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Preface to the Second Edition

The field of generalized inverses has grown much since the appearance of
the first edition in 1974 and is still growing. I tried to account for these
developments while maintaining the informal and leisurely style of the first
edition. New material was added, including a preliminary chapter (Chap-
ter 0), a chapter on applications (Chapter 8), an Appendix on the work of
E.H. Moore, and new exercises and applications.

While preparing this volume I compiled a bibliography on generalized
inverses, posted in the webpage of the International Linear Algebra Society

http://www.math.technion.ac.il/iic/research.html

This on-line bibliography, containing over 2000 items, will be updated from
time to time. For reasons of space, many important works that appear in
the on-line bibliography are not included in the bibliography of this book.
I apologize to the authors of these works.

Many colleagues helped this effort. Special thanks go to R. Bapat, S.
Campbell, J. Miao, S.K. Mitra, Y. Nievergelt, R. Puystjens, A. Sidi, G.-R.
Wang, and Y. Wei.

Tom Greville, my friend and coauthor, passed away before this project
started. His scholarship and style marked the first edition and are sadly
missed.

I dedicate this book with love to my wife Yoki.

Piscataway, New Jersey Adi Ben-Israel
January 2002
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From the Preface to the First Edition

This book is intended to provide a survey of generalized inverses from a
unified point of view, illustrating the theory with applications in many ar-
eas. It contains more than 450 exercises at different levels of difficulty,
many of which are solved in detail. This feature makes it suitable either
for reference and self-study or for use as a classroom text. It can be used
profitably by graduate students or advanced undergraduates, only an ele-
mentary knowledge of linear algebra being assumed.

The book consists of an introduction and eight chapters, seven of which
treat generalized inverses of finite matrices, while the eighth introduces gen-
eralized inverses of operators between Hilbert spaces. Numerical methods
are considered in Chapter 7 and in Section 9.7.

While working in the area of generalized inverses, the authors have had
the benefit of conversations and consultations with many colleagues. We
would like to thank especially A. Charnes, R.E. Cline, P.J. Erdelsky, I.
Erdélyi, J.B. Hawkins, A.S. Householder, A. Lent, C.C. MacDuffee, M.Z.
Nashed, P.L. Odell, D.W. Showalter, and S. Zlobec. However, any errors
that may have occurred are the sole responsibility of the authors.

This book is dedicated to Abraham Charnes and J. Barkley Rosser.

Haifa, Israel Adi Ben-Israel
Madison, Wisconsin Thomas N.E. Greville
September 1973
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Glossary of Notation

T'(p) — Gamma function, 320
n(ua,v,w), 96
~(T), 334
A — Moore-Penrose inverse of
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A(A) — spectrum of A, 13
(o) — smallest integer > o, 278
u(A, B), 251
nw,Q(A), 254
v(\) — index of eigenvalue X, 36
1,n — the index set {1,2,...,n}, 5
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7~ probability of X; = 4, 305
p(A) — spectral radius of A, 20
o(A) — singular values of A (see foot-
note, p. 13), 14
0;(A) —the j th singular value of A, 14
7(4) — period of state ¢, 304

A/A11 — Schur complement of Aj; in
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A= O, 80
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A{i,j,... ,k}s —matricesin A{s,7,...
of rank s, 56

A* — adjoint of A, 12

AEZ)U — Bott-Duffin inverse of A with
respect to L, 92

A1/2 _ square root of A, 222

AD _ Drazin inverse of A, 163, 164
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null space S, 73

7k}

A{i,g,... kY = {4,4,..., k}-inverses of
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A&T;) — a-( generalized inverse of A,
134

A<T1)S — a {1}-inverse of A associated
with T, S, 71

Aldk) —an {44, ...  k}-inverse of
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A# — group inverse of A, 156

AT — Moore—Penrose inverse of A, 40

|| A ||oo — oo-norm of a matrix, 20
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xiii
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Introduction

1. The Inverse of a Nonsingular Matrix

It is well known that every nonsingular matrix A has a unique inverse,
denoted by A~', such that

AAT =AT1A=1T, (1)

where [ is the identity matrix. Of the numerous properties of the inverse
matrix, we mention a few. Thus,

(ATt =(AaHT,
(A1) ~h=(A7h)
(AB)™' =B71A71,

where AT and A*, respectively, denote the transpose and conjugate trans-
pose of A. It will be recalled that a real or complex number X is called
an eigenvalue of a square matrix A, and a nonzero vector x is called an
eigenvector of A corresponding to A, if

Ax = Ax.

