.

Corollary 14 (Hurt and Waid [434]). Let A, B, D be integral matri-
ces and let the matrix equation

AXB = D (1)

be consistent. Then (1) has an integral solution if and only if the matrix

ÂDB̂

is integral, in which case the general integral solution of (1) is

X = ÂDB̂ + Y − ÂAY BB̂B̂, Y ∈ Zn×m.

Proof. Follows from Corollary 13 and Theorem 1. �
Corollary 15 (Hurt and Waid [434]). Let A and b be integral, and

let the vector equation

Ax = b (5)

be consistent. Then (5) has an integral solution if and only if the vector

Âb

is integral, in which case the general integral solution of (5) is

x = Âb + (I − ÂA)y, y ∈ Zn.

Exercises

Ex. 105. Use the results of Sections 11 and 12 to find the integral optimal
solutions of the interval program

max{cT x : a ≤ x ≤ b}

where a,b, c, and A are integral.

Ex. 106. If Z is the ring of polynomials with real coefficients, or the ring of
polynomials with complex coefficients, the results of this section hold; see, e.g.,
Marcus and Minc [534, p. 40]. Interpret Corollaries 13 and 15 in these two cases.
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Figure 1. An example of a network.

13. An Application of the Bott–Duffin Inverse to Electrical
Networks

In this section which is based on Bott and Duffin [120], we keep the dis-
cussion of electrical networks at the minimum sufficient to illustrate the
application of the Bott–Duffin inverse studied in Section 10. The reader is
referred to the original work of Bott and Duffin for further information.

An electrical network is described topologically in terms of its graph
consisting of nodes (also vertices, junctions, etc.) and branches (also edges),
and electrically in terms of its (branch) currents and voltages.

Let the graph consist of m elements called nodes denoted by ni, i ∈
1, m (which, in the present limited discussion, can be represented by m
points in the plane), and n ordered pairs of nodes called branches denoted
by bj , j ∈ 1, n (represented here by directed segments joining the paired
nodes).

For example, the network represented by Figure 1 has four nodes n1, n2, n3,
and n4, and six branches b1 = {n1, n2}, b2 = {n2, n3}, b3 = {n2, n4}, b4 =
{n3, n1}, b5 = {n3, n4}, and b6 = {n4, n1}.

A graph with m nodes and n branches can be represented by an m×n
matrix called the (node–branch) incidence matrix, denoted by M = [mij ]
and defined as follows:

(i) The i th row of M corresponds to the node ni, i ∈ 1, m.
(ii) The j th column of M corresponds to the branch bj , j ∈ 1, n.
(iii) If bj = {nk, nl}, then

mij =


1, i = k,

−1, i = l,

0, i �= k, l.

For example, the incidence matrix of the graph of Fig 1 is

M =


1 0 0 −1 0 −1
−1 1 1 0 0 0
0 −1 0 1 1 0
0 0 −1 0 −1 1

 .
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Two nodes nk and nl (or the corresponding rows of M) are called directly
connected if either {nk, nl} or {nl, nk} is a branch, i.e., if there is a column
in M having its nonzero entries in rows k and l. Two nodes nk and nl (or
the corresponding rows of M) are called connected if there is a sequence of
nodes

{nk, np, . . . , nq, nl}
in which every two adjacent nodes are directly connected. Finally, a graph
(or its incidence matrix) is called connected if every two nodes are con-
nected.

In this section we consider only direct current (DC) networks, referring
the reader to Bott and Duffin [120] and to Ex. 108 below, for alternating
current (AC) networks. A DC network is described electrically in terms of
two real valued functions, the current and the potential, defined on the sets
of branches and nodes respectively.

For j = 1, . . . , m, the current in branch bj , denoted by yj , is the current
(measured in amperes) flowing in bj . The sign of yj is positive if it flows in
the direction of bj and is negative if it flows in the opposite direction.

For i = 1, . . . , m, the potential at node ni, denoted by pi, is the voltage
difference (measured in volts) between ni and some reference point, which
can be taken as one of the nodes. A related function which is more often
used, is the voltage, defined on the set of branches. For j = 1, . . . , n,
the voltage across branch bj = {nk, nl}, denoted by xj , is defined as the
potential difference

xk = pk = pl.

From the definition of the incidence matrix M it is clear that the vector
of branch voltages x = [xj ] and the vector of node potentials p = [pi] are
related by

x = MT p. (147)

The currents and voltages are assumed to satisfy Kirchhoff laws. The
Kirchhoff current law is a conservation theorem for the currents (or electri-
cal charges), stating that for each node, the net current entering the node is
zero, i.e., the sum of incoming currents equals the sum of outgoing currents.
From the definition of the incidence matrix M it follows that the Kirchhoff
current law can be written as

My = 0. (148)

The Kirchhoff voltage law states that the potential function is single valued.
This statement usually assumes the equivalent form that the sum of the
branch voltages directed around any closed circuit is zero.

From (147), (148), and (0.26), it follows that the Kirchhoff current and
voltage laws define two complementary orthogonal subspaces:

N(M), the currents satisfying Kirchhoff current law; and
R(MT ), the voltages satisfying Kirchhoff voltage law.

Each branch bj , j ∈ 1, n, of the network will be regarded as having a series
voltage generator of vj volts and a parallel current generator of wj amperes.
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These are related to the branch currents and voltages by Ohm’s law

aj(xj − vj) + (yj − wj) = 0, j ∈ 1, n, (149)

where aj > 0 is the conductivity of the branch bj , measured in mhos.3

Thus the branch currents y and voltages x are found by solving the
following constrained system:

Ax + y = Av + w, x ∈ R(MT ), y ∈ N(M), (150)

where A = diag (aj) is the diagonal matrix of branch conductivities, v and
w are the given vectors of generated voltages and currents, respectively, and
M is the incidence matrix. It can be shown that the Bott–Duffin inverse
of A with respect to R(MT ), A

(−1)
(R(MT )), exists; see, e.g., Ex. 107 below.

Therefore, by Theorem 16, the unique solution of (150) is

x = A
(−1)
(R(MT ))(Av + w), (151a)

y = (I −AA
(−1)
(R(MT )))(Av + w). (151b)

The physical significance of the matrix A
(−1)
(R(MT )) should be clear from

(151a). The (i, j) th entry of A
(−1)
(R(MT )) is the voltage across branch bi as

a result of inserting a current source of 1 ampere in branch bj ; i, j ∈ 1, n.
Because of this property, A

(−1)
(R(MT )) is called the transfer matrix of the

network.
Since the conductivity matrix A is nonsingular, the network equations

(150) can be rewritten as

A−1y + x = A−1w + v, y ∈ N(M), x ∈ R(MT ). (152)

By Exs. 107 and 99, the unique solution of (152) is

y = (A−1)(−1)
(N(M))(A

−1w + v), (153a)

x = (I −A−1(A−1)(−1)
(N(M)))(A

−1w + vA−1w + v). (153b)

The matrix (A−1)(−1)
(N(M)) is called the dual transfer matrix, its (i, j) th entry

being the current in branch bi as a result of inserting a 1 volt generator
parallel to branch bj . Comparing the corresponding equations in (151) and
in (153), we prove that the transfer matrices A

(−1)
(R(MT )) and (A−1)(−1)

(N(M))
satisfy

A−1(A−1)(−1)
(N(M)) + A

(−1)
(R(MT ))A = I, (154)

which can also be proved directly from Ex. 100(b).
The correspondence between results like (151) and (153) is called elec-

trical duality ; see, e.g., the discussion in Bott and Duffin [120], Duffin [241],
and Sharpe and Styan [745], [746], [747], for further results on duality and
on applications of generalized inverses in electrical networks.

3mho, the unit of conductance, is the reciprocal of ohm, the unit of resistance.
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Exercises

Ex. 107. Let A ∈ Cn×n be such that 〈Ax,x〉 �= 0 for every nonzero vector x in
L, a subspace of Cn. Then A(−1)

(L) exists, i.e., (APL + PL⊥) is nonsingular.
Proof. If Ax + y = 0 for some x ∈ L and y ∈ L⊥, then Ax ∈ L⊥ and therefore
〈Ax,x〉 = 0. �
See also Exs. 101 and 94(b) above.

Ex. 108. In AC networks without mutual coupling, equations (149) still hold
for the branches, by using complex, instead of real, constants and variables. The
complex aj is then the admittance of branch bj . AC networks with mutual cou-
pling due to transformers, are still represented by (150), where the admittance
matrix A is symmetric, its off-diagonal elements giving the mutual couplings; see,
e.g., Bott and Duffin [120].

Ex. 109. Incidence matrix. Let M be a connected m × n incidence matrix.
Then, for any M (1,3) ∈M{1, 3},

I −MM (1,3) =
1
m

eeT ,

where eeT is the m×m matrix whose elements are all 1. See also Ijiri [436].
Proof. From (I −MM (1,3))M = O it follows for any two directly connected
nodes ni and nj (i.e., for any column of M having its +1 and −1 in rows i and j),
that the ith and jth columns of I−MM (1,3) are identical. Since M is connected,
all columns of I −MM (1,3) are identical. Since I −MM (1,3) is symmetric, all its
rows are also identical. Therefore, all elements of I −MM (1,3) are equal, say

I −MM (1,3) = αeeT ,

for some real α. Now I −MM (1,3) is idempotent, proving that α = 1/m. �
Ex. 110. Let M be a connected m× n incidence matrix. Then rankM = m− 1.
Proof.

PN(MT ) = I − PR(M), by (0.27),

= I −MM (1,3), by Ex. 1.9 and Lemma 3,

=
1
m

eeT , by Ex. 109,

proving that dim N(MT ) = rankPN(MT ) = 1 and, therefore,

rankM = dim R(M) = m− dim N(MT ) = m− 1. �
Ex. 111. Set inclusion matrices, Bapat [45]. Let 0 ≤ r ≤ c ≤ n be integers.
The set inclusion matrix Wrc and the set intersection matrix W rc are

(
n
r

)× (n
c

)
matrices, with rows indexed by r–element sets, and columns indexed by c–element
sets, and the (R,C) th element

Wrc[R,C] =
{

1, if R ⊂ C,
0, otherwise,

W rc[R,C] =
{

1, if R ∩ C = ∅,
0, otherwise.

When r = 0, both W0c and W 0c are the 1× (n
c

)
vector of all ones.

Let 0 ≤ r ≤ c ≤ n− r. Then

W †
rc =

r∑
i=0

(−1)i(
n−i−r

c−r

)WT
icWir.
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Ex. 112. Trees. Let a connected network consist of m nodes and n branches,
and let M be its incidence matrix. A tree is defined as consisting of the m nodes,
and any m−1 branches which correspond to linearly independent columns of M .
Show that:

(a) A tree is a connected network which contains no closed circuit.
(b) Any column of M not among the m−1 columns corresponding to a given

tree, can be expressed uniquely as a linear combination of those m− 1
columns, using only the coefficients 0,+1, and −1.

(c) Any branch not in a given tree, lies in a unique closed circuit whose
other branches, or the branches obtained from them by reversing their
directions, belong to the tree.

Ex. 113. Let A = diag (aj), aj �= 0, j ∈ 1, n, and let M be a connected m × n
incidence matrix. Show that the discriminant (see Ex. 98)

dA,R(MT ) = det(APR(MT ) + PN(M))

is the sum, over all trees {bj1 , bj2 , . . . , bjm−1} in the network, of the products

aj1aj2 · · · ajm−1 (Bott and Duffin [120]).
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CHAPTER 3

Minimal Properties of Generalized Inverses

1. Least-Squares Solutions of Inconsistent Linear Systems

For given A ∈ Cm×n and b ∈ Cm, the linear system

Ax = b (1)

is consistent, i.e., has a solution for x, if and only if b ∈ R(A). Otherwise,
the residual vector

r = b−Ax (2)

is nonzero for all x ∈ Cn, and it may be desired to find an approximate
solution of (1), by which is meant a vector x making the residual vector (2)
“closest” to zero in some sense, i.e., minimizing some norm of (2). An ap-
proximate solution that is often used, especially in statistical applications,
is the least-squares solution of (1), defined as a vector x minimizing the
Euclidean norm of the residual vector, i.e., minimizing the sum of squares
of moduli of the residuals

m∑
i=1

|ri|2 =
m∑

i=1

|bi −
n∑

j=1

aijxj |2= ‖b−Ax‖2. (3)

In this section the Euclidean vector norm – see, e.g., Ex. 0.10 – is denoted
simply by ‖ ‖.

The following theorem shows that ‖Ax− b‖ is minimized by choosing
x = Xb, where X ∈ A{1, 3}, thus establishing a relation between the
{1, 3}-inverses and the least-squares solutions of Ax = b, characterizing
each of these two concepts in terms of the other.

Theorem 1. Let A ∈ Cm×n, b ∈ Cm. Then ‖Ax − b‖ is smallest
when x = A(1,3)b, where A(1,3) ∈ A{1, 3}. Conversely, if X ∈ Cn×m has
the property that, for all b, ‖Ax − b‖ is smallest when x = Xb, then
X ∈ A{1, 3}.
Proof. From (0.26)

b = (PR(A) + PR(A)⊥)b. (4)

∴ b−Ax = (PR(A)b−Ax) + PN(A∗)b.

∴ ‖Ax− b‖2 = ‖Ax− PR(A)b‖2 + ‖PN(A∗)b‖2, by Ex. 0.46. (5)

Evidently, (5) assumes its minimum value if and only if

Ax = PR(A)b, (6)

104
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which holds if x = A(1,3)b for any A(1,3) ∈ A{1, 3}, since, by Theorem 2.8, (2.28),
and Lemma 2.3,

AA(1,3) = PR(A). (7)

Conversely, if X is such that for all b, ‖Ax − b‖ is smallest when x = Xb, (6)
gives AXb = PR(A)b for all b, and therefore

AX = PR(A).

Thus, by Theorem 2.3, X ∈ A{1, 3}. �
Corollary 1. A vector x is a least-squares solution of Ax = b if and

only if

Ax = PR(A)b = AA(1,3)b.

Thus, the general least-squares solution is

x = A(1,3)b + (In −A(1,3)A)y, (8)

with A(1,3) ∈ A{1, 3} and arbitrary y ∈ Cn.
It will be noted that the least-squares solution is unique only when A

is of full column rank (the most frequent case in statistical applications).
Otherwise, (8) is an infinite set of such solutions.
Exercises and Supplementary Notes

Ex. 1. Normal equation. Show that a vector x is a least-squares solution of
Ax = b if and only if x is a solution of

A∗Ax = A∗b, (9)

often called the normal equation of Ax = b.
Solution. It follows from (4) and (6) that x is a least-squares solution if and
only if

Ax− b ∈ N(A∗),

which is (9). �
Alternative solution. A necessary condition for the vector x0 to be a least-
squares solution of Ax = b is that the partial derivatives ∂f/∂xj of the function

f(x) = ‖Ax− b‖2 =
m∑

i=1

(
n∑

j=1

aijxj − bi)∗(
n∑

j=1

aijxj − bi) (10)

vanish at x0, i.e., that ∇f(x0) = 0, where

∇f(x0) =
(
∂f

∂xj
(x0)

)
,

is the gradient of f at x0. Now it can be shown that the gradient of (8) at x0 is

∇f(x0) = 2A∗(Ax− b),

proving the necessity of (9). The sufficiency follows from the identity

(Ax− b)∗(Ax− b)− (Ax0 − b)∗(Ax0 − b)

= (x− x0)∗A∗A(x− x0) + 2�{(x− x0)∗A∗(x− x0)},
which holds for all x,x0 ∈ Cn. �

Ex. 2. For any A ∈ Cm×n and b ∈ Cm, the normal equation (9) is consistent.
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Ex. 3. The general least-squares solution of Ax = b,

x = A(1,3)b + (In −A(1,3)A)y, y ∈ C
n, (8)

= (A∗A)(1)A∗b + (In − (A∗A)(1)A∗A)y, y ∈ C
n, (11)

where (A∗A)(1) is any {1}-inverse of A∗A.
Proof. By (1.12a), (A∗A)(1)A∗ is a {1, 2, 3}-inverse of A (little more than needed
here). �
Ex. 4. Ill-conditioning. The linear equation Ax = b and the matrix A are said
to be ill-conditioned (or badly conditioned) if the solutions are very sensitive to
small changes in the data, see, e.g., [615, Chapter 8] and [873].

If the matrix A is ill-conditioned, then A∗A is even worse conditioned, see
Ex. 6.11 below. The following example illustrates the ill-conditioning of the nor-
mal equation. Let

A =

1 1
ε 0
0 ε

 and let the elements of ATA =
[
1 + ε2 1

1 1 + ε2

]
be computed using double-precision and then rounded to single-precision with t

binary digits. If |ε| < √2−t, then the rounded ATA is

fl(ATA) =
[
1 1
1 1

]
(fl denotes floaating point)

which is of rank 1, whereas A is of rank 2. Thus for any b ∈ R3, the computed
normal equation

fl(ATA)x = fl(ATb)

may be inconsistent, or may have solutions which are not least-squares solutions
of Ax = b.

Ex. 5. Noble’s method. Let again A ∈ Cm×n
n and assume that A is partitioned

as

A =
[
A1

A2

]
where A1 ∈ C

n×n
n .

Then A may be factorized as

A =
[
I
S

]
A1 where S = A2A

−1
1 ∈ C

(m−n)×n. (12)

Now let b ∈ Cm be partitioned as b =
[
b1

b2

]
, b1 ∈ Cn. Then the normal equation

reduces to

(I + S∗S)A1x = b1 + S∗b2 (13)

(which reduces further to A1x = b1 if and only if Ax = b is consistent).
The matrix S can be obtained by applying Gauss–Jordan elimination to the

matrix [
A1 b1 I
A2 b2 O

]
transforming it into [

I A−1
1 b1 A−1

1
O b2 − Sb1 −S

]
from which S can be read. (See Noble [615, pp. 262–265].)
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Ex. 6. Iterative refinement of solutions. Let x(0) be an approximate solution of
the consistent equation Ax = b and let x̂ be an exact solution. Then the error
δx = x̂− x(0) satisfies

Aδx = Ax̂−Ax(0)

= b−Ax(0)

= r(0), the residual corresponding to x(0).

This suggests the following iterative refinement of solutions, due to Wilkinson
[872] (see also Moler [572]):

The initial approximation: x(0), given.
The k th residual: r(k) = b−Ax(k).
The k th correction, δx(k), is obtained by solving Aδx(k) = r(k).
The (k + 1) st approximation: x(k+1) = x(k) + δx(k).
Double precision is used in computing the residuals, but not elsewhere.
The iteration is stopped if ‖δx(k+1)‖/‖δx(k)‖ falls below a prescribed num-

ber.
If the sequence {x(k) : k = 0, 1, . . . } converges, it converges to a solution

of Ax = b.

The use of this method to solve linear equations which are equivalent to the
normal equation, such as (66) or (13), has been successful in finding, or improving,
least-squares solutions. The reader is referred to Golub and Wilkinson [312],
Björck [105], [107], and Björck and Golub [111].

Ex. 7. Show that the vector x is a least-squares solution of Ax = b if and only

if there is a vector r such that the vector
[
r
x

]
is a solution of

[
I A
A∗ O

] [
r
x

]
=
[
b
0

]
. (14)

Ex. 8. Let A ∈ Cm×n and let b1,b2, . . . ,bk ∈ Cm. Show that a vector x
minimizes

k∑
i=1

‖Ax− bi‖2

if and only if x is a least-squares solution of

Ax =
1
k

k∑
i=1

bi.

Ex. 9. Let Ai ∈ Cm×n, bi ∈ Cm (i = 1, . . . , k). Show that a vector x minimizes

k∑
i=1

‖Aix− bi‖2 (15)

if and only if x is a solution of

( k∑
i=1

A∗
iAi

)
x =

k∑
i=1

A∗
i bi. (16)
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Solution. x minimizes (15) if and only if x is a least-squares solution of the
system 

A1

A2

...
Ak

 x =


b1

b2

...
bk

 ,
whose normal equation is (16). �
Constrained Least-Squares Solutions

Ex. 10. A vector x is said to be a constrained least-squares solution if x is a
solution of the constrained minimization problem: Minimize ‖Ax−b‖ subject to
the given constraints. Let A1 ∈ Cm1×n, b1 ∈ Cm1 , A2 ∈ Cm2×n, b2 ∈ R(A2).
Characterize the solutions of the problem:

minimize ‖A1x− b1‖2 (17a)

subject to A2x = b2. (17b)

Solution. The general solution of (17b) is

x = A
(1)
2 b2 + (I −A(1)

2 A2)y, (18)

where A(1)
2 ∈ A2{1} and y ranges over Cn. Substituting (18) in A1x = b1 gives

the equation

A1(I −A(1)
2 A2)y = b1 −A1A

(1)
2 b2, (19a)

abbreviated as Ay = b. (19b)

Therefore x is a constrained least-squares solution of (17) if and only if x is given
by (18) with y a least-squares solution of (19),

x = A
(1)
2 b2 + (I −A(1)

2 A2)[A
(1,3)

b + (I −A(1,3)
A)z], z ∈ C

n, (20)

where A
(1,3)

is an arbitrary {1, 3}-inverse of A. �
Ex. 11. Show that a vector x ∈ Cn is a solution of (17) if and only if there is a

vector y ∈ Cm2 such that the vector
[
x
y

]
is a solution of[

A∗
1A1 A∗

2

A2 O

] [
x
y

]
=
[
A∗

1b1

b2

]
. (21)

Compare this with Ex. 1. Similarly, find a characterization analogous to that
given in Ex. 7. See also Björck and Golub [111].

2. Solutions of Minimum Norm

When the system (1) has a multiplicity of solutions for x, there is a unique
solution of minimum-norm. This follows from Ex. 2.88, restated here as,

Lemma 1. Let A ∈ Cm×n. Then A is a one-to-one mapping of R(A∗)
onto R(A). �

Corollary 2. Let A ∈ Cm×n, b ∈ R(A). Then there is a unique
solution of

Ax = b (1)

given as the unique solution of (1) which lies in R(A∗).
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Proof. By Lemma 1, Eq. (1) has a unique solution x0 in R(A∗). Now the
general solution is given as

x = x0 + y, y ∈ N(A),

and, by Ex. 2.46,

‖x‖2 = ‖x0‖2 + ‖y‖2

proving that ‖x‖ > ‖x0‖ unless x = x0. �
The following theorem relates minimum-norm solutions of Ax = b and

{1, 4}-inverses of A, characterizing each of these two concepts in terms of
the other.

Theorem 2. Let A ∈ Cm×n, b ∈ Cm. If Ax = b has a solution for x,
the unique solution for which ‖x‖ is smallest is given by

x = A(1,4)b,

where A(1,4) ∈ A{1, 4}. Conversely, if X ∈ Cn×m is such that, whenever
Ax = b has a solution, x = Xb is the solution of minimum-norm, then
X ∈ A{1, 4}.
Proof. If Ax = b is consistent, then for any A(1,4) ∈ A{1, 4}, x = A(1,4)b is
a solution (by Corollary 2.2), lies in R(A∗) (by Ex. 1.9) and thus, by Lemma 1,
is the unique solution in R(A∗), and thus the unique minimum-norm solution by
Corollary 2.

Conversely, let X be such that, for all b ∈ R(A), x = Xb is the solution
of Ax = b of minimum-norm. Setting b equal to each column of A, in turn, we
conclude that

XA = A(1,4)A

and X ∈ A{1, 4} by Theorem 2.4. �
The unique minimum-norm least-squares solution of Ax = b, and the

generalized inverse A† of A, are related as follows:
Corollary 3 (Penrose [636]). Let A ∈ Cm×n, b ∈ Cm. Then, among

the least-squares solutions of Ax = b, A†b is the one of minimum-norm.
Conversely, if X ∈ Cn×m has the property that, for all b, Xb is the
minimum-norm least-squares solution of Ax = b, then X = A†.
Proof. By Corollary 1, the least-squares solutions of Ax = b coincide with the
solutions of

Ax = AA(1,3)b. (6)

Thus the minimum-norm least-squares solution of Ax = b is the minimum-norm
solution of (6). But, by Theorem 2, the latter is

x = A(1,4)AA(1,3)b

= A†b

by Theorem 1.4.
A matrix X having the properties stated in the last sentence of the theorem

must satisfy Xb = A†b for all b ∈ Cm and, therefore, X = A†. �
The minimum-norm least-squares solution, x0 = A†b (also called the

approximate solution; e.g., Penrose [636]) of Ax = b, can thus be charac-
terized by the following two inequalities:

‖Ax0 − b‖ ≤ ‖Ax− b‖, for all x (22a)
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and

‖x0‖ < ‖x|| (22b)

for any x �= x0 which gives equality in (22a).

Exercises and Supplementary Notes

Ex. 12. Let A be given by (0.80) and let

b =

−i1
1

 .
Show that the general least-squares solution of Ax = b is

x = 1
19


0
1
0
−4
0
0

+


1 0 0 0 0 0
0 0 − 1

2 0 −1 + 2i 1
2 i

0 0 1 0 0 0
0 0 0 0 −2 −1− i
0 0 0 0 1 0
0 0 0 0 0 1




y1
y2
y3
y4
y5
y6

 ,

where y1, y2, . . . , y6 are arbitrary, while the residual vector for the least-squares
solution is

1
19

 2i
12
−2

 .
Ex. 13. In Ex. 12 show that the minimum-norm least-squares solution is

x = 1
874


0

26− 36i
13− 18i
−55− 9i
−12− 2i
−46 + 59i

 .

Ex. 14. Let A ∈ Cm×n, b ∈ Cm, and a ∈ Cn. Show that if Ax = b has a
solution for x, then the unique solution for which ‖x− a‖ is smallest is given by

x = A(1,4)b + (I −A(1,4)A)a

= A(1,4)b + PN(A)a.

Ex. 15. Matrix spaces. For any A,B ∈ Cm×n define

R(A,B) = {Y = AXB ∈ C
m×n : X ∈ C

n×m} (23)

and

N(A,B) = {X ∈ C
n×m : AXB = O} (24)

which we shall call the range and null space of (A,B), respectively. Let Cm×n be
endowed with the inner product

〈X,Y 〉 = trace Y ∗X =
m∑

i=1

n∑
j=1

xij yij , (25)
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for X = [xij ], Y = [yij ] ∈ Cm×n. Then, for every A,B ∈ Cm×n, the sets R(A,B)
and N(A∗, B∗) are complementary orthogonal subspaces of Cm×n.
Solution. As in Ex. 2.2 we use the one-to-one correspondence

vn(i−1)+j = xij (i ∈ 1,m, j ∈ 1, n) (26)

between the matrices X = [xij ] ∈ Cm×n and the vectors v = vec(X) = [vk] ∈
Cmn. The correspondence (26) is a nonsingular linear transformation mapping
Cm×n onto Cmn. Linear subspaces of Cm×n and Cmn thus correspond under
(26).

It follows from (26) that the inner product (25) is equal to the standard
inner product of the corresponding vectors vec(X) and vec(Y ). Thus 〈X,Y 〉 =
〈vec(X), vec(Y )〉 = vec(Y )∗vec(X). Also, from (2.10) we deduce that under (26),
R(A,B) and N(A∗, B∗) correspond to R(A⊗BT ) and N(A∗⊗B∗T ), respectively.
By (2.8), the latter is the same as N((A⊗BT )∗), which by (0.27) is the orthog-
onal complement of R(A⊗ BT ) in Cmn. Therefore, R(A,B) and N(A∗, B∗) are
orthogonal complements in Cm×n. �
Ex. 16. Let A,B,C be matrices of compatible dimensions. Then the following
statements are equivalent:

(a) R(C) ⊂ R(A) and R(B∗) ⊂ R(A∗),
(b) BA(1)C is invariant under the choice of A(1) ∈ A{1},
(c) N(A,A) ⊂ N(B,C).

Proof. (a) =⇒ (b) (this part is due to Rao and Mitra [678, Lemma 2.2.4(iii)]).
Let BA{1}C denote {BXC : X ∈ A{1}}. Then

BA{1}C = BA†C + {BZC −BA†AZAA†C : Z arbitrary}, by Corollary 2.1,

= {BA†C} if B = BA†A,C = AA†C.

(b)⇐⇒ (c) Let Z = Z1 + Z2, AZ1A = O, Z2 = A∗XA∗. Then

BA{1}C = BA†C + {BZ1C +BA∗XA∗C −BA†AA∗XA∗AA†C : AZ1A = O}
= BA†C + {BZ1C : AZ1A = O}
= {BA†C} if and only if (c).

(c)=⇒ (a) Suppose R(B∗) �⊂ R(A∗), i.e., there is a vector x ∈ R(B∗) with
x = x1 + x2,x1 ∈ R(A∗),0 �= x2 ∈ N(A). Let the vector y satisfy C∗y �= 0
(C �= O can be assumed), and let X = x2 y∗. Then

AXA = O, BXC �= O,

contradicting (c). An analogous proof applies to the case R(C) �⊂ R(A). �
Ex. 17. Characterization of {1, 3}-, {1, 4}-, and {1, 2, 3, 4}-inverses. Let the
norm used in Cm×n be the Frobenius norm

‖X‖F =
√

trace X∗X. (0.50)

Show that for every A ∈ Cm×n:
(a) X ∈ A{1, 3} if and only if X is a least-squares solution of

AX = Im, (27)

i.e., minimizing ‖AX − I‖F .
(b) X ∈ A{1, 4} if and only if X is a least-squares solution of

XA = In. (28)

(c) A† is the minimum-norm least-squares solution of both (27) and (28).
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Solution. These results are based on the fact that the norm ‖X‖F defined by
(0.50) is merely the Euclidean norm of the corresponding vector vec(X).

(a) Writing (27) as

(A⊗ I)vec(X) = vec(I), (29)

it follows from Corollary 1 that the general least-squares solution of (29) is

vec(X) = (A⊗ I)(1,3) vec(I) + (I − (A⊗ I)(1,3)(A⊗ I))y, (30)

where y is an arbitrary element of Cmn. From (2.8) and (2.9) it follows that for
every A(1,3) ∈ A{1, 3}, (A(1,3) ⊗ I) is a {1, 3}-inverse of (A ⊗ I). Therefore the
general least-squares solution of (27) is the matrix corresponding to (30), namely

X = A(1,3) + (I −A(1,3)A)Y, Y ∈ C
n×m,

which is the general {1, 3}-inverse of A by Corollary 2.3.
(b) Taking the conjugate transpose of (28), we get

A∗X∗ = In.

The set of least-squares solutions of the last equation is, by (a),

A∗{1, 3},
which coincides with A{1, 4}.

(c) This is left to the reader. �
Ex. 18. Let A,B,D be complex matrices having dimensions consistent with the
matrix equation

AXB = D.

Show that the minimum-norm least-squares solution of the last equation is

X = A†DB† (Penrose [636]).

Ex. 19. Let A ∈ Cm×n and let X be a {1}-inverse of A; i.e., let X satisfy

AXA = A. (1.1)

Then the following are equivalent:
(a) X = A†;
(b) X ∈ R(A∗, A∗); and
(c) X is the minimum-norm solution of (1.1) (Ben-Israel [67]).

Proof. The general solution of (1.1) is, by Theorem 2.1,

X = A†AA† + Y −A†AY AA†, Y ∈ C
n×m,

= A† + Y −A†AY AA†. (31)

Now it is easy to verify that

A† ∈ R(A∗, A∗), Y −A†AY AA† ∈ N(A,A),

and using the Frobenius norm (0.50) it follows from Ex. 15 that X of (31) satisfies

‖X‖2F = ‖A†‖2F + ‖Y −A†AY AA†‖2F ,
and the equivalence of (a), (b), and (c) is obvious. �
Ex. 20. Restricted generalized inverses. Let the matrix A ∈ Cm×n and let the
subspace S ⊂ Cn be given. Then, for any b ∈ Cm, the point Xb ∈ S minimizes
‖Ax − b‖ in S if and only if X = PS(APS)(1,3) is any S-restricted {1.3}-inverse
of A.
Proof. Follows from Section 2.9 and Theorem 1. �
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Ex. 21. Let A,S be as in Ex. 20. Then for any b ∈ Cm for which the system

Ax = b, x ∈ S, (2.116)

is consistent, Xb is the minimum-norm solution of (2.116) if and only if X =
PS(APS)(1,4) is any S-restricted {1, 4}-inverse of A.
Proof. Follows from Section 2.9 and Theorem 2. �
Ex. 22. Let A,S be as above. Then, for any b ∈ Cm, Xb is the minimum-norm
least-squares solution of (2.116) if and only if X = PS(APS)†, the S-restricted
Moore-Penrose inverse of A (Minamide and Nakamura [556]).

Ex. 23. Constrained least-squares solutions. Let A1 ∈ Cm1×n, b1 ∈ Cm1 , A2 ∈
Cm2×n, b2 ∈ R(A2). The minimum-norm solution of

minimize ‖A1x− b1‖2, (17a)

subject to A2x = b2, (17b)

is

x = A†
2b2 + PN(A2) (A1PN(A2))

†(b1 −A1A
†
2b2). (32)

Proof. Follows as in Ex. 10, with z = 0 in (20). �
See also Ex. 6.92 below.

Ex. 24. (Albert [10, Lemma, p. 185]). Let V ∈ Cn×n be Hermitian and
nonsingular and let X ∈ Cn×k. Then

(V −1X)† = X†V (I − (V PN(X∗))
†(V PN(X∗))). (33)

Proof. Denote PN(X∗) by Q. The unique minimum-norm least-squares solution
of

(V −1X)∗x = y

is x̂ = (V −1X)∗†y. If u∗ minimizes ‖X∗u − y‖2, then x∗ := V u∗ minimizes
‖(V −1X)∗x− y‖2. Moreover,

‖x∗‖ = ‖V u∗‖ > ‖x̂‖ unless x̂ = V u∗.

The general least-squares solution of X∗u = y is

u(w) = X∗†y −Qw, w arbitrary. (a)

The square

‖V u(w)‖2 = ‖V X∗†y − V Qw‖2

is minimized when

ŵ = (V Q)†V X∗†y. (b)

Moreover,

V u(ŵ) = x̂, (c)

for otherwise ‖V u(ŵ)‖ > ‖x̂‖ and, for û := V −1x̂,

‖V û‖ = ‖x̂‖ < ‖V u(ŵ)‖
a contradiction to u(ŵ) minimizing ‖V u‖. Combining (a), (b), and (c) we get

(V −1X)∗†y = (I − (V Q)†(V Q))V X∗†y



114 3. MINIMAL PROPERTIES OF GENERALIZED INVERSES

for all y, proving (33). �

3. Tikhonov Regularization

Let A ∈ Cm×n, b ∈ Cm. The minimum-norm least-squares solution of

Ax = b (1)

is x = A† b. It is literally the solution of a two-stage minimization problem:
Stage 1:

minimize ‖Ax− b‖. (34)

Stage 2:

minimize {‖x‖ among all solutions of Stage 1}. (35)

The idea of Tikhonov regularization (Tikhonov [806], [805]) is to replace
these two stages by one problem,

min
x∈Cn

fα2(x) (36)

where the function

fα2(x) = ‖Ax− b‖2 + α2‖x‖2 (37)

depends on a positive real parameter α2. Let xα2 be the miminizer of fα2 .
Then

fα2 → A† b as α→ 0, see Ex. 25 below,

and it may seem that the limit α → 0 is desirable, for then (36) tends to
coincide with the two-stage problem (34)–(35). There are, however, appli-
cations and contexts where the minimization problem (36), with positive
α2, is preferred. Some examples:

(a) The constrained least squares problem

minimize ‖Ax− b‖ subject to ‖x‖ = p (38)

has the function (37) as Lagrangian and α2 as the Lagrange multiplier, see
Ex. 29.

(b) The norm ‖xα2‖ is a monotone decreasing function of α, see The-
orem 3. Positive values of α are required, if it is necessary to control the
norm of the solution. An example is ridge estimation, see Section 8.4, where
a trade-off between bias (which increases with α) and variance (or norm,
decreases with α), may determine an optimal α.

(c) If A is ill-conditioned, the solution xα2 of (36) is more stable, nu-
merically, than the minimal-norm least-squares solution, see Ex. 6.13.

The dependence of the solution xα2 is described in the following:
Theorem 3. The function fα2(x) has a unique minimizer xα2 given

by

xα2 = (A∗A + α2I)−1A∗b (39)

whose norm ‖xα2‖ is a monotone decreasing function of α2.
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Proof. The function (37) is a special case of (15) with k = 2, A1 = A,A2 =
αI,b1 = b, and b2 = 0. Substituting these values in (16) we get

(A∗A+ α2I)x = A∗b, (40)

which has the unique solution (39), since (A∗A+ α2I) is nonsingular.
Using (0.26) or Lemma 1, it is possible to write b (uniquely) as

b = Av + u, v ∈ R(A∗), u ∈ N(A∗). (41)

Substituting this in (39) gives

xα2 = (A∗A+ α2I)−1A∗Av. (42)

Now let {v1,v2, . . . ,vr} be an o.n. basis of R(A∗) consisting of eigenvectors of
A∗A corresponding to nonzero eigenvalues, say

A∗Avj = σ2
j vj (σj > 0, j ∈ 1, r). (0.35a)

If v =
∑r

j=1 βjvj is the representation of v in terms of the above basis, then
(42) gives

xα2 =
r∑

j=1

σ2
jβj

σ2
j + α2 vj

whose norm squared is

‖xα2‖2 =
r∑

j=1

( σ2
j

σ2
j + α2

)2
|βj |2,

a monotone decreasing function of α2. �
Problems of minimizing expressions like (37) in infinite-dimensional

spaces and subject to linear constraints often arise in control theory. The
reader is referred to [645], especially to Section 4.4 and pp. 353–354, where
additional references are given. Tikhonov regularization originated, and is
still mainly used, for solving linear operator equations, see references on
page 151.
Exercises
Ex. 25. (den Broeder and Charnes [136]). For any A ∈ Cm×n, as λ→ 0 through
any neighborhood of 0 in C, the following limit exists and

lim
λ→0

(A∗A+ λI)−1A∗ = A†. (43)

Proof. We must show that

lim
λ→0

(A∗A+ λI)−1A∗y = A†y (44)

for all y ∈ Cm. Since N(A∗) = N(A†), by Ex. 2.38, (44) holds trivially for
y ∈ N(A∗). Therefore it suffices to prove (44) for y ∈ N(A∗)⊥ = R(A). By
Lemma 1, for any y ∈ R(A), there is a unique x ∈ R(A∗) such that y = Ax.
Proving (44) thus amounts to proving, for all x ∈ R(A∗),

lim
λ→0

(A∗A+ λI)−1A∗Ax = A†Ax (45)

= x, since A†A = PR(A∗).

It thus suffices to show that

lim
λ→0

(A∗A+ λIn)−1A∗A = PR(A∗).

Now let A∗A = FF ∗, F ∈ Cn×r
r be a full-rank factorization. Then

(A∗A+ λIn)−1A∗A = (FF ∗ + λIn)−1FF ∗
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for any λ for which the inverses exist. We now use the identity

(FF ∗ + λIn)−1FF ∗ = F (F ∗F + λIr)−1F ∗

and note that F ∗F is nonsingular so that limλ→0(F ∗F + λIr)−1 = (F ∗F )−1.
Collecting these facts we conclude that

lim
λ→0

(A∗A+ λIn)−1A∗A = F (F ∗F )−1F ∗

= FF † = PR(A∗)

since the columns of F are a basis for R(A∗A) = R(A∗). �
See also Exs. 4.21 and 6.13 below, Chernoff [185], Foster [283], and Ben-

Israel [70].

Ex. 26. An alternative proof of (43).
Proof. It suffices to prove

lim
λ→0

(A∗A+ λI)−1A∗Ax = x (3.45)

for all x ∈ R(A∗). Let {v1, . . . ,vr} be a basis for R(A∗) consisting of eigenvectors
of A∗A, say

A∗Avj = σ2
j vj (σj > 0, j ∈ 1, r). (0.35a)

Writing x ∈ R(A∗) in terms of this basis

x =
r∑

j=1

ξjvj ,

we verify that, for all λ �= −σ2
1 , −σ2

2 , . . . ,−σ2
r ,

(A∗A+ λI)−1A∗Ax =
r∑

j=1

σ2
j ξj

σ2
j + λ

vj ,

which tends, as λ→ 0, to
∑r

j=1 ξjvj = x. �

Ex. 27. (Boyarintsev [130, Theorem 1.2.3]). The approximation error of (43)
for real positive λ is

‖A† − (A∗A+ λI)−1A∗‖2 ≤ λ ‖A†‖32 (46)

where ‖ · ‖2 is the spectral norm (0.56.2).
Proof.

A† − (A∗A+ λI)−1A∗ = (A∗A+ λI)−1((A∗A+ λI)A† −A∗)

= λ (A∗A+ λI)−1A†, since A∗ = A∗AA†,

= λ (A∗A+ λI)−1A∗AA†A†∗A†, since A∗A†∗ = A†A.

If λ > 0, then ‖(A∗A+ λI)−1A∗A‖2 ≤ 1 and, therefore,

‖A† − (A∗A+ λI)−1A∗‖2 ≤ λ ‖A†A†∗A†‖2
and (46) follows since ‖ · ‖2 is multiplicative. �
Ex. 28. Use Theorem 3 and Ex. 25 to conclude that the solutions {xα2} of the
minimization problems:

minimize {‖Ax− b‖2 + α2‖x‖2}
converge to A†b as α→ 0. Explain this result in view of Corollary 3.
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Ex. 29. Let A ∈ Cm×n
r , b ∈ Cm, and let 0 < p <

√
r‖u‖ where u is given by

(41). Show that the problem

minimize ‖Ax− b‖ subject to ‖x‖ = p (38)

has the unique solution

x = (A∗A+ α2I)−1A∗b

where α is (uniquely) determined by

‖(A∗A+ α2I)−1A∗b‖ = p.

Hint. Use Theorem 3.
See also Forsythe and Golub [282, Section 7] and Forsythe [281].

Ex. 30. For a given A ∈ Cm×n, b ∈ Cm, and a positive real number p, solve the
problem

minimize ‖Ax− b‖ subject to ‖x‖ ≤ p. (47)

Solution. If

‖A†b‖ ≤ p, (48)

then x = A†b is a solution of (47) and is the unique solution if and only if (48)
is an equality.

If (48) does not hold, then (47) has the unique solution given in Ex. 29. �
See also Balakrishnan [40, Theorem 2.3].

4. Weighted Generalized Inverses

It may be desired to give different weights to the different squared residuals
of the linear system Ax = b. This is a more general problem than the one
solved by the {1, 3}-inverse. A still further generalization which, however,
presents no greater mathematical difficulty, is the minimizing of a given PD
quadratic form in the residuals or, in other words, the minimizing of

‖Ax− b‖2W = (Ax− b)∗W (Ax− b), (49)

where W is a given PD matrix, see Ex. 0.4.
When A is not of full column rank, this problem does not have a unique

solution for x and we may choose from the class of “generalized least-squares
solutions” the one for which

‖x‖2Q = x∗Qx (50)

is smallest, where Q is a second PD matrix. If A ∈ Cm×n, W is of order m
and Q of order n.

Since every inner product in Cn can be represented as x∗Qy for some
PD matrix Q (see Ex. 0.4), it follows that the problem of minimizing (49),
and the problem of minimizing (50) among all the minimizers of (49), differ
from the problems treated in Sections 1 and 2 only in the different choices of
inner products and their associated norms in Cm and Cn. These seemingly
more general problems can be reduced by a simple transformation to the
“unweighted” problems considered in Sections 1 and 2. Every PD matrix
H has a unique PD square root : that is a PD matrix K such that K2 = H
(see, e.g., Ex. 31 and Ex. 6.37 below). Let us denote this K by H1/2 and
its inverse by H−1/2.



118 3. MINIMAL PROPERTIES OF GENERALIZED INVERSES

We shall now introduce the transformations

Ã = W 1/2AQ−1/2, x̃ = Q1/2x, b̃ = W 1/2b, (51)

and it is easily verified that

‖Ax− b‖W = ‖Ãx̃− b̃‖ (52)

and

‖x‖Q = ‖x̃‖, (53)

expressing the norms ‖ ‖W and ‖ ‖Q in terms of the Euclidean norms of
the transformed vectors.

Similarly, the relations

X = Q−1/2Y W 1/2, or Y = Q1/2XW−1/2, (54)

result in

x̃ = Y b̃ ⇐⇒ x = Xb, (55)

ÃY Ã = Ã ⇐⇒ AXA = A, (56)

(ÃY )∗ = ÃY ⇐⇒ (WAX)∗ = WAX, (57)

(Y Ã)∗ = Y Ã ⇐⇒ (QXA)∗ = QXA. (58)

These observations lead to the following two theorems.

Theorem 4. Let A ∈ Cm×n, b ∈ Cm, and let W ∈ Cm×m be positive
definite. Then ‖Ax− b‖W is smallest when x = Xb, where X satisfies

AXA = A, (WAX)∗ = WAX. (59)

Conversely, if X ∈ Cn×m has the property that, for all b, ‖Ax − b‖W is
smallest when x = Xb, then X satisfies (59).
Proof. In view of (52), it follows from Theorem 1 that ‖Ax− b‖W is smallest
when x̃ = Y b̃, where Y satisfies

ÃY Ã = Ã, (ÃY )∗ = ÃY, (60)

and also if Y ∈ Cn×m has the property that, for all b̃, ‖Ãx̃− b̃‖ is smallest when
x̃ = Y b̃, then Y satisfies (60).

Now let X,Y be related by (54) with Q = I. The proof then follows from
(55), (56), and (57). �

See also Ex. 33.

Theorem 5. Let A ∈ Cm×n, b ∈ Cm, and let Q ∈ Cn×n be positive
definite. If Ax = b has a solution for x, the unique solution for which
‖x‖Q is smallest is given by x = Xb, where X satisfies

AXA = A, (QXA)∗ = QXA. (61)

Conversely, if X ∈ Cn×m is such that, whenever Ax = b has a solution,
x = Xb is the solution for which ‖x‖Q is smallest, then X satisfies (61).
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Proof. In view of (51),

Ax = b ⇐⇒ Ãx̃ = b̃.

Then it follows from (53) and Theorem 2 that, if Ax = b has a solution for x, the
unique solution for which ‖x‖Q is smallest is given by x̃ = Y b̃, where Y satisfies

ÃY Ã = Ã, (Y Ã)∗ = Y Ã, (62)

and, furthermore, if Y ∈ Cn×m has the property that, whenever Ax = b has a
solution, ‖x‖Q is smallest when x̃ = Y b̃, then Y satisfies (62).

As in the proof of Theorem 4, let X,Y be related by (54) with W = I. The
proof is completed by (55), (56), and (58). �

See also Ex. 35.
From Theorems 4 and 5 and Corollary 3, we can easily deduce:
Corollary 4. Let A ∈ Cm×n, b ∈ Cm, and let W ∈ Cm×m and

Q ∈ Cn×n be positive definite. Then, there is a unique matrix

X = A
(1,2)
(W,Q) ∈ A{1, 2}

satisfying

(WAX)∗ = WAX, (QXA)∗ = QXA. (63)

Moreover, ‖Ax−b‖W assumes its minimum value for x = Xb, and in the
set of vectors x for which this minimum value is assumed, x = Xb is the
one for which ‖x‖Q is smallest.

If Y ∈ Cn×m has the property that, for all b, x = Y b is the vector of
Cm for which ‖x‖Q is smallest among those for which ‖Ax−b‖W assumes
its minimum value, then Y = A

(1,2)
(W,Q). �

A
(1,2)
(W,Q) is called the {W,Q}-weighted {1, 2}-inverse of A. See also

Exs. 36–43.
Exercises

Ex. 31. Square root. Let H be Hermitian PD with the spectral decomposition

H =
k∑

i=1

λiEi. (2.90)

Then

H1/2 =
k∑

i=1

λ
1/2
i Ei.

Ex. 32. Cholesky factorization. Let H be Hermitian PD. Then it can be factor-
ized as

H = R∗
HRH , (64)

where RH is an upper triangular matrix. Equation (64) is called the Cholesky
factorization of H; see, e.g., Wilkinson [872].

Show that the results of Section 4 can be derived by using the Cholesky
factorization

Q = R∗
QRQ and W = R∗

WRW (65)
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of Q and W , respectively, instead of their square-root factorizations.
Hint : Instead of (51) use

Ã = RWAR−1
Q , x̃ = RQx, b̃ = RW b.

Ex. 33. Let A, b, and W be as in Theorem 4. Show that a vector x ∈ Cn

minimizes ‖Ax− b‖W if and only if x is a solution of

A∗WAx = A∗Wb,

and compare with Ex. 1.

Ex. 34. Let A1 ∈ Cm1×n, b1 ∈ Cm1 , A2 ∈ Cm2×n, b2 ∈ R(A2), and let W ∈
Cm1×m1 be PD. Consider the problem

minimize ‖A1x− b1‖W subject to A2x = b2. (66)

Show that a vector x ∈ Cn is a minimizer of (66) if and only if there is a vector

y ∈ Cm2 such that the vector
[
x
y

]
is a solution of[

A∗
1WA1 A∗

2

A2 O

] [
x
y

]
=
[
A∗

1Wb1

b2

]
.

Compare with Ex. 11.

Ex. 35. Let A ∈ Cm×n, b ∈ R(A), and let Q ∈ Cn×n be PD. Show that the
problem

minimize ‖x‖Q subject to Ax = b (67)

has the unique minimizer

x = Q−1A∗(AQ−1A∗)(1)b

and the minimum value

b∗(AQ−1A∗)(1)b

where (AQ−1A∗)(1) is any {1}-inverse of AQ−1A∗ (Rao [671, p. 49]).
Outline of solution. Problem (67) is equivalent to the problem

minimize ‖x̃‖ subject to Ãx̃ = b̃,

where x̃ = Q1/2b̃, Ã = AQ−1/2, b̃ = b. The unique minimizer of the last problem
is, by Theorem 2,

x̃ = Y b̃, for any Y ∈ Ã{1, 4}.
Therefore the unique minimizer of (67) is

x = Q−1/2Xb, for any X ∈ (AQ−1/2){1, 4}.
Complete the proof by choosing

X = Q−1/2A∗(AQ−1A∗)(1)

which by Theorem 1.3 is a {1, 2, 4}-inverse of AQ−1/2.

Ex. 36. The weighted inverse A
(1,2)
(W,Q). Chipman [187] first called attention to

the unique {1, 2}-inverse given by Corollary 4. However, instead of the second
equation of (63) he used

(XAV )∗ = XAV.

Show that these two relations are equivalent. How are Q and V related?
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Ex. 37. Use Theorems 4 and 5 to show that

A
(1,2)
(W,Q) = Q−1/2(W 1/2AQ−1/2)†W 1/2, (68a)

or, equivalently, using (65),

A
(1,2)
(W,Q) = R−1

Q (RWAR−1
Q )†RW . (68b)

See also Ex. 6.93.

Ex. 38. Use Exs. 33 and 35 to show that

A
(1,2)
(W,Q) = Q−1A∗WA(A∗WAQ−1A∗WA)(1)A∗W.

Ex. 39. For a given A and an arbitrary X ∈ A{1, 2}, do there exist PD matrices
W and Q such that X = A

(1,2)
(W,Q)? Show that this question reduces to the following

simpler one. Given an idempotent E, is there a PD matrix V , such that V E is
Hermitian? Show that such a V is given by

V = E∗HE + (I − E∗)K(I − E),

where H and K are arbitrary PD matrices. (This slightly generalizes a result of
Ward, Boullion, and Lewis [851], who took H = K = I.)
Solution. Since H and K are PD, x∗V x = 0 only if both the equations

Ex = 0, (I − E)x = 0, (69)

hold. But addition of the two equations (69) gives x = 0. Therefore V is PD.
Moreover,

V E = E∗HE

is clearly Hermitian. �
Ex. 40. As a particular illustration, let E =

(
1 1
0 0

)
and show that V can be

taken as any matrix of the form

V =
[
a a
a b

]
(70)

where b > a > 0. Show that (70) can be written in the form

V = aE∗E + c(I − E∗)(I − E),

where a and c are arbitrary positive scalars.

Ex. 41. Use Ex. 39 to prove that if X is an arbitrary {1, 2}-inverse of A, there
exist PD matrices W and Q such that X = A

(1,2)
(W,Q) (Ward, Boullion, and Lewis

[851]).

Ex. 42. Show that

A
(1,2)
(W,Q) = A

(1,2)
T,S

(see Theorem 2.12(c)), where the subspaces T, S and the PD matrices W,Q are
related by

T = Q−1N(A)⊥ (71)

and

S = W−1R(A) (72)

or, equivalently, by

Q = P ∗
N(A),TQ1PN(A),T + P ∗

T,N(A)Q2PT,N(A) (73)
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and

W = P ∗
R(A),SW1PR(A),S + P ∗

S,R(A)W2PS,R(A) (74)

where Q1, Q2, W1, and W2 are arbitrary PD matrices of appropriate dimensions.
Solution. From (63), we have

XA = Q−1A∗X∗Q,

and therefore

R(X) = R(XA) = Q−1R(A∗) = Q−1N(A)⊥

by Corollary 2.7 and (0.26). Also,

AX = W−1XAW,

and therefore

N(X) = N(AX) = N(A∗W ) = W−1N(A∗) = W−1R(A)⊥

by Corollary 2.7 and (0.27). Finally, from Exs. 39 and 2.23 it follows that the
general PD matrix Q mapping T onto N(A)⊥ is given by (73). Equation (74) is
similarly proved. �
Ex. 43. Let A = FG be a full-rank factorization. Use Ex. 42 and Theo-
rem 2.13(d) to show that

A
(1,2)
(W,Q) = Q−1G∗(F ∗WAQ−1G∗)−1F ∗W.

Compare with Ex. 37.

5. Least-Squares Solutions and Basic Solutions

Berg [86] showed that theMoore–Penrose inverse A† is a convex combina-
tion of ordinary inverses {A−1

IJ : (I, J) ∈ N (A)},
A† =

∑
(I,J)∈N (A)

λIJ Â−1
IJ , (75)

where X̂ denotes that X is padded with the right number of zeros in the
right places.

Equivalently, for any b ∈ Rm, the minimum-norm least-squares solu-
tion1 of the linear equations

Ax = b (1)

is

A† b =
∑

(I,J)∈N (A)

λIJ Â−1
IJ bI , (76)

a convex combination of basic solutions A−1
IJ bI , where bI is the I th sub-

vector of b. The representation (76) was given by Ben-Tal and Teboulle
[84] for A of full column rank, from which the general case follows easily.

What is curious about these convex combinations is that the weights
are proportional to the squares of the determinants of the AIJ ’s,

λIJ =
det2AIJ∑

(K,L)∈N (A)
det2AKL

, (I, J) ∈ N (A). (77)

1Here norm means Euclidean norm.
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We recall that the sum of squares in the denominator of (77) is the volume
of A, see Section 0.5.

For the sake of motivation, consider a trivial system with one variable
x, a1

...
am

 x =

 b1
...

bm

 .

The least-squares solution is

x =

m∑
i=1

aibi

m∑
k=1

a2
k

=
m∑

i=1

λi xi,

a convex combination of the basic solutions {xi = a−1
i bi : ai �= 0} with

weights

λi =
a2

i
m∑

k=1
a2

k

,

which explains (77) for the case n = 1. This explanation also works for the
general case, since by taking exterior products the system of equations (1)
reduces to a system with one column, whose nonzero coefficients are the
r × r determinants {det AIJ : (I, J) ∈ N (A)}.

Lemma 2 (Solution of Full-Rank Systems).
(a) Let C ∈ Rm×r

r , b ∈ Rm. Then the (unique) least-squares solution
y of

Cy = b, (78)

is

y =
∑

I∈I(C)

µI∗C−1
I∗ bI , (79)

where µI∗ is given by

µI∗ =
vol2 CI∗
vol2 C

. (80)

(b) Let R ∈ Rr×n
r , y ∈ Rr. Then the minimum-norm solution of

Rx = y, (81)

is

x =
∑

J∈J (R)

ν∗JR−1
∗J y, (82)

where ν∗J is given by

ν∗J =
vol2 R∗J

vol2 R
. (83)
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Proof. (a) The coefficients yi satisfy the normal equation

CTCy = CT b,

rewritten as,

CT c(1) ∧ · · · ∧ CT c(i−1) ∧ CT b ∧ CT c(i+1) ∧ · · · ∧ CT c(r)

= yi (CT c(1) ∧ · · · ∧ CT c(r)). (84)

The left-hand side of (84) is

Cr(CT )(c(1) ∧ · · · ∧ c(i−1) ∧ b ∧ c(i+1) ∧ · · · ∧ c(r))

which simplifies to

LHS(84) =
∑

I∈I(C)

det CI∗ det CI∗[i← bI ]

=
∑

I∈I(C)

det2 CI∗ (C−1
I∗ bI)i,

and RHS(84) is yi times (0.110b). The Cramer rule for the least-squares solution
is therefore

yi =
∑

I∈I(C)

µI∗(C−1
I∗ bI)i, (85)

with µI∗ given by (80), and (C−1
I∗ bI)i is the i th component of the solution C−1

I∗ bI

of the r × r system

CI∗ y = bI . (86)

Combining (85) for i = 1, . . . , r, we obtain the least squares solution y as the
convex combination (79) of “basic solutions”.2 �

Lemma 2(a) is due to Jacobi [442] and has been rediscovered by Sub-
rahmanyan [785], Ben-Tal and Teboulle [84], and others. See Farebrother
[269], Sheynin [750], and [85] for further details and references.

Remark 1. Lemma 2 suffices for computing A† b, the minimum-norm
least-squares solution of a linear equation

Ax = b, (1)

for general A ∈ Rm×n
r . Indeed, A† b is literally the solution of a two-stage

minimization problem:
Stage 1:

minimize ‖Ax− b‖. (34)

Stage 2:

minimize {‖x‖ among all solutions of Stage 1}. (35)

Stage 1 (least squares) has a unique solution only if r = n. Stage 2 has the
(unique) solution x = A† b, see also Ex. 45 below.

For any full-rank factorization A = CR the above two stages can be
separated:

Stage 1:

minimize ‖Cy − b‖. (87)

2This derivation follows that of Marcus [531, § 3.1, Example 1.5(c)] and Ben-Tal
and Teboulle [84].
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Stage 2:

minimize {‖x‖ among all solutions of Rx = y}. (88)

Stage 1 now has the unique solution y = C†b. This is an implementation
of the fact that

A† = R†C† (1.20)

is a full-rank factorization of A†.
Combining Remark 1 and Lemma 2, we prove Berg’s theorem in geo-

metric form.
Theorem 6 (Berg [86]). Let A ∈ Rm×n

r , b ∈ Rm. Then the minimum-
norm least-squares solution of

Ax = b, (1)

is the convex combination

x =
∑

(I,J)∈N (A)

λIJ Â−1
IJ bI , (89)

with weights given by (77).
Proof. Follows by substituting (79) in RHS(81). Then (89) follows from (82)
with weights

λIJ = µI∗ ν∗J

which, by (80) and (0.83), are (77). �
Since (89) holds for all b, we proved Berg’s representation (75) of the
Moore–Penrose inverse as a convex combination of ordinary inverses of r×r
submatrices,

A† =
∑

(I,J)∈N
λIJ Â−1

IJ , (75)

where Â−1
IJ is an n × m matrix with the inverse of AIJ in position (J, I)

and zeros elsewhere.
Consider next a weighted (or scaled) least-squares problem

minimize ‖D1/2(Ax− b)‖, (90)

where D = diag (di) is a given diagonal matrix with all (weights) di > 0.
Theorem 7 (Ben-Tal and Teboulle [84]). The solutions of (90), i.e.,

the least-squares solutions of

D1/2Ax = D1/2b, (91)

satisfy the normal equation

AT DAx = AT Db. (92)

The minimum-norm (weighted) least-squares solution of (91) is

x(D) =
∑

(I,J)∈N (A)

λIJ(D) Â−1
IJ bI , (93)
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with weights

λIJ(D) =
(
∏
i∈I

di) det2AIJ∑
(K,L)∈N (A)

(
∏

i∈K

di) det2AKL

. (94)

Proof. If A = CR is a full-rank factorization of A, then D1/2A = (D1/2C)R is
a full-rank factorization of D1/2A. The first stage (87) for the problem (91) is

minimize ‖D1/2Cy −D1/2b‖, (95)

whose solution, using Lemma 2(a), is

y =
∑

I∈I(A)

µI∗(D1/2)C−1
I∗ bI , (96)

with

µI∗(D1/2) =
(
∏
i∈I

di) det2CI∗∑
K∈I(A)

(
∏

i∈K

di) det2 CK∗
. (97)

The second stage is still (88),

minimize {‖x‖ : Rx = y },
with y from (96). Therefore the minimum-norm (weighted) least-squares solution
of (91) is (93) with weights (94). �

Theorem 7 was proved, in the full-rank case, by Ben-Tal and Teboulle
in [84], together with extensions from least squares to minimizing isotone
functions of |Ax− b|, the vector of absolute values of Ax− b.

Note that the scaling matrix D appears only in the convex weights λIJ .
Therefore, for any scaling matrix D, the solution x(D) is in the convex hull

of the basic solutions {Â−1
IJ bI : (I, J) ∈ N (A)}, a compact set that does

not depend on D. This fact is important for the convergence of interior
point methods,3 in particular, the Dikin method [231], see also Vanderbei
and Lagarias [833].

Put differently, let D+ denote the positive diagonal matrices and, for
any D ∈ D+, consider the operators

ξD : Rm → Rn, defined by ξD(b) = (AT DA)†AT Db, (98)

ηD : Rm×n → Rm×m, defined by ηD(A) = A(AT DA)†AT D, (99)

mapping b into the solution (93) and the matrix A into the oblique pro-
jector A(AT DA)†AT D, respectively. The above results imply the uniform
boundedness of these operators over D+.

The uniform boundedness is lost if the weight matrix D is nondiagonal,
as shown by following example:

Example 1. (Forsgren and Sporre [280, p. 43]).

A =
[
0
1

]
, W (ε) =

[2
ε 1
1 ε

]
, with (AT W (ε)A)−1AT W (ε) =

[ 1
ε 1

]
.

3Such methods solve, in each iteration, a weighted least-squares problem with fixed
A,b and a different scaling matrix.
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Exercises
Ex. 44. Other representations of A†, e.g., [138], can be obtained by summing
(75) in special ways. Summing (75) over I ∈ I(A) we obtain, using Ex. 0.64 and
(0.103),

A† =
∑

J∈J (A)

λ∗J Â
†
∗J , (100)

a convex combination of the Moore–Penrose inverses of maximal full column rank
submatrices A∗J , with weights

λ∗J =
vol2A∗J

vol2A
, (101)

and Â†
∗J is the n×m matrix with A†

∗J in rows J and zeros elsewhere.
Similarly, summing (75) over J ∈ J (A) gives

A† =
∑

I∈I(A)

λI∗Â
†
I∗, (102)

where

λI∗ =
vol2 AI∗
vol2 A

, (103)

and Â†
I∗ is an n×m matrix with A†

I∗ in columns I and zeros elsewhere.

Ex. 45. The two stages (34)–(35) can be combined (in the limit):

minimize ‖Ax− b‖2 + α2‖x‖2, where α→ 0.

Ex. 46. Corresponding r × r submatrices of A and A†. Let A ∈ Rm×n
r , r >

0. Then the determinants of the corresponding (in transposed position) r × r
submatrices of A and A† are proportional,

det(A†)JI =
detAIJ

vol2A
, ∀ (I, J) ∈ N (A) . (104)

Proof. From (0.110a)–(0.110c) we calculate

Cr(A)† =
1

vol2A
(r(1) ∧ · · · ∧ r(r))(c

(1) ∧ · · · ∧ c(r)) . (105)

We conclude that N (A†) = J (A)× I(A) and (104) follows from (0.103). �

6. Minors of the Moore–Penrose Inverse

This section, based on Miao and Ben-Israel [550], is a continuation of the
previous section, but otherwise does not belong in this chapter on minimal
properties of generalized inverses.

If the matrix A ∈ Rn×n is nonsingular, then the adjoint formula for its
inverse

A−1 =
1

det A
adjA, (106)

has a well-known generalization, the Jacobi identity, which relates the mi-
nors of A−1 to those of A. First, some notation: for index sets α, β ∈ Qk,n

denote by:
A[α, β], the submatrix of A having row indices α and column indices

β; and
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A[α′, β′], the submatrix obtained from A by deleting rows indexed
by α and columns indexed by β.

Then the Jacobi identity is: For any α, β ∈ Qk,n,

det A−1[β, α] = (−1)s(α)+s(β) det A[α′, β′]
det A

, (107)

where s(α) is the sum of the integers in α, see, e.g., Brualdi and Schneider
[137]. By convention, det A[∅, ∅] = 1.

Moore [575] gave, for any A ∈ Rm×n
r , a determinantal formula for

the entries of the Moore–Penrose inverse A†, see Appendix A, Section A.2.
This formula was rediscovered by Berg [86] and was further generalized
to matrices defined over an integral domain by Bapat, Bhaskara Rao, and
Prasad [49].

A similar result holds for the minors of A†, for A ∈ Rm×n
r . Theorem 8

expresses them in terms of the minors of the maximal nonsingular sub-
matrices AIJ of A. This requires the notation of § 0.5.3. In addition, for
α ∈ Qk,m, β ∈ Qk,n, let

I(α) = {I ∈ I(A) : α ⊆ I},
J (β) = {J ∈ J (A) : β ⊆ J},

N (α, β) = {(I, J) ∈ N (A) : α ⊆ I, β ⊆ J}.
Then, by Ex. 0.64(c),

N (α, β) = I(α)× J (β).

For α = (α1, . . . , αk) and β = (β1, . . . , βk) in Qk,n, we denote by:
A[β ← Iα] the matrix obtained from A by replacing the βi

th column
with the unit vector eαi , for all i ∈ 1, k.

Finally, the coefficient (−1)s(α)+s(β) det A[α′, β′], of detA[α, β] in the
Laplace expansion of det A, is denoted by

∂

∂|Aαβ | |A|. (108)

Using the above notation we rewrite (108) as

∂

∂|Aαβ | |A| = (−1)s(α)+s(β) det A[α′, β′] = detA[β ← Iα], (109)

and the Jacobi identity as

det A−1[β, α] =
det A[β ← Iα]

det A
, (110a)

=
1

det AT A
det AT A[β ← Iα] . (110b)

Theorem 8. Let A ∈ Rm×n
r and 1 ≤ k ≤ r. Then, for any

α ∈ Qk,m, β ∈ Qk,n,

det A†[β, α] =


0, if N (α, β) = ∅,

1
vol2A

∑
(I,J)∈N (α,β)

det AIJ
∂

∂|Aαβ | |AIJ |, otherwise.

(111)
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Proof. See proof of [550, Theorem 1]. �
As a special case, if α = I ∈ I(A), β = J ∈ J (A), then N (α, β)

contains only one element, i.e., (I, J). Now Theorem 8 gives the identity,

det(A†)JI =
det AIJ

vol2 A
, ∀ (I, J) ∈ N (A) . (3.104)

We saw in Section 5 that the Moore–Penrose inverse is a convex combination
of ordinary inverses of r × r submatrices

A† =
∑

(I,J)∈N
λIJ Â−1

IJ , (75)

where each Â−1
IJ is an n × m matrix with the inverse of AIJ in position

(J, I) and zeros elsewhere, and

λIJ =
det2 AIJ

vol2 A
, (I, J) ∈ N (A). (77)

Theorem 8 allows a stronger claim than (3.75), i.e., every minor of A† in

position (β, α) is the same convex combination of the minors of Â−1
IJ ’s in

the corresponding position.

Theorem 9. Let A ∈ Rm×n
r and 1 ≤ k ≤ r. Then, for any

α ∈ Qk,m, β ∈ Qk,n,

det A†[β, α] =
∑

(I,J)∈N (A)

λIJ det Â−1
IJ [β, α]. (112)

Proof. From Theorem 8 it follows that

detA†[β, α] =
∑

(I,J)∈N (α,β)

det2AIJ

vol2A
detAIJ [β ← Iα]

detAIJ
,

=
∑

(I,J)∈N (α,β)

λIJ det Â−1
IJ [β, α],

by (110a). We prove (112) by showing that the sum over N (α, β) is the same as
the sum over the larger set N (A). Indeed, if (I, J) ∈ N (A), and either I �∈ I(α)

or J �∈ J (β), then there is at least one column, or row, of zeros in Â−1
IJ [β, α], thus

det Â−1
IJ [β, α] = 0. �

By applying Berg’s formula to A†, it follows from (104) that the same
weights appear in the convex decomposition of A into ordinary inverses of
the submatrices (A†)JI ,

A =
∑

(I,J)∈N (A)

λIJ
̂(A†)−1

JI , (113)

where ̂(A†)−1
JI is the m×n matrix with the inverse of the (J, I) th submatrix

of A† in position (I, J) and zeros elsewhere.
Finally applying (112) to A†, we establish a remarkable property of the

convex decomposition (113) of A: Every minor of A is the same convex

combination of the minors of ̂(A†)−1
JI ’s.
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Theorem 10. Let A ∈ Rm×n
r , r > 0. Then there is a convex decom-

position of A,

A =
∑

(I,J)∈N (A)

λIJ BIJ (114)

such that, for all k = 1, . . . , r and for every α ∈ Qk,m, β ∈ Qk,n,

det A[α, β] =
∑

(I,J)∈N (A)

λIJ det BIJ [α, β], (115)

where BIJ is an m×n matrix with an r× r nonsingular matrix in position
(I, J), zeros elsewhere.
Exercises

Ex. 47. (Miao and Ben-Israel [550, Corollary 1]). Reasoning as in Theorem 9,
it can be shown that summing (112) over I ∈ I(α) is equivalent to summing
over I ∈ I(A). Similarly, summing over J ∈ J (β) or over J ∈ J (A) give the
same result. We summarize these observations as follows: Let A ∈ Rm×n

r and
1 ≤ k ≤ r. Then, for any α ∈ Qk,m, β ∈ Qk,n,

detA†[β, α] = 0 if J (β) = ∅ or I(α) = ∅,
and, otherwise,

detA†[β, α] =
∑

J∈J (A)

λ∗J det Â†
∗J [β, α] =

∑
J∈J (β)

λ∗J detA†
∗J [β, α],

=
∑

I∈I(A)

λI∗ det Â†
I∗[β, α] =

∑
I∈I(α)

λI∗ detA†
I∗[β, α].

7. Essentially Strictly Convex Norms and the Associated
Projectors and Generalized Inverses

(This section requires familiarity with the basic properties of convex functions
and convex sets in finite-dimensional spaces; see, e.g., Rockafellar [703].)

In the previous sections various generalized inverses were characterized
and studied in terms of their minimization properties with respect to the
class of ellipsoidal (or weighted Euclidean) norms

‖x‖U = (x∗Ux)1/2, (50)

where U is positive definite.
Given any two ellipsoidal norms ‖ ‖W and ‖ ‖U on Cm and Cn, re-

spectively (defined by (50) and two given PD matrices W ∈ Cm×m and
U ∈ Cn×n), it was shown in Corollary 4 (page 119) that every A ∈ Cm×n

has a unique {1, 2}-inverse A
(1,2)
(W,U) with the following minimization prop-

erty:
For any b ∈ Cm, the vector A

(1,2)
(W,U)b satisfies

‖AA
(1,2)
(W,U)b− b‖W ≤ ‖Ax− b‖W , for all x ∈ Cn, (116a)

and

‖A(1,2)
(W,U)b‖U < ‖x‖U (116b)
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for any A
(1,2)
(W,U)b �= x ∈ Cn which gives equality in (116a). In particular, for

W = Im and U = In, the inverse mentioned above is the Moore–Penrose
inverse

A
(1,2)
(Im,In) = A†, for every A ∈ Cm×n.

In this section, which is based on Erdelsky [255], Newman and Odell
[609], and Holmes [427], similar minimizations are attempted for norms in
the more general class of essentially strictly convex norms. The resulting
projectors and generalized inverses are, in general, not even linear trans-
formations, but they still retain many useful properties that justify their
study.

We denote by α, β, φ, . . . various vector norms on finite-dimensional
spaces; see, e.g., Ex. 0.8.

Let φ be a norm on Cn and let L be a subspace of Cn. Then for any
point x ∈ Cn there is a point y ∈ L which is “closest” to x in the norm φ,
i.e., a point y ∈ L satisfying

φ(y − x) = inf{φ(�− x) : � ∈ L}, (117)

see Ex. 48 below. Generally, the closest point is not unique; see, e.g., Ex. 49.
However, Lemma 1 below guarantees the uniqueness of closest points, for
the special class of essentially strictly convex norms.

From the definition of a vector norm (see § 0.1.5), it is obvious that
every norm φ on Cn is a convex function, i.e., for every x,y ∈ Cn and
0 ≤ λ ≤ 1,

φ(λx + (1− λ)y) ≤ λφ(x) + (1− λ)φ(y).

A function φ : Cn → R is called strictly convex if, for all x �= y ∈ Cn and
0 < λ < 1,

φ(λx + (1− λ)y) < λφ(x) + (1− λ)φ(y). (118)

If φ : Cn → R is a norm, then (118) is clearly violated for y = µx, µ ≥ 0.
Thus a norm φ on Cn is not strictly convex. Following Holmes [427], a
norm φ on Cn is called essentially strictly convex (abbreviated e.s.c.) if φ
satisfies (118) for all x �= 0 and y �∈ {µx : µ ≥ 0}. Equivalently, a norm φ
on Cn is e.s.c. if

x �= y ∈ Cn

φ(x) = φ(y)
0 < λ < 1

 =⇒ φ(λx + (1− λ)y) < λφ(x) + (1− λ)φ(y).

(119)

The following lemma is a special case of a result in Clarkson [199].
Lemma 3. Let φ be any e.s.c. norm on Cn. Then for any subspace

L ⊂ Cn and any point x ∈ Cn, there is a unique point y ∈ L closest to x,
i.e.,

φ(y − x) = inf{φ(�− x) : � ∈ L}. (117)

Proof. To prove uniqueness, let y1, y2 ∈ L satisfy (117) and y1 �= y2. Then,
for any 0 < λ < 1,

φ(λy1 + (1− λ)y2 − x) < φ(y1 − x), by (119),
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showing that the point λy1 + (1 − λ)y2, which is in L, is closer to x than y1, a
contradiction. �

Definition 1. Let φ be an e.s.c. norm on Cn and let L be a subspace
of Cn. Then the φ-metric projector on L, denoted by PL,φ is the mapping
PL,φ : Cn → L assigning to each point in Cn its (unique) closest point in
L, i.e.,

PL,φ(x) ∈ L

and

φ(PL,φ(x)− x) ≤ φ(�− x), for all x ∈ Cn, � ∈ L. (120)

If φ is a general norm, then the projector PL,φ defined as above is a
point-to-set mapping,4 since the closest point PL,φ(x) need not be unique
for all x ∈ Cn and L ⊂ Cn.

Some properties of PL,φ in the e.s.c. case are collected in the following
theorem, a special case of results by Aronszajn and Smith, and Hirschfeld;
see also Singer [763, p. 140, Theorem 6.1].

Theorem 11. Let φ be an e.s.c. norm on Cn. Then, for any subspace
L of Cn and every point x ∈ Cn:

(a) PL,φ(x) = x if and only if x ∈ L;
(b) P 2

L,φ(x) = PL,φ(x);
(c) PL,φ(λx) = λPL,φ(x) for all λ ∈ C;
(d) PL,φ(x + y) = PL,φ(x) + y for all y ∈ L;
(e) PL,φ(x− PL,φ(x)) = 0;
(f) |φ(x− PL,φ(x))− φ(y − PL,φ(y))| ≤ φ(x− y) for all y ∈ Cn;
(g) φ(x− PL,φ(x)) ≤ φ(x);
(h) φ(PL,φ(x)) ≤ 2φ(x); and
(i) PL,φ is continuous on Cn.