Another property of the inverse A~! is that its eigenvalues are the recipro-
cals of those of A.

2. Generalized Inverses of Matrices

A matrix has an inverse only if it is square, and even then only if it is
nonsingular or, in other words, if its columns (or rows) are linearly inde-
pendent. In recent years needs have been felt in numerous areas of applied
mathematics for some kind of partial inverse of a matrix that is singular
or even rectangular. By a generalized inverse of a given matrix A we shall
mean a matrix X associated in some way with A that:

(i) exists for a class of matrices larger than the class of nonsingular
matrices;

(ii) has some of the properties of the usual inverse; and

(iii) reduces to the usual inverse when A is nonsingular.

Some writers have used the term “pseudoinverse” rather than “generalized
inverse.”

As an illustration of part (iii) of our description of a generalized inverse,
consider a definition used by a number of writers (e.g., Rohde [704])to the

1



2 INTRODUCTION

effect that a generalized inverse of A is any matrix satisfying
AXA=A. (2)

If A were nonsingular, multiplication by A~! both on the left and on the
right would give, at once,

X=A"
3. Illustration: Solvability of Linear Systems

Probably the most familiar application of matrices is to the solution of
systems of simultaneous linear equations. Let

Ax=Db (3)

be such a system, where b is a given vector and x is an unknown vector. If
A is nonsingular, there is a unique solution for x given by

x = A"'b.

In the general case, when A may be singular or rectangular, there may
sometimes be no solutions or a multiplicity of solutions.

The existence of a vector x satisfying (3) is tantamount to the statement
that b is some linear combination of the columns of A. If A is m x n and
of rank less than m, this may not be the case. If it is, there is some vector
h such that

b = Ah.
Now, if X is some matrix satisfying (2), and if we take
x = XDb,

we have
Ax = AXb =AXAh = Ah = b,

and so this x satisfies (3).

In the general case, however, when (3) may have many solutions, we
may desire not just one solution but a characterization of all solutions. It
has been shown (Bjerhammar [103], Penrose [635]) that, if X is any matrix
satisfying AXA = A, then Ax = b has a solution if and only if

AXb =b,
in which case the general solution is
x=Xb+ (I -XA)y, (4)

where y is arbitrary.

We shall see later that for every matrix A there exist one or more
matrices satisfying (2).
Exercises

Ex. 1. If A is nonsingular and has an eigenvalue A, and x is a corresponding
eigenvector, show that A™' is an eigenvalue of A~! with the same eigenvector x.

EX. 2. For any square A, let a “generalized inverse” be defined as any matrix
X satisfying A*T'X = A" for some positive integer k. Show that X = A~ if A
is nonsingular.
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ExX. 3. If X satisfies AXA = A, show that Ax = b has a solution if and only if
AXb =b.

EX. 4. Show that (4) is the general solution of Ax = b. [Hint: First show that
it is a solution; then show that every solution can be expressed in this form. Let
x be any solution; then write x = XAx + (I — X A)x.]

ExX. 5. If Ais an m x n matrix of zeros, what is the class of matrices X satisfying
AXA=A?

EX. 6. Let A be an m x n matrix whose elements are all zeros except the (i, j) th
element, which is equal to 1. What is the class of matrices X satisfying (2)?

EX. 7. Let A be given, and let X have the property that x = Xb is a solution
of Ax = b for all b such that a solution exists. Show that X satisfies AXA = A.

4. Diversity of Generalized Inverses

From Exercises 3, 4, and 7 the reader will perceive that, for a given matrix
A, the matrix equation AXA = A alone characterizes those generalized
inverses X that are of use in analyzing the solutions of the linear system
Ax = b. For other purposes, other relationships play an essential role.
Thus, if we are concerned with least-squares properties, (2) is not enough
and must be supplemented by further relations. There results a more re-
stricted class of generalized inverses.

If we are interested in spectral properties (i.e., those relating to eigen-
values and eigenvectors), consideration is necessarily limited to square ma-
trices, since only these have eigenvalues and eigenvectors. In this connec-
tion, we shall see that (2) plays a role only for a restricted class of matrices
A and must be supplanted, in the general case, by other relations.