Proof. (a) Follows from (117) and (120) since the infimum in (117) is zero if
and only if x ∈ L.

(b)
P 2

L,φ(x) = PL,φ(PL,φ(x))

= PL,φ(x), by (a), since PL,φ(x) ∈ L.
(c) For any z ∈ L and λ �= 0,

φ(λx− z) = φ
(
λx− λ z

λ

)
= |λ|φ

(
x− z

λ

)
≥ |λ|φ (x− PL,φ(x)) , by (120),

= φ(λx− λPL,φ(x)),

which proves (c) for λ �= 0. For λ = 0, (c) is obvious.
(d) From (120) it follows that, for all z ∈ L,

φ(PL,φ(x) + y − (x + y)) ≤ φ(z + y − (x + y)),

proving (d).
(e) Follows from (d).

4Excellent surveys of metric projectors in normed linear spaces are given in Deutsch
[230], and Holmes [427, Section 32]; see also Exs. 68–76 below.
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(f) For all x, y ∈ Cn,

φ(x− PL,φ(x)) ≤ φ(x− PL,φ(y)) ≤ φ(x− y) + φ(y − PL,φ(y))

and, thus,

φ(x− PL,φ(x))− φ(y − PL,φ(y)) ≤ φ(x− y),

from which (f) follows by interchanging x and y.
(g) Follows from (f) by taking y = 0.
(h)

φ(PL,φ(x)) ≤ φ(PL,φ(x)− x) + φ(x)

≤ 2φ(x), by (g).

(i) Let {xk} ⊂ Cn be a sequence converging to x,

lim
k→∞

xk = x.

Then the sequence {PL,φ(xk)} is bounded, by (h), and hence contains a conver-
gent subsequence, also denoted by {PL,φ(xk)}. Let

lim
k→∞

PL,φ(xk) = y.

Then

φ(PL,φ(xk)− xk) ≤ φ(PL,φ(x)− xk)

for k = 1, 2, . . . and in the limit,

φ(y − x) ≤ φ(PL,φ(x)− x)

proving the y = PL,φ(x). �
The function PL,φ is homogeneous by Theorem 11(c) but, in general,

it is not additive; i.e., it does not necessarily satisfy

PL,φ(x + y) = PL,φ(x) + PL,φ(y), for all x, y ∈ Cn.

Thus, in general, PL,φ is not a linear transformation. The following three
corollaries deal with cases where PL,φ is linear.

For any � ∈ L we define the inverse image of � under PL,φ, denoted by
P−1

L,φ(�), as

P−1
L,φ(�) = {x ∈ Cn : PL,φ(x) = �}.

We recall that a linear manifold (also affine set, flat, linear variety) in Cn

is a set of the form

x + L = {x + � : � ∈ L},
where x and L are a given point and subspace, respectively, in Cn.

The following result is a special case of Theorem 6.4 in Singer [763].

Corollary 5. Let φ be an e.s.c. norm on Cn and let L be a subspace
of Cn. Then the following statements are equivalent:

(a) PL,φ is additive;
(b) P−1

L,φ(0) is a linear subspace; and
(c) P−1

L,φ(�) is a linear manifold for any � ∈ L.
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Proof. First we show that

P−1
L,φ(0) = {x− PL,φ(x) : x ∈ C

n}. (121)

From Theorem 11(f) it follows that

P−1
L,φ(0) ⊃ {x− PL,φ(x) : x ∈ C

n}.
The reverse containment follows by writing each x ∈ P−1

L,φ(0) as

x = x− PL,φ(x).

The equivalence of (a) and (b) is obvious from (121). The equivalence of (b) and
(c) follows from

P−1
L,φ(�) = � + P−1

L,φ(0), for all � ∈ L, (122)

which is a result of Theorem 11(d) and (e). �
Corollary 6. Let L be a hyperplane of Cn, i.e., an (n−1)-dimensional

subspace of Cn. Then PL,φ is additive for any e.s.c. norm φ on Cn.
Proof. Let u be a vector not contained in L. Then any x ∈ Cn is uniquely
represented as

x = λu + �, where λ ∈ C, � ∈ L,
Therefore, by (121),

P−1
L,φ(0) = {λu + (�− PL,φ(λu + �)) : λ ∈ C, � ∈ L}

= {λu + PL,φ(−λu) : λ ∈ C}, by Theorem 11(d),

= {λ(u− PL,φ(u)) : λ ∈ C}, by Theorem 11(c),

is a line, proving that PL,φ is additive, by Corollary 5. �
Corollary 7 (Erdelsky [255]). Let φ be an e.s.c. norm on Cn and

let r be an integer, 1 ≤ r < n. If PL,φ is additive for all r-dimensional
subspaces of Cn, then it is additive for all subspaces of higher dimension.
Proof. Let L be a subspace with dimL > r and assume that PL,φ is not
additive. Then by Corollary 5, P−1

L,φ(0) is not a subspace, i.e., there exist x1, x2 ∈
P−1

L,φ(0) such that PL,φ(x1 + x2) = y �= 0. Now let M be an r-dimensional
subspace of L which contains y. Then x1, x2 ∈ P−1

M,φ(0), but PM,φ(x1 + x2) =
y �= 0, a contradiction of the hypothesis that PM,φ is additive. �

See also Exs. 71–74 for additional results on the linearity of the projec-
tors PL,φ.

Following Boullion and Odell [123, pp. 43–44] we define generalized
inverses associated with pairs of e.s.c. norms as follows.

Definition 2. Let α and β be e.s.c. norms on Cm and Cn, respectively.
For any A ∈ Cm×n we define the generalized inverse associated with α and
β (also called the α-β generalized inverse, see, e.g, Boullion and Odell [123,
p. 44]), denoted by A

(−1)
α,β , as

A
(−1)
α,β = (I − PN(A),β)A(1)PR(A),α, (123)

where A(1) is any {1}-inverse of A.
RHS(123) means that the three transformations

PR(A),α : Cm → R(A),

A(1) : Cm → Cn,
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and

(I − PN(A),β) : Cn → P−1
N(a),β(0),

see, e.g., (121), are performed in this order. We now show that A
(−1)
α,β is

a single-valued transformation which does not depend on the particular
{1}-inverse used in its definition. For any y ∈ Cm, the set

{A(1)PR(A),α(y) : A(1) ∈ A{1}}
obtained as A(1) ranges over A{1} is, by Theorem 1.2, the set of solutions
of the linear equation

Ax = PR(A),α(y),

a set which can be written as

A†PR(A),α(y) + {z : z ∈ N(A)}.
Now, for any z ∈ N(A), it follows from Theorem 11(a) and (d) that

(I − PN(A),β)(A†PR(A),α(y) + z) = (I − PN(A),β)A†PR(A),α(y)

proving that

A
(−1)
α,β (y) = (I − PN(A),β)A†PR(A),α(y), for all y ∈ Cn, (124)

independently of the {1}-inverse A(1) used in the definition (123).
If the norms α and β are Euclidean, then PR(A),α and PN(A),β reduce

to the orthogonal projectors PR(A) and PN(A), respectively, and A
(−1)
α,β is,

by (124), just the Moore–Penrose inverse A†; see also Exs. 69–72 and 76
below. Thus many properties of A† are specializations of the corresponding
properties of A

(−1)
α,β , some of which are collected in the following theorem. In

particular, the minimization properties of A† are special cases of statements
(i) and (j) below.

As in the case of linear transformations, we denote

N(A(−1)
α,β ) = {y ∈ Cm : A

(−1)
α,β (y) = 0},

R(A(−1)
α,β ) = {A(−1)

α,β (y) : y ∈ Cm}.
Theorem 12 (Erdelsky [255], Newman and Odell [609]). Let α and

β be e.s.c. norms on Cm and Cn, respectively. Then, for any A ∈ Cm×n:

(a) A
(−1)
α,β : Cm → Cn is a homogeneous transformation.

(b) A
(−1)
α,β is additive (hence linear) if PR(A),α and PN(A),β are additive.

(c) N(A(−1)
α,β ) = P−1

R(A),α(0).

(d) R(A(−1)
α,β ) = P−1

N(A),β(0).

(e) AA
(−1)
α,β = PR(A),α.

(f) A
(−1)
α,β A = I − PN(A),β.

(g) AA
(−1)
α,β A = A.

(h) A
(−1)
α,β AAA

(−1)
α,β = A

(−1)
α,β .
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(i) For any b ∈ Cm, an α-approximate solution of Ax = b is defined
as any vector x ∈ Cn minimizing α(Ax − b). Then x is an α-
approximate solution of (1) if and only if

Ax = AA
(−1)
α,β (b). (125)

(j) For any b ∈ Cm, the equation

Ax = b (1)

has a unique α-approximate solution of minimal β-norm, given by
A

(−1)
α,β (b); that is, for every b ∈ Cm,

α(AA
(−1)
α,β (b)− b) ≤ α(Ax− b), for all x ∈ Cn, (126a)

and

β(A(−1)
α,β (b)) ≤ β(x) (126b)

for any x �= A
(−1)
α,β (b) with equality in (126a).

Proof. (a) Follows from the definition and Theorem 11(c).
(b) Obvious from definition (123).
(c) From (123) it is obvious that

N(A(−1)
α,β ) ⊃ P−1

R(A),α(0).

Conversely, if y �= P−1
R(A),α(0); i.e., if P−1

R(A),α(y) �= 0, then A†P−1
R(A),α(y) �= 0

since (A†)[R(A)] is nonsingular (see Ex. 2.90) and, consequently,

(I − PN(A),β)A†P−1
R(A),α(y) �= 0, by Theorem 11(a).

(d) From (121) and the definition (123) it is obvious that

R(A(−1)
α,β ) ⊂ P−1

N(A),β(0).

Conversely, let x ∈ P−1
N(A),β(0). Then, by (121),

x = (I − PN(A),β)z, for some z ∈ C
n,

= (I − PN(A),β)PR(A∗)z, by Theorem 11(d),

= (I − PN(A),β)A†Az

= (I − PN(A),β)A†PR(A),α(Az)

= A
(−1)
α,β (Az). (127)

(e) Obvious from (124).
(f) For any z ∈ Cn it follows from (127) that (I − PN(A),β)z = A

(−1)
α,β (Az).

(g) Obvious from (e) and Theorem 11(a).
(h) Obvious from (f) and (d).
(i) A vector x ∈ Cn is an α-approximate solution of (1) if and only if

α(Ax− b) ≤ α(y − b), for all y ∈ R(A),

or, equivalently,

Ax = PR(A),α(b), by (120),

= AA
(−1)
α,β (b), by (e).
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(j) From (125) it follows that x is an α-approximate solution of (1) if and
only if

x = A†AA(−1)
α,β (b) + z, z ∈ N(A), (128)

= A†PR(A),α(b) + z, z ∈ N(A), by (e). (129)

Now, by Lemma 3 and Definition 1, the β-norm of

A†PR(A),α(b) + z, z ∈ N(A),

is minimized uniquely at

z = −PN(A),βA
†PR(A),α(b),

which substituted in (128) gives

x = (I − PN(A),β)A†PR(A),α(b)

= A
(−1)
α,β (b). �

See Exs. 76–79 for additional results on the generalized inverse A
(−1)
α,β .

Exercises
Ex. 48. Closest points. Let φ be a norm on Cn and let L be a nonempty closed
set in Cn. Then, for any x ∈ Cn, the infimum

inf{φ(�− x) : � ∈ L}
is attained at some point y ∈ L called φ-closest to x in L.
Proof. Let z ∈ L. Then the set

K = L ∩ {� ∈ C
n : φ(�− x) ≤ φ(z− x)}

is closed (being the intersection of two closed sets) and bounded, hence compact.
The continuous function φ(� − x) attains its minimum at some � ∈ K but, by
definition of K,

inf{φ(�− x) : � ∈ K} = inf{φ(�− x) : � ∈ L}. �

Ex. 49. Let φ be the �1-norm on R2,

φ(x) = φ

([
x1

x2

])
= |x1|+ |x2|,

see, e.g., Ex. 0.10, and let L = {x ∈ R2 : x1 + x2 = 1}. Then the set of φ-closest
points in L to

(
1
1

)
is
{(

α
−α

)
: −1 ≤ α ≤ 1

}
.

Ex. 50. Let ‖ ‖ be the Euclidean norm on Cn, let S ⊂ Cn be a convex set, and
let x,y be two points in Cn: x �∈ S and y ∈ S. Then the following statements
are equivalent:

(a) y is ‖ ‖-closest to x in S.
(b) s ∈ S =⇒ �〈y − x, s− y〉 ≥ 0.

Proof. (Adapted from Goldstein [302, p. 99]).
(a) =⇒ (b) For any 0 ≤ λ ≤ 1 and s ∈ S,

y + λ(s− y) ∈ S.
Now

0 ≤ ‖x− y − λ(s− y)‖2 − ‖x− y‖2

= 2λ�〈y − x, s− y〉+ λ2‖s− x‖2

< 0, if �〈y − x, s− y〉 < 0 and 0 < λ < −2�〈y − x, s− y〉
‖s− y‖2 ,

a contradiction to (a).
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(b) =⇒ (a) For any s ∈ S,

‖x− s‖2 − ‖x− y‖2 = ‖s‖2 − 2�〈s,x〉+ 2�〈y,x〉 − ‖y‖2

= ‖s− y‖2 + 2�〈y − x, s− y〉
≥ 0, if (b). �

Ex. 51. A hyperplane separation theorem. Let S be a nonempty closed convex
set in Cn, x a point not in S. Then there is a real hyperplane

{z ∈ C
n : �〈u, z〉 = α}, for some 0 �= u ∈ C

n, α ∈ R,

which separates S and x, in the sense that

�〈u,x〉 < α and �〈u, s〉 ≥ α for all s ∈ S.
Proof. Let xS be the ‖ ‖-closest point to x in S, where ‖ ‖ is the Euclidean
norm. The point xS is unique, by the same proof as in Lemma 3, since ‖ ‖ is
e.s.c. Then, for any s ∈ S,

�〈xS − x, s〉 ≥ �〈xS − x,xS〉, by Ex. 50,

> �〈xS − x,x〉,
since

�〈xS − x,xS − x〉 = ‖xS − x‖2 > 0.

The proof is completed by choosing

u = xS − x, α = �〈xS − x,xS〉. �

Gauge Functions and Their Duals

Ex. 52. A function φ : Cn → R is called a gauge function (also a Minkowski
functional) if:

(G1) φ is continuous, and for all x,y ∈ Cn;
(G2) φ(x) ≥ 0 and φ(x) = 0 only if x = 0;
(G3) φ(αx) = αφ(x) for all α ≥ 0; and
(G4) φ(x + y) ≤ φ(x) + φ(y).

A gauge function φ is called symmetric if, for all x = (x1, x2, . . . , xn)T ∈ Cn:

(G5) φ(x) = φ(x1, x2, . . . , xn) = φ(xπ(1), xπ(2), . . . , xπ(n)), for every permu-
tation {π(1), π(2), . . . , π(n)} of {1, 2, . . . , n}; and

(G6) φ(x) = φ(x1, x2, . . . , xn) = φ(λ1x1, λ2x2, . . . , λnxn), for every scalar
sequence {λ1, λ2, . . . , λn} satisfying{ |λi| = 1, if φ : Cn → R,

λi = ±1, if φ : Rn → R,
i ∈ 1, n.

Let φ : Cn → R satisfy (G1)–(G3). The dual function5 of φ is the function
φD : Cn → R defined by

φD(y) = sup
x�=0

�〈y,x〉
φ(x)

. (130)

Then:

5Originally, φD was called the conjugate of φ by Bonnesen and Fenchel [116] and
von Neumann [839]. However, in the modern convexity literature, the word conjugate
function has a different meaning, see, e.g., Rockafellar [703].
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(a) The supremum in (130) is attained, and

φD(y) = max
x∈Si

�〈y,x〉
φ(x)

, i = 1 or φ, (131a)

where

S1 = {x ∈ C
n : ‖x‖1 =

n∑
i=1

|xi| = 1} (131b)

and

Sφ = {x ∈ C
n : φ(x) = 1}. (131c)

(b) φD is a gauge function.
(c) φD satisfies (G5) [(G6)] if φ does.
(d) If φ is a gauge function (i.e., if φ also satisfies (G4)), then φ is the conju-

gate of φD (Bonnesen and Fenchel [116], von Neumann [839]).

Proof. (a) From (G3) it follows that the constraint x �= 0 in (130) can be
replaced by x ∈ S1 or, alternatively, by x ∈ Sφ. The supremum is attained since
S1 is compact.

(b),(c) The continuity of φD follows from (G1), (131a) and the compactness
of S1. It is easy to show that φ shares with φD each of the properties (G2), (G3),
(G5), and (G6), while (G4) holds for φD, by definition (130), without requiring
that it hold for φ.

(d) From (130) it follows that

�〈y,x〉 ≤ φ(x)φD(y), for all x,y ∈ C
n, (132)

and, hence,

φ(x) ≥ sup
y �=0

�〈y,x〉
φD(y)

. (133)

To show equality in (133) we note that the set

B = {z : φ(z) ≤ 1}
is a closed convex set in Cn, an easy consequence of the definition of a gauge
function. From the hyperplane separation theorem (see, e.g., Ex. 51 above) we
conclude:

If a point x is contained in every closed half-space {z : �〈u, z〉 ≤ 1}
which contains B, then x ∈ B, i.e., φ(x) ≤ 1. (134)

From (131a) and (131c) it follows that

B ⊂ {z : �〈y, z〉 ≤ 1}

is equivalent to

φD(y) ≤ 1.

Statement (134) is thus equivalent to

{φD(y) ≤ 1 =⇒ �〈y,x〉 ≤ 1} =⇒ φ(x) ≤ 1,

which proves equality in (133). �
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Convex Bodies and Gauge Functions
Ex. 53. A convex body in Cn is a closed bounded convex set with nonempty
interior.

Let B ⊂ Cn be a convex body and let 0 ∈ intB where intB denotes the
interior of B. The gauge function (or Minkowski functional) of B is the function
φB : Cn → R defined by

φB(x) = inf{λ > 0 : x ∈ λB}. (135)

Then:
(a) φB is a gauge function, i.e., it satisfies (G1)–(G4) of Ex. 52.
(b) B = {x ∈ Cn : φB(x) ≤ 1}.
(c) intB = {x ∈ Cn : φB(x) < 1}.

Conversely, if φ : Cn → R is any gauge function, then φ is the gauge function φB

of a convex body B defined by

B = {x ∈ C
n : φB(x) ≤ 1}, (136)

which has 0 as an interior point.
Thus (135) and (136) establish a one-to-one correspondence between all gauge

functions φ : Cn → R and all convex bodies B ⊂ Cn with 0 ∈ intB.

Ex. 54. A set B ∈ Cn is called equilibrated if

x ∈ B, |λ| ≤ 1 =⇒ λx ∈ B.
Clearly, 0 is an interior point of any equilibrated convex body.

Let B be a convex body, 0 ∈ intB. Then B is equilibrated if and only if its
gauge function φB satisfies

φB(λx) = |λ|φB(x), for all λ ∈ C, x ∈ C
n. (137)

Ex. 55. Vector norms. From the definition of a vector norm (§ 0.1.5) and a
gauge function (Ex. 52) it follows that a function φ : Cn → R is a norm if and
only if φ is a gauge function satisfying (137).

Thus (135) and (136) establish a one-to-one correspondence between all
norms φ : Cn → R and all equilibrated convex bodies B ∈ Cn (Householder
[432, Chapter 2]).

Ex. 56. If a norm φ : Cn → R is unitarily invariant (i.e., if φ(Ux) = φ(x) for all
x ∈ Cn and any unitary matrix U ∈ Cn×n), then φ is a symmetric gauge function
(see Ex. 52). Is the converse true?

Dual Norms
Ex. 57. The dual (also polar) of a nonempty set B ⊂ Cn is the set BD defined
by

BD = {y ∈ C
n : x ∈ B =⇒ �〈y,x〉 ≤ 1}. (138)

Let B ⊂ Cn be an equilibrated convex body. Then:
(a) BD is an equilibrated convex body.
(b) (BD)D = B, i.e., B is the dual of its dual.
(c) Let φB be the norm corresponding to B via (135). Then the dual of φB ,

computed by (130),

φB
D(y) = sup

x�=0

�〈y,x〉
φB(x)

, (139)

is the norm corresponding to BD. The norm φB
D, defined by (139), is

called the dual of φB .



7. ESSENTIALLY STRICTLY CONVEX NORMS 141

(d)
(
φB

D

)
D

= φB , i.e., φB is the dual of its dual. Such pairs {φB , φB
D} are

called dual norms (Householder [432, Chapter 2]).

Ex. 58. �p–norms. If φ is an �p-norm, p ≥ 1 (see Exs. 0.9–10), then its dual is
an �q-norm where q is determined by

1
p

+ 1
q

= 1.

In particular, the �1- and �∞-norms are dual, while the Euclidean norm (the
�2-norm) is self-dual.

Ex. 59. The generalized Cauchy–Schwartz inequality. Let {φ, φD} be dual norms
on Cn. Then

�〈y,x〉 ≤ φ(x)φD(y), for all x,y ∈ C
n, (132)

and for any x �= 0 [y �= 0] there exists a y �= 0 [x �= 0] giving equality in (132).
Such pairs {x,y} are called dual vectors (with respect to the norm φ).

If φ is the Euclidean norm, then (132) reduces to the classical Cauchy–
Schwartz inequality (0.4) (Householder [432]).

Ex. 60. A Tchebycheff solution of Ax = b, A ∈ C
(n+1)×n
n . A Tchebycheff

approximate solution of the system

Ax = b (1)

is, by the definition in Theorem 12(i), a vector x minimizing the Tchebycheff
norm

‖r‖∞ = max
i=1,... ,m

{|ri|}
of the residual vector

r = b−Ax. (2)

Let A ∈ C
(n+1)×n
n and b ∈ Cn+1 be such that (1) is inconsistent. Then (1) has a

unique Tchebycheff approximate solution given by

x = A†(b + r), (140)

where the residual r = [ri] is

ri =

n+1∑
j=1
|(PN(A∗)b)j |2

n+1∑
j=1
|(PN(A∗)b)j |

(PN(A∗)b)i

|(PN(A∗)b)i| , i ∈ 1, n+ 1. (141)

(The real case appeared in Cheney [184, p. 41] and Meicler [540].)
Proof. From

r(x)− b = −Ax ∈ R(A)

it follows that any residual r satisfies

PN(A∗)r = PN(A∗)b

or, equivalently,

〈PN(A∗)b, r〉 = 〈b, PN(A∗)b〉, (142)

since dimN(A∗) = 1 and b �∈ R(A). (Equation (142) represents the hyperplane
of residuals; see, e.g., Cheney [184, Lemma, p. 40]). A routine computation
now shows, that among all vectors r satisfying (142) there is a unique vector
of minimum Tchebycheff norm given by (141), from which (140) follows since
N(A) = {0}. �
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Ex. 61. Let A ∈ C
(n+1)×n
n and b ∈ Cn+1 be such that (1) is inconsistent. Then,

for any norm φ on Cn, a φ-approximate solution of (1) is given by

x = A†(b + r),

where the residual r is a dual vector of PN(A∗)b with respect to the norm φ, and
the error of approximation is

φ(r) =
〈b, PN(A∗)b〉
φD(PN(A∗)b)

.

Proof. Follows from (142) and Ex. 59. �
Ex. 62. Let {φ, φD} be dual norms with unit balls B = {x : φ(x) ≤ 1} and
BD = {y : φD(y) ≤ 1}, respectively, and let {x0,y0} be dual vectors of norm
one, i.e., φ(x0) = 1, φD(y) = 1, and

�〈x0,y0〉 = φ(x0)φD(y0).

Then:
(a) The hyperplane

H = {x : �〈y0,x〉 = φ(x0)φD(y0)}
supports B at x0, that is, x0 ∈ H and B lies on one side of H, i.e.,

x ∈ B =⇒ �〈y0,x〉 ≤ �〈y0,x0〉 = φ(x0)φD(y0).

(b) The hyperplane

{y : �〈x0,y〉 = φ(x0)φD(y0)}
supports BD at y0.

Proof. Follows from (132). �
Ex. 63. A closed convex set B is called rotund if its boundary contains no line
segments or, equivalently, if each one of its boundary points is an extreme point.

A closed convex set is called smooth if it has, at each boundary point, a
unique supporting hyperplane.

Show that an equilibrated convex body B is rotund if and only if its dual set
BD is smooth.
Proof. If : If B is not rotund, then its boundary contains two points x0 �= x1

and the line segment {λx1 + (1− λ)x0 : 0 ≤ λ ≤ 1} joining them; that is

φ(λx1 + (1− λ)x0) = 1, 0 ≤ λ ≤ 1,

where φ is the gauge function of B.
For any 0 < λ < 1 let yλ be a dual vector of xλ = λx1 + (1 − λ)x0 with

φD(yλ) = 1. Then

�〈xλ,yλ〉 = 1

and, by (132),

�〈x0,yλ〉 = �〈x1,yλ〉 = 1,

showing that yλ is a dual vector of both x0 and x1 and, by Ex. 62(b), both
hyperplanes

{y : �〈xλ,y〉 = 1}, λ = 0, 1,

support BD at yλ.
Only if : Follows by reversing the above steps. �
For additional results on rotundity see the survey of Cudia [211].
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Ex. 64. Let φ be a norm on Cn and let B be its unit ball,

B = {x : φ(x) ≤ 1}.
Then:

(a) φ is e.s.c. if and only if B is rotund.
(b) φ is Gateaux differentiable; that is, the limit

φ ′(x;y) = lim
t→0

φ(x + ty)− φ(x)
t

exists for all x,y ∈ Cn if and only if B is smooth.

Ex. 65. Give an example of dual norms {φ, φD} such that φ is e.s.c. but φD is
not.
Solution. Let

B =
{[
x1

x2

]
∈ R

2 : x1 ≥ 1
2 (x2 + 1)2 − 1, x2 ≥ 1

2 (x1 + 1)2 − 1
}
.

Then B is an equilibrated convex body. B is rotund but not smooth (the points(
1
1

)
and

(−1
−1

)
are “corners” of B), so, by Ex. 61, the dual set BD is not rotund.

Hence, by Ex. 64(a), the gauge function φB is an e.s.c. norm, but its dual φB
D is

not. �
Norms of Homogeneous Transformations

Ex. 66. (Bauer [54], Householder [432]). Let α and β be norms on Cn and
Cm, respectively. Let A : Cn → Cm be a continuous transformation that is
homogeneous; that is,

A(λx) = λA(x), for all λ ∈ C, x ∈ C
n.

The norm (also least upper bound) of A corresponding to {α, β}, denoted by
‖A‖α,β (also by lubα,β(A)), is defined as

‖A‖α,β = sup
x�=0

β(Ax)
α(x)

= max
α(x)=1

β(Ax), (143)

since A is continuous and homogeneous. Then for any A,A1, A2 as above:

(a) ‖A‖α,β ≥ 0 with equality if and only if A is the zero transformation.
(b) ‖λA‖α,β = |λ| ‖A‖α,β for all λ ∈ C.
(c) ‖A1 +A2‖α,β ≤ ‖A1‖α,β + ‖A2‖α,β .
(d) If Bα, Bβ are the unit balls of α, β, respectively, then

‖A‖α,β = inf{λ > 0 : ABα ⊂ λBβ}.
(e) If A1 : Cn → Cm and A2 : Cm → Cp are continuous homogeneous

transformations, and if α, β, and γ are norms on Cn,Cm, and Cp, re-
spectively, then

‖A2A1‖α,γ ≤ ‖A1‖α,β ‖A2‖β,γ .

(f) If A : Cn → Cm is a linear transformation, and if α = β, i.e., the same
norm is used in Cn and Cm, then definition (143) reduces to that given
in Ex. 0.35.

Ex. 67. Let α and β be norms on Cn and Cm, respectively. Then, for any
A ∈ Cm×n,

‖A‖α,β = ‖A∗‖βD,αD . (144)
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Proof. From (132) and (143) it follows that, for all x ∈ Cn, y ∈ Cm,

�〈Ax,y〉 ≤ β(Ax)βD(y) ≤ ‖A‖α,β α(x)βD(y),

with equality for at least one pair x �= 0, y �= 0. The dual inequalities

�〈x, A∗y〉 ≤ α(x)αD(A∗y) ≤ ‖A∗‖βD,αD βD(y)α(x)

then show that

‖A‖α,β ≤ ‖A∗‖βD,αD ,

from which (144) follows by reversing the roles of A andA∗ and by using Ex. 57(d).
�
Projective Bounds and Norms

Ex. 68. (Erdelsky [255]). Let α be an e.s.c. norm on Cn. The projective bound
of α, denoted by Q(α), is defined as

Q(α) = sup
L
‖PL,α‖α,α (145)

where the supremum is taken over all subspaces L with dimension 1 ≤ dimL ≤
n − 1. (The α-metric projector PL,α is continuous and homogeneous, by Theo-
rem 11(c) and (i), allowing the use of (143) to define ‖PL,α‖α,α.) Then:

(a) The supremum in (145) is finite and is attained for a k-dimensional sub-
space for each k = 1, 2, . . . , n− 1.

(b) The projective bound satisfies

1 ≤ Q(α) < 2 (146)

and the upper limit is approached arbitrarily closely by e.s.c. norms.

Ex. 69. (Erdelsky [255]). An e.s.c. norm α on Cn for which the projective
bound

Q(α) = 1

is called a projective norm. All ellipsoidal norms,

‖x‖U = (x∗Ux)1/2, U positive definite, (50)

are projective.
Conversely, for spaces of dimension ≥ 3, all projective norms are ellipsoidal,

both in the real case (Kakutani [455]) and in the complex case (Bohnenblust
[115]). An example of a nonellipsoidal projective norm on R2 is

α

([
x1

x2

])
=
{

(|x1|p + |x2|p)1/p, if x1x2 ≥ 0,
(|x1|q + |x2|q)1/q, if x1x2 < 0,

where (1/p) + (1/q) = 1, 1 < p �= 2.

Ex. 70. (Erdelsky [255]). If α is a projective norm, L is a subspace for which
the α-metric projector PL,α is linear, and N denotes

N = P−1
L,α(0), (147)

then

L = P−1
N,α(0). (148)

Proof. L ⊂ P−1
N,α(0): If x ∈ L and y ∈ N , then

P−1
L,α(x + y) = x,
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by Theorem 11(a) and, consequently,

α(x) ≤ ‖PL,α‖α,α α(x + y)

≤ Q(α)α(x + y)

= α(x + y)

for all y ∈ N , proving that PN,α(x) = 0.
P−1

N,α(0) ⊂ L: If x ∈ P−1
N,α(0), then, by (121), it can be written as

x = x1 + x2, x1 ∈ L, x2 ∈ N.
Therefore,

0 = PN,α(x) = PN,α(x1) + x2, by Theorem 11(d),

= x2, since L ⊂ P−1
N,α(0),

proving that

x = x1 ∈ L. �
Projective Norms and the Linearity of Metric Projectors
The following four exercises probe the relations between the linearity of the α-
metric projector PL,α and the projectivity of the norm α. Exercise 71 shows
that

α projective =⇒ PL,α linear for all L,

and a partial converse is proved in Ex. 73.

Ex. 71. (Erdelsky [255]). If α is a projective norm on Cn, then PL,α is linear
for all subspaces L of Cn.
Proof. By Corollary 7 it suffices to prove the linearity of PL,α for all one-
dimensional subspaces L.

Let dimL = 1, � ∈ L, α(�) = 1, and let � +N be a supporting hyperplane
of Bα = {x : α(x) ≤ 1} at �. Since

α(�) ≤ α(x), for all x ∈ � +N,

it follows from Definition 1 that

PN,α(�) = 0

and hence

L ⊂ P−1
N,α(0).

Now PN,α is linear by Corollary 6, since dimN = n − 1, which also shows that
P−1

N,α(0) is a one-dimensional subspace, by (121), and hence

L = P−1
N,α(0).

From Ex. 70 it follows then that

N = P−1
L,α(0),

and the linearity of PL,α is established by Corollary 5(b). �
Ex. 72. (Erdelsky [255]). If α is an e.s.c. norm on Cn, L is a subspace for which
PL,α is linear, and N denotes

N = P−1
L,α(0), (147)

then

L = P−1
N,α(0) (148)
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if, and only if,

PL,α + PN,α = I.

Proof. Follows from (121). �
Ex. 73. (Erdelsky [255]). Let α be an e.s.c. norm on Cn and let 1 ≤ k ≤ n− 1
be an integer such that, for every k-dimensional subspace L of Cn,

PL,α is linear

and

L = P−1
N,α(0), (148)

where N is given by (147). Then α is projective.
Proof. Let α be nonprojective; i.e., let Q(α) > 1. Then there is a k-dimensional
subspace L and two points x,y in Cn such that

y = PL,α(x) (149a)

and

α(y) = ‖PL,α‖α,α α(x) = Q(α)α(x) > α(x). (149b)

Let N = P−1
L,α(0). Then

0 �= y − x ∈ N, by (149b), (149a), and (121), (149c)

and

α(x) = α(y − (y − x)) < α(y). (149d)

Now

y = PL,α(y) + PN,α(y), by (148) and Ex. 72

= y + PN,α(y), by (149a) and Theorem 11(a), (149e)

proving that

PN,α(y) = 0, (149f)

which, by (149c) and (120), contradicts (149d). �

Ex. 74. (Newman and Odell [609]). Let φp be the �p-norm, 1 < p <∞, on Cn.
The PL,φp is linear for every subspace L if and only if p = 2.

Essentially Strictly Convex Norms

Ex. 75. (Erdelsky [255]). Let α be an e.s.c. norm on Cn, 0 �= x ∈ Cn and let
L be a subspace of Cn. Then

x ∈ P−1
L,α(0)

if, and only if, there is a dual y of x with respect to α (i.e., a vector y �= 0
satisfying 〈y,x〉 = α(x)αD(y)), such that y ∈ L⊥.

Ex. 76. (Erdelsky [255]). If α and αD are both e.s.c. norms on Cn, L is a
subspace of Cn for which PL,α is linear, and N = P−1

L,α(0), then:

(a) L⊥ = P−1
N⊥,αD

(0).
(b) PN⊥,αD

= (PL,α)∗.
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Proof. (a) Since both α and αD are e.s.c., it follows from Exs. 64(a), 63, and 62
that every 0 �= x has a dual 0 �= y with respect to α and x is a dual of y. Now

y ∈ P−1
N⊥,αD

(0) ⇐⇒ x ∈ N⊥⊥ = N,

by Ex. 75, which also shows that

x ∈ N ⇐⇒ y ∈ L⊥,

proving (a).
(b) By (a) and Corollary 5(b), PN⊥,αD

is linear. Let x and y be arbitrary
vectors, written as

x = x1 + x2, x1 ∈ L, x2 ∈ N, by (121),

and

y = y1 + y2, y1 ∈ N⊥, y2 ∈ L⊥, by (a) and (121).

Then

〈PL,α(x),y〉 = 〈x1,y1〉 = 〈x, PN⊥,αD
(y)〉. �

Ex. 77. (Erdelsky [255]). Dual norms. Let α and αD be dual norms on Cn.
Then:

(a) If α and αD are both e.s.c., then Q(α) = Q(αD).
(b) If α is projective, then αD is e.s.c.
(c) If α is projective, then so is αD.

α-β Generalized Inverses

Ex. 78. (Erdelsky [255]). Let α and β be e.s.c. norms on Cm and Cn, respec-
tively, and let A ∈ Cm×n.

If B ∈ Cn×m satisfies

AB = PR(A),α, (150a)

BA = I − PN(A),β , (150b)

rankB = rankA, (150c)then

B = A
(−1)
α,β .

Thus, if the α-β generalized inverse of A is linear, it can be defined by (150a)–
(150c).

Ex. 79. (Erdelsky [255]). Let α and β be e.s.c. norms on Cm and Cn, respec-
tively. Then

(A(−1)
α,β )(−1)

β,α = A, for all A ∈ C
m×n, (151)

if and only if α and β are projective norms.
Proof. If : If α and β are projective, then A

(−1)
α,β is linear for any A, by Theo-

rem 12(b) and Ex. 71. Let R̂ = R(A(−1)
α,β ) and N̂ = N(A(−1)

α,β ). Then, by Exs. 70,
71, 75, and Theorem 12(c), (d), (e), (g), and (h),

A
(−1)
α,β A = I − PN(A),β = PR̂,β ,

AA
(−1)
α,β = PR(A),α = I − PN̂,α,

rankA(−1)
α,β = rankA,

and (151) follows from Ex. 78.
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Only if : If (151) holds for all A ∈ Cm×n, then

I − PN(A),β = A
(−1)
α,β A = A

(−1)
α,β (A(−1)

α,β )(−1)
β,α = PR̂,β ,

PR(A),α = AA
(−1)
α,β = (A(−1)

α,β )(−1)
β,α A

(−1)
α,β = I − PN̂,α,

and α and β are projective by Ex. 73. �

Ex. 80. (Erdelsky [255]). If α and β are e.s.c. norms on Cm and Cn, respectively,
then

(A(−1)
α,β )∗ = (A∗)(−1)

βD,αD
, for all A ∈ C

m×n. (152)

Proof. From Theorem 12(d) and (f) and Exs. 70, 71, and 72,

AA
(−1)
α,β = PR(A),α = I − PN,α, N = P−1

R(A),α(0),

A
(−1)
α,β A = I − PN(A),β = PM,β , M = P−1

N(A),β(0),

and

R(A) = P−1
N,α(0),

N(A) = P−1
M,β(0).

Since αD and βD are e.s..c. norms, by Ex. 77(b), it follows from Ex. 76(b) that

AA
(−1)
α,β = I − (PR(A)⊥,αD

)∗ = I − (PN(A∗),αD
)∗,

A
(−1)
α,β A = (PN(A)⊥,βD

)∗ = (PR(A∗),βD
)∗,

and hence

(A(−1)
α,β )∗ A∗ = I − PN(A∗),αD

,

A∗ (A(−1)
α,β )∗ = PR(A∗),βD

,

from which (152) follows by using Ex. 78. �

Ex. 81. (Erdelsky [255]). If α and β are e.s.c. norms on Cm and Cn, respectively,
then, for any O �= A ∈ Cm×n,

1

‖A(−1)
α,β ‖β,α

≤ inf {‖X‖α,β : X ∈ C
m×n, rank(A+X) < rankA}

≤ q

‖A(−1)
α,β ‖β,α

, (153)

where

q =
{

1, if rankA = m,
Q(α), otherwise.

In particular, if α is projective,

1

‖A(−1)
α,β ‖β,α

= inf{‖X‖α,β : X ∈ C
m×n, rank(A+X) < rankA}. (154)

A special case of (154) is given in Ex. 6.30 below.
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8. An Extremal Property of the Bott–Duffin Inverse with
Application to Electrical Networks

An important extremal property of the Bott–Duffin inverse, studied in
Sections 2.10 and 2.13, is stated in the following theorem:

Theorem 13 (Bott and Duffin [120]). Let A ∈ Cn×n be Hermitian
and let L be a subspace of Cn such that A

(−1)
(L) exists.6 Then, for any two

vectors v,w ∈ Cn, the quadratic function

q(x) = 1
2 (x− v)∗A(x− v)−w∗x (155)

has a unique stationary value in L, when

x = A
(−1)
(L) (Av + w). (156)

Conversely, if the Hermitian matrix A and the subspace L are such that for
any two vectors v,w ∈ Cn, the quadratic function (155) has a stationary
value in L, then A

(−1)
(L) exists and the stationary point is unique for any

v, w given by (156).
Proof. A stationary point of q in L is a point x ∈ L at which the gradient
∇q(x) =

[
∂

∂xj
q(x)

]
(j ∈ 1, n), is orthogonal to L, i.e.,

∇q(x) ∈ L⊥. (157)

The value of q at a stationary point is called a stationary value of q.
Differentiating (155) we get from (157),

∇q(x) = A(x− v)−w ∈ L⊥,

and, by taking y = −∇q(x), we conclude that x is a stationary point of q in L if
and only if x is a solution of

Ax + y = Av + w, x ∈ L, y ∈ L⊥. (158)

Thus the existence of a stationary value of q for any v, w is equivalent to the
consistency of (158) for any v, w, i.e., to the existence of A(−1)

(L) , in which case
(156) is the unique stationary point in L. �

Corollary 8. Let A ∈ Cn×n be Hermitian positive definite and let L
be a subspace of Cn. Then, for any v, w ∈ Cn, the function

q(x) = 1
2 (x− v)∗A(x− v)−w∗x (155)

has a unique minimum in L when

x = A
(−1)
(L) (Av + w). (156)

Proof. Follows from Theorem 13, since A(−1)
(L) exists, by Ex. 2.107, and the

stationary value of q is actually a minimum since A is PD. �
We return now to the direct current electrical network of Section 2.13,

consisting of m nodes {ni : i ∈ 1, m} and n branches {bj : j ∈ 1, n}, with
aj > 0, the conductance of bj ;
A = diag (aj), the conductance matrix ;
xj , the voltage across bj ;
yj , the current in bj ;
vj , the voltage generated by the sources in series with bj ;

6See Ex. 2.94 for conditions equivalent to the existence of A
(−1)
(L) .
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wj , the current generated by the sources in parallel with bj ; and
M , the (node-branch) incidence matrix.

We recall that the branch voltages x and currents y are uniquely de-
termined by the following three physical laws:

Ax + y = Av + w (Ohm’s law), (159)

y ∈ N(M) (Kirchhoff’s current law), (160)

x ∈ R(MT ) (Kirchhoff’s voltage law), (161)

and that x, y are related by

x = A
(−1)
(R(MT ))(Av + w), (2.151a)

y = (I −AA
(−1)
(R(MT )))(Av + w), (2.151b)

or, dually, by (2.153b) and (2.153a).
A classical variational principle of Kelvin [804] and Maxwell [537, pp.

903–908], states that the voltages x and the currents y are such that the
rate of energy dissipation is minimized. This variational principle is given
in the following corollary:

Corollary 9. Let A, M, x, y, v, w be as above. Then:

(a) The vector x0 of branch voltages is the unique minimizer of

q(x) = 1
2 (x− v)∗A(x− v)−w∗x (155)

in R(MT ), and the vector y0 of branch currents is

y0 = −∇q(x0) = −A(x0 − v) + w ∈ R(MT )⊥ = N(M). (162)

(b) The vector y0 is the unique minimizer of

p(y) = 1
2 (y −w)∗A−1(y −w)− v∗y (163)

in N(M), and the vector x0 is

x0 = −∇p(y0) = −A−1(y0 −w) + v ∈ N(M)⊥ = R(MT ). (164)

Proof. Since the conductance matrix A is PD, it follows by comparing (156) and
(2.151a) that x0 is the unique minimizer of (155) in R(MT ), and the argument
used in the proof of Theorem 13 shows that y0 = −∇q(x0) as given in (162).
Part (b) follows from the dual derivation (2.153a) and (2.153b) of y0 and x0,
respectively, as solutions of the dual network equations (2.152). �

Corollary 9 shows that the voltage x is uniquely determined by the
function (155) to be minimized subject to Kirchhoff’s voltage law (161).
Kirchhoff’s current law (160) and Ohm’s law (159) are then consequences
of (162).

Dually, the current y is uniquely determined by the function (163) to
be minimized subject to Kirchhoff’s current law (160), and the other two
laws (159) and (161) then follow from (164).

Corollary 9 is a special case of the Duality Theory of Convex Program-
ming; see, e.g., Rockafellar [703].
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Exercises
Ex. 82. Let A ∈ Cn×n be Hermitian PD, and let the subspace L ⊂ Cn and the
vector w ∈ Cn be given. Then the quadratic function

1
2x

∗Ax−w∗x (165)

has a minimum in L if and only if the system

Ax−w ∈ L⊥, x ∈ L, (166)

is consistent, in which case the solutions x of (166) are the minimizers of (165)
in L.

Ex. 83. Show that the consistency of (166) is equivalent to the condition

x ∈ L, Ax = 0 =⇒ w∗x = 0,

which is obviously equivalent to the boundedness from below of (165) in L, hence
to the existence of a minimizer in L.

Ex. 84. Show that A(−1)
(L) exists if and only if the system (166) has a unique

solution for any w ∈ Cn, in which case this solution is

x = A
(−1)
(L) w.

Ex. 85. Give the general solution of (166) in case it is consistent but A(−1)
(L) does

not exist.

Suggested Further Reading

Section 1. Desoer and Whalen [226], Eldén [249], [250], Erdélyi and Ben-
Israel [265], Leringe and Wedin [508], Osborne [621], Peters and Wilkinson
[640], Robinson [698], and the references on applications to statistics on p. 328
and system theory on p. 329.

Section 2. Erdélyi and Ben-Israel [265], Osborne [622], Rosen [712].
Section 3. See the references in p. 369.
Section 5. The geometry of approximate solutions: Hanke and Neumann

[372], Miao and Ben-Israel [551], [552], Zietak [888].
The bounds on ‖ξD‖ and ‖ηD‖, and associated condition numbers, were stud-

ied by Stewart [782] and Todd [810], and studied further, applied, and extended,
by Bobrovnikova and Vavasis [114], Forsgren [279], Forsgren and Sporre [280],
Gonzaga and Lara [313], Hanke and Neumann [372], Ikramov [437], O’Leary
[619], Vavasis and Ye [834], M. Wei [857], and others.

Section 6. Bapat [46].
Section 7. Bhatia [96].
Section 8. Further references on the extremal properties of the network

functions and solutions are Dennis [225], Stern [777], [778], Guillemin [359].



CHAPTER 4

Spectral Generalized Inverses

1. Introduction

In this chapter we shall study generalized inverses having some of the spec-
tral properties (i.e., properties relating to eigenvalues and eigenvectors) of
the inverse of a nonsingular matrix. Only square matrices are considered,
since only they have eigenvalues and eigenvectors.

If A is nonsingular it is easy to see that every eigenvector of A associated
with the eigenvalue λ is also an eigenvector of A−1 associated with the
eigenvalue λ−1. (A nonsingular matrix does not have 0 as an eigenvalue.)

A matrix A ∈ Cn×n that is not diagonable does not have n linearly
independent eigenvectors (see Ex. 2.22). However, it does have n linearly
independent principal vectors, see § 0.7.

It is not difficult to show (see Ex. 2) that, if A is nonsingular, a vector
x is a λ−1-vector of A−1 of grade p if and only if it is a λ-vector of A of
grade p. In the remainder of this chapter, we shall explore the extent to
which singular matrices have generalized inverses with comparable spectral
properties.

The four Penrose equations of Chapter 1,

AXA = A, (1)

XAX = X, (2)

(AX)∗ = AX, (3)

(XA)∗ = XA, (4)

will now be supplemented further by the following equations applicable only
to square matrices

AkXA = Ak, (1k)

AX = XA, (5)

AkX = XAk, (5k)

AXk = XkA, (6k)

In these equations k is a given positive integer.
This chapter deals mostly with the {1k, 2, 5}-inverse of A, where k is

the index of A. This inverse, called the Drazin inverse, has important
spectral properties that make it extremely useful in many applications. We
also study a special case of the Drazin inverse, the group inverse.

152
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Exercises

Ex. 1. A square matrix A is diagonable if and only if all its principal vectors
are eigenvectors.

Ex. 2. If A is nonsingular, x is a λ−1-vector of A−1 of grade p if and only if it is a
λ-vector of A of grade p. (Hint : Show that A−p(A−λI)p = (−λ)p(A−1−λ−1I)p.
Using this and the analogous relation obtained by replacing A by A−1, show that
(A− λI)rx = 0 if and only if (A−1 − λ−1I)rx = 0 for r = 0, 1, . . . )

Ex. 3. If A is nonsingular and diagonable, A−1 is the only matrix related to A
by the property stated in Ex. 2.

Ex. 4. If A is nonsingular and not diagonable, there are matrices other than A−1

having the spectral relationship to A described in Ex. 2. For example, consider

A =
[
λ 1
0 λ

]
, X =

[
λ−1 c
0 λ−1

]
(λ, c �= 0).

Show that for p = 1, 2, x is a λ−1-vector of X of grade p if and only if it is a
λ-vector of A of grade p. (Note that X = A−1 for c = −λ−2.)

2. The Matrix Index

It is readily seen that the set of three equations (1k), (2), and (5) is equiv-
alent to the set

AX = XA, (5)

Ak+1X = Ak, (7)

AX2 = X. (8)

It is evident also that if (7) holds for some positive integer k, then it holds
for every integer � > k. It follows also from (7) that

rankAk = rankAk+1. (9)

Therefore, a solution X for (7) (and, consequently, of the set (5), (7), (8))
exists only if (9) holds. In this connection, the following definition is useful.

Definition 1. The smallest positive integer k for which (9) holds, is
called the index 1 of A, and denoted IndA.

The next lemma collects properties of the matrix index that are needed
below.

Lemma 1. Let A ∈ Cn×n and IndA = k. Then:
(a) All matrices {A� : � ≥ k} have the same rank, the same range and

the same null space.
(b) Their transposes {(A�)T : � ≥ k} all have the same rank, the same

range and the same null space.
(c) Their conjugate transposes {(A�)∗ : � ≥ k} all have the same rank,

the same range and the same null space.
(d) Moreover, for no � less than k do A� and a higher power of A (or

their transposes or conjugate transposes) have the same range or
the same null space.

1Some writers (e.g., MacDuffee [528]) define the index as the degree of the minimal
polynomial.
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Proof. It may be well to point out first that (9) necessarily holds for some
positive integer k (see Ex. 7).

(a) It follows from (9) and Ex. 1.10 that

R(Ak+1) = R(Ak). (10)

Therefore (7) holds for some X, and multiplication on the left by A�−k gives

A� = A�+1X (� ≥ k). (11)

It follows from (11) that all the matrices {A� : � ≥ k} have the same range and
the same rank. From Ex. 1.10 and the fact that Ak and A� have the same rank,
it follows that they have the same null space. (See Ex. 6 for an alternative proof
of R(A�) = R(A�+1) for all � ≥ k.).

(b) and (c) The statements about the transposes and conjugate transposes
are obtained by applying (a) to AT and A∗ and noting that (A�)T = (AT )� and
(A�)∗ = (A∗)�.

(d) If an equality of ranges of the kind ruled out in part (d) should occur,
there must be some � < k such that A� or its transpose or conjugate transpose
have the same range as the corresponding matrix with exponent �+ 1. But this
would imply rankA� = rankA�+1, and k would not be the index of A. Similarly,
equality of null spaces would imply that A� and A�+1 have the same nullity, and
therefore the same rank. �

Theorem 1. Let A ∈ Cn×n. Then the following statements are equiv-
alent:

(a) IndA = k.
(b) The smallest positive exponent for which (7) holds is k.
(c) If A is singular and m(λ) is its minimal polynomial, k is the multi-

plicity of λ = 0 as a zero of m(λ).
(d) If A is singular, k is the maximal grade of 0-vectors of A.

Proof. (a)⇐⇒ (b) Clearly (11) implies

rankA�+1 = rankA�, (12)

and by Ex. 1.10, (12) implies

R(A�+1) = R(A�),

so that (11) holds. Thus (12) and (11) are equivalent, proving (a).
(b)⇐⇒ (c) Let

m(λ) = λ�p(λ)

where p(0) �= 0. Let k be defined by (b), and we must now show that k = �. We
have

p(A)A� = O.

If � > k, then

O = p(A)A�X = p(A)A�−1,

where λ�−1p(λ) is of lower degree than m(λ), contrary to the definition of the
minimal polynomial.

Since p(0) �= 0, we can write2

m(λ) = cλ�(1− λq(λ)), (13)

2For this device we are indebted to M.R. Hestenes (see [77, p. 687, footnote 56]).
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where c �= 0 and q is a polynomial. It follows that

A�+1q(A) = A�. (14)

If � < k, this would contradict (b).
(a)⇐⇒ (d) Let A have index k and let h be the maximal grade of the

0-vectors of A. We must show that h = k. The definition of h implies that
N(A�) = N(Ah) for all � ≥ h, but N(Ah−1) is a proper subspace of A(Ah). It
follows from Lemma 1 that h = k. �
Exercises
Ex. 5. Let A ∈ Cn×n have index k, and let � be a positive integer. Then R(A�)
and N(A�) are complementary subspaces if and only if � ≥ k.
Proof. Let A ∈ Cn×n. If A is nonsingular, R(A�) = Cn and N(A�) = {0}
for all � = 1, 2, . . . . Thus R(A�) and N(A�) are trivially complementary. Since
a nonsingular matrix has index 1, it remains to prove the theorem for singular
matrices. Now, for any positive integer �,

dimR(A�) + dimN(A�) = rankA� + nullityA� = n.

It therefore follows from statement (c) of Ex. 0.1 that R(A�) and N(A�) are
complementary if and only if

R(A�) ∩N(A�) = {0}. (15)

Since, for any positive integer �,

R(A�+1) ⊂ R(A�),
and N(A�) ⊂ N(A�+1),

it follows that (15) is equivalent to

dimR(A�) = dimR(A�+1), (16)

or � ≥ k, by Definition 1. �
Ex. 6. Let A ∈ Cn×n. If, for some positive integer k,

R(Ak+1) = R(Ak), (10)

then, for all integers � > k,

R(A�+1) = R(A�).

[Hint : R(Ak+1) = AR(Ak) and R(A�) = A�−kR(Ak).]

Ex. 7. Let A ∈ Cn×n. Show that (9) holds for some k between 1 and n, inclusive.
Proof. Since n ≥ rank(Ak) ≥ rank(Ak+1) ≥ 0, eventually rankAk = rankAk+1

for some k ∈ 1, n. �

3. Spectral Inverse of a Diagonable Matrix

In investigating the existence of generalized inverses of a singular square
matrix, we shall begin with diagonable matrices because they are the eas-
iest to deal with. Evidently some extension must be made of the spectral
property enjoyed by nonsingular matrices, because a singular matrix has 0
as one of its eigenvalues. Given a diagonable matrix A ∈ Cn×n, let us seek
a matrix X such that every eigenvector of A associated with the eigenvalue
λ (for every λ in the spectrum of A) is also an eigenvector of X associated
with the eigenvalue λ†, where λ† is defined in (1.8), page 43.
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Since A has n linearly independent eigenvectors, there is a nonsingular
matrix P , having such a set of eigenvectors as columns, such that

AP = PJ (17)

where

J = diag(λ1, λ2, . . . , λn)

is a Jordan form of A. We shall need the diagonal matrix obtained from J

by replacing each diagonal element λi by λ†
i . By Ex. 1.22, this is, in fact,

the Moore–Penrose inverse of J ; that is,

J† = diag(λ†
1, λ

†
2, . . . , λ†

n).

Because of the spectral requirement imposed on X, we must have

XP = PJ†. (18)

Solving (17) and (18) for A and X givs

A = PJP−1, X = PJ†P−1. (19)

Since J and J† are both diagonal, they commute with each other. As a
result, it follows from (19) that X ∈ A{1, 2, 5}.

We do not wish to limit our consideration to diagonable matrices. We
began with them because they are easier to work with. The result just
obtained suggests that we should examine the existence and properties
(especially spectral properties) of {1, 2, 5}-inverses for square matrices in
general.

4. The Group Inverse

It follows from (5) and from Corollary 2.7 that a {1, 2, 5}-inverse of A, if
it exists, is a {1, 2}-inverse X such that R(X) = R(A) and N(X) = N(A).
By Theorem 2.12, there is at most one such inverse.

This unique {1, 2, 5}-inverse is called the group inverse of A, and is
denoted by A#. The name “group inverse” was given by I. Erdélyi [258],
because the positive and negative powers of a given matrix A (the latter
being interpreted as powers of A#), together with the projector AA# as
the unit element, constitute an Abelian group; see Ex. 10. Both he and
Englefield [254] (who called it the “commuting reciprocal inverse”) drew
attention to the spectral properties of the group inverse. As we shall see
later, however, the group inverse is a particular case of the Drazin inverse
[233], or {1k, 2, 5}-inverse, which predates it [258] and [254].

The group inverse is not restricted to diagonable matrices; however, it
does not exist for all square matrices. By Section 2.6 and Theorem 2.12,
such an inverse exists if and only if R(A) and N(A) are complementary
subspaces. This is equivalent, by Ex. 5, to A having index 1. We have,
therefore, the following theorem.

Theorem 2. A square matrix A has a group inverse if and only if
IndA = 1, i.e.,

rankA = rankA2. (20)

When the group inverse exists, it is unique. �
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The following theorem gives an alternative condition for the existence
of A#, and an explicit formula for its computation.

Theorem 3 (Cline [201]). Let a square matrix A have the full-rank
factorization

A = FG. (21)

Then A has a group inverse if and only if GF is nonsingular, in which case

A# = F (GF )−2G. (22)

Proof. Let r = rankA. Then GF ∈ Cr×r. Now

A2 = FGFG,

and so

rankA2 = rankGF

by Ex. 1.7. Therefore (20) holds if and only if GF is nonsingular, and the first
part of the theorem is established. It is easily verified that (1), (2), and (5) hold
with A given by (21) and X by RHS(22). Formula (22) then follows from the
uniqueness of the group inverse. �

For an important class of matrices, the group inverse and the Moore–
Penrose inverse are the same. We shall call a square matrix A range-
Hermitian (such a matrix is also called an EPr or EP matrix, e.g., Schw-
erdtfeger [735], Pearl [631] and other writers) if

R(A∗) = R(A), (23)

or, equivalently, if

N(A∗) = N(A), (24)

the equivalence follows from (0.26).
Using the notation of Theorem 2.12, the preceding discussion shows

that

A# = A
(1,2)
R(A),N(A),

while Ex. 2.38 establishes that

A† = A
(1,2)
R(A∗),N(A∗).

The two inverses are equal, therefore, if and only if R(A) = R(A∗) and
N(A) = N(A∗). Thus we have proved:

Theorem 4. A# = A† if and only if A is range-Hermitian. �
The approach of (19) can be extended from diagonable matrices to all

square matrices of index 1. To do this we shall need the following lemma:
Lemma 2. Let J be a square matrix in Jordan form. Then J is range-

Hermitian if and only if it has index 1.
Proof. Only if : Follows from Ex. 12.

If : If J is nonsingular, rank J = rank J2 and J is range-Hermitian by Ex. 14.
If J has only 0 as an eigenvalue, it is nilpotent. In this case, it follows easily
from the structure of the Jordan form that rank J2 < rank J unless J is the null
matrix O, in which case it is trivially range-Hermitian.
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If J has both zero and nonzero eigenvalues, it can be partitioned in the form

J =
[
J1 O
O J0

]
, (25)

where J1 is nonsingular and has as eigenvalues the nonzero eigenvalues of J , while
J0 is nilpotent. By the same reasoning employed in the preceding paragraph,
rank J = rank J2 implies J0 = O. It then follows from Ex. 14 that J is range-
Hermitian. �

Theorem 5 (Erdélyi [258]). Let A have index 1 and let

A = PJP−1,

where P is nonsingular and J is a Jordan normal form of A. Then

A# = PJ†P−1. (26)

Proof. It is easily verified that relations (1), (2), (5), and (20) are similarity
invariants. Therefore

J# = P−1A#P (27)

and also rank J = rank J2. It then follows from Lemma 2 and Theorem 4 that

J# = J†, (28)

and (26) follows from (27) and (28). �
Exercises

Ex. 8. An alternative proof of uniqueness of the group inverse in Theorem 2 is
as follows. Let X,Y ∈ A{1, 2, 5}, E = AX = XA, and F = AY = Y A. Then
E = F since

E = AX = AY AX = FE,

F = Y A = Y AXA = FE.

Therefore,

X = EX = FX = Y E = Y F = Y.

Ex. 9. (Properties of the group inverse).

(a) If A is nonsingular, A# = A−1.
(b) A## = A.
(c) A∗# = A#∗.
(d) AT# = A#T .
(e) (A�)# = (A#)� for every positive integer �.

Ex. 10. Let A have index 1 and denote (A#)j by A−j for j = 1, 2, . . . . Also
denote AA# by A0. Then show that

A�Am = A�+m

for all integers � and m. (Thus, the “powers” of A, positive, negative and zero,
constitute an Abelian group under matrix multiplication.)

Ex. 11. Show that

A# = A(A3)(1)A, (29)

where (A3)(1) is an arbitrary {1}-inverse of A3.
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Ex. 12. Every range-Hermitian matrix has index 1.
Proof. If A is range-Hermitian, then by (0.26), N(A) = R(A)⊥. Thus R(A)
and N(A) are complementary subspaces. �
Ex. 13. Let A be range-Hermitian, and let P = PR(A) = PR(A∗). Then A† is
the unique solution of the system

AX = XA = P, (30a)

PX = XP = X. (30b)

Ex. 14. A nonsingular matrix is range-Hermitian.

Ex. 15. A normal matrix is range-Hermitian. [Hint : Use Corollary 1.2.]
Remark. It follows from Exs. 12 and 15 that

{Hermitian matrices} ⊂ {normal matrices}
⊂ {range-Hermitian matrices} ⊂ {matrices of index 1}.

Ex. 16. A square matrix A is range-Hermitian if and only if A commutes with
A†.

Ex. 17. (Katz [471]). A square matrix A is range-Hermitian if and only if there
is a matrix Y such that A∗ = Y A.

Ex. 18. (Katz and Pearl [473]). A matrix in Cn×n is range-Hermitian if and
only if it is similar to a matrix of the form

(
B O
O O

)
, where B is nonsingular.

Proof. See Lemma 2. �
Ex. 19. (Ben-Israel [70]). Let A ∈ Cn×n. Then A has index 1 if and only if the
limit

lim
λ→0

(λIn +A)−1A

exists, in which case

lim
λ→0

(λIn +A)−1A = AA#.

Remark. Here λ → 0 means λ → 0 through any neighborhood of 0 in C which
excludes the nonzero eigenvalues of A.
Proof. Let rankA = r and let A = FG be a full-rank factorization. Then the
identity

(λIn +A)−1A = F (λIr +GF )−1G

holds whenever the inverse in question exists. Therefore the existence of

lim
λ→0

(λIn +A)−1A

is equivalent to the existence of

lim
λ→0

(λIr +GF )−1

which, in turn, is equivalent to the nonsingularity of GF . The proof is completed
by using Theorems 2 and 3. �
Ex. 20. Let A ∈ Cn×n. Then A is range-Hermitian if and only if

lim
λ→0

(λIn +A)−1PR(A) = A†.

Proof. Follows from Ex. 19 and Theorem 4. �
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Ex. 21. Let O �= A ∈ Cm×n. Then

lim
λ→0

(λIn +A∗A)−1A∗ = A† (den Broeder and Charnes [136]). (3.43)

Proof.

lim
λ→0

(λIn +A∗A)−1A∗ = lim
λ→0

(λIn +A∗A)−1PR(A∗A)A
∗

(since R(A∗) = R(A∗A))

= (A∗A)†A∗ (by Ex. 20 since A∗A is range-Hermitian)

= A† (by Ex. 1.18(d)). �
Ex. 22. The “reverse-order” property for the Moore–Penrose inverse. For some
pairs of matrices A,B the relation

(AB)† = B†A† (31)

holds, and for others it does not. There does not seem to be a simple criterion
for distinguishing the cases in which (31) holds. The following result is due to
Greville [327].

For matrices A,B such that AB exists, the reverse-order relation (31) holds
if and only if

R(A∗AB) ⊂ R(B) and R(BB∗A∗) ⊂ R(A∗). (32)

Proof. If : We have

BB†A∗AB = A∗AB (33)

and

A†ABB∗A∗ = BB∗A∗. (34)

Taking conjugate transposes of both sides of (33) gives

B∗A∗ABB† = B∗A∗A, (35)

and then multiplying on the right by A† and on the left by (AB)∗† yields

ABB†A† = AB(AB)†. (36)

Multiplying (34) on the left by B† and on the right by (AB)∗† gives

B†A†AB = (AB)†AB. (37)

It follows from (36) and (37) that B†A† ∈ (AB){1, 3, 4}.
Finally, the equations,

B∗A∗ = B∗BB†A†AA∗, B†A† = B†B∗†B∗A∗A∗†A†

show that

rankB†A† = rankB∗A∗ = rankAB,

and therefore B†A† ∈ (AB){2} by Theorem 1.2, and so (31) holds.
Only if : We have

B∗A∗ = B†A†ABB∗A∗,

and multiplying on the left by ABB∗B gives

ABB∗(I −A†A)BB∗A∗ = O.
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Since the left member is Hermitian and I −A†A is idempotent, it follows that

(I −A†A)BB∗A∗ = O,

which is equivalent to (34). In an analogous manner, (33) is obtained. �
Ex. 23. (Arghiriade [24]). For matrices A,B such that AB exists, (31) holds if
and only if A∗ABB∗ is range-Hermitian.
Proof. We shall show that the condition that A∗ABB∗ be range-Hermitian is
equivalent to (32), and the result will then follow from Ex. 22. Let C denote
A∗ABB∗, and observe that

R(A∗AB) = R(C), R(BB∗A∗) = R(C∗)

because

CB∗† = A∗AB, C∗A† = BB∗A∗.

Therefore it is sufficient to prove that R(C) = R(C∗) if and only if R(C) ⊂ R(B)
and R(C∗) ⊂ R(A∗).

If : A∗A and BB∗ are Hermitian, and therefore of index 1 by Ex. 12. Since
R(BB∗) = R(B) by Corollary 1.2, it follows from Ex. 54 with F = A∗A, G =
BB∗ that

R(C) = R(A∗) ∩R(B).

Reversing the assignments of F and G gives

R(C∗) = R(A∗) ∩R(B).

Thus R(C) = R(C∗).
Only if : Obvious. �

5. Spectral Properties of the Group Inverse

Even when A is not diagonable, the group inverse has spectral properties
comparable to those of the inverse of a nonsingular matrix. However, in this
case, A# is not the only matrix having such properties. This has already
been illustrated in the case of a nonsingular matrix (see Ex. 4).

We note that if a square matrix A has index 1, its 0-vectors are all of
grade 1, i.e., null vectors of A. This follows from the fact that (20) implies
N(A2) = N(A) by Ex. 1.10.

The following two lemmas are needed in order to establish the spectral
properties of the group inverse. The second is stated in greater general-
ity than is required for the immediate purpose because it will be used in
connection with spectral generalized inverses other than the group inverse.

Lemma 3. Let x be a λ-vector of A with λ �= 0. Then x ∈ R(A�) where
� is an arbitrary positive integer.
Proof. We have

(A− λI)px = 0

for some positive integer p. Expanding the left member by the binomial theorem,
transposing the last term, and dividing by its coefficient (−λ)p−1 �= 0 gives

x = c1Ax + c2A
2x + · · ·+ cpA

px, (38)

where

ci = (−1)i−1λ−i

(
p

i

)
.
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Successive multiplication of (38) by A gives

Ax = c1A
2x + c2A

3x + · · ·+ cpA
p+1x,

A2x = c1A
3x + c2A

4x + · · ·+ cpA
p+2x,

· · · = · · · · · · · · · · (39)

A�−1x = c1A
�x + c2A

�+1x + · · ·+ cpA
p+�−1x,

and successive substitution of equations (39) in RHS(38) gives eventually

x = A�q(A)x,

where q is some polynomial. �
Lemma 4. Let A be a square matrix and let

XA�+1 = A� (40)

for some positive integer �. Then every λ-vector of A of grade p for λ �= 0
is a λ−1-vector of X of grade p.
Proof. The proof will be by induction on the grade p. Let λ �= 0 and Ax = λx.
Then A�+1x = λ�+1x, and therefore x = λ−�−1A�+1x. Accordingly,

Xx = λ−�−1XA�+1x = λ−1x.

proving the lemma for p = 1.
Suppose the lemma is true for p = 1, 2, . . . , r, and let x be a λ-vector of A

of grade r + 1. Then, by Lemma 3,

x = A�y

for some y. Thus

(X − λ−1I)x = (X − λ−1I)A� y = X(A� − λ−1A�+1)y

= X(I − λ−1A)A� y = −λ−1X(A− λI)x.
By the induction hypothesis, (A− λI)x is a λ−1-vector of X of grade r. Conse-
quently

(X − λ−1I)r(A− λI)x = 0,

z =(X − λ−1I)r−1(A− λI)x �= 0,

Xz = λ−1z.

Therefore

(X − λ−1I)r+1 x = −λ−1X(X − λ−1I)r(A− λI)x = 0,

(X − λ−1I)r x = −λ−1X z = −λ−2z �= 0.

This completes the induction. �
The following theorem shows that for every matrix A of index 1, the

group inverse is the only matrix in A{1} or A{2} having spectral properties
comparable to those of the inverse of a nonsingular matrix. For convenience,
we introduce:

Definition 2. X is an S-inverse of A (or A and X S-inverses of each
other) if they share the property that, for every λ ∈ C and every vector x,
x is a λ-vector of A of grade p if and only if it is a λ†-vector of X of grade
p.
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Theorem 6. Let A ∈ Cn×n have index 1. Then A# is the unique S-
inverse of A in A{1} ∪A{2}. If A is diagonable, A# is the only S-inverse
of A.
Proof. First we shall show that A# is an S-inverse of A. Since X = A# satisfies
(40) with � = 1, it follows from Lemma 4 that A# satisfies the “if” part of the
definition of S-inverse for λ �= 0. Replacing A by A# establishes the “only if”
part for λ �= 0, since A## = A (see Ex. 9(b)).

Since both A and A# have index 1, all their 0-vectors are null vectors as
pointed out in the second paragraph of this section. Thus, in order to prove
that A# satisfies the definition of S-inverse for λ = 0, we need only show that
N(A) = N(A#). But this follows from the commutativity of A and A# and
Ex. 1.10.

Let r = rankA and consider the equation

AP = PJ

where P is nonsingular and J is a Jordan form of A. The columns of P are
λ-vectors of A. Since A has index 1, those columns which are not null vectors
are associated with nonzero eigenvalues, and are therefore in R(A) by Lemma 3.
Since there are r of them and they are linearly independent, they span R(A).
But, by hypothesis, these columns are also λ−1-vectors of X and therefore in
R(X). Since rankX = r, these r vectors span R(X), and so R(X) = R(A). Thus
X is a {1, 2}-inverse of A such that R(X) = R(A) and N(X) = N(A). But A#

is the only such matrix, and so X = A#.
It was shown in Section 3 that if A is diagonable, an S-inverse of A must be

a {1, 2, 5}-inverse. Since A# is the only such inverse, this completes the proof. �

6. The Drazin Inverse

We have seen that the group inverse does not exist for all square matri-
ces, but only for those of index 1. However, we shall show in this section
that every square matrix has a unique {1k, 2, 5}-inverse, where k is its in-
dex. This inverse, called the Drazin inverse, was first studied by Drazin
[233] (though in the more general context of rings and semigroups without
specific reference to matrices).

We start informally. Let A ∈ Cn×n have index k. Then R(Ak) and
N(Ak) are complementary subspace, see Ex. 5, and the restriction A[R(Ak)]

of A to R(Ak) is invertible (being a one-to-one mapping of R(Ak) onto
itself.) Let X ∈ Cn×n be defined by

Xu =
{

A−1
[R(Ak)]u, if u ∈ R(Ak),

0, if u ∈ N(Ak).
(41)

It follows from this definition that the relations AXu = XAu and XAXu =
Xu hold for u ∈ R(Ak) and for u ∈ N(Ak), and therefore in all of Cn. The
matrix X is thus a {2, 5}-inverse of A.

Definition (41) says that AX is the identity in R(Ak), i.e., AXAkx =
Akx for all x ∈ Cn, allowing for zero in both sides (if x ∈ N(Ak).) There-
fore, X is also a {1k}-inverse of A.

The matrix X is thus a {1k, 2, 5}-inverse of A, properties that define it
uniquely, as shown in Theorem 7 below. X is called the Drazin inverse of
A, and is denoted by AD.
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The following lemma is needed for proving the existence and uniqueness
of the Drazin inverse.

Lemma 5. If Y is a {1�, 5}-inverse of square matrix A, then

X = A�Y �+1

is a {1�, 2, 5}-inverse.
Proof. We have

A�+1Y = A�, AY = Y A.

Clearly X satisfies (5). We have then

A�XA = A2�+1Y �+1 = A2�Y � = A2�−1Y �−1 = · · · = A�,

and

XAX = A2�+1Y 2�+2 = A2�Y 2�+1 = · · · = A�Y �+1 = X. �
Theorem 7. Let A ∈ Cn×n have index k. Then A has a unique

{1k, 2, 5}-inverse, which is expressible as a polynomial in A, and is also
the unique {1�, 2, 5}-inverse for every � ≥ k.
Proof. The matrix q(A) of (14) is a {1k, 5}-inverse of A. Therefore, by
Lemma 5,

X = Ak(q(A))k+1 (42)

is a {1k, 2, 5}-inverse.3 This proves the existence of such an inverse.
A matrix X that satisfies (7) clearly satisfies (11) for all � ≥ k. Therefore, a

{1k, 2, 5}-inverse of A is a {1�, 2, 5}-inverse for all � ≥ k.
Uniqueness will be proved by adapting the proof of uniqueness of the group

inverse given in Ex. 8. Let X,Y ∈ A{1�, 2, 5}, E = AX = XA, and F = AY =
Y A. Note that E and F are idempotent. Then E = F , since

E = AX = A�X� = AY A�X� = FAX = FE,

F = Y A = Y �A� = Y �A�XA = Y AE = FE.

The proof is then completed exactly as in the case of the group inverse. �
This unique {1k, 2, 5}-inverse is the Drazin inverse, and we shall denote

it by AD. The group inverse is the particular case of the Drazin inverse for
matrices of index 1.

The Drazin inverse has a simple representation in terms of the Jordan
form:

Theorem 8. Let A ∈ Cn×n have the Jordan form

A = XJX−1 = X

[
J1 O
O J0

]
X−1 (43)

where J0 and J1 are the parts of J corresponding to zero and nonzero eigen-
values. Then

AD = X

[
J−1

1 O
O O

]
X−1. (44)

Proof. Let A be singular of index k (i.e., the biggest block in the submatrix J0

is k × k). Then the matrix given by (44) is a {1k, 2, 5}-inverse of A. �

3See also Ex. 34 below.
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Example 1. The matrix

A =


0 −2 0 −5 2
0 −1 0 −2 0
0 0 0 2 0
0 1 0 2 0
−2 −2 1 −8 4


has the Jordan form

A = X

J1(1)
J2(2)

J2(0)

X−1 = X


1

2 1
0 2

0 1
0 0

X−1

see Example 2.1, p. 66. The Drazin inverse AD is, by Theorem 8,

AD = X

(J1(1))−1

(J2(2))−1

O

X−1 = X


1

1
2 − 1

4

0 1
2

0 0
0 0

X−1

=


1 3

2 − 1
2

7
2 − 1

2
0 −1 0 −2 0
0 2 0 4 0
0 1 0 2 0
1
2 2 − 1

4 4 0

 .
For A ∈ Cn×n with spectrum λ(A), and a scalar function f ∈ F(A),

the corresponding matrix function f(A) is

f(A) =
∑

λ∈λ(A)

Eλ

ν(λ)−1∑
k=0

f (k)(λ)
k!

(A− λ In)k (2.50)

(see Definition 2.1). The analogous result for the Drazin inverse is:

Corollary 1. Let A ∈ Cn×n have spectrum λ(A). Then

AD =
∑

0�=λ∈λ(A)

Eλ

ν(λ)−1∑
k=0

(−1)k

λk+1 (A− λ In)k. (45)

Proof. Theorem 8 shows that the Drazin inverse is the matrix function corre-
sponding to f(z) = 1/z, defined on nonzero eigenvalues. �

Example 2. An alternative expression of the Drazin inverse of A in Exam-
ple 1, using (45) and the projectors E1, E2 of Example 2.1, is

AD = E1 + 1
2E2 − 1

4E2(A− 2I).