Thus, unlike the case of the nonsingular matrix, which has a single
unique inverse for all purposes, there are different generalized inverses for
different purposes. For some purposes, as in the examples of solutions of
linear systems, there is not a unique inverse, but any matrix of a certain
class will do.

This book does not pretend to be exhaustive, but seeks to develop
and describe in a natural sequence the most interesting and useful kinds
of generalized inverses and their properties. For the most part, the dis-
cussion is limited to generalized inverses of finite matrices, but extensions
to infinite-dimensional spaces and to differential and integral operators are
briefly introduced in Chapter 9. Generalized inverses on rings and semi-
groups are not discussed; the interested reader is referred to Bhaskara Rao
[94], Drazin [233], Foulis [284], and Munn [587].

The literature on generalized inverses has become so extensive that it
would be impossible to do justice to it in a book of moderate size. We
have been forced to make a selection of topics to be covered, and it is
inevitable that not everyone will agree with the choices we have made.
We apologize to those authors whose work has been slighted. A virtually
complete bibliography as of 1976 is found in Nashed and Rall [597]. An
on-line bibliography is posted in the webpage of the International Linear
Algebra Society

http://www.math.technion.ac.il/iic/research.html



4 INTRODUCTION

5. Preparation Expected of the Reader

It is assumed that the reader has a knowledge of linear algebra that would
normally result from completion of an introductory course in the subject. In
particular, vector spaces will be extensively utilized. Except in Chapter 9,
which deals with Hilbert spaces, the vector spaces and linear transforma-
tions used are finite-dimensional, real or complex. Familiarity with these
topics is assumed, say at the level of Halmos [365] or Noble [615], see also
Chapter 0 below.

6. Historical Note

The concept of a generalized inverse seems to have been first mentioned
in print in 1903 by Fredholm [290], where a particular generalized inverse
(called by him “pseudoinverse”) of an integral operator was given. The class
of all pseudoinverses was characterized in 1912 by Hurwitz [435], who used
the finite dimensionality of the null spaces of the Fredholm operators to give
a simple algebraic construction (see, e.g., Exercises 9.18-9.19). Generalized
inverses of differential operators, already implicit in Hilbert’s discussion in
1904 of generalized Green functions, [418], were consequently studied by
numerous authors, in particular, Myller (1906), Westfall (1909), Bounitzky
[124] in 1909, Elliott (1928), and Reid (1931). For a history of this subject
see the excellent survey by Reid [685].

Generalized inverses of differential and integral operators thus ante-
dated the generalized inverses of matrices, whose existence was first noted
by E.H. Moore, who defined a unique inverse (called by him the “general
reciprocal”) for every finite matrix (square or rectangular). Although his
first publication on the subject [575], an abstract of a talk given at a meet-
ing of the American Mathematical Society, appeared in 1920, his results
are thought to have been obtained much earlier. One writer, [496, p. 676],
has assigned the date 1906. Details were published, [576], only in 1935
after Moore’s death. A summary of Moore’s work on the general reciprocal
is given in Appendix A. Little notice was taken of Moore’s discovery for
30 years after its first publication, during which time generalized inverses
were given for matrices by Siegel [762] in 1937, and for operators by Tseng
([816]-1933, [819],[817],[818]-1949), Murray and von Neumann [589] in
1936, Atkinson ([27]-1952, [28]-1953) and others. Revival of interest in
the subject in the 1950s centered around the least squares properties (not
mentioned by Moore) of certain generalized inverses. These properties were
recognized in 1951 by Bjerhammar, who rediscovered Moore’s inverse and
also noted the relationship of generalized inverses to solutions of linear sys-
tems (Bjerhammar [102], [101], [103]). In 1955 Penrose [635]|sharpened
and extended Bjerhammar’s results on linear systems, and showed that
Moore’s inverse, for a given matrix A, is the unique matrix X satisfying
the four equations (1)—(4) of Chapter 1. The latter discovery has been so
important and fruitful that this unique inverse (called by some writers the
generalized inverse) is now commonly called the Moore—Penrose inverse.

Since 1955 thousands of papers on various aspects of generalized in-
verses and their applications have appeared. In view of the vast scope
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of this literature, we shall not attempt to trace the history of the sub-
ject further, but the subsequent chapters will include selected references on
particular items.

7. Remarks on Notation

Equation j of Chapter i is denoted by (j) in Chapter 4, and by (i.7) in
other chapters. Theorem j of Chapter i is called Theorem j in Chapter i,
and Theorem 4.5 in other chapters. Similar conventions apply to Sections,
Corollaries, Lemmas, Definitions, etc.

Many sections are followed by Exercises, some of them solved. Exercises
are denoted by “Ex.” (e.g., Ex. j, Ex. i.7), to distinguish from Examples
(e.g., Example j, Example i.j) that appear inside sections.

Some of the abbreviations used in this book:
k,¢ — the index set {k,k+1,...,¢}; in particular,
1,n — the index set {1,2,... ,n};

BLUE — best linear unbiased estimator;

e.s.c. — essentially strictly convex;

LHS(i.j) — the left-hand side of equation (i.j);
LUE — linear unbiased estimator;

MSE — mean square error;

o.n. — orthonormal,

PD — positive definite;
PSD — positive semidefinite;
RHS(i.j) — the right-hand side of equation (4.5);

RRE — ridge regression estimator;
RV - random variable;
SVD — singular value decomposition; and

TLS — total least squares.

Suggested Further Reading

SECTION 2. A ring R is called regular if for every A € R there exists an
X € R satisfying AXA = A. See von Neumann [838], [841, p. 90], Murray and
von Neumann [589, p. 299], McCoy [538], Hartwig [379].

SECTION 4. For generalized inverses in abstract algebraic setting see also
Davis and Robinson [215], Gabriel [291], [292], [293], Hansen and Robinson
[373], Hartwig [379], Munn and Penrose [588], Pearl [634], Rabson [662], Rado
(663).



CHAPTER 0

Preliminaries

For ease of reference we collect here facts, definitions, and notations that are
used in successive chapters. This chapter can be skipped in first reading.

1. Scalars and Vectors

1.1. Scalars are denoted by lowercase letters: z,y,A,.... We use
mostly the complex field C, and specialize to the real field R as necessary.
A generic field is denoted by F.

1.2.  Vectors are denoted by bold letters: x,y,A,.... Vector spaces
are finite-dimensional, except in Chapter 9. The n-dimensional vector
space over a field F is denoted by F”, in particular, C" [R"] denote the
n-dimensional complex [real] vector space.

A vector x € F™ is written in a column form

T1

,or x=(x;), t€1l,n, w;€F.
Ty,

The n-dimensional vector e; with components

s 1 ifi=j,
Y0, otherwise,

is called the i ' unit vector of F". The set &, of unit vectors {e1,e2,... ,e,}
is called the standard basis of F™.

1.3. The sum of two sets L, M in C”, denoted by L + M, is defined
as
L+M={y+z:yecL zc M}

If L and M are subspaces of C", then L + M is also a subspace of C". If,
in addition, L " M = {0}, i.e., the only vector common to L and M is the
zero vector, then L + M is called the direct sum of L and M, denoted by
L& M. Two subspaces L and M of C" are called complementary if

C"=L® M. (1)

When this is the case (see Ex. 1 below), every x € C" can be expressed
uniquely as a sum

x=y+z (yeL,zeM). (2)
We shall then call y the projection of x on L along M.

6
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1.4. Inner product. Let V be a complex vector space. An inner
product is a function: V x V' — C, denoted by (x,y), that satisfies:

(M) (ax+y,z) = a(x,z) + (y,z) (linearity);

(12) (x,y) = (y,x) (Hermitian symmetry); and

(I13) (x,x) >0, (x,x) = 0 if and only if x = 0 (positivity);
for all x,y,z €V and a € C.
Note:

(a) For all x,y € V and a € C, (x,ay) = a(x,y) by (I11)—(12).
(b) Condition (I2) states, in particular, that (x,x) is real for all x € V.
(c) The if part in (I3) follows from (I1) with « =0, y = 0.

The standard inner product in C" is
n
Y'x =Y 7, (3)
i=1

for all x = (z;) and y = (y;) in C". See Exs. 2-4.

1.5. Let V be a complex vector space. A (vector) norm is a function:
V — R, denoted by ||x||, that satisfies:

(N1) ||x|| > 0, ||x]| = 0 if and only if x = 0 (positivity);

(N2) |lax| = |a]||x]| (positive homogeneity); and

(N3) [Ix +yl| <[]l + [ly[| (triangle inequality);

for all x,y € V and a € C.
Note:

(a) The if part of (N1) follows from (N2).