In the computation of AD when the index of A exceeds 1, it is not
easy to avoid raising A to a power. When ill-conditioning of A is serious,
perhaps the best method is the sequential procedure of Cline [201], which
involves full-rank factorization of matrices of successively smaller order,
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until a nonsingular matrix is reached. Thus, we take

A = B1G1, (46a)

GiBi = Bi+1Gi+1 (i = 1, 2, . . . , k − 1), (46b)

where k is the index of A. Then

AD = B1B2 · · ·Bk(GkBk)−k−1GkGk−1 · · ·G1. (46c)

We saw in Exs. 0.79–0.80 that the inverse of a nonsingular matrix A is a
polynomial in A. An analogous result is:

Corollary 2 (Englefield [254]). Let A ∈ Cn×n. Then there is a
{1, 2}-inverse of A expressible as a polynomial in A if and only if IndA = 1,
in which case the only such inverse is the group inverse, which is given by

A# = A(q(A))2, (47)

where q is defined by (13).
Proof. Only if : A {1, 2}-inverse of A that is a polynomial in A necessarily
commutes with A, and is therefore a {1, 2, 5}-inverse. The group inverse A# is
the only such inverse, and A has a group inverse if and only if its index is 1.

If : If IndA = 1, then A has a group inverse, which is a {1, 2}-inverse, and
in this case coincides with the Drazin inverse. It is therefore expressible as a
polynomial in A by Theorem 7. Formula (47) is merely the specialization of (42)
for k = 1. �

Corollary 3 (Pearl [633]). Let A ∈ Cn×n. Then A† is expressible as
polynomial in A if and only if A is range-Hermitian.

Exercises

Ex. 24. Show that, for a matrix A of index k that is not nilpotent, withBi andGi

defined by (46a) and (46b), GkBk is nonsingular. (Hints: Express Ak and Ak+1

in terms of Bi and Gi (i = 1, 2, . . . , k), and let rk denote the number of columns
of Bk, which is also the number of rows of Gk. Show that rankAk = rk, while
rankAk+1 = rankGkBk. Therefore rankAk+1 = rankAk implies that GkBk is
nonsingular.)

Ex. 25. Use Theorem 7 to verify (46c).

Ex. 26. The Drazin inverse preserves similarity: If X is nonsingular, then

A = XBX−1 =⇒ AD = XBDX−1.

Ex. 27. Properties of the Drazin inverse.

(a) (A∗)D = (AD)∗.
(b) (AT )D = (AD)T .
(c) (A�)D = (AD)� for � = 1, 2, . . . .
(d) If A has index k, A� has index 1 and (A�)# = (AD)� for � ≥ k.
(e) (AD)D = A if and only if A has index 1.
(f) AD has index 1, and (AD)# = A2AD.
(g) ((AD)D)D = AD.
(h) If A has index k, R(AD) = R(A�) and N(AD) = N(A�) for all � ≥ k.
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Ex. 28. Let A be a square singular matrix, IndA = k. If the system

Ax = b, x ∈ R(Ak),

has a solution, it is uniquely given by

x = ADb.

Proof. Let a solution x be written as x = Aky for some y. Then Ak+1y = b,
and

x = Aky = Ak+1ADy

= ADAk+1y

= ADb.

Uniqueness follows from R(Ak) ∩N(Ak) = {0}, see Ex. 5. �

Ex. 29. R(AD) is the subspace spanned by all the λ-vectors of A for all nonzero
eigenvalues λ, and N(AD) is the subspace spanned by all the 0-vectors of A, and
these are complementary subspaces.

Ex. 30. AAD = ADA is idempotent and is the projector on R(AD) along
N(AD). Alternatively, if A has index k, it is the projector on R(A�) along N(A�)
for all � ≥ k.
Ex. 31. If A and X are S-inverses of each other, they have the same index.

Ex. 32. AD(AD)# = AAD.

Ex. 33. (Campbell and Meyer [159, Theorem 7.8.4]). Let A,B ∈ Cn×n. Then:

(a) (AB)D = A[(BA)2]DB.
If AB = BA then:

(b) (AB)D = BDAD = ADBD; and
(c) ADB = BAD and ABD = BDA.

Proof. (a) Let Y = A[(BA)2]DB. Then it is easy to verify that Y is a {2, 5}-
inverse of AB. Let k = max{Ind(AB), Ind(BA)}. Then

(AB)k+2Y = (AB)k+2A[(BA)2]DB = (AB)k+1ABA[(BA)2]DB

= (AB)k+1A(BA)DB = A(BA)k+1(BA)DB = A(BA)kB

= (AB)k+1,

showing that Y is a {1k}-inverse of AB.
(b) and (c) follow from the fact that AD, BD are polynomials in A,B, re-

spectively; see Theorem 7. �

Ex. 34. Let A ∈ Cn×n have index k. Then, for all � ≥ k,
AD = A�(q(A))�+1,

where q is defined by (13). See also (42).

Ex. 35. If A is nilpotent, AD = O.

Ex. 36. If � > m > 0, Am(AD)� = (AD)�−m.

Ex. 37. If m > 0 and �−m ≥ k, A�(AD)m = A�−m.
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Ex. 38. Let A have index k, and define as follows a set of matrices Bj where j
ranges over all the integers:

Bj =


Aj for j ≥ k,
Ak(AD)k−j for 0 ≤ j < k,

(AD)−j for j < 0.

Is the set of matrices {Bj} an Abelian group under matrix multiplication with
unit element B0 and multiplication rule B�Bm = B�+m? Is there an equivalent,
but easier way of defining the matrices Bj?

Ex. 39. (Greville [328]). If � is any integer not less than the index of A,

AD = A�(A2�+1)(1)A�, (48)

where (A2�+1)(1) is an arbitrary {1}-inverse of A2�+1. Note that (29) is a partic-
ular case of (48).

Ex. 40. (Cline [201]). If � is any integer not less than the index of A,

(AD)† = (A�)†A2�+1(A�)†.

Hint: Use Ex. 2.61, noting that R(AD) = R(A�) and N(AD) = N(A�).

Ex. 41. (Meyer [543], Boyarintsev [130, Theorem 1.8.6]). If A ∈ Cn×n has
index k then

AD = lim
α→0

(Ak+1 + α2I)−1Ak, α real,

and the approximation error is

‖AD − (Ak+1 + α2I)−1Ak‖ ≤ α2‖AD‖k+2

1− α2‖AD‖k+1 ,

where ‖ · ‖ is the spectral norm (0.56.2).

7. Spectral Properties of the Drazin Inverse

The spectral properties of the Drazin inverse have been studied by Cline
[201] and Greville [328]; some of them will be mentioned here.

The spectral properties of the Drazin inverse are the same as those of
the group inverse with regard to nonzero eigenvalues and the associated
eigenvectors, but weaker for 0-vectors. The necessity for such weakening is
apparent from the following theorem.

Theorem 9. Let A ∈ Cn×n and let X ∈ A{1} ∪A{2} be an S-inverse
of A. Then both A and X have index 1.
Proof. First, let X ∈ A{1}, and suppose that x is a 0-vector of A of grade
2. Then, Ax is a null-vector of A. Since X is an S-inverse of A, Ax is also a
null-vector of X. Thus,

0 = XAx = AXAx = Ax,

which contradicts the assumption that x is a 0-vector of A of grade 2. Hence,
A has no 0-vectors of grade 2, and therefore has index 1, by Theorem 1(d). By
Ex. 31, X has also index 1.

If X ∈ A{2}, we reverse the roles of A and X. �
Accordingly, we relax the definition of the S-inverse (Definition 2,

p. 162) as follows.
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Definition 3. X is an S′-inverse of A if, for all λ �= 0, a vector x is
a λ−1-vector of X of grade p if and only if it is a λ-vector of A of grade p,
and x is a 0-vector of X if and only if it is a 0-vector of A (without regard
to grade).

Theorem 10. For every square matrix A, A and AD are S′-inverses
of each other.
Proof. Since AD satisfies

ADAk+1 = Ak, A(AD)2 = AD,

the part of Definition 3 relating to nonzero eigenvalues follows from Lemma 4.
Since AD has index 1 by Ex. 27(f), all its 0-vectors are null vectors. Thus the
part of Definition 3 relating to 0-vectors follows from Ex. 29. �

8. Index 1-Nilpotent Decomposition of a Square Matrix

The following theorem plays an important role in the study of spectral
generalized inverses of matrices of index greater than 1. It is implicit in
Wedderburn’s [853] results on idempotent and nilpotent parts, but is not
stated by him in this form.

Theorem 11. A square matrix A has a unique decomposition

A = B + N, (49)

such that B has index 1, N is nilpotent, and

NB = BN = O. (50)

Moreover,

B = (AD)#. (51)

See Ex. 42.
Proof. Suppose A has a decomposition (49) such that B has index 1, N is
nilpotent and (50) holds. We shall first show that this implies (51), and therefore
the decomposition is unique if it exists.

Since

B# = B(B#)2 = (B#)2B,

we have

B#N = NB# = O.

Consequently,

AB# = BB# = B#A. (52)

Moreover,

A(B#)2 = B(B#)2 = B#. (53)

Because of (50), we have

A� = (B +N)� = B� +N � (� = 1, 2, . . . ). (54)

If � is sufficiently large so that N � = O,

A� = B�,
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and for such �,

A�+1B# = B�+1B# = B�. (55)

It follows from (52), (53), and (55) that X = B# satisfies (5), (7), and (8), and
therefore

B# = AD,

which is equivalent to (51).
It remains to show that this decomposition has the required properties.

Clearly B has index 1. By taking

N = A− (AD)# (56)

and noting that

(AD)# = A2AD

by Ex. 27(f), it is easily verified that (50) holds. Therefore (54) follows, and if k
is the index of A,

Ak = Bk +Nk = A2k(AD)k +Nk = Ak +Nk,

and therefore Nk = O. �
We shall call the matrix N given by (56) the nilpotent part of A and

shall denote it by A(N).
Theorem 12. Let A ∈ Cn×n. Then A and X are S′-inverses of each

other if

XD = (AD)#. (57)

Moreover, if X ∈ A{1} ∪A{2}, it is an S′-inverse of A only if (57) holds.
Proof. If (57), A and X have the same range and the same null space, and
consequently the projectors XXD and AAD = AD(AD)# are equal. Thus, if � is
the maximum of the indices of A and X,

XA�+1 = X(AD)#ADA�+1 = XXDA� = A� (58)

by Ex. 30. By interchanging the roles of A and X we obtain also

AX�+1 = X�. (59)

From (58) and (59), Lemma 4, Ex. 29 and the fact that AD and XD have the
same null space, we deduce that A and X are S′-inverses of each other.

On the other hand, let A and X be S′-inverses of each other, and let X ∈
A{1}. Then, by Ex. 29,

N(AD) = N(XD),

and so,

(AD)#X(N) = (XD)#A(N) = O.

Similarly, since

R(AD) = R(XD),

(2.59) gives

N(AD∗) = N(XD∗),
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and therefore

X(N)(AD)# = (XD)#A(N) = O.

Consequently

A = AXA = (AD)#(XD)#(AD)# +A(N)X(N)A(N),

and therefore

AD = ADAAD = AAD(XD)#AAD = (XD)#, (60)

since AAD is the projector on the range of (XD)# along its null space. But (60)
is equivalent to (57).

If X ∈ A{2}, we reverse the roles of A and X. �
Referring back to the proof of Theorem 6, we note that if A has index

1, a matrix X that is an S-inverse of A and also either a {1}-inverse or
a {2}-inverse, is automatically a {1, 2}-inverse. However, a similar remark
does not apply when the index of A is greater than 1 and X is an S′-inverse
of A. This is because A(N) is no longer a null matrix (as it is when A has
index 1) and its properties must be taken into account. (For details see
Ex. 50.)

Exercises

Ex. 42. Let A ∈ Cn×n be given in Jordan form

A = XJX−1 = X

[
J1 O
O J0

]
X−1 (43)

where J0 and J1 are the parts of J corresponding to zero and nonzero eigenvalues.
Then

B = X

[
J1 O
O O

]
X−1, N = X

[
O O
O J0

]
X−1 (61)

give the Wedderburn decomposition (49) of A, see Theorem 11. If A is nonsin-
gular, (61) reads: B = A, N = O.

9. Quasi-Commuting Inverses

Erdélyi [259] calls A and X quasi-commuting inverses of each other if they
are {1, 2, 5k, 6k}-inverses of each other for some positive integer k. He noted
that for such pairs of matrices the spectrum of X is obtained by replacing
each eigenvalue λ of A by λ†. The following theorem shows that quasi-
commuting inverses have much more extensive spectral properties.

Theorem 13. If A and X are quasi-commuting inverses, they are S′-
inverses.
Proof. If A and X are {1, 2, 5�, 6�}-inverses of each other, then

XA�+1 = A�XA = A�,

and similarly,

AX�+1 = X�. (59)
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In view of Lemma 4 and Ex. 29, all that remains in order to prove that A and
X are S′-inverses of each other is to show that AD and XD have the same null
space. Now,

ADx = 0 =⇒ 0 = A�+1ADx = A�x

=⇒ 0 = X2�A�x = A�X2�x = X�x (by (59))

=⇒ 0 = (XD)�+1X�x = XDx.

Since the roles of A and X are symmetrical, the reverse implication follows by
interchanging them. �

Corollary 4. A and X are quasi-commuting inverses of each other if
and only if (57) holds and A(N) and X(N) are {1, 2}-inverses of each other.
Proof. If : A and X are {1, 2}-inverses of each other by Ex. 47. Choose �

sufficiently large so that (A(N))� = O. Then

XA� = ((XD)# +X(N))((AD)#)�

= ((XD)# +X(N))((XD)#)� = ((XD)#)�−1 = A�X.

By interchanging A and X, it follows also that A commutes with X�.
Only if : By Theorem 13, A and X are S′-inverses of each other. Then, by

Theorem 12, (57) holds, and by Ex. 50, A(N) and X(N) are {1, 2}-inverses of each
other. �

10. Other Spectral Generalized Inverses

Greville [328] calls X a strong spectral inverse if equations (19) are satisfied.
Although this is not quite obvious, the relationship is a reciprocal one, and
they can be called strong spectral inverses of each other. If A has index 1,
Theorem 5 shows that A# is the only strong spectral inverse. Greville has
shown that strong spectral inverses are quasi-commuting, but, for a matrix
A with index greater than 1, the set of strong spectral inverses is a proper
subset of the set of quasi-commuting inverses. Strong spectral inverses have
some remarkable and, in some respects, complicated properties, and there
are a number of open questions concerning them. As these properties relate
to matrices of index greater than 1, which are not for most purposes a very
important class, they will not be discussed further here. The interested
reader may consult Greville [328].

Cline [201] has pointed out that a square matrix A of index 1 has a
{1, 2, 3}-inverse whose range is R(A). This is, therefore, a “least-squares”
inverse and also has spectral properties (see Exs. 50 and 51). Greville
[329] has extended this notion to square matrices of arbitrary index, but
his extension raises some questions that have not been answered (see the
conclusion of [329]).
Exercises

Ex. 43. If A has index 1, A(N) = O.

Ex. 44. If A is nilpotent, rankA�+1 < rankA� unless A� = O,

Ex. 45. If A is nilpotent, the smallest positive integer � such that A� = O is
called the index of nilpotency of A. Show that this is the same as the index of A
(see Definition 1).



10. OTHER SPECTRAL GENERALIZED INVERSES 173

Ex. 46. A and A(N) have the same index.

Ex. 47. rankA = rankAD + rankA(N).

Ex. 48. ADA(N) = A(N)AD = O.

Ex. 49. Every 0-vector of A of grade p is a 0-vector of A(N) of grade p.

Ex. 50. Let A andX satisfy (57). ThenX ∈ A{1} if and only if A(N) ∈ A(N){1}.
Similar statements with {1} replaced by {2} and by {1, 2} are also true.

Ex. 51. If A has index 1, show that X = A#AA† ∈ A{1, 2, 3} (Cline). Show that
this X has the properties of an S-inverse of A with respect to nonzero eigenvalues
(but, in general, not with respect to 0-vectors). What is the condition on A that
this X be an S-inverse of A?

Ex. 52. For squareA with arbitrary index, Greville has suggested as an extension
of Cline’s inverse

X = ADAA† +A(1)A(N)A†,

where A(1) is an arbitrary element of A{1}. Show that X ∈ A{1, 2, 3} and has
some spectral properties. Describe its spectral properties precisely.

Ex. 53. Can a matrix A of index greater than 1 have an S-inverse? It can if we
are willing to accept an “inverse” that is neither a {1}-inverse nor a {2}-inverse.
Let

A(S) = AD +A(N).

Show that A(S) is an S-inverse of A and that X = A(S) is the unique solution of
the four equations

AX = XA, A�+1X = A�,

AX�+1 = X�, A−X = A�X�(A−X),

for every positive integer � not less than the index of A. Show also that A(S) = A#

if A has index 1 and (A(S))(S) = A. In your opinion, can A(S) properly be called
a generalized inverse of A?

Ex. 54. Let F be a square matrix of index 1, and let G be such that R(FG) ⊂
R(G). Then,

R(FG) = R(F ) ∩R(G).

Proof. Evidently, R(FG) ⊂ R(F ) and therefore

R(FG) ⊂ R(F ) ∩R(G).

Now let x ∈ R(F ) ∩ R(G), and we must show that x ∈ R(FG). Since F has
index 1, it has a group inverse F#, which, by Corollary 2, can be expressed as a
polynomial in F , say p(F ). We have

x = Fy = Gz

for some y, z, and therefore

x = FF#x = FF#Gz = Fp(F )Gz.

Since R(FG) ⊂ R(G),

FG = GH
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for some H, and, consequently,

F �G = GH�

for every nonnegative integer �. Thus

x = Fp(F )Gz = FGp(H)z ⊂ R(FG). �
(This is a slight extension of a result of Arghiriade [24].)
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CHAPTER 5

Generalized Inverses of Partitioned Matrices

1. Introduction

In this chapter we study linear equations and matrices in partitioned form.
For example, in computing a (generalized or ordinary) inverse of a matrix
A ∈ Cm×n, the size or difficulty of the problem may be reduced if A is
partitioned as

A =
[
A11 A12
A21 A22

]
.

The typical result here is the sought for inverse expressed in terms of the
submatrices Aij .

Partitioning by columns and by rows is used in Section 2 to solve linear
equations and to compute generalized inverses and related items.

Intersections of linear manifolds are studied in Section 3 and used in
Section 4 to obtain common solutions of pairs of linear equations and to
invert matrices partitioned by rows.

Greville’s method for computing A† for A ∈ Cm×n, n ≥ 2, is based on
partitioning A as

A = [An−1 an]

where an is the n th column of A. A† is then expressed in terms of an and
A†

n−1, which is computed in the same way, using the partition

An−1 = [An−2 an−1], etc.

Greville’s method and some of its consequences are studied in Section 5.
Bordered matrices, the subject of Section 6, are matrices of the form[

A U
V ∗ O

]
,

where A ∈ Cm×n is given and U and V are chosen so that the resulting
bordered matrix is nonsingular. Moreover,[

A U
V ∗ O

]−1

=
[
A† V ∗†

U† O

]
expressing generalized inverses in terms of an ordinary matrix.

2. Partitioned Matrices and Linear Equations

Consider the linear equation

Ax = b (1)

with given matrix A and vector b, in the following three cases.

175



176 5. GENERALIZED INVERSES OF PARTITIONED MATRICES

Case 1. A ∈ Cr×n
r , i.e., A is of full row rank. Let the columns of A be

rearranged, if necessary, so that the first r columns are linearly independent.
A rearrangement of columns may be interpreted as postmultiplication by a
suitable permutation matrix; thus,

AQ = [A1 A2] or A = [A1 A2]QT , (2)

where Q is an n×n permutation matrix (hence Q−1 = QT ) and A1 consists
of r linearly independent columns, so that A1 ∈ Cr×r

r , i.e., A1 is nonsingu-
lar.

The matrix A2 is in Cr×(n−r) and if n = r, this matrix and other items
indexed by the subscript 2 are to be interpreted as absent.

Corresponding to (2), let the vector x be partitioned

x =
[
x1
x2

]
, x1 ∈ Cr. (3)

Using (2) and (3) we rewrite (1) as

[A1 A2]QT

[
x1
x2

]
= b (4)

easily shown to be satisfied by the vector[
x1
x2

]
= Q

[
A−1

1 b
O

]
, (5)

which is thus a particular solution of (1).
The general solution of (1) is obtained by adding to (5) the general

element of N(A), i.e., the general solution of

Ax = 0. (6)

In (2), the columns of A2 are linear combinations of the columns of A1,
say,

A2 = A1T or T = A−1
1 A2 ∈ Cr×(n−r), (7)

where the matrix T is called the multiplier corresponding to the partition
(2), a name suggested by T being the “ratio” of the last n − r columns of
AQ to its first r columns.

Using (2), (3), and (7) permits writing (6) as

A1[Ir T ]QT

[
x1
x2

]
= 0, (8)

whose general solution is clearly[
x1
x2

]
= Q

[ −T
In−r

]
y, (9)

where y ∈ Cn−r is arbitrary.
Adding (5) and (9) we obtain the general solution of (1),[

x1
x2

]
= Q

[
A−1

1 b
O

]
+ Q

[ −T
In−r

]
y, y arbitrary. (10)

Thus an advantage of partitioning A as in (2) is that it permits solving
(1) by working with matrices smaller or more convenient than A. We also
note that the null space of A is completely determined by the multiplier T



2. PARTITIONED MATRICES AND LINEAR EQUATIONS 177

and the permutation matrix Q, indeed (9) shows that the columns of the
n× (n− r) matrix

Q

[ −T
In−r

]
(11)

form a basis for N(A).
Case 2. A ∈ Cm×r

r , i.e., A is of full column rank. Unlike Case 1, here
the linear equation (1) may be inconsistent. If, however, (1) is consistent,
then it has a unique solution. Partitioning the rows of A is useful for both
checking the consistency of (1) and for computing its solution, if consistent.

Let the rows of A be rearranged, if necessary, so that the first r rows
are linearly independent. This is written, analogously to (2), as

PA =
[
A1
A2

]
or A = PT

[
A1
A2

]
, (12)

where P is an m×m permutation matrix, and A1 ∈ Cr×r
r .

If m = r, the matrix A2 and other items with the subscript 2 are to be
interpreted as absent.

In (12) the rows of A2 are linear combinations of the rows of A1, say,

A2 = SA1 or S = A2A
−1
1 ∈ C(m−r)×r, (13)

where again S is called the multiplier corresponding to the partition (12),
giving the “ratio” of the last (m− r) rows of PA to its first r rows.

Corresponding to (12), let the permutation matrix P be partitioned as

P =
[
P1
P2

]
, P1 ∈ Cr×m. (14)

Equation (1) can now be written, using (12), (13), and (14), as[
Ir

S

]
A1x =

[
P1
P2

]
b, (15)

from which the conclusions below easily follow:
(a) Equation (1) is consistent if and only if

P2b = SP1b (16)

i.e., the “ratio” of the last m− r components of the vector Pb to
its first r components is the multiplier S of (13).

(b) If (16) holds, then the unique solution of (1) is

x = A−1
1 P1b. (17)

From (a) we note that the range of A is completely determined by the
multiplier S and the permutation matrix P . Indeed, the columns of the
m× r matrix

PT

[
Ir

S

]
(18)

form a basis for R(A).
Case 3. A ∈ Cm×n

r , with r < m, n. This general case has some of the
characteristics of both Cases 1 and 2, as here we partition both the columns
and rows of A.
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Since A is of rank r it has at least one nonsingular r×r submatrix A11,
which by a rearrangement of rows and columns can be brought to the top
left corner of A, say

PAQ =
[
A11 A12
A21 A22

]
, (19)

where P and Q are permutation matrices and A11 ∈ Cr×r
r .

By analogy with (2) and (12) we may have to interpret some of these
submatrices as absent, e.g., A12 and A22 are absent if n = r.

By analogy with (7) and (13) there are multipliers T ∈ Cr×(n−r) and
S ∈ C(m−r)×r satisfying[

A12
A22

]
=

[
A11
A21

]
T and [A21 A22] = S[A11 A12]. (20)

These multipliers are given by

T = A−1
11 A12 and S = A21A

−1
11 . (21)

Combining (19) and (20) results in the following partition of A ∈ Cm×n
r ,

A = PT

[
A11 A12
A21 A22

]
QT

= PT

[
Ir

S

]
A11[Ir T ]QT , (22)

where A11 ∈ Cr×r
r , P and Q are permutation matrices, and S and T are

given by (21).
As in Cases 1 and 2 we conclude that the multipliers S and T , and the

permutation matrices P and Q, carry all the information about the range
and null space of A.

Lemma 1. Let A ∈ Cm×n
r be partitioned as in (22). Then:

(a) The columns of the n× (n− r) matrix

Q

[ −T
In−r

]
(11)

form a basis for N(A).
(b) The columns of the m× r matrix

PT

[
Ir

S

]
(18)

form a basis for R(A). �
Returning to the linear equation (1), it may be partitioned by using

(22) and (14), in analogy with (4) and (15), as follows:[
Ir

S

]
A11[Ir T ]QT

[
x1
x2

]
=

[
P1
P2

]
b. (23)

The following theorem summarizes the situation, and includes the results
of Cases 1 and 2 as special cases.
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Theorem 1. Let A ∈ Cm×n
r , b ∈ Cm be given and let the linear equa-

tion

Ax = b (1)

be partitioned as in (23). Then:
(a) Equation (1) is consistent if and only if 1

P2b = SP1b (16)

(b) If (16) holds, the general solution of (1) is[
x1
x2

]
= Q

[
A−1

11 P1b
O

]
+ Q

[ −T
In−r

]
y, (24)

where y ∈ Cn−r is arbitrary. �
The partition (22) is also useful for computing generalized inverses. We

collect some of these results in the following:
Theorem 2. Let A ∈ Cm×n

r be partitioned as in (22). Then:
(a) A {1, 2}-inverse of A is

A(1,2) = Q

[
A−1

11 O
O O

]
P (Rao [671]). (25)

(b) A {1, 2, 3}-inverse of A is

A(1,2,3) = Q

[
A−1

11
O

]
(Ir + S∗S)−1 [

Ir S∗]P (26)

(Meyer and Painter [547]).

(c) A {1, 2, 4}-inverse of A is

A(1,2,4) = Q

[
Ir

T ∗

]
(Ir + TT ∗)−1 [

A−1
11 O

]
P. (27)

(d) The Moore–Penrose inverse of A is

A† = Q

[
Ir

T ∗

]
(Ir + TT ∗)−1A−1

11 (Ir + S∗S)−1 [
Ir S∗]P (28)

(Noble [614]).

Proof. The partition (22) is a full-rank factorization of A (see Lemma 1.4),

A = FG, F ∈ C
m×r
r , G ∈ C

r×n
r , (29)

with

F = PT

[
Ir

S

]
A11, G = [Ir T ]QT , (30)

or, alternatively,

F = PT

[
Ir

S

]
, G = A11[Ir T ]QT . (31)

The theorem now follows from Ex. 1.29 and Ex. 1.17 by using (29) with either
(30) or (31). �

1By convention, (16) is satisfied if m = r, in which case P2 and S are interpreted
as absent.
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Exercises
Ex. 1. Schur complements and linear equations (Cottle [207]). Let

A =
[
A11 A12

A21 A22

]
, A11 nonsingular, (32)

and let A/A11 denote the Schur complement of A11 in A, see (0.96).
(a) Let the homogeneous equation Ax = 0 be partitioned as[

A11 A12

A21 A22

] [
x1

x2

]
=
[
0
0

]
. (33)

Eliminating x1 we get an equation for x2,

(A/A11)x2 = 0, (34a)

and then

x1 = −A−1
11 A12x2. (34b)

(b) Let the equation Ax = b be partitioned as[
A11 A12

A21 A22

] [
x1

x2

]
=
[
b1

b2

]
. (35)

Then (35) is consistent if and only if

(A/A11)x2 = b2 −A21A
−1
11 b1 (36a)

is consistent, in which case a solution is completed by

x1 = A−1
11 (b1 −A12x2). (36b)

Ex. 2. Consider the vector
[
b1

b2

]
in RHS(35) as variable. The system (35) gives

b1,b2 in terms of x1,x2. We can likewise express x1,b2 in terms of b1,x2,[
x1

b2

]
=
[

A−1
11 −A−1

11 A12

A21A
−1
11 (A/A11)

] [
b1

x2

]
. (37)

The operation that takes[
A11 A12

A21 A22

]
into

[
A−1

11 −A−1
11 A12

A21A
−1
11 (A/A11)

]
is called pivot operation or pivoting, with the nonsingular submatrix A11 as pivot.

Ex. 3. Let A,A11 be as in (32). Then

rankA = rankA11 (38)

if and only if

A/A11 = O (Brand [135]). (39)

Ex. 4. Let A, A11 satisfy (32) and (38).
(a) The general solution of (33) is given by

x1 = −A−1
11 A12x2, x2 arbitrary.

(b) The linear equation (35) is consistent if and only if

A21A
−1
11 b1 = b2

in which case the general solution of (35) is given by

x1 = A−1
11 b1 −A−1

11 A12x2, x2 arbitrary.
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Ex. 5. Let A, A11 satisfy (32) and (38). Then

A† = [A11 A12]∗T ∗
11

[
A11

A21

]∗
,

where

T11 =
(

[A11 A12]A∗
[
A11

A21

])−1

(Zlobec [891]).

Ex. 6. Let A ∈ Cn×n
r , r < n, be partitioned by

A =
[
A11 A12

A21 A22

]
=
[
Ir

S

]
A11[Ir T ], A11 ∈ C

r×r
r . (40)

Then the group inverse A# exists if and only if Ir + ST is nonsingular, in which
case

A# =
[
Ir

S

]
((Ir + TS)A11(Ir + TS))−1 [Ir T ] (Robert [695]). (41)

Ex. 7. Let A ∈ Cn×n
r be partitioned as in (40). Then A is range-Hermitian if

and only if S = T ∗.

Ex. 8. Let A ∈ Cm×n
r be partitioned as in (22). Then the following orthogonal

projectors are given in terms of the multipliers S, T and the permutation matrices
P,Q as:

(a) PR(A) = PT

[
Ir

S

]
(Ir + S∗S)−1 [Ir S∗]P ;

(b) PR(A∗) = Q

[
Ir

T ∗

]
(Ir + TT ∗)−1 [Ir T

]
QT ;

(c) PN(A) = Q

[ −T
In−r

]
(In−r + T ∗T )−1 [−T ∗ In−r

]
QT ; and

(d) PN(A∗) = PT

[ −S
Im−r

]
(Im−r + SS∗)−1 [−S Im−r

]
P .

Remark. (a) and (d) are alternative computations since

PR(A) + PN(A∗) = Im.

The computation (a) requires inverting the r×r PD matrix Ir +S∗S, while in (d)
the dimension of the PD matrix to be inverted is (m− r)× (m− r). Accordingly,
(a) may be preferred if r < m− r.

Similarly (b) and (c) are alternative computations since

PR(A∗) + PN(A) = In

with (b) preferred if r < n− r.
Ex. 9. (Albert [8]). Recall the notation of Ex. 2.65. Let

H =
[
H11 H12

H∗
12 H22

]
,

where H11 and H22 are Hermitian. Then:
(a) H � O if and only if

H11 � O, H11H
†
11H12 = H12 and H22 −H∗

12H
†
11H12 � O.

(b) H � O if and only if

H11 � O, H11 −H12H
†
22H

∗
12 � O and H22 −H∗

12H
−1
11 H12 � O.
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Ex. 10. (Rohde [705]). Let

H =
[
H11 H12

H∗
12 H22

]
,

be Hermitian PSD, and denote

H(α) =

[
H

(α)
11 +H

(α)
11 H12G

(α)H∗
12H

(α)
11 −H(α)

11 H12G
(α)

−G(α)H∗
12H

(α)
11 G(α)

]
, (42)

where

G = H22 −H∗
12H

(α)
11 H12

and α is an integer, or a set of integers, to be specified below. Then:
(a) The relation (42) is an identity for α = 1 and α = {1, 2}. This means that

RHS(42) is an {α}-inverse of H if in it one substitutes the {α}-inverses
of H11 and G as indicated.

(b) If H22 is nonsingular and rankH = rankH11 + rankH22, then (42) is an
identity with α = {1, 2, 3} and α = {1, 2, 3, 4}.

Ex. 11. (Meyer [544, Lemma 2.1], Campbell and Meyer [159, Theorem 7.7.3]).
Let the matrix M be partitioned as

M =
[
A X
O B

]
where A,B are square. Then M has a group inverse if and only if:

(a) A and B have group inverses; and
(b) (I −AA#)X(I −BB#) = O;

in which case,

M# =

A
#

... A#2X(I −BB#) + (I −AA#)XB#2 −A#XB#

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
O

... B#

 .
In particular, if A is nonsingular,

M# =

A
−1

... A−2X(I −BB#)−A−1XB#

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
O

... B#

 . (43)

3. Intersection of Manifolds

For any vector f ∈ Cn and a subspace L of Cn, the set

f + L = {f + � : � ∈ L} (44)

is called a (linear) manifold (also affine set). The vector f in (44) is not
unique, indeed

f + L = (f + �) + L, for any � ∈ L.

This nonuniqueness suggests singling out the representation

(f − PLf) + L = PL⊥f + L (45)

of the manifold (44) and calling it the orthogonal representation of f + L.
We note that PL⊥f is the unique vector of least Euclidean norm in the
manifold (44).
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In this section we study the intersection of two manifolds

{f + L} ∩ {g + M} (46)

for given vectors f and g and given subspaces L and M in Cn. The results
are needed in Section 4 below where the common solutions of pairs of linear
equations are studied. Let such a pair be

Ax = a (47a)

and

Bx = b, (47b)

where A and B are given matrices with n columns and a and b are given
vectors. Assuming (47a) and (47b) to be consistent, their solutions are the
manifolds

A†a + N(A) (48a)

and

B†b + N(B), (48b)

respectively. If the intersection of these manifolds

{A†a + N(A)} ∩ {B†b + N(B)} (49)

is nonempty, then it is the set of common solutions of (47a)–(47b). This is
the main reason for our interest in intersections of manifolds, whose study
here includes conditions for the intersection (46) to be nonempty, in which
case its properties and representations are given.

Since linear subspaces are manifolds, this special case is considered first.
Lemma 2. Let L and M be subspaces of Cn, with PL and PM the

corresponding orthogonal projectors. Then

PL+M = (PL + PM )(PL + PM )†

= (PL + PM )†(PL + PM ). (50)

Proof. Clearly L+M = R([PL PM ]). Therefore,

PL+M = [PL PM ][PL PM ]†

= [PL PM ]
[
PL

PM

]
[PL PM ]†, (by Ex. 12),

= (PL + PM )(PL + PM )†, since PL and PM are idempotent,

= (PL + PM )†(PL + PM )

since a Hermitian matrix commutes with its Moore–Penrose inverse. �
The intersection of any two subspaces L and M in Cn is a subspace

L∩M in Cn, nonempty since 0 ∈ L∩M . The orthogonal projector PL∩M

is given in terms of PL and PM in the following:
Theorem 3 (Anderson and Duffin [21]). Let L, M, PL, and PM be as

in Lemma 2. Then

PL∩M = 2PL(PL + PM )†PM ,

= 2PM (PL + PM )†PL. (51)
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See also Section 8.2.
Proof. Since M ⊂ L+M , it follows that

PL+MPM = PM = PMPL+M , (52)

and, by using (50),

(PL + PM )(PL + PM )†PM = PM = PM (PL + PM )†(PL + PM ). (53)

Subtracting PM (PL + PM )†PM from the first and last expressions in (53) gives

PL(PL + PM )†PM = PM (PL + PM )†PL. (54)

Now, let

H = 2PL(PL + PM )†PM = 2PM (PL + PM )†PL.

Evidently, R(H) ⊂ L ∩M and, therefore,

H = PL∩MH = PL∩M [PL(PL + PM )†PM + PM (PL + PM )†PL]

= PL∩M (PL + PM )†(PL + PM )

= PL∩MPL+M , (by Lemma 2),

= PL∩M ,

since L ∩M ⊂ L+M . �
Other expressions for L ∩M are given in the following theorem:
Theorem 4 (Lent [507], Afriat [3], Theorem 4.5). Let L and M be

subspaces of Cn. Then:
(a) L ∩M =

[
PL O

]
N([PL − PM ]) = [O PM ]N([PL − PM ])

(b) = N(PL⊥ + PM⊥)

(c) = N(I − PLPM ) = N(I − PMPL).
Proof. (a) x ∈ L ∩M if and only if

x = PLy = PMz, for some y, z ∈ C
n,

which is equivalent to

x = [PL O]
[
y
z

]
= [O PM ]

[
y
z

]
, where

[
y
z

]
∈ N([PL − PM ]).

(b) Let x ∈ L ∩M . Then PL⊥x = PM⊥x = 0, proving that x ∈ N(PL⊥ +
PM⊥). Conversely, let x ∈ N(PL⊥ + PM⊥), i.e.,

(I − PL)x + (I − PM )x = 0

or

2x = PLx + PMx

and, therefore,

2‖x‖ ≤ ‖PLx‖+ ‖PMx‖,
by the triangle inequality for norms. But, by Ex. 2.52,

‖PLx‖ ≤ ‖x‖, ‖PMx‖ ≤ ‖x‖.
Therefore,

‖PLx‖ = ‖x‖ = ‖PMx‖
and so, by Ex. 2.52, PLx = x = PMx, proving x ∈ L ∩M .
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(c) Let x ∈ L ∩ M . Then x = PLx = PMx = PLPMx and, therefore,
x ∈ N(I − PLPM ). Conversely, let x ∈ N(I − PLPM ) and, therefore,

x = PLPMx ∈ L. (55)

Also,

‖PMx‖2 + ‖PM⊥x‖2 = ‖x‖2 = ‖PLPMx‖2

≤ ‖PMx‖2, by Ex. 2.52.

Therefore,

PM⊥x = 0, i.e., x ∈M,

and, by (55),

x ∈ L ∩M.

The remaining equality in (c) is proved similarly. �
The intersection of manifolds, which if nonempty is itself a manifold,

can now be determined.

Theorem 5 (Ben-Israel [65], Lent [507]). Let f and g be vectors in Cn

and let L and M be subspaces of Cn. Then the intersection of manifolds

{f + L} ∩ {g + M} (46)

is nonempty if and only if

g − f ∈ L + M, (56)

in which case:

(a) {f + L} ∩ {g + M} = f + PL(PL + PM )†(g − f) + L ∩M

(a′) = g − PM (PL + PM )†(g − f) + L ∩M

(b) = f + (PL⊥ + PM⊥)†PM⊥(g − f) + L ∩M

(b′) = g − (PL⊥ + PM⊥)†PL⊥(g − f) + L ∩M

(c) = f + (I − PMPL)†PM⊥(g − f) + L ∩M

(c′) = g − (I − PLPM )†PL⊥(g − f) + L ∩M .
Proof. {f + L} ∩ {g +M} is nonempty if and only if

f + � = g + m, for some � ∈ L, m ∈M,

which is equivalent to

g − f = �−m ∈ L+M.

We now prove (a), (b), and (c). The primed statements (a′), (b′), and (c′) are
proved similarly to their unprimed counterparts.

(a) The points x ∈ {f + L} ∩ {g +M} are characterized by

x = f + PLu = g + PMv, for some u,v ∈ C
n. (57)

Thus

[PL − PM ]
[
u
v

]
= g − f . (58)



186 5. GENERALIZED INVERSES OF PARTITIONED MATRICES

The linear equation (58) is consistent, since (46) is nonempty and, therefore, the
general solution of (58) is[

u
v

]
= [PL − PM ]†(g − f) +N([PL − PM ])

=
[
PL

−PM

]
(PL + PM )†(g − f) +N([PL − PM ]), by Ex. 12. (59)

Substituting (59) in (57) gives

x = f + [PL O]
[
u
v

]
= f + PL(PL + PM )†(g − f) + L ∩M

by Theorem 4(a).
(b) Writing (57) as

PLu− PMv = g − f

and multiplying by PM⊥ gives

PM⊥PLu = PM⊥(g − f), (60)

which implies

(PL⊥ + PM⊥)PLu = PM⊥(g − f). (61)

The general solution of (61) is

PLu = (PL⊥ + PM⊥)†PM⊥(g − f) +N(PL⊥ + PM⊥)

= (PL⊥ + PM⊥)†PM⊥(g − f) + L ∩M,

by Theorem 4(b), which when substituted in (57) proves (b).
(c) Equation (60) can be written as

(I − PMPL)PLu = PM⊥(g − f)

whose general solution is

PLu = (I − PMPL)†PM⊥(g − f) +N(I − PMPL)

= (I − PMPL)†PM⊥(g − f) + L ∩M,

by Theorem 4(c), which when substituted in (57) proves (c). �
Theorem 5 verifies that the intersection (46), if nonempty, is itself a

manifold. We note, in passing, that parts (a) and (a′) of Theorem 5 give
the same representation of (46); i.e., if (56) holds, then

f + PL(PL + PM )†(g − f) = g − PM (PL + PM )†(g − f). (62)

Indeed, (56) implies that

g − f = PL+M (g − f)

= (PL + PM )(PL + PM )†(g − f),

which gives (62) by rearrangement of terms.
It will now be proved that parts (a), (a′), (b), and (b′) of Theorem 5

give orthogonal representations of

{f + L} ∩ {g + M} (46)
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if the representations {f + L} and {g + M} are orthogonal, i.e., if

f ∈ L⊥, g ∈M⊥. (63)

Corollary 1. Let L and M be subspaces of Cn and let

f ∈ L⊥, g ∈M⊥. (63)

If (46) is nonempty, then each of the four representations given below is
orthogonal:

(a) {f + L} ∩ {g + M} = f + PL(PL + PM )†(g − f) + L ∩M

(a′) = g − PM (PL + PM )†(g − f) + L ∩M

(b) = f + (PL⊥ + PM⊥)†PM⊥(g − f) + L ∩M

(b′) = g − (PL⊥ + PM⊥)†PL⊥(g − f) + L ∩M .
Proof. Each of the above representations is of the form

{f + L} ∩ {g +M} = v + L ∩M, (64)

which is an orthogonal representation if and only if

PL∩Mv = 0. (65)

In the proof we use the facts

PL∩M = PLPL∩M = PL∩MPL = PMPL∩M = PL∩MPM , (66)

which hold since L ∩M is contained in both L and M .
(a) Here v = f + PL(PL + PM )†(g − f). The matrix PL + PM is Hermitian

and, therefore, (PL+PM )† is a polynomial in powers of PL+PM , by Theorem 4.7.
From (66) it follows therefore that

PL∩M (PL + PM )† = (PL + PM )†PL∩M (67)

and (65) follows from

PL∩Mv = PL∩M f + PL∩MPL(PL + PM )†(g − f)

= PL∩M f + (PL + PM )†PL∩M (g − f), by (66) and (67),

= 0, by (63).

(a′) follows from (62) and (a).
(b) Here v = f + (PL⊥ + PM⊥)†PM⊥(g − f). The matrix PL⊥ + PM⊥ is

Hermitian and, therefore, (PL⊥ + PM⊥)† is a polynomial in PL⊥ + PM⊥ , which
implies that

PL∩M (PL⊥ + PM⊥)† = O. (68)

Finally, (65) follows from

PL∩Mv = PL∩M f + PL∩M (PL⊥ + PM⊥)†PM⊥(g − f)

= 0, by (63) and (68).

(b′) If (63) holds, then

g − f = PL⊥+M⊥(g − f)

= (PL⊥ + PM⊥)†(PL⊥ + PM⊥)(g − f),

by Lemma 2 and, therefore,

f + (PL⊥ + PM⊥)†PM⊥(g − f) = g − (PL⊥ + PM⊥)†PL⊥(g − f),

which proves (b′) identical to (b), if (63) is satisfied. �
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Finally, we characterize subspaces L and M for which the intersection
(46) is always nonempty.

Corollary 2. Let L and M be subspaces of Cn. Then the intersection

{f + L} ∩ {g + M} (46)

is nonempty for all f ,g ∈ Cn if and only if

L⊥ ∩M⊥ = {0}. (69)

Proof. The intersection (46) is by Theorem 5 nonempty for all f ,g ∈ Cn, if
and only if L+M = Cn, which is equivalent to {0} = (L+M)⊥ = L⊥ ∩M⊥, by
Ex. 13(b). �
Exercises

Ex. 12. Let PL and PM be n× n orthogonal projectors. Then

[PL ± PM ]† =
[
PL

±PM

]
(PL + PM )†. (70)

Proof. Use A† = A∗(AA∗)† with A = [PL ± PM ], and the fact that PL and
PM are Hermitian idempotents. �
Ex. 13. Let L and M be subspaces of Cn. Then:

(a) (L ∩M)⊥ = L⊥ +M⊥; and
(b) (L⊥ ∩M⊥)⊥ = L+M .

Proof. (a) Evidently, L⊥ ⊂ (L ∩M)⊥ and M⊥ ⊂ (L ∩M)⊥; hence

L⊥ +M⊥ ⊂ (L ∩M)⊥.

Conversely, from L⊥ ⊂ L⊥ +M⊥ it follows that

(L⊥ +M⊥)⊥ ⊂ L⊥⊥ = L.

Similarly, (L⊥ +M⊥)⊥ ⊂M , hence

(L⊥ +M⊥)⊥ ⊂ L ∩M
and, by taking orthogonal complements,

(L ∩M)⊥ ⊂ L⊥ +M⊥.

(b) Replace in (a) L and M by L⊥ and M⊥, respectively. �
Ex. 14. (von Neumann [840]). Let L1, L2, . . . , Lk be any k linear subspaces of
Cn, k ≥ 2, and let

Q = PLkPLk−1 · · ·PL2PL1PL2 · · ·PLk−1PLk . (71)

Then the orthogonal projector on
⋂k

i=1 Li is limm→∞ Qm.

Ex. 15. (Pyle [660]). The matrix Q of (71) is Hermitian, so let its spectral
decomposition be given by

Q =
q∑

i=1

λiEi

where

λ1 ≥ λ2 ≥ · · · ≥ λq

are the distinct eigenvalues of Q and

E1, E2, . . . , Eq
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are the corresponding orthogonal projectors satisfying

E1 + E2 + · · ·+ Eq = I

and

EiEj = O, if i �= j.

Then

1 ≥ λ1 ≥ λ2 ≥ · · · ≥ λq ≥ 0

and
k⋂

i=1

Li �= {0}, if and only if λ1 = 1,

in which case the orthogonal projector on
⋂k

i=1 Li is E1.

Ex. 16. A closed-form expression. Using the notation of Ex. 15, the orthogonal
projector on

⋂k
i=1 Li is

Qν + [(Qν+1 −Qν)† − (Qν −Qν−1)†]†, for ν = 2, 3, . . . . (72)

If λq, the smallest eigenvalue of Q, is positive, then (72) also holds for ν = 1, in
which case Q0 is taken as I (Pyle [660]).

4. Common Solutions of Linear Equations and Generalized
Inverses of Partitioned Matrices

Consider the pair of linear equations

Ax = a, (47a)

Bx = b, (47b)

with given vectors a,b and matrices A, B having n columns.
Assuming (47a) and (47b) to be consistent, we study here their common

solutions, if any, expressing them in terms of the solutions of (47a) and
(47b).

The common solutions of (47a) and (47b) are the solutions of the par-
titioned linear equation [

A
B

]
x =

[
a
b

]
, (73)

which is often the starting point, the partitioning into (47a) and (47b) being
used to reduce the size or difficulty of the problem.

The solutions of (47a) and (47b) constitute the manifolds

A†a + N(A) (48a)

and B†b + N(B), (48b)

respectively. Thus the intersection

{A†a + N(A)} ∩ {B†b + N(B)} (49)

is the set of solutions of (73) and (73) is consistent if and only if (49) is
nonempty.

The results of Section 3 are applicable to determining the intersection
(49). In particular, Theorem 5 yields the following:
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Corollary 3. Let A and B be matrices with n columns and let a and
b be vectors such that each of the equations (47a) and (47b) is consistent.
Then (47a) and (47b) have common solutions if and only if

B†b−A†a ∈ N(A) + N(B), (74)

in which case the set of common solutions is the manifold:

(a) A†a + PN(A)(PN(A) + PN(B))†(B†b−A†a) + N(A) ∩N(B)
(a′) = B†b− PN(B)(PN(A) + PN(B))†(B†b−A†a) + N(A) ∩N(B)
(b) = (A†A + B†B)†(A†a + B†b) + N(A) ∩N(B).

Proof. Follows from Theorem 5 by substituting

f = A†a, L = N(A), g = B†b, M = N(B). (75)

Thus (74), (a), and (a′) follow directly from (56), (a), and (a′) of Theorem 5,
respectively, by using (75).

That (b) follows from Theorem 5(b) or (b′) is proved as follows. Substituting
(75) in Theorem 5(b) gives

{A†a +N(A)} ∩ {B†b +N(B)}
= A†a + (A†A+B†B)†B†B(B†b−A†a) +N(A) ∩N(B)

= (A† − (A†A+B†B)†B†BA†)a + (A†A+B†B)†B†b

+N(A) ∩N(B), (76)

since PN(X)⊥ = PR(X∗) = X†X for X = A,B.
Now R(A†) = R(A∗) ⊂ R(A∗) +R(B∗) and, therefore,

A† = (A†A+B†B)†(A†A+B†B)A†

by Lemma 2, from which it follows that

A† − (A†A+B†B)†B†BA† = (A†A+B†B)†A†,

which when substituted in (76) gives (b). �
Since each of the parts (a), (a′), and (b) of Corollary 3 gives the so-

lutions of the partitioned equation (73), these expressions can be used to
obtain the generalized inverses of partitioned matrices.

Theorem 6 (Ben-Israel [65], Katz [472], Mihalyffy [554]). Let A and
B be matrices with n columns. Then each of the following expressions is a

{1, 2, 4}-inverse of the partitioned matrix
[
A
B

]
:

(a) X = [A† O] + PN(A)(PN(A) + PN(B))†[−A† B†], (77)

(a′) Y = [O B†]− PN(B)(PN(A) + PN(B))†[−A† B†], (78)

(b) Z = (A†A + B†B)†[A† B†]. (79)

Moreover, if

R(A∗) ∩R(B∗) = {0}, (80)

then each of the expressions (77), (78), (79) is the Moore–Penrose inverse

of
[
A
B

]
.
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Proof. From Corollary 3 it follows that whenever[
A
B

]
x =

[
a
b

]
, (73)

is consistent, then X

[
a
b

]
, Y

[
a
b

]
, and Z

[
a
b

]
are among its solutions. Also the

representations (48a) and (48b) are orthogonal and, therefore, by Corollary 1, the

representations (a), (a′), and (b) of Corollary 3 are also orthogonal. Thus X
[
a
b

]
,

Y

[
a
b

]
, and Z

[
a
b

]
are all perpendicular to

N(A) ∩N(B) = N

[
A
B

]
.

By Theorem 3.2, it follows therefore that X,Y, and Z are {1, 4}-inverses of
[
A
B

]
.

We show now that X,Y, and Z are {2}-inverses of
[
A
B

]
.

(a) From (77) we get

X

[
A
B

]
= A†A+ PN(A)(PN(A) + PN(B))

†(−A†A+B†B).

But

(−A†A+B†B) = PN(A) − PN(B) = (PN(A) + PN(B))− 2PN(B).

Therefore, by Lemma 2 and Theorem 3,

X

[
A
B

]
= A†A+ PN(A)PN(A)+N(B) − PN(A)∩N(B)

= A†A+ PN(A) − PN(A)∩N(B), since N(A) ⊂ N(A) +N(B),

= In − PN(A)∩N(B), since PN(A) = I −A†A. (81)

Since R(H†) = R(H∗) = N(H)⊥ for H = A,B,

PN(A)∩N(B)A
† = O, PN(A)∩N(B)B

† = O, (82)

and therefore (81) gives

X

[
A
B

]
X = X − PN(A)∩N(B)PN(A)(PN(A) + PN(B))

†[−A† B†].

Since

PN(A)∩N(B) = PN(A)∩N(B)PN(A) = PN(A)∩N(B)PN(B),

X

[
A
B

]
X = X − 1

2PN(A)∩N(B)(PN(A) + PN(B))(PN(A) + PN(B))
†[−A† B†]

= X − 1
2PN(A)∩N(B)PN(A)+N(B)[−A† B†], by Lemma 2,

= X − 1
2PN(A)∩N(B)[−A† B†],

since N(A) ∩N(B) ⊂ N(A) +N(B),

= X, (by (82)).

(a′) That Y , given by (78), is a {2}-inverse of
[
A
B

]
is similarly proved.
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(b) The proof that Z given by (79) is a {2}-inverse of
[
A
B

]
is easy since

Z

[
A
B

]
= (A†A+B†B)†(A†A+B†B)

and therefore

Z

[
A
B

]
Z = (A†A+B†B)†(A†A+B†B)(A†A+B†B)†[A† B†]

= (A†A+B†B)†[A† B†]

= Z.

Finally, we show that (80) implies that X,Y, and Z given by (77), (78), and

(79), respectively, are {3}-inverses of
[
A
B

]
. Indeed, (80) is equivalent to

N(A) +N(B) = C
n, (83)

since N(A) +N(B) = {R(A∗) ∩R(B∗)}⊥ by Ex. 13(b).
(a) From (77) it follows that

BX = [BA† O] +BPN(A)(PN(A) + PN(B))
†[−A† B†]. (84)

But

(PN(A) + PN(B))(PN(A) + PN(B))
† = In (85)

by (83) and Lemma 2. Therefore,

PN(A)(PN(A) + PN(B))
† = B(PN(A) + PN(B) − PN(A))(PN(A) + PN(B))

† = B,

and so (84) becomes

BX = [O BB†].

Consequently, [
A
B

]
X =

[
AA† O

O BB†

]
,

which proves that X is a {3}-inverse of
[
A
B

]
.

(a′) That Y given by (78) is a {3}-inverse of
[
A
B

]
whenever (80) holds is

similarly proved or, alternatively, (77) and (78) give

Y −X = [−A† B†]− (PN(A) + PN(B))(PN(A) + PN(B))
†[−A† B†]

= O, by (85).

(b) Finally, we show that Z is the Moore–Penrose inverse of
[
A
B

]
when (80)

holds. By Ex. 2.38, the Moore–Penrose inverse of any matrix H is the only {1, 2}-
inverse U such that R(U) = R(H∗) and N(U) = N(H∗). Thus, H† is also the
unique matrix U ∈ H{1, 2, 4} such that N(H∗) ⊂ N(U). Now, Z has already

been shown to be a {1, 2, 4}-inverse of
[
A
B

]
, and it therefore suffices to prove that

N([A∗ B∗]) ⊂ N(Z). (86)
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Let
[
u
v

]
∈ N([A∗ B∗]). Then

A∗u +B∗v = 0,

and, therefore,

A∗u = −B∗v = 0, (87)

since, by (80), the only vector common to R(A∗) and R(B∗) is the zero vector.
Since N(H†) = N(H∗) for any H, (87) gives

A†u = B†v = 0,

and therefore by (79), Z
[
u
v

]
= 0. Thus (86) is established, and the proof is

complete. �
If a matrix is partitioned by columns instead of by rows, then Theorem 6

may still be used. Indeed,

[A B] =
[
A∗

B∗

]∗
(88)

permits using Theorem 6 to obtain generalized inverses of
[
A∗

B∗

]
, which is

partitioned by rows and then translating the results to the matrix [A B],
partitioned by columns.

In working with the conjugate transposes of a matrix, we note that

X ∈ A{i} ⇐⇒ X∗ ∈ A∗{i}, (i = 1, 2),

X ∈ A{3} ⇐⇒ X∗ ∈ A∗{4}, (89)

X ∈ A{4} ⇐⇒ X∗ ∈ A∗{3}.

Applying Theorem 6 to
[
A∗

B∗

]
as in (88), and using (89), we obtain the

following:
Corollary 4. Let A and B be matrices with n rows. Then each of the

following expressions is a {1, 2, 3}-inverse of the partitioned matrix
[
A B

]
:

(a) X =
[
A†

O

]
+

[−A†

B†

]
(PN(A∗) + PN(B∗))†PN(A∗), (90)

(a′) Y =
[

O
B†

]
−

[−A†

B†

]
(PN(A∗) + PN(B∗))†PN(B∗), (91)

(b) Z =
[
A†

B†

]
(AA† + BB†)†. (92)

Moreover, if

R(A) ∩R(B) = {0}, (93)

then each of the expressions (90), (91), (92) is the Moore–Penrose inverse
of [A B]. �

Other and more general results on Moore–Penrose inverses of parti-
tioned matrices were given in Cline [200]. However, these results are too
formidable for reproduction here.
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Exercises
Ex. 17. In the following expressions (1) denotes any {1}-inverse.

(a) A {1}-inverse of
[
A
B

]
is [X Y ] where

Y = (I −A(1)A)(B −BA(1)A)(1), X = A(1) − Y BA(1). (94)

(b) A {1}-inverse of [A B] is
[
X
Y

]
where

Y = (B −AA(1)B)(1)(I −AA(1)), X = A(1) −A(1)BY. (95)

Ex. 18. Let the partitioned matrix
[
A
B

]
be nonsingular. Then

(a)
[
A
B

]−1

= [A† O] + PN(A)(PN(A) + PN(B))
−1[−A† B†]

(a′) = [O B†]− PN(B)(PN(A) + PN(B))
−1[−A† B†]

(b) = (A†A+B†B)−1[A† B†].

Proof. Follows from Theorem 6. Indeed the nonsingularity of
[
A
B

]
guarantees

that (80) is satisfied, and also that the matrices PN(A) +PN(B) and A†A+B†B =
PR(A∗) + PR(B∗) are nonsingular. �

Ex. 19. Let A = [1 1], B = [1 2]. Then
[
A
B

]
=
[
1 1
1 2

]
is nonsingular. We

calculate now its inverse using Ex. 18(b).
Here

A† = 1
2

[
1
1

]
, A†A = 1

2

[
1 1
1 1

]
,

B† = 1
5

[
1
2

]
, B†B = 1

5

[
1 2
2 4

]
,

A†A+B†B = 1
10

[
7 9
9 13

]
, (A†A+B†B)−1 =

[
13 −9
−9 7

]
,

and, finally, [
A
B

]−1

= (A†A+B†B)−1[A† B†]

=
[

13 −9
−9 7

]
1
10

[
7 9
9 13

]
=
[

2 −1
−1 1

]
.

Ex. 20. Series expansion. Let the partitioned matrix
[
A
B

]
be nonsingular. Then

A†A+B†B = I +K, (96)

where K is Hermitian and

‖K‖ < 1. (97)

From (96) and (97) it follows that

(A†A+B†B)−1 =
∞∑

j=0

(−1)jKj , (98)
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Substituting (98) in Ex. 18(b) gives[
A
B

]−1

=
∞∑

j=0

(−1)jKj [A† B†]. (99)

Similarly,

PN(A) + PN(B) = I −A†A+ I −B†B

= I −K, with K as in (96),

and, therefore,

(PN(A) + PN(B))
−1 =

∞∑
j=0

Kj . (100)

Substituting (100) in Ex. 18(a) gives[
A
B

]−1

= [A† O] + (I −A†A)
∞∑

j=0

Kj [−A† B†]. (101)

Ex. 21. Let the partitioned matrix
[
A
B

]
be nonsingular. Then the solution of[

A
B

]
x =

[
a
b

]
, (73)

for any given a and b, is

x =
∞∑

j=0

(−1)jKj(A†a +B†b) (102)

= A†a + (I −A†A)
∞∑

j=0

Kj(B†b−A†a), (103)

with K given by (96).
Proof. Use (99) and (101). �
Remark. If the nonsingular matrix

[
A
B

]
is ill-conditioned, then slow convergence

may be expected in (98) and (100), and hence in (99) and (101). Even then the

convergence of (102) or (103) may be reasonable for certain vectors
[
a
b

]
. Thus,

for example, if ‖B†b − A†a‖ is sufficiently small, then (103) may be reasonably
approximated by its first few terms.

Ex. 22. Common solutions for n matrix equations. For each i ∈ 1, n let the
matrices Ai ∈ Cp×q, Bi ∈ Cp×r be given, and consider the n matrix equations

AiX = Bi, i ∈ 1, n. (104)

For k ∈ 1, n define recursively

Ck = AkFk−1, Dk = Bk −AkEk−1,

Ek = Ek−1 + Fk−1C
†
kDk and Fk = Fk−1(I − C†

kCk), (105)

where

E0 = Oq×r, F0 = Iq.
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Then the n matrix equations (104) have a common solution if and only if

CiC
†
iDi = Di, i ∈ 1, n, (106)

in which case the general common solution of (104) is

X = En + FnZ, (107)

where Z ∈ Cq×r is arbitrary (Morris and Odell [583]).

Ex. 23. (Morris and Odell [583]). For i ∈ 1, n let Ai ∈ C1×q, and let Ci

be defined by (105) for i ∈ 1, n. Let the vectors {A1, A2, . . . , Ak} be linearly
independent. Then the vectors {A1, A2, . . . , Ak+1} are linearly independent if
and only if Ck+1 = O.

Ex. 24. (Morris and Odell [583]). For i ∈ 1, n let Ai, Ci be as in Ex. 23. For
any k ≤ n the vectors {C1, C2, . . . , Ck} are orthogonal and span the subspace
spanned by {A1, A2, . . . , Ak}.

5. Generalized Inverses of Bordered Matrices

Partitioning was shown above to permit working with submatrices smaller
in size and better behaved (e.g., nonsingular) than the original matrix. In
this section a nonsingular matrix is obtained from the original matrix by
adjoining to it certain matrices. Thus, from a given matrix A ∈ Cm×n, we
obtain the matrix [

A U
V ∗ O

]
, (108)

which, under certain conditions on U and V ∗, is nonsingular, and from
its inverse A† can be read off. These ideas find applications in differential
equations (Reid [683]) and eigenvalue computation (Blattner [113]).

The following theorem is based on the results of Blattner [113]:
Theorem 7. Let A ∈ Cm×n

r and let the matrices U and V satisfy:

(a) U ∈ C
m×(m−r)
(m−r) and the columns of U are a basis for N(A∗).

(b) V ∈ C
n×(n−r)
(n−r) and the columns of U are a basis for N(A).

Then the matrix [
A U
V ∗ O

]
, (108)

is nonsingular and its inverse is[
A† V ∗†

U† O

]
. (109)

Proof. Premultiplying (109) by (108) gives[
AA† + UU† AV ∗†

V ∗A† V ∗V ∗†

]
. (110)

Now, R(U) = N(A∗) = R(A)⊥ by assumption (a) and (0.26) and, therefore,

AA† + UU† = In (111)

by Ex. 2.56. Moreover,

V ∗A† = V ∗A†AA† = V ∗A∗A†∗A† = (AV )∗A†∗A† = O, (112)
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by (1.2), (1.4), and assumption (b), while

AV ∗† = AV †∗ = A(V †V V †)∗ = A(V †V †∗V ∗)∗

= AV V †V †∗ = O, (113)

by (1.2), Ex. 1.18(b), (1.3), and assumption (b). Finally, V ∗ is of full row rank
by assumption (b) and, therefore,

V ∗V ∗† = In−r, (114)

by Lemma 1.2(b). By (111)–(114), (110) reduces to Im+n−r and, therefore, (108)
is nonsingular and (109) is its inverse. �

The next two corollaries apply Theorem 7 for the solution of linear
equations.

Corollary 5. Let A, U, V be as in Theorem 7, let b ∈ Cn, and con-
sider the linear equation

Ax = b. (1)

Then the solution x,y of [
A U
V ∗ O

] [
x
y

]
=

[
b
0

]
. (115)

satisfies

x = A†b, the minimal-norm least squares solution of (1),

Uy = PN(A∗)b, the residual of (1).

Corollary 6 (Cramer’s Rule, Ben-Israel [71], Verghese [835]). Let
A, U, V,b be as in Corollary 5. Then the minimal-norm least-squares solu-
tion x = [xj ] of (1) is given by

xj =
det

[
A[j ← b] U
V ∗[j ← 0] O

]
det

[
A U
V ∗ O

] , j ∈ 1, n. (116)

Proof. Apply the proof of Cramer’s rule, Ex. 0.59, to (115). �
Exercises

Ex. 25. A special case of Theorem 7. Let A ∈ Cm×n
r and let the matrices

U ∈ Cm×(m−r) and V ∈ Cn×(n−r) satisfy

AV = O, V ∗V = In−r, A∗U = O, and U∗U = Im−r. (117)

Then the matrix [
A U
V ∗ O

]
, (108)

is nonsingular and its inverse is[
A† V
U∗ O

]
(Reid [683]). (118)
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Ex. 26. Let A, U , and V be as in Ex. 25, and let

α = min{‖Ax‖ : x ∈ R(A∗), ‖x‖ = 1}, (119)

β = max{‖A†y‖ : y ∈ C
n, ‖y‖ = 1}. (120)

Then

αβ = 1 (Reid [683]). (121)

Proof. If y ∈ Cn, ‖y‖ = 1, then

z = A†y

is the solution of

Az = (Im − UU∗)y, V ∗z = 0.

Therefore,

α‖A†y‖ = α‖z‖ ≤ ‖Az‖, by (119),

= ‖(Im − UU∗)y‖
≤ ‖y‖, by Ex. 2.52 since Im − UU∗ is an orthogonal projector,

= 1.

Therefore αβ ≤ 1. On the other hand, let

x ∈ R(A∗), ‖x‖ = 1,

then

x = A†Ax,

so that

1 = ‖x‖ = ‖A†Ax‖ ≤ β‖Ax‖,
proving that αβ ≥ 1, and completing the proof. �
See also Exs. 6.4 and 6.7.

Ex. 27. A generalization of Theorem 7. Let

A =
[
B C
D O

]
be nonsingular of order n, where B is m × p, 0 < m < n, and 0 < p < n. Then
A−1 is of the form

A−1 =
[
E F
G O

]
, (122)

where E is p×m, if and only if B is of rank m+ p− n, in which case

E = B
(1,2)
N(D),R(C), F = D

(1,2)
N(B),{0}, G = C

(1,2)
R(In−p),R(B). (123)

Proof. We first observe that since A is nonsingular, C is of full column rank n−p
for, otherwise, the columns of A would not be linearly independent. Similarly, D
is of full row rank n −m. Since C is m × (n − p), it follows that n − p ≤ m or,
in other words,

m+ p ≥ n.
If : Since A is nonsingular, the m×n matrix [B C] is of full row rank m, and

therefore of column rank m. Therefore, a basis for Cm can be chosen from among
its columns. Moreover, this basis can be chosen so that it includes all n−p columns
of C, and the remaining m+p−n basis elements are columns of B. Since B is of
rank m+p−n, the latter columns span R(B). Therefore R(B)∩R(C) = {0} and,
consequently, R(B) and R(C) are complementary subspaces. Similarly, we can
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show that R(B∗) and R(D∗) are complementary subspaces of Cp and, therefore,
their orthogonal complements N(B) and N(D) are complementary spaces.

The results of the preceding paragraph guarantee the existence of all {1, 2}-
inverses in the right member of (123). If X now denotes RHS(122) with E,F,G
given by (123), as easy computation shows that AX = In.

Only if : It was shown in the “if” part of the proof that rank B is at least
m+ p− n. If A−1 is of the form (122) we must have

BF = O. (124)

Since A−1 is nonsingular, it follows from (122) that F is of full column rank n−m.
Thus, (124) exhibits n−m independent linear relations among the columns of B.
Therefore the rank of B is at most p− (n−m) = m+ p− n. This completes the
proof. �

Ex. 28.
(a) Let C ∈ Rm×r

r and let the columns of U0 ∈ Rm×m−r be an o.n. basis of
N(CT ). Then

det2 [C U0] = vol2 (C). (125)

(b) Let R ∈ Rr×n
r and let the columns of V0 ∈ Rn×(n−r) be an o.n. basis of

N(R). Then

det2
[
R
V T

0

]
= vol2 (R). (126)

Proof. (a) Follows from UT
0 U0 = I,

det2 [C U0] = det [C U0]T det [C U0],

and

[C U0]T [C U0] =
[
CTC O
O UT

0 U0

]
.

(b) Similarly proved. �

Ex. 29. Let A ∈ Rm×n
r , and let U0 ∈ Rm×(m−r) and V0 ∈ Rn×(n−r) be matrices

whose columns are o.n. bases of N(AT ) and N(A), respectively. Then:

(a) The m-dimensional volume of [A U0] equals the r-dimensional volume
of A.

(b) The n-dimensional volume of
[
A
V T

0

]
equals the r-dimensional volume of

A.

Proof. (a) Every m×m nonsingular submatrix of [A U0] is of the form

[A∗J U0], J ∈ J (A),

and therefore, vol2m[A U0] = vol2r(A∗J), by Ex. 28(a). The proof is completed
by (0.106b). �

Ex. 30. Let A, U0, and V0 be as in Ex. 29.

(a) Consider the bordered matrix

B(A) =
[
A U0

V T
0 O

]
. (127)
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Then

vol2r(A) = det2 B(A), (128)

= det[AAT + U0U
T
0 ], (129)

= det[ATA+ V0V
T
0 ]. (130)

(b) If A is square, then

vol2(A) = det2[A+ U0V
T
0 ]. (131)

Proof. (a) Since the columns of [
V0

O

]
form an o.n. basis of N([A U0]T ), we can use Ex. 28(b) and Ex. 29(a) to prove
(128),

det2 B(A) = vol2m[A U0] = vol2r (A),

and (129),

vol2m[A U0] = det ([A U0][A U0]T ) = det [AAT + U0U
T
0 ]. �
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CHAPTER 6

A Spectral Theory for Rectangular Matrices

1. Introduction

We study in this chapter some consequences of the singular value decom-
position (SVD), encountered previously in §§ 0.2.14–0.2.15.

The SVD, repeated in Theorem 2, states that for any A ∈ Cm×n
r with

singular values σ(A) = {σ1, σ2, . . . , σr} there exist two unitary matrices
U ∈ Um×m (the set of m ×m unitary matrices) and V ∈ Un×n such that
the m× n matrix

Σ = U∗AV =



σ1
...

. . .
... O

σr

...
· · · · · · · · · · · · · · ·

O
... O


(1)

is diagonal. Thus any m × n complex matrix is unitarily equivalent to a
diagonal matrix

A = UΣV ∗. (2)

The corresponding statement for linear transformations is that for any lin-
ear transformations A : Cn → Cm with dim R(A) = r, there exist two
orthogonal bases U = {u1,u2, . . . ,um} and V = {v1,v2, . . . ,vn} of Cm

and Cn, respectively, such that the corresponding matrix representation
A{U,V} is diagonal,

A{U,V} = diag (σ1, . . . , σr, 0, . . . , 0) ∈ Rn×m, (0.42)

i.e., {
Avj = σjuj , j ∈ 1, r,
Avj = 0, j ∈ r + 1, n.

(3)

The expression

A = UΣV ∗, Σ =



σ1
...

. . .
... O

σr

...
· · · · · · · · · · · · · · ·

O
... O


, U ∈ Um×m, V ∈ Un×n,

(4)

201
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is called the singular value decomposition (abbreviated SVD) of A.
The SVD is of fundamental importance in the theory and computations

of generalized inverses, especially the Moore–Penrose inverse. It is the basis
for a generalized spectral theory for rectangular matrices, an extension of
the classical spectral theory for normal matrices. This chapter covers the
SVD and related topics.
Exercises

Ex. 1. A and A∗ have the same singular values.

Ex. 2. Unitarily equivalent matrices have the same singular values.
Proof. Let A ∈ Cm×n, and let U ∈ Um×m and V ∈ Un×n be any two unitary
matrices. Then the matrix

(UAV )(UAV )∗ = UAV V ∗A∗U∗ = UAA∗U∗

is similar to AA∗, and thus has the same eigenvalues. Therefore the matrices
UAV and A have the same singular values. �
Ex. 3. (Lanczos [496]). Let A ∈ Cm×n

r . Then
(

O A
A∗ O

)
has 2r nonzero eigenvalues

given by ±σj(A), j ∈ 1, r.

Ex. 4. An extremal characterization of singular values. Let A ∈ Cm×n
r . Then

σk(A) = max{‖Ax‖ : ‖x‖ = 1, x ⊥ x1, . . . ,xk−1}, k ∈ 1, r, (5)

where

‖ ‖ denotes the Euclidean norm,

{x1,x2, . . . ,xk−1} is an o.n. set of vectors in C
n, defined recursively by

‖Ax1‖ = max{‖Ax‖ : ‖x‖ = 1},
‖Axj‖ = max{‖Ax‖ : ‖x‖ = 1, x ⊥ x1, . . . ,xj−1}, j = 2, . . . , k − 1,

and RHS(5) is the (attained) supremum of ‖Ax‖ over all vectors x ∈ Cn with
norm one, which are perpendicular to x1,x2, . . . ,xk−1.
Proof. Follows from the corresponding extremal characterization of the eigen-
values of A∗A, see § 0.2.11(d),

λk(A∗A) = max{〈x, A∗Ax〉 : ‖x‖ = 1, x ⊥ x1, . . . ,xk−1}
= 〈xk, A

∗Axk〉, k = 1, . . . , n,

since 〈x, A∗Ax〉 = 〈Ax, Ax〉 = ‖Ax‖2. Here the vectors {x1, . . . ,xn} are an o.n.
set of eigenvectors of A∗A,

A∗Axk = λk(A∗A)xk, k ∈ 1, n. �
The singular values can be characterized equivalently as

σk(A) = max{‖A∗y‖ : ‖y‖ = 1, y ⊥ y1, . . . ,yk−1} = ‖A∗yk‖,
where the vectors {y1, . . . ,yr} are an o.n. set of eigenvectors of AA∗, corre-
sponding to its positive eigenvalues

AA∗yk = λk(AA∗)yk, k ∈ 1, r.

We can interpret this extremal characterization as follows: let the columns of A
be aj , j = 1, . . . , n. Then

‖A∗yk‖2 =
n∑

j=1

|〈aj ,y〉|2.

Thus y1 is a normalized vector maximizing the sum of squares of moduli of its
inner products with the columns of A, the maximum value being σ2

1(A), etc.
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Ex. 5. The singular values of A are the stationary values of

f(x) =
‖Ax‖
‖x‖ . (6)

Proof. From A∗Ax = σ2x we get σ2 = ‖Ax‖2

‖x‖2 = f2(x). Differentiating f2(x)
and equating the gradient to zero, we again get A∗Ax = f2(x)x. �

Ex. 6. If A ∈ Cn×n
r is normal and its eigenvalues are ordered by

|λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λr(A)| > |λr+1(A)| = · · · = |λn(A)| = 0,

then the singular values of A are σj(A) = |λj(A)|, j ∈ 1, r.
Hint. Use Ex. 4 and the spectral theorem for normal matrices, Theorem 2.15.

Ex. 7. Let A ∈ Cm×n
r and let the singular values of A† be ordered by

σ1(A†) ≥ σ2(A†) ≥ · · · ≥ σr(A†).

Then

σj(A†) =
1

σr−j+1(A)
, j ∈ 1, r. (7)

Proof.

σ2
j (A†) = λj(A†∗A†), by definition (0.31b),

= λj((AA∗)†), since A†∗A† = A∗†A† = (AA∗)†,

=
1

λr−j+1(AA∗)

=
1

σ2
r−j+1(A)

, by definition (0.31a). �

Ex. 8. Let ‖ ‖F be the Frobenius matrix norm

‖A‖F = (traceA∗A)1/2 =
( m∑

i=1

n∑
j=1

|aij |2
)1/2

(0.50)

defined on Cm×n, see, e.g., Ex. 0.34. Then, for any A ∈ Cm×n
r ,

‖A‖2F =
r∑

j=1

σ2
j (A). (8)

Proof. Follows from trace A∗A =
∑r

j=1 λj(A∗A). �
See also Ex. 62 below.

Ex. 9. Let ‖ ‖2 be the spectral norm, defined on Cm×n by

‖A‖2 = max{
√
λ : λ an eigenvalue of A∗A}

= σ1(A), (0.14.2)

see, e.g., Ex. 0.38. Then, for any A ∈ Cm×n
r , r ≥ 1,

‖A‖2‖A†‖2 =
σ1(A)
σr(A)

. (9)

Proof. Follows from Ex. 7 and definition (0.14.2). �
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Ex. 10. A condition number. Let A be an n×n nonsingular matrix, and consider
the equation

Ax = b (10)

for b ∈ Cn. The sensitivity of the solution of (10) to changes in the right-hand
side b is indicated by the condition number of A, defined for any multiplicative
matrix norm ‖ ‖ by

cond(A) = ‖A‖‖A−1‖. (11)

Indeed, changing b to (b + δb) results in a change of the solution x = A−1b to
x + δx, with

δx = A−1δb. (12)

For any consistent pair of vector and matrix norms (see Exs. 0.35–0.37), it follows
from (10) that

‖b‖ ≤ ‖A‖‖x‖. (13)

Similarly, from (12),

‖δx‖ ≤ ‖A−1‖‖δb‖. (14)

From (13) and (14) we get the following bound:

‖δx‖
‖x‖ ≤ ‖A‖‖A

−1‖‖δb‖‖b‖ = cond(A)
‖δb‖
‖b‖ (15)

relating the change of the solution to the change in data and the condition number
(11).

Ex. 11. The spectral condition number corresponding to the spectral norm
(0.14.2) is, by (9)

cond(A) =
σ1(A)
σn(A)

. (16)

Prove that for this condition number

cond(A∗A) = (cond(A))2,

showing that A∗A is worse conditioned than A, if cond(A) > 1 (Taussky [798]).

Ex. 12. Weyl’s inequalities. Let A ∈ Cn×n
r have eigenvalues λ1, . . . , λn ordered

by

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|
and singular values

σ1 ≥ σ2 ≥ · · · ≥ σr.

Then
k∑

j=1

|λj | ≤
k∑

j=1

σj , (17)

k∏
j=1

|λj | ≤
k∏

j=1

σj , (18)

for k = 1, . . . , r (Weyl [869], Marcus and Minc [534, pp. 115–116]).
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2. The Singular Value Decomposition

There are several ways to approach the SVD, see, e.g., Stewart [783].Our
approach follows that of Eckart and Young [248]. First we require the
following theorem:

Theorem 1. Let O �= A ∈ Cm×n
r , let σ(A), the singular values of A,

be

σ1 ≥ σ2 ≥ · · · ≥ σr > 0, (0.32)

let {u1,u2, . . . ,ur} be an o.n. set of eigenvectors of AA∗ corresponding to
its nonzero eigenvalues:

AA∗ui = σ2
i ui, i ∈ 1, r, (19a)

〈ui,uj〉 = δij , i, j ∈ 1, r, (19b)

and let {v1,v2, . . . ,vr} be defined by

vi =
1
σi

A∗ui, i ∈ 1, r. (20)

Then {v1,v2, . . . ,vr} is an o.n. set of eigenvectors of A∗A corresponding
to its nonzero eigenvalues

A∗Avi = σ2
i vi, i ∈ 1, r, (21a)

〈vi,vj〉 = δij , i, j ∈ 1, r. (21b)

Furthermore,

ui =
1
σi

Avi, i ∈ 1, r. (22)

Dually, let the vectors {v1,v2, . . . ,vr} satisfy (21) and let the vectors
{u1,u2, . . . ,ur} be defined by (22). Then {u1,u2, . . . ,ur} satisfy (19) and
(20).
Proof. Let {vi : i ∈ 1, r} be given by (20). Then,

A∗Avi =
1
σi
A∗AA∗ui

= σiA
∗ui, by (19a),

= σ2
i vi, by (20),

and

〈vi,vi〉 =
1

σiσj
〈A∗ui, A

∗uj〉

=
1

σiσj
〈AA∗ui,uj〉

=
σi

σj
〈ui,uj〉, by (19a),

= δij , by (19b).

Equations (22) follow from (20) and (19a). The dual statement follows by inter-
changing A and A∗. �

An easy consequence of Theorem 1 is the following:
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Theorem 2 (The Singular Value Decomposition). Let O �= A ∈ Cm×n
r

and let

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 (0.32)

be the singular values of A.
Then there exist unitary matrices U ∈ Um×m and V ∈ Un×n such that

the matrix

Σ = U∗AV =



σ1
...

. . .
... O

σr

...
· · · · · · · · · · · · · · ·

O
... O


(1)

is diagonal.
Proof. For the given A ∈ Cm×n

r we construct two such matrices U and V as
follows.

Let the vectors {u1, . . . ,ur} in Cm satisfy (19a) and (19b), and thus form
an o.n. basis of R(AA∗) = R(A); see, e.g., Corollary 1.2. Let {ur+1, . . . ,um} be
an o.n. basis of R(A)⊥ = N(A∗). Then the set {u1, . . . ,ur,ur+1, . . . ,um} is an
o.n. basis of Cm satisfying (19a) and

A∗ui = 0, i ∈ r + 1,m. (23)

The matrix U defined by

U = [u1 . . . ur ur+1 . . . um] (24)

is thus an m×m unitary matrix.
Let now the vectors {v1, . . . ,vr} in Cn be defined by (20). Then these

vectors satisfy (21a) and (21b), and thus form an o.n. basis of R(A∗A) =
R(A∗). Let {vr+1, . . . ,vn} be an o.n. basis of R(A∗)⊥ = N(A). Then the
set {v1, . . . ,vr,vr+1, . . . ,vn} is an o.n. basis of Cn satisfying (21a) and

Avi = 0, i ∈ r + 1, n. (25)

The matrix V defined by

V = [v1 . . . vr vr+1 . . . vn] (26)

is thus an n× n unitary matrix.
With U and V as given above, the matrix

Σ = U∗AV = (Σ[i, j]), i ∈ 1,m, j ∈ 1, n,

satisfies

Σ[i, j] = u∗
iAvj = 0 if i > r or j > r, by (23) and (25),

and, for i, j = 1, . . . , r,

Σ[i, j] = u∗
iAvj

=
1
σj

u∗
iAA

∗uj , by (20),

= σj u∗
i uj , by (19a),

= σj δij , by (19b),

completing the proof. �
A corresponding decomposition of A† is given in
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Corollary 1 (Penrose [635]). Let A, Σ, U, and V be as in Theorem 2.
Then

A† = V Σ†U∗ (27)

where

Σ† = diag
(

1
σ1

, . . . ,
1
σr

, 0, . . . , 0
)
∈ Rn×m. (28)

Proof. Equation (27) follows from Ex. 1.25. The form (28) for Σ† is obvious.
�

Let A ∈ Cm×n
r and let the matrices Σ, U, and V be as in Theorem 2.

We denote by U(k), V(k), and Σ(k) the submatrices

U(k) = [u1 . . . uk] ∈ Cm×k, V(k) = [v1 . . . vk] ∈ Cn×k,

Σ(k) =

σ1
. . .

σk

 ∈ Ck×k. (29)

Using this notation, the SVD’s of A and A† can be written as

A =
r∑

i=1

σi uiv∗
i = U(r)Σ(r)V

∗
(r), (30a)

A† =
r∑

i=1

1
σi

viu∗
i = V(r)Σ−1

(r)U
∗
(r). (30b)

For 1 ≤ k ≤ r we write, analogously,

A(k) =
k∑

i=1

σi uiv∗
i = U(k)Σ(k)V

∗
(k) ∈ Cm×n

k . (30c)

In particular, A = A(r).

Exercises

Ex. 13. Recall the limit formula for the Moore–Penrose inverse

lim
λ→0

(A∗A+ λI)−1A∗ = A†. (3.43)

There are cases where stopping at a positive λ is better than going to the limit
λ = 0. Let A ∈ Cm×n

r and let {u1,u2, . . . ,ur} and {v1,v2, . . . ,vr} be o.n. bases
of R(A∗) and R(A), respectively, as in Theorem 1. Consider the equation

Ax = b, (10)

where b ∈ R(A) is expressed as

b =
r∑

i=1

βivi.

The least-norm solution x = A†b is then

x =
r∑

i=1

βi

σi
ui. (31)
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If A is ill-conditioned, this solution is sensitive to errors ε in the smaller singular
values, as seen from

1
σ + ε

≈
1
σ
− 1
σ2 ε+

1
σ3 ε

2 + · · · .
Instead of (31), consider the approximate solution

x(λ) = (A∗A+ λI)−1A∗b

=
r∑

i=1

σi βi

σ2
i + λ

ui (32)

where λ is positive. It is less sensitive to errors in the singular values, as shown
by

(σ + ε)
(σ + ε)2 + λ

≈
σ

σ2 + λ
− σ2 − λ

(σ2 + λ)2
ε+

σ(σ2 − 3λ)
(σ2 + λ)3

ε2 + · · · ,

where the choice λ = σ2 gives

(σ + ε)
(σ + ε)2 + λ

≈
1
2σ
− 1

4σ3 ε
2 + · · · .

See also Section 8.4.

Ex. 14. Let the SVD of A ∈ Cm×n
r be written as

A = U

[
Σ(r) O
O O

]
V ∗

where Σ(r) is as in (29). The general {1}-inverse of A is

G = V

[
Σ−1

(r) X

Y Z

]
U∗ (33)

where X, Y, Z are arbitrary submatrices of appropriate sizes. In particular,
Z = Y Σ(r)X gives the general {1, 2}-inverse;
X = O gives the general {1, 3}-inverse; and
Y = O gives the general {1, 4}-inverse;

finally, the Moore–Penrose inverse is (33) with X = O, Y = O, and Z = O.

Ex. 15. Simultaneous diagonalization. Let A1, A2 ∈ Cm×n. Then the following
are equivalent:

(a) There exist two unitary matrices U, V such that both Σ1 = U∗A1V, Σ2 =
U∗A2V are diagonal real matrices (in which case one of them, say D1,
can be assumed to be nonnegative).

(b) A1A
∗
2 and A∗

2A1 are both Hermitian (Eckart and Young [248]).

Ex. 16. Let A1, A2 ∈ Cn×n be Hermitian matrices. Then the following are
equivalent:

(a) There is a unitary matrix U such that both Σ1 = U∗A1U, Σ2 = U∗A2U
are diagonal real matrices.

(b) A1A2 and A2A1 are both Hermitian.
(c) A1A2 = A2A1.

Ex. 17. (Williamson [876]). Let A1, A2 ∈ Cm×n. Then the following are
equivalent:

(a) There exist two unitary matrices U, V such that both Σ1 = U∗A1V, Σ2 =
U∗A2V are diagonal matrices.

(b) There is a polynomial f such that A1A
∗
2 = f(A2A

∗
1), A∗

2A1 = f(A∗
1A2).
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Ex. 18. UDV ∗-decomposition. In some cases it is convenient to rewrite the SVD
(4) as

A = UDV ∗, D =



d1
...

. . .
... O

dr

...
· · · · · · · · · · · · · · ·

O
... O


, U ∈ Um×m, V ∈ Un×n, (34)

where the diagonal elements d(A) = {di : i ∈ 1, r} are complex numbers satisfying

|di| = σi, i ∈ 1, r. (35)

Indeed, (34) is obtainable by inserting 1 = eiθe−iθ, for some θ ∈ R, in (4). For
example, let {θk : k ∈ 1, r} be real numbers, let Θ = diag (θk), and denote
e± iΘ = diag (± eiθk ). Then:

A = U

[
Σ O
O O

]
V ∗, (Σ = diag (σi), i ∈ 1, r),

= U

[
Σ O
O O

] [
eiΘ O
O O

] [
e−iΘ O
O O

]
V ∗,

= U

[
Σ O
O O

] [
eiΘ O
O O

] [
e−iΘ O
O Ir

]
V ∗,

= UDW ∗,

where,

D =
[
Σ O
O O

] [
eiΘ O
O O

]
=
[
diag (dk) O

O O

]
, dk = σke

iθk , k ∈ 1, r, (36)

W ∗ =
[
e−iΘ O
O Ir

]
V ∗. (37)

The matrix W in (37) is unitary, and will be denoted by V to give (4) and (34)
a similar look. We call (34) a UDV ∗-decomposition of A.

Theorems 1–2 can be restated for the UDV ∗-decomposition, for example, by
replacing (20) and (22) by

vi =
1
di

A∗ui, i ∈ 1, r, (20*)

and

ui =
1
di
Avi, i ∈ 1, r, respectively. (22*)

Ex. 19. Normal matrices. If O �= A ∈ Cn×n
r is normal and its nonzero eigenval-

ues are ordered by

|λ1| ≥ |λ2| ≥ · · · ≥ |λr| > 0, (38)

then the scalars d(A) = {d1, . . . , dr} in (35) can be chosen as the corresponding
eigenvalues

di = λi, i ∈ 1, r. (39)

This choice reduces both (20*) and (22*) to

ui = vi, i ∈ 1, r. (40)
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Proof. The first claim follows from Ex. 6.
Using Exs. 0.22 it can be shown that all four matrices A,A∗, AA∗, and A∗A

have common eigenvectors. Therefore, the vectors {u1, . . . ,ur} of (19a) and
(19b) are also eigenvectors of A∗ and (20*) reduces to (40). �

Ex. 20. Normal matrices. If O �= A ∈ Cn×n
r is normal, and the scalars d(A) are

chosen by (39), then the UDV ∗-decomposition (34) of A reduces to the statement
that A is unitarily similar to a diagonal matrix

A = UDU∗, see Ex. 0.22(a).

Ex. 21. An alternative definition of the matrix volume. The volume of a matrix
A ∈ Cm×n

r with singular values {σi : i ∈ 1, r} is the product of these singular
values

vol A =
r∏

i=1

σi. (41)

Proof. The SVD (30a) is a full-rank factorization of A, A = CR, with C =
U(r)Σ(r), R = V ∗

(r) (or, alternatively, A = C1R1, C1 = U(r), R1 = Σ(r) V
∗
(r)).

Therefore

vol A = vol C vol R, by Ex. 0.66,

= vol U(r) vol Σ(r) vol V ∗
(r),

= vol Σ(r), (by Ex. 0.65 since U∗
(r)U(r) = V ∗

(r)V(r) = I),

= | det Σ(r)|, since Σ(r) is nonsingular. �
A geometric interpretation: Equations (3) show that the r-dimensional unit

cube �(v1, . . . ,vr) is mapped under A into the cube of sides σi ui (i = 1, . . . , r),
whose (r-dimensional) volume is

r∏
i=1

σi ,

the volume of the matrix A. Since the singular values are unitarily invariant,
it follows that all r-dimensional unit cubes in R(AT ) are mapped under A into
parallelepipeds of volume vol A.

See Ex. 8.32 for the special case m = 3, n = r = 2.

Ex. 22. Let Ck(A) be the k-compound of A ∈ Rm×n
r . It is an

(
m
k

)×(n
k

)
matrix of

rank
(

r
k

)
, and its singular values are all products σi1σi2 · · ·σik of singular values

of A. It follows that Cr(A) is of rank 1 and its nonzero singular value equals
vol A.

Ex. 23. Let o.n. bases of R(A) and R(AT ) be given by the {ui} and {vi} of
the SVD (3). Then the Plücker coordinates of R(A) are given by

u∧ = u1 ∧ · · · ∧ ur

and those of R(AT ) by

v∧ = v1 ∧ · · · ∧ vr.

Moreover,

Cr(A)v∧ = vol A u∧, Cr(A†)u∧ =
1

vol A
v∧, (42)
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correspond to the facts that A is invertible as a mapping: R(AT )→ R(A) and A†

is invertible as a mapping: R(A)→ R(AT ), see also Marcus [533]. In particular,

Cr(A†) = (Cr(A))†, and vol (A†) =
1

vol A
.

We show next that each singular value of the Moore–Penrose inverse A† is dom-
inated by a corresponding singular value of any {1}-inverse of A.

Ex. 24. A minimum property of the Moore–Penrose inverse (Bapat and Ben-
Israel [47]). Let G be a {1}-inverse of A ∈ Cm×n

r with singular values

σ1(G) ≥ σ2(G) ≥ · · · ≥ σs(G), (43)

where s = rankG (≥ rankA). Then

σi(G) ≥ σi(A†) , i = 1, . . . , r. (44)

Proof. Dropping U, V we write

GG∗ =
[
Σ−1 X
Y Z

] [
Σ−1 Y ∗

X∗ Z∗

]
=
[
Σ−2 +XX∗ ?

? ?

]
,

where ? denotes a submatrix not needed in this proof. Then, for i = 1, . . . , r,

σ2
i (G) := λi(GG∗)

≥ λi(Σ−2 +XX∗) , e.g., [529, Chapter 11, Theorem 11],

≥ λi(Σ−2) , e.g., [529, Chapter 11, Theorem 9],

= σ2
i (A†). �

From (44) and definition (0.114b) we conclude that for each k = 1, . . . , r the
Moore–Penrose inverse A† is of minimal k-volume among all {1}-inverses G of A,

volk G ≥ volk A† , k = 1, . . . , r. (45)

Moreover, this property is a characterization of A†, as shown next.

Ex. 25. Let A ∈ Rm×n
r and let k be any integer in 1, r. Then the Moore–Penrose

inverse A† is the unique {1}-inverse of A with minimal k-volume.
Proof. We prove this result directly, by solving the k-volume minimization
problem, showing it to have the Moore–Penrose inverse as the unique solution.

The easiest case is k = 1. The claim is that A† is the unique solution
X = [xij ] of the minimization problem

minimize 1
2 vol21X subject to AXA = A, (P.1)

where, by (0.114b),

vol21 [xij ] =
∑
ij

|xij |2 = trace XTX.

We use the Lagrangian function

L(X,Λ) := 1
2 trace XTX − trace ΛT (AXA−A) (46)

where Λ = [λij ] is a matrix Lagrange multiplier. The Lagrangian can be written,
using the “vec” notation, as

L(X,Λ) = 1
2 〈vecX, vecX〉 − 〈vec Λ,

(
AT ⊗A

)
vecX〉

and its derivative with respect to vecX is

(∇X L(X,Λ))T = (vecX)T − (vec Λ)T (AT ⊗A),
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see, e.g., [529]. The necessary condition for optimality is that the derivative
vanishes,

(vecX)T − (vec Λ)T (AT ⊗A) = vecO,

or, equivalently,

X = AT ΛAT . (47)

This condition is also sufficient, since (P.1) is a problem of minimizing a convex
function subject to linear constraints. Indeed, the Moore–Penrose inverse A† is
the unique {1}-inverse of A satisfying (47) for some Λ (see, e.g., [67]). Therefore
A† is the unique solution of (P.1).

For 1 < k ≤ r the problem analogous to (P.1) is

minimize 1
2 vol2k X, subject to AXA = A. (P.k)

We note that AXA = A implies

Ck(A)Ck(X)Ck(A) = Ck(A). (48)

Taking (48) as the constraint in (P.k), we get the Lagrangian

L(X,Λ) := 1
2

∑
I∈Qk,n
J∈Qk,m

|det XIJ |2

− trace Ck(Λ)T (Ck(A)Ck(X)Ck(A)− Ck(A)).

It follows, in analogy with the case k = 1, that a necessary and sufficient condition
for optimality of X is

Ck(X) = Ck(AT )Ck(Λ)Ck(AT ). (49)

Moreover, A† is the unique {1}-inverse satisfying (49), and is therefore the unique
solution of (P.k). �
Note: The rank s of a {1}-inverse G may be greater than r, in which case the
volumes

volr+1(G), volr+2(G), . . . , vols(G)

are positive. However, the corresponding volumes of A† are zero, by (0.114c), so
the inequalities (45) still hold.

3. The Schmidt Approximation Theorem

The data A(r) = {Σ(r), U(r), V(r)} is of size r + mr + nr = r(m + n + 1).
In applications where storage space is restricted, or speed of transmission
is important, it would seem desirable to reduce the data size. One such
idea is to approximate the original matrix A = A(r) by lower rank matrices
A(k), provided the error of approximation is acceptable. This error, using
the Frobenius norm (0.50), is

‖A−A(k)‖F =
∥∥∥U

(
Σ−

[
Σ(k) O
O O

])
V ∗

∥∥∥
F

=
∥∥∥Σ−

[
Σ(k) O
O O

]∥∥∥
F

= ‖ diag (0, . . . , 0, σk+1, . . . , σr, 0, . . . , 0)‖F

=
( r∑

i=k+1

σ2
i

)1/2
. (50)

The question if there is a better approximating matrix of rank k requires
the following
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Definition 1. Given a matrix A ∈ Cm×n
r and an integer k, 1 ≤ k ≤ r,

a best rank-k approximation of A is a matrix X ∈ Cm×n
k satisfying

‖A−X‖F = inf
Z∈C

m×n
k

‖A− Z‖F . (51)

The following theorem confirms that A(k) is the best rank-k approxi-
mation of A. The theorem has a long history (see Stewart [783]) and is
often credited to Eckart and Young [247] and Mirsky [558].

Theorem 3 (The Schmidt approximation theorem [727]). Let A ∈
Cm×n

r , let 1 ≤ k ≤ r, and let Σ(k), U(k), V(k) be as above. Then a best
rank-k approximation of A is

A(k) = U(k)Σ(k)V
∗
(k), (30c)

which is unique if, and only if, the k th and the (k + 1)st singular values of
A are distinct:

σk �= σk+1. (52)

The approximation error of A(k) is

‖A−A(k)‖F =
( r∑

i=k+1

σ2
i

)1/2
. (50)

Proof. For any X ∈ Cm×n,

‖A−X‖2F = ‖U∗(A−X)V ‖2F = ‖Σ− Y ‖2F = f(Y ), say,

where

Y = U∗XV = [yij ].

Let L be any subspace with dimL ≤ k and let PL denote the orthogonal projector
on L. Then the matrix Y = PLΣ minimizes f(Y ) among all matrices Y with
R(Y ) ⊂ L, and the corresponding minimum value is

‖Σ− PLΣ‖2F = ‖QΣ‖2F = trace ΣQ∗QΣ

= trace ΣQΣ =
m∑

i=1

σ2
i qii,

where Q = I − PL = [qij ] is the orthogonal projector on L⊥. Now

inf
X∈C

m×n
k

‖A−X‖2F = inf
Y ∈C

m×n
k

‖Σ− Y ‖2F

= inf{‖Σ− PLΣ‖2F : over all subspaces L with dim L ≤ k}

= inf{
m∑

i=1

σ2
i qii : Q = [qij ] = PL⊥ , dimL ≤ k}

and, since 0 ≤ qii ≤ 1 (why?),
∑m

i=1 qii = m−dimL, it follows that the minimiz-
ing

Q =
[
O O
O Im−k

]
is unique if and only if σk �= σk+1,

and the minimizing Y is, accordingly,

Y = PLΣ =
[
Ik O
O O

]
Σ
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or

yij =
{
σi, if 1 ≤ i = j ≤ k,
0, otherwise.

�
See Ex. 29 for an alternative proof.
An important application of matrix approximation is the total least-

squares (TLS) problem, whose development below is based on Nievergelt
[612]. Given a linear system

Ax = b (53)

the least-squares problem is to solve an approximate system

Ax = b̃ (54)

where

b̃ ∈ R(A) minimizes ‖b̃− b‖2. (55)

The TLS problem is to solve an approximate system

Ãx = b̃ (56)

where b̃ ∈ R(Ã) and the pair {Ã, b̃} minimizes ‖[Ã ... b̃]− [A
...b]‖F .

Note that in the TLS problem, both the matrix A and the vector b are
modified.

Since (56) is equivalent to[
x
−1

]
∈ N([Ã

... b̃]), (57)

the TLS problem is

find [Ã
... b̃] ∈ Cm×(n+1)

so as to

minimize ‖[Ã ... b̃]− [A
...b]‖F (58)

subject to (57), for some x.
Theorem 4. Let A ∈ Cm×n

n , let the system (53) be inconsistent, let

[A
...b] have the SVD

[A
...b] = UΣV ∗ =

n+1∑
i=1

σi uiv∗
i , (59)

and let σk be the smallest singular value such that vk has nonzero last
component vk[n + 1]. Then a solution of the TLS problem is

[Ã
... b̃] = [A

...b]− σk ukv∗
k (60)

and the error of approximation is

‖[Ã ... b̃]− [A
...b]‖F = σk. (61)

The solution (60) is unique if and only if the smallest singular value σk, as
above, is unique.
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Proof (Y. Nievergelt1). Since (53) is inconsistent, it follows that

rank([A
...b]) = n+ 1 ≤ m and b �= 0,

which in turn guarantees the existence of vj with nonzero last component. Denote
the index set of such vectors by

J = {j : vj [n+ 1] �= 0}, (62)

and their number by |J |. The unitary matrix U = [u1 · · · um] in (59) is m ×
m. Consider its submatrix Û = [u1 · · · un+1] whose columns form a basis for

R([A
...b]). Let

[Ã
... b̃] = [A

...b]− ÛY diag (σ1, . . . , σn+1)V ∗ (63)

for some Y = [yij ] ∈ C(n+1)×(n+1), so that

‖[Ã
... b̃]− [A

...b]‖2F =
∑

i

(
σ2

i |yii|2 +
∑
j �=i

σ2
j |yij |2

)
. (64)

Any solution
[

x
−1

]
of (57) is a linear combination of the singular vectors vj , say[

x
−1

]
=
∑
j∈J

αjvj +
∑
j �∈J

βjvj , with last component
∑
j∈J

αj vj [n+ 1] = −1.

Then

0 = [Ã
... b̃]

[
x
−1

]
=
(n+1∑

i=1

σi uiv∗
i

)(∑
j∈J

αjvj +
∑
j �∈J

βjvj

)
− ÛY diag (σ1, · · · , σn+1)V ∗

(∑
j∈J

αjvj +
∑
j �∈J

βjvj

)
=
∑
j∈J

αj σj uj +
∑
j �∈J

βj σj uj −
∑
j∈J

αj ÛY σj ej −
∑
j �∈J

βj ÛY σj ej .

Multiplying on the left by {u∗
i : i ∈ J} we get |J | equations

αi σi =
∑
j∈J

αj e∗
i Y ej σj +

∑
j �∈J

βj e∗
i Y ej σj

=
∑
j∈J

yij (αj σj) +
∑
j �∈J

yij (βj σj), i ∈ J. (65)

Similarly, premultiplication by {u∗
i : i �∈ J} gives the n+ 1− |J | equations

βi σi =
∑
j∈J

yij (αj σj) +
∑
j �∈J

yij (βj σj), i �∈ J. (66)

Equations (65)–(66) show that the matrix Y = [yij ] has an eigenvalue 1, implying

‖Y ‖F ≥ 1.

A matrix Y = [yij ] minimizing (64) has therefore one nonzero, ykk = 1 where
σk = min{σj : j ∈ J}. �

If (n + 1) ∈ J , i.e., if the smallest singular value σn+1 corresponds to a

singular vector vn+1 with nonzero last component, then the matrix [Ã
... b̃]

1Private communication.
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is the best n-rank approximation of [A
...b]. In this case Theorem 4 is a

corollary of the Schmidt approximation theorem.
See Ex. 36 for the case where A has deficient column rank.

Exercises
Ex. 29 is an alternative proof of the Schmidt approximation theorem, using the
inequalities for singular values given in Exs. 26–28. These inequalities were proved
by Weyl [868] for integral operators with symmetric kernels and appear here as
given in Stewart [783].

Ex. 26. Let A ∈ Cm×n
r and let B ∈ Cm×n have rank ≤ k < r. Then

σ1(A−B) ≥ σk+1(A). (67)

Proof. Let A = UΣV ∗ be the SVD of A, and let B = XY ∗ where X,Y have k
columns. Denote by V(k+1) the submatrix of the first k + 1 columns of V . From
Ex. 0.12 with L = R(V(k+1)), M = R(Y ) it follows that R(V(k+1)∩N(Y ∗) �= {0},
i.e., there is a linear combination of the first k + 1 columns of V ,

z = ζ1v1 + ζ2v2 + · · ·+ ζk+1vk+1

with Y ∗z = 0. Normalizing z so that ‖z‖2 = ζ2
1 + · · ·+ ζ2

k+1 = 1 we get

σ1(A−B)2 ≥ z∗(A−B)∗(A−B)z

= z∗A∗Az

= ζ2
1σ

2
1 + ζ2

2σ
2
2 + · · ·+ ζ2

k+1σ
2
k+1

≥ σ2
k+1. �

Ex. 27. If A = A′ +A′′, then

σi+j−1 ≤ σ′
i + σ′′

j , (68)

where σi, σ
′
i, and σ′′

i are the singular values of A,A′, and A′′, respectively, ar-
ranged in descending order.
Proof. For i = j = 1 and u1, v1 as in Theorem 1,

σ1 = 〈u1, Av1〉 = 〈u1, A
′v1〉+ 〈u1, A

′′v1〉 ≤ σ′
1 + σ′′

1 .

Now, σ1(A′ −A′
(i−1)) = σi(A′) and σ1(A′′ −A′′

(j−1)) = σj(A′′) where A′
(i−1) and

A′′
(j−1) are defined by (30c). Therefore

σ′
i + σ′′

j = σ1(A′ −A′
(i−1)) + σ1(A′′ −A′′

(j−1))

≥ σ1(A′ −A′
(i−1) −A′′

(j−1))

≥ σi+j−1, by (67), since rank(A′
(i−1) +A′′

(j−1)) ≤ i+ j − 2. �

Ex. 28. If A ∈ Cm×n
r , B ∈ C

m×n
k with k < r, then

σi(A−B) ≥ σk+i(A), i = 1, 2, . . . . (69)

Proof. Use Ex. 27 with A′ = A−B, A′′ = B, and j = k + 1. The conclusion is
obtained from (68), since σk+1(B) = 0. �

Ex. 29. If A ∈ Cm×n
r , B ∈ C

m×n
k , k < r, then it follows from (69) that

‖A−B‖2F ≥ σ2
k+1 + · · ·+ σ2

r . (70)

This, together with (50), proves the Schmidt approximation theorem.
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Ex. 30. Let O �= A ∈ Cm×n
r have singular values

σ1 ≥ σ2 ≥ · · · ≥ σr > 0

and let Mr−1 =
⋃r−1

k=0 C
m×n
k be the set of m× n matrices of rank ≤ r − 1. Then

the distance, using either the Frobenius norm (0.50) or the spectral norm (0.14.2),
of A from Mr−1 is

inf
X∈Mr−1

‖A−X‖ = σr. (71)

Two easy consequences of (71) are:

(a) Let A be as above and let B ∈ Cm×n satisfy

‖B‖ < σr,

then

rank(A+B) ≥ rankA.

(b) For any 0 ≤ k ≤ min{m,n}, the m×n matrices of rank ≤ k form a closed
set in Cm×n.

In particular, the n × n singular matrices form a closed set in Cn×n. For any
nonsingular A ∈ Cn×n with singular values

σ1 ≥ σ2 ≥ · · · ≥ σn > 0,

the smallest singular value σn is a measure of the nonsingularity of A.

Ex. 31. A minimal rank matrix approximation. Let A ∈ Cm×n and let ε > 0.
Find a matrix B ∈ Cm×n of minimal rank, satisfying

‖A−B‖F ≤ ε
for the Frobenius norm (0.50).
Solution. Using the notation of (29),

B = A(k),

where k is determined by( r∑
i=k

σi(A)2
)1/2

> ε,
( r∑

i=k+1

σi(A)2
)1/2

≤ ε (Golub [304]). �
Ex. 32. A unitary matrix approximation. Let Un×n denote the set of n × n
unitary matrices. Let A ∈ Cn×n

r with an SVD

A = UΣV ∗, Σ = diag (σ1, . . . , σr, 0, . . . , 0) ∈ R
n×m.

Then

inf
W∈Un×n

‖A−W‖F = ‖Σ− I‖F =

√√√√ r∑
i=1

(1− σi)2 + n− r

is attained for

W = UV ∗ (Fan and Hoffman [267], Mirsky [558], Golub [304]).

Ex. 33. The following generalization of Ex. 32 arises in factor analysis; see, e.g.,
Green [321] and Schönemann [728].

For given A,B ∈ Cm×n, find a W ∈ Un×n such that

‖A−BW‖F ≤ ‖A−BX‖F for any X ∈ Un×n.

Solution. W = UV ∗ where B∗A = UΣV ∗ is an SVD of B∗A. �
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Ex. 34. Let A(k) be a best rank-k approximation of A ∈ Cm×n
r (as given by

Theorem 3). Then A∗
(k), A(k)A

∗
(k), and A∗

(k)A(k) are best rank-k approximations
of A,AA∗, and A∗A, respectively. If A is normal, then Aj

(k) is a best rank-k
approximation of Aj for all j = 1, 2 . . . (Householder and Young [433]).

Ex. 35. Real matrices. If A ∈ Rm×n
r , then the unitary matrices U and V in the

SVD (4) can also be taken to be real, hence orthogonal.

Ex. 36. In Theorem 4, let A ∈ Cm×n
r with r < n, and let the system (53) be

inconsistent. How do the conclusions change?

Hint. Here rank([A
...b]) = r + 1, and the SVD (59) becomes

[A
...b] =

r+1∑
i=1

σi uiv∗
i .

Let {vr+2, . . . ,vn+1} be a basis of N([A
...b]). The index set (62) is nonempty,

since b �= 0, but cannot include any j ∈ r + 2, n+ 1 for otherwise (53) is consis-
tent. �

4. Partial Isometries and the Polar Decomposition Theorem

A linear transformation U : Cn → Cm is called a partial isometry (some-
times also a subunitary transformation) if it is norm preserving on the
orthogonal complement of its null space, i.e., if

‖Ux‖ = ‖x‖, for all x ∈ N(U)⊥ = R(U∗), (72)

or, equivalently, if it is distance preserving

‖Ux− Uy‖ = ‖x− y‖, for all x,y ∈ N(U)⊥.

Except where otherwise indicated, the norms used here are the Euclidean
vector norm and the corresponding spectral norm for matrices, see Ex. 0.38.

Partial isometries in Hilbert spaces were studied extensively by von
Neumann [840], Halmos [366], Halmos and McLaughlin [367], Erdelyi
[263], and others. The results given here are special cases for the finite-
dimensional space Cn.

A nonsingular partial isometry is called an isometry (or a unitary trans-
formation). Thus a linear transformation U : Cn → Cn is an isometry if
‖Ux‖ = ‖x‖ for all x ∈ Cn.

We recall that U ∈ Cn×n is a unitary matrix if and only if U∗ =
U−1. Analogous characterizations of partial isometries are collected in the
following theorem, drawn from Halmos [366], Hestenes [414], and Erdélyi
[256].

Theorem 5. Let U ∈ Cm×n. Then the following eight statements are
equivalent:

(a) U is a partial isometry.
(a∗) U∗ is a partial isometry.
(b) U∗U is an orthogonal projector.
(b∗) UU∗ is an orthogonal projector.
(c) UU∗U = U .
(c∗) U∗UU∗ = U∗.
(d) U∗ = U†.
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(e) U† is a partial isometry.
Proof. We prove (a)⇐⇒ (b), (a)⇐⇒ (e), and (b)⇐⇒ (c)⇐⇒ (d). The obvious
equivalence (c)⇐⇒ (c∗) then takes care of the dual statements (a∗) and (b∗).

(a)=⇒ (b) Since R(U∗U) = R(U∗), (b) can be rewritten as

U∗U = PR(U∗). (73)

From Ex. 0.22(b) it follows for any Hermitian H ∈ Cn×n that

〈Hx,x〉 = 0, for all x ∈ C
n, (74)

implies H = O. Consider now the matrix

H = PR(U∗) − U∗U.

Clearly,

〈Hx,x〉 = 0, for all x ∈ R(U∗)⊥ = N(U),

while, for x ∈ R(U∗),

〈PR(U∗)x,x〉 = 〈x,x〉
= 〈Ux, Ux〉, by (a),

= 〈U∗Ux,x〉.
Thus (a) implies that the Hermitian matrix H = PR(U∗) − U∗U satisfies (74),
which in turn implies (73).

(b)=⇒ (a) This follows from

〈Ux, Ux〉 = 〈U∗Ux,x〉
= 〈PR(U∗)x,x〉 by (73),

= 〈x,x〉, if x ∈ R(U∗).

(a)⇐⇒ (e) Since

y = Ux, x ∈ R(U∗),

is equivalent to

x = U†y, y ∈ R(U),

it follows that

〈Ux, Ux〉 = 〈x,x〉, for all x ∈ R(U∗),

is equivalent to

〈y,y〉 = 〈U†y, U†y〉, for all y ∈ R(U) = N(U†)⊥.

(b)⇐⇒ (c)⇐⇒ (d) The obvious equivalence (c)⇐⇒ (c∗) states that U∗ ∈
U{1} if, and only if, U∗ ∈ U{2}. Since U∗ is (always) a {3, 4}-inverse of U , it
follows that U∗ is a {1}-inverse of U if, and only if, U∗ = U†. �

Returning to the SVD of Section 2, we identify some useful partial
isometries in the following theorem:

Theorem 6 (Hestenes [414]). Let O �= A ∈ Cm×n
r , and let

A = UΣV ∗, (4)

the unitary matrices U ∈ Um×m, V ∈ Un×n and the diagonal matrix Σ ∈
Rm×n

r given as in Theorem 2. Let U(r), Σ(r), and V(r) be defined by (29).
Then:
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(a) The matrices U(r), V(r) are partial isometries with

U(r)U
∗
(r) = PR(A), U∗

(r)U(r) = Ir, (75)

V(r)V
∗
(r) = PR(A∗), V ∗

(r)V(r) = Ir. (76)

(b) The matrix

E = U(r)V
∗
(r) (77)

is a partial isometry with

EE∗ = PR(A), E∗E = PR(A∗). (78)

Proof. (a) That U(r), V(r) are partial isometries is obvious from their definitions
and the unitarity of U and V (see, e.g., Ex. 39). Now

U∗
(r)U(r) = Ir

by definition (29), since U is unitary, and

PR(A∗) = A†A = A†
(r)A(r)

= V(r)Σ
−1
(r)U

∗
(r)U(r)Σ(r)V

∗
(r), by (30a) and (30b),

= V(r)V
∗
(r),

with the remaining statements in (a) similarly proved.
(b) Using (75) and (76), it can be verified that

E† = V(r)U
∗
(r) = E∗,

from which (78) follows easily. �
The partial isometry E thus maps R(A∗) isometrically onto R(A).

Since A also maps R(A∗) onto R(A), we should expect A to be a “multiple”
of E. This is the essence of the following theorem, proved by Autonne [30]
and Williamson [876] for square matrices, by Penrose [635] for rectangular
matrices, and by Murray and von Neumann [589] for linear operators in
Hilbert spaces.

Theorem 7 (The Polar Decomposition Theorem). Let O �= A ∈ Cm×n
r .

Then A can be written as

A = GE = EH, (79)

where E ∈ Cm×n is a partial isometry and G ∈ Cm×m, H ∈ Cn×n are
Hermitian and PSD.

The matrices E, G, and H are uniquely determined by

R(E) = R(G), (80a)

R(E∗) = R(H), (80b)

in which case

G2 = AA∗, (81a)

H2 = A∗A, (81b)

and E is given by

E = U(r)V
∗
(r). (77)
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Proof. Let

A = UΣV ∗, Σ = diag (σ1, . . . , σr, 0, . . . , 0) (4)

be the SVD of A. For any k, r ≤ k ≤ min{m,n}, we use (29) to define the three
matrices

Σ(k) = diag(σ1, . . . , σk) ∈ R
k×k,

U(k) = [u1 . . . uk] ∈ C
m×k, V(k) = [v1 . . . vk] ∈ C

n×k.

Then (4) can be rewritten as

A = U(k)Σ(k)V
∗
(k)

= (U(k)Σ(k)U
∗
(k))(U(k)V

∗
(k)), since U∗

(k)U(k) = Ik,

= (U(k)V
∗
(k))(V(k)Σ(k)V

∗
(k)), since V ∗

(k)V(k) = Ik,

which proves (79) with the partial isometry

E = U(k)V
∗
(k) (82)

and the PSD matrices

G = U(k)Σ(k)U
∗
(k), H = V(k)Σ(k)V

∗
(k). (83)

This also shows E to be nonunique if r < min{m,n}, in which case G and H are
also nonunique, for (83) can then be replaced by

G = U(k)Σ(k)U
∗
(k) + uk+1u

∗
k+1,

H = V(k)Σ(k)V
∗
(k) + vk+1v

∗
k+1,

which satisfies (79) for the E given in (82).
Let now E and G satisfy (80a). Then, from (79),

AA∗ = GEE∗G = GEE†G = GPR(E)G = G2,

which proves (81a) and the uniqueness ofG; see also Ex. 37 below. The uniqueness
of E follows from

E = EE†E = GG†E = G†GE = G†A. (84)

Similarly (80b) implies (81b) and the uniqueness of H,E.
Finally, from

G2 = AA∗

= U(r)Σ(r)V
∗
(r)V(r)Σ(r)U

∗
(r), by (30a),

= U(r)Σ
2
(r)U

∗
(r)

we conclude that

G = U(r)Σ(r)U
∗
(r)

and, consequently,

G† = U(r)Σ
−1
(r)U

∗
(r). (85)

Therefore,

E = G†A, by (84)

= U(r)Σ
−1
(r)U

∗
(r)U(r)Σ(r)V

∗
(r), by (85) and (30a),

= U(r)V
∗
(r), proving (77). �
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If one uses a general UDV ∗-decomposition of A instead of the SVD,
then the matrices G and H defined by (83) are merely normal matrices and
need not be Hermitian. Hence, the following corollary:

Corollary 2. Let O �= A ∈ Cm×n
r . Then, for any choice of the

scalars d(A) in (35), there exist a partial isometry E ∈ Cm×n and two
normal matrices G ∈ Cm×m, H ∈ Cn×n, satisfying (79). The matrices
E, G, and H are uniquely determined by (80a) and (80b), in which case

GG∗ = AA∗, (86)

H∗H = A∗A, (87)

and E is given by (77). �
Theorem 7 is the matrix analog of the polar decomposition of a complex

number

z = x + iy, x, y real,

as

z = |z|eiθ, (88)

where

|z| = (zz̄)1/2 = (x2 + y2)1/2

and

θ = arctan
y

x
.

Indeed, the complex scalar z in (88) corresponds to the matrix A in (79),
while z̄, |z|, and eiθ correspond to A∗, G (or H), and E, respectively. This
analogy is natural since |z| = (zz̄)1/2 corresponds to the square roots G =
(AA∗)1/2 or H = (A∗A)1/2, while the scalar eiθ satisfies

|zeiθ| = |z|, for all z ∈ C,

which justifies its comparison to the partial isometry E; see also Exs. 55
and 59.
Exercises
Ex. 37. Square roots. Let A ∈ Cn×n

r be Hermitian PSD. Then there exists a
unique Hermitian PSD matrix B ∈ Cn×n

r satisfying

B2 = A, (89)

B is called the square root of A, denoted by A1/2.
Proof. Writing A as

A = UDU∗, U unitary, D = diag (λ1, . . . , λr, 0, . . . , 0),

we see that

B = UD1/2U∗, D1/2 = diag
(
λ

1/2
1 , . . . , λ1/2

r , 0, . . . , 0
)
,

is a Hermitian PSD matrix satisfying (89). To prove uniqueness, assume that B
is a Hermitian matrix satisfying (89). Then, since B and A = B2 commute, it
follows from Ex. 16 that

B = UD̃U∗
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where D̃ is diagonal and real, by Ex. 0.22(b), hence

D̃ = D1/2, by (89). �
Partial Isometries
Ex. 38. Linearity of isometries. Let X,Y be real normed vector spaces and let
f : X → Y be isometric, i.e.,

‖f(x1)− f(x2)‖Y = ‖x1 − x2‖X , for all x1, x2 ∈ X,
where ‖ ‖X and ‖ ‖Y are the norms in X and Y , respectively. If f(0) = 0, then f
is a linear transformation (Mazur and Ulam). For extensions and references see
Dunford and Schwartz [246, p. 91] and Vogt [837].

Ex. 39. Partial isometries. If the n × n matrix U is unitary and U(k) is any
n × k submatrix of U , then U(k) is a partial isometry. Conversely, if W ∈ C

n×k
k

is a partial isometry, then there is an n × (n − k) partial isometry V such that
the matrix U = [W V ] is unitary.

Ex. 40. Any matrix unitarily equivalent to a partial isometry is a partial isom-
etry.
Proof. Let A = UBV ∗, U ∈ Um×m, V ∈ Un×n. Then

A† = V B†U∗, by Ex. 1.25,

= V B∗U∗, if B is a partial isometry,

= A∗. �
Ex. 41. Let A ∈ Cm×n

r have singular values σ(A) = {σi : i ∈ 1, r}. Then A is a
partial isometry if, and only if,

σi = 1, i ∈ 1, r.

Consequently, in any UDV ∗-decomposition (34) of a partial isometry, the diago-
nal factor D has

|di| = 1, i ∈ 1, r.

Ex. 42. A linear transformation E : Cn → Cm with dimR(E) = r is a partial
isometry if, and only if, there are two o.n. bases {v1, . . . ,vr} and {u1, . . . ,ur}
of R(E∗) and R(E), respectively, such that

ui = Evi, i = 1, . . . , r.

Ex. 43. Contractions. A matrix A ∈ Cm×n is called a contraction if

‖Ax‖ ≤ ‖x‖, for all x ∈ C
n. (90)

For any A ∈ C×n the following statements are equivalent:
(a) A is a contraction.
(b) A∗ is a contraction.
(c) For any subspace L of Cm containing R(A), the matrix PL−AA∗ is PSD.

Proof. (a)⇐⇒ (b) By Exs. 0.35 and 0.38, (a) is equivalent to

‖A‖2 ≤ 1,

but

‖A‖2 = ‖A∗‖2, by (0.14.2) and Ex. 1.

(b)⇐⇒ (c) By definition (90), the statement (b) is equivalent to

0 ≤ 〈x,x〉 − 〈A∗x, A∗x〉
= 〈(I −AA∗)x,x〉, for all x ∈ C

m,
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which in turn is equivalent to (c). �
Ex. 44. Let A ∈ Cm×n be a contraction and let L be any subspace of Cm

containing R(A). Then the (m+ n)× (m+ n) matrix M(A) defined by

M(A) =
[
A
√
PL −AA∗

O O

]
is a partial isometry (Halmos and McLaughlin [367], Halmos [366]).
Proof. The square root

√
PL −AA∗ exists and is unique by Exs. 43(c) and 37.

The proof then follows by verifying that

M(A)M(A)∗M(A) = M(A). �
Ex. 45. Eigenvalues of partial isometries. Let U be an n × n partial isometry
and let λ be an eigenvalue of U corresponding to the eigenvector x. Then

|λ| = ‖PR(U∗)x‖
‖x‖ ,

hence

|λ| ≤ 1 (Erdélyi [256]).

Proof. From Ux = λx we conclude

|λ|‖x‖ = ‖Ux‖ = ‖UPR(U∗)x‖ = ‖PR(U∗)x‖. �
Ex. 46. The partial isometry

U =

1 0 0
0

√
3

2 0

0 1
2 0


has the following eigensystem:

λ = 0, x =

0
0
1

 ∈ N(U),

λ = 1, x =

1
0
0

 ∈ R(U∗),

λ =
√

3
2 , x =

 0√
3

2
1
2

 =

 0√
3

2
0

+

0
0
1
2

 ,
 0√

3
2
0

 ∈ R(U∗),

0
0
1
2

 ∈ N(U).

Ex. 47. Normal partial isometries. Let U be an n × n partial isometry. Then
U is normal if and only if it is range-Hermitian.
Proof. Since any normal matrix is range-Hermitian, only the “if” part needs
proof. Let U be range-Hermitian, i.e., let R(U) = R(U∗). Then UU∗ = U∗U , by
Theorem 5. �
Ex. 48. Let U be an n×n partial isometry. If U is normal, then its eigenvalues
have absolute values 0 or 1.
Proof. For any nonzero eigenvalue λ of a normal partial isometry U , it follows
from Ux = λx that x ∈ R(U) = R(U∗), and therefore

|λ|‖x‖ = ‖Ux‖ = ‖x‖. �
Ex. 49. The converse of Ex. 48 is false. Consider, for example, the partial
isometry U =

(
0 1
0 0

)
.
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Ex. 50. Let E ∈ Cn×n be a contraction. Then E is a normal partial isometry if,
and only if, the eigenvalues of E have absolute values 0 or 1 and rank E = rank
E2 (Erdelyi [260, Lemma 2]).

Ex. 51. A matrix E ∈ Cn×n is a normal partial isometry if, and only if,

E = U

[
W O
O O

]
U∗,

where U and W are unitary matrices (Erdelyi [260]).
Polar Decompositions
Ex. 52. Let A ∈ Cn×n and let

A = GE, (79)

where G is PSD and E is a partial isometry satisfying

R(E) = R(G). (80a)

Then A is normal if, and only if,

GE = EG,

in which case E is a normal partial isometry (Hearon [408, Theorem 1], Halmos
[366, Problem 108]).

Ex. 53. Let A ∈ Cn×n have the polar decompositions (79) and (80a). Then A
is a partial isometry if and only if G is an orthogonal projector.
Proof. If : Let

G = G∗ = G2. (91)

Then

AA∗ = GEE∗G, by (79),

= G2, since EE∗ = PR(G) by Theorem 5(b∗) and (80a),

= G, by (91),

proving that A is a partial isometry by Theorem 5(b∗).
Only if : Let A be a partial isometry and let A = GE be its unique polar

decomposition determined by (80a). Then

AA∗ = G2

is a Hermitian idempotent, by Theorem 5(b∗), and hence its square root is also
idempotent. �
Ex. 54. (Hestenes [414]). Let A ∈ Cn×n have the polar decomposition (79)
satisfying (80a) and (80b). Then σ is a singular value of A if, and only if,

Ax = σEx, for some 0 �= x ∈ R(E∗), (92)

or, equivalently, if and only if

A∗y = σE∗y, for some 0 �= y ∈ R(E). (93)

Proof. From (79) it follows that (92) is equivalent to

G(Ex) = σ(Ex),

which, by (81a), is equivalent to

AA∗(Ex) = σ2(Ex).

The equivalence of (93) is similarly proved. �
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Ex. 55. Let z be any complex number with the polar decomposition

z = |z|eiθ. (92)

Then, for any real α, the following inequalities are obvious:

|z − eiθ| ≤ |z − eiα| ≤ |z + eiθ|.
Fan and Hoffman [267] established the following analogous matrix inequalities.

Let A ∈ Cn×n be decomposed as

A = UH,

where U is unitary and H is PSD. Then, for any unitary W ∈ Un×n, the inequal-
ities

‖A− U‖ ≤ ‖A−W‖ ≤ ‖A+ U‖
hold for every unitarily invariant norm.

Give the analogous inequalities for the polar decomposition of rectangular
matrices given in Theorem 7. See also Schönemann [728] and Björck and Bowie
[110].

Ex. 56. Generalized Cayley transforms. Let L be a subspace of Cn. Then the
equations

U = (PL + iH)(PL − iH)†, (94)

H = i(PL − U)(PL + U)†, (95)

establish a one-to-one correspondence between all Hermitian matrices H with

R(H) ⊂ L (96)

and all normal partial isometries U with

R(U) = L (97)

whose spectrum excludes −1 (Ben-Israel [62], Pearl [629], [630], Nanda [590]).
Proof. Note that

(PL ± iH) and (PL + U)

map L onto itself for Hermitian H satisfying (96) and normal partial isometries
satisfying (97), whose spectrum excludes −1. Since on L, (PL± iH) and (PL±U)
reduce to (I ± iH) and (I ± U), respectively, the proof follows from the classical
theorem; see, e.g., Gantmacher [296, Vol. I, p. 279]. �
Ex. 57. Let H be a given Hermitian matrix. Let L1 and L2 be two subspaces
containing R(H) and let U1 and U2 be the normal partial isometries defined,
respectively, by (94). If L1 ⊂ L2, then U1 = U2PL1 , i.e., U1 is the restriction of
U2 to L1. Thus the “minimal” normal partial isometry corresponding to a given
Hermitian matrix H is

U = (PR(H) + iH)(PR(H) − iH)†.

Ex. 58. A well-known inequality of Fan and Hoffman [267, Theorem 3] is
extended to the singular case as follows.

If H1, H2 are Hermitian with R(H1) = R(H2) and if

Uk = (PR(Hk) + iHk)(PR(Hk) − iHk)†, k = 1, 2,

then

‖U1 − U2‖ ≤ 2‖H1 −H2‖
for every unitarily invariant norm (Ben-Israel [62]).
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Trace Inequalities

Ex. 59. Let z be a complex scalar. Then, for any real α, the following inequality
is obvious:

|z| ≥ �{zeiα}.
An analogous matrix inequality can be stated as follows:

Let H ∈ Cn×n be Hermitian PSD. Then

trace H ≥ �{trace(HW )}, for all W ∈ Un×n,

where Un×n is the class of n× n unitary matrices.
Proof. Suppose there is a W0 ∈ Un×n with

trace H < �{trace (HW0)}. (98)

Let

H = UDU∗ with U ∈ Un×n, D = diag (α1, . . . , αn),

where {α1, . . . , αn} are the eigenvalues of H. Then∑
αi = trace H < �{trace(UDU∗W0)}, by (98),

= �{trace A}, where A = UDV ∗, V ∗ = U∗W0, (99)

= �{
∑

λi}, where {λ1, . . . , λn} are the eigenvalues of A.

But AA∗ = UDV ∗V DU∗ = UD2U∗, proving that the nonzero {αi} are the
singular values of A. Thus (99) implies that∑

αi <
∑
|λi|,

a contradiction of Weyl’s inequality (17). �
Ex. 60. Let A ∈ Cm×n

r be given and let Wm×n
� denote the class of all partial

isometries in C
m×n
� , where � = min{m,n}. Then

sup
W∈W m×n

�

�{trace(AW )}

is attained for some W0 ∈Wm×n
� . Moreover, AW0 is Hermitian PSD, and

sup
W∈W m×n

�

�{trace(AW )} = trace(AW0) =
r∑

i=1

σi, (100)

where {σ1, . . . , σr} are the singular values of A. (For m = n, and unitary W ,
this result is due to von Neumann [839].)
Proof. Without a loss of generality, assume that m ≤ n. Let

A = GE (79)

be a polar decomposition, where the partial isometry E is taken to be of full rank
(using (82) with k = m), so E ∈Wm×n

m . Then, for any W ∈Wm×n
m ,

trace(AW ) = trace(GEW )

= trace
([G O
O O

] [
E

E⊥

]
[W W⊥]

)
, (101)

where the submatrices E⊥ and W⊥ are chosen so as to make[
E

E⊥

]
and [W W⊥]
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unitary matrices; see, e.g., Ex. 39. Since[
G O
O O

]
is PSD, and

[
E

E⊥

]
[W W⊥]

is unitary, it follows from Ex. 59 and (101), that

sup
W∈W n×m

m

�{trace(AW )}

is attained for W0 ∈Wn×m
m satisfying

AW0 = G,

and (100) follows from (83). �
Ex. 61. Let A ∈ Cm×n

r and B ∈ Cn×m
s have singular values α1 ≥ α2 ≥ · · · ≥

αr > 0 and β1 ≥ β2 ≥ · · · ≥ βs > 0, respectively. Then

sup
X∈Un×n, W∈Um×m

�{trace(AXBW )}

is attained for some X0 ∈ Un×n,W0 ∈ Um×m, and is given by

trace (AX0BW0) =
min{r,s}∑

i=1

αiβi.

This result was proved by von Neumann [839, Theorem 1] for the case m = n.
The general case is proved by “squaring” the matrices A and B, i.e., adjoining
zero rows and columns to make them square.
Gauge Functions and Singular Values

The following two exercises relate gauge functions (Ex. 3.52) to matrix norms
and inequalities. The unitarily invariant matrix norms are characterized in Ex. 62
as symmetric gauge functions of the singular values. For square matrices these
results were proved by von Neumann [839] and Mirsky [558].

Ex. 62. Unitarily invariant matrix norms. We use here the notation of Ex. 3.52.
Let the functions ‖ ‖φ : Cm×n → R and φ̂ : Cmn → R be defined, for any

function φ : R� → R, � = min{m,n}, as follows: For any A = [aij ] ∈ Cm×n with
singular values

σ1 ≥ σ2 ≥ · · · ≥ σr > 0,

‖A‖φ and φ̂(a11, . . . , amn) are defined as

‖A‖φ = φ̂(a11, . . . , amn) = φ(σ1, . . . , σr, 0, . . . , 0). (102)

Then:
(a) If φ : R� → R satisfies conditions (G1)–(G3) of Ex. 3.52, so does φ̂ :

Cmn → R.
(b) ‖UAV ‖φ = ‖A‖φ for all A ∈ Cm×n, U ∈ Um×m, V ∈ Un×n.
(c) Let φ : R� → R satisfy conditions (G1)–(G3) of Ex. 3.52 and let φD :

R� → R be its dual, defined by (3.130). Then, for any A ∈ Cm×n, the
following supremum is attained and

sup
X∈Cn×m, ‖X‖φ=1

�{trace(AX)} = ‖A‖φD . (103)

(d) If φ : R� → R is a symmetric gauge function, then φ̂ : Cmn → R is a
gauge function, and ‖ ‖φ : Cm×n → R is a unitarily invariant norm.

(e) If ‖ ‖ : Cm×n → R is a unitarily invariant norm, then there is a symmetric
gauge function φ : R� → R such that ‖ ‖ = ‖ ‖φ.
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Proof. (a) Follows from definition (102).
(b) Obvious by Ex. 2.
(c) For the given A ∈ Cm×n,

sup
X∈C

n×m

‖X‖φ=1

�{trace(AX)}

= sup
X∈C

n×m

‖X‖φ=1

�{trace(AUXV ) : U ∈ Un×n, V ∈ Um×m}, by (b),

= sup
φ(ξ1,... ,ξ�)=1

∑
i

σi ξi, by Ex. 61,

= φD(σ1, . . . , σr), by (3.131a) and (3.131c),

= ‖A‖φD , by (102),

where σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and ξ1 ≥ ξ2 ≥ · · · ≥ ξ� > 0 are the singular
values of A and X, respectively.

(d) Let φD be the dual of φ and let (̂φD) : Cmn → R be defined by (102) as

(̂φD)(a11, . . . , amn) = ‖A‖φD , for A = [aij ].

Then

(̂φD)(a11, . . . , amn) = ‖A∗‖φD , by Ex. 1,
= sup

X=[xij ]∈C
m×n

φ̂(x11,... ,xmn)=1

�{trace(A∗X)}, by (103),

= sup
φ̂(x11,... ,xmn)=1

∑
i,j

aij xij ,

proving that (̂φD) : Cmn → R is the dual of φ̂ : Cmn → R, by using (3.131a) and
(3.131c). Since φ is the dual of φD (by Ex. 3.52(d)), it follows that φ̂ is the dual
of (̂φD) and, by Ex. 3.52(d), φ̂ : Cmn → R is a gauge function. That ‖ ‖φ is a
unitarily invariant norm then follows from (b) and Ex. 3.56.

(e) Let ‖ ‖ : Cm×n → R be a unitarily invariant matrix norm and define
φ : R� → R by

φ(x) = φ(x1, x2, . . . , x�) = ‖diag (|x1|, · · · , |x�|)‖ ∈ C
�×�.

Then φ is a symmetric gauge function and ‖ ‖ = ‖ ‖φ. �
Ex. 63. Inequalities for singular values. Let A,B ∈ Cm×n and let

α1 ≥ · · · ≥ αr > 0

and

β1 ≥ · · · ≥ βs > 0

be the singular values of A and B, respectively. Then, for any symmetric gauge
function φ : R� → R, � = min{m,n}, the singular values

γ1 ≥ · · · ≥ γt > 0

of A+B satisfy

φ(γ1, . . . , γt, 0, . . . , 0) ≤ φ(α1, . . . , αr, 0, . . . , 0) + φ(β1, . . . , βs, 0, . . . , 0) (104)

(von Neumann [839]).
Proof. The inequality (104) follows from (102) and Ex. 62(d), since

‖A+B‖φ ≤ ‖A‖φ + ‖B‖φ. �
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5. Principal Angles Between Subspaces

This section is based on Afriat [3], where more details, results, and refer-
ences can be found.

We use the Euclidean vector norm and the corresponding matrix norm
‖ · ‖2. All results are stated for the real case, analogous results hold for Cn.

Definition 2. (Afriat [3]). Let L, M be subspaces in Rn. The sub-
spaces are:

(a) orthogonal if L ⊂M⊥ and M ⊂ L⊥, which is equivalent to PLPM =
O;

(b) inclined otherwise; and
(c) orthogonally incident if L ∩ (L ∩M)⊥ and M ∩ (L ∩M)⊥ are or-

thogonal.
(d) L is completely inclined to M if L ∩M⊥ = {0}; and
(e) L, M are totally inclined if they are completely inclined to each

other.
(f) The dimension of inclination between L, M is

r(L, M) = rank(PLPM ).

(g) The coefficient of inclination between L, M is

R(L, M) = trace (PLPM ).

(h) A pair of subspaces L1, M1 are reciprocal in L, M if

L1 = PLM1, M1 = PML1; and

(i) a pair of vectors x,y are reciprocal if they span reciprocal lines.

In particular, the inclination coefficient between a pair of vectors x,y,

R(x,y) = trace
( (xxT )

(xT x)
(yyT )
(yT y)

)
=

(xT y)2

(xT x)(yT y)
= cos2 ∠{x,y}, (105)

giving the angle 0 ≤ ∠{x,y} ≤ π/2 between the vectors.
Eigenvalues and eigenvectors of the products PLPM , PMPL are used

below. The following properties are stated for complex matrices:

Lemma 1. Let L, M be subspaces of Cn and let xλ denote an eigen-
vector of PLPM corresponding to the eigenvalue λ. Then:

(a) The eigenvalues λ are real and 0 ≤ λ ≤ 1.
(b) If λ �= µ, then xλ, xµ are orthogonal.
(c) An eigenvector x1 (i.e., PLPMx = x) is in L∩M (the eigenvectors

x1 span L ∩M).

(d) An eigenvector x0 (i.e., PLPMx = 0) is in M⊥ ⊥⊕ (M ∩ L⊥).
(e) If the columns of the matrices QL ∈ Cn×�, QM ∈ Cn×m are o.n.

bases for L and M , respectively, then

λ(PLPM ) = {σ2 : σ ∈ σ(Q∗
LQM )},

i.e., the eigenvalues of PLPM are the squares of singular values of
Q∗

LQM .
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Proof. If λ �= 0, then

PLPMxλ = λxλ

shows that xλ ∈ L and, therefore,

PLPMPLxλ = λxλ,

but PLPMPL = PLP
2
MPL = PLPM (PLPM )∗, showing that PLPMPL is Hermitian

and PSD, proving (b) and 0 ≤ λ. The inequality λ ≤ 1 is from

λ =
〈xλ, PLPMxλ〉
〈xλ,xλ〉 .

Part (e) follows from PL = QLQ
∗
L, PM = QMQ∗

M . �
Theorem 8 (Afriat [3], Theorem 4.4).

(a) Any reciprocal vectors x,y in L, M with inclination coefficient σ2

are eigenvectors of PLPM , PMPL, both with the eigenvalue σ2.
(b) If x is an eigenvector of PLPM with eigenvalue σ2, then y = PMx

is an eigenvector of PMPL with the same eigenvalue, and x,y are
reciprocal vectors in L, M with inclination coefficient σ2.

Proof. If x,y are reciprocals, then λx = PLy, µy = PMx, for some λ, µ ∈ R,
and

λ〈x,x〉 = 〈x, PLy〉 = 〈x,y〉. ∴ λ =
〈x,y〉
〈x,x〉 .

µ〈y,y〉 = 〈y, PMx〉 = 〈y,x〉. ∴ µ =
〈x,y〉
〈y,y〉 .

∴ λµ =
〈x,y〉2

〈x,x〉〈y,y〉 = cos2 ∠{x,y} = σ2.

∴ PLPMx = µPLy = λµx = σ2 x,

PMPLy = λPMx = λµy = σ2 y,

proving (a). Conversely, if x is an eigenvector of PLPM for the eigenvalue σ2 and,
if y = PMx, then PLy = PLPMx = σ2x and PMPLy = σ2PMx = σ2y, so y is
an eigenvector of PMPL with eigenvalue σ2, and x,y are reciprocals. �

Theorem 9 (Afriat [3], Theorem 5.4). If xλ,yλ are reciprocal vectors
of L, M with inclination λ, λ = α, β �= 0, then the orthogonality conditions

xα ⊥ xβ , xα ⊥ yβ , yα ⊥ xβ , yα ⊥ yβ , (106)

are equivalent, and hold if α �= β.
Proof. Let the vectors be normalized, so that 〈xλ,yλ〉 = λ and

PLyλ = λ1/2 xλ, PMxλ = λ1/2 yλ.

Then

〈xµ,yλ〉 = 〈xµ, PLyλ〉 = λ1/2 〈xµ,xλ〉,
showing that xµ ⊥ yλ ⇐⇒ xµ ⊥ xλ, since λ �= 0. The remaining equivalences
follow by symmetry. The computation

α1/2β1/2〈yα,xβ〉 = α1/2〈yα, PLyβ〉 = α1/2〈PLyα,yβ〉 = α〈xα,yβ〉,
α1/2β1/2〈yα,xβ〉 = β1/2〈PMxα,xβ〉 = β1/2〈xα, PMxβ〉 = β〈xα,yβ〉,
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gives

α〈xα,yβ〉 = β〈xα,yβ〉
and (106) holds if α �= β. �

Let L, M be subspaces and consider the reciprocal subspaces PLM, PML.
They have the same dimension,

dim PLM = dim PML = r(L, M), (107)

and their coefficient of inclination is

R(PML, PLM) = R(L, M). (108)

The subspaces PLM, PML are spanned by pairs xi,yi of reciprocal vectors,
which are eigenvectors of PLPM , PMPL corresponding to nonzero eigenval-
ues σ2

i = cos2 ∠ {xi, yi}.
Definition 3. The angles θi = ∠ {xi, yi} between reciprocal vectors,

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θr ≤ π

2
, r = r(L, M), (109)

are called the principal angles, or canonical angles, between L and M .
Using Lemma 1(a,b) and the extremal characterization of the eigen-

value of Hermitian matrices, § 0.2.11(d), we get the following result, an
alternative definition of principal angles:

Theorem 10. Let L, M be subspaces in Rn, with dimension of incli-
nation r = r(L, M). The principal angles between L and M ,

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θr ≤ π

2
(109)

are given by

cos θi =
〈xi,yi〉
‖xi‖‖yi‖ (110a)

= max
{ 〈x,y〉
‖x‖ ‖y‖ :

x ∈ L, x ⊥ xk,
y ∈M, y ⊥ yk,

k ∈ 1, i− 1
}

,

where

(xi, yi) ∈ L×M, i ∈ 1, r, (110b)

are the corresponding pairs of reciprocal vectors. �
Lemma 1(e) allows using the SVD to compute principal angles as fol-

lows:
Lemma 2 (Björck and Golub [112]). Let the columns of QL ∈ Rn×�

and QM ∈ Rn×m be o.n. bases for L and M , respectively, let r = r(L, M),
and let

σ1 ≥ σ2 ≥ · · · ≥ σr > 0

be the singular values of QT
MQL, then

cos θi = σi, i ∈ 1, r, (111)

and
σ1 = · · · = σk = 1 > σk+1 if and only if dim (L ∩M) = k. �
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The following concept is another measure of the angles between sub-
spaces:

Definition 4. Let L, M be subspaces of Rn. The distance between L
and M is

dist(L, M) = ‖PL − PM‖2 (112a)

= sup
x∈Rn

‖(PL − PM )x‖
‖x‖ . (112b)

The geometric meaning of dist(L, M) is given in the next lemma, which
follows from the CS-decomposition of Stewart [781]. We give a geometric
argument.

Lemma 3. Let L, M be subspaces of Rn. Then

dist(L, M) = sin θ∗ (113)

where θ∗ is the maximal angle between vectors x ∈ L ∩ (L ∩ M)⊥ and
y ∈M ∩ (L ∩M)⊥.
Proof. An elementary geometric argument shows that RHS(112b)≤ 1, see
Ex. 67. If L ∩M⊥ �= {0} or M ∩ L⊥ �= {0}, then θ∗ = π/2 and RHS(112b)= 1
by taking x in the nonempty intersection. Assume L,M are totally inclined (and
therefore dim L = dim M by Ex. 0.12). Then

dist(L,M) = sup
x∈L

‖x− PMx‖
‖x‖ . (114)

Indeed,

RHS(112b) ≥ RHS(114), by definition,

and

RHS(112b) ≤ sup
x∈Rn

‖(PL − PM )x‖
‖PLx‖ ,

which is infinite in the excluded
case M ∩ L⊥ �= {0}),

= RHS(114).

Consider the right triangle with sides ‖x‖, ‖x − PMx‖, ‖PMx‖. The ratio ‖x −
PMx‖/‖x‖ is the sine of the angle between x and PMx. We conclude that

RHS(114) =
‖xr − yr‖
‖xr‖ ,

where xr, yr = PMxr are the reciprocal vectors, corresponding to the largest
principal angle between L,M . �
See also Exs. 68–69 below.

We next discuss inequalities involving principal angles. Let

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θ� ≤ π

2
(109)

be the principal angles between the subspaces L, M and define

sin{L, M} :=
r∏

i=1

sin θi, (115a)

cos{L, M} :=
r∏

i=1

cos θi. (115b)
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Note that (115a) and (115b) are just notation, and not ordinary trigono-
metrical functions. In particular,

sin2 {L, M}+ cos2 {L, M} ≤ 1.

Let L be a subspace of Rn of dimension r, spanned by vectors {v1, . . . ,vk}.
Let x ∈ Rn be decomposed as x = xL + xL⊥ with xL ∈ L, xL⊥ ∈ L⊥ and
let the one-dimensional subspace M be spanned by x. Then the equation

‖xL⊥‖ =
volr+1(v1, . . . ,vk,x)

volr(v1, . . . ,vk)
, (2.77)

can be written as

volr+1(v1, . . . ,vk,x) = volr(v1, . . . ,vk) ‖x‖2 sin θ, (116)

where θ is the principal angle between x, L. For the general case, Afriat
gave the following “equalized” Hadamard inequality.

Lemma 4 (Afriat [3], Corollary, p. 812). Let

A = [A1 A2], A1 ∈ Rn×�
� , A2 ∈ Rn×m

m .

Then

vol�+m A = vol A1 volA2 sin{R(A1), R(A2)}, (117)

where sin{R(A1), R(A2)} is the product of principal sines between R(A1)
and R(A2). �

In Lemma 4 the matrices A1, A2 are of full column rank. A general-
ization of the Hadamard inequality follows; see also Ex. 70 below.

Theorem 11 (Miao and Ben-Israel [549], Theorem 4). Let

A = [A1 A2], A1 ∈ R
n×n1
� , A2 ∈ Rn×n2

m , rankA = � + m.

Then

volA = vol A1 volA2 sin{R(A1), R(A2)}. (118)

Proof.

vol2A =
∑

J

vol2A∗J ,

where the summation is over all n × (� + m) submatrices of rank � + m. Since
every n × (� +m) submatrix of rank � +m has � columns A∗J1 from A1 and m
columns A∗J2 from A2, then

vol2A =
∑
J1

∑
J2

vol2[A∗J1 A∗J2 ],

=
∑
J1

∑
J2

vol2A∗J1 vol2A∗J2 sin2{R(A1), R(A2)}, by Lemma 4,

= vol2A1 vol2A2 sin2{R(A1), R(A2)}.
�

The Cauchy–Schwarz inequality, Ex. 0.2, is next extended to matrices
of full column rank.
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Theorem 12 (Miao and Ben-Israel [549], Theorem 5). Let B, C ∈
Rn×r

r . Then

|det(BT C)| = vol B volC cos{R(B), R(C)}, (119)

where cos{R(B), R(C)} is the product of principal cosines between R(B)
and R(C), see (115b).
Proof. Let QB and QC be o.n. bases for R(B) and R(C), respectively, so that,

B = QBRB , C = QCRC ,

for some matrices RB , RC ∈ Rr×r
r . Then

| det(BTC)| = | det(RT
B)| | det(RC)| | det(QT

BQC)|,
= vol B vol C cos{R(B), R(C)}, by Lemma 2. �

Exercises

Ex. 64. (Afriat [3, Theorem 4.6]).

L ∩ (PLM)⊥ = L ∩M⊥ = L ∩ (PML)⊥. (120)

Proof. If u = PLv, then PLu = u and, therefore,

u = PLv, PMPLu = 0 ⇐⇒ u = PLv, PMu = 0,

proving L ∩ (PLM)⊥ = L ∩M⊥. The other statement is proved similarly. �

Ex. 65. (Afriat [3, Theorem 4.7]). If the subspaces L,M are inclined, then the
reciprocal subspaces PLM,PML are totally inclined.
Proof. Since PLPM and PLPMPL = PLPM (PLPM )T have the same range, any
0 �= x ∈ PLM is x = PLPMPLv for some v, and therefore x is not orthogonal to
the vector PMPLv ∈ PML. �
Ex. 66. (Afriat [3, Theorem 4.8]). If L,M are inclined subspaces in Rn, then:

(a) L = (PLM)
⊥⊕ (L ∩M⊥).

(b) M = (PML)
⊥⊕ (M ∩ L⊥).

(c) PLM,PML are totally inclined.
(d) dim PLM = dim PML = r(L,M).
(e) PML ⊥ (L ∩M⊥).
(f) PLM ⊥ (M ∩ L⊥).
(g) (L ∩M⊥) ⊥ (M ∩ L⊥).

Ex. 67. Let L,M be subspaces of Rn. Then

‖PL − PM‖2 ≤ 1.

Proof. Use the definition (112b), and for any x ∈ Rn consider the right triangle
{0,x, PLx}. Then the point PLx is on a circle of diameter ‖x‖ centered at x/2.
Similarly, the right triangle {0,x, PMx} shows that the point PMx lies on a circle
of diameter ‖x‖ centered at x/2. Therefore the two points PLx, PMx are on
a sphere with diameter and center as above, and the length of the difference
‖PLx− PMx‖ is no greater than ‖x‖, the diameter of the sphere. �
Ex. 68. Let L,M be inclined subspaces of Rn. Then the following statements
are equivalent:

(a) dist(L,M) < 1.
(b) L

⋂
M⊥ = {0}, M ⋂

L⊥ = {0}.
(c) dim L = dim M = dim (PLM).
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Proof. (a) =⇒ (b) If 0 �= x ∈ L⋂M⊥, then PLx = x and PMx = 0.
∴ (PL −PM )x = x, showing that ‖PL −PM‖2 ≥ 1, contradicting (a). The other
statement follows by interchanging L and M .

(b) =⇒ (c) If dim L > dim M then there is 0 �= x ∈ L
⋂
M⊥ (see

Ex. 0.12). Similarly, dimL < dimM is excluded by (b). It remains to show that
dimL = dim(PLM). Suppose dim(PLM) < dimL. Since PLM ⊂ L it follows
that there exists 0 �= x ∈ L such that x ∈ (PLM)⊥. Therefore x = PLx ∈ M⊥,
and x ∈ L⋂M⊥, a contradiction.

(c) =⇒ (a) From (c) and Ex. 66(a) we conclude that L = PLM . Similarly,
(c) and Ex. 66(b,d) yield M = PML. Therefore, by Ex. 66(c), L andM are totally
inclined, so the maximal angle θ∗ between x ∈ L∩(L∩M)⊥ and y ∈M∩(L∩M)⊥

is acute. Then (a) follows from Lemma 3. �

Ex. 69. Let L,M be subspaces of Rn. Then dist(L,M) = 0 if and only if
L = M .