(b) ||x]|| is interpreted as the length of the vector x. Inequality (N3) then
states, in R?, that the length of any side of a triangle is no greater than
the sum of lengths of the other two sides.

See Exs. 3-11.
Exercises

EX. 1. Direct sums. Let L and M be subspaces of a vector space V. Then the
following statements are equivalent:

(a) V=Lao M.
(b) Every vector x € V is uniquely represented as

x=y+z (yeL, zeM).

(¢) dimV = dim L + dim M, LN M = {0}.
(d) If {x1,x2,...,x:} and {y1,y2,...,ym} are bases for L and M, respec-
tively, then {x1,%2,...,X;,¥1,¥2,-..,¥Ym} is a basis for V.

EX. 2. The Cauchy-Schwartz inequality. For any x,y € C"

[, ¥)]| < V(X)) {y,y) (4)

with equality if and only if x = Ay for some A\ € C.
PRrooOF. For any complex z,

0< (x+zy,x+zy), by (I3),
= (v, ¥z + 2(y,x) + 2(x,y) + (x,x), by (I1)-(12),
=y, )l +2R {2 (x, )} + (x,%),
<y, ¥l + 202, 3)] + (x, %) (5)
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Here R denotes real part. The quadratic equation RHS(5) = 0 can have at most
one solution |z|, proving that |(x,y)|*> < (x,x) (y,y), with equality if and only if
X + zy = 0 for some z € C. O

EX. 3. If (x,y) is an inner product on C", then
[l = v/ (%, %) (6)

is a norm on C". The FEuclidean norm in C"

corresponds to the standard inner product. [Hint: Use (4) to verify the triangle
inequality (N3) in §1.5 above.]

EX. 4. Show that to every inner product f : C* x C™ — C there corresponds a
unique positive definite matrix Q = [g;;] € C"*" such that

fy) =y Q@x=>" Tiaz; (8)

i=1 j=1

The inner product (8) is denoted by (x,y)q. It induces a norm, by Ex. 3,

Ixlle = vx*Qx,

called ellipsoidal, or weighted Euclidean norm. The standard inner product (3),
and the Euclidean norm, correspond to the special case Q = I.

SOLUTION. The inner product f and the positive definite matrix @ = [g;;] com-
pletely determine each other by

f(ei7ej)ZQij7 (ivjeﬁ)v
where e; is the ¢th unit vector. O

EX. 5. Given an inner product (x,y) and the corresponding norm x| =
(%, X>1/2, the angle between two vectors x,y € R", denoted by Z{x,y}, is defined
by

<x7 y> . (9)
Myl

Two vectors x,y € R™ are orthogonal if (x,y) = 0. Although it is not obvious

cos Z{x,y} =

how to define angles between vectors in C", see, e.g., Scharnhorst [725], we define
orthogonality by the same condition, (x,y) = 0, as in the real case.

EX. 6. Let (-,-) be an inner product on C". A set {vi,...,vi} of C" is called
orthonormal (abbreviated o.n.) if
(vi,vj) =68, foralls,jecl,k. (10)

(a) An o.n. set is linearly independent.
(b) If B={v1,...,vp} is an o.n. basis of C", then for all x € C",

X = Z §jvj, with ’Ej = <X, Vj>7 (11)
j=1

and

(%) =3 [&f” (12
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Ex. 7. Gram-Schmidt orthonormalization. Let A = {ai1,a2,...,a,} C C™
be a set of vectors spanning a subspace L, L = {Z?:I a;a; o € (C}. Then
an o.n. basis @ = {qi,9q2,...,q-} of L is computed using the Gram-Schmidt
orthonormalization process (abbreviated GSO) as follows.
q = Hiclu, ifa,, #0=a; for 1 <j < ey, (13a)
c1
k—1
X; =a; — Z(aj,qg> Q, j=ck—1+1,ce_1+2,...,ck, (13b)
=1
and
ar = HX%II’ if X, #0=x%; forcx1+1<j<cx, k=2...,r (13
Xey,

The integer r found by the GSO process is the dimension of the subspace L. The

integers {ci1,...,cr} are the indices of a maximal linearly independent subset
{ac;,... ,a.} of A
ExX. 8. Let || [[1), |l lli2) be two norms on C™ and let a1, a2 be positive scalars.