Ex. 70. A generalized Hadamard inequality. Let A = [A1 A2] be a square matrix
and let A1 ∈ Rn×�, A2 ∈ Rn×m. Then

| det(A| = vol�(A1) volm(A2) sin{R(A1), R(A2)}.
Proof. Follows from Theorem 11. �

In the following exercises we use the notation of § 0.5.3, p. 29. In addition:
The basic subspaces of dimension r of Rn are the

(
n
r

)
subspaces

R
n
J := {x = [xk] ∈ R

n : xk = 0 if k �∈ J}, J ∈ Qr,n, (121)

which, for r = 1, reduce to the n coordinate lines

R
n
{j} := {x = [xk] ∈ R

n : xk = 0 if k �= j}, j ∈ 1, n. (122)

Ex. 71. (Miao and Ben-Israel [549, Corollary 2]). Let A ∈ Rm×n
r , I ∈ Qr,m.

Then

cos{R(A),Rm
I } =

| detAIJ |
vol A∗J

(123)

for any J ∈ J (A).
Proof. Let I = {i1, i2, . . . , ir}, B = [ei1 , . . . , eir ], and for any J ∈ J (A) let
C = A∗J . Then

R(B) = R
m
I , R(C) = R(A), and BTC = AIJ ,

and, by Theorem 12,

cos{R(A),Rm
I } = cos{R(B), R(C)} =

| detAIJ |
vol A∗J

. �

Note that for any I ∈ Qr,m, the ratio | detAIJ |/ volA∗J is independent of
the choice of J ∈ J (A).

Ex. 72. Let

A =

1 2 3
4 5 6
7 8 9

 ,
with rank 2 and let I = {1, 2}, J = {1, 2}. Then

| detAIJ | = 3, volA∗J =
√

32 + 62 + 32 = 3
√

6,
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and, by (123),

cos{R(A), R
3
{1,2}} = 1√

6
.

Ex. 73. (Miao and Ben-Israel [549, Corollary 3]). Let L ⊂ Rm be a subspace
of dimension r. Then ∑

I∈Qr,m

cos2{L,Rm
I } = 1.

Proof. Follows from (123) since vol2A∗J =
∑

I∈I(A) det2AIJ . �

Ex. 74. (Miao and Ben-Israel [553, Theorem 2]). If L and M are subspaces of
Rn of dimension r, then

cos {L,M} ≤
∑

J∈Qr,n

cos{L,Rn
J} cos{M,Rn

J},

with equality if and only if the corresponding Plücker coordinates of L and M

have the same signs.

Ex. 75. Let A ∈ Rm×n
r . Recall the representation of the Moore–Penrose inverse

A† as a convex combination of basic inverses (see p. 122),

A† =
∑

(I,J)∈N (A)

λIJ Â
−1
IJ , (3.75)

with weights

λIJ =
det2AIJ∑

(K,L)∈N (A)
det2AKL

, (I, J) ∈ N (A). (3.77)

Reversing the roles of A,A†, and using (3.104), we get a representation of A as a
convex combination

A =
∑

I∈I(A)

∑
J∈J (A)

det2AIJ

vol2A
̂(A†)−1

JI , (124)

where ̂(A†)−1
JI is an m×n matrix with the inverse of the (J, I) th submatrix of A†

in position (I, J) and zeros elsewhere. An alternative statement of (124) is given
below.

Ex. 76. (Miao and Ben-Israel [553, Theorem 3]). If A ∈ Rm×n
r , r > 0, then

there exist linear operators {BIJ : (I, J) ∈ N (A)} such that BIJ : Rn
J → Rm

I is
one-to-one and onto, N(BIJ) = (Rn

J)⊥, and

A =
∑

I∈I(A)

∑
J∈J (A)

cos2{R(A),Rm
I } cos2{R(AT ),Rn

J}BIJ . (125)

Outline of proof. Let A = CR be a rank factorization and apply (124) to
C,R, separately, to get

A =
∑

I∈I(C)

det2CI∗
vol2 C

̂(C†)−1
∗I

∑
J∈J (R)

det2RJ∗
vol2R

̂(R†)−1
J∗ . (126)

Then use (123) and the facts I(A) = I(C), R(A) = R(C), J (A) = J (R),
R(AT ) = R(RT ), and A† = R†C†. �
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6. Perturbations

We study the behavior of the Moore–Penrose inverse of a perturbed matrix
A + E, and its dependence on A† and on the “error” E. Only a few results
are shown, the reader is referred to Stewart [781] and Stewart and Sun
[784, Chapter III] for more details, references, and related results. Again,
the results are stated for real matrices, the complex analogs are easy to see.

If A ∈ Rn×n is nonsingular, then all matrices{
A + E :‖E‖ < 1/‖A−1‖

}
are nonsingular, with inverse

(A + E)−1 = A−1 − (A−1E)A−1 + (A−1E)2A−1 − · · · , (127)

see Ex. 77. Therefore the set Rn×n
n of nonsingular matrices is open (as a

subset of Rn×n), and the inverse function f(A) = A−1 is continuous in this
set,

‖Ek‖ → 0 =⇒ (A + Ek)−1 → A−1

for every nonsingular A, see also Ex. 78.
The example

A =
[
1 0
0 0

]
, Ek =

[
0 0
0 1

k

]
, (128)

shows that the Moore–Penrose inverse is not continuous

Ek → O �=⇒ (A + Ek)† → A†.

The main result in this section is

(A + Ek)† → A† ⇐⇒ rank(A + Ek) → rank(A),

a condition violated by (128), where rank(A + Ek) = 2 for all k.
The matrix norms ‖ · ‖ used here are unitarily invariant. We denote

by Ã = A + E a perturbation of the matrix A ∈ Rm×n
r . We can sim-

plify the notation by multiplying with suitable unitary matrices U, V , since
‖UTAV ‖ = ‖A‖. If U = [U1 U2] ∈ Um×m and V = [V1 V2] ∈ Un×n are
unitary matrices with R(A) = R(U1), R(AT ) = R(V1), then

UTAV =
[
UT

1 AV1 UT
1 AV2

UT
2 AV1 UT

2 AV2

]
=

[
A11 O
O O

]
(129a)

where A11 is r× r and nonsingular. Applying the same matrices U, V to E

and Ã we get

UTEV =
[
UT

1 EV1 UT
1 EV2

UT
2 EV1 UT

2 EV2

]
=

[
E11 E12
E21 E22

]
, (129b)

UTÃV =
[
A11 + E11 E12

E21 E22

]
=

[
Ã11 E12
E21 E22

]
, (129c)

where [A11+E11 E12] ∈ Rr×n.
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Definition 5. (Wedin [855]). The matrix Ã = A + E is an acute
perturbation if

‖PR(A) − PR(Ã)‖2 < 1 and ‖PR(AT ) − PR(ÃT )‖2 < 1, (130)

in which case we say that A and Ã are acute.

Theorem 13 (Stewart and Sun [784], Theorem III.3.1). Let A, E ∈
Rm×n, Ã = A + E. The following statements are equivalent:

(a) ‖PR(A) − PR(Ã)‖2 < 1;

(b) R(A)
⋂

R(Ã)⊥ = {0} and R(Ã)
⋂

R(A)⊥ = {0}; and
(c) rank(A) = rank(Ã) = rank(PR(A)Ã).

Corresponding statements hold for the subspaces R(AT ), R(ÃT ).

Proof. See Ex. 68 above. �
For Ã† to remain well behaved, the perturbation Ã cannot stray too

far from the original matrix A. This is the case for acute perturbations.

Theorem 14 (Stewart and Sun [784], Theorem III.3.3). Let A ∈
Rm×n

r . Then Ã is an acute perturbation if and only if the r × r subma-
trix Ã11 is nonsingular and

E22 = E21Ã
−1
11 E12 (131)

in (129c), in which case,

Ã =
[
Ir

S

]
Ã11[Ir T ] (132)

with

T = E21Ã
−1
11 , S = Ã−1

11 E12, (133)

and

Ã† = [Ir T ]† Ã−1
11

[
Ir

S

]†
. (134)

Proof. If Ã11 is singular, then Theorem 13(b) is violated. Condition (131)
is then equivalent to Theorem 13(c). The rest follows as in (5.22) and Theo-
rem 5.2(d). �

It follows that limÃ→A rank(Ã) = rank(A) if and only if Ã is eventually
an acute perturbation and the Moore–Penrose inverse is continuous on the
set of acute perturbations. The following theorem shows what to expect in
the nonacute case:

Theorem 15 (Wedin [855]). If A, Ã are not acute, then

‖Ã† −A†‖2 ≥ 1
‖E‖2 , (135a)

‖Ã†‖2 ≥ 1
‖E‖2 . (135b)
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Proof. Let Ã be nonacute. Then one of the two equations in Theorem 13(b),
or one of the analogous statements for the subspaces R(AT ), R(ÃT ), is violated.
Suppose there is a 0 �= x ∈ R(Ã) ∩ R(A)⊥ (the other three cases are similarly
treated) and assume ‖x‖2 = 1. Then

1 = xT x = xTPR(Ã)x = xT ÃÃ†x = xT (A+ E)Ã†x = xTEÃ†x

≤ ‖E‖2‖Ã†x‖2.
∴ ‖Ã†‖2 ≥ ‖Ã†x‖2 ≥ 1

‖E‖2 ,

proving (135b). Since A†x = 0 (from x ∈ R(A)⊥ = N(A†)) we have

‖Ã† −A†‖2 ≥ ‖(Ã† −A†)x‖2 = ‖Ã†x‖2 ≥ 1
‖E‖2 ,

completing the proof. �
Explicit expressions for Ã† are available:
Theorem 16.

Ã† −A† = −Ã†EA† + Ã†PN(AT ) − PN(Ã)A
† (136a)

= −Ã†PR(Ã)EPR(AT )A
† + Ã†PR(Ã)PN(AT )

− PN(Ã)PR(AT )A
† (136b)

= −Ã†PR(Ã)EPR(AT )A
† + (ÃT Ã)†PR(ÃT )E

T PN(AT )

− PN(Ã)E
T PR(A)(AAT )†. (136c)

If Ã is acute,

Ã† −A† = −Ã†EA†. (136d)

Proof. That A† +RHS(136a) is the Moore–Penrose inverse of A + E can be
checked directly. The last two terms in RHS(136a) drop if Ã is acute, giving
(136d). Finally, (136b)–(136c) are obtained from (136a) by inserting harmless
factors, such as PR(AT ) in front of A†. �

Expression (136c), with E, A†, and Ã† appearing in all terms, allows
writing an error bound for LHS(136a) in the form:

Theorem 17 (Wedin [855]). If ‖·‖ is a unitarily invariant norm, then

‖Ã† −A†‖ ≤ µ max{‖A†‖2, ‖Ã†‖2}‖E‖, (137)

where µ = 3 (sharper values of µ are given for specific norms). �
In the acute case, error bounds for ‖Ã†−A†‖ are obtained from (134).

Exercises
Ex. 77. Let A ∈ Rn×n be nonsingular and let ‖ ‖ be any multiplicative matrix
norm (see p. 13). Then A+ E is nonsingular for any matrix E satisfying

‖E‖ < 1
‖A−1‖ , (138)

and its inverse is (127).
Proof. From

A+ E = A(I +A−1E)
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and Ex. 0.47, it follows that A + E is nonsingular if A−1E is convergent which,
by Ex. 0.41, is implied by ‖A−1E‖ < 1, and therefore by ‖A−1‖‖E‖ < 1. The
expansion (127) is obtained by taking the inverse

(A+ E)−1 = (I +A−1E)−1A−1

and expanding (I +A−1E)−1, as in (0.66). �
See also Ex. 30.

Ex. 78. The inverse function f(A) = A−1 is differentiable in Rn×n
n ,

f ′(A) dX = −A−1 dXA−1. (139)

Proof.

lim
‖dX‖→0

‖(A+ dX)−1 −A−1 − (A−1 dX A−1)‖
‖dX‖ = 0

by (127). �
Ex. 79. If A ∈ Cm×n

r , E ∈ Cm×n, then the last n−r singular values of Ã = A+E
satisfy

σ̃2
r+1 + · · ·+ σ̃2

n ≤ ‖E‖2F .
Proof. Use (70). �
Ex. 80. If the matrices A,E in Rm×n satisfy

R(E) ⊂ R(A), (140)

R(ET ) ⊂ R(AT ), (141)

and

‖A†E‖ < 1 (142)

for any multiplicative matrix norm, then

(A+ E)† = (I +A†E)−1A†. (143)

Proof. The matrix B = I+A†E is nonsingular by (142) and Exs. 0.41 and 0.47.
Since

A+ E = A+AA†E, by (140),

= A(I +A†E),

it suffices to show that the matrices A and B = I + A† have the “reverse order”
property (4.31),

(A(I +A†E))† = (I +A†E)−1A†,

which by Ex. 4.22 is equivalent to

R(ATAB) ⊂ R(B) (144)

and

R(BBTAT ) ⊂ R(AT ). (145)

Now (144) holds since B is nonsingular and (145) follows from

R(BBTAT ) = R((I +A†E)(I +A†E)TAT )

= R(AT + ETA†TAT +A†E(I +A†E)TAT )

⊂ R(AT ), by (141). �
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Ex. 81. Error bounds for generalized inverses (Ben-Israel [63]). Let A,E satisfy
(140)–(142) or, equivalently, let A, Ã be acute with zero blocks E12, E21, E22 in
(129b). Then,

‖(A+ E)† −A†‖ ≤ ‖A
†E‖‖A†‖

1− ‖A†E‖ . (146)

If (140) and (141) hold, but (142) is replaced by

‖A†‖‖E‖ < 1, (147)

then

‖(A+ E)† −A†‖ ≤ ‖A
†‖2‖E‖

1− ‖A†E‖ . (148)

Proof. From Ex. 80 it follows that

(A+ E)† −A† = (I +A†E)−1A† −A†

=
∞∑

k=0

(−1)k(A†E)kA† −A†, by (142) and Ex. 0.47,

=
∞∑

k=1

(−1)k(A†E)kA†

and, hence,

‖(A+ E)† −A†‖ ≤
∞∑

k=1

‖(A†E)‖k‖A†‖

=
‖A†E‖‖A†‖
1− ‖A†E‖ , by (142).

The condition (147), which is stronger than (142), then implies (148). �

7. A Spectral Theory for Rectangular Matrices

The following theorem, due to Penrose [635], is a generalization to rectan-
gular matrices of the classical spectral theorem for normal matrices (The-
orem 2.15).

Theorem 18 (Spectral Theorem for Rectangular Matrices). Let O �=
A ∈ Cm×n

r and let d(A) = {d1, . . . , dr} be complex scalars satisfying

|di| = σi, i ∈ 1, r, (35)

where

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 (0.32)

are the singular values, σ(A), of A.
Then there exist r partial isometries {Ei : i ∈ 1, r} in Cm×n

1 satisfying

EiE
∗
j = O, E∗

i Ej = O, 1 ≤ i �= j ≤ r, (149a)

EiE
∗A = AE∗Ei, i ∈ 1, r, (149b)

where

E =
r∑

i=1

Ei (150)
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is the partial isometry given by (77) and

A =
r∑

i=1

diEi. (151)

Furthermore, for each i = 1, . . . , r, the partial isometry (di/|di|)Ei is
unique if the corresponding singular value is simple, i.e., if αi < αi−1 and
αi > αi+1 for 2 ≤ i ≤ r and 1 ≤ i ≤ r − 1, respectively.
Proof. Let the vectors {u1,u2, . . . ,ur} satisfy (19a) and (19b), let vectors
{v1,v2, . . . ,vr} be defined by (20), and let

Ei = uiv∗
i , i = 1, . . . , r. (152)

Ei is a partial isometry by Theorem 5(c), since EiE
∗
i Ei = Ei by (19b) and (21b),

from which (149a) also follows. The statement on uniqueness follows from (152),
(35), (19a), (19b), and (20). The result (151) follows from (30a), which also shows
the matrix E of (77) to be given by (150). Finally, (149b) follows from (150),
(151), and (149a). �

As shown by the proof of Theorem 18, the spectral representation (151)
of A is just a way of rewriting its SVD. The following spectral representation
of A† similarly follows from Corollary 1.

Corollary 3. Let A, di, and Ei, i = 1, . . . , r, be as in Theorem 18.
Then

A† =
r∑

i=1

1
di

Ei. (153)

�
If A ∈ Cn×n

r is normal with nonzero eigenvalues {λi : i ∈ 1, r} ordered
by

|λ1| ≥ |λ2| ≥ · · · ≥ |λr|, (38)

then, by Ex. 19, the choice

di = λi, i ∈ 1, r, (39)

guarantees that

ui = vi, i ∈ 1, r, (40)

and, consequently, the partial isometries Ei of (152) are orthogonal projec-
tors

Pi = uiu∗
i , i ∈ 1, r, (154)

and (151) reduces to

A =
r∑

i=1

λiPi, (155)

giving the spectral theorem for normal matrices as a special case of Theo-
rem 18.

The classical spectral theory for square matrices (see, e.g., Dunford
and Schwartz [246, pp. 556–565]) makes extensive use of matrix functions
f : Cn×n → Cn×n, induced by scalar functions f : C → C, according to
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Definition 2.1. Similarly, the spectral theory for rectangular matrices given
here uses matrix functions f : Cm×n → Cm×n which correspond to scalar
functions f : C→ C, according to the following:

Definition 6. Let f : C → C be any scalar function. Let A ∈ Cm×n
r

have a spectral representation

A =
r∑

i=1

diEi (151)

as in Theorem 18. Then the matrix function f : Cm×n → Cm×n corre-
sponding to f : C→ C is defined at A by

f(A) =
r∑

i=1

f(di)Ei. (156)

Note that the value of f(A) defined by (156) depends on the particular
choice of the scalars d(A) in (35). In particular, for a normal matrix A ∈
Cn×n, the choice of d(A) by (39) reduces (156) to the classical definition –
see (170) below – in the case that f(0) = 0 or that A is nonsingular.

Let

A = U(r)D(r)V
∗
(r), D(r) =

d1
. . .

dr

 , (30a)

be a UDV ∗-decomposition of a given A ∈ Cm×n
r . Then Definition 6 gives

f(A) as

f(A) = U(r)f(D(r))V ∗
(r), f(D(r)) =

f(d1)
. . .

f(dr)

 . (157)

An easy consequence of Theorem 18 and Definition 6 is the following:

Theorem 19. Let f, g, h : C → C be scalar functions and let f, g, h :
Cm×n → Cm×n be the corresponding matrix functions defined by Defini-
tion 6.

Let A ∈ Cm×n
r have a UDV ∗-decomposition

A = U(r)D(r)V
∗
(r) (30a)

and let the partial isometry E be given by

E = U(r)V
∗
(r). (77)

Then:

(a) If f(z) = g(z) + h(z), then f(A) = g(A) + h(A).
(b) If f(z) = g(z)h(z), then f(A) = g(A)E∗h(A).
(c) If f(z) = g(h(z)), then f(A) = g(h(A)).

Proof. Parts (a) and (c) are obvious by Definition (156).
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(b) If f(z) = g(z)h(z), then

g(A)E∗h(A) =
( r∑

i=1

g(di)Ei

)( r∑
j=1

E∗
j

)( r∑
k=1

h(dk)Ei

)
,

by (156) and (150),

=
r∑

i=1

g(di)h(di)Ei, by (149a) and Theorem 5(c),

=
r∑

i=1

f(di)Ei = f(A). �

For matrix functions defined as above, an analog of Cauchy’s integral
theorem is given in Corollary 4 below. First we require

Lemma 5. Let A ∈ Cm×n
r be represented by

A =
r∑

i=1

diEi. (151)

Let {d̂j : j ∈ 1, q} be the set of distinct {di : i ∈ 1, r} and let

Êj =
∑

i

{Ei : di = d̂j}, j = 1, . . . , q. (158)

For each j ∈ 1, q let Γj be a contour (i.e., a closed rectifiable Jordan curve,
positively oriented in the customary way) surrounding d̂j but no other d̂k.
Then:

(a) For each j ∈ 1, q, Êj is a partial isometry and

Êj

∗
=

1
2πi

∫
Γi

(zE −A)† dz. (159)

(b) If f : C→ C is analytic in a domain containing the set surrounded
by

Γ =
q⋃

j=1

Γj ,

then
r∑

j=1

f(dj)E∗
j =

1
2πi

∫
Γ

f(z)(zE −A)† dz, (160)

in particular,

A† =
1

2πi

∫
Γ

1
z
(zE −A)† dz. (161)

Proof. (a) From (149a) and Theorem 5 it follows that Êj and Êj

∗
are partial

isometries for each j ∈ 1, q. Also, from (150), (151), and Corollary 3,

(zE −A)† =
r∑

k=1

1
z − dk

E∗
k , (162)
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hence

1
2πi

∫
Γj

(zE −A)† dz =
r∑

k=1

( 1
2πi

∫
Γj

dz

z − dk

)
E∗

k =
∑

{dk=d̂j}
E∗

k ,

by the assumptions on Γj and Cauchy’s integral theorem,

= Êj

∗
, by (158).

(b) Similarly, we calculate

1
2πi

∫
Γ
f(z)(zE −A)† dz =

q∑
j=1

r∑
k=1

( 1
2πi

∫
Γj

f(z)
z − dk

)
E∗

k =
q∑

j=1

f(d̂j)Êj

∗

=
r∑

j=1

f(dj)E∗
j , proving (160).

Finally, (161) follows from (160) and Corollary 3. �

Cartan’s formula for matrix functions

f(A) =
1

2πi

∫
Γ

f(z)(zI −A)−1 dz (2.53)

is extended to rectangular matrices as follows:

Corollary 4. Let A, E,Γ, and f be as in Lemma 5. Then

f(A) = E
( 1

2πi

∫
Γ

f(z)(zE −A)† dz
)
E. (163)

Proof. Using (150) and (160) we calculate

E
( 1

2πi

∫
Γ
f(z)(zE −A)† dz

)
E =

( r∑
i=1

Ei

)( r∑
j=1

f(dj)E∗
j

)( r∑
k=1

Ek

)
=

r∑
j=1

f(dj)Ej , by (149a) and Theorem 5(c),

= f(A). �
The generalized resolvent of a matrix A ∈ Cm×n is the function R̂(z, A) :

C→ Cn×m given by

R̂(z, A) = (zE −A)†, (164)

where the partial isometry E is given as in Theorem 18. This definition is
suggested by the classical definition of the resolvent of a square matrix as

R(z, A) = (zI −A)−1, for all z �∈ λ(A). (2.55)

In analogy to the classical case – see (2.56) – we state the following identity,
known as the (first) resolvent equation.

Lemma 6. Let A ∈ Cm×n
r and let d(A) and E be as in Theorem 18.

Then

R̂(λ, A)− R̂(µ, A) = (µ− λ)R̂(λ, A)R̂(µ, A) (165)

for any scalars λ, µ �∈ d(A).
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Proof.

R̂(λ,A)− R̂(µ,A) = (λE −A)† − (µE −A)†, by (164),

=
r∑

k=1

( 1
λ− dk

− 1
µ− dk

)
E∗

k , by (162),

=
r∑

k=1

( µ− λ
(λ− dk)(µ− dk)

)
E∗

k

= (µ− λ)
( r∑

k=1

1
λ− dk

E∗
k

)
E
( r∑

�=1

1
µ− d�

E∗
�

)
,

by (149a), (150) and Theorem 5(c),

= (µ− λ)R̂(λ,A)R̂(µ,A), by (162). �

The resolvent equation, (165), is used in the following lemma, based on
Lancaster [494, p. 552].

Lemma 7. Let A ∈ Cm×n, let d(A) and E be given as in Theorem 18,
and let the scalar functions f, g : C → C be analytic in a domain D con-
taining d(A). If Γ is a contour surrounding d(A) and lying in the interior
of D, then( 1

2πi

∫
Γ

f(λ)R̂(λ, A) dλ
)
E
( 1

2πi

∫
Γ

g(λ)R̂(λ, A) dλ
)

=
1

2πi

∫
Γ

f(λ)g(λ)R̂(λ, A) dλ. (166)

Proof. Let Γ1 be a contour surrounding Γ and still lying in the interior of D.
Then

1
2πi

∫
Γ
g(λ)R̂(λ,A) dλ =

1
2πi

∫
Γ1

g(µ)R̂(µ,A) dµ,

which when substituted in LHS(166) gives( 1
2πi

∫
Γ
f(λ)R̂(λ,A) dλ

)
E
( 1

2πi

∫
Γ1

g(µ)R̂(µ,A) dµ
)

= − 1
4π2

∫
Γ1

∫
Γ
f(λ)g(µ)R̂(λ,A)ER̂(µ,A) dλ dµ

=
1

4π2

∫
Γ1

∫
Γ
f(λ)g(µ)

R̂(λ,A)− R̂(µ,A)
λ− µ dλ dµ, by (165),

=
1

4π2

∫
Γ
f(λ)R̂(λ,A)

(∫
Γ1

g(µ)
λ− µdµ

)
dλ

− 1
4π2

∫
Γ1

(∫
Γ

f(λ)
λ− µdλ

)
g(µ)R̂(µ,A) dµ

=
1

2πi

∫
Γ
f(λ)g(λ)R̂(λ,A) dλ,

since
∫
Γ1

[g(µ)/(λ − µ)] dµ = −2πi g(λ) and
∫
Γ[f(λ)/(λ − µ)] dλ = 0, by our

assumptions on Γ,Γ1. �
We illustrate now the application of the above concepts to the solution

of the matrix equation

AXB = D (167)
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studied in Theorem 2.1. Here the matrices A ∈ Cm×n, B ∈ Ck×�, and
D ∈ Cm×� are given and, in addition, the matrices A and B have spectral
representations, given by Theorem 18 as follows:

A =
p∑

i=1

dA
i EA

i , EA =
p∑

i=1

EA
i , p = rankA, (168a)

and

B =
q∑

i=1

dB
i EB

i , EB =
q∑

i=1

EB
i , q = rankB. (168b)

Theorem 20. Let A, B, D be as above, and let Γ1 and Γ2 be contours
surrounding d(A) = {dA

1 , . . . , dA
p } and d(B) = {dB

1 , . . . , dB
q }, respectively.

If (167) is consistent, then it has the following solution:

X = − 1
4π2

∫
Γ1

∫
Γ2

R̂(λ, A)DR̂(µ, B)
λµ

dµ dλ. (169)

Proof. From (163) it follows that

A = EA
( 1

2πi

∫
Γ1

λR̂(λ,A) dλ
)
EA

and

B = EB
( 1

2πi

∫
Γ2

µR̂(µ,B)dµ
)
EB .

Therefore,

AXB = A
[ 1
2πi

∫
Γ1

R̂(λ,A)
λ

D
( 1

2πi

∫
Γ2

R̂(µ,B)
µ

dµ
)
dλ
]
B

= EA
[ 1
2πi

∫
Γ1

R̂(λ,A)dλ
]
D
[ 1
2πi

∫
Γ2

R̂(µ,B) dµ
]
EB ,

by a double application of Lemma 7,

= EA(EA)∗D(EB)∗EB , by (160) with f ≡ 1,

= PR(A)DPR(B∗), by (78),

= AA†DB†B

= D, if and only if (167) is consistent, by Theorem 2.1.

Alternatively, it follows from (161) and (169) that X = A†DB†, a solution of
(167) if consistent. �

For additional results along these lines see Lancaster [494] and Wimmer
and Ziebur [879].

Exercises

Ex. 82. If A ∈ Cn×n is normal with a spectral representation

A =
r∑

i=1

λiPi (155)
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then, for any f ∈ F(A), definition (2.42) gives

f(A) =
r∑

i=1

f(λi)Pi + f(0)PN(A), (170)

since the eigenvalues of a normal matrix have index one.

Ex. 83. Generalized powers. The matrix function f : Cm×n → Cm×n corre-
sponding to the scalar function

f(z) = zk, k any integer,

is denoted by

f(A) = A〈k〉

and called the generalized k th power of A ∈ Cm×n. Definition 6 shows that

A〈k〉 =
r∑

i=1

dk
iEi, by (156), (171a)

or, equivalently,

A〈k〉 = U(r)D
k
(r)V

∗
(r), by (157). (171b)

The generalized powers of A satisfy

A〈k〉 =


E, k = 0,
A〈k−1〉E∗A, k ≥ 1, in particular, A〈1〉 = A,

A〈k+1〉E∗A〈−1〉, k ≤ −1.
(172)

Ex. 84. If in Theorem 18 the scalars d(A) are chosen as the singular values of
A, i.e., if d(A) = σ(A), then for any integer k,

A∗〈k〉 = A〈k〉∗, (173a)

A〈2k+1〉 = A(A∗A)k = (AA∗)kA, (173b)

in particular,

A〈−1〉 = A∗†. (173c)

Ex. 85. If A ∈ Cn×n
r is normal and if the scalars d(A) are chosen as the

eigenvalues of A, i.e., if d(A) = λ(A), then

A〈k〉 =


Ak, k ≥ 1,
PR(A), k = 0,
(A†)k, k ≤ −1.

(174)

Ex. 86. Ternary powers. From (173b) follows the definition of a polynomial in
ternary powers of A ∈ Cm×n, as a polynomial∑

k

pkA
〈2k+1〉 =

∑
k

pk(AA∗)kA.

Such polynomials were studied by Hestenes [417] in the more general context of
ternary algebras.

In (177) below, we express A† as a polynomial in ternary powers of A∗. First
we require the following:
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Ex. 87. (Albert [9, p. 75]). Let A ∈ Cn×n be Hermitian and let a vanishing
polynomial of A, i.e., a polynomial m(λ) satisfying m(A) = O, be given in the
form

m(λ) = cλ�(1− λq(λ)) (4.13)

where c �= 0, � ≥ 0, and the leading coefficient of q is 1.
Then

A† = q(A) + q(O)[Aq(A)− I], (175)

and, in particular,

A−1 = q(A), if A is nonsingular. (0.131)

Proof. From (4.13) it follows that

A� = A�+1q(A)

and since A is Hermitian

A† = (A†)�+1A� = AA†q(A)

= AA†[q(A)− q(O)] +AA†q(O)

= q(A)− q(O) +AA†q(O) (176)

since q(A) − q(O) contains only positive powers of A. Postmultiplying (176) by
A gives

A†A = [q(A)− q(O)]A+Aq(O)

= q(A)A = Aq(A),

which, when substituted in (176), gives (175). �
Alternatively, (175) can be shown to follow from the results of Section 4.6, since
here AD = A†.

Ex. 88. Let A ∈ Cm×n and let

m(λ) = cλ�(1− λq(λ)) (4.13)

be a vanishing polynomial of A∗A, as in Ex. 87. Then

A† = q(A∗A)A∗ (177)

(Penrose [635], Hestenes [417], Ben-Israel and Charnes [77]).
Proof. From (175) it follows that

(A∗A)† = q(A∗A) + q(O)[A∗Aq(A∗A)− I],
so, by Ex. 1.18(d),

A† = (A∗A)†A∗ = q(A∗A)A∗. �

A computational method based on (177) is given in Decell [223] and in Albert
[9].

Ex. 89. Partial isometries. Let W ∈ Cm×n. Then W is a partial isometry if
and only if

W = eiA

for some A ∈ Cm×n.
Proof. Follows from (157) and Exs. 40–41. �
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Ex. 90. Let U ∈ Cn×n. Then U is a unitary matrix if and only if

U = eiH + PN(H) (178)

for some Hermitian matrix H ∈ Cn×n. Note that the exponential in (178) is
defined according to Definition 6. For the classical definition 2.1 (page 68), Eq.
(178) should be replaced by

U = eiH . (178′)

Ex. 91. Polar decompositions. Let A ∈ Cm×n
r and let

A = GE = EH (79)

be a polar decomposition of A, given as in Corollary 2. Then, for any function
f , Definition 6 gives

f(A) = f(G)E = Ef(H), (179)

in particular,

A〈k〉 = GkE = EHk, for any integer k. (180)

8. Generalized Singular Value Decompositions

This section is based on Van Loan ([831]. Two generalizations of the SVD
are described. For more details, and other generalizations, see the suggested
reading list on p. 256.

8.1. The B-SVD. The SVD concerns the diagonalization of an m×n
matrix using unitary transformations. The generalized SVD described here
is about a simultaneous diagonalization of two n-columned matrices.

The singular values of a matrix A are defined as the elements of the set

σ(A) = {σ : σ ≥ 0, det(A∗A− σ2I) = 0}.
A natural generalization is the following:

Definition 7. Let A ∈ Ca×n, B ∈ Cb×n. The B-singular values of A
are the elements of the set

µ(A, B) = {µ : µ ≥ 0, det(A∗A− µ2B∗B) = 0}. (181)

A corresponding generalization of the SVD, see Theorem 2, is the fol-
lowing theorem.

Theorem 21 (The B-Singular Value Decomposition, Van Loan [831],
Theorem 2). Let A ∈ Ca×n, B ∈ Cb×n and a ≥ n. Then there exist unitary
matrices U ∈ Ua×a and V ∈ U b×b and a nonsingular matrix X ∈ Cn×n

such that

U∗AX = ΣA = diag (α1, . . . , αn), αi ≥ 0, (182a)

V ∗BX = ΣB = diag (β1, . . . , βq), βi ≥ 0, (182b)

where q = min{b, n}, r = rank(B), and

β1 ≥ · · · ≥ βr > βr+1 = · · · = βq = 0. (182c)
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Moreover,

µ(A, B) =


{µ : µ ≥ 0}, if αj = 0 for any j ∈ r + 1, n,{

αi

βi
: i ∈ 1, r

}
, otherwise.

(183)

Proof. Let k = rank
[
A
B

]
and consider the SVD,

Y ∗
[
A
B

]
Z = diag(γ1, . . . , γn) =

[
D O
O O

]
, (184)

where Y, Z are unitary, γ1 ≥ · · · ≥ γk > γk+1 = · · · = γn = 0, and D =
diag(γ1, · · · , γk) is nonsingular. Let Z(k) denote the submatrix formed by the
first k columns of Z, and define A1, B1 by[

A1

B1

]
=
[
A
B

]
Z(k)D

−1.

It follows from (184) that

A∗
1A1 +B∗

1B1 = Ik. (185)

Let the SVD of B1 be

V ∗B1W = diag (β1, . . . , βp), β1 ≥ · · · ≥ βp, (186)

where V,W are unitary and p = min{b, k}. Define the nonsingular matrix

X = Z

[
D−1W O
O In−k

]
. (187)

It follows then from (184) and (186) that, with q = min{b, n},
V ∗BX = diag (β1, . . . , βq), βp+1 = · · · = βq = 0, (188)

A comparison of (186) and (188) shows that rankB = rankB1 and (188) reduces
to (182b)–(182c).

The columns of A1W form an orthogonal set

(A1W )∗(A1W ) = W ∗(Ik −B∗
1B1)W, by (185),

= diag (1− β2
1 , . . . , 1− β2

k), by (186).

Therefore there exists a unitary matrix U ∈ Ua×a and real αi such that

A1W = U diag (α1, . . . , αk) ∈ C
a×k,

where the αi can be assumed nonnegative and ordered: α1 ≥ · · · ≥ αk. Defining
αi = 0 for i ∈ k + 1, n, we write

U∗AX = U∗AZ
[
D−1W O
O In−k

]
= diag (α1, . . . , αn)

which is (182a). Finally, it follows from (182a)–(182b) that

det(A∗A− µ2B∗B) = det(X)−2
r∏

i=1

(α2
i − µ2β2

i )
n∏

i=r+1

α2
i .

which implies (183). �
Remark 1. (a) If B ∈ Cn×n is nonsingular, with singular values β1 ≥

· · · ≥ βn > 0, there is a unitary matrix Q such that

Q∗(A∗A− µ2B∗B)Q = (AQ)∗(AQ)− µ2 diag(β2
1 , . . . , β2

n).
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The B-singular values of A are then, in agreement with (183),

µi =
αi

βi
,

where the αi are the singular values of A.
(b) If both a < n and b < n, then the conclusions of Theorem 21 need

not hold, as shown by the example A = [1 0], B = [0 1].
(c) The last n − k columns of X, which by (187) are the last n − k

columns of Z, form an o.n. basis of a subspace that is orthogonal to the
subspace spanned by the first k columns of X.

(d) If αj = 0 for any j ∈ r + 1, n, then the j th column of X satisfies
Ax = 0, Bx = 0. It follows that the case {µ : µ ≥ 0} in (183) is equivalent
to N(A) ∩N(B) �= {0}.

The next example illustrates the usefulness of the B-SVD. See also
Ex. 92 below.

Example 1. (Lawson and Hanson [504]). Consider the quadratic func-
tion

f(x) = ‖Ax− b‖2 + λ2 ‖Bx− c‖2, (189)

where A ∈ Ra×n, B ∈ Rb×n, a ≥ n, and λ > 0. It is required to find the
(unique) minimum-norm minimizer of f , i.e., the vector x̂ = x̂(λ) such that

f(x̂) = min
x∈Rn

f(x) and ‖x̂‖ = min{‖x‖ : f(x) = f(x̂)}.

Applying Theorem 21 and using

y = X−1x, b̃ = U∗b, c̃ = V ∗c, (190)

we get

f(x) = ‖ΣA y − b̃‖2 + λ2‖ΣB y − c̃‖2

=
n∑

i=1

(αiyi − b̃i)2 + λ2
q∑

j=1

(βjyj − c̃j)2 := f̃(y). (191)

The minimum-norm minimizer ŷ =
[
ŷj

]
of f̃(y) can be read from (191)

ŷj =



αj b̃j + λ2βj c̃j

α2
j + λ2β2

j

, j = 1, · · · , r = rankB,

b̃j

αj
, j ∈ r + 1, n, αj �= 0,

0, j ∈ r + 1, n, αj = 0,

(192)

and x̂ = Xŷ is a minimizer of f(x). We now show that x̂ is the minimum-
norm minimizer. Denote by X(k) the submatrix formed by the first k
columns of X. Similarly, x̂(k) and ŷ(k) denote the first k-component sub-

vectors of x̂ and ŷ, respectively. It follows from r = rankB ≤ k = rank
[
A
B

]
and Remark 1(d) that

x̂(k) = X(k)ŷ(k) ∈ R(A∗) + R(B∗),
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while, by Remark 1(c),

n∑
j=k+1

x̂ 2
j =

n∑
j=k+1

ŷ 2
j ,

completing the proof.

8.2. The {W,Q}-SVD. The singular values of A ∈ Cm×n are the
stationary values of ‖Ax‖/‖x‖, see Ex. 5. A natural generalization is the
following:

Definition 8. Let A ∈ Cm×n, let W ∈ Cm×m, and let Q ∈ Cn×n be
positive definite. The {W,Q}-singular values of A are the elements of the
set

µW,Q(A) =
{

µ : µ is a stationary value of
‖Ax‖W
‖x‖Q

}
, (193)

where, necessarily, µ ≥ 0.
One more definition is needed:
Definition 9. Let Q ∈ Cn×n be positive definite. A matrix V ∈ Cn×n

is Q-orthogonal if V ∗QV = I.

The analog of the SVD is then

Theorem 22 (The {W,Q}-singular value decomposition, Van Loan
[831], Theorem 3). Let A ∈ Cm×n, and let W ∈ Cm×m and Q ∈ Cn×n be
positive definite. Then there exist a W -orthogonal matrix U ∈ Cm×m and
a Q-orthogonal matrix V ∈ Cn×n such that

U−1AV = DA = diag(µ1, . . . , µn) (194)

where

µW,Q(A) = {µ1, . . . , µn}. (195)

Proof. Let B = W 1/2AQ−1/2 and let

Ũ∗BṼ = D

be the SVD of B. Then

U = W−1/2Ũ , and V = Q−1/2Ṽ (196)

are W -orthogonal and Q-orthogonal, respectively, and satisfy (194). Using La-
grange multipliers we can see that the stationary values of ‖Ax‖W /‖x‖Q are the
zeros of det(A∗WA− µ2Q). The calculation

det(A∗WA− µ2Q) = det(Q) det(B∗B − µ2I)

= det(Q) det(D∗D − µ2I)

= det(Q)
n∏

i=1

(µ2
i − µ2)

then proves (195). �
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Exercises
Ex. 92. Constrained least-squares. Let A ∈ Ra×n, B ∈ Rb×n, a ≥ n. It is re-
quired to find a minimum-norm solution of the constrained least-squares problem

minimize ‖Ax− b‖2,
subject to Bx = c.

(197)

Using Theorem 21 and the transformation (190), the problem becomes

minimize ‖ΣA y − b̃‖2,
subject to ΣB y = c̃.

(198)

A minimum-norm solution of the transformed problem (198) is

ŷj =


c̃j
βj
, j = 1, · · · , r = rankB,

b̃j
αj
, j ∈ r + 1, n, αj �= 0,

0, j ∈ r + 1, n, αj = 0.

(199)

Then, reasoning as in Example 1, x̂ = Xŷ is the minimum-norm solution of the
original problem (197).

Ex. 93. Weighted least-squares. Let A ∈ Rm×n, b ∈ Rm, and let W ∈ Cm×m

and Q ∈ Cn×n be PD. It is required to find a vector x̂ minimizing ‖Ax − b‖W
and of minimal ‖x‖Q-norm among all such minimizers. This problem was solved
in Corollary 3.4 using the {W,Q}-weighted {1, 2}-inverse,

x̂ = A
(1,2)
(W,Q)b. (200)

An alternative expression of this solution is enabled by the {W,Q}-SVD of A,

U−1AV = DA = diag (µ1, . . . , µn) (194)

giving

x̂ = V D†
AU

−1b. (201)

Indeed, using (196), we can show that

V D†
AU

−1 = Q−1/2(W 1/2AQ−1/2)†W 1/2

in agreement with (3.68a).
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[430].

Section 3. Antoulas [23], Chipman [188], Householder and Young [433],
Golub and Kahan [306]; Gaches, Rigal, and Rousset de Pina [294], Franck [289],
Nievergelt [611].

Total least squares. Golub and Van Loan [311], De Moor [219], Jiang
and Berry [446], Nievergelt [610], [612], Van Huffel and Vanderwalle [830].



256 6. A SPECTRAL THEORY FOR RECTANGULAR MATRICES

Section 4. Björck and Bowie [110], Erdélyi [256], [262], [260], [263], [261],
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CHAPTER 7

Computational Aspects of Generalized
Inverses

1. Introduction

There are three principal situations in which it is required to obtain nu-
merically a generalized inverse of a given matrix:

(i) the case in which any {1}-inverse will suffice;
(ii) the cases in which any {1, 3}-inverse (or sometimes any {1, 4}-

inverse) will do; and
(iii) the case in which a {2}-inverse having a specified range and null

space is required.

The inverse desired in case (iii) is, in the majority of cases, the Moore–
Penrose inverse, which is the unique {2}-inverse of the given matrix A
having the same range and null space as A∗. The Drazin inverse can also
be fitted into this pattern, being the unique {2}-inverse of A having the
same range and null space as A�, where � is any integer not less than the
index of A. When � = 1, this is the group inverse.

Generalized inverses are closely associated with linear equations, or-
thonormalization, least-squares solutions, singular values, and various ma-
trix factorizations. In particular, the QR-factorization and the Singular
Value Decomposition (SVD) figure prominently in the computation of the
Moore–Penrose inverse.

The two principal ways of computing the QR-factorization are

(1) Using a Gram–Schmidt type of orthogonalization; see, e.g., Rice
[689] and Björck [106] where a detailed error analysis is given for
least-squares solutions.

(2) Using Householder transformations or other rotations; see, e.g.,
Wilkinson [872], Parlett [628], and Golub [305].

QR factorization is implicit in the main algorithm for SVD, of Golub
and Kahan [306], where the matrix in question is first transformed, by
rotations, to an upper bidiagonal form.

These topics have been studied extensively and many excellent refer-
ences are available in the numerical analysis literature, see, e.g., Björck
[109], Golub and Van Loan [311], and Lawson and Hanson [504]. For
this reason we can keep this chapter brief, restricting our efforts to listing
some computational methods for generalized inversion, and discussing the
mathematics behind these methods. No error analysis is attempted.

257
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2. Computation of Unrestricted {1}- and {1, 2}-Inverses

Let A be a given matrix for which a {1}-inverse is desired, when any {1}-
inverse will suffice. If it should happen that A is of such a structure, or has
risen in such a manner, that a nonsingular submatrix of maximal order is
known, we can write

PAQ =
[
A11 A12
A21 A22

]
, (5.19)

where A11 is nonsingular and P and Q are permutation matrices used to
bring the nonsingular submatrix into the upper left position. (If A is of full
(column or row) rank, some of the submatrices in (5.19) will be absent.)
Since rank A is the order of A11, this implies that

A22 = A21A
−1
11 A12 (Brand [135]) (5.39)

and a {1, 2}-inverse of A is

A(1,2) = Q

[
A−1

11 O
O O

]
P (C.R. Rao [671]). (5.25)

In the more usual case in which a nonsingular submatrix of maximal order
is not known and, likewise, rank A is not known, perhaps the simplest
method is that of Section 1.2, using Gaussian elimination to bring A to
Hermite normal form,

EAP =
[
Ir K
O O

]
(0.72)

(with modifications in the case that A is of full rank), where E is nonsingular
and P is a permutation matrix, then

A(1) = P

[
Ir O
O L

]
E (1.5)

is a {1}-inverse of A for arbitrary L. Of course, the simplest choice is
L = O, which gives the {1, 2}-inverse

A(1,2) = P

[
Ir O
O O

]
E. (1.11)

On the other hand, when A is square, a nonsingular {1}-inverse may some-
times be desired. This is obtained by taking L in (1.5) to be nonsingular.
The simplest choice for L is a unit matrix, which gives

A(1) = PE.

In applications involving linear equations, it is often the case that a par-
ticular solution suffices. The above results can be easily adapted to obtain
such a solution, whenever it exists.

Theorem 1. Given A ∈ Cm×n
r with r < m, and b ∈ Cm, consider the

linear equation

Ax = b. (1)

Let E be a nonsingular matrix, P a permutation matrix, such that

EAP =
[
Ir K
O O

]
(0.72)
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and let b̂ and z be defined by

E[A b]
[

P 0
0T 1

]
=

[
Ir K b̂
O O z

]
. (2)

Then (1) has a solution if and only if z = 0, in which case a particular
solution is1

x = A(1,2)b = P b̂. (3)

Proof. The first statement is obvious, the second follows from (1.11). �
As in the nonsingular case, the accuracy may depend on the choice of

pivots used in the Gaussian elimination. (For a discussion of pivoting see,
e.g., Golub and Van Loan [311, § 3.4]; for a simple illustration, see Ex. 1
below.)
Exercises

Ex. 1. Consider the two nonsingular matrices

A =
[
ε 1
0 1

]
, B =

[
ε 1
1 1

]
,

where ε is a small, positive number. Compare the various ways (i.e., choices of
pivots) of transforming A and B to their Hermite normal forms. The objective is
a numerically stable process, which here means to avoid, or to postpone, division
by ε.

Ex. 2. An iterative method for computing a {1}-inverse. Exercise 5.17(b) sug-
gests a finite iterative method for computing a {1}-inverse of a given A ∈ Cm×n.
The method requires n iterations (an analogous method based on Ex. 5.17(a)
would use m iterations). At the k th iteration (k = 1, 2, . . . , n) it computes A(1)

k ,
where Ak is the submatrix of A consisting of its first k columns.

First we need some notation. For k = 2, . . . , n the matrix Ak is partitioned
as

Ak = [Ak−1 ak] (4)

where ak is the k th column of A. For k = 2, . . . , n let the vectors dk, ck, and bk

be defined by

dk = A
(1)
k−1ak, (5)

ck = ak −Ak−1dk, (6)

b∗
k =

{
0T , if ck = 0,
(ck)(1)(I −Ak−1A

(1)
k−1), otherwise,

(7)

where A(1)
k−1 is any {1}-inverse of Ak−1. Then a {1}-inverse of Ak is[

A
(1)
k−1 − dkb∗

k

b∗
k

]
(8)

Note that at each iteration we only need a {1}-inverse of a vector (the vector ck

if nonzero), a trivial task.

Ex. 3. Modify the iterative method in Ex. 2 so as to get a {1, 2}-inverse.

1
Note: If r = m, then for any b the vector z is absent, and (3) is a solution.
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3. Computation of Unrestricted {1, 3}-Inverses

Let A ∈ Cm×n
r and let

A = FG (9)

be a full-rank factorization. Then, by Ex. 1.29(b),

X = G(1)F †, (10)

where G(1) is an arbitrary element of G{1}, is a {1, 2, 3}-inverse of A.
Recall the Q̃R̃ factorization of A,

A = Q̃R̃ (0.39)

where the columns of Q̃ = [q1 . . . qr] are o.n., and R̃ is upper triangular.
Then (10) gives

A(1,2,3) = R̃(1)Q̃†. (11)

This is useful, since the Moore–Penrose inverse of Q̃ is simply

Q̃† =


q∗

1
q∗

2
· · ·
q∗

r

 , (12)

and a {1}-inverse of R̃ is also easily obtained: R̃ is of full row rank and it
can be written (by permuting columns as necessary) as

R̃P = [T K]

where T is nonsingular and upper triangular and P is a permutation matrix.
Then, see Ex. 1.13,

R̃(1) = P

[
T−1

O

]
, (13)

here T−1 is upper triangular and obtained from T by back substitution.
Exercises

Ex. 4. If the factorization (9) has been obtained from the Hermite normal form
of A by the procedure described in § 0.4.4, then

F = AP1, (14)

where P1 denotes the first r columns of the permutation matrix P . Moreover, we
may take G(1) = P1, and (10) gives

X = P1F
†. (15)

Since F is of full column rank,

F † = (F ∗F )−1F ∗, (16)

by (1.19). Thus (14), (16), and (15), in that order, give a {1, 2, 3}-inverse of A.
Observe that (15) shows that each of the r rows of F † is a row of X (in

general, not the corresponding row), while the remaining n − r rows of X are
rows of zeros. Thus, in the language of linear programming, X is a “basic”
{1, 2, 3}-inverse of A.
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Ex. 5. Obtain a {1, 2, 3}-inverse of

A =


1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1


using the method outlined in equations:

(a) (11), (12), and (13).
(b) (14), (16), and (15).

4. Computation of {2}-Inverses with Prescribed Range and Null
Space

Let A ∈ Cm×n
r , let A{2}S,T contain a nonzero matrix X, and let U and

V be such that R(U) = R(X), N(V ) = N(X), and the product V AU is
defined. Then, by Theorems 2.13 and 2.14, rank U = rank V = rank V AU ,
and

X = U(V AU)(1)V, (17)

where (V AU)(1) is an arbitrary element of (V AU){1}. This is the basic
formula for the case considered in this section. Zlobec’s formula

A† = A∗(A∗AA∗)(1)A∗ (18)

(see Ex. 2.39) and Greville’s formula

AD = A�(A2�+1)(1)A�, (4.48)

where � is a positive integer not less than the index of A, are particular
cases. Formula (17) has the advantage that it does not require inversion
of any nonsingular matrix. Aside from matrix multiplication, only the
determination of a {1}-inverse of V AU is needed, and this can be obtained
by the method of Section 1.2.

It should be noted, however, that when ill-conditioning of A is a prob-
lem, this is accentuated by forming products like A∗AA∗ or A2�+1 and, in
such cases, other methods are preferable.

In the case of the Moore–Penrose inverse, Noble’s formula

A† = Q

[
Ir

T ∗

]
(Ir + TT ∗)−1A−1

11 (Ir + S∗S)−1[Ir S∗]P (5.28)

is available, if a maximal nonsingular submatrix A11 is known, where the
permutation matrices P and Q and the “multipliers” S and T are defined
by

A = PT

[
A11 A12
A21 A22

]
QT

= PT

[
Ir

S

]
A11[Ir T ]QT , see Ex. 6. (0.78)

Otherwise, it is probably best to use the method of § 0.4.4 to obtain a
full-rank factorization

A = FG. (0.78)
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Then, the Moore–Penrose inverse is

A† = G∗(F ∗AG∗)−1F ∗, (1.17)

while the group inverse is

A# = F (GF )−2G, (4.22)

whenever GF is nonsingular.
Full-rank factorization can also be used for the computation of the

Drazin inverse. If A is a square matrix of index k, Cline’s method (Cline
[201]) employs full-rank factorization of matrices of successively smaller
order,

A = B1G1, (4.46a)

GiBi = Bi+1Gi+1 (i = 1, 2, . . . , k − 1), (4.46b)

until the nonsingular matrix GkBk is obtained. Then

AD = B1B2 · · ·Bk(GkBk)−k−1GkGk−1 · · ·G1. (4.46c)

Exercises
Ex. 6. Noble’s method. Let the nonzero matrix A ∈ Cm×n

r be transformed to a
column-permuted Hermite normal form

PEAQ =
[
Ir T
O O

]
= (PEPT )(PAQ), (19)

where P and Q are permutation matrices and E is a product of elementary row
matrices of types (i) and (ii) (see Section 1.2),

E = EkEk−1 · · ·E2E1,

which does not involve permutation of rows.
Then E can be chosen so that

PE[A Im]
[
Q O
O PT

]
=
[
Ir T A−1

11 O
O O −S Im−r

]
(20)

giving all the matrices P,Q, T, S, and A−1
11 which appear in (5.28). Note that after

the left-hand portion of RHS(20) has been brought to the form (19), still further
row operations may be needed to bring the right-hand portion to the required
form (Noble [614]).

Ex. 7. Singular value decomposition. Let

A = U(r)D(r)V
∗
(r) (6.30a)

be an SVD of A ∈ Cm×n. Then

A† = V(r)D
−1
(r)U

∗
(r)

= V(r)(U
∗
(r)AV(r))

−1U∗
(r) (6.30b)

is shown to be a special case of (17) by taking

U = V(r), V = U∗
(r).

A method for computing the Moore–Penrose inverse, based on (6.30b), has been
developed by Golub and Kahan [306]. See also Businger and Golub [141], [142]
and Golub and Reinsch [309].
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Ex. 8. Gram–Schmidt orthonormalization. The GSO of Ex. 0.7 can be modified
to compute the Moore–Penrose inverse. This method is due to Rust and Burrus
and Schneeberger [716]; see also Albert [9, Chapter V].

Ex. 9. For the matrix A of Ex. 5, calculate A† by:
(a) Zlobec’s formula (18).
(b) Noble’s formula (5.28).
(c) MacDuffee’s formula (1.17).

Ex. 10. For the matrix A of Ex. 5, calculate A# by:
(a) Cline’s formula (4.22).
(b) Formula (4.29).

5. Greville’s Method and Related Results

Greville’s method for computing the Moore–Penrose inverse A† of a matrix
A ∈ Cm×n is a finite iterative method. At the k th iteration (k = 1, 2, . . . , n)
it computes A†

k, where Ak is the submatrix of A consisting of its first k
columns. An analogous method for computing a {1}-inverse was encoun-
tered in Ex. 2. As there, we partition

Ak = [Ak−1 ak] (4)

where ak is the k th column of A. For k = 2, . . . , n let the vectors dk and
ck be defined by

dk = A†
k−1ak, (21)

ck = ak −Ak−1dk (22)

= ak −Ak−1A
†
k−1ak

= ak − PR(Ak−1)ak

= PN(A∗
k−1)ak.

Theorem 2 (Greville [325]). Let A ∈ Cm×n. Using the above notation,
the Moore–Penrose inverse of Ak (k = 2, . . . , n) is

[Ak−1 ak]† =
[
A†

k−1 − dkb∗
k

b∗
k

]
, (23)

where

b∗
k = c†

k, if ck �= 0, (24a)

b∗
k = (1 + d∗

kdk)−1d∗
kA†

k−1, if ck = 0. (24b)

Proof. Let A†
k = [Ak−1 ak]† be partitioned as

A†
k =

[
Bk

b∗
k

]
(25)

where b∗
k is the k th row of A†

k. Multiplying (4) and (25) gives

AkA
†
k = Ak−1Bk + akb

∗
k. (26)

Now by (4), Ex. 2.38, and Corollary 2.7,

N(A†
k−1) = N(A∗

k−1) ⊃ N(A∗
k) = N(A†

k) = N(AkA
†
k),
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and it follows from Ex. 2.20 that

A†
k−1AkA

†
k = A†

k−1. (27)

Moreover, since

R(A†
k) = R(A∗

k)

by Ex. 2.38, it follows from (4), (25), and Corollary 2.7 that

R(Bk) ⊂ R(A∗
k−1) = R(A†

k−1) = R(A†
k−1Ak−1),

and, therefore,

A†
k−1Ak−1Bk = Bk (28)

by Ex. 2.20. It follows from (27) and (28) that premultiplication of (26) by A†
k−1

gives

A†
k−1 = Bk +A†

k−1akb
∗
k

= Bk + dkb
∗
k, (29)

by (21). Thus we may write

[Ak−1 ak]† =
[
A†

k−1 − dkb∗
k

b∗
k

]
, (23)

with b∗
k still to be determined. We distinguish two cases according as ak is or is

not in R(Ak−1), i.e., according as ck is or is not 0.

Case I (ck �= 0)

By using (29), (26) becomes

AkA
†
k = Ak−1A

†
k−1 + (ak −Ak−1dk)b∗

k

= Ak−1A
†
k−1 + ckb

∗
k (30)

by (22). Since AkA
†
k is Hermitian, it follows from (30) that ckb∗

k is Hermitian
and, therefore,

b∗
k = δc∗

k, (31)

where δ is some real number. From (4) and (22) we obtain

Ak = AkA
†
kAk = [Ak−1 + ckb

∗
kAk−1 ak − ck + (b∗

kak)ck],

and comparison with (4) shows that

b∗
kak = 1, (32)

since ck �= 0. Now, by (22),

ck = Pak,

where P denotes the orthogonal projector on N(A∗
k−1). Therefore, (31) and (32)

give

1 = b∗
kak = δc∗

kak = δa∗
kPak

= δa∗
kP

2ak = δc∗
kck, (33)

since P is idempotent. By (31), (33), and Ex. 1.19(a),

b∗
k = δc∗

k = c†
k.
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Case II (ck = 0)

Here R(Ak) = R(Ak−1), and so, by (25) and (0.27),

N(b∗
k) ⊃ N(A†

k) = N(A∗
k) = N(A∗

k−1) = N(A†
k−1)

= N(Ak−1A
†
k−1).

Therefore, by Ex. 2.20,

b∗
kAk−1A

†
k−1 = b∗

k. (34)

Now, (4) and (23) give

A†
kAk =

[
A†

k−1 − dkb∗
kAk−1 (1− α)dk

b∗
kAk−1 α

]
, (35)

where

α = b∗
kak (36)

is a scalar (real, in fact, since it is a diagonal element of a Hermitian matrix).
Since (35) is Hermitian we have

b∗
kAk−1 = (1− α)d∗

k.

Thus, by (34),

b∗
k = b∗

kAk−1A
†
k−1 = (1− α)d∗

kA
†
k−1. (37)

Substitution of (37) in (36) gives

α = (1− α)d∗
kdk, (38)

by (21). Adding 1− α to both sides of (38) gives

(1− α)(1 + d∗
kdk) = 1

and substitution for 1− α in (37) gives (24b). �
Greville’s method as described above, computes A† recursively in terms

of A†
k (k = 1, 2, . . . , n). This method was adapted by Greville [325] for the

computation of A†y, for any y ∈ Cm, without computing A†. This is done
as follows:

Let

Ã = [A y]. (39)

Then (23) gives

A†
kÃ =

[
A†

k−1Ã− dkb∗
kÃ

b∗
kÃ

]
. (40)

By (21) it follows that dk is the k th column of A†
k−1Ã for k = 2, . . . , n.

Therefore only the vector b∗
kÃ is needed to get A†

kÃ from A†
k−1Ã by (40).

If ck = 0, then (24b) gives b∗
kÃ as

b∗
kÃ = (1 + d∗

kdk)−1d∗
kA†

k−1Ã. (41)

If ck �= 0, then from (24a),

b∗
kÃ = (c∗

kck)−1c∗
kÃ. (42)
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The computation of (42) is simplified by noting that the k th element of the
vector c∗

kÃ is c∗
kak (k = 1, 2, . . . , n). Premultiplying (22) by c∗

k we obtain

c∗
kck = c∗

kak, (43)

since c∗
kAk−1 = 0 by (22). Thus the vector (42) may be computed by

computing c∗
kÃ and normalizing it by dividing by its kth element.

In the Greville method as described above, the matrix to be inverted is
modified at each iteration by adjoining an additional column. This is the
natural approach to some applications. Consider, for example, the least-
squares polynomial approximation problem where a real function y(t) is to
be approximated by polynomials

∑k
j=0 xjt

j . In the discrete version of this
problem, the function y(t) is represented by the m-dimensional vector

y = [yi] = [y(ti)] (i = 1, . . . , m), (44)

whose i th component is the function y evaluated at t = ti, where the
points t1, t2, . . . , tm are given. Similarly, the polynomial tj (j = 0, 1, . . . )
is represented by the m-dimensional vector

aj+1 = [ai,j+1] = [(ti)j ] (i = 1, . . . , m). (45)

The problem is, therefore, for a given approximation error ε > 0 to find an
integer k = k(ε) and a vector x ∈ Rk−1 such that

‖Ak−1x− y‖ ≤ ε, (46)

where y is given by (44) and Ak−1 ∈ Rm×(k−1) is the matrix

Ak−1 = [a1 a2 · · · ak−1] (47)

for aj given by (45). For any k, the Euclidean norm ‖Ak−1x− y‖ is mini-
mized by

x = A†
k−1y. (48)

If, for a given k, the vector (48) does not satisfy (46), i.e., if

‖Ak−1A
†
k−1y − y‖ > ε, (49)

then we try achieving (46) with the matrix

Ak = [Ak−1 ak], (4)

where, in effect, the degree of the approximating polynomial has been in-
creased from k − 2 to k − 1. Greville’s method described above computes
A†

ky in terms of A†
k−1y, and is thus the natural method for solving the above

polynomial approximation problem and similar problems in approximation
and regression.

There are applications on the other hand which call for modifying the
matrix to be inverted by adjoining additional rows. Consider, for example,
the problem of solving (or approximating the solution of) the following
linear equation:

n∑
j=1

Aijxj = yi (i = 1, . . . , k − 1), (50)
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where n is fixed and the data {aij , yi : i = 1, . . . , k − 1, j = 1, . . . , n} are
the result of some experiment or observation repeated k−1 times, with the
row

[ai1 ai2 · · · ain yi] (i = 1, . . . , k − 1)

the result of the i th experiment.
Let x̂k−1 be the least-squares solution of (50), i.e.,

x̂k−1 = A†
(k−1)y(k−1), (51)

where A(k−1) = [aij ] and y(k−1) = [yi], i = 1, . . . , k − 1, j = 1, . . . , n .
If the results of an additional experiment or observation become available
after (50) is solved, then it is necessary to update the solution (51) in light
of the additional information. This explains the need for the variant of
Greville’s method described in Corollaries 1 and 2 below, for which some
notation is needed.

Let n be fixed and let A(k) ∈ Ck×n be partitioned as

A(k) =
[
A(k−1)

a∗
k

]
, a∗

k ∈ C1×n. (52)

Also, in analogy with (21) and (22), let

d∗
k = a∗

kA†
(k−1), (53)

c∗
k = a∗

k − d∗
kA(k−1). (54)

Corollary 1 (Kishi [476]). Using the above notation

A†
(k) = [A†

(k−1) − bkd∗
k bk], (55)

where

bk = c∗†
k , if c∗

k �= 0, (56)

bk = (1 + d∗
kdk)−1A†

(k−1)dk, if c∗
k = 0. (57)

Proof. Follows by applying Theorem 2 to the conjugate transpose of the matrix
(52). �

In some applications it is necessary to compute

x̂k = A†
(k)y(k), for given y(k) ∈ Ck,

but A†
(k) is not needed. Then x̂k may be obtained from x̂k−1, in analogy

with Corollary 1, as follows:
Corollary 2 (Albert and Sittler [12]). Let the vector y(k) ∈ Ck be

partitioned as

y(k) =
[
y(k−1)

yk

]
, yk ∈ C, (58)

and let

x̂k = A†
(k)y(k), x̂k−1 = A†

(k−1)y(k−1), (59)

using the notation (52). Then

x̂k = x̂k−1 + (yk − a∗
kx̂k−1)bk, (60)
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with bk given by (56) or (57).
Proof. Follows directly from Corollary 1. �
Exercises

Ex. 11. Use Greville’s method to calculate A† for the matrix A of Ex. 5.

Ex. 12. A converse of Theorem 2. Let the matrix Ak−1 ∈ Cm×(k−1) be obtained
from Ak ∈ Cm×k by deleting its k th column ak. If Ak is of full column rank,[

A†
(k−1)

0T

]
= A†

k −
A†

kbkb∗
k

b∗
kbk

, (61)

where b∗
k is the last row of A†

k (Fletcher [277]).

Ex. 13. Let

A2 =
[
a1 a2

]
=

1 0
2 1
0 −1

 .
Then

A†
1 = a†

1 =

1
2
0

†

= 1
5

[
1 2 0

]
,

d2 = A†
1a2 = 1

5 [1 2 0]

 0
1
−1

 = 2
5 ,

c2 = a2 −A1d2 =

 0
1
−1

−
1

2
0

 2
5 =

−
2
5

1
5

−1

 ,
and, by (24a),

b∗
2 = c†

2 = 1
6

[−2 1 −5
]
.

A†
2 is now computed by (23) as

A†
2 = 1

5

[
1 2 0
0 0 0

]
+
[− 2

5
1

] [− 2
6

1
6 − 5

6

]
=

[
1
3

1
3

1
3

− 1
3

1
6 − 5

6

]
.

Let now a†
2 be computed by (61), i.e., by deleting a1 from A2. Interchanging

columns of A2 and rows of A†
2 we obtain

A†
2b2 =

[
− 1

3
1
6 − 5

6
1
3

1
3

1
3

]
1
3
1
3
1
3

 =

[
− 1

3
1
3

]

and

b∗
2b2 =

[ 1
3

1
3

1
3

] 
1
3
1
3
1
3

 = 1
3 ,
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and, finally, from (61),

[
A†

1
0T

]
=

[
− 1

3
1
6 − 5

6
1
3

1
3

1
3

]
−
[−1

1

] [ 1
3

1
3

1
3

]
=

[
0 1

2 − 1
2

0 0 0

]
,

or

a†
2 =

 0
1
−1

†

= 1
2

 0
1
−1

 (Fletcher [277]).

6. Computation of Least-Squares Solutions

The Euclidean norm is used throughout. Given the equation

Ax = b (1)

and a vector x, the residual r = r(x) is

r = b−Ax, (62)

and x is a least-squares solution of (1) if ‖r(x)‖ is minimum. We recall that
a vector x is a least-squares solution if and only if it is a solution of the
normal equation

A∗Ax = A∗b. (3.9)

Note. The use of the normal equation in finding least-squares solutions is
limited by the fact that the matrix A∗A is ill-conditioned and very sensi-
tive to roundoff errors, see, e.g., Taussky [798] and Ex. 6.7. Methods for
computing least-squares solutions which take account of this difficulty have
been studied by several authors. We mention in particular Björck [106],
[105], [107], Björck and Golub [111], Businger and Golub [141], [142],
Golub and Wilkinson [312], and Noble [615]. These methods can be used,
with slight modifications, to compute the generalized inverse.

To avoid the normal equation, let A be factorized as

A = FG (63)

where G is of full row rank. Then the normal equation is equivalent to

F ∗Ax = F ∗b, (64)

a useful fact, if the system (64) is not ill-conditioned, or at least not worse-
conditioned than (1).

In particular, recall the QR factorization of the matrix A ∈ Cm×n
n (full

column rank is assumed here for convenience; the modifications required
for the general case are the subject of Ex. 15),

A = Q̃R̃ (0.39)

= QR, (0.40)
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here Q ∈ Cm×m is unitary (i.e., Q∗Q = I), R =
[
R̃
O

]
where R̃ is an n × n

upper triangular matrix and Q̃ consists of the first n columns of Q, forming
an o.n. basis of R(A).

It follows that the normal equation (3.9) is equivalent to

Q∗Ax = Q∗b (65)

or to

R̃x = Q̃∗b, (66)

since Q̃∗Q̃ = In. Now R̃ is upper triangular and thus (66) is solved by
backward substitution. The system (65) is not worse-conditioned than the
original system Ax = b; indeed the coefficient matrix Q∗A is obtained by
“rotating” the columns of A.
Exercises
Ex. 14. Using the above notation, let

Q∗b = c = [ci], i ∈ 1,m.

Show that the minimum value of ‖Ax− b‖2 is
∑m

i=n+1 |ci|2.
Hint : ‖Ax− b‖2 = ‖Q∗(Ax− b)‖2 since Q is unitary.

Ex. 15. Modify the above results for the case A ∈ Cm×n
r , r < n.

Ex. 16. Show that the Q̃R̃-factorization for the matrix of Ex. 3.4, is

A =

1 1
ε 0
0 ε

 ≈ fl(Q̃) fl(R̃) =

1 ε√
2

ε − 1√
2

0 1√
2

[1 1
0 ε
√

2

]
.

Use this to compute the least-squares solution of1 1
ε 0
0 ε

[x1

x2

]
=

 1
ε
2ε

 .
Solution. The (rounded) least-squares solution obtained by using (66) with the
rounded matrices fl(Q̃) and fl(R̃) is

x1 = 0, x2 = 1.

The exact least-squares solution is

x1 =
ε2

2 + ε2
, x2 =

2(1 + ε2)
2 + ε2

.

7. Iterative Methods for Computing A†

An iterative method for computing A† is a set of instructions for generating
a sequence {Xk : k = 1, 2, . . . } converging to A†. The instructions specify
how to select the initial approximation X0, how to proceed from Xk to Xk+1
for each k, and when to stop, having obtained a reasonable approximation
of A†.

The rate of convergence of such an iterative method is determined in
terms of the corresponding sequence of residuals

Rk = PR(A) −AXk, k = 0, 1, . . . (67)
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which converges to O as Xk → A†. An iterative method is said to be a
p th-order method, for some p > 1, if there is a positive constant c such that

‖Rk+1‖ ≤ c‖Rk‖p, k = 0, 1, . . . (68)

for any multiplicative matrix norm; see, e.g., Ex. 0.34.
In analogy with the nonsingular case – see, e.g., Householder [432, pp.

94–95] – we consider iterative methods of the type

Xk+1 = Xk + CkRk, k = 0, 1, . . . , (69)

where {Ck : k = 0, 1, . . . } is a suitable sequence and X0 is the initial
approximation (to be specified).

One objection to (69) as an iterative method for computing A† is that
(69) requires at each iteration the residual Rk, for which one needs the
projection PR(A), whose computation is a task comparable to computing
A†. This difficulty will be overcome here by choosing the sequence {Ck} in
(69) to satisfy

Ck = CkPR(A), k = 0, 1, . . . . (70)

For such a choice we have

CkRk = Ck (PR(A) −AXk), by (67),

= Ck (I −AXk), by (70), (71)

and (69) can therefore be rewritten as

Xk+1 = Xk + CkTk, k = 0, 1, . . . , (72)

where

Tk = I −AXk, k = 0, 1, . . . . (73)

The iterative method (69), or (72), is suitable for the case where A is an
m×n matrix with m ≤ n, for then Rk and Tk are m×m matrices. However,
if m > n, the following dual version of (69) is preferable to it

X ′
k+1 = X ′

k + R′
k C ′

k, k = 0, 1, . . . , (69′)

where

R′
k = PR(A∗) −X ′

kA (67′)

and {C ′
k : k = 0, 1, . . . } is a suitable sequence satisfying

C ′
k = PR(A∗)C

′
k, k = 0, 1, . . . , (70′)

a condition which allows rewriting (69′) as

X ′
k+1 = X ′

k + T ′
kC ′

k, k = 0, 1, . . . , (72′)

where

T ′
k = I −X ′

kA, k = 0, 1, . . . . (73′)

Indeed, if m > n, then (72′) is preferable to (72), for the former method
uses the n×n matrix T ′

k while the latter uses Tk, which is an m×m matrix.
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Since all the results and proofs pertaining to the iterative method (69)
or (72) hold true, with obvious modifications, for the dual method (69′) or
(72′), we will, for the sake of convenience, restrict the discussion to the case

m ≤ n, (74)

leaving to the reader the details of the complementary case.
A first-order iterative method for computing A†, of type (72), is pre-

sented in the following:
Theorem 3. Let O �= A ∈ Cm×n and let the initial approximation X0

and its residual R0 satisfy

X0 ∈ R(A∗, A∗) (75)

(i.e., X0 = A∗BA∗ for some B ∈ Cm×n, see Ex. 3.15, p. 110), and

ρ(R0) < 1, (76)

respectively. Then the sequence

Xk+1 = Xk + X0Tk

= Xk + X0(I −AXk), k = 0, 1, . . . , (77)

converges to A† as k → ∞ and the corresponding sequence of residuals
satisfies

‖Rk+1‖ ≤ ‖R0‖‖Rk‖, k = 0, 1, . . . , (78)

for any multiplicative matrix norm.
Proof. The sequence (77) is obtained from (72) by choosing

Ck = X0, k = 0, 1, . . . , (79)

a choice which, by (75), satisfies (70), and allows rewriting (77) as

Xk+1 = Xk +X0Rk

= Xk +X0(PR(A) −AXk), k = 0, 1, . . . . (80)

From (80) we compute the residual

Rk+1 = PR(A) −AXk+1

= PR(A) −AXk −AX0Rk

= Rk −AX0Rk

= PR(A)Rk −AX0Rk, by (67),

= R0Rk, k = 0, 1, . . . ,

= Rk+2
0 , by repeating the argument. (81)

For any multiplicative matrix norm, it follows from (81) that

‖Rk+1‖ ≤ ‖R0‖‖Rk‖. (78)

From

Rk+1 = Rk+2
0 , k = 0, 1, . . . , (81)

it also follows, by using (76) and Ex. 0.44, that the sequence of residuals converges
to the zero matrix:

PR(A) −AXk → O, as k →∞. (82)
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We will now prove that the sequence (77) converges. Rewriting the sequence (77)
as

Xk+1 = Xk +X0Rk, (80)

it follows from (81) that

Xk+1 = Xk +X0R
k+1
0

= Xk1 +X0R
k
0 +X0R

k+1
0

= X0(I +R0 +R2
0 + · · ·+Rk+1

0 ), k = 0, 1, . . . , (83)

which, by (76) and Exs. 0.44–0.45, converges to a limit X∞.
Finally, we will show that X∞ = A†. From (82) it follows that

AX∞ = PR(A),

and in particular, that X∞ is a {1}-inverse of A. From (75) and (77) it is obvious
that all Xk lie in R(A∗, A∗) and, therefore,

X∞ ∈ R(A∗, A∗),

proving that X∞ = A†, since A† is the unique {1}-inverse which lies in R(A∗, A∗);
see Ex. 3.19. �

For any integer p ≥ 2, a p th-order iterative method for computing A†,
of type (72), is described in the following:

Theorem 4. Let O �= A ∈ Cm×n and let the initial approximation X0
and its residual R0 satisfy (75) and (76), respectively. Then, for any integer
p ≥ 2, the sequence

Xk+1 = Xk(I + Tk + T 2
k + · · ·+ T p−1

k ) (84)

= Xk(I + (I −AXk) + (I −AXk)2 + · · ·+ (I −AXk)p−1),
k = 0, 1, . . . ,

converges to A† as k → ∞ and the corresponding sequence of residuals
satisfies

‖Rk+1‖ ≤ ‖Rk‖p, k = 0, 1, . . . . (85)

Proof. The sequence (84) is obtained from (72) by choosing

Ck = Xk(I + Tk + T 2
k + · · ·+ T p−2

k ). (86)

From (75) and (84) it is obvious that all the Xk lie in R(A∗, A∗), and therefore
the sequence {Ck}, given by (86), satisfies (70), proving that the sequence (84)
can be rewritten in the form (69),

Xk+1 = Xk(I +Rk +R2
k + · · ·+Rp−1

k ), k = 0, 1, . . . . (87)

From (87) we compute

Rk+1 = PR(A) −AXk+1

= PR(A) −AXk(I +Rk +R2
k + · · ·+Rp−1

k )

= Rk −AXk(Rk +R2
k + · · ·+Rp−1

k ). (88)
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Now, for any j = 1, . . . , p− 1,

Rj
k −AXkR

j
k = PR(A)R

j
k −AXkR

j
k

= RkR
j
k = Rj+1

k ,

and, therefore, the last line in (88) collapses to

Rk+1 = Rp
k, (89)

which implies (85). The remainder of the proof, namely, that the sequence (87)
converges to A†, is analogous to the proof of Theorem 3. �

The iterative methods (77) and (84) are related by the following:

Theorem 5. Let O �= A ∈ Cm×n and let the sequence {Xk : k =
0, 1, . . . } be constructed as in Theorem 3. Let p be any integer ≥ 2 and let
a sequence {X̃j : j = 0, 1, . . . } be constructed as in Theorem 4 with the
same initial approximation X0 as the first sequence

X̃0 = X0,

X̃j+1 = X̃j (I + T̃j + T̃ 2
j + · · ·+ T̃ p−1

j ), j = 0, 1, . . . , (84)

where

T̃j = I −AX̃k, j = 0, 1, . . . . (73)

Then

X̃j = Xpj−1, j = 0, 1, . . . . (90)

Proof. We use induction on j to prove (90), which obviously holds for j = 0.
Assuming

X̃j = Xpj−1, (90)

we will show that

X̃j+1 = Xpj+1−1.

From

Xk = X0(I +R0 +R2
0 + · · ·+Rk

0) (83)

and (90), it follows that

X̃j = X0(I +R0 +R2
0 + · · ·+Rpj−1

0 ). (91)

Rewriting (84) as

X̃j+1 = X̃j(I + R̃j + R̃2
j + · · ·+ R̃p−1

j ), (87)

it follows from

R̃j = PR(A) −AX̃j

= PR(A) −AXpj−1, by (90),

= Rpj−1

= Rpj

0 , by (81),
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that

X̃j+1 = X̃j(I +Rpj

0 +R2pj

0 + · · ·+R
(p−1)pj

0 )

= X0(I +R0 +R2
0 + · · ·+Rpj−1

0 )(I +Rpj

0 +R2pj

0 + · · ·+R
(p−1)pj

0 ),

by (91),

= X0(I +R0 +R2
0 + · · ·+Rpj+1−1

0 )

= Xpj+1−1, by (83). �
Theorem 5 shows that an approximation X̃j obtained by the p th-order

method (84) in j iterations will require pj − 1 iterations of the first-order
method (77), both methods using the same initial approximation. For any
two iterative methods of different orders, the higher order method will, in
general, require fewer iterations but more computations per iteration. A
discussion of the optimal order p for methods of type (84) is given in Ex. 23.

Exercises
Ex. 17. The condition

X0 ∈ R(A∗, A∗) (75)

is necessary for the convergence of the iterative methods (77) and (84): let

A = 1
2

[
1 1
1 1

]
, B = ε

[
1 −1
−1 1

]
, ε �= 0,

and let

X0 = A+B.

Then

R0 = PR(A) −AX0 = O

and, in particular, (76) holds, but

X0 �∈ R(A∗, A∗)

and both sequences (77) and (84) reduce to

Xk = X0, k = 0, 1, . . . ,

without converging to A†.

Ex. 18. Let O �= A ∈ Cm×n and let X0 and R0 = PR(A) −AX0 satisfy

X0 ∈ R(A∗, A∗), (75)

ρ(R0) < 1. (76)

Then

A† = X0(I −R0)−1. (92)

Proof. The proof of Theorem 3 shows A† to be the limit of

Xk = X0(I +R0 +R2
o + · · ·+Rk

0) (83)

as k →∞. But (83) converges, by Ex. 0.45–46, to RHS(92). �
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The Special Case X0 = βA∗

A frequent choice of the initial approximation X0, in the iterative methods
(77) and (84), is

X0 = βA∗ (93)

for a suitable real scalar β. This special case is treated in the following
three exercises:

Ex. 19. Let O �= A ∈ Cm×n
r , let β be a real scalar, and let

R0 = PR(A) − βAA∗,

T0 = I − βAA∗.

Then the following are equivalent:

(a) The scalar β satisfies

0 < β <
2

λ1(AA∗)
, (94)

where

λ1(AA∗) ≥ λ2(AA∗) ≥ · · · ≥ λr(AA∗) > 0

are the nonzero eigenvalues of AA∗.
(b) ρ(R0) < 1.
(c) ρ(T0) ≤ 1 and λ = −1 is not an eigenvalue of T0.

Proof. The nonzero eigenvalues of R0 and T0 are among

{1− βλi(AA∗) : i = 1, . . . , r}

and

{1− βλi(AA∗) : i = 1, . . . ,m},
respectively. The equivalence of (a), (b), and (c) then follows from the observation
that (94) is equivalent to

|1− βλi(AA∗)| < 1, i = 1, . . . , r. �

Ex. 20. Let O �= A ∈ Cm×n
r and let the real scalar β satisfy

0 < β <
2

λ1(AA∗)
. (94)

Then:

(a) The sequence

X0 = βA∗, Xk+1 = Xk(I − βAA∗) + βA∗, k = 0, 1, . . . , (95)

or, equivalently,

Xk = β

k∑
j=0

A∗(I − βAA∗)j , k = 0, 1, . . . , (96)

is a first-order method for computing A†.
(b) The corresponding residuals Rk = PR(A) −AXk are given by

Rk = (PR(A) − βAA∗)k+1, k = 0, 1, . . . . (97)
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(c) For any k, the spectral norm of Rk, ‖Rk‖2, is minimized by choosing

β =
2

λ1(AA∗) + λr(AA∗)
, (98)

in which case the minimal ‖Rk‖2 is

‖Rk‖2 =
(
λ1(AA∗)− λr(AA∗)
λ1(AA∗) + λr(AA∗)

)k+1

, k = 0, 1, . . . . (99)

Proof. (a) Substituting (93) in (77) results in (95) or, equivalently, in (96).
(b) Follows from (96).
(c) Rk is Hermitian and therefore

‖Rk‖2 = ρ(Rk), by Ex. 0.44,

= ρ(Rk+1
0 ), by (81),

= ρk+1(R0), by Ex. 0.43.

Thus, ‖Rk‖2 is minimized by the same β that minimizes ρ(R0). Since the nonzero
eigenvalues of R0 = PR(A) − βAA∗ are

1− βλi(AA∗), i = 1, . . . , r,

it is clear that β minimizes

ρ(R0) = max{|1− βλi(AA∗)| : i = 1, . . . , r}
if and only if

−(1− βλ1(AA∗)) = 1− βλr(AA∗), (100)

which is (98). Finally (99) is obtained by substituting (98) in

ρ(Rk) = max{|1− βλi(AA∗)|k+1 : i = 1, . . . , r}, by (97),

= |1− βλr(AA∗)|k+1, for β satisfying (100). �

Ex. 21. Let A, β be as in Ex. 20. Then, for any integer p ≥ 2, the sequence

Xk+1 = Xk(I + Tk + T 2
k + · · ·+ T p−1

k ) (84)

with

X0 = βA∗ (93)

is a p th-order method for computing A†. The corresponding residuals are

Rk = (PR(A) − βAA∗)pk+1

and their spectral norms are minimized by β of (98). The iterative methods of
Exs. 20 and 21 were studied by Ben-Israel and Cohen [81], Petryshyn [641], and
Zlobec [889].

Ex. 22. A second order iterative method. An important special case of Theorem 4
is the case p = 2, resulting in the following second-order iterative method for
computing A†. Let O �= A ∈ Cm×n and let the initial approximation X0 and its
residual R0 satisfy (75) and (76), respectively. Then the sequence

Xk+1 = Xk(2I −AXk), k = 0, 1, . . . (101)

converges to A† as k →∞ and the corresponding sequence of residuals satisfies

‖Rk+1‖ ≤ ‖Rk‖2, k = 0, 1, . . . . (102)

The iterative method (101) is a generalization of the well-known method of Schulz
[731] for the iterative inversion of a nonsingular matrix, see, e.g., Householder
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[432, p. 95]. The method (101) was studied by Ben-Israel [61], Ben-Israel and
Cohen [81], Petryshyn [641], and Zlobec [889]. A detailed error analysis of (101)
is given in Söderstörm and Stewart [766].

Ex. 23. Discussion of the optimum order p. As in Theorem 5 we denote by
{Xk} and {X̃k} the sequences generated by the first-order method (77) and by
the p th-order method (84), respectively, using the same initial approximation
X0 = X̃0. Taking the sequence {Xk} as the standard for comparing different
orders p in (84), we use (90) to conclude that, for each k = 0, 1, . . . , the smallest
integer k̃ such that the iterate X̃k̃ is beyond Xk is the smallest integer k̃ satisfying

pk̃ − 1 ≥ k
and, therefore,

k̃ = 〈ln(k + 1)/ ln p〉, (103)

where, for any real α, 〈α〉 is the smallest integer ≥ α.
In assessing the work per iteration, we assume that the computational effort

required to add or subtract an identity matrix is negligible compared to the effort
to perform a matrix multiplication. Assuming (74) and hence the usage of the
methods (77) and (84), rather than their duals based on (72′), we define a unit
of computational effort as the effort required to multiply two m × m matrices.
Accordingly, premultiplying an n×m matrix by an m× n matrix requires n/m
units, as does the premultiplication of an m×m matrix by an n×m matrix. The
iteration

Xk+1 = Xk(I + Tk + T 2
k + · · ·+ T p−1

k ) (84)

= Xk(I + Tk(I + · · ·+ Tk(I + Tk) · · · ))
thus requires:

n/m units of effort to compute Tk;
p− 2 units of effort to compute Tk(I + · · ·+ Tk(I + Tk) · · · )); and
n/m units of effort to multiply Xk(I + · · ·+ T p−1

k );
adding to

p− 2 + 2
n

m
(104)

units of effort.
The figure (104) can be improved for certain p. For example, the iteration

(84) can be written for p = 2q, q = 1, 2, . . . , as

Xk+1 = Xk

2q−1∏
j=1

(I + T j
k )

= Xk(I + Tk)(I + T 2
k )(I + T 4

k ) · · · (I + T 2q−1

k ) (105)

requiring only

2(q − 1) + 2
n

m
(106)

units of effort, improving on (104) for all q ≥ 3; see also Lonseth [523].
In comparing the first-order iterative method (77) and the second-order

method (101) (obtained from (84) for p = 2) one sees that both methods require
2(n/m) units of effort per iteration. Therefore, by Theorem 5, the second-order
method (101) is superior to the first order method (77).

For a given integer k = 1, 2, . . . we define the optimal order p as the or-
der of the iterative method (84) which, starting with an initial approximation
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X0, minimizes the computational effort required to obtain, or go beyond, the
approximation Xk, obtained by the first-order method (77) in k iterations.

Combining (103), (104), and (105) it follows that, for a given k, the optimal
p is the integer p minimizing(

p− 2 + 2
n

m

)〈 ln(k + 1)
ln p

〉
, p = 2, 3, . . . , p �= 2q, q = 1, 2, . . . (107a)

or (
2q − 2 + 2

n

m

)〈 ln(k + 1)
q ln 2

〉
, p = 2q, q = 1, 2, . . . . (107b)

Lower bounds for (107a) and (107b) are

ln(k + 1)
p− 2 + 2(n/m)

ln p
, p = 2, 3, . . . , p �= 2q, q = 1, 2, . . . , (107a′)

and

ln(k + 1)
2q − 2 + 2(n/m)

q ln 2
, p = 2q, q = 1, 2, . . . , (107b′)

respectively, suggesting the following definition which is independent of k. The
approximate optimum order p is the integer p ≥ 2 minimizing

f(p) =


p− 2 + 2(n/m)

ln p
, p �= 2q, p = 1, 2, . . . ,

2(q − 1 + (n/m))
q ln 2

, p = 2q, q = 1, 2, . . . .
(108)

The approximate optimum order p depends on the ratio n/m.

Ex. 24. Iterative methods for computing projections. Since AA† = PR(A), it
follows that for any sequence {Xk}, the sequence {Yk = AXk} satisfies

Yk → PR(A), if Xk → A†.

Thus, for any iterative method for computing A†, defined by a sequence of succes-
sive approximations {Xk}, there is an associated iterative method for computing
PR(A) defined by the sequence {Yk = AXk}. Similarly, an iterative method for
computing PR(A∗) is given by the sequence {Y ′

k = XkA} since A†A = PR(A∗).
The residuals Rk, k = 0, 1, . . . , of the sequence {Yk} will still be defined by

(67) or, equivalently,

Rk = PR(A) − Yk, k = 0, 1, . . . . (109)

Therefore, the iterative method {Yk = AXk} for computing PR(A) is of the same
order as the iterative method {Xk} for computing A†.

In particular, a p th-order iterative method for computing PR(A), based on
Theorem 4, is given as follows:

Let O �= A ∈ Cm×n and let the initial approximation Y0 and its residual R0

satisfy

Y0 ∈ R(A,A∗), (110)

ρ(R0) < 1, (76)

respectively. Then, for any integer p ≥ 2, the sequence

Yk+1 = Yk(I + Tk + T 2
k + · · ·+ T p−1

k ) (111)

with

Tk = I − Yk, k = 0, 1, . . . ,
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converges to PR(A) as k →∞ and the corresponding sequence of residuals (109)
satisfies

‖Rk+1‖ ≤ ‖Rk‖p, k = 0, 1, . . . , (85)

for any multiplicative matrix norm.

Ex. 25. A monotone property of (111). Let O �= A ∈ Cm×n, let p be an even
positive integer, and let the sequence {Yk} be given by (111), (110), (76), and the
additional condition that Y0 be Hermitian. Then the sequence {trace Yk : k =
1, 2, . . . } is monotone increasing and converges to rank A.
Proof. From (109), (81), and Theorem 5 it follows that

Yk = PR(A) −Rpk

0 . (112)

From the fact that the trace of a matrix equals the sum of its eigenvalues, it
follows that

trace PR(A) = dim R(A) = rankA

and

trace Rpk

0 =
m∑

i=1

λi(Rpk

0 )

=
m∑

i=1

λpk

i (R0),

which is a monotone decreasing sequence converging to zero, since p is even, R0

is Hermitian (by (109) and the assumption that Y0 is Hermitian), and therefore
its eigenvalues λi(R0), which by (76) have moduli less than 1, are real. The proof
is completed by noting that, by (112),

trace Yk = trace PR(A) − trace Rpk

0

= rankA−
m∑

i=1

λpk

i (R0). �

Ex. 26. A lower bound on rank A. Let O �= A ∈ Cm×n and let the sequence
{Yk : k = 0, 1, . . . } be as in Ex. 25. Then

rankA ≥ 〈trace Yk〉, k = 1, 2, . . . , (113)

where 〈α〉 is the smallest integer ≥ α.

Ex. 27. Iterative methods for computing matrix products involving generalized
inverses. In some applications one has to compute a matrix product A†B or BA†,
where A ∈ Cm×n is given and B is a given matrix or vector. The iterative methods
for computing A† given above can be adapted for computing such products.

Consider, for example, the iterative method

Xk+1 = Xk(I + Tk + T 2
k + · · ·+ T p−1

k ), k = 0, 1, . . . (84)

where p is an integer ≥ 2,

Tk = I −AXk, k = 0, 1, . . . , (73)

and the initial approximationX0 satisfies (75) and (76). A corresponding iterative
method for computing BA†, for a given B ∈ Cq×n, is given as follows:

Let X0 ∈ Cn×m satisfy (75) and (76) and let the sequence {Zk} be given by

Z0 = BX0, (114)

Zk+1 = ZkMk, k = 0, 1, . . . (115)
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where

Mk = I + Tk + T 2
k + · · ·+ T p−1

k , k = 0, 1, . . . , (116)

Tk+1 = I +Mk(Tk − I), k = 0, 1, . . . , (117)

and

T0 = I −AX0.

Then the sequence {Zk} converges to BA† as k → ∞ (Garnett, Ben-Israel, and
Yau [297]).
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CHAPTER 8

Miscellaneous Applications

1. Introduction

The selection of a few applications to represent the scope and diversity of
generalized inverses is by no means obvious, except for one item, the linear
statistical model, that would be on everyone’s list.

We hope the applications selected here illustrate the richness and po-
tential of generalized inverses.

Section 2 is an introduction to the important operation of parallel sums
with applications in electrical networks, orthogonal projections, and infimal
convolutions.

The linear statistical model, the main application of generalized in-
verses, is the subject of Section 3.

Section 5 describes an application to Newton methods for solving sys-
tems of nonlinear equations, without requiring nonsingularity of the Ja-
cobian matrix. Interestingly, this application calls for a {2}-inverse, the
“most trivial” of generalized inverses.

An application to linear system theory is briefly outlined in Section 6.
Section 7 applies the group inverse to finite Markov chains.
The Drazin inverse is a natural tool for solving singular linear difference

equations. This application is described in Section 8.
The last two sections deal with the matrix volume, a concept closely

related to the Moore–Penrose inverse. It is applied in Section 9 to surface
integrals and in Section 10 to probability distributions.

2. Parallel Sums

“What can you do with generalized inverses that you could not do
without?” My best answer, unchanged in 30 years, is the explicit formula
for the orthogonal projection PL∩M on the intersection of subspaces L, M ,
in terms of their respective projections

PL∩M = 2PL(PL + PM )†PM (5.51)

= 2PM (PL + PM )†PL, (Anderson and Duffin [21]).

This formula, extended to infinite-dimensional spaces in Filmore and Williams
[272], answers the following question in Halmos’s Hilbert Space Problem
Book, [366, p. 58]

Problem 96. If E and F are projections with ranges M
and N , find the projection E ∧ F with range M ∩N . 1

1Halmos goes on, apparently not believing that an explicit answer is possible:

282
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Halmos refers the reader to von Neumann [840, p. 55] where the projection
E ∧ F is obtained in the limit as an infinite product of the respective pro-
jections E and F , each projection appearing infinitely often, see Ex. 5.14,

E ∧ F = lim
n→∞(EFE)n, [366, p. 257], (1)

an idea used in the Kaczmarz iterative method [454] for solving linear
equations, and elsewhere.

The Anderson–Duffin result is a special case of their parallel sum, de-
fined for A, B ∈ Cm×n by

A :B = A(A + B)†B, [21]. (2)

Other definitions of the parallel sum are

A±B = (A† + B†)†, Rao and Mitra [678, p. 187], (3)

and if A, B are PSD, A :B is defined by an extremal principle due to Morley
[580],

〈x, A :Bx〉 = inf {〈y, Ay〉+ 〈z, Bz〉 : y + z = x} , (4)

shown by Morley to be equivalent to the Anderson–Duffin definition.
Definitions (2)–(4) have a common physical motivation: if two resis-

tances R1 and R2 are connected in parallel, the resulting resistance is the
parallel sum

R1 :R2 =
(

1
R1

+
1

R2

)−1

, compare with (3),

=
R1R2

R1 + R2
, the scalar version of (2).

A current x through R1 :R2 splits into currents y and z, through R1 and
R2 respectively, so as to minimize the dissipated power

〈y, R1y〉+ 〈z, R2z〉, the motivation for (4).

In physical and engineering applications the matrices A, B are PSD, and
so they are here. The projection result (5.51) is then a special case

PL∩M = 2PL :PM , (5)

and Morley’s result gives

1
2 〈x, PL∩Mx〉 = inf {〈y, PLy〉+ 〈z, PMz〉 : y + z = x} .

Here is a convex-analytic proof of the equivalence of definitions (3)–(4) if
A, B are PSD. The proof is stated for real matrices.

“The problem is to find an “expression” for the projection described. Al-
though most mathematicians would read the statement of such a problem
with sympathetic understanding, it must be admitted that rigorously speak-
ing it does not really mean anything. The most obvious way to make it
precise is to describe certain classes of operators by the requirement that
they be closed under some familiar algebraic and topological operations, and
then try to prove that whenever E and F belong to such a class, then so does
E ∧ F , etc.” (ibid, pp. 58–59).
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First some preliminaries (the word convex is used below to mean proper
convex, see, e.g., [703]). The conjugate of a convex function f : Rn → R is

f∗(ξ) := sup
x∈Rn

{〈ξ,x〉 − f(x)}, [703, p. 104]. (6)

f∗ is convex (even if f in (6) is not), and f = f∗∗ if and only if f is a closed
convex function [703, Theorem 12.2]. Two cases where the conjugate is
readily available:

(a) If A is PSD, then the conjugate of f(x) = 1
2 〈x, Ax〉 is

f∗(ξ) =
{ 1

2 〈ξ, A†ξ〉, if ξ ∈ R(A),
+∞, otherwise. (7)

Proof. ∇{〈ξ,x〉 − f(x)} = ξ −Ax, etc. �
(b) The infimal convolution of two convex functions f, g : Rn → R,

(f � g)(x) := inf
y
{f(y) + g(x− y)} (8)

is convex and

(f � g)∗(ξ) = f∗(ξ) + g∗(ξ), [703, p. 145]. (9)

Proof of (3) ⇐⇒ (4):
RHS(4)= 2(f � g)(x) where f(x) = 1

2 〈x, Ax〉 and g(x) = 1
2 〈x, Bx〉. The

proof follows then from (9), (7), and (f � g) = (f � g)∗∗. �

3. The Linear Statistical Model

This section is based on Albert [10]. Given a random vector y = [yi] with
expected value Ey = µ = [µi], its covariance matrix is

Covy = E {(y − µ)(y − µ)T } = [E (yi − µi)(yj − µj)].

A common situation is statistics is where a random vector y depends lin-
early on a vector of parameters,

y = Xβ + ε (10)

where:

• y ∈ Rn is observed or measured in some experimental set-up;
• the parameters β ∈ Rp are unknown;
• the matrix X ∈ Rn×p (the design matrix ) is given; and
• ε ∈ Rn is a random vector representing the errors of observing y,

which are not systematic, i.e.,

E ε = 0, (11)

and have covariance,

Cov ε = V 2, (12)

where the matrix V , assumed known, is symmetric PSD.
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Note that, as a consequence of (10)–(12), we have

Ey = Xβ, Covy = V 2. (13)

This situation falls under several names, including: linear statistical model
(abbreviated linear model), linear regression, and the Gauss–Markov model.
We denote this model by (y, Xβ, V 2).

The problem is to estimate a linear function of the parameters, say

Bβ, for a given matrix B ∈ Rm×p, (14)

from the observed y (the problem of estimating the variance V 2, if un-
known, is not treated here.)

A linear estimator (abbreviated LE) of Bβ is

Ay, for some A ∈ Rm×n. (15)

It is a linear unbiased estimator (abbreviated LUE) if

E {Ay} = Bβ, for all β ∈ Rp, (16)

and it is the best linear unbiased estimator (abbreviated BLUE)if its vari-
ance is minimal, in some sense, among all LUEs. In general, not all linear
functions have LUEs, see Ex. 2.

The function Bβ is called estimable if it has an LUE, i.e., if there is a
matrix A ∈ Rm×n such that (16) holds (Bose [119], Scheffé [726, p. 13]).
See also Ex. 4 .

The unbiasedness condition (16) reduces to an identity

AXβ = Bβ, for all β,

and, consequently, a linear equation

AX = B, (17)

giving a necessary and sufficient condition2 for the estimability of Bβ. The
estimability of Bβ is thus equivalent to the statement that the rows of B
are linear combinations of the rows of X.

There are two cases for the design matrix X ∈ Rn×p
r : it is either of full

column rank (r = p) or not (r < p). For the matrix V 2 (PSD because it is
a covariance matrix) there are two cases: it is either nonsingular (i.e., PD)
or it is singular. There are therefore four main cases for the linear model
(y, Xβ, V 2), corresponding to the dichotomies on X and V 2, and many
special cases with a huge literature, see selected references in p. 328. The
simplest case is studied next.

3.1. X of Full Column Rank, V Nonsingular. Consider the spe-
cial case where the n×p matrix X is of full column rank, i.e., R(XT ) = Rp.
Then any linear function Bβ is estimable. In particular, for B = I, the lin-
ear equation (17) reduces to AX = I, and we conclude that Ay is an LUE
of β whenever A is a left inverse of X. The set of LUEs of β is therefore

LUE(β) = {X(1)y : X(1) ∈ X{1}}.
2For other conditions see Alalouf and Styan [6], [7] and their references.
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and the mimimum-norm LUE of β is

β̂ =
(
XT X

)−1
XT y = X†y. (18)

Without loss of generality (see Ex. 6) we can assume that the variance
V 2 = σ2I (i.e., the errors have equal variances and are uncorrelated). We
now state a basic version of the main result on the linear statistical model.

Theorem 1 (The Gauss–Markov Theorem). Consider the linear model
(y, Xβ, σ2I) with X of full column rank. Then for any B ∈ Rm×p:

(a) The linear function Bβ is estimable.
(b) The estimator Bβ̂ = BX†y is BLUE in the sense that

Cov Ay � Cov Bβ̂ (19)

for any other LUE Ay of Bβ.
(c) The BLUE Bβ̂ = BX†y belongs to the class of estimators

E(X) := {Ay : A = KXT , for some matrix K}. (20)

If Ay is any LUE in E(X) (i.e., the rows of A are in R(X)), then

Ay = Bβ̂, with probability 1. (21)

Proof. (a) was shown above. To prove (b) let Ay be any LUE of Bβ. The
covariance of Ay is

CovAy = σ2AAT , see Ex. 1,

while the covariance of Bβ̂ is

CovB
(
XTX

)−1
XT y = σ2B

(
XTX

)−1
BT

= σ2AX
(
XTX

)−1
XTAT , (B = AX by (17)).

∴ CovAy − CovBβ̂ = σ2A
(
I −X

(
XTX

)−1
XT

)
AT , (22)

which is PSD.
(c) The estimate BX†y is in E(X) sinceX† = (XTX)†XT . Then (21) follows

from

RHS(22) = σ2APN(XT )A
T = O,

if A = KXT for some K. �
Note that all LUEs in E(X) are indistinguishable, by (21), while for any

LUE Ay outside E(X) the difference Cov Ay−Cov Bβ̂ in (22) is a nonzero
PSD matrix. In this sense, Bβ̂ can be said to be the unique BLUE.

Consider now the problem of estimating linear functionals 〈b,β〉. A
linear estimate 〈a,y〉 is in the class E(X) if and only if a ∈ R(XT ). Theo-
rem 1 then reduces to

Corollary 1. Let (y, Xβ, σ2I) and X be as in Theorem 1. Then for
any b ∈ Rp:

(a) The linear functional 〈b,β〉 is estimable.
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(b) The estimator 〈b, β̂〉 = 〈b, BX†y〉 is BLUE in the sense that

Var 〈a,y〉 ≥ Var 〈b, β̂〉
for any other LUE 〈a,y〉 of 〈b, β̂〉.

(c) If 〈a,y〉 is any LUE of 〈b, β̂〉 with a ∈ R(XT ), then
〈a,y〉 = 〈b, β̂〉 with probability 1. �

3.2. The General Case. An analog of Theorem 1, for the general
linear model, is the following:

Theorem 2 (The Generalized Gauss–Markov Theorem, Albert [10],
Zyskind and Martin [901]). Let (y, Xβ, V 2) be a linear model, and let
〈b,β〉 be any estimable functional. Then:

(a) 〈b,β〉 has a unique BLUE 〈b, β̃〉 where

β̃ = X†
(
I − (V PN(XT ))

†V
)T

y. (23)

(b) β̃ ∈ R(XT ), and if β∗ is any other LUE in R(XT ),

Cov β∗ � Cov β̃. (24)

Proof. The projection PN(XT ) appears repeatedly and will be denoted by Q.
(a) The unbiasedness condition (17) here becomes

XT a = b (25)

with general solution

a(w) = XT†b−Qw, w arbitrary. (26)

The general LUE of 〈b,β〉 is therefore

〈a(w),y〉, with a(w) given by (26),

and its variance

Var 〈a(w),y〉 = a(w)TV 2a(w)

= ‖V XT†b− V Qw‖2

is minimized if and only if

w(u) = (V Q)†V XT†b + PN(V Q)u, u arbitrary.

Substituting in (26) we get the general BLUE

a(w(u)) = (I −Q(V Q)†V )XT†b−QPN(V Q)u. (27)

The special case with u = 0 is denoted

a∗ = (I −Q(V Q)†V )XT†b. (28)

We now prove that

〈a(w(u)),y〉 = 〈a∗,y〉, with probability 1. (29)

Indeed,

E 〈a∗ − a(w(u)),y〉 = uTPN(V Q)QXβ = 0, (30)
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since QX = O. The variance

Var 〈a∗ − a(w(u)),y〉 = uTPN(V Q)QV QPN(V Q)u

= ‖V QPN(V Q)u‖2 = 0 (31)

and (29) follows from (30)–(31). Therefore the unique BLUE for 〈b,β〉 is 〈a∗,y〉
with a∗ given by (28) or, equivalently,

a∗ = (I − (V Q)†V )XT†b, (32)

using Q(V Q)† = (V Q)†, which follows since R((V Q)†) = R((V Q)T ) ⊂ R(Q).
Substituting (32) in 〈a∗,y〉 we get

〈a∗,y〉 = 〈b, X†(I − (V Q)†V )T y〉
= 〈b, β̃〉, by (23).

(b) β̃ ∈ R(XT ) since R(XT ) = R(X†). Let β∗ be any LUE in R(XT ) and
let c be an arbitrary vector. Then 〈X†Xc,β〉 is estimable and 〈X†Xc,β∗〉 is an
LUE with variance

Var 〈X†Xc,β∗〉 = cT (CovX†Xβ∗)c

= cT (Cov β∗)c, since β∗ ∈ R(XT ).

By its construction, β̃ is an LUE with smaller variance. Therefore

cT (Cov β∗)c ≥ cT (Cov β̃)c,

for all c, proving (24). �
The following corollary gives alternative expressions for β̃, using the

covariance V 2 rather than its square root V .
Corollary 2 (Alternative forms of the BLUE). The BLUE β̃ of The-

orem 2 is

β̃ = X†(I − (V PN(XT ))
†V )T y (23)

= X†(I − (PN(XT )V
2PN(XT ))

†PN(XT )V
2)T y, (33)

and, if V 2 is nonsingular,

β̃ = (XT V −2X)†XT V −2y. (34)

Proof. Denote Q := PN(XT ). The equivalence of (23) and (33) follows from
(V Q)† = (QV 2Q)†QV , which is Ex. 1.18(d) with A = V Q, using the symmetry
of V,Q. To prove (34) we simplify

(V Q)T†V = (V Q(V Q)T )†V QV

= (V Q(V Q)T )†V Q(V Q)T , since Q = Q2 = QT ,

= V Q(V Q)†,

and rewrite (23) as

β̃ = X†V (I − (V Q)T†V )V −1y.

∴ β̃ = X†V (I − V Q(V Q)†)V −1y

= (V −1X)†V −1y, (by Ex. 9),

= (XTV −2X)†XTV −2y

using Ex. 1.18(d) with A = V −1X. �
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In particular, for the model (y, Xβ, σ2I), the BLUE (34) reduces to

β̂ = X†y, (35)

called here the naive least-square estimator , see Ex. 8.
Exercises
Ex. 1. Given a linear model (y, Xβ, V 2) with X ∈ Rn×p, a matrix A ∈ Rm×n,
and a vector a ∈ Rm:

E (Ay + a) = AXβ + a,

Cov (Ay + a) = AV 2AT .

Ex. 2. Let (y, Xβ, V 2) be a linear model with X ∈ Rn×p
r , r < p. Then:

(a) β does not have an LUE, for otherwise,

EAy = AXβ = β, for all β.

∴ AX = I. ∴ rankX = p, a contradiction.

(b) Let 0 �= b ∈ N(X). Then 〈b,β〉 is not estimable for, otherwise, there is
a ∈ Rn such that

E 〈a,y〉 = 〈a, Xβ〉 = 〈b,β〉, for all β,

and β = b gives

0 = ‖b‖2.

Ex. 3. Constrained linear models. Let (y, Xβ, V 2) be a linear model with
X ∈ Rn×p. The parameters β can be “forced” to lie in R(XT ) by appropriate
linear constraints,

Cβ = 0 (36)

where the rows of C span N(X). The linear equation

aTX = bT (25)

must hold if β satisfies (36). By Ex. 2.45 there is a vector λ such that

(aTX − bT ) = λTC

or

b = XT a− CT λ

proving that 〈b,β〉 is estimable for all b.

Ex. 4. Constrained linear models (continued). Let (y, Xβ, V 2) be a linear model
with nonhomogeneous linear constraints on the parameters

Cβ = c, (37)

where the matrix C is arbitrary and c ∈ R(C). It is required to estimate 〈a,β〉
subject to (37). To accommodate such constraints we replace the linear estimates
〈a,y〉 by affine functions

〈a,y〉+ α, α scalar.

The functional 〈b,β〉 is estimable if there exist a vector a and a scalar α such
that

E {〈a,y〉+ α} = 〈b,β〉 (38)
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whenever (37) holds. This is equivalent to

Cβ = c =⇒ (aTX − bT )β = −α.
It follows, as in Ex. 3, that there exists a vector λ such that

(aTX − bT ) = λTC, −α = 〈λ, c〉.
Therefore the linear function 〈b,β〉 is estimable (subject to (37)) if and only if
there exists a λ such that

b = XT a− CT λ

in which case any affine unbiased estimate is of the form 〈a,y〉 − 〈λ, c〉.
Ex. 5. (Aitken [4]). Let (y, Xβ, σ2V 2) be a linear model with X of full column
rank. Then the BLUE of β is the solution β̂ of

min
β

(Xβ − y)TV −2(Xβ − y). (39)

If V 2 = CCT is a factorization of the covariance V 2, then (39) becomes

min
β,u

uT u, subject to Xβ + Cu = y.

See also Kourouklis and Paige [482].

Ex. 6. Consider a linear model (y, Xβ, V 2), V 2 n × n, PSD. Then there is an
orthogonal matrix U such that

UTV 2U =



λ2
1 0 · · · 0

. . .
...

...
λ2

r 0 · · · 0
0 · · · 0 0 · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · 0


=
[
Λ2 O
O 0

]
,

where r = rankV 2, the columns of U are eigenvectors of V 2, and λ2
i are its

nonzero eigenvalues. Let T =
[
Λ−1 O
O I

]
UT . Then T is nonsingular and

CovTy =
[
Λ−1 O
O I

]
UTV 2U

[
Λ−1 O
O I

]
=
[
I O
O O

]
,

showing that the model (y, Xβ, V 2) is equivalent to(
Ty, TXβ,

[
I O
O O

])
. (40)

Ex. 7. Let (y, Xβ, V 2), U , and T be as in Ex. 6 and let the covariance matrix
V 2 be singular. Partition the matrix U = [U1 U2], where the columns of U2 ∈
Rn×(n−r) are a basis of the null space of V 2. The model (40) is partitioned
accordingly as

Λ−1UT
1 y = Λ−1UT

1 Xβ + Λ−1UT
1 ε, (40.a)

UT
2 y = UT

2 Xβ + UT
2 ε. (40.b)

Since EUT
2 ε = 0, CovUT

2 ε = O, (40.b) implies

UT
2 y = UT

2 Xβ, with probability 1,

the “deterministic” part of the model, a consequence of the singularity of V .
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Ex. 8. The BLUE β̃ of (34), and the naive least-squares estimator β̂ of (35),
coincide for the model (y, Xβ, σ2I). Are there other cases where these two esti-
mators coincide for all estimable functionals? This would mean

X†TXT y = (I − (V PN(XT ))
†V )X†TXT y, for all y,

or

(V PN(XT ))
†V XX† = O, (41)

a necessary and sufficient condition for β̃ = β̂. Show that (41) is equivalent to

R(V 2X) ⊂ R(X).

Other necessary and sufficient conditions for β̃ = β̂ are given in Albert [10, p.
186].

Ex. 9. (Albert [10, Lemma, p. 185]). Let X,Q, and V be as in Corollary 2. If
V is nonsingular, then

(V −1X)† = X†V (I − V Q(V Q)†). (42)

Proof. For any vector z, the minimum-norm least-squares solution of

(V −1X)T x = z (a)

is

x̂ = (V −1X)T†z.

If u∗ is a least squares solution of

XT u = z, (b)

then x∗ = V u∗ is a least-squares solution of (a) and therefore

‖x∗‖ = ‖V u∗‖ > ‖x̂‖, unless x̂ = V u∗. (c)

Since Q = PN(XT ), the general least-squares solution of (b) is

u(w) = XT†z−Qw, (d)

with arbitrary w. Therefore

‖V u(w)‖2 = ‖V XT†z− V Qw‖2 (e)

is minimized when u = u(ŵ), where

ŵ = (V Q)†V XT†z. (f)

Suppose

‖V u(ŵ)‖ > ‖x̂‖.

Since û = V −1x̂ is also a least-squares solution of (b), we conclude

‖V û‖ = ‖x̂‖ < ‖V u(ŵ)‖,
a contradiction to u(ŵ) being a mimimizer of ‖V u‖.

∴ ‖V u(ŵ)‖ = ‖x̂‖,
and, by (c),

V u(ŵ) = x̂. (g)
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From (d), (f), and (g) we get

(V −1X)†z = X†V (I − V Q(V Q)†)z,

and (42) follows since z is arbitrary. �

4. Ridge Regression

Consider the linear model

y = Xβ + ε (10)

with X ∈ Rn×p
p (X is of full column rank), and the error ε is normally

distributed with mean 0 and covariance matrix σ2I, a fact denoted by
ε ∼ N(0, σ2I).

If XT X is ill-conditioned, then the BLUE of β,

β̂ = (XT X)−1XT y, (18)

may be unsatisfactory. To see this, consider the SVD of X,

UT XV = Λ =



λ1
λ2

. . .
λp

0 · · · · · · 0
...

...
0 · · · · · · 0


, (43)

where the singular values are denoted by λi. The transformation

z = UT y, γ = V T β, ν = UT ε, (44)

then takes (10) into

z = Λγ + ν, (45)

where the parameters to be estimated are γ = [γi]. Since the matrix V is
orthogonal, it follows that ν ∼ N(0, σ2I) and the components zi of z are
also normally distributed

zi ∼ N(λiγi, σ
2), i ∈ 1, p, (46a)

zi ∼ N(0, σ2), i ∈ p + 1, n. (46b)

For i ∈ 1, p, the BLUE (18) of γi is

γ̂i =
zi

λi
, (47a)

with variance

Var γ̂i = E
( zi

λi
− γi

)2
=

σ2

λ2
i

, (47b)

which may be unacceptably large if the singular value λi is small, as is
typically the case when XT X is ill-conditioned. See also Ex. 6.13.
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Hoerl and Kennard [423] suggested a way of reducing the variance by
dropping the unbiasedness of the estimator. Their ridge regression estima-
tor (abbreviated RRE) of β is

β̂(k) = (XT X + kI)−1XT y, (48)

where k is a positive parameter. The RRE is actually a family of estimators
{β̂(k) : k > 0} parametrized by k. The value k = 0 gives the BLUE (18)
= β̂(0).

For the transformed model (45), the RRE of γ is

γ̂(k) = (ΛT Λ + kI)−1ΛT z, (49)

and for the i th component,

γ̂i(k) =
λizi

λ2
i + k

, i ∈ 1, p. (49.i)

The RRE thus shrinks every component of the observation vector z. The
shrinkage factor is

c(λi, k) =
λi

λ2
i + k

, (50)

see Ex. 12.
If β∗ is an estimator of a parameter β, the bias of β∗ is

bias(β∗) = Eβ∗ − β,

and its mean square error, abbreviated MSE, is

MSE(β∗) = E
(
β∗ − β

)2

which is equal to the variance of β∗ if β∗ is unbiased, see Ex. 10.
The RRE (49) is biased, with3

bias(γ̂(k)) = −k(ΛT Λ + kI)−1γ, (51)

and for the i th component,

bias(γ̂i(k)) = −k
γi

λ2
i + k

, i ∈ 1, p. (51.i)

The variance of γ̂i(k) is

Var(γ̂i(k)) =
λ2

i σ
2

(λ2
i + k)2

, (52)

3A weakness of the RRE is that the bias depends on the unknown parameter to be
estimated.
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and the MSE of γ̂(k) is, by Ex. 10,

MSE(γ̂(k)) =
p∑

i=1

λ2
i σ

2

(λ2
i + k)2

+
p∑

i=1

k2γ2
i

(λ2
i + k)2

=
p∑

i=1

λ2
i σ

2 + k2γ2
i

(λ2
i + k)2

. (53)

An advantage of the RRE is indicated in the following theorem:

Theorem 3. There is a k > 0 for which the MSE of the RRE is smaller
than that of the BLUE,

MSE(β̂(k)) < MSE(β̂(0)).

Proof. Let f(k) = RHS(53). We have to show that f is decreasing at zero, i.e.,
f ′(0) < 0. This follows since

f ′(k) = 2
p∑

i=1

λ2
i (kγ

2
i − σ2)

(λ2
i + k)3

. (54)
�

An optimal RRE β̂(k∗) may be defined as corresponding to a value
k∗ where f(k) is minimum. There are two difficulties with this concept:
it requires solving the nonlinear equation f ′(k) = 0, and k∗ depends on
the unknown parameter γ (since f ′(k) does). For a discussion of the good
choices of RREs, see Goldstein and Smith [303], Obenchain [618], Vinod
[836], and their references.

Exercises

Ex. 10. If β∗ is an estimator of a parameter β, then

MSE(β∗) = trace Cov β∗ + ‖bias(β∗)‖2,
where ‖ · ‖ is the Euclidean norm.

Ex. 11. A generalization of the RRE (48) is defined, for a vector k = [ki] of
positive parameters, by

β̂(k) = (XTX + diag(k))−1XT y, (55)

where diag(k) is the diagonal matrix with diagonal elements {ki : i ∈ 1, p}.
Replacing k by ki in (51.i)–(52) we get

MSE(γ̂(k)) =
p∑

i=1

λ2
iσ

2 + k2
i γ

2
i

(λ2
i + ki)2

,

and the analog of (54) is

∇f(k) = 2
(λ2

i (kiγ
2
i − σ2)

(λ2
i + ki)3

)
,

showing that MSE(γ̂(k)) is minimized for k =
[
σ2/γ2

i

]
.

Ex. 12. (Goldstein and Smith [303]). A shrinkage estimator of γ in the model
(45) is defined by

γ̂i
∗ = c(λi, k) zi, (56)
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where c(λi, k) is a suitable shrinkage function. A comparison with (49.i) shows
that the RRE is a shrinkage estimator with

c(λi, k) =
λi

λ2
i + k

. (50)

The shrinkage function is assumed to have the properties:
(a) c(λi, 0) = 1/λi;
(b) |c(λi, k)| is, for any fixed λi, a continuous, monotone decreasing function

of k; and
(c) c(λi, k) has the same sign as λi.

Then, for each γ, there is a k > 0 such that the shrinkage estimator γ̂i
∗ =

c(λi, k) zi has smaller MSE than the BLUE (47a), for all i ∈ 1, p.

5. An Application of {2}-Inverses in Iterative Methods for
Solving Nonlinear Equations

One of the best-known methods for solving a single equation in a single
variable, say

f(x) = 0, (57)

is the Newton (also Newton–Raphson) method

xk+1 = xk − f(xk)
f ′(xk)

, k = 0, 1, . . . . (58)

Under suitable conditions on the function f and the initial approximation
x0, the sequence (58) converges to a solution of (57); see, e.g., Ortega and
Rheinboldt [620]. The modified Newton method uses the iteration

xk+1 = xk − f(xk)
f ′(x0)

, k = 0, 1, . . . , (59)

instead of (58).
Newton’s method for solving a system of m equations in n variables f1(x1, . . . , xn) = 0

· · ·
fm(x1, . . . , xn) = 0

 , or f(x) = 0, (60)

is similarly given, for the case m = n, by

xk+1 = xk − f ′(xk)−1f(xk), k = 0, 1, . . . , (61)

where f ′(xk) is the derivative of f at xk, represented by the matrix of partial
derivatives (the Jacobian matrix)

f ′(xk) =
(

∂fi

∂xj
(xk)

)
, (62)

and denoted below by Jf (x) or by Jx.
The reader is referred to the excellent texts by Ortega and Rheinboldt

[620] and Rall [667] for iterative methods in nonlinear analysis and, in
particular, for the many variations and extensions of Newton’s method
(61).

If the nonsingularity of f ′(xk) cannot be assumed for every xk and,
in particular, if the number of equations (60) is different from the number
of unknowns, then it is natural to inquire whether a generalized inverse
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of f ′(xk) can be used in (61), still resulting in a sequence converging to a
solution of (60).

Interestingly, the {2}-inverse is the natural tool for use here. This may
seem surprising because until now we used the definition

XAX = X (1.2)

in conjunction with other, more useful, properties. Indeed, the {2}-inverse
is trivial in the sense that X = O satisfies (1.2), and is a {2}-inverse.

In this section we illustrate the use of {2}-inverses in Newton’s method
(Theorems 4–5 and Ex. 14).

Except in Corollary 3, where we use the Euclidean norm, we denote by
‖ ‖ both a given (but arbitrary) vector norm in Rn and a matrix norm in
Rm×n consistent with it; see, e.g., Ex. 0.35. For a given point x0 ∈ Rn and
a positive scalar r we denote by

B(x0, r) = {x ∈ Rn : ‖ x− x0 ‖< r}
the open ball with center x0 and radius r. The corresponding closed ball is

B(x0, r) = {x ∈ Rn : ‖ x− x0 ‖≤ r}.
The following theorem establishes the quadratic convergence for a New-

ton method, using suitable {2}-inverses of Jacobian matrices. However, the
iterates converge not to a solution of (60) but to an “approximate solution,”
the degree of approximation depending on the {2}-inverse used.

Theorem 4 (Levin and Ben-Israel [509], Theorem 1). Let x0 ∈ Rn,
r > 0 and let f : Rn → Rm be differentiable in the open ball B(x0, r). Let
M > 0 be such that

‖Ju − Jv‖ ≤M ‖u− v‖ (63)

for all u,v ∈ B(x0, r), where Ju is the Jacobian of f at u. Further, assume
that, for all x ∈ B(x0, r), the Jacobian Jx has a {2}-inverse Tx ∈ Rn×m,

TxJxTx = Tx (64a)

such that

‖Tx0‖
∥∥∥f(x0)

∥∥∥ < α, (64b)

and, for all u,v ∈ B(x0, r),

‖(Tu − Tv)f(v)‖ ≤ N ‖u− v‖2 , (64c)

and

M

2
‖Tu‖+ N ≤ K < 1, (64d)

for some positive scalars N,K, and α, and

h := αK < 1, r >
α

1− h
. (64e)

Then:
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(a) Starting at x0, all iterates

xk+1 = xk − Txk f(xk), k = 0, 1, . . . , (65)

lie in B(x0, r).
(b) The sequence {xk} converges, as k →∞, to a point x∞ ∈ B(x0, r),

that is, a solution of

Tx∞f(x) = 0. (66)

(c) For all k ≥ 0,

‖xk − x∞‖ ≤ α
h2k−1

1− h2k .

Since 0 < h < 1, the above method is at least quadratically con-
vergent.

Proof. Part 1. Using induction on k we prove that the sequence (65) satisfies,
for k = 0, 1, ...,

xk ∈ B(x0, r), (67a)∥∥∥xk+1 − xk
∥∥∥ ≤ αh2k−1. (67b)

For k = 0, (67b), and for k = 1, (67a), follow from (64b). Assuming (67b) holds
for 0 ≤ j ≤ k − 1 we get

‖xk+1 − x0‖ ≤
k+1∑
j=1

‖xj − xj−1‖ ≤ α
k∑

j=0

h2j−1 <
α

1− h < r

which proves (67a). To prove (67b) we write

xk+1 − xk = −Txk f(xk) = xk − xk−1 − Txk f(xk) + Txk−1 f(xk−1), by (65),

= Txk−1Jxk−1(xk − xk−1)− Txk f(xk) + Txk−1 f(xk−1),

since TJT = T implies TJx = x for every x ∈ R(T ),

= −Txk−1(f(xk)− f(xk−1)− Jxk−1(xk − xk−1)) + (Txk−1 − Txk )f(xk).
∴ ‖xk+1 − xk‖ ≤ ‖ − Txk−1(f(xk)− f(xk−1)− Jxk−1(xk − xk−1))‖

+ ‖(Txk−1 − Txk )f(xk)‖

≤
(M

2
‖Txk−1‖+N

)
‖xk − xk−1‖2,
by (63), Ex. 13 below and (64c),

≤ K
∥∥∥xk − xk−1

∥∥∥2
, by (64d). (68)

Consequently, ‖xk+1 − xk‖ ≤ αh2k−1. This inequality is valid for k = 0 because
of (64b). Assuming it holds for any k ≥ 0, its validity for k+1 follows, since (68)
implies

‖xk+1 − xk‖ ≤ K‖xk − xk−1‖2 ≤ Kα2h2k−2 ≤ αh2k−1, proving (67b).

Part 2. From (67b) it follows for m ≥ n
‖xm+1 − xn‖ ≤ ‖xm+1 − xm‖+ ‖xm − xm−1‖+ · · ·+ ‖xn+1 − xn‖

≤ αh2n−1(1 + h2n

+ (h2n

)2 + · · · ) < αh2n−1

1− h2n < ε (69)

for sufficiently large n ≥ N(ε), because 0 < h < 1. Therefore {xk} is a Cauchy
sequence and its limit limk→∞ xk = x∞ lies in the closure B(x0, r) since xk ∈
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B(x0, r), for all k ≥ 0. Now, let us show that x∞ is a zero of Txf(x) = 0 in
B(x0, r). From

∥∥Txk f(xk)
∥∥ =

∥∥xk+1 − xk
∥∥ it follows that limk→∞

∥∥Txk f(xk)
∥∥ =

0. Note,

‖Tuf(u)− Tvf(v)‖ = ‖(Tu − Tv)f(v) + Tu(f(u)− f(v))‖
≤ ‖(Tu − Tv)f(v)‖+ ‖Tu(f(u)− f(v))‖
≤ N‖u− v‖2 + ‖Tu‖C‖u− v‖, where C is a constant,

by (64c) and the fact that f(x) is differentiable,

≤ N‖u− v‖2 + C′‖u− v‖,
by (64d), where C′ is a constant.

Therefore, since f is continuous at x∞, Txk f(xk)→ Tx∞ f(x∞) as xk → x∞, and

lim
k→∞

Txk f(xk) = Tx∞ f(x∞) = 0,

i.e., x∞ is a zero of Txf(x) in B(x0, r).
Part 3. Taking the limm→∞ in (69) we get

lim
m→∞

‖xm+1 − xn‖ = ‖x∞ − xn‖ ≤ αh2n−1

1− h2n .

Since 0 < h < 1, the above method is at least quadratically convergent. �
The limit x∞ of the sequence (65) is a solution of (66), but in general

not of (60), unless Tx∞ is of full column rank (in which case (66) and (60) are
equivalent.) Thus, the choice of the {2}-inverses Txk in Theorem 4, which
by Section 1.7 can have any rank between 0 and rankJxk , will determine
the extent to which x∞ resembles a solution of (60). In general, the greater
the rank of the {2}-inverses Txk , the more faithful is (66) to the original
equation. The “worst” choice is the trivial T = O, in which case any x
is a solution of (66) and the iterations (65) stop at x0. The best choice
is therefore a {1, 2}-inverse. In particular, the Moore–Penrose inverse is
useful in solving least-squares problems.

Corollary 3. Under conditions analogous to Theorem 4, the limit
x∞ of the iterates

xk+1 = xk − J†
xk f(xk), k = 0, 1, . . . , (70)

is a stationary point of the sum-of-squares ‖f(x)‖2 =
∑m

i=1 |fi(x)|2, i.e.,

∇‖f‖2(x∞) = 0, (71)

where ‖ · ‖ denotes the Euclidean norm.
Proof. Condition (64c) expresses a continuity of the {2}-inverse used. If this
holds for the Moore–Penrose inverse, then (Jxk )† → (Jx∞)† and (66) becomes

(Jx∞)†f(x∞) = 0,

and, since N(A†) = N(A∗),

J∗
x∞ f(x∞) = 0,

and the proof is completed by noting that

∇‖f(x)‖2 = 2 J∗
xf(x). �
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Remark 1. The standard setup for a Newton method (58) is that the
initial value f(x0) is not too large, and the moduli of derivatives |f ′(x)|
and |f ′′(x)| stay bounded below and above, respectively, throughout the
computations. These standard assumptions are present in Theorem 4.

(a) For any nontrivial Tx0 , the inequality (64b) bounds the value of f
at x0 as follows:

‖ f(x0) ‖< α

‖ Tx0 ‖ ,

showing that f(x0) cannot be too large.
(b) The inequality (64d) guarantees that ‖Ju‖ is bounded below for all

u ∈ B(x0, r).
(c) Condition (63) is Lipschitz continuity of the derivative in B(x0, r).

It stands here for the boundedness above of the second derivative
(even though f is not assumed twice differentiable).

The following theorem establishes the convergence of a modified New-
ton method, using the same {2}-inverse throughout.

Theorem 5. Let the following be given:

x0 ∈ Rn, r > 0,

f : B(x0, r)→ Rm a function,

A ∈ Rm×n, T ∈ Rn×m matrices,
ε > 0, δ > 0 positive scalars,

such that

TAT = T, (72a)

ε‖T‖ = δ < 1, (72b)

‖T‖‖f(x0)‖ < (1− δ)r, (72c)

and, for all u,v ∈ B(x0, r),

‖f(u)− f(v)−A(u− v)‖ ≤ ε‖u− v‖. (72d)

Then the sequence

xk+1 = xk − T f(xk) (73)

converges to a point

x∞ ∈ B(x0, r) (74)

satisfying

T f(x) = 0. (75)

Proof. Using induction on k we prove that the sequence (73) satisfies, for
k = 0, 1, . . . ,

xk ∈ B(x0, r), (76)

‖xk+1 − xk‖ ≤ δk(1− δ)r. (77)
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We denote by (76.k) and (77.k) the validity of (76) and (77), respectively, for the
given value of k. Now (77.0) and (76.1) follow from (72c). Assuming (77.j) for
0 ≤ j ≤ k − 1 we get

‖xk − x0‖ ≤
k−1∑
j=0

‖xj+1 − xj‖ ≤ (1− δ)r
k−1∑
j=0

δj = (1− δk)r,

which proves (76.k). To prove (77.k) we write

xk+1 − xk = −T f(xk)

= −T f(xk−1)− T [f(xk)− f(xk−1)
]

= T
[
A(xk − xk−1)− f(xk) + f(xk−1)

]
, by (72a) and (73).

From (72d) and (72b) it therefore follows that

‖xk+1 − xk‖ ≤ ‖T‖‖f(xk)− f(xk−1)−A(xk − xk−1)‖
≤ δ‖xk − xk−1‖,

proving (77.k). �
Remark 2. f is differentiable at x0 and the linear transformation A is

its derivative at x0, if

lim
x→x0

‖f(x)− f(x0)−A(x− x0)‖
‖x− x0‖ = 0.

Comparing this with (72d) we conclude that the linear transformation A
in Theorem 5 is an “approximate derivative,” and can be chosen as the
derivative of f at x0 if f is continuously differentiable in B(x0, r). See also
Ex. 14 below.

Remark 3. Note that (72d) needs to hold only for u,v ∈ B(x0, r)
such that u− v ∈ R(T ), and the limit x∞ of (73) lies in

B(x0, r) ∩ {x0 + R(T )}.

Exercises

Ex. 13. Let C be a convex subset of Rn, let f : C → Rm be differentiable, and
let M > 0 satisfy

‖Jf (x)− Jf (y)‖ ≤M‖x− y‖, for all x,y ∈ C.

Then

‖f(x)− f(y)− Jf (y)(x− y)‖ ≤ M

2
‖x− y‖2, for all x,y ∈ C.

Proof. For any x,y ∈ C, the function g : [0, 1] → Rm, defined by g(t) :=
f(y + t(x− y)), is differentiable for all 0 ≤ t ≤ 1, and its derivative is

g′(t) = Jf (y + t(x− y))(x− y).
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So, for all 0 ≤ t ≤ 1,

‖g′(t)− g′(0)‖ = ‖Jf (y + t(x− y))(x− y)− Jf (y)(x− y)‖
≤ ‖Jf (y + t(x− y))− Jf (y)‖‖x− y‖
≤Mt‖x− y‖2.

∴ ‖f(x)− f(y)− Jf (y)(x− y)‖ = ‖g(1)− g(0)− g′(0)‖

=
∥∥∥∫ 1

0

(
g′(t)− g′(0)

)
dt
∥∥∥

≤
∫ 1

0
‖g′(t)− g′(0)‖ dt ≤M

∫ 1

0
t dt‖x− y‖2

=
M

2
‖x− y‖2. �

Ex. 14. A Newton method using {2}-inverses of approximate derivatives. Let
the following be given:

x0 ∈ R
n, r > 0,

f : B(x0, r)→ R
m a function,

ε > 0, δ > 0, η > 0 positive scalars,

and, for any x ∈ B(x0, r), let

Ax ∈ R
m×n, Tx ∈ R

n×m,

be matrices satisfying, for all u,v ∈ B(x0, r),

‖f(u)− f(v)−Av(u− v)‖ ≤ ε‖u− v‖, (78a)

TuAuTu = Tu, (78b)

‖(Tu − Tv)f(v)‖ ≤ η‖u− v‖, (78c)

ε‖Tu‖+ η ≤ δ < 1, (78d)

‖Tx0‖‖f(x0)‖ < (1− δ)r. (78e)

Then the sequence

xk+1 = xk − Txk f(xk), k = 0, 1, . . . , (65)

converges to a point

x∞ ∈ B(x0, r) (74)

which is a solution of

Tx∞ f(x) = 0. (79)

Proof. As in the proof of Theorem 5 we use induction on k to prove that the
sequence (65) satisfies

xk ∈ B(x0, r), (76.k)

‖xk+1 − xk‖ ≤ δk(1− δ)r. (77.k)
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Again (77.0) and (76.1) follow from (78e) and, assuming (77.j) for 0 ≤ j ≤ k− 1,
we get (76.k). To prove (77.k) we write

xk+1 − xk = −Txk f(xk)

= xk − xk−1 − Txk f(xk) + Txk−1 f(xk−1), by (65),

= Txk−1Axk−1(xk − xk−1)− Txk f(xk) + Txk−1 f(xk−1),

since TAT = T implies TAx = x for every x ∈ R(T ),

= Txk−1 [Axk−1(xk − xk−1)− f(xk) + f(xk−1)] + (Txk−1 − Txk )f(xk).

Therefore

‖xk+1 − xk‖ ≤ (ε‖Txk−1‖ + η)‖xk − xk−1‖, by (78a) and (78c),

≤ δ‖xk − xk−1‖, by (78d),

which proves (77.k). �

6. Linear Systems Theory

Systems modeled by linear differential equations call for symbolic com-
putation of generalized inverses for matrices whose elements are rational
functions. Such algorithms were given by Karampetakis [469], [470] and
Jones, Karampetakis, and Pugh [451].

As an example, consider the homogeneous system

A(D)x(t) = 0 (80)

where x(t) : [0−,∞)→ Rn, D := d
dt ,

A(D) = AqD
q + · · ·+ A1D + A0, (81)

and Ai ∈ Rm×n, i = 0, 1, . . . , q. Let L denote the Laplace transform and
let x̂(s) = L(x(t)). The system (80) transforms to

A(s)x̂(s) =

= [sq−1Im sq−2Im · · · Im]

Aq O
...

. . .
A1 · · · Aq


 x(0−)

...
x(q−1)(0−)

 := b̂(s),

(82)

that allows casting the solution in a familiar form.
Theorem 6 (Jones, Karampetakis, and Pugh [451], Theorem 4.2).

The system (80) has a solution if and only if

A(s)A(s)†b̂(s) = b̂(s) (83)

in which case the general solution is

x(t) = L−1(x̂(s)) = L−1
{

A(s)†b̂(s) + (In −A(s)†A(s))y(s)
}

(84)

where y(s) ∈ Rn(s) is arbitrary. �
For more details and other applications to linear systems theory, see

the papers cited above, and the references on p. 329.
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7. Application of the Group Inverse in Finite Markov Chains

This section is based on Meyer [544] and Campbell and Meyer [159, Chap-
ter 8]. A system capable of being in one of N states, denoted 1, 2, . . . , N , is
observed at discrete times t = 0, 1, 2, . . . . The state of the system at time
t is denoted by Xt. The system is a finite Markov chain (or just chain) if
there is a matrix P = (pij) ∈ RN×N such that

Prob{Xt+1 = j|Xt = i} = pij , ∀ i, j ∈ 1, N, ∀ t = 0, 1, . . . . (85)

In words: the probability that the system at time t + 1 is in state j, given
it is in state i at time t, is equal to pij (independently of t). The numbers
pij are called the transition probabilities and the matrix P is called the
transition matrix. It follows that the transition probabilities must satisfy

N∑
j=1

pij = 1, i ∈ 1, N, (86a)

in addition to

pij ≥ 0, i, j ∈ 1, N. (86b)

A square matrix P = [pij ] satisfying (86) is called stochastic. Condition
(86a) can be written as

Pe = e (87)

where e is the vector of ones. This shows that 1 is an eigenvalue of P.

Let p
(n)
ij denote the n-step transition probability

p
(n)
ij = Prob{Xt+n = j |Xt = i},

where p
(1)
ij are the previous pij and, by convention, p

(0)
ij := δij . The n-step

transition probabilities satisfy

p
(2)
ij =

N∑
k=1

pik pkj ,

and, inductively,

p
(n)
ij =

N∑
k=1

pik p
(n−1)
kj =

N∑
k=1

p
(n−1)
ik pkj , (88)

giving the Chapman–Kolmogorov equations,

p
(m+n)
ij =

N∑
k=1

p
(m)
ik p

(n)
kj , for all positive integers m, n. (89)

We conclude that p
(n)
ij is the (i, j) th element of Pn.

Some terminology: a state i leads to state j, denoted by i → j, if
p
(n)
ij > 0 for some n ≥ 1, i.e., there is a positive probability that j can be

reached from i in n steps. Two states i, j are said to communicate, a fact
denoted by i � j, if each state leads to the other. Communication is not
reflexive (a state i need not communicate with any state, including itself),
but is symmetric and transitive, see Ex. 17.
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A set S of states is closed if i, j ∈ S =⇒ i � j (i = j is possible).
A Markov chain is irreducible if its only closed set is the set of all states
and is reducible otherwise. A chain is reducible if and only if its transition
matrix is reducible, see Ex. 18.

A single state forming a closed set is called an absorbing state: a state
i is absorbing if and only if pii = 1. A reducible chain is absorbing if each
of its closed sets consists of a single (necessarily absorbing) state.

A chain with a transition matrix P is regular if, for some k, P k is a
positive matrix.

A state i has period τ if p
(n)
ii = 0 except when n = τ, 2τ, 3τ, . . . . The

period of i is denoted τ(i). If τ(i) = 1, the state i is called aperiodic.
Let f

(n)
ij denote the probability that starting from state i, the system

reaches state j for the first time at the n th step, and let

fij =
∞∑

n=1

f
(n)
ij , the probability that j is eventually reached from i,

µij =
∞∑

n=1

nf
(n)
ij , the mean first passage time from i to j,

in particular,

µkk =
∞∑

n=1

n f
(n)
kk , the mean return time of state k, see Ex. 20.

A state i is recurrent if fii = 1 and is transient otherwise. A chain is
recurrent if all its states are recurrent.

If i is recurrent and µii = ∞, i is called a null state, see Exs. 21–22.
All states in a closed set are of the same type, see Ex. 23.

A state is ergodic if it is recurrent and aperiodic, but not a null state.
If a chain is irreducible, all its states have the same period. An irreducible
aperiodic chain is called ergodic.

The n-step transition probabilities and the mean return times are re-
lated as follows:

Theorem 7 (Chung [197], Theorem 9, p. 275). For any states i, j of
an irreducible recurrent chain

lim
n→∞

1
n + 1

n∑
k=0

p
(k)
ij =

1
µjj

. (90)

Probabilistic reason: Both sides of (90) give the expected number of
returns to state j in unit time. �

If a chain is irreducible, the matrix PT is also irreducible, and has spec-
tral radius 1 by Ex. 15 and Ex. 0.73. The Perron–Frobenius Theorem 0.5
then guarantees a positive eigenvector x,

PT x = x, (91)

corresponding to the eigenvalue 1, with algebraic multiplicity 1. The vector
x can be normalized to give a probability vector π̂ = [π̂i],

π̂ :=
x

eT x
, (92)
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satisfying (91), written in detail as,

π̂k =
N∑

i=1

pik π̂i, k ∈ 1, N. (93)

π̂ is called a stationary distribution or steady state. In an irreducible re-
current chain, the stationary distribution is, simply,

π̂k =
1

µkk
, k ∈ 1, N, (94)

see Ex. 24.
Let π

(t)
i denote the probability that the system is in state i at time t

and collect these probabilities, called state probabilities or distribution, in
the vector π(t) = [π(t)

i ]. These satisfy

π
(t)
k =

N∑
i=1

pik π
(t−1)
i , k ∈ 1, N, t = 0, 1, . . . , (95)

or

π(t) = PT π(t−1), t = 0, 1, . . . , (96)

and, inductively,

π(t) = (PT )tπ(0), t = 0, 1, . . . , (97)

where π(0) = [π(0)
i ] is the initial distribution, assumed known. In particular,

if the initial state X0 is deterministic, say X0 = i, then π(0) = ei, the i th

unit vector.
The transition matrix P and the initial distribution π(0) suffice for

studying a Markov chain.
If the chain starts with a stationary distribution, i.e., if π(0) = π̂, then

π(t) = π̂ for all t. This justifies the name stationary distribution. On the
other hand, if the probabilities π

(t)
k → π

(∞)
k , as t → ∞, then the limiting

probabilities π(∞) satisfy (93) and are the stationary distribution π̂.
The existence of a stationary distribution π̂ does not mean that the

system converges to that distribution, see Ex. 25. However, if a chain is
ergodic the system converges to its stationary distribution from any initial
distribution.

Theorem 8 (Feller [271], Theorem 2, p. 325). Let P ∈ RN×N be the
transition matrix of an ergodic chain. Then:

(a) For every pair j, k ∈ 1, N , the limit

lim
n→∞ p

(n)
jk = πk > 0 (98)

exists and is independent of j.
(b) πk is the reciprocal of the mean return time µkk of the state k,

πk =
1

µkk
. (99)
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(c) The numbers {πk : k ∈ 1, N} are probabilities,

πk > 0,
∑

πk = 1. (100)

(d) The probabilities πk are a stationary distribution of the chain

πk =
N∑

i=1

pik πi, k ∈ 1, N. (93)

The distribution {πk} is uniquely determined by (93) and (100).
In an ergodic chain, the stationary probabilities are given by

π̂j = lim
n→∞

1
n + 1

n∑
k=0

p
(k)
ij , j ∈ 1, N, (101)

which follows by comparing (90) and (99).
For an ergodic chain, Theorem 8(a) states that all rows of Pn converge,

as n→∞, to the stationary distribution π̂,

lim
n→∞ Pn = Π̂T =


π̂T

π̂T

· · ·
π̂T

 . (102)

This implies that the Cesaro means of Pn also converge to the same limit

lim
n→∞

1
n + 1

n∑
k=0

P k = Π̂T , (103)

which is statement (101). The converse, (103) =⇒ (102) is in general
false, see Ex. 26.

The stationary probabilities and other objects of interest can be com-
puted by applying the group inverse. First we require:

Theorem 9 (Meyer [544], Theorem 2.1). If P is a stochastic matrix,
then Q = I − P has group inverse.
Proof. If P is irreducible it has 1 as eigenvalue with algebraic multiplicity
1, by the Perron–Frobenius Theorem. Therefore Q has the eigenvalue 0 with
algebraic multiplicity 1, has index 1 by Theorem 4.1(c), and has a group inverse
by Theorem 4.2.

If P is reducible, it can written in the form (108). Each of the blocks {Rii :
i ∈ 1, q} has spectral radius ρ(Rii) < 1 by Ex. 16. Therefore, each I − Rii is
nonsingular and Q has a group inverse by a repeated use of (5.43). �

Theorem 10 (Meyer [544], Theorem 2.2). Let P be the transition
matrix of a finite Markov chain and let Q = I − P . Then:

I −QQ# =


lim

n→∞
1

n+1

n∑
k=0

P k,

lim
n→∞ (αI + (1− α)P )n

, for any 0 < α < 1,

lim
n→∞ Pn, if the chain is regular or absorbing.

(104)

Proof. By Ex. 27(a), there exists a nonsingular matrix S such that

P = S−1
[
Ik O
O K

]
S, with 1 �∈ λ(K). (105)
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∴ Q = S−1
[
O O
O I −K

]
S, Q# = S−1

[
O O
O (I −K)−1

]
S.

∴ I −QQ# = S−1
[
Ik O
O O

]
S. (106)

Since (I −K) is nonsingular,

I +K +K2 + · · ·+Kn

n+ 1
=

(I −Kn+1)(I −K)−1

n+ 1
. (107)

From (105)–(107) it follows that

I + P + P 2 + · · ·+ Pn+1

n+ 1
=

(I − Pn+1)Q#

n+ 1
+ I −QQ#,

and, since ‖(I − Pn+1)Q#‖∞ is bounded,

lim
n→∞

I + P + P 2 + · · ·+ Pn+1

n+ 1
= I −QQ#,

proving the first line in (104). The second line is proved similarly, noting that
(αI+(1−α)P ) is a stochastic matrix and its spectral radius ρ(αI+(1−α)P ) < 1,
so (αI + (1− α)P )n → O as n→∞.

If the chain is regular then, by Ex. 27(b,c), k = 1 and limn→∞ Kn = O.

∴ lim
n→∞

Pn = S−1
[

1 O
O O

]
S = I −QQ#.

If the chain is absorbing, with exactly r absorbing states, then by rearranging
states as in Ex. 27(d),

Pn =
[

Ir O

(
∑n−1

k=0 K
k)R Kn

]
.

∴ lim
n→∞

Pn =
[

Ir O
(I −K)−1R O

]
,

and, since Q is of the form

Q =
[
O O
−R (I −K)

]
,

we have, by Ex. 5.11,

Q# =
[

O O
−(I −K)−2R (I −K)−1

]
.

∴ I −QQ# =
[

Ir O
(I −K)−1R O

]
= lim

n→∞
Pn,

completing the proof. �
From (102) and Theorem 10 it follows, for an ergodic chain, that

I −QQ# = Π̂T =


π̂T

π̂T

· · ·
π̂T

 ,

giving the stationary distribution π̂ in terms of the group inverse of (I−P ).
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Exercises

Ex. 15. If P is a stochastic matrix, its spectral radius ρ(P ) = 1.
Proof. From (0.59) and the fact that the matrix norm (0.56.1) is multiplicative
it follows that ρ(P ) ≤ 1. On the other hand, ρ(P ) ≥ 1 by (87). �
Ex. 16. (Campbell and Meyer [159, Lemma 8.2.1]). Let P = A + B be a
stochastic matrix, A ≥ O and irreducible, B ≥ O and nonzero. Then ρ(A) < 1.
Proof. As in Ex. 15, ρ(A) ≤ 1. If ρ(A) ≥ 1, then ρ(A) = 1, and the Perron–
Frobenius theorem guarantees a positive eigenvector x,

AT x = x. (a)

From (87)

Ae +Be = e. (b)

Multiplying (a) by e and (b) by x we get

eTAT x = eT x = xTAe + xTBe.

∴ xTBe = 0,

a contradiction since O �= B ≥ O, x > 0, e > 0. �
Ex. 17. Let i, j, k denote states of a finite Markov chain. Then:

(a) i � j =⇒ j � i.
(b) i � j and j � k =⇒ i � k.

(c) Consider P =

1 0 0
1
2

1
2 0

1
3

2
3 0

. Here state 1 is absorbing, states 2 and 3

are transient, and state 3 does not communicate with any state.

Proof. (b) follows from p
(n+m)
ik ≥ p(n)

ij p
(m)
jk . �

Ex. 18. A chain is reducible if and only if the states can be rearranged so that
the transition matrix is

P =
[
P11 P12

O P22

]
.

Here P22 gives the transition probabilities for states in a closed set. Compare
with (0.135).

Ex. 19. If a chain has m minimal closed sets, its transition matrix P =
[
pij

]
can be written, by rearranging states, as

P =


P00 P01 P02 · · · P0m

O P11 O · · · O
O O P22 · · · O
...

. . .
...

O O O · · · Pmm

 , where P00 =


R11 R12 · · · R1q

O R22 · · · R2q

O O
. . .

...
O O · · · Rqq

 ,
(108)

here {Pii : i ∈ 1,m} are irreducible transition matrices of appropriate sizes, for
each of the minimal closed sets, and the matrices {Rii : i ∈ 1, q} are irreducible.

Ex. 20. For any i, j and 1 ≤ n <∞,

p
(n)
ij =

n∑
t=1

f
(t)
ij p

(n−t)
jj .
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Ex. 21. (Feller [271, Corollary, p. 324]). A finite Markov chain can have no
null states and it is impossible for all states to be transient.

Ex. 22. (Feller [271, p. 321]). Let i be a state in a finite Markov chain and
consider the series

∑∞
n=1 p

(n)
ii . Then:

(a) The state i is transient if and only if the series converges.
(b) If i is a null state the series diverges and limn→∞ p

(n)
ii = 0.

(c) If i is ergodic, then limn→∞ p
(n)
ii = 1/µii.

(d) If i is recurrent nonnull with period τ , then limn→∞ p
(nτ)
ii = τ/µii.

Ex. 23. (Feller [271, Theorem, p. 322]). If two states communicate, they are of
the same type (transient, recurrent, periodic with same period).

Ex. 24. (Chung [197, Theorem 12, p. 278]). Let P be the transition matrix of
an irreducible chain and let π = [πk] be given by (94). Then:

(a) π is a solution of (93);
(b)

∑
k πk = 1;

(c) πk > 0 for all k; and
(d) any solution of (93) is a multiple of π.

Proof. For every t ≥ 0,

p
(t+1)
ik =

∑
j

p
(t)
ij pjk.

Averaging over t we get

1
n+ 1

n∑
t=0

p
(t+1)
ik =

∑
j

( 1
n+ 1

n∑
t=0

p
(t)
ij

)
pjk,

whose limit, as n→∞, is, by (90) and (94),

πk =
N∑

j=1

πj pjk, (93)

proving (a). �

Ex. 25. Consider the stochastic matrix

P =
[
0 1
1 0

]
and its stationary distribution π̂ = 1

2

[
1
1

]
.

Then (PT )tπ(0) does not converge, as t→∞, for any π(0) �= π̂. In particular,

(PT )te1 =
{

e1, t even,
e2, t odd, where e1 =

[
1
0

]
, e2 =

[
0
1

]
.

Ex. 26. For P of Ex. 25, (103) holds, and

lim
n→∞

1
n+ 1

n∑
k=0

P k =

[
1
2

1
2

1
2

1
2

]
.

Ex. 27. Let P be a stochastic matrix. Then:

(a) P is similar to a matrix of the form[
Ik O
O K

]
, where 1 �∈ λ(K).



310 8. MISCELLANEOUS APPLICATIONS

(b) If the Markov chain (of which P is the transition matrix) is ergodic, then
k = 1, i.e., P is similar to[

1 O
O K

]
, where 1 �∈ λ(K).

(c) If the chain is regular, limn→∞ Kn = O.
(d) If the chain is absorbing, with r absorbing states, then P can be written,

by rearranging states, as follows:

P =
[
Ir O
R K

]
, where ρ(K) < 1.

8. An Application of the Drazin Inverse to Difference Equations

In this section, based on Campbell and Meyer [159, §9.3], we study an
application of the Drazin inverse to singular linear difference equations.
Applications to singular linear differential equations use similar ideas, but
require more details than is perhaps justified here. For these, the reader is
referred to Boyarintsev [130] and Campbell and Meyer [159, Chapter 9],
and their references, as well as references at the end of this chapter.

The following simple example illustrates how the Drazin inverse arises
in such applications.

Example 1. Consider the difference equation

Axt+1 = xt, t = 0, 1, . . . , (109)

where A is singular, of index k. Since xt+1 = Axt+2 = · · · = Akxt+k+1 it
follows that a solution xt+1 of (109), for given xt, must belong to R(Ak)
and, therefore, by Ex. 4.28,

xt+1 = AD xt, t = 0, 1, . . . . (110)

A sequence {xt} described by (109) is therefore restricted to R(Ak), where
AD is an inverse of A, see (4.41). The representations (109) and (110) are
equivalent. �

The difference equations studied here are of the form

Axt+1 = Bxt + ft, (111)

s.t. x0 = c (the initial condition),

where A, B ∈ Cn×n, A is singular, c ∈ Cn, and {ft : t = 0, 1, . . . } ⊂ Cn.
An equation is homogeneous if ft = 0 for all t.

Definition 1.
(a) The initial vector c is called consistent if, given xt, (111) has a

solution.
(b) The difference equation (111) is called tractable if there is a unique

solution for each consistent c.
In the homogeneous case, tractability has a simple characterization:
Theorem 11 (Campbell and Meyer [159], Theorem 9.3.1). The ho-

mogeneous difference equation

Axt+1 = Bxt, t = 0, 1, . . . , (112)

is tractable if and only if there is a scalar λ ∈ C such that (λA − B) is
nonsingular.
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Proof. If : Let λ, Âλ, and B̂λ be as in Ex. 28. The tractability of (112) is
equivalent to that of

Âλxt+1 = B̂λxt, t = 0, 1, . . . . (113)

Using Ex. 4.42, we write

Âλ = X

[
J1 O
O J0

]
X−1,

where J1 is nonsingular and J0 is nilpotent. From (121) it follows that

B̂λ = X

[
λJ1 − I O
O λJ0 − I

]
X−1,

and partition x accordingly,

x =
[
x(1)

x(0)

]
.

The equation J1 x(1)
t+1 = (λJ1 − I)x(1)

t is tractable, since J1 is nonsingular. It
therefore remains to show that

J0 x(0)
t+1 = (λJ0 − I)x(0)

t , t = 0, 1, . . . , (114)

is tractable. Let J0 have index k and multiply (114) by Jk−1
0 to get (λJ0 −

I)Jk−1
0 x(0)

t = 0. Therefore Jk−1
0 x(0)

t = 0 for all t. Similarly, multiplying (114)
by Jk−2

0 , we show Jk−2
0 x(0)

t = 0 for all t. Repeating this argument we show that
x(0)

t = 0 for all t, and (114) is trivially tractable.
Only if : Suppose (112) is tractable, but (λA − B) is singular for all λ ∈

C, i.e., for each λ there is a nonzero vλ ∈ Cn such that (λA − B)vλ = 0.
Let {vλ1 , vλ2 , . . . , vλs} be a linearly dependent set of such vectors and let
{α1, . . . , αs} be scalars, not all zero, such that

∑s
i=1 αi vλi = 0. Define xλi

t =
λt

i v
λi . Then the sequence {xt :=

∑s
i=1 αi xλi

t : t = 0, 1, . . . } is not identically
zero, and is a solution of (112), satisfying the initial condition x0 =

∑s
i=1 αi vλi =

0. However, the sequence {xt = 0 : t = 0, 1, . . . } is another such solution, a con-
tradiction to the assumed tractability. �

In what follows, let λ ∈ C be such that (λA − B) is nonsingular, and
denote Âλ = (λA−B)−1A by Â and B̂λ = (λA−B)−1B by B̂. Dropping
the subscript λ is justified since the results below do not depend on λ, as
shown by Ex. 29.

Theorem 12 (Campbell and Meyer [159], Theorem 9.3.2). If the ho-
mogeneous equation

Axt+1 = Bxt, t = 0, 1, . . . , (112)

is tractable, then its general solution is given by

xt =

{
ÂÂDy, if t = 0,

(ÂDB̂)ty, if t = 1, 2, . . . ,
(115)

where y ∈ Cn is arbitrary. Moreover, the initial vector c is consistent for
(112) if and only if c ∈ R(Âk), where k = index Â. In this case, the solution
of (112), subject to x0 = c, is

xt = (ÂDB̂)tc, t = 0, 1, . . . . (116)
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Proof. As in the proof of Theorem 11, we transform (112) to an equivalent
system [

J1 O
O J0

] [
x(1)

t+1

x(0)
t+1

]
=
[
λJ1 − I O
O λJ0 − I

] [
x(1)

t

x(0)
t

]
, (117)

where J1 is nonsingular and J0 is nilpotent, of index k. It follows that

x(0)
t = (λJ0 − I)−kJk

0 x(0)
t+k = 0, x(1)

t = J−t
1 (λJ1 − I)tx(0)

0 , (118)

which proves (115), using Theorem 4.8. The remaining statements also follow
from (118). �

We turn to the nonhomogeneous case.
Theorem 13 (Campbell and Meyer [159], Theorem 9.3.2). If the equa-

tion

Axt+1 = Bxt + ft, (111)
s.t. x0 = c,

is tractable, its general solution is, for t ≥ 1,

xt = (ÂDB̂)tÂÂDy + ÂD
t−1∑
i=0

(ÂDB̂)t−i−1f̂i

− (I − ÂÂD)
k−1∑
i=0

(ÂB̂D)iB̂D f̂t+i, (119)

where Â = (λA−B)−1A, B̂ = (λA−B)−1B, f̂i = (λA−B)−1fi, k = Ind(Â)
and y ∈ Cn is arbitrary. The solution (119) is independent of λ.

The initial vector c is consistent if and only if

c + (I − ÂÂD)
k−1∑
i=0

(ÂB̂D)iB̂D f̂t+i ∈ R(Âk). (120)

Proof. A comparison with (115) shows that the first term of (119) is the general
solution of the homogeneous equation (112). The proof that the remaining two
terms are a particular solution of (111), and the remaining statements, are left
as exercise. �
Exercises
Ex. 28. (Campbell and Meyer [159, Lemma 9.2.1]). Let A,B ∈ Cn×n, let λ ∈ C

be such that (λA − B) is nonsingular, and define Âλ = (λA − B)−1A, B̂λ =
(λA−B)−1B. Then ÂλB̂λ = B̂λÂλ.

Proof. Âλ and B̂λ commute since

λÂλ − B̂λ = I. (121)

�
Ex. 29. (Campbell and Meyer [159, Theorem 9.2.2]). Let A,B ∈ Cn×n, let
λ, Âλ, B̂λ be as in Ex. 28, and let f̂λ = (λA − B)−1f . For all α, β, for which
(αA−B) and (βA−B) are nonsingular, the following statements hold:

(a) ÂαÂ
D
α = ÂβÂ

D
β .

(b) ÂD
α B̂α = ÂD

β B̂β and ÂαB̂
D
α = ÂβB̂

D
β .

(c) Ind(Âα) = Ind(Âβ) and R(Âα) = R(Âβ).
(d) ÂD

α f̂α = ÂD
β f̂β .
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(e) B̂D
α f̂α = B̂D

β f̂β .

Proof. (a)

ÂD
α Âα = [(αA−B)−1A]DÂα = [(αA−B)−1(βA−B)(βA−B)−1A]DÂα

= [(αÂβ − B̂β)Âβ ]DÂα

= ÂD
β (αÂβ − B̂β)Âα, by Ex. 4.33,

= ÂD
β [(βA−B)−1(αA−B)]Âα

= ÂD
β (βA−B)−1(αA−B)(αA−B)−1A

= ÂD
β Âβ .

The other parts are similarly proved. �

Ex. 30. Complete the proof of Theorem 13.

Ex. 31. In Theorems 12–13 consider the special case where B is nonsingular.
Then λ can be chosen as zero and Â = B−1A, B̂ = I. Note that Theorem 12
reduces to Example 1.

9. Matrix Volume and the Change-of-Variables Formula in
Integration

This section is based on [73]. The change-of-variables formula in the title
is ∫

V
f(v) dv =

∫
U

(f ◦ φ)(u)|det Jφ(u)| du, (122)

where U ,V are sets in Rn, φ : U → V is a sufficiently well-behaved function,
and f is integrable on V. Here dx denotes the volume element |dx1 ∧ dx2 ∧
· · · ∧ dxn|, and Jφ is the Jacobian matrix (or Jacobian)

Jφ :=
(

∂φi

∂uj

)
, also denoted

∂(v1, v2, . . . , vn)
∂(u1, u2, . . . , un)

, (123)

representing the derivative of φ. An advantage of (122) is that integration
on V is translated to (perhaps simpler) integration on U .

This formula was given in 1841 by Jacobi [441], following Euler (the
case n = 2) and Lagrange (n = 3). It gave prominence to functional
(or symbolic) determinants, i.e. (nonnumerical) determinants of matrices
including functions or operators as elements.

If U and V are in spaces of different dimensions, say U ⊂ Rn and
V ⊂ Rm with n > m, then the Jacobian Jφ is a rectangular matrix and
(122) cannot be used in its present form. However, if Jφ is of full column
rank throughout U , we can replace |det Jφ| in (122) by the volume vol Jφ

of the Jacobian to get∫
V

f(v) dv =
∫

U
(f ◦ φ)(u) vol Jφ(u) du. (124)

Recall that the volume of an m× n matrix of rank r is

vol A :=
√ ∑

(I,J)∈N
det2 AIJ , (0.89)
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where AIJ is the submatrix of A with rows I and columns J , and N is the
index set of r× r nonsingular submatrices of A. If A is of full column rank,
its volume is, by the Binet–Cauchy theorem (see Ex. 0.65),

vol A =
√

det AT A. (125)

If m = n, then vol Jφ = |det Jφ|, and (124) reduces to the classical result
(122).

The formula (124) is well known in differential geometry, see, e.g., [87,
Prop. 6.6.1] and [270, § 3.2.3]. Although there are elementary accounts of
this formula (see, e.g., [208, Vol. II, Ch. IV, § 4], [275, § 8.1], and [730,
§ 3.4]), it is seldom used in applications.

We illustrate (124) for an elementary calculus example. Let S be a
subset of a surface in R3 represented by

z = g(x, y), (126)

and let f(x, y, z) be a function integrable on S. Let A be the projection of
S on the xy plane. Then S is the image of A under a mapping φ,

S = φ(A), or

x
y
z

 =

 x
y

g(x, y)

 = φ

(
x
y

)
,

(
x
y

)
∈ A. (127)

The Jacobi matrix of φ is the 3× 2 matrix

Jφ(x, y) =
∂(x, y, z)
∂(x, y)

=

 1 0
0 1
gx gy

 , (128)

where gx = ∂g/∂x, gy = ∂g/∂y. The volume of (128) is, by (125),

vol Jφ(x, y) =
√

1 + g2
x + g2

y. (129)

Substituting (129) in (124) we get the well-known formula∫
S

f(x, y, z) ds =
∫

A
f(x, y, g(x, y))

√
1 + g2

x + g2
y dx dy, (130)

giving an integral over S as an integral over its projection in the xy plane.
The simplicity of this approach is not lost in higher dimensions or

with different coordinate systems, as demonstrated below by elementary
examples. These examples show that the full-rank assumption for Jφ is
quite natural and presents no real restriction in applications. We see that
(124) offers a unified method for a variety of curve and surface integrals,
and coordinate systems, without having to construct (and understand) the
differential geometry in each application.

A blanket assumption: All functions are continuously differentiable
as needed, all surfaces are smooth, and all curves are rectifiable.

Example 2. Let a surface S in Rn be given by

xn := g(x1, x2, . . . , xn−1), (131)

let V be a subset on S, and let U be the projection of V on Rn−1, the space
of variables (x1, . . . , xn−1). The surface S is the graph of the mapping



9. CHANGE-OF-VARIABLES IN INTEGRATION 315

φ : U → V, given by its components φ := (φ1, φ2, . . . , φn),

φi(x1, . . . , xn−1) := xi , i = 1, . . . , n− 1,

φn(x1, . . . , xn−1) := g(x1, . . . , xn−1).

The Jacobi matrix of φ is

Jφ =



1 0 · · · 0 0
0 1 · · · 0 0

0 0
. . . 0 0

0 0 · · · 1 0
0 0 · · · 0 1
∂g

∂x1

∂g

∂x2
· · · ∂g

∂xn−2

∂g

∂xn−1


and its volume is

vol Jφ =

√√√√1 +
n−1∑
i=1

(
∂g

∂xi

)2

. (132)

For any function f integrable on V we therefore have∫
V

f(x1, . . . , xn−1, xn) dV (133)

=
∫

U
f(x1, ... , xn−1, g(x1, ... , xn−1))

√√√√1 +
n−1∑
i=1

(
∂g

∂xi

)2

dx1 · · · dxn−1.

In particular, f ≡ 1 gives the area of V,

∫
V

1 dV =
∫

U

√√√√1 +
n−1∑
i=1

(
∂g

∂xi

)2

dx1 · · · dxn−1. (134)

Example 3 (Radon Transform). Let Hξ,p be a hyperplane in Rn rep-
resented by

Hξ,p :=
{
x ∈ Rn :

n∑
i=1

ξi xi = p
}

= {x : 〈ξ,x〉 = p}, (135)

where ξn �= 0 in the normal vector ξ = (ξ1, . . . , ξn) of Hξ,p (we call such
hyperplanes nonvertical). Then Hξ,p is given by

xn :=
p

ξn
−

n−1∑
i=1

ξi

ξn
xi (136)

which is of the form (131). The volume (132) is here

vol Jφ =

√√√√1 +
n−1∑
i=1

(
ξi

ξn

)2

=
‖ξ‖
|ξn| . (137)
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The Radon transform (Rf)(ξ, p) of a function f : Rn → R is its integral
over the hyperplane Hξ,p, see [221],

(Rf)(ξ, p) :=
∫

{x: 〈ξ,x〉=p}
f(x) dx. (138)

Using (136)–(137), the Radon transform can be computed as an integral in
Rn−1,

(Rf)(ξ, p) =
‖ξ‖
|ξn|

∫
Rn−1

f̂(x1, . . . , xn−1, p) dx1 · · · dxn−1 (139a)

where

f̂(x1, . . . ,xn−1, p) = f
(
x1, . . . , xn−1,

p

ξn
−

n−1∑
i=1

ξi

ξn
xi

)
. (139b)

In tomography applications the Radon transforms are computed by the
scanning equipment, and the issue is the inverse problem, of reconstructing
f from its Radon transforms (Rf)(ξ, p) for all ξ, p. The inverse Radon
transform is also an integral, see, e.g., [221], [603], and can be expressed
analogously to (139), using the method of the next example.

Example 4. Consider an integral over Rn,∫
Rn

f(x) dx =
∫

Rn

f(x1, x2, . . . , xn) dx1 dx2 · · · dxn. (140)

Since Rn is a union of (parallel) hyperplanes,

Rn =
∞⋃

p=−∞
{x : 〈ξ,x〉 = p}, where ξ �= 0, (141)

we can compute (140) iteratively: an integral over Rn−1 (Radon transform),
followed by an integral on R,∫

Rn

f(x) dx =
∫ ∞

−∞

dp

‖ξ‖ (Rf)(ξ, p), (142)

where dp/‖ξ‖ is the differential of the distance along ξ (i.e., dp times the
distance between the parallel hyperplanes Hξ,p and Hξ,p+1). Combining
(139) and (142) we get the integral of f on Rn,∫

Rn

f(x) dx

=
1
|ξn|

∫ ∞

−∞

{∫
Rn−1

f̂(x1, . . . , xn−1, p) dx1 · · · dxn−1

}
dp. (143)

It is possible to derive (143) directly from the classical change-of-variables
formula (122), by changing variables

from {x1, · · · , xn−1, xn} to {x1, · · · , xn−1, p :=
n∑

i=1
ξixi},

and using

det
[∂(x1, · · · , xn−1, xn)

∂(x1, · · · , xn−1, p)

]
=

1
ξn

.
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Example 5 (Fourier Transform). The Fourier transform (Ff)(ξ) of f
is the integral

(Ff)(ξ) :=
1

(2 π)n/2

∫
Rn

e−i 〈ξ,x〉 f(x) dx (144)

=
1

(2 π)n/2

∫
Rn

f
(
x1, . . . , xn

)
exp

{
−i

n∑
k=1

ξk xk

}
dx1dx2 · · · dxn.

For ξn �= 0 we can compute (144) analogously to (143) as

(Ff)(ξ) (145)

=
1

(2π)n/2|ξn|
∫ ∞

−∞
e−ip

{∫
Rn−1

f̂(x1, . . . , xn−1, p)
n−1∏
k=1

dxk

}
dp.

The Fourier transform of a function of n variables is thus computed as
an integral over Rn−1 followed by an integral on R. The inverse Fourier
transform of a function g(ξ) is of the same form as (144),

(F−1g)(x) :=
1

(2π)n/2

∫
Rn

ei 〈x, ξ〉 g(ξ) dξ, (146)

and can be computed as in (145).
Exercises

Ex. 32. Let φ : R2 → R3 be given byxy
z

 = φ
([u
v

])
, with Jacobian Jφ =

∂(x, y, z)
∂(u, v)

=

xu xv

yu yv

zu zv

 ,
assumed of full column rank. Then

vol Jφ =
√
EG− F 2, (147)

where

E = (xu)2 + (yu)2 + (zu)2 ,

F = xuxv + yuyv + zuzv,

G = (xv)2 + (yv)2 + (zv)2 .

Explanation of the functions E,F, and G: let r =

xy
z

.

Then:

E = ‖ru‖2, F = 〈ru, rv〉, G = ‖rv‖2,
and (147) becomes

vol Jφ =

√
EG

(
1− F 2

EG

)
=
√
‖ru‖2 ‖rv‖2(1− cos2 ∠{ru, rv})

= ‖ru‖ ‖rv‖ | sin ∠{ru, rv}| = area of the parallelogram ♦{ru, rv}.
Since φ maps an area element �{du, dv} into ♦{ru du, rv dv}, we see that

E and G measure the stretching of the sides, while F gives the distortion of the
angle, under the mapping φ. In particular, angles are preserved if F = 0, in which
case shapes are preserved if E = G. See also Ex. 6.21.
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Ex. 33. Let C be an arc on a curve in Rn, represented in parametric form as

C := φ([0, 1]) = {(x1, x2, . . . , xn) : xi := φi(t), 0 ≤ t ≤ 1}. (148)

The Jacobi matrix Jφ(t) = ∂(x1, x2, · · · , xn)/∂t is the column matrix [φ′
i(t)] and

its volume is

vol Jφ =

√√√√ n∑
i=1

(φ′
i(t))

2.

The line integral (assuming it exists) of a function f along C, ∫C f , is given in
terms of the volume of Jφ as follows:∫

C
f =

∫ 1

0
f(φ1(t), . . . , φn(t))

( n∑
i=1

(φ′
i(t))

2
)1/2

dt. (149)

In particular, f ≡ 1 gives

arc length C =
∫ 1

0

( n∑
i=1

(φ′
i(t))

2
)1/2

dt. (150)

If one of the variables, say a ≤ x1 ≤ b, is used as parameter, (150) gives the
familiar result

arc length C =
∫ b

a

(
1 +

n∑
i=2

( dxi

dx1

)2)1/2
dx1.

Ex. 34. Let S be a surface in R3 represented by

z = z(r, θ) (151)

where {r, θ, z} are cylindrical coordinates

x = r cos θ, (152a)

y = r sin θ, (152b)

z = z. (152c)

The Jacobi matrix of the mapping (152a), (152b), and (151) is

Jφ =
∂(x, y, z)
∂(r, θ)

=

cos θ −r sin θ
sin θ r cos θ

∂z
∂r

∂z
∂θ

 (153)

and its volume is

vol Jφ =

√
r2 + r2

(∂z
∂r

)2
+
(
∂z

∂θ

)2

= r

√
1 +

(∂z
∂r

)2
+

1
r2

(∂z
∂θ

)2
. (154)

An integral over a domain V ⊂ S is therefore∫
V
f(x, y, z) dV (155)

=
∫

U
f(r cos θ, r sin θ, z(r, θ)) r

√
1 +

(
∂z

∂r

)2

+
1
r2

(
∂z

∂θ

)2

dr dθ.
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Ex. 35. Let S be a surface in R3, symmetric about the z-axis. This axial
symmetry is expressed in cylindrical coordinates by

z = z(r), or
∂z

∂θ
= 0, in (153)–(155).

The volume (154) thus becomes

vol Jφ = r
√

1 + z′(r)2 (156)

with the axial symmetry “built in.” An integral over a domain V in a z-symmetric
surface S is therefore∫

V
f(x, y, z) dV =

∫
U
f(r cos θ, r sin θ, z(r)) r

√
1 + z′(r)2 dr dθ.

Ex. 36. Again let S be a z-symmetric surface in R3. We use spherical coordinates

x = ρ sinφ cos θ, (157a)

y = ρ sinφ sin θ, (157b)

z = ρ cosφ. (157c)

The axial symmetry is expressed by

ρ := ρ(φ) (158)

showing that S is given in terms of the two variables φ and θ. The volume of the
Jacobi matrix is easily computed

vol
∂(x, y, z)
∂(φ, θ)

= ρ

√
ρ2 + (ρ′(φ))2 sinφ

and the change of variables formula gives∫
V
f(x, y, z) dV =

∫
U
f̂(θ, φ)ρ(φ)

√
ρ(φ)2 + (ρ′(φ))2 sinφdφ dθ, (159a)

where f̂(θ, φ) is obtained by substitution of (157) and (158) in f(x, y, z),

f̂(θ, φ) = f(ρ(φ) sinφ cos θ, ρ(φ) sinφ sin θ, ρ(φ) cosφ)ρ(φ). (159b)

Ex. 37. The generalized Pythagorean theorem, Lin and Lin [517], [95]. Consider
an n-dimensional simplex

∆n :=
{

(x1, x2, . . . , xn) :
n∑

i=1

aixi ≤ a0, xi ≥ 0 , i ∈ 1, n
}
, (160)

with all aj > 0, j ∈ 0, n. We denote the n+ 1 faces of ∆n by

F0 :=
{

(x1, x2, . . . , xn) ∈∆n :
n∑

i=1

aixi = a0

}
, (161a)

Fj :=
{
(x1, x2, . . . , xn) ∈∆n : xj = 0

}
, j ∈ 1, n. (161b)

and denote their areas by A0, Aj , respectively. The generalized Pythagorean
theorem (see [517]) states that

A2
0 =

n∑
j=1

A2
j . (162)
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We prove it here using the change of variables formula (124). For any j ∈
1, n we can represent the (largest) face F0 as F0 = φ{j}(Fj) where φ{j} =
(φ{j}

1 , . . . , φ
{j}
n ) is

φ
{j}
i (x1, x2, . . . , xn) = xi, i �= j,

φ
{j}
j (x1, x2, . . . , xn) =

a0

aj
−
∑
i�=j

ai

aj
xi.

The Jacobi matrix of φ{j} is an n × (n − 1) matrix with the i th unit vector in
row i �= j and(

−a1

aj
, −a2

aj
, . . . , −aj−1

aj
, −aj+1

aj
, . . . , −an−1

aj
, −an

aj

)
in row j. The volume of the Jacobi matrix of φ{j} is computed as

vol Jφ{j} =

√√√√1 +
∑
i�=j

(
ai

aj

)2

=

√√√√√ n∑
i=1

a2
i

a2
j

=
‖a‖
|aj |

where a is the vector (a1, . . . , an). Therefore, the area of F0 is

A0 =
∫

Fj

(‖a‖
|aj |

) ∏
i�=j

dxi =
(‖a‖
|aj |

)
Aj , j ∈ 1, n. (163)

∴

n∑
j=1

A2
j

A2
0

=

n∑
j=1
|aj |2

‖a‖2 ,

and (162) reduces to the ordinary Pythagorean theorem

‖a‖2 =
n∑

j=1

|aj |2.

Ex. 38. Let A0 be the area of largest face F0 of the regular simplex

F0 =
{
x :

n∑
i=1

xi = 1, xi ≥ 0, i ∈ 1, n
}
.

Then

A0 =
√
n

(n− 1)!
.

The other n faces have areas

Aj =
1

(n− 1)!
, j ∈ 1, n.

Ex. 39. Gamma and Beta functions. We collect here results needed below. The
Gamma function Γ(p) is

Γ(p) :=
∫ ∞

0
xp−1e−x dx. (164)

Its properties include

Γ(1) = 1, (165a)

Γ(p+ 1) = pΓ(p), (165b)

Γ
( 1

2

)
=
√
π. (165c)
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The Beta function is

B(p, q) :=
∫ 1

0
(1− x)p−1xq−1 dx. (166)

Its properties include

B(p, q) =
Γ(p) Γ(q)
Γ(p+ q)

, (167a)

B(p, q + 1)
B(p, q)

=
q

p+ q
, (167b)

B(p+ 1, q)
B(p, q)

=
p

p+ q
, (167c)

where (167b)–(167c) follow from (167a) and (165b).

Ex. 40. Let

Bn(r) := {x ∈ R
n : ‖x‖ ≤ r}, the ball of radius r,

Sn(r) := {x ∈ R
n : ‖x‖ = r}, the sphere of radius r,

both centered at the origin. Also,

vn(r) := the volume of Bn(r),

an(r) := the area of Sn(r),

where r is dropped if r = 1, so that

vn := the volume of the unit ball Bn,

an := the area of the unit sphere Sn.

Clearly

vn(r) = vn r
n, an(r) = an r

n−1, dvn(r) = v′
n(r) dr = an(r) dr, (168)

and it follows that

an = n vn, n = 2, 3, . . . . (169)

Ex. 41. Integrals on Sn, in particular the area an, can be computed using
spherical coordinates, e.g., [603, §VII.2], or the surface element of Sn, e.g., [586].
An alternative, simpler approach is to use the results of Example 2, representing
the “upper hemisphere” as φ(Bn−1), where φ = (φ1, φ2, . . . , φn) is

φi(x1, x2, . . . , xn−1) = xi, i ∈ 1, n− 1,

φn(x1, x2, . . . , xn−1) =

√√√√1−
n−1∑
i=1

x2
i .

The Jacobi matrix is

Jφ =



1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
− x1

xn
− x2

xn
· · · −xn−1

xn


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and its volume is easily computed

vol Jφ =

√√√√1 +
n−1∑
i=1

(
xi

xn

)2

=
1
|xn| =

1√
1−∑n−1

i=1 x2
i

. (170)

The area an is twice the area of the “upper hemisphere.” Therefore

an = 2
∫

Bn−1

dx1 dx2 · · · dxn−1√
1−

n−1∑
i=1

x2
i

, (by (170)),

=
2π

n
2

Γ
(

n
2

) , (171)

where Γ(·) is the Gamma function, see Ex. 39 above.
Proof.

an = 2
∫

Bn−1

dx1 · · · dxn−1√
1−

n−1∑
i=1

x2
i

,= 2
∫ 1

0

dvn−1(r)√
1− r2 ,

using spherical shells of radius r and volume dvn−1(r),

= 2 an−1

∫ 1

0

rn−2

√
1− r2 dr, by (169).

∴ an

an−1
=
∫ 1

0
(1− x)−1/2 x(n−3)/2 dx , using x = r2,

= B
( (n− 1)

2
,
1
2

)
=

Γ((n− 1)/2)Γ(1/2)
Γ(n/2)

and an can be computed recursively, beginning with a2 = 2π, giving (171). �
Ex. 42. Volume of Bn. The volume of the unit ball Bn can be computed by
(169) and (171),

vn =
πn/2

Γ((n/2) + 1)
, n = 1, 2, · · · (172)

Alternatively, the volume vn can be computed as the limit of the sum of volumes

of cylinders, with base dx1 · · · dxn−1 and height 2
√

1−∑n−1
k=1 x

2
k,

vn = 2
∫

Bn−1

√√√√1−
n−1∑
k=1

x2
k dx1 · · · dxn−1, (173)

a routine integration.

Ex. 43. The normal vector ξ of the hyperplane (135) can be normalized and can
therefore be assumed a unit vector, see, e.g., [221, Chapter 3] where the Radon
transform with respect to a hyperplane

H(ξ0, p) := {x ∈ R
n : 〈ξ0,x〉 = p}, ‖ξ0‖ = 1, (174)

is represented as

(R̂f)(ξ0, p) =
∫
f(x) δ(p− 〈ξ0,x〉) dx,

where δ(·) is the Dirac delta function. If (135) and (174) represent the same
hyperplane, then the correspondence between (Rf)(ξ, y) and (R̂f)(ξ0, p) is given
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by

ξ0 =
ξ

‖ξ‖ , p =
y

‖ξ‖ .

Ex. 44. The computation of the integrals mentioned above is feasible using
available symbolic algebra software (subject to limitations of such software).

As an illustration consider the Radon transform of the function f(x, y) =
e−x2−y2

, obtained here by using (139) with the symbolic package Derive [492]:

Function f Radon transform Rf(ξ, p), ξ =
[

a
b

]
f(x, y) = EXP [−x2 − y2] Rf

([
a
b

]
, p

)
=
√
π EXP

[
− p2

a2 + b2

]
f(x, y) = EXP [−x2 − y2] Rf

([
a
0

]
, p

)
=
√
π EXP

[
−p

2

a2

]
(vertical line)

10. An Application of the Matrix Volume in Probability

This section is based on [75]. The abbreviation RV of random variable is
used throughout. Consider n RVs (X1, . . . ,Xn) with a given joint density
fX(x1, . . . , xn) and an RV

Y = h(X1, . . . ,Xn) (175)

defined by the mapping h : Rn → R. The density function fY(y) of Y is
derived here in two special cases,

h linear:

h(X1, · · · ,Xn) =
n∑

i=1

ξiXi, see Corollary 4, (176)

h sum of squares:

h(X1, · · · ,Xn) =
n∑

i=1

X2
i , Corollary 5. (177)

In both cases, the density fY(y) is computed as an integral of fX on the
surface

V(y) := {x ∈ Rn : h(x) = y},
that is, a hyperplane for (176) and a sphere for (177). These integrals are
elementary and computationally feasible, as illustrated in [75, Appendix A].
Both results are consequences of Theorem 14, and a comparison between
two integrations, one “classical” and the other using the change-of-variables
formula (124).
Notation: For a random variable X we denote:

FX(x) := Prob{X ≤ x}, the distribution function;
fX(x) := d

dxFX(x), the density function;
E {X}, the expected value;
Var {X}, the variance;
X ∼ U(S), the fact that X is uniformly distributed over the set S;

and



324 8. MISCELLANEOUS APPLICATIONS

X ∼ N(µ, σ), normally distributed with E{X} = µ,
Var{X} = σ2.

Blanket assumption: Throughout this section all random variables are
absolutely continuous and the indicated densities exist.

10.1. Probability Densities and Surface Integrals. Let the RV
X = (X1, . . . ,Xn) have joint density fX(x1, . . . , xn) and let

y = h(x1, . . . , xn) (178)

where h : Rn → R is sufficiently well-behaved, in particular, ∂h/∂xn �= 0,
and (178) can be solved for xn,

xn = h−1(y|x1, . . . , xn−1) (179)

with x1, . . . , xn−1 as parameters. By changing variables from {x1, . . . , xn}
to {x1, . . . , xn−1, y}, and using the fact

det
[ ∂(x1, . . . , xn)
∂(x1, . . . , xn−1, y)

]
=

∂h−1

∂y
, (180)

we write the density of Y = h(X1, . . . ,Xn) as

fY(y) =
∫

Rn−1
f̂(y|x1, . . . , xn−1)

∣∣∣∣∂h−1

∂y

∣∣∣∣ dx1 · · · dxn−1, (181a)

where

f̂(y|x1, . . . , xn−1) = fX(x1, . . . , xn−1, h
−1(y|x1, . . . , xn−1)). (181b)

Let V(y) be the surface given by (178), represented as
x1
...

xn−1
xn

 =


x1
...

xn−1
h−1(y|x1, . . . , xn−1)

 = φ

 x1
...

xn−1

 . (182)

Then the surface integral of fX over V(y) is given, by (133), as∫
V(y)

fX

=
∫

Rn−1
f̂(y|x1, . . . , xn−1)

√√√√1 +
n−1∑
i=1

(
∂h−1

∂xi

)2

dx1 · · · dxn−1, (183)

with f̂(y|x1, . . . , xn−1) given by (181b).

Theorem 14. If the ratio

∂h−1

∂y√
1 +

n−1∑
i=1

(
∂h−1

∂xi

)2
does not depend on x1, . . . , xn−1, (184)
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then

fY(y) =

∣∣∣∂h−1

∂y

∣∣∣√
1 +

n−1∑
i=1

(
∂h−1

∂xi

)2

∫
V(y)

fX. (185)

Proof. A comparison of (183) and (181a) gives the density fY as the surface
integral (185). �

Condition (184) holds if V(y) is a hyperplane (see Section 10.2) or a
sphere, see Section 10.3. In these two cases, covering many important prob-
ability distributions, the derivation (185) is simpler computationally than
classical integration formulas, e.g., [100, Theorem 5.1.5], [377, Theorem
6-5.4], and transform methods, e.g., [770].

10.2. Hyperplanes. Let

y = h(x1, . . . , xn) :=
n∑

i=1

ξi xi, (186)

where ξ = (ξ1, . . . , ξn) is a given vector with ξn �= 0. Then (179) becomes

xn = h−1(y|x1, . . . , xn−1) :=
y

ξn
−

n−1∑
i=1

ξi

ξn
xi, (187)

with
∂h−1

∂y
=

1
ξn

, (188a)√√√√1 +
n−1∑
i=1

(
∂h−1

∂xi

)2

=

√√√√1 +
n−1∑
i=1

(
ξi

ξn

)2

=
‖ξ‖
|ξn| . (188b)

Condition (184) thus holds, and the density of
∑

ξi Xi can be expressed
as a surface integral of fX on the hyperplane

H(ξ, y) :=
{
x ∈ Rn :

n∑
i=1

ξixi = y
}

,

i.e., the Radon transform (RfX)(ξ, y) of fX. Recall that the Radon trans-
form can be computed as an integral on Rn−1, see, e.g., (139).

Corollary 4. Let X = (X1,X2, . . . ,Xn) be random variables with
joint density fX(x1, x2, . . . , xn) and let 0 �= ξ ∈ Rn. The random variable

Y :=
n∑

i=1

ξi Xi (189)

has the density

fY(y) =
(RfX)(ξ, y)
‖ξ‖ . (190)

Proof. Follows from (185), (137), and (139). �
Explanation of the factor ‖ξ‖ in (190): the distance between the hy-

perplanes H(ξ, y) and H(ξ, y + dy) is dy/‖ξ‖.
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10.3. Spheres. Let

y = h(x1, . . . , xn) :=
n∑

i=1

x2
i (191)

which has two solutions for xn, representing the upper and lower hemi-
spheres,

xn = h−1(y|x1, . . . , xn−1) := ±
√√√√y −

n−1∑
i=1

x2
i , (192)

with
∂h−1

∂y
= ± 1

2
√

y −∑n−1
i=1 x2

i

, (193a)

√√√√1 +
n−1∑
i=1

(
∂h−1

∂xi

)2

=
√

y√
y −∑n−1

i=1 x2
i

. (193b)

Therefore condition (184) holds and the density of
∑

X2
i is, by (185),

expressed in terms of the surface integral of fX on the sphere Sn(
√

y) of
radius

√
y.

Corollary 5. Let X = (X1, ... ,Xn) have joint density fX(x1, ... , xn).
The density of

Y =
n∑

i=1

X2
i (194)

is

fY(y) =
1

2
√

y

∫
Sn(

√
y)

fX, (195)

where the integral is over the sphere Sn(
√

y) of radius
√

y, computed as an
integral over the ball Bn−1(

√
y) using (133) with g = h−1.

Proof. Equation (195) follows from (185) and (193a). �
An explanation of the factor 2

√
y in (195): the width of the spherical

shell bounded by the two spheres Sn(
√

y) and Sn(
√

y + dy) is the difference
of radii √

y + dy −√y ≈ dy

2
√

y
.

Example 6 (Spherical distribution). If the joint density of
X = (X1, . . . ,Xn) is spherical

fX(x1, . . . , xn) = p
( n∑

i=1

x2
i

)
, (196)

then Y =
∑n

i=1 X2
i has the density

fY(y) =
πn/2

Γ(n/2)
p(y) y(n/2)−1. (197)
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Proof. The surface integral of fX over Sn(
√
y) is∫

Sn(
√

y)
fX = p(y) an−1(

√
y) = p(y)

2πn/2

Γ(n/2)
√
yn−1, by (171) and (168).

The proof is completed by (195). �
Exercises
Ex. 45. Exponential distribution. Let λ > 0 be given and let Y be the mean

Y =
1
n

n∑
i=1

Xi

of n independent RVs, identically distributed with exponential density

fXi(xi) = λe−λxi , xi ≥ 0.

Then the density of Y is

fY(y) =
(λn)n

(n− 1)!
yn−1 e−λny, y ≥ 0.

Proof. Use (186) with ξi = 1/n, (185), and (188) to conclude that

fY(y) =
1
‖ξ‖

∫
F0(ny)

fX
(
x1, . . . , xn−1,

y

ξn
−

n−1∑
i=1

ξi

ξn
xi

)
=
√
n

∫
F0(ny)

fX
(
x1, . . . , xn−1, ny −

n−1∑
i=1

xi

)
, (198)

where F0(ny) =
{
x :

∑n
i=1 xi = ny, xi ≥ 0, i ∈ 1, n

}
is the simplex face whose

area is, by Ex. 38,

A0(ny) =
√
n

(n− 1)!
(ny)n−1.

The joint density of X = (X1, . . . ,Xn) is fX(x1, . . . , xn) = λne
−λ

n∑
i=1

xi

. There-
fore

fX
(
x1, . . . , xn−1, ny −

n−1∑
i=1

xi

)
= λne−λny

and (198) becomes

fY(y) =
√
nλne−λny A0(ny)

=
√
nλne−λny

√
n

(n− 1)!
(ny)n−1,

completing the proof. �
Ex. 46. Bivariate normal distribution. Let (X1,X2) have the bivariate normal
distribution, with zero means and unit variances,

fX(x1, x2) =
1

2π
√

1− ρ2
exp

{
−x

2
1 − 2ρx1x2 + x2

2

2(1− ρ2)

}
(199)

and let Y := aX1 + bX2. The density of Y is, by (190),

fY(y) =
1√

a2 + b2
(RfX)((a, b), y)

=
1√

2π
√
a2 + 2abρ+ b2

exp
{
− y2

2 (a2 + 2abρ+ b2)

}
. (200)
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Therefore aX1 + bX2 ∼ N(0,
√
a2 + 2abρ+ b2). In particular, X1 + X2 ∼

N(0,
√

2(1 + ρ)) and X1 −X2 ∼ N(0,
√

2(1− ρ)).
Ex. 47. Uniform distribution. Let (X1,X2) be independent and uniformly
distributed on [0, 1]. Their joint density is

fX(x1, x2) =
{

1, if 0 ≤ x1, x2 ≤ 1,
0, otherwise,

and the density of aX1 + bX2 is, by (190),

faX1+bX2(y) =
1√

a2 + b2
(RfX)

([a
b

]
, y
)

=
|y − a− b| − |y − a| − |y − b|+ |y|

2ab
. (201)

In particular,

fX1+X2(y) =


y, if 0 ≤ y < 1,
2− y, if 1 ≤ y ≤ 2,
0, otherwise,

a symmetric triangular distribution on [0, 2].

Ex. 48. χ2 distribution. If Xi ∼ N(0, 1) and are independent, i ∈ 1, n, their
joint density is of the form (196),

fX(x1, . . . , xn) = (2π)−n/2 exp
{
−

n∑
i=1

x2
i

2

}
and (197) gives

fY(y) =
1

2n/2 Γ(n/2)
y(n/2)−1 exp

{
−y

2

}
, (202)

the χ2 distribution with n degrees of freedom.
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CHAPTER 9

Generalized Inverses of Linear Operators
between Hilbert Spaces

1. Introduction

The observation that generalized inverses are like prose (“Good Heavens!
For more than forty years I have been speaking prose without knowing it” –
Molière, Le Bourgeois Gentilhomme) is nowhere truer than in the literature
of linear operators. In fact, generalized inverses of integral and differential
operators were studied by Fredholm, Hilbert, Schmidt, Bounitzky, Hur-
witz, and others, before E.H. Moore introduced generalized inverses in an
algebraic setting; see, e.g., the historic survey in Reid [685].

This chapter is a brief and biased introduction to generalized inverses
of linear operators between Hilbert spaces, with special emphasis on the
similarities to the finite-dimensional case. Thus the spectral theory of such
operators is omitted.

Following the preliminaries in Section 2, generalized inverses are in-
troduced in Section 3. Applications to integral and differential operators
are sampled in Exs. 18–36. The minimization properties of generalized
inverses are studied in Section 6. Integral and series representations of gen-
eralized inverses, and iterative methods for their computation, are given in
Section 7.

This chapter requires familiarity with the basic concepts of linear func-
tional analysis, in particular, the theory of linear operators in Hilbert space.

2. Hilbert Spaces and Operators: Preliminaries and Notation

In this section we have collected, for convenience, some preliminary results
that can be found in the form stated here or in a more general form, in the
standard texts on functional analysis; see, e.g., Taylor [800] and Yosida
[882].

(A) Our Hilbert spaces will be denoted by H,H1,H2, etc. In each
space, the inner product of two vectors x and y is denoted by 〈x,y〉 and
the norm is denoted by ‖ ‖. The closure of a subset L of H will be denoted
by L and its orthogonal complement by L⊥. L⊥ is a closed subspace of H
and

L⊥ = L
⊥

.

The sum, L + M , of two subsets L, M ⊂ H is

L + M = {x + y : x ∈ L, y ∈M}.
330
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If L, M are subspaces of H and L ∩M = {0}, then L + M is called the
direct sum of L and M , and denoted by L⊕M . If, in addition, L ⊂M⊥ we

denote their sum by L
⊥⊕M and call it the orthogonal direct sum of L and

M . Even if the subspaces L, M are closed, their sum L + M need not be
closed; see, e.g., Ex. 1. An orthogonal direct sum of two closed subspaces
is closed. Conversely, if L, M are closed subspaces of H and M ⊂ L, then

L = M
⊥⊕ (L ∩M⊥). (1)

If (1) holds for two subspaces M ⊂ L, we say that L is decomposable with
respect to M . See Exs. 5–6.

(B) The (Cartesian) product of H1,H2 will be denoted by

H1,2 = H1 ×H2 = {{x,y} : x ∈ H1,y ∈ H2}
where {x,y} is an ordered pair. H1,2 is a Hilbert space with inner product

〈{x1,y1}, {x2,y2}〉 = 〈x1,y1〉+ 〈x2,y2〉.
Let Ji : Hi → H1,2, i = 1, 2, be defined by

J1x = {x,0}, for all x ∈ H1,

and

J2y = {0,y}, for all y ∈ H2.

The transformations J1 and J2 are isometric isomorphisms, mapping H1
and H2 onto

H1,0 = J1H1 = H1 × {0}
and

H0,2 = J2H2 = {0} ×H2,

respectively. Here {0} is an appropriate zero space.
(C) Let L(H1,H2) denote the class of linear operators from H1 to

H2. In what follows we will use operator to mean a linear operator. For
any T ∈ L(H1,H2) we denote the domain of T by D(T ), the range of T by
R(T ), the null space of T by N(T ), and the carrier of T by C(T ), where

C(T ) = D(T ) ∩N(T )⊥. (2)

The graph, G(T ), of a T ∈ L(H1,H2) is

G(T ) = {{x, Tx} : x ∈ D(T )}.
Clearly, G(T ) is a subspace of H1,2 and G(T ) ∩H0,2 = {0,0}. Conversely,
if G is a subspace of H1,2 and G(T ) ∩ H0,2 = {0,0}, then G is the graph
of a unique T ∈ L(H1,H2), defined for any point x in its domain

D(T ) = J−1
1 PH1,0G(T )

by

Tx = y,
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where y is the unique vector in H2 such that {x,y} ∈ G and PH1,0 is the
orthogonal projector: H1,2 → A1,0, see (L) below.

Similarly, for any T ∈ L(H2,H1), the inverse graph of T , G−1(T ), is
defined by

G−1(T ) = {{Ty,y} : y ∈ D(T )}.
A subspace G in H1,2 is an inverse graph of some T ∈ L(H2,H1) if and
only if G∩H1,0 = {0,0}, in which case T is uniquely determined by G (von
Neumann [840]).

(D) An operator T ∈ L(H1,H2) is called closed if G(T ) is a closed
subspace of H1,2. Equivalently, T is closed if

xn ∈ D(T ), xn → x0, Txn → y0 =⇒ x0 ∈ D(T ) and Tx0 = y0,

where → denotes strong convergence. A closed operator has a closed
null space. The subclass of closed operators in L(H1,H2) is denoted by
C(H1,H2).

(E) An operator T ∈ L(H1,H2) is called bounded if its norm ‖T‖ is
finite, where

‖T‖ = sup
0�=x∈H1

‖Tx‖
‖x‖ .

The subclass of bounded operators is denoted by B(H1,H2). If T ∈ B(H1,H2),
then it may be assumed, without loss of generality, that D(T ) is closed or
even that D(T ) = H1. A bounded T ∈ B(H1,H2) is closed if and only if
D(T ) is closed. Thus we may write B(H1,H2) ⊂ C(H1,H2). Conversely,
a closed T ∈ C(H1,H2) is bounded if D(T ) = H1. This statement is the
closed graph theorem.

(F) Let T1, T2 ∈ L(H1,H2) with D(T1) ⊂ D(T2). If T2x = T1x for all
x ∈ D(T1), then T2 is called an extension of T1 and T1 is called a restriction
of T2. These relations are denoted by

T1 ⊂ T2

or by

T1 = (T2)[D(T1)].

Let T ∈ L(H1,H2) and let the restriction of T to C(T ) be denoted by T0

T0 = T[C(T )].

Then

G(T0) = {{x, Tx} : x ∈ C(T )}
satisfies

G(T0) ∩H1,0 = {0,0}
and hence is the inverse graph of an operator S ∈ L(H2,H1) with

D(S) = R(T0).
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Clearly,

STx = x, for all x ∈ C(T ),

and

TSy = y, for all y ∈ R(T0).

Thus, if T0 is considered as an operator in L(C(T ), R(T0), then T0 is in-
vertible in its domain. The inverse T−1

0 is closed if and only if T0 is closed.
For T ∈ L(H1,H2), both C(T ) and T0 may be trivial; see, e.g., Exs. 2 and
4.

(G) An operator T ∈ L(H1,H2) is called dense (or densely defined)
if D(T ) = H1. Since any T ∈ L(H1,H2) can be viewed as an element of
T ∈ L(D(T ),H2), any operator can be assumed to be dense without loss
of generality.

For any T ∈ L(H1,H2), the condition D(T ) = H1 is equivalent to

G(T )⊥ ∩H1,0 = {0,0},
where

G(T )⊥ = {{y, z} : 〈y,x〉+ 〈z, Tx〉 = 0 for all x ∈ D(T )} ⊂ H1,2.

Thus, for any dense T ∈ L(H1,H2), G(T )⊥ is the inverse graph of a unique
operator in C(H1,H2). This operator is −T ∗ where T ∗, the adjoint of T ,
satisfies

〈T ∗y,x〉 = 〈y, Tx〉, for all x ∈ D(T ).

(H) For any dense T ∈ L(H1,H2),

N(T ) = R(T ∗)⊥, N(T ∗) = R(T )⊥. (3)

In particular, T [T ∗] has a dense range if and only if T ∗ [T ] is one-to-one.
(I) Let T ∈ L(H1,H2) be dense.

If both T and T ∗ have inverses, then (T−1)∗ = (T ∗)−1.
T has a bounded inverse if and only if R(T ∗) = H1.
T ∗ has a bounded inverse if R(T ) = H2. The converse holds if T is closed.
T ∗ has a bounded inverse and R(T ∗) = H1 if and only if T has a bounded
inverse and R(T ) = H1 (Taylor [800], Goldberg [300]).

(J) An operator T ∈ L(H1,H2) is called closable (or preclosed) if T
has a closed extension. Equivalently, T is closable if

G(T ) ∩H0,2 = {0,0},
in which case G(T ) is the graph of an operator T , called the closure of T .
T is the minimal closed extension of T .

Since G(T )⊥⊥ = G(T ) it follows that for a dense T , T ∗∗ is defined only
if T is closable, in which case

T ⊂ T ∗∗ = T

and

T = T ∗∗

if and only if T is closed.
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(K) A dense operator T ∈ L(H,H) is called symmetric if

T ⊂ T ∗

and self-adjoint if

T = T ∗,

in which case it is called nonnegative, and denoted by T � O, if

〈Tx,x〉 ≥ 0, for all x ∈ D(T ).

If T ∈ C(H1,H2) is dense, then T ∗T and TT ∗ are nonnegative, and I +TT ∗

and I + T ∗T have bounded inverses (von Neumann [838]).
(L) An operator T ∈ B(H,H) is an orthogonal projector if

P = P ∗ = P 2,

in which case R(P ) is closed and

H = R(P )
⊥⊕N(P ).

Conversely, if L is a closed subspace of H, then there is a unique orthogonal
projector PL such that

L = R(PL) and L⊥ = N(PL).

(M) An operator T ∈ C(H1,H2) is called normally solvable if R(T ) is
closed which, by (3), is equivalent to the following condition: The equation

Tx = y

is consistent if and only if y is orthogonal to any solution u of

T ∗u = 0.

This condition accounts for the name “normally solvable.”
For any T ∈ C(H1,H2), the following statements are equivalent:

(a) T is normally solvable.
(b) The restriction T0 = T[C(T )] has a bounded inverse.
(c) The nonnegative number

γ(T ) = inf
{‖Tx‖
‖x‖ : 0 �= x ∈ C(T )

}
(4)

is positive (Hestenes [416, Theorem 3.3]).

Exercises

Ex. 1. A nonclosed sum of closed subspaces. Let T ∈ B(H1,H2) and let

D = J1D(T ) = {{x,0} : x ∈ D(T )}.
Without loss of generality we assume that D(T ) is closed. Then D is closed. Also
G(T ) is closed since T is bounded. But

G(T ) +D

is nonclosed if R(T ) is nonclosed, since

{x,y} ∈ G(T ) +D ⇐⇒ y ∈ R(T ) (Halmos [366, p. 26]).
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Ex. 2. Unbounded linear functionals. Let T be an unbounded linear functional
on H. Then N(T ) is dense in H and, consequently, N(T )⊥ = {0}, C(T ) = {0}.

An example of such a functional on L2[0,∞] is

Tx =
∫ ∞

0
tx(t) dt.

To show that N(T ) is dense, let x0 ∈ L2[0,∞] with Tx0 = α. Then a sequence
{xn} ⊂ N(T ) converging to x0 is

xn(t) =
{

x0(t), if t < 1 or t > n+ 1,
x0(t)− α/nt, if 1 ≤ t ≤ n+ 1.

Indeed,

‖xn − x0‖2 =
∫ n+1

1

α2

(nt)2
dt =

α2

n(n+ 1)
→ 0.

Ex. 3. Let D be a dense subspace of H and let F be a closed subspace such
that F⊥ is finite dimensional. Then

D ∩ F = F (Erdelyi and Ben-Israel [265, Lemma 5.1]).

Ex. 4. An operator with trivial carrier. Let D be any proper dense subspace of
H and choose x �∈ D. Let F = [x]⊥, where [x] is the line generated by x. Then
D ∩ F = F , by Ex. 3. However, D �⊂ F , so we can choose a subspace A �= {0} in
D such that

D = A⊕ (D ∩ F ).

Define T ∈ L(H,H) by

D(T ) = D

and

T (y + z) = y, if y ∈ A, z ∈ D ∩ F.
Then

N(T ) = D ∩ F,
N(T ) = D ∩ F = F,

N(T )⊥ = F⊥ = [x],

C(T ) = D(T ) ∩N(T )⊥ = {0}.

Ex. 5. (Arghiriade [25]). Let L,M be subspaces of H and let M ⊂ L. Then

L = M
⊥⊕ (L ∩M⊥) (1)

if and only if

PMx ∈M, for all x ∈ L.
In particular, a space is decomposable with respect to any closed subspace.

Ex. 6. Let L,M,N be subspaces of H such that

L = M
⊥⊕N.

Then

M = L ∩N⊥, N = L ∩M⊥.

Thus an orthogonal direct sum is decomposable with respect to each summand.
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Ex. 7. A bounded operator with nonclosed range. Let �2 denote the Hilbert
space of square summable sequences and let T ∈ B(�2, �2) be defined, for some
0 < k < 1, by

T (α0, α1, α2, . . . , αn, . . . ) = (α0, kα1, k
2α2, . . . , k

nαn, . . . ).

Consider the sequence

xn =
(

1,
1
2k
,

1
3k2 , . . . ,

1
nkn−1 , 0, 0, . . .

)
,

and the vector

y = lim
n→∞

Txn =
(

1,
1
2
,

1
3
, . . . ,

1
n
, . . .

)
.

Then,

y ∈ R(T ), y �∈ R(T ).

Ex. 8. Linear integral operators. Let L2 = L2[a, b], the Lebesgue square in-
tegrable functions on the finite interval [a, b]. Let K(s, t) be an L2–kernel on
a ≤ s, t,≤ b, meaning that the Lebesgue integral∫ b

a

∫ b

a

|K(s, t)|2 ds dt

exists and is finite; see, e.g., Smithies [765, Section 1.6].
Consider the two operators T1, T2 ∈ B(L2, L2) defined by

(T1x)(s) =
∫ b

a

K(s, t)x(t) dt, a ≤ s ≤ b,

(T2x)(s) = x(s)−
∫ b

a

K(s, t)x(t) dt, a ≤ s ≤ b,

called Fredholm integral operators of the first kind and the second kind, respec-
tively. Then:

(a) R(T2) is closed.
(b) R(T1) is nonclosed unless it is finite dimensional.

More generally, if T ∈ L(H1,H2) is completely continuous, then R(T ) is nonclosed
unless it is finite dimensional (Kammerer and Nashed [465, Prop. 2.5]).

Ex. 9. Let T ∈ C(H1,H2). Then T is normally solvable if and only if T ∗ is.
Also, T is normally solvable if and only if TT ∗ or T ∗T is.

3. Generalized Inverses of Linear Operators Between Hilbert
Spaces

A natural definition of generalized inverses in L(H1,H2) is the following
one due to Tseng [817].

Definition 1. Let T ∈ L(H1,H2). Then an operator T q ∈ L(H2,H1)
is a Tseng inverse of T if

R(T ) ⊂ D(T g), (5)

R(T g) ⊂ D(T ), (6)

T gTx = P
R(T g)x, for all x ∈ D(T ), (7)

TT gy = P
R(T )y, for all y ∈ D(T g). (8)
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This definition is symmetric in T and T g, thus T is a Tseng inverse of
T g.

An operator T ∈ L(H1,H2) may have a unique Tseng inverse, or infin-
itely many Tseng inverses or it may have none. We will show in Theorem 1
that T has a Tseng inverse if and only if its domain is decomposable with
respect to its null space,

D(T ) = N(T )
⊥⊕ (D(T ) ∩N(T )⊥)

= N(T )
⊥⊕ C(T ). (9)

By Ex. 5, this condition is satisfied if N(T ) is closed. Thus it holds for all
closed operators and, in particular, for bounded operators. If T has Tseng
inverses, then it has a maximal Tseng inverse, some of whose properties
are collected in Theorem 2. For bounded operators with closed range, the
maximal Tseng inverse coincides with the Moore–Penrose inverse and will
likewise be denoted by T †. See Theorem 3.

For operators T without Tseng inverses, the maximal Tseng inverse
T † can be “approximated” in several ways, with the objective of retaining
as many of its useful properties as possible. One such approach, due to
Erdélyi [264], is described in Definition 3 and Theorem 4.

Some properties of Tseng inverses, when they exist, are given in the
following three lemmas, due to Arghiriade [25], which are needed later.

Lemma 1. If T g ∈ L(H2,H1) is a Tseng inverse of T ∈ L(H1,H2),
then D(T ) is decomposable with respect to R(T g).
Proof. Follows from Ex. 5 since, for any x ∈ D(T ),

PR(T g) x = T gTx, by (7). �

Lemma 2. If T g ∈ L(H2,H1) is a Tseng inverse of T ∈ L(H1,H2),
then T is a one-to-one mapping of R(T g) onto R(T ).
Proof. Let y ∈ R(T ). Then

y = PR(T ) y = TT gy, by (8),

proving that T (R(T g)) = R(T ).
Now we prove that T is one-to-one on R(T g). Let x1,x2 ∈ R(T g) satisfy

Tx1 = Tx2.

Then

x1 = PR(T g) x1 = T gTx1 = T gTx2 = PR(T g) x2 = x2. �

Lemma 3. If T g ∈ L(H2,H1) is a Tseng inverse of T ∈ L(H1,H2),
then

N(T ) = D(T ) ∩R(T g)⊥ (10)

and

C(T ) = R(T g). (11)
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Proof. Let x ∈ D(T ). Then, by Lemma 1,

x = x1 + x2, x1 ∈ R(T g), x2 ∈ D(T ) ∩R(T g)⊥, x1 ⊥ x2. (12)

Now

x1 = PR(T g) x = T gT (x1 + x2) = T gTx1

and, therefore,

T gTx2 = 0,

which, by Lemma 2 with T and T g interchanged, implies that

Tx2 = 0, (13)

hence

D(T ) ∩R(T g)⊥ ⊂ N(T ).

Conversely, let x ∈ N(T ) be decomposed as in (12). Then

0 = Tx = T (x1 + x2)

= Tx1, by (13),

which, by Lemma 2, implies that x1 = 0 and, therefore,

N(T ) ⊂ D(T ) ∩R(T g)⊥,

completing the proof of (10). Now

D(T ) = R(T g)
⊥⊕ (D(T ) ∩R(T g)⊥), by Lemma 1,

= R(T g)
⊥⊕N(T ),

which, by Ex. 6, implies that

R(T g) = D(T ) ∩N(T )⊥,

proving (11). �
The existence of Tseng inverses is settled in the following theorem an-

nounced, without proof, by Tseng [817]. Our proof follows that of Arghiri-
ade [25].

Theorem 1. Let T ∈ L(H1,H2). Then T has a Tseng inverse if and
only if

D(T ) = N(T )
⊥⊕ C(T ), (9)

in which case, for any subspace L ⊂ R(T )⊥, there is a Tseng inverse T g
L of

T , with

D(T g
L) = R(T )

⊥⊕ L (14)

and

N(T g
L) = L. (15)
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Proof. If T has a Tseng inverse, then (9) follows from Lemmas 1 and 3.
Conversely, suppose that (9) holds. Then

R(T ) = T (D(T )) = T (C(T )) = R(T0), (16)

where T0 = T[C(T )] is the restriction of T to C(T ). The inverse T−1
0 exists, by

Section 2(F), and satisfies

R(T−1
0 ) = C(T )

and, by (16),

D(T−1
0 ) = R(T ).

For any subspace L ⊂ R(T )⊥, consider the extension T g
L of T−1

0 with

domain D(T g
L) = R(T )

⊥⊕ L (14)

and

null space N(T g
L) = L. (15)

From its definition, it follows that T g
L satisfies

D(T g
L) ⊃ R(T )

and

R(T g
L) = R(T−1

0 ) = C(T ) ⊂ D(T ). (17)

For any x ∈ D(T ),

T g
LTx = T g

LTPC(T ) x, by (9),

= T−1
0 T0PC(T ) x, by Ex. 5,

= P
R(T g

L
) x, by (17).

Finally, any y ∈ D(T g
L) can be written, by (14), as

y = y1 + y2, y1 ∈ R(T ), y2 ∈ L, y1 ⊥ y2,

and, therefore,

TT g
Ly = TT g

Ly1, by (15),

= T0T
−1
0 y1 = y1

= PR(T ) y.

Thus T g
L is a Tseng inverse of T . �

The Tseng inverse T g
L is uniquely determined by its domain (14) and

null space (15); see Ex. 10.
The maximal choice of the subspace L in (14) and (15) is L = R(T )⊥.

For this choice we have the following:
Definition 2. Let T ∈ L(H1,H2) satisfy (9). Then the maximal

Tseng inverse of T , denoted by T †, is the Tseng inverse of T with domain

D(T †) = R(T )
⊥⊕R(T )⊥ (18)

and null space

N(T †) = R(T )⊥. (19)
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By Ex. 10, the Tseng inverse T † so defined is unique. It is maximal in
the sense that any other Tseng inverse of T is a restriction of T †.

Moreover, T † is dense, by (18), and has a closed null space, by (19).
Choosing L as a dense subspace of R(T )⊥ shows that an operator T may
have infinitely many dense Tseng inverses T g

L. Also, T may have infinitely
many Tseng inverses T g

L with closed null space, each obtained by choosing
L as a closed subspace of R(T )⊥. However, T † is the unique dense Tseng
inverse with closed null space; see Ex. 11.

For closed operators, the maximal Tseng inverse can be alternatively
defined, by means of the following construction, due to Hestenes [416]; see
also Landesman [498]:

Let T ∈ C(H1,H2) be dense. Since N(T ) is closed, it follows, from
Ex. 5, that

D(T ) = N(T )
⊥⊕ C(T ), (9)

and, therefore,

G(T ) = N
⊥⊕ C, (20)

where, using the notation of Section 2(B), (C), and (F),

N = J1N(T ) = G(T ) ∩H1,0, (21a)

C = {{x, Tx} : x ∈ C(T )}. (21b)

Similarly, since T ∗ is closed, it follows, from Section 2(G), that

G(T )⊥ = N∗ ⊥⊕ C∗ (22)

with

N∗ = J2N(T ∗) = G(T )⊥ ∩H0,2, (23a)

C∗ = {{−T ∗y,y} : y ∈ C(T ∗)}. (23b)

Now

H1,2 = G(T )
⊥⊕G(T )⊥, since T is closed,

= (N
⊥⊕ C)

⊥⊕ (N∗ ⊥⊕ C∗), by (20) and (22),

= (C
⊥⊕N∗)

⊥⊕ (C∗ ⊥⊕N)

= G† ⊥⊕G†∗, (24)

where

G† = C
⊥⊕N∗, (25a)

G†∗ = C∗ ⊥⊕N. (25b)

Since

G† ∩H1,0 = {0,0}, by Section 2(F),
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it follows that G† is the inverse graph of an operator T † ∈ C(H2,H1), with
domain

J−1
2 PH0,2G

† = T (C(T ))
⊥⊕N(T ∗)

= R(T )
⊥⊕R(T )⊥, by (16) and (3),

and null space

J−1
2 M∗ = N(T ∗) = R(T )⊥

and such that

T †Tx = P
C(T ) x, for any x ∈ N(T )

⊥⊕ C(T ),

and

TT †y = P
R(T ) y, for any y ∈ R(T )

⊥⊕R(T )⊥.

Thus T † is the maximal Tseng inverse of Definition 2.
Similarly, G†∗ is the graph of the operator −T ∗† ∈ C(H1,H2), which is

the maximal Tseng inverse of −T ∗.
This elegant construction makes obvious the properties of the maximal

Tseng inverse, collected in the following:
Theorem 2 (Hestenes [416]). Let T ∈ C(H1,H2) be dense. Then:

(a) T † ∈ C(H2,H1);

(b) D(T †) = R(T )
⊥⊕N(T ∗); N(T †) = N(T ∗);

(c) R(T †) = C(T );
(d) T †Tx = P

R(T †) x for any x ∈ D(T );
(e) TT †y = P

R(T ) y for any y ∈ D(T †);
(f) T †† = T ;
(g) T ∗† = T †∗;
(h) N(T ∗†) = N(T );
(i) T ∗T and T †T ∗† are nonnegative and

(T ∗T )† = T †T ∗†, N(T ∗T ) = N(T ); and

(j) TT ∗ and T ∗†T † are nonnegative and

(TT ∗)† = T ∗†T †, N(TT ∗) = N(T ∗). �

For bounded operators with closed range, various characterizations of
the maximal Tseng inverse are collected in the following:

Theorem 3 (Petryshyn [641]). If T ∈ B(H1,H2) and R(T ) is closed,
then T † is characterized as the unique solution X of the following equivalent
systems:

(a) TXT = T, XTX = X, (TX)∗ = TX, (XT )∗ = XT ;
(b) TX = PR(T ), N(X∗) = N(T );
(c) TX = PR(T ), XT = PR(T ∗), XTX = X;
(d) XTT ∗ = T ∗, XX∗T ∗ = X;
(e) XTx = x for all x ∈ R(T ∗);

Xy = 0 for all y ∈ N(T ∗);
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(f) XT = PR(T ∗), N(X) = N(T ∗); and
(g) TX = PR(T ), XT = PR(X). �
The notation T † is justified by Theorem 3(a), which lists the four Pen-

rose equations (1.1)–(1.4).
If T ∈ L(H1,H2) does not satisfy (9), then it has no Tseng inverse, by

Theorem 1. In this case one can still approximate T † by an operator that
has some properties of T †, and reduces to it if T † exists. Such an approach,
due to Erdélyi [264], is described in the following:

Definition 3. Let T ∈ L(H1,H2) and let Tr be the restriction of T
defined by

D(Tr) = N(T )
⊥⊕ C(T ), N(Tr) = N(T ). (26)

The Erdélyi inverse of T is defined as T †
r , which exists since Tr satisfies (9).

The inverse graph of T †
r is

G−1(Tr) = {{x, Tx + z} : x ∈ C(T ), z ∈ (T (C(T )))⊥}, (27)

from which the following properties of T †
r can be easily deduced:

Theorem 4 (Erdélyi [264]). Let T ∈ L(H1,H2) and let its restriction
Tr be defined by (26). Then:

(a) T †
r = T † if T † exists;

(b) D(T †
r ) = T (C(T ))

⊥⊕ T (C(T ))⊥ and, in general, R(T ) �⊂ D(T †
r );

(c) R(T †
r ) = C(T ), R(T †

r ) = N(T )⊥;
(d) T †

r Tx = P
R(T †

r )
x for all x ∈ D(Tr);

(e) TT †
r y = P

R(T ) y for all y ∈ D(T †
r );

(f) D((T †
r )†

r) = N(T )
⊥⊕ C(T );

(g) R((T †
r )†

r) = T (C(T ));
(h) N((T †

r )†
r) = N(T );

(i) T ⊂ (T †
r )†

r if (9) holds;
(j) T = (T †

r )†
r if and only if N(T ) is closed; and

(k) T †∗
r ⊂ (T ∗)†

r if T is dense and closable. �
See also Ex. 15.

Exercises

Ex. 10. Let T ∈ L(H1,H2) have Tseng inverses and let L be a subspace of
R(T )⊥. Then the conditions

D(T g
L) = R(T )

⊥⊕ L, (14)

N(T g
L) = L, (15)

determine a unique Tseng inverse, which is thus equal to T g
L as constructed in

the proof of Theorem 1.
Proof. Let T g be a Tseng inverse of T satisfying (14) and (15) and let y ∈ D(T g)
be written as

y = y1 + y2, y1 ∈ R(T ), y2 ∈ L.
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Then

T gy = T gy1, by (15),

= T gTx1, for some x1 ∈ D(T ),

= PR(T g)x1, by (7),

= PC(T )x1, by (11).

We claim that this determines T g uniquely. For, suppose there is an x2 ∈ D(T )
with y1 = Tx2. Then, as above,

T gy = PC(T ) x2

and, therefore,

PC(T ) x1 − PC(T ) x2 = PC(T ) (x1 − x2)

= 0, since x1 − x2 ∈ N(T ). �

Ex. 11. Let T ∈ L(H1,H2) have Tseng inverses. Then T † is the unique dense
Tseng inverse with closed null space.
Proof. Let T g be any dense Tseng inverse with closed null space. Then

D(T g) = N(T g)
⊥⊕ C(T g), by Theorem 1,

= N(T g)
⊥⊕R(T ), by (11),

which, together with the assumptions D(T g) = H2 and N(T g) = N(T g), implies
that

N(T g) = R(T )⊥.

Thus, T g has the same domain and null space as T † and, therefore, T g = T †, by
Ex. 10. �
Ex. 12. (Kurepa [491]). Let T ∈ B(H1,H2) have a closed range R(T ) and let
T1 ∈ B(H1, R(T )) be defined by

T1x = Tx, for all x ∈ H1.

Then:
(a) T ∗

1 is the restriction of T ∗ to R(T ).
(b) The operator T1T

∗
1 ∈ B(R(T ), R(T )) is invertible.

(c) T † = PR(T ∗)T
∗
1 (T1T

∗
1 )−1PR(T ).

Ex. 13. (Landesman [498]). Let T ∈ C(H1,H2). Then R(T ) is closed if and
only if T † is bounded.
Proof. Follows from Section 2(M). �
Ex. 14. (Desoer and Whalen [226]). Let T ∈ B(H1,H2) have closed range.
Then

T † = (T ∗T )†T ∗ = T ∗(TT ∗)†.

Ex. 15. For arbitrary T ∈ L(H1,H2) consider its extension T̃ with

D(T̃ ) = D(T ) +N(T ), N(T̃ ) = N(T ), T̃ = T on D(T ), (28)

which coincides with T if N(T ) is closed. Since D(T̃ ) is decomposable with
respect to N(T̃ ), it might seem that T̃ can be used to obtain T̃ †, a substitute for
(possibly nonexisting) T †.
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Show that T̃ is not well defined by (28) if

D(T ) ∩N(T ) �= N(T ) and N(T̃ ) �= D(T̃ ), (29)

which is the only case of interest since otherwise D(T ) is decomposable with
respect to N(T ) or T̃ is identically O in its domain.
Proof. By (29) there exist x0 and y such that

x0 ∈ D(T ) ∩N(T ), x0 �∈ N(T ),

and

y ∈ D(T ), y �∈ N(T ).

Then

T̃ (x0 + y) = T̃y, since x0 ∈ N(T̃ ),

and, on the other hand,

T̃ (x0 + y) = T (x0 + y), since x0,y ∈ D(T ),

�= Ty, since x0 �∈ N(T ). �

Ex. 16. (Petryshyn [641, Lemma 2]). Let T ∈ B(H1,H2) have closed range.
Then

‖T †‖ =
1

γ(T )
,

where γ(T ) is defined in (4).

Ex. 17. (Holmes [427, p. 223]). Let F ∈ B(H3,H2) and G ∈ B(H1,H3) with
R(G) = H3 = R(F ∗) and define A ∈ B(H1,H2) by A = FG. Then

A† = G∗(GG∗)−1(F ∗F )−1F ∗

= G†F †.

Compare with Theorem 1.5 and Ex. 1.17.

4. Generalized Inverses of Linear Integral Operators

Consider the Fredholm integral equation of the second kind

x(s)− λ

∫ b

a

K(s, t) x(t) dt = y(s), a ≤ s ≤ b, (30)

written for short as

(I − λK)x = y,

where all functions are complex, [a, b] is a bounded interval, λ is a complex
scalar, and K(s, t) is a L2–kernel on [a, b]× [a, b]; see Ex. 8. Writing L2 for
L2[a, b], we need the following facts from the Fredholm theory of integral
equations; see, e.g., Smithies [765]. For any λ, K as above:

(a) (I − λK) ∈ B(L2, L2).
(b) (I − λK)∗ = I − λK∗, where K∗(s, t) = K(t, s).
(c) The null spaces N(I − λK) and N(I − λK∗) have equal finite

dimensions,

dim N(I − λK) = dim N(I − λK∗) = n(λ), say. (31)



4. LINEAR INTEGRAL OPERATORS 345

(d) A scalar λ is called a regular value of K if n(λ) = 0, in which
case the operator I − λK has an inverse (I − λK)−1 ∈ B(L2, L2)
written as

(I − λK)−1 = I + λR, (32)

where R = R(s, t;λ) is an L2-kernel called the resolvent of K.
(e) A scalar λ is called an eigenvalue of K if n(λ) > 0, in which

case any nonzero x ∈ N(I − λK) is called an eigenfunction of K
corresponding to λ.

For any λ and, in particular, for any eigenvalue λ, both range spaces R(I−
λK) and R(I − λK∗) are closed and, by (3),

R(I − λK) = N(I − λK∗)⊥, R(I − λK∗) = N(I − λK)⊥. (33)

Thus, if λ is a regular value of K, then (30) has, for any y ∈ L2, a unique
solution given by

x = (I + λR)y,

that is,

x(s) = y(s) + λ

∫ b

a

R(s, t, λ)y(t) dt, a ≤ s ≤ b. (34)

If λ is an eigenvalue of K, then (30) is consistent if and only if y is orthog-
onal to every u ∈ N(I − λK∗), in which case the general solution of (30)
is

x = x0 +
n(λ)∑
i=1

cixi, ci arbitrary scalars, (35)

where x0 is a particular solution of (30) and {x1, . . . ,xn(λ)} is a basis of
N(I − λK).
Exercises

Ex. 18. Pseudoresolvents. Let λ be an eigenvalue of K. Following Hurwitz
[435], an L2-kernel R = R(s, t, λ) is called a pseudoresolvent of K if for any
y ∈ R(I − λK), the function

x(s) = y(s) + λ

∫ b

a

R(s, t, λ) y(t) dt (34)

is a solution of (30).
A pseudoresolvent was constructed by Hurwitz as follows:
Let λ0 be an eigenvalue of K and let {x1, . . . ,xn} and {u1, . . . ,un} be o.n.

bases of N(I − λ0K) and N(I − λ0K
∗), respectively. Then λ0 is a regular value

of the kernel

K0(s, t) = K(s, t)− 1
λ0

n∑
i=1

ui(s)xi(t), (36)

written for short as

K0 = K − 1
λ0

n∑
i=1

uix∗
i
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and the resolvent R0 of K0 is a pseudoresolvent of K satisfying

(I + λ0R0)(I − λ0K)x = x, for all x ∈ R(I − λ0K
∗),

(I − λ0K)(I + λ0R0)y = y, for all y ∈ R(I − λ0K),

(I + λ0R0)ui = xi, i = 1, . . . , n.

Proof. Follows from the matrix case, Ex. 2.53. �
Ex. 19. (Hurwitz [435]). A comparison with Theorem 2.2 shows that I + λR
is a {1}-inverse of I − λK, if R is a pseudoresolvent of K. As with {1}-inverses,
the pseudoresolvent is nonunique. Indeed, for R0,ui,xi as above, the kernel

R0 +
n∑

i,j,=1

cijxiu∗
j (37)

is a pseudoresolvent of K for any choice of scalars cij .
The pseudoresolvent constructed by Fredholm [290], who called the resulting

operator I+λR a pseudoinverse of I−λK, is the first explicit application, known
to us, of a generalized inverse.

The class of all pseudoresolvents of a given kernel K is characterized as
follows:

Let K be an L2-kernel, let λ0 be an eigenvalue of K, and let {x1, . . . ,xn}
and {u1, . . . ,un} be o.n. bases of N(I − λ0K) and N(I − λ0K

∗), respectively.
An L2-kernel R is a pseudoresolvent of K if and only if

R = K + λ0KR− 1
λ0

n∑
i=1

βiu
∗
i , (38a)

R = K + λ0RK − 1
λ0

n∑
i=1

xiα
∗
i , (38b)

where αi, βi ∈ L2 satisfy

〈αi,xj〉 = δij , 〈βi,uj〉 = δij , i, j = 1, . . . , n. (39)

Here KR stands for the kernel KR(s, t) =
∫ b

a
K(s, u)R(u, t) du, etc.

If λ is a regular value of K, then (38) reduces to

R = K + λKR, R = K + λRK, (40)

which uniquely determines the resolvent R(s, t, λ).

Ex. 20. Let K, λ0, xi, ui, and R0 be as above. Then the maximal Tseng inverse
of I − λ0K is

(I − λ0K)† = I + λ0R0 −
n∑

i=1

xiu∗
i , (41)

corresponding to the pseudoresolvent

R = R0 − 1
λ0

n∑
i=1

xiu∗
i . (42)

Ex. 21. Let K(s, t) = u(s)v(t), where∫ b

a

u(s)v(s) ds = 0.

Then every scalar λ is a regular value of K.
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Ex. 22. Degenerate kernels. A kernel K(s, t) is called degenerate if it is a finite
sum of products of L2 functions, as follows:

K(s, t) =
m∑

i=1

fi(s) gi(t). (43)

Degenerate kernels are convenient because they reduce the integral equation (30)
to a finite system of linear equations. Also, any L2-kernel can be approximated,
arbitrarily close, by a degenerate kernel; see, e.g., Smithies [765, p. 40], and
Halmos [366, Problem 137].

Let K(s, t) be given by (43). Then:

(a) The scalar λ is an eigenvalue of (43) if and only if 1/λ is an eigenvalue of
the m×m matrix

B = [bij ], where bij =
∫ b

a

fj(s) gi(s) ds.

(b) Any eigenfunction of K [K∗] corresponding to an eigenvalue λ [λ] is a
linear combination of the m functions f1, . . . , fm [g1, . . . , gm].

(c) If λ is a regular value of (43), then the resolvent at λ is

R(s, t, ;λ) =

det



0
... f1(s) · · · fm(s)

· · · · · · · · · · · · · · ·
−g1(t)

...
...

... I − λB
−gm(t)

...


det(I − λB)

.

See also Kantorovich and Krylov [468, Chapter II].

Ex. 23. Consider the equation

x(s)− λ
∫ 1

−1
(1 + 3st)x(t) dt = y(s) (44)

with K(s, t) = 1 + 3st. The resolvent is

R(s, t;λ) =
1 + 3st
1− 2λ

.

K has a single eigenvalue λ = 1
2 and an o.n. basis of N(I − 1

2K) is{
x1(s) =

1√
2
, x2(s) =

√
3√
2
s

}
which, by symmetry, is also an o.n. basis of N(I − 1

2K
∗). From (36) we get

K0(s, t) = K(s, t)− 1
λ0

∑
ui(s)xi(t)

= (1 + 3st)− 2
( 1√

2
1√
2

+
√

3√
2
s

√
3√
2
t
)

= 0,

and the resolvent of K0(s, t) is, therefore,

R0(s, t;λ) = 0.
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If λ �= 1
2 , then, for each y ∈ L2[−1, 1], equation (44) has a unique solution

x(s) = y(s) + λ

∫ 1

−1

1 + 3st
1− 2λ

y(t) dt.

If λ = 1
2 , then (44) is consistent if and only if∫ 1

−1
y(t) dt = 0,

∫ 1

−1
ty(t) dt = 0,

in which case the general solution is

x(s) = y(s) + c1 + c2s, c1, c2 arbitrary.

Ex. 24. Let

K(s, t) = 1 + s+ 3st, −1 ≤ s, t ≤ 1.

Then λ = 1
2 is the only eigenvalue and

dim N(I − 1
2K) = 1.

An o.n. basis of N(I − 1
2K) is the single vector

x1(s) =
√

3√
2
s, −1 ≤ s ≤ 1.

An o.n. basis of N(I − 1
2K

∗) is

u1(s) =
1√
2
, −1 ≤ s ≤ 1.

The Hurwitz kernel (36) is

K0(s, t) = (1 + s+ 3st)− 2
(

1√
2

√
3√
2
t

)
= 1 + s−

√
3t+ 3st, −1 ≤ s, t ≤ 1.

Compute the resolvent R0 of K0, which is a pseudoresolvent of K.

5. Generalized Inverses of Linear Differential Operators

This section deals with generalized inverses of closed dense operators L ∈
C(S1,S2) with D(L) = S1, where:

(i) S1,S2 are spaces of (scalar or vector) functions which are either the
Hilbert space L2[a, b] or the space of continuous functions C[a, b],
where [a, b] is a given finite real interval. Since C[a, b] is a dense
subspace of L2[a, b], a closed dense linear operator mapping C[a, b]
into S2 may be considered as a dense operator in C(L2[a, b],S2).

(ii) L is defined for all x in its domain D(L) by

Lx = �x, (45)

where � is a differential expression, for example, in the vector case,

�x = A1(t)
d

dt
x + A0(t)x, (46)

where A0(t), A1(t) are n × n matrix coefficients, with suitable
regularity conditions; see, e.g., Ex. 30 below.
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(iii) The domain of L consists of those functions in S1 for which � makes
sense and �x ∈ S2, and which satisfy certain conditions, such as
initial or boundary conditions.

If a differential operator L is invertible and there is a kernel (function, or
matrix in the vector case)

G(s, t), a ≤ s, t ≤ b,

such that, for all y ∈ R(L),

(L−1y)(s) =
∫ b

a

G(s, t)y(t) dt, a ≤ s ≤ b,

then G(s, t) is called the Green function (or matrix ) of L. In this case, for
any y ∈ R(L), the unique solution of

Lx = y (47)

is given by

x(s) =
∫ b

a

G(s, t)y(t) dt, a ≤ s ≤ b. (48)

If L is not invertible, but there is a kernel G(s, t) such that, for any
y ∈ R(L), a particular solution of (47) is given by (48), then G(s, t) is called
a generalized Green function (or matrix ) of L. A generalized Green function
of L is therefore a kernel of an integral operator which is a generalized
inverse of L.

Generalized Green functions were introduced by Hilbert [418] in 1904
and, consequently studied by Myller, Westfall, and Bounitzky [124], Elliott
[251], [252], and Reid [682]; see, e.g., the historical survey in [685].
Exercises

Ex. 25. Derivatives (Hestenes [416, Example 1]). Let:

S = the real space L2[0, π] of real valued functions;
S1 = the absolutely continuous functions x(t), 0 ≤ t ≤ π, whose deriva-

tives x′ are in S; and
S2 = {x ∈ S1 : x′ ∈ S1};

and let L be the differential operator d/dt with

D(L) = {x ∈ S1 : x(0) = x(π) = 0}.
Then:

(a) L ∈ C(S,S), D(L) = S, C(L) = D(L),

R(L) =
{
y ∈ S :

∫ π

0
y(t) dt = 0

}
= R(L).

(b) The adjoint L∗ is the operator −d/dt with

D(L∗) = S1, C(L∗) = S1 ∩R(L), R(L∗) = S.
(c) L∗L = −d2/dt2 with D(L∗L) = {x ∈ S2 : x(0) = x(π) = 0} and

R(L∗L) = S.
(d) LL∗ = −d2/dt2 with D(LL∗) = {x ∈ S2 : x′(0) = x′(π) = 0} and

R(LL∗) = R(L).
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(e) L† is defined on D(L†) = S by

(L†y)(t) =
∫ t

0
y(s) ds− t

π

∫ π

0
y(s) ds, 0 ≤ t ≤ π.

Ex. 26. For L of Ex. 25, determine which of the following equations hold and
interpret your results:

(a) L†∗ = L∗†;
(b) L† = (L∗L)†L∗ = L∗(LL∗)†; and
(c) L†† = L.

Ex. 27. Gradients (Landesman [498, Section 5]). Let:
S = the real space L2([0, π] × [0, π]) of real valued functions x(t1, t2), 0 ≤

t1, t2 ≤ π; and
S1 = the subclass of S with the properties:

(i) x(t1, t2) is absolutely continuous in t1[t2] for almost all t2[t1], 0 ≤
t1, t2 ≤ π; and

(ii) the partial derivatives ∂x/∂t1 , ∂x/∂t2 which exist almost everywhere
are in S;

and let L be the gradient operator

�x =

[
∂x
∂t1
∂x
∂t2

]
with domain

D(L) =
{
x ∈ S1 :

{
x(0, t2) = x(π, t2) = 0 for almost all t2,
x(t1, 0) = x(t1, π) = 0 for almost all t1,

0 ≤ t1, t2 ≤ π
}
.

Then:
(a) L ∈ C(S,S × S), D(L) = S.
(b) The adjoint L∗ is the negative of the divergence operator

�∗y = �∗
[
y1
y2

]
= −∂y1

∂t1
− ∂y2
∂t2

with

D(L∗) = {y ∈ S × S : y ∈ C1}.
(c) L∗L is the negative of the Laplacian operator

L∗L = −
[
∂2

∂t21
+

∂2

∂t22

]
.

(d) The Green function of L∗L is

G(s1, s2, t1, t2)

=
4
π2

∞∑
m,n=1

1
m2 + n2 sin(ms1) sin(ns2) sin(mt1) sin(nt2), 0 ≤ si, tj ≤ π.

(e) If

y =
[
y1
y2

]
∈ S × S,

then

(L†y)(t1, t2) =
2∑

j=1

∫ π

0

∫ π

0

∂

∂sj
G(s1, s2, t1, t2) yj(s1, s2) ds1 ds2.
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Ex. 28. Ordinary linear differential equations with homogeneous boundary con-
ditions. Let
S = the real space L2[a, b] of real valued functions;
Ck[a, b] = the real valued functions on [a, b] with k derivatives and

x(k) =
dkx
dtk
∈ C[a, b];

Sk = {x ∈ Ck−1[a, b] : x(k−1) absolutely continuous, x(k) ∈ S};
and let L be the operator

� =
n∑

i=0

ai(t)
( d
dt

)i
, ai ∈ Ci[a, b], i = 0, 1, . . . , n, (49)

an(t) �= 0, a ≤ t ≤ b,
with domain D(L) consisting of all x ∈ Sn which satisfy

M x̂ = 0, (50)

where M ∈ Rm×2n
m is a matrix with a specific null space N(M) and x̂ ∈ R2n is

the boundary vector

x̂T = [x(a),x′(a), . . . ,x(n−1)(a); x(b),x′(b), . . . ,x(n−1)(b)].

Finally let L̃ be the operator � of (49) with D(L̃) = Sn. Then:

(a) L ∈ C(S,S), D(L) = S.
(b) dim N(L̃) = n = dim N(L̃∗).
(c) N(L) ⊂ N(L̃), N(L∗) ⊂ N(L̃∗), hence dim N(L) ≤ n and

dim N(L∗) ≤ n.
(d) R(L) is closed.
(e) The restriction L0 = L[C(L)] of L to its carrier is a one-to-one mapping

of C(L) onto R(L);

L0 ∈ C(C(L), R(L)).

(f) L−1
0 ∈ B(R(L), C(L)).

(g) L†, the extension of L−1
0 to all of S with N(L†) = R(L)⊥ is bounded

and satisfies

LL†y = PR(L)y, for all y ∈ S,
L†Lx = PN(L)⊥x, for all x ∈ D(L).

For proofs of (a) and (d), see Halperin [369] and Schwartz [733]. The proof of
(e) is contained in Section 2(F), and (f) follows from the closed graph theorem
(Locker [522]).

Ex. 29. For L as in Ex. 28, find the generalized Green function which corre-
sponds to L†, i.e., find the kernel L†(s, t) such that

(L†y)(s) =
∫ b

a

L†(s, t)y(t) dt, for all y ∈ D(L†) = S.

Solution. A generalized Green function of L̃ is (see Coddington and Levinson
[204, Theorem 6.4]),

G̃(s, t) =


n∑

j=1

xj(s) det(Xj(t))
an(t) det(X(t))

, a ≤ t ≤ s ≤ b,
0, a ≤ s ≤ t ≤ b,

(51)

where:
{x1, . . . ,xk} is an o.n. basis of N(L);
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{x1, . . . ,xk,xk+1, . . . ,xn} is an o.n. basis of N(L̃);

X(t) = [x(i−1)
j (t)], i, j = 1, . . . , n;

Xj(t) is the matrix obtained from X(t) by replacing the j th column by
[0, 0, . . . , 0, 1]T .

Since R(L) ⊂ R(L̃) it follows, for any y ∈ R(L), that the general solution of

Lx = y

is

x(s) =
∫ b

a

G̃(s, t)y(t) dt+
n∑

i=1

ci xi(s), ci arbitrary. (52)

Writing the particular solution L†y in the form (52),

L†y = x0 +
n∑

i=1

ci xi, (53)

x0(s) =
∫ b

a

G̃(s, t)y(t) dt,

we determine its coefficients {c1, . . . , cn} as follows:

(a) The coefficients {c1, . . . , ck} are determined by L†y ∈ N(L)⊥, since, by
(53),

〈L†y,xj〉 = 0 =⇒ cj = −〈x0,xj〉, j = 1, . . . , k.

(b) The remaining coefficients {ck+1, . . . , cn} are determined by the bound-
ary condition (50). Indeed, writing (53) as

L†y = x0 +Xc, cT = [c1, . . . , cn],

it follows from (50) that

M x̂0 +MX̂c = 0, where X̂ =
[
X(a)
X(b)

]
. (54)

A solution of (54) is

c = −(MX̂)(1)M x̂0, (55)

where (MX̂)(1) ∈ Rn×m is any {1}-inverse of MX̂ ∈ Rm×n. Now
{x1, . . . ,xk} ⊂ D(L) and, therefore,

MX̂ = [O B], B ∈ R
m×(n−k)
n−k .

Thus, we may use in (55),

(MX̂)(1) =
[
O

B(1)

]
, for any B(1) ∈ B{1},

obtaining

c = −
[
O

B(1)

]
M x̂0,

which uniquely determines {ck+1, . . . , cn}.
Substituting these coefficients {c1, . . . , cn} in (52) finally gives L†(s, t) (Locker
[522]). �
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Ex. 30. The vector case (Reid [685] and [686, Chapter III]). Let Sn and Sk
n

denote the spaces of n-dimensional vector functions whose components belong to
S and Sk, respectively, of Ex. 28. Let L be the differential operator

�x = A1(t)
dx
dt

+A0(t)x, a ≤ t ≤ b, (46)

where A0, A1 are n× n matrix functions satisfying1:

(i) A0(t) is continuous on [a, b];
(ii) A1(t) is continuously differentiable and nonsingular on [a, b];

with domain D(L) consisting of those vector functions x ∈ S1
n which satisfy

M x̂ = 0, (50)

where M ∈ Rm×2n
m is a matrix with a specified null space N(M) and x̂ ∈ R2n is

the boundary vector

x̂ =
[
x(a)
x(b)

]
. (56)

Let L̃ be the differential operator (46) with domain D(L̃) = S1
n. Then:

(a) L ∈ C(Sn,Sn), D(L) = Sn.
(b) The adjoint of L is the operator L∗ defined by

�∗y = − d

dt
(A∗

1(t)y) +A∗
0(t)y (57)

on its domain

D(L∗) = {y ∈ S1
n : y∗(b)x(b)− y∗(a)x(a) = 0 for all x ∈ D(L)} (58)

=
{
y ∈ S1

n : P ∗
[
I O
O −I

]
ŷ = 0 for any P ∈ R

(2n−m)×2n
2n−m with MP = O

}
.

(c) dim N(L̃) = n.
(d) Let

k = dim N(L) and k∗ = dim N(L∗).

Then

max {0, n−m} ≤ k ≤ min {n, 2n−m}

and

k +m = k∗ + n.

(e) R(L) = N(L∗)⊥, R(L∗) = N(L)⊥,
hence both R(L) and R(L∗) are closed.

(f) Let

X(t) = [x1(t), . . . ,xn(t)]

be a fundamental matrix of L̃, i.e., let the vectors {x1, . . . ,xn} form a
basis of N(L̃). Then

G̃(s, t) = 1
2 sign(s− t)X(s)X(t)−1 (59)

is a generalized Green matrix of L̃.

1Weaker regularity conditions will do; see, e.g., Reid [684] and [686, Chapter III].
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(g) Let (MX̂)(1) be any {1}-inverse of MX̂ where X̂ =
[
X(a)
X(b)

]
. Then

G(s, t) = 1
2X(s)

(
sign(s− t)I − (MX̂)(1)M

[
I O
O −I

]
X̂

)
X(t)−1 (60)

is a generalized Green matrix of L.
Proof of (g). For any y ∈ R(L), the general solution of

Lx = y (47)

is

x(s) =
∫ b

a

G̃(s, t)y(t) dt+
n∑

i=1

cixi(s) (52)

or

x = x0 +Xc, cT = [c1, . . . , cn],

and from (50) it follows that

c = −(MX̂)(1)M x̂0 (55)

and (60) follows by substituting (55) in (52). �
Ex. 31. The differential expression

� x =
n∑

i=1

ai(t)
dix

dti
, x scalar function, (49)

is a special case of

�x = A1(t)
dx
dt

+A0(t)x, x vector function. (46)

Ex. 32. The class of all generalized Green functions (Reid [684]). Let L be as
in Ex. 30 and let X0(t) and Y0(t) be n × k and n × k∗ matrix functions whose
columns are bases of N(L) and N(L∗), respectively. Then a kernel H(s, t) is a
generalized Green matrix of L if and only if

H(s, t) = G(s, t) +X0(s)A∗(t) +B(s)Y ∗
0 (t), (61)

where G(s, t) is any generalized Green matrix of L (in particular (60)), and A(t)
and B(s) are n× k and n× k∗ matrix functions which are Lebesgue measurable
and essentially bounded.

Ex. 33. (Reid [684]). Let X0(t) and Y0(t) be as in Ex. 32. If Θ(t) and Ψ(t)
are Lebesgue measurable and essentially bounded matrix functions such that the
matrices ∫ b

a

Θ∗(t)X0(t) dt,
∫ b

a

Y ∗
0 (t)Ψ(t) dt,

are nonsingular, then L has a unique generalized Green function GΘ,Ψ such that∫ b

a

Θ∗(s)G(s, t) ds = O,

∫ b

a

G(s, t) Ψ(t) dt = O, a ≤ s, t ≤ b. (62)

Thus the generalized inverse determined by GΘ,Ψ has null space spanned by the
columns of Ψ and range which is the orthogonal complement of the columns of
Θ. Compare with Section 2.6.
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Ex. 34. Existence and properties of L† (Loud [524], [525]). If in Ex. 33 we take

Θ = X0, Ψ = Y0,

then we get a generalized inverse of L which has the same range and null space
as L∗. This generalized inverse is the analog of the Moore–Penrose inverse of L
and will likewise be denoted by L†.

Show that L† satisfies the four Penrose equations (1.1)–(1.4) as far as can be
expected:

(a) LL†L = L;
(b) L†LL† = L†;
(c) LL† = PR(L);

(LL†)∗ = PR(L) on D(L∗);
(d) L†L = PR(L∗) on D(L); and

(L†L)∗ = PR(L∗).

Ex. 35. Loud’s construction of L† (Loud [525]). Just as in the matrix case (see
Theorem 2.12(c) and Ex. 2.38) it follows here that

L† = PR(L∗)GPR(L), (63)

where G is any generalized Green matrix.
In computing PR(L∗) and PR(L) we use Ex. 30(e) to obtain

PR(L∗) = I − PN(L), PR(L) = I − PN(L∗). (64)

Here PN(L) and PN(L∗) are integral operators of the first kind with kernels

KN(L) = X0(s)
(∫ b

a

X∗
0 (u)X0(u) du

)−1
X∗

0 (t) (65)

and

KN(L∗) = Y0(s)
(∫ b

a

Y ∗
0 (u)Y0(u) du

)−1
Y ∗

0 (t), (66)

respectively, where X0 and Y0 are as in Ex. 32.
Thus, for any generalized Green matrix G(s, t), L† has the kernel

L†(s, t) = G(s, t)−
∫ b

a

KN(L)(s, u)G(u, t) du−
∫ b

a

G(s, u)KN(L∗)(u, t) du

+
∫ b

a

∫ b

a

KN(L)(s, u)G(u, v)KN(L∗)(v, t) du dv. (67)

Ex. 36. (Loud [525, pp. 201–202]). Let L be the differential operator given by

�x = x′ −B(t)x, 0 ≤ t ≤ 1,

with boundary conditions

x(0) = x(1) = 0.

Then the adjoint L∗ is given by

�∗ y = −y′ −B(t)∗y

with no boundary conditions.
Let X(t) be a fundamental matrix for

�x = 0.
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Then X(t)∗−1 is a fundamental matrix for

�∗ y = 0.

Now N(L) = {0} and therefore KN(L) = O. Also, N(L∗) is spanned by the
columns of X(t)∗−1 so, by (66),

KN(L∗)(s, t) = X(s)∗−1
(∫ 1

0
X(u)X(u)∗−1 du

)
X(t)−1. (68)

A generalized Green matrix for L is

G(s, t) =
{
X(s)X(t)−1, 0 ≤ s < t ≤ 1,
O, 0 ≤ t < s ≤ 1. (69)

Finally, by (67),

L†(s, t) = G(s, t)−
∫ 1

0
G(s, u)KN(L∗)(u, t) du,

with G and KN(L∗) given by (69) and (68), respectively.

6. Minimal Properties of Generalized Inverses

In this section, which is based on Erdélyi and Ben-Israel [265], we de-
velop certain minimal properties of generalized inverses of operators be-
tween Hilbert spaces, analogous to the matrix case studied in Chapter 3.

Definition 4. Let T ∈ L(H1,H2) and consider the linear equation

Tx = y. (70)

If the infimum

‖Tx′ − y‖ = inf
x∈D(T )

‖Tx− y‖ (71)

is attained by a vector x′ ∈ D(T ), then x′ is called an extremal solution of
(70). Among the extremal solutions there may exist a unique vector x0 of
least norm

‖x0‖ < ‖x′‖,
for all extremal solutions x′ �= x0. Then x0 is called the least extremal
solution.

Other names for extremal solutions are virtual solutions (Tseng [820])
and approximate solutions.

Example 37 shows that extremal solutions need not exist. Their exis-
tence is characterized in the following theorem:

Theorem 5. Let T ∈ L(H1,H2) . Then

Tx = y (70)

has an extremal solution if and only if

P
R(T )y ∈ R(T ). (72)

Proof. For every x ∈ D(T ),

‖Tx− y‖2 = ‖PR(T ) (Tx− y)‖2 + ‖PR(T )⊥(Tx− y)‖2

= ‖PR(T ) (Tx− y)‖2 + ‖PR(T )⊥y‖2.
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Thus

‖Tx− y‖ ≥ ‖PR(T )⊥y‖, for all x ∈ D(T ),

with equality if and only if

Tx = PR(T ) y. (73)

Clearly,

inf
x∈D(T )

‖Tx− y‖ = PR(T ) y, (74)

which is attained if and only if (73) is satisfied for some x ∈ D(T ). �
See also Ex. 44.

The existence of extremal solutions does not guarantee the existence
of a least extremal solution; see, e.g., Ex. 39. Before settling this issue we
require

Lemma 4. Let x′ and x′′ be extremal solutions of (70). Then:
(a) PN(T )⊥x′ = PN(T )⊥x′′; and
(b) P

N(T ) x
′ ∈ N(T ) if and only if P

N(T ) x
′′ ∈ N(T ).

Proof. (a) From (73),

Tx′ = Tx′′ = PR(T )y

and, hence,

T (x′ − x′′) = 0, (75)

proving (a).
(b) From (75),

x′ − x′′ = PN(T ) (x′ − x′′)

and then

PN(T ) x
′ = PN(T ) x

′′ + (x′ − x′′),

proving (b). �
The existence of the least extremal solution is characterized in the

following:
Theorem 6 (Erdélyi and Ben-Israel [265]). Let x be an extremal so-

lution of (70). There exists a least extremal solution if and only if

PN(T )x ∈ N(T ), (76)

in which case, the least extremal solution is

x0 = PN(T )⊥x. (77)

Proof. Let x′ be an extremal solution of (70). Then

‖x′‖2 = ‖PN(T ) x
′‖2 + ‖PN(T )⊥x′‖2

= ‖PN(T ) x
′‖2 + ‖PN(T )⊥x‖2, by Lemma 4,

proving that

‖x′‖ ≥ ‖PN(T )⊥x‖
with equality if and only if

PN(T ) x
′ = 0. (78)
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If : Let condition (76) be satisfied and define

x0 = x− PN(T ) x.

Then x0 is an extremal solution since

Tx0 = Tx.

Also

PN(T ) x0 = 0,

which, by (78), proves that x0 is the least extremal solution.
Only if : Let x0 be the least extremal solution of (70). Then, by (78),

x0 = PN(T ) x0 + PN(T )⊥x0 = PN(T )⊥x,

and hence

x0 = x− PN(T ) x.

But

Tx0 = Tx,

since both x0 and x are extremal solutions and, therefore,

TPN(T ) = 0,

proving (76). �
As in the matrix case (see Corollary 3.3, p. 109), here too a unique

generalized inverse is characterized by the property that it gives the least
extremal solution whenever it exists. We define this inverse as follows:

Definition 5. Let T ∈ L(H1,H2), let

C(T ) = D(T ) ∩N(T )⊥, (2)

B(T ) = D(T ) ∩N(T ), (79)

and let A(T ) be a subspace satisfying

D(T ) = A(T )⊕ (
B(T )

⊥⊕ C(T )
)
. (80)

(Examples 42 and 43 below show that, in the general case, this complicated
decomposition cannot be avoided.) Let

G0 = {{x, Tx} : x ∈ C(T )}, G1 = G(T )⊥ ∩H0,2 = J2R(T )⊥.

The extremal inverse of T , denoted by T †
e , is defined by its inverse graph

G0 + G1 = {{x, Tx + z} : x ∈ C(T ), z ∈ R(T )⊥}.
The following properties of T †

e are easy consequences of the above con-
struction:

Theorem 7 (Erdélyi and Ben-Israel [265]). Let T ∈ L(H1,H2). Then:

(a) D(T †
e ) = T (C(T ))

⊥⊕R(T )⊥ and, in general, R(T ) �⊂ D(T †
e ).

(b) R(T †
e ) = C(T ).

(c) N(T †
e ) = R(T )⊥.

(d) TT †
e y = P

R(T ) y, for all y ∈ D(T †
e ).
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(e) T †
e Tx = P

R(T †
e )

x, for all x ∈ N(T )
⊥⊕ C(T ). �

See also Exs. 40–41 below.
The extremal inverse T †

e is characterized in terms of the least extremal
solution, as follows:

Theorem 8 (Erdélyi and Ben-Israel [265]). The least extremal solution
x0 of (70) exists if and only if

y ∈ D(T †
e ), (81)

in which case

x0 = T †
e y. (82)

Proof. Assume (81). By Theorem 7(a),

PR(T ) y = y0 ∈ T (C(T )) ⊂ R(T ),

and, by Theorem 5, extremal solutions do exist. Let x0 be the unique vector in
C(T ) such that

PR(T ) y = y0 = Tx0.

Then, by Theorem 3(a), (c), and (e),

T †
e y = T †

e y0 = T †
e Tx0 = x0,

and, by Theorem 3(d),

‖Tx0 − y‖ = ‖TT †
e y − y‖ = ‖PR(T ) y − y‖ = ‖PR(T )⊥y‖,

which, by (74), shows that x0 is an extremal solution. Since

x0 ∈ R(T †
e ) ⊂ N(T )⊥,

it follows, from Lemma 4, that

x0 = PN(T )⊥x

for any extremal solution x of (70). By Theorem 6, x0 is the least extremal
solution.

Conversely, let x0 be the least extremal solution whose existence we assume.
By Theorem 2, x0 ∈ C(T ), and, by Theorem 3(e),

T †
e Tx0 = x0.

Since x0 is an extremal solution, it follows from (73) that

Tx0 = PR(T ) y ∈ T (C(T ))

and, therefore,

x0 = T †
e Tx = T †

ePR(T ) y

= T †
e y. �

If N(T ) is closed then T †
e coincides with the maximal Tseng inverse

T †. Thus, for closed operators and, in particular, for bounded operators,
T †

e should be replaced by T † in the statement of Theorem 8.



360 9. GENERALIZED INVERSES OF LINEAR OPERATORS

Exercises
Ex. 37. A linear equation without extremal solution. Let T and y be as in Ex. 7.
Then

Tx = y

has no extremal solutions.

Ex. 38. It was noted in Ex. 8 that, in general, the Fredholm integral operator
of the first kind has a nonclosed range. Consider the kernel

G(s, t) =
{
s(1− t), 0 ≤ s ≤ t ≤ 1,
t(1− s), 0 ≤ t ≤ s ≤ 1,

which is a generalized Green function of the operator

− d2

dt2
, 0 ≤ t ≤ 1.

Let T ∈ B(L2[0, 1], L2[0, 1]) be defined by

(Tx)(s) =
∫ 1

0
G(s, t)x(t) dt.

Show that there exists a y ∈ L2[0, 1] for which

Tx = y

has no extremal solution.

Ex. 39. An equation without a least extremal solution. Consider the unbounded
functional on L2[0,∞],

Tx =
∫ ∞

0
tx(t) dt

discussed in Ex. 2. Then the equation

Tx = 1

is consistent, and each of the functions

xn(t) =
{

1/nt, 1 ≤ t ≤ n+ 1,
0, otherwise,

is a solution, n = 1, 2, . . . . Since

‖xn‖2 =
∫ n+1

1

1
(nt)2

dt =
1

n(n+ 1)
→ 0,

there is no extremal solution of least norm.

Ex. 40. Properties of (T †
e )†. By Theorem 7(a) and (c), it follows that D(T †

e )
is decomposable with respect to N(T †

e ). Thus T †
e has a maximal Tseng inverse,

denoted by T ††
e . Some of its properties are listed below:

(a) G(T ††
e ) = {{x + z, Tx} : x ∈ C(T ), z ∈ C(T )⊥}.

(b) D(T ††
e ) = C(T )

⊥⊕ C(T )⊥.
(c) R(T ††

e ) = T (C(T )).
(d) N(T ††

e ) = C(T )⊥.

Ex. 41. Let T ∈ L(H1,H2) and let

D0(T ) = N(T )
⊥⊕ C(T ).

Then:

(a) D(T ††
e ) = C(T )

⊥⊕N(T )
⊥⊕D0(T )⊥, a refinement of Ex. 40(b).

(b) D0(T ) ⊂ D(T ) ∩D(T ††
e ) and T[D0(T )] = (T ††

e )[D0(T )].
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(c) T ††
e is an extension of T if and only ifD(T ) is decomposable with respect

to N(T ), in which case T ††
e is an extension by zero to N(T )

⊥⊕D(T )⊥.

Ex. 42. An example of A(T ) �= {0}, A(T ) ⊂ D(T ††
e ). Let T be the operator

defined in Ex. 4. Then,

B(T ) = D(T ) ∩N(T ) = D ∩ (D ∩ F ) = D ∩ F
= N(T ),

and C(T ) = {0}, showing that

A(T ) �= {0}, by (80).

Thus

A(T ) = A, of Ex. 4,

and

D(T †
e ) = A⊥ = N(T †

e ).

Finally, from C(T )⊥ = H,

D(T ††
e ) = H ⊃ A

with

N(T ††
e ) = H.

Ex. 43. An example of A(T ) �= {0}, A(T )∩D(T ††
e ) = {0}. Let H be a Hilbert

space and let M,N be subspaces of H such that

M �= M, N �= N ⊂M⊥.

Let x ∈ (X\Y ) denote x ∈ X, x �∈ Y . Choose

y ∈M \M and z ∈M⊥\(N ⊥⊕ (N⊥ ∩M⊥)),

let

x = y + z

and

D = M ⊕N ⊕ [x]

where [x] is the line spanned by x. Define T ∈ L(H,H) on D(T ) = D by

T (u + v + αx) = v + αx, u ∈M, v ∈ N, αx ∈ [x].

Then

C(T ) = N, N(T ) = M, A(T ) = [x],

and

x �∈ D(T ††
e ).
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Ex. 44. (Tseng [820]; see also Holmes [427, Section 35]). Let T ∈ B(H1,H2).
Then

Tx = y (70)

has an extremal solution if and only if there is a positive scalar β such that

|〈y, z〉|2 ≤ β〈z, AA∗z〉, for every z ∈ N(AA∗)⊥.

Ex. 45. (Minamide and Nakamura [557]). Let T ∈ B(H1,H2), S ∈ B(H1,H3)
be normally solvable, and let

TS = T[N(S)]

denote the restriction of T to N(S). If TS is also normally solvable, then T †
S is

called the N(S)-restricted pseudoinverse of T . It is the unique solution X of the
following five equations

SX = O,

XTX = X,

(TX)∗ = TX,

TXT = T on N(S),

PN(S)(XT )∗ = XT on N(S).

Ex. 46. (Minamide and Nakamura [557]). Let T, S, and T †
S be as in Ex. 45.

Then, for any y0 ∈ H2 and z0 ∈ R(S), the least extremal solution of

Tx = y0

subject to

Sx = z0

is given by

x0 = T †
S (y0 − TS†z0) + S†z0.

Ex. 47. (Porter and Williams [647]). Let H1,H2,H3 be Hilbert spaces, let
T ∈ B(H1,H2) with R(T ) = H2, and let S ∈ B(H1,H3). For any y ∈ H2, there
is a unique x0 ∈ H1 satisfying

Tx = y (70)

and which minimizes the functional

‖Sx‖2 + ‖x‖2

over all solutions of (70). This x0 is given by

x0 = (I + S∗S)−1T †y0

where y0 is the unique vector in H2 satisfying

y = T (I + S∗S)−1T †y0.
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Ex. 48. (Porter and Williams [647]). Let H1,H2,H3, T , and S be as above.
Then, for any y ∈ H2,x1 ∈ H1, and y1 ∈ H2, there is a unique x0 ∈ H1 which is
a solution of

Tx = y (70)

and which minimizes

‖Sx− y1‖2 + ‖x− x1‖2

from among all solutions of (70). This x0 is given by

x0 = (I + S∗S)−1(T †y0 + x0 + S∗y1)

where y0 is the unique vector in H2 satisfying

y = T (I + S∗S)−1(T †y0 + x1 + S∗y1).

7. Series and Integral Representations and Iterative
Computation of Generalized Inverses

Direct computational methods, in which the exact solution requires a
finite number of steps (such as the elimination methods of Sections 7.2–
7.4) cannot be used, in general, for the computation of generalized inverses
of operators. The exceptions are operators with nice algebraic properties,
such as the integral and differential operators of Exs. 18–36 with their finite-
dimensional null spaces. In the general case, the only computable represen-
tations of generalized inverses involve infinite series, or integrals, approx-
imated by suitable iterative methods. Such representations and methods
are sampled in this section, based on Showalter and Ben-Israel [756], where
the proofs, omitted here, can be found.

To motivate the idea behind our development consider the problem of
minimizing

f(x) = 〈Ax− y, Ax− y〉, (83)

where A ∈ B(H1,H2) and H1,H2 are Hilbert spaces.
Treating x as a function x(t), t ≥ 0, with x(0) = 0, we differentiate

(83):
d
dt f(x) = 2�〈Ax− y, Aẋ〉, ẋ = d

dtx,

= 2�〈A∗(Ax− y), ẋ〉 (84)

and setting

ẋ = −A∗(Ax− y), (85)

it follows from (84) that

d
dt f(x) = −2‖A∗(Ax− y)‖2 < 0. (86)

This version of the steepest descent method, given in Rosenbloom [713],
results in f(x(t)) being a monotone decreasing function of t, asymptot-
ically approaching its infimum as t → ∞. We expect x(t) to approach
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asymptotically A†y so, by solving (85),

x(t) =
∫ t

0
exp{−A∗A(t− s)}A∗y ds (87)

and observing that y is arbitrary we get

A† = lim
t→∞

∫ t

0
exp{−A∗A(t− s)}A∗ ds (88)

which is the essence of Theorem 9 below.
Here as elsewhere in this section, the convergence is in the strong op-

erator topology. Thus the limiting expression

A† = lim
t→∞ B(t) or B(t)→ A† or t→∞ (89)

means that, for all y ∈ D(A†),

A†y = lim
t→∞ B(t)y

in the sense that

lim
t→∞ ‖(A

† −B(t))y‖ = 0. (90)

A numerical integration of (85) with a suitably chosen step size similarly
results in

A† =
∞∑

k=0

(I − αA∗A)kαA∗, (91)

where

0 < α <
2
‖A‖2 , (92)

which is the essence of Theorem 10 below.
In statements like (90) it is necessary to distinguish between points

y ∈ H2 relative to the given A ∈ B(H1,H2). Indeed, the three cases where
P

R(A) y lies in R(AA∗), (R(A)\R(AA∗)), or (R(A)\R(A)), have different
rates of convergence in (90). We abbreviate these cases as follows:

(y ∈ I) means PR(A) y ∈ R(AA∗),

(y ∈ II) means P
R(A) y ∈ (R(A)\R(AA∗)), (93)

(y ∈ III) means P
R(A) y ∈ (R(A)\R(A)).

We note that A†y is not defined for (y ∈ III), a case which is impossible if
R(A) is closed.

Theorem 9 (Showalter and Ben-Israel [756]). Let A ∈ B(H1,H2) and
define, for t ≥ 0,

L1(t) =
∫ t

0
exp{−A∗A(t− s)} ds,

L2(t) =
∫ t

0
exp{−AA∗(t− s)} ds, (94)

B(t) = L1(t)A∗ = A∗L2(t).



7. SERIES REPRESENTATIONS AND ITERATIVE COMPUTATION 365

Then:

(a) ‖(A† −B(t))y‖2 ≤ ‖A†y‖2‖(AA∗)†y‖2
‖(AA∗)†y‖2 + 2‖A†y‖2t

if (y ∈ I) and t ≥ 0.
(b) ‖(A† −B(t))y‖2 is a decreasing function of t ≥ 0,

with limit zero as t→∞, if (y ∈ II).

(c) ‖(P
R(A) −AB(t))y‖2 ≤ ‖y‖2‖A†y‖2

‖A†y‖2 + 2‖y‖2t
if (y ∈ I) or (y ∈ II), and t ≥ 0.

(d) ‖(P
R(A) −AB(t))y‖2 is a decreasing function of t ≥ 0,

with limit zero as t→∞, if (y ∈ III). �
Note that even though A†y is not defined for (y ∈ III), still

AB(t)→ P
R(A), as t→∞.

The discrete version of Theorem 9 is the following theorem:
Theorem 10 (Showalter and Ben-Israel [756]). Let A ∈ B(H1,H2),

let c be a real number, 0 < c < 2, and let

α =
c

‖A‖2 .

For any y ∈ H2 define

x = T †y, if (y ∈ I) or (y ∈ II),

and define the sequence

y0 = 0, x0 = 0,

(y − yN+1) = (I − αAA∗) (y − yN ), if (y ∈ I) or (y ∈ II) or (y ∈ III),

(x− xN+1) = (I − αA∗A) (x− xN ), if (y ∈ I) or (y ∈ II),
N = 1, 2, . . .

Then the sequence

BN =
N∑

k=0

(I − αA∗A)kαA∗, N = 0, 1, . . . (95)

converges to A† as follows:

(a) ‖(A† −BN )y‖2 ≤ ‖A†y‖2‖(AA∗)†y‖2
‖(AA∗)†y‖2 + N [(2− c)c/‖A‖2]‖A†y‖2

if (y ∈ I) and N = 1, 2, . . . .
(b) ‖(A† −BN )y‖2 = ‖x− xN‖2

converges monotonically to zero if (y ∈ II).

(c) ‖(P
R(A)−ABN

y‖2 ≤ ‖y‖2‖A†y‖2
‖A†y‖2 + N [(2− c)c/‖A‖2]‖y‖2

if (y ∈ I) or (y ∈ II) and N = 1, 2, . . . .
(d) ‖(P

R(A)−ABN
y‖2 = ‖y − yN‖2 converges monotonically to zero

if (y ∈ III). �
The convergence BN → A†, in the uniform operator topology, was

established by Petryshyn [641], restricting A to have closed range.
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As in the matrix case, studied in Section 7.7, higher-order iterative
methods are more efficient means of summing the series (91) than the first-
order method (95). Two such methods, of order p ≥ 2, are given in the
following:

Theorem 11 (Showalter and Ben-Israel [756]). Let A, α, and {BN :
N = 0, 1, . . . } be as in Theorem 10. Let p be an integer

p ≥ 2

and define the sequences {CN,p} and {DN,p} as follows:

C0,p = αA∗, CN+1,p = CN,p

p−1∑
k=0

(I −ACN,p)k, (96)

D0,p = αA∗, DN+1,p = DN,p

p∑
k=0

(
p

k

)
(−ADN,p)k−1. (97)

Then, for all N = 0, 1, . . . ,

B(pN+1−1) = CN+1,p = DN+1,p. (98)

�
Consequently {CN,p} and {DN,p} are p th-order iterative methods for

computing A†, with the convergence rates established in Theorem 10; e.g.,

‖(A† − CN,p)y‖2 ≤ ‖A†y‖2‖(AA∗)†y‖2
‖(AA∗)†y‖2 + (pN − 1)[(2− c)c/‖A‖2]‖A†y‖2 ,

if (y ∈ I) and N = 1, 2, . . . .

The series (96) is somewhat simpler to use if the term (I − ACN,p)k can
be evaluated by only k− 1 operator multiplications, e.g., for matrices. The
form (97) is preferable otherwise, e.g., for integral operators.
Exercises

Ex. 49. (Zlobec [892]). Let A ∈ B(H1,H2) have closed range, let b ∈ H2, and
let2 B ∈ R(A∗, A∗). Then the sequence

xk+1 = xk −B(Axk − b), k = 0, 1, . . . , (99)

converges to A†b for all x0 ∈ R(A∗) if

ρ(PR(A∗) −BA) < 1,

where ρ(T ) denotes the spectral radius of T ; see, e.g., Taylor [800, p. 262].
The choice B = αA∗ in (99) reduces it to the iterative method (95). Other

choices of B are given in the following exercise:

Ex. 50. Splitting methods (Zlobec [892], Berman and Neumann [89], Berman
and Plemmons [90]). Let A be as in Ex. 49, and write

A = M +N, (100)

where M ∈ B(H1,H2) has closed range and N(A) = N(M). Choosing

B = wM†, w �= 0,

2For S, T ∈ B(H1,H2) with closed ranges, R(S, T ) = {Z : Z = SWR for some W ∈
B(H2,H1)}.
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in (99) gives

xk+1 = [(1− w)I − wM†N ]xk + wM†b, x0 ∈ R(A∗), (101)

in particular, for w = 1,

xk+1 = −M†N xk +M†b, x0 ∈ R(A∗). (102)

8. Frames

This section is based on Christensen [194] and Daubechies [213, Chapter
3].

Let H be a separable Hilbert space. A basis of H is a set {fn} ⊂ H
such that every f ∈ H is represented as

f =
∑

n

cnfn (103)

with unique scalar coefficients {cn}. A basis is unconditional if (103) con-
verges unconditionally for all f ∈ H. Unconditional bases are generalized
as follows:

Definition 6. (Duffin and Schaeffer [244, p. 358]). A sequence {fn} ⊂
H is:

(a) a frame for H, if there exist constants A, B > 0 such that

A‖f‖2 ≤
∑
|〈f , fn〉|2 ≤ B‖f‖2, for all f ∈ H; (104)

(b) a Bessel sequence if there is a B > 0 such that the upper bound
holds in (104).

Consider the mapping T : �2 → H given by

T : {cn} →
∑

n

cnfn. (105)

{fn} is a Bessel sequence if and only if T is a well-defined operator from �2

into H, in which case T is bounded, and its adjoint is

T ∗ : H → �2, T ∗f = {〈f , fn〉}, [194, Lemma 2.2]. (106)

If {fn} is a frame, its frame operator S : H → H is S = TT ∗, or

Sf = TT ∗f =
∑
〈f , fn〉fn. (107)

S is bounded and surjective, [411], allowing the representation

f = SS−1f =
∑
〈f , S−1fn〉fn, ∀f ∈ H, (108)

see [194, Theorem 2.4]. The coefficients 〈f , S−1fn〉 are not unique, however
(108) converges unconditionally, showing frames to be generalizations of
unconditional bases (uniqueness lost).

The following proof uses generalized inverses:

Theorem 12 (Christensen [194], Theorem 2.5). A sequence {fn} ⊂ H
is a frame if and only if T is a well defined operator from �2 onto H.
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Proof. Only if : Let {fn} be a frame. Then T is a bounded operator from �2

into H (since {fn} is a Bessel sequence) and T is surjective since S is.
If : Let T be a well-defined operator from �2 onto H. Therefore {fn} is a

Bessel sequence. Let N(T )⊥ be the orthogonal complement of N(T ), the kernel
of T , and let T̃ = T[N(T )⊥] : N(T )⊥ → H be the restriction of T to N(T )⊥. T̃ is
clearly bounded and bijective and, therefore, has a bounded inverse T † = T̃−1 :
H → N(T )⊥. Writing a decomposition of T †f , f ∈ H, as T †f = {(T †f)n}, we
have

f = TT †f =
∑

(T †f)nfn. (109)

∴ ‖f‖4 = 〈f , f〉2 = |〈
∑

(T †f)nfn, f〉|2

≤
∑
|(T †f)n|2

∑
|〈f , fn〉|2 ≤ ‖T †‖2‖f‖2

∑
|〈f , fn〉|2.

∴
∑
|〈f , fn〉|2 ≥ ‖f‖2

‖T †‖2 , ∀ f ∈ H,

establishing the lower bound

A =
1

‖T †‖2 =
1

‖S−1‖ , (110)

needed in (104) to make {fn} a frame. �
The bound (110) was shown in [192] to be optimal.
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APPENDIX A

The Moore of the Moore–Penrose Inverse

1. Introduction

This Appendix is based on [76].
E.H. Moore (1862–1932) introduced and studied the general reciprocal

during the decade 1910–1920. He stated the objective as follows:
“The effectiveness of the reciprocal of a non–singular finite matrix
in the study of properties of such matrices makes it desirable to
define if possible an analogous matrix to be associated with each
finite matrix κ12 even if κ12 is not square or, if square, is not
necessarily non–singular.” [576, p. 197].

Moore constructed the general reciprocal, established its uniqueness and
main properties, and justified its application to linear equations. This work
appears in [575], [576, Part 1, pp. 197–209].

The general reciprocal was rediscovered by R. Penrose [635] in 1955 and
is, nowadays, called the Moore–Penrose inverse. It had to be rediscovered
because Moore’s work was sinking into oblivion even during his lifetime: it
was much too idiosyncratic and used unnecessarily complicated notation,
making it illegible for all but very dedicated readers.

Much of Moore’s work is today of interest only for historians. One of
the exceptions is his work on the general reciprocal, that may still interest,
and benefit, mathematical researchers. It is summarized below, and – where
necessary – restated in plain English and modern notation.

To illustrate the difficulty of reading the original Moore, and the need
for translation, here is a theorem from [576, Part 1, p. 202].

(29.3) Theorem.

UC B1 II B2 II κ12·) ·
∃ |λ21 type M2

κ∗ M
1
κ � ·S2 κ12 λ21 = δ11

M1
κ
· S1 λ21 κ12 = δ22

M2
κ∗

.

One symbol needs explanation: U stands for the number system used
throughout and UC denotes a number system of type C, that is, a quasi–
field with a conjugate and an order relation, see [576, Part 1, p. 174] for
details. All results below are for type C number systems, so this assumption
will not be repeated. The rest of the theorem, in plain English, is:

(29.3) Theorem. For every matrix A there exists a unique matrix X :
R(A)→ R(AH) such that

AX = PR(A), XA = PR(AH). �
The plan of this appendix:
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Section 2 summarizes the results of Moore’s lecture to the American
Mathematical Society in 1920 [575].

Section 3 is a translation of the main results in [576, Part 1, pp. 197–
209].

2. The 1920 Lecture to the American Mathematical Society

This is an abstract of a lecture given by E.H. Moore at the Fourteenth West-
ern Meeting of the American Mathematical Society, held at the University
of Chicago in April 9–10, 1920. There were 19 lectures in two afternoons;
only the abstracts, written by Arnold Dresden (Secretary of the Chicago
Section) appear in the Bulletin. Dresden writes

“In this paper Professor Moore calls attention to a useful extension
of the classical notion of the reciprocal of a nonsingular square
matrix.” [575, p. 394].

The details: Let A be any m × n complex matrix. Then there exists a
unique n×m matrix A†, the reciprocal of A, such that:

(1) the columns of A† are linear combinations of the conjugate of the
rows of A;

(2) the rows of A† are linear combinations of the conjugate of the
columns of A; and

(3) AA†A = A.

The relation between A and A† is mutual: A is the reciprocal of A†, viz.:

(4) the columns of A are linear combinations of the conjugates of rows
of A†;

(5) the rows of A are linear combinations of the conjugates of columns
of A†; and

(6) A†AA† = A†.

If A is of rank r, then A† is given explicitly as follows:

(r ≥ 2):

A†[j1, i1] =

∑
i2<···<ir
j2<···<jr

A

(
i2 · · · ir
j2 · · · jr

)
A

(
i1 i2 · · · ir
j1 j2 · · · jr

)
∑

k1<···<kr
�1<···<�r

A

(
k1 · · · kr

�1 · · · �r

)
A

(
k1 · · · kr

�1 · · · �r

) ;

(r = 1):

A†[j, i] =
A[i, j]∑

k�

A[k, �]A[k, �]
;

(r = 0):

A†[j, i] = 0 ;
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where A

(
g1 · · · gk

h1 · · ·hk

)
denotes the determinant of the k × k matrix with

elements A[gi, hj ] and x denotes the conjugate of x.
The linear combinations of the columns of A (A†) are the linear com-

binations of the rows of A† (A) and constitute the m–dimensional vectors
y (n–dimensional vectors x) of an r–dimensional subspace M (N) of Cm

(Cn). Let M (N) denote the conjugate space of the conjugate vectors y (x).
Then the matrices A, A† establish one-to-one linear vector correspondences
between the spaces M, M and the respective subspaces N, N ; y = Ax is
equivalent to x = A†y and x = yA is equivalent to u = vA†.

3. The General Reciprocal in General Analysis

The centerpiece of Moore’s work on the general reciprocal is Section 29
of [576], his treatise on General Analysis, edited by R.W. Barnard and
published posthumously. These results were since rediscovered, some more
than once.

For a matrix A denote:
AH the conjugate transpose of A; and
R(A) the range of A.

For index sets I, J :
AI∗ or A[I, ∗] the submatrix of rows indexed by I;
A∗J or A[∗, J ] the submatrix of columns indexed by J ; and
AIJ the submatrix of A with rows in I and columns in J .

If A is nonsingular, its inverse A−1 satisfies,

AX = I, XA = I.

Moore begins by introducing generalized identity matrices (orthogonal
projectors) to replace the identity matrices above. This is done in Lemma
(29.1)(5) and (6), and Theorem (29.2). The general reciprocal is then con-
structed in Theorems (29.3) and (29.4), and its properties are studied in
the sequel.

(29.1) Lemma. Let A be a non–zero m× n matrix, and let AIJ be a max-
imal nonsingular submatrix of A.

(1) AH
∗JA∗J is Hermitian and PD1.

(2)
(
AH

∗JA∗J

)−1 is Hermitian and PD.
(3) AI∗AH

I∗ is Hermitian and PD.
(4)

(
AI∗AH

I∗
)−1 is Hermitian and PD.

(5) PR(A) := A∗J

(
AH

∗JA∗J

)−1
AH

∗J ,
the generalized identity on R(A).

(6) PR(AH) := AH
I∗

(
AI∗AH

I∗
)−1

AI∗,
the generalized identity on R(AH).

(7) PR(A)x = x for all x ∈ R(A).
(8) xHPR(A) = xH for all x ∈ R(A).
(9) PR(AH)x = x for all x ∈ R(AH).

1Moore calls it proper (i.e., the determinants of all principal minors are nonzero),
positive (i.e., the corresponding quadratic form is nonnegative) and Hermitian.
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(10) xHPR(AH) = xH for all x ∈ R(AH).

(11) Let X := AH
I∗

(
AI∗AH

I∗
)−1

AIJ

(
AH

∗JA∗J

)−1
AH

∗J

= AH
I∗

(
AH

I∗AI∗
)−1

PR(A)[I, ∗]
= PR(A∗)[∗, J ]

(
AH

∗JA∗J

)−1
AH

∗J ,
the general reciprocal of A.

(12) X maps R(AH) onto R(A).
(13) AX = PR(A).
(14) XA = PR(AH). �

(29.2) Theorem. Let M be a finite-dimensional subspace.
(1) There exists a unique linear operator2 PM such that

PMx = x, xHPM = xH , for all x ∈M.

(2) PM is Hermitian, PSD, and idempotent.
(3) M = R(PM ).
(4) For all x: PMx ∈M, (x− PMx) ∈M⊥.
(5) x ⊥M ⇐⇒ PMx = 0.
(6) For any matrix A,

A = PM ⇐⇒
{

Ax = x, for all x ∈M,
R(AH) ⊂M,

⇐⇒
{

Ax = x, for all x ∈M,
Ax = 0, for all x ∈M⊥.

�

(29.3) Theorem. For every matrix A there exists a unique matrix
X : R(A)→ R(AH) such that

AX = PR(A), XA = PR(AH).

We call X the general reciprocal and denote it by A†.

(29.4) Theorem. For every matrix A the general reciprocal A† satisfies:
(1) A†AA† = A†, AA†A = A.
(2) rankA = rankA†.
(3) R(A) = R(A†H), R(AH) = R(A†).
(4) A†H = (AH)†, A = (A†)†. �

(29.45) Corollary. If A[I, J ] is a maximal nonsingular submatrix of A,
then:

(1) A† = PR(AH)[∗, J ]A−1
IJ PR(A)[I, ∗].

(2) xHA†y = xH
I A−1

IJ yJ . �

(29.5) Theorem. For any matrix A, the following statements on a matrix
X are equivalent :

(a) X = A†.
(b) R(X) ⊂ R(AH), AX = PR(A).

(c) R(X) ⊂ R(AH), R(XH) ⊂ R(A), AXA = A. �

(29.55) Corollary. If A =
[
B O
O C

]
, then A† =

[
B† O
O C†

]
. �

2The generalized identity matrix for the subspace M , denoted by δM [576, p. 199].
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(29.6) Theorem. Let the matrix A be Hermitian. Then:
(1) A† is Hermitian.
(2) If A is PSD, then so is A†. �

Consider a square matrix A. Then for any principal submatrix AII ,

AII = AIIA
†
IIAII

More can be said if A is Hermitian and PSD:

(29.7) Theorem. Let A be Hermitian and PSD. Then, for any principal
submatrix AII ,

(1) AIIA
†
IIAI∗ = AI∗.

(2) A∗IA
†
IIAII = A∗I . �

(29.8) Theorem. Let A be Hermitian and PSD. Then the following state-
ments, about a vector x, are equivalent :

(a) xHAx = 0;
(b) x ⊥ R(A);
(c) x ⊥ R(A†); and
(d) xHA†x = 0. �

The general reciprocal can be used to solve linear equations

Ax = b,

that are assumed consistent, i.e., b ∈ R(A), or the way Moore expresses
consistency: rank A = rank[A b].

(29.9) Theorem. Let A be a matrix and b a vector in R(A). Then the
general solution of Ax = b is

A† b + {y : y ⊥ R(AH)}. �
Remark. Moore avoids the concept of null space, and the equivalent

form of the general solution, A† b+N(A). Also, Moore does not consider the
case where Ax = b is inconsistent. A. Bjerhammar [102], R. Penrose [636],
and Yuan–Yung Tseng3 [820] would later use A† to obtain least–squares
solutions. This has become the major application of the Moore–Penrose
inverse.

3Tseng, a student of Barnard at Chicago (1933), extended the Moore–Penrose in-
verse to linear operators, see Definition 9.1, page 336.



Bibliography

1. N. N. Abdelmalek, On the solutions of the linear least squares problems and pseudo-
inverses, Computing 13 (1974), no. 3-4, 215–228.

2. S. N. Afriat, On the latent vectors and characteristic values of products of pairs of
symmetric idempotents, Quart. J. Math. Oxford Ser. (2) 7 (1956), 76–78.

3. , Orthogonal and oblique projectors and the characteristics of pairs of vector
spaces, Proc. Cambridge Philos. Soc. 53 (1957), 800–816.

4. A. C. Aitken, On least squares and linear combinations of observations, Proc. Roy.
Soc. Edinburgh, Sec A 55 (1934), 42–47.

5. F. Akdeniz, A note concerning the Gauss–Markov theorem, J. Fac. Sci. Karadeniz
Tech. Univ. 1 (1977), 129–133.

6. I. S. Alalouf and G. P. H. Styan, Characterizations of estimability in the general
linear model, Ann. Statist. 7 (1979), no. 1, 194–200.

7. , Estimability and testability in restricted linear models, Math. Operations-
forsch. Statist. Ser. Statist. 10 (1979), no. 2, 189–201.

8. A. Albert, Conditions for positive and nonnegative definiteness in terms of pseudo-
inverses, SIAM J. Appl. Math. 17 (1969), 434–440.

9. , Regression and the Moore–Penrose Pseudoinverse, Academic Press, New
York, 1972.

10. , The Gauss–Markov theorem for regression models with possibly singular
covariances, SIAM J. Appl. Math. 24 (1973), 182–187.

11. , Statistical applications of the pseudo inverse, In Nashed [593], pp. 525–
548.

12. A. Albert and R. W. Sittler, A method for computing least squares estimators that
keep up with the data, SIAM J. Control 3 (1965), 384–417.
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169. N. Castro González, On the convergence of semi-iterative methods to the Drazin
inverse solution of linear equations in Banach spaces, Collect. Math. 46 (1995),
no. 3, 303–314.
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cation linéaire σ au lieu des applications de rang r donné, C. R. Acad. Sci. Paris
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454. S. Kaczmarz, Angenäherte Auflösung von Systemen linearer Gleichungen, Bull.
Acad. Polon. Sci. A35 (1937), 355–357.

455. S. Kakutani, Some characterizations of Euclidean spaces, Japan J. Math. 16
(1939), 93–97.



392 BIBLIOGRAPHY

456. R. Kala, Projectors and linear estimation in general linear models, Comm. Statist.
A – Theory and Meth. 10 (1981), no. 9, 849–873.

457. C. Kallina, A Green’s function approach to perturbations of periodic solutions,
Pacific J. Math. 29 (1969), 325–334.

458. R. E. Kalman, Contributions to the theory of optimal control, Bol. Soc. Mat. Mex-
icana 5 (1960), no. 2, 102–119.

459. , A new approach to linear filtering and prediction problems, Trans. ASME
Ser. D. J. Basic Eng. 82 (1960), 35–45.

460. , New results in linear filtering and prediction problems, Trans. ASME Ser.
D. J. Basic Eng. 83 (1961), 95–107.

461. , Mathematical description of linear dynamical systems, SIAM J. Control 1
(1963), 152–192.

462. R. E. Kalman, Y. C. Ho, and K. S. Narendra, Controllability of linear dynamical
systems, Contributions to Differential Equations, Vol. I, Interscience, New York,
1963, pp. 189–213.

463. W. J. Kammerer and M. Z. Nashed, A generalization of a matrix iterative method
of G. Cimmino to best approximate solution of linear integral equations of the first
kind, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 51 (1971), 20–25.

464. , Steepest descent for singular linear operators with nonclosed range, Appli-
cable Anal. 1 (1971), no. 2, 143–159.

465. , Iterative methods for best approximate solutions of linear integral equations
of the first and second kinds, J. Math. Anal. Appl. 40 (1972), 547–573.

466. , On the convergence of the conjugate gradient method for singular linear
operator equations, SIAM J. Numer. Anal. 9 (1972), 165–181.

467. L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces, Perg-
amon Press, Oxford, 1964, (translated from Russian).

468. L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis,
Interscience, New York, 1958, (translated from Russian).

469. N. P. Karampetakis, Computation of the generalized inverse of a polynomial matrix
and applications, Linear Algebra Appl. 252 (1997), 35–60.

470. , Generalized inverses of two-variable polynomial matrices and applications,
Circuits Systems Signal Process. 16 (1997), no. 4, 439–453.

471. I. J. Katz, Wiegmann type theorems for EPr matrices, Duke Math. J. 32 (1965),
423–427.

472. , Remarks on a paper of Ben-Israel, SIAM J. Appl. Math. 18 (1970), 511–
513.

473. I. J. Katz and M. H. Pearl, On EPr and normal EPr matrices, J. Res. Nat. Bur.
Standards Sect. B 70B (1966), 47–77.

474. C. G. Khatri, A representation of a matrix and its use in the Gauss–Markoff model,
J. Indian Statist. Assoc. 20 (1982), 89–98.

475. M. J. L. Kirby, Generalized Inverses and Chance Constrained Programming, Ap-
plied mathematics, Northwestern University, Evanston, IL, June 1965.

476. F. H. Kishi, On line computer control techniques and their application to re-entry
aerospace vehicle control, Advances in Control Systems Theory and Applications
(C. T. Leondes, editor), Academic Press, New York, 1964, pp. 245–257.

477. J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), no. 3,
367–381.

478. , Continuity and differentiability of the Moore–Penrose inverse in C∗-
algebras, Math. Scand. 88 (2001), no. 1, 154–160.

479. , Error bounds for a general perturbation of the Drazin inverse, Appl. Math.
Comput. 126 (2002), no. 2-3, 61–65.
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596. M. Z. Nashed and X. Chen, Convergence of Newton-like methods for singular op-
erator equations using outer inverses, Numer. Math. 66 (1993), 235–257.

597. M. Z. Nashed and L. B. Rall, Annotated bibliography on generalized inverses and
applications, In Nashed [593], pp. 771–1041.

598. M. Z. Nashed and G. F. Votruba, A unified approach to generalized inverses of
linear operators. I. Algebraic, topological and projectional properties, Bull. Amer.
Math. Soc. 80 (1974), 825–830.

599. , A unified approach to generalized inverses of linear operators. II. Extremal
and proximal properties, Bull. Amer. Math. Soc. 80 (1974), 831–835.

600. , A unified operator theory of generalized inverses, In Nashed [593], pp. 1–
109.

601. M. Z. Nashed and G. Wahba, Generalized inverses in reproducing kernel spaces:
An approach to regularization of linear operator equations, SIAM J. Math. Anal.
5 (1974), 974–987.

602. M. Z. Nashed and Y.-G. Zhao, The Drazin inverse for singular evolution equations
and partial differential operators, Recent Trends in Differential Equations, World
Scientific, River Edge, NJ, 1992, pp. 441–456.

603. F. Natterer, The Mathematics of Computerized Tomography, Wiley, New York,
1986.

604. D. L. Nelson, T. O. Lewis, and T. L. Boullion, A quadratic programming technique
using matrix pseudoinverses, Indust. Math. 21 (1971), 1–21.

605. A. Neubauer, Tikhonov-regularization of ill-posed linear operator equations on
closed convex sets, J. Approx. Theory 53 (1988), no. 3, 304–320.

606. , On converse and saturation results for Tikhonov regularization of linear
ill-posed problems, SIAM J. Numer. Anal. 34 (1997), no. 2, 517–527.

607. A. Neumaier, Solving ill-conditioned and singular linear systems: A tutorial on
regularization, SIAM Rev. 40 (1998), no. 3, 636–666 (electronic).

608. M. Neumann, On the Schur complement and the LU-factorization of a matrix,
Linear and Multilinear Algebra 9 (1980/81), no. 4, 241–254.

609. T. G. Newman and P. L. Odell, On the concept of a p− q generalized inverse of a
matrix, SIAM J. Appl. Math. 17 (1969), 520–525.

610. Y. Nievergelt, Total least squares: State-of-the-art regression in numerical analysis,
SIAM Rev. 36 (1994), no. 2, 258–264.

611. , Schmidt-Mirsky matrix approximation with linearly constrained singular
values, Linear Algebra Appl. 261 (1997), 207–219.

612. , A tutorial history of least squares with applications to astronomy and
geodesy, J. Comput. Appl. Math. 121 (2000), no. 1-2, 37–72.
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Math. Nachr. 21 (1960), 347–369.

643. R. Piziak, P. L. Odell, and R. Hahn, Constructing projections on sums and inter-
sections, Comput. Math. Appl. 37 (1999), no. 1, 67–74.

644. G. D. Poole and T. L. Boullion, Weak spectral inverses which are partial isometries,
SIAM J. Appl. Math. 23 (1972), 171–172.

645. W. A. Porter, Modern Foundations of System Engineering, Macmillan, New York,
1966.

646. , A basic optimization problem in linear systems, Math. Systems Theory 5
(1971), 20–44.



BIBLIOGRAPHY 399

647. W. A. Porter and J. P. Williams, Extension of the minimum effort control problem,
J. Math. Anal. Appl. 13 (1966), 536–549.

648. , A note on the minimum effort control problem, J. Math. Anal. Appl. 13
(1966), 251–264.

649. K. M. Prasad, K. P. S. Bhaskara Rao, and R. B. Bapat, Generalized inverses over
integral domains. II. Group inverses and Drazin inverses, Linear Algebra Appl.
146 (1991), 31–47.

650. C. M. Price, The matrix pseudoinverse and minimal variance estimates, SIAM
Rev. 6 (1964), 115–120.

651. R. M. Pringle and A. A. Rayner, Expressions for generalized inverses of a bordered
matrix with application to the theory of constrained linear models, SIAM Rev. 12
(1970), 107–115.

652. , Generalized Inverse Matrices with Applications to Statistics. Griffin’s Sta-
tistical Monographs and Courses, No. 28, Hafner, New York, 1971.

653. D. Przeworska-Rolewicz and S. Rolewicz, Equations in Linear Spaces, Polska Akad.
Nauk Monog. Mat., vol. 47, PWN Polish Scientific Publishers, Warsaw, 1968.

654. S. Puntanen and A. J. Scott, Some further remarks on the singular linear model,
Linear Algebra Appl. 237/238 (1996), 313–327.

655. S. Puntanen and G. P. H. Styan, The equality of the ordinary least squares estimator
and the best linear unbiased estimator (with comments by O. Kempthorne and S.
R. Searle and a reply by the authors), Amer. Statist. 43 (1989), no. 3, 153–164.

656. S. Puntanen, G. P. H. Styan, and H.-J. Werner, Two matrix-based proofs that
the linear estimator Gy is the best linear unbiased estimator, J. Statist. Plann.
Inference 88 (2000), no. 2, 173–179.

657. M. L. Puri, C. T. Russell, and T. Mathew, Convergence of generalized inverses with
applications to asymptotic hypothesis testing, Sankhyā Ser. A 46 (1984), no. 2, 277–
286.

658. R. Puystjens and R. E. Hartwig, The group inverse of a companion matrix, Linear
and Multilinear Algebra 43 (1997), no. 1-3, 137–150.

659. L. D. Pyle, Generalized inverse computations using the gradient projection method,
J. Assoc. Comput. Mach. 11 (1964), 422–428.

660. , A generalized inverse ε-algorithm for constructing intersection projection
matrices, with applications, Numer. Math. 10 (1967), 86–102.

661. , The generalized inverse in linear programming. Basic structure, SIAM J.
Appl. Math. 22 (1972), 335–355.

662. G. Rabson, The generalized inverse in set theory and matrix theory, Technical
Report, Deptartment of Mathematics, Clarkson College of Technology, Potsdam,
NY, 1969.

663. R. Rado, Note on generalized inverses of matrices, Proc. Cambridge Philos. Soc.
52 (1956), 600–601.
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1983, pp. 157–166.

815. , Characterizations of oblique and orthogonal projectors, Proceedings of the
International Conference on Linear Statistical Inference LINSTAT ’93 (Poznań,
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Erdélyi inverse, 342
ergodic chain, 304
ergodic state, 304
e.s.c., 5, 131

norm, 130, 131
essentially strictly convex, see e.s.c., 5
estimable function, 285, 289
Euclidean norm, 8
expected value, 284
extension, 89
extremal

inverse, 358
solution, 356

Factorization
QR, 15, 257, 269
Q̃R̃, 15, 260, 269
Cholesky, 119
full-rank, see rank factorization, 26

Fredholm integral operators, 336
Frobenius covariants, 62, 66
Frobenius norm, 19, 111, 212
full-rank factorization, see rank factor-

ization, 26
function

convex, 131
strictly convex, 131

Gamma function, 320
gauge function, 138, 140, 228

symmetric, 138
Gauss–Markov

model, 285
theorem, 286

Gaussian elimination, 24
general reciprocal, 370–372
generalized

Green function, 349
power, 249
resolvent, 246

generalized inverse, 1
S-inverse, 162
S-restricted, 89, 112, 113
S′-inverse, 169
α-β, 134, 147
{1, 2, 3}-inverse, 46, 179
{1, 2, 4}-inverse, 46, 179
{1, 2, 5}-inverse, 156
{1, 2}-inverse, 45, 179
{1, 3}-inverse, 104, 111
{1, 4}-inverse, 111
{1}-inverse, 42
{1k, 2, 5}-inverse, 152



SUBJECT INDEX 411

{2}-inverse, 295, 296, 301
{i, j, . . . , k}-inverse, 40
associated with α, β, 134, 147
constrained, 92
Drazin inverse, 156, 163, 164
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recurrent, 304
transient, 304

states
communicate, 303

stationary distribution, 305
matrices

EP, 157
EPr, 157
equivalent, 18
equivalent over Z, 38
idempotent, 43, 58
ill-conditioned, 106
orthogonally similar, 16

range-Hermitian, 157
similar, 16
unitarily equivalent, 18
unitarily similar, 16

matrix
admittance, 102
condition number, 204
convergent, 21
diagonable, 60, 62, 153, 155
function, 68, 244
incidence, 99, 102
index, 153, 154
integral, 38, 97
invariant factors, 38
irreducible, 39
nilpotent, 36
nilpotent part, 170
nonnegative, 39
normal, 75
permutation, 22
perturbation, 238
polar decomposition, 220
positive definite, 13, 80
positive semidefinite, 13
reduced row-echelon form, 24
reducible, 39
set inclusion, 102
set intersection, 102
singular values, 14
square root, 119, 222
stochastic, 303
transfer, 101
unit, 38, 97
volume, 29, 31, 32, 123, 199, 210

matrix norm, 13
corresponding to a vector norm, 20
Frobenius, 19, 111, 212
multiplicative, 13
spectral, 20, 203

matrix norms
unitarily invariant, 20, 228

maximal Tseng inverse, 339
mean square error, see MSE, 5
minimal polynomial, 36
minimum-norm least-squares solution,

109
constrained, 113, 255

minimum-norm solution, 108
Minkowski functional, 138, 140
Minkowski inequality, 9
Moore general reciprocal, 370–372
Moore–Penrose inverse, 4, 40, 43, 48,

111, 122, 125, 128, 131, 179, 207,
208, 211, 355

computation, 48, 179, 207, 208, 250,
261–263, 272, 277

discontinuity, 238
Greville’s method, 263
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iterative methods, 270
limit form, 115, 160
Noble’s method, 261
perturbations, 238
Schulz method, 277

MSE, 5, 293
multiplicative norm, 13
multiplicity

algebraic, 35
geometric, 13

Naive least-squares estimator, 289
Newton’s method, 295, 296, 301
nilpotent matrix, 36
nilpotent part, 170
Noble’s method, 106, 261, 262
nonnegative matrix, 39
norm, 7, 330

�p, 9, 141
e.s.c., 130, 131, 146
ellipsoidal, 8, 130, 144
Euclidean, 8
matrix, 13, 20
of homogeneous transformation, 143
projective, 144
Tchebycheff, 141
unitarily invariant, 140
weighted Euclidean, 8

normal form
Hermite, 24, 26, 41, 258
Jordan, 35, 65, 164, 171
Smith, 38, 97

normal matrix, 75
norms

consistent, 19
dual, 147
equivalent, 9

N(S)-restricted pseudoinverse of T , 362
null space, 11, 12, 110, 331
null state, 304

Ohm’s law, 101, 150
o.n., 5, 8

basis, 8
orthogonal, 8

Q, 254
complement, 12, 330
direct sum, 12, 331
projection, 74
projector, 74

orthogonally incident subspaces, 230
orthogonally similar matrices, 16
orthonormal, see o.n., 5

Partial isometry, 218, 223
PD, 5, 13, 117

square root, 117
Penrose equations, 40, 152, 342, 355
period of state, 304

permutation
even, 23
inverse, 22
matrix, 22
odd, 23
sign, 23

permutation matrix, 22
Perron–Frobenius theorem, 39
perturbation, 238

acute, 239
pivot, 180

operation, 180
Plücker coordinates, 32, 210, 237
polar decomposition, 220
polynomial

characteristic, 35
minimal, 36

positive definite, see PD, 5
positive semidefinite, see PSD, 5
potential, 94, 100
principal

angles, 232
idempotents, 62, 66
vector of grade j, 34

projection, 6
orthogonal, 74

projective
bound, 144
norm, 144

projector
φ-metric, 132
oblique, 59
on L along M , 59
orthogonal, 74

PSD, 5, 13, 80
pseudoinverse, 1, 346
pseudoresolvent, 345

Hurwitz construction, 345

Q-orthogonal, 254
QR-factorization, 15, 257, 269
Q̃R̃-factorization, 15, 260, 269
quasi-commuting inverse, 171

Radon transform, 316
range, 11, 12, 110, 331
range-Hermitian matrix, 157
rank factorization, 26, 31–33, 48, 50, 58,

74, 88, 115, 122, 124, 157, 165, 179,
210, 260–262

reciprocal
Moore general reciprocal, 373
subspaces, 230
vectors, 230

recurrent chain, 304
recurrent state, 304
reduced row-echelon form, 24
reducible matrix, 39
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regular chain, 304
regular value, 345
residual, 104, 269, 270
resolvent, 70, 246

equation, 70, 246
generalized, 246

restriction, 89
reverse order property, 160, 174
ridge regression estimator, see RRE, 5
rotund convex set, 142
RRE, 5, 293

Schmidt approximation theorem, 213,
216

Schulz method, 277
Schur complement, 30, 39, 180, 200
set inclusion matrix, 102
set intersection matrix, 102
S-inverse, 162
S′-inverse, 169
similar matrices, 16
singular value decomposition, see SVD,

5
singular values, 14

B, 251
{W, Q}, 254
generalized, 251, 254

Smith normal form, 38, 97
smooth convex set, 142
solution

α-approximate, 136
approximate, 104
basic, 122
extremal, 356
least-squares, 104
minimum-norm, 108
Tchebycheff, 141

spectral
condition number, 204
decomposition, 62, 66, 82, 119
norm, 20, 203
radius, 20

spectrum, 13, 68
spherical coordinates, 319
spline approximation, 369
square root of a matrix, 117, 222
S-restricted
{1, 3}-inverse, 112
{1, 4}-inverse, 113
{i, j, . . . , k}-inverse, 89

standard
basis, 6
inner product, 7

standard basis, 11
star order, 84
stationary

point, 149
value, 149

stationary distribution, 305
stochastic matrix, 303
strictly convex function, 131
strong spectral inverse, 172
subspaces

orthogonally incident, 230
reciprocal, 230
totally inclined, 230

SVD, 5, 15, 202, 206, 208–210, 257, 262,
292

generalized, 251, 254
history, 255

Tchebycheff
approximate solution, 141
norm, 9, 141

Tikhonov regularization, 114
TLS, 5, 214
total least-squares, see TLS, 5
totally inclined subspaces, 230
transient state, 304
tree, 103
triangle inequality, 7
Tseng inverse, 336

UDV ∗-decomposition, 209
unit matrix, 38, 97
unitarily

equivalent matrices, 18, 202, 223
invariant matrix norms, 228
invariant norm, 20, 140
similar matrices, 16

Vector
integral, 38, 97
length, 7
norm, 7, 140
principal, 34

vectors
reciprocal, 230

volume, 29, 31, 32, 123, 199, 210
k-volume, 33

Wedderburn decomposition, 169, 171
weighted
{1, 2}-inverse, 119, 121, 255
inverse, 120
least-squares, 125

Weyl inequalities, 216
{W, Q}-singular values, 254
{W, Q}-weighted {1, 2}-inverse, 119, 121,

255
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