Show that the following functions:
(a) max{||x||c), [Ix[[2)};
(b) aallx[l(1y + czllx|l2);

are norms on C".

EX. 9. The £,-norms. For any p > 1 the function

n

Ixcllp = (3l ") (14)

j=1
is a norm on C", called the ¢,-norm.
Hint: The statement that (14) satisfies (N3) for p > 1 is the classical Minkowski
inequality; see, e.g., Beckenbach and Bellman [55].

EX. 10. The most popular £,-norms are the choices p = 1,2, and oo,

%[l = |zjl, the £1-norm, (14.1)
j=1
n

lIx]|2 = (Z |x]~|2)1/2, the £3-norm or the Euclidean norm, (14.2)
j=1

|x]lc = max{|z;|: j € 1,n}, the fos-norm or the Tchebycheff norm. (14.00)

Is [|x[loo = Timy— oo [|x]|,?

Ex. 11. Let || |l1), || ll¢z) be any two norms on C". Show that there exist
positive scalars «a, 8 such that
alxllqy < [xll@ < Blxllaq), (15)

for all x € C".
Hint: o =inf{|x[/2) : [Ix[lq) =1}, B =sup{lx[[2) : [[x[lx) =1}

REMARK 1. Two norms || ||(1) and || [|(2) are called equivalent if there exist
positive scalars a, 3 such that (15) holds for all x € C". From Ex. 11, any two
norms on C" are equivalent. Therefore, if a sequence {x;} C C" satisfies

lim ||xx]| =0 (16)
k—oo

for some norm, then (16) holds for any norm. Topological concepts like con-
vergence and continuity, defined by limiting expressions like (16), are therefore
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independent of the norm used in their definition. Thus we say that a sequence
{xr} C C™ converges to a point X if

lim ||xx — Xso|| =0
k— o0

for some norm.

2. Linear Transformations and Matrices

2.1. The set of m x n matrices with elements in F is denoted F™*".

In particular, C™*™ [R™*"] denote the class of m x n complex [real]
matrices.

A matrix A € F™*" is square if m = n, rectangular otherwise.

The elements of a matrix A € F™*™ are denoted by a;; or A[i, j].

We denote by

Qk,n:{(il,ig,...,ik)t 1§i1<iz<"'<ik§n}.

the set of increasing sequences of k elements from 1,n, for given integers
0<k<n For Ac C™*" I € Qpm, J € Qqn we denote

Ary (or A[I,J)), the p x q submatrix (Afi,j]), i €I, j € J,
Arq. (or Al #]), the p x n submatrix (Ali,j]), i € I, j € 1,n,
A,y (or Alx, J]), the m x ¢ submatrix (A[i,j]), i € I,m, j € J.

The matrix A is:
diagonal if Ali, 5] = 0 for i # j;
upper triangular if Afi,j] =0 for ¢ > j; and
lower triangular if Ali, j] =0 for i < j.
An m x n diagonal matrix A = [a;;] is denoted A = diag (a11,--- ,Gpp)
where p = min{m, n}.
Given a matrix A € C"™*", its:
transpose is the matrix AT € C"*™ with AT[i,j] = A[j,i] for all i, j;
and its
conjugate transpose is the matrix A* € C"*™ with A*[i,j] = A[j, ] for
all 4, 7.
A square matrix is:
Hermitian [symmetric] if A= A* [Ais real, A = AT];
normal if AA* = A*A; and
unitary [orthogonal] if A* = A~! [A is real, AT = A71].

2.2. Given vector spaces U,V over a field F, and a mapping T': U —
V, we say that T is linear, or a linear transformation, if T(ax +y) =
oTx + Ty, for all & € F and x,y € U. The set of linear transformations
from U to V is denoted L(U, V). It is a vector space with operations T1 +75
and T defined by

(Th + To)u=Tiu+Tou, (aT)u=a(Tu), Yuel.

The zero element of L(U, V) is the transformation O mapping every u € U
into 0 € V. The identity mapping Iy € L(U,U) is defined by Iyu =
u, V u € U. We usually omit the subscript U, writing the identity as I.
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2.3. Let T € L(U,V). For any u € U, the point Tu in V is called
the image of u (under T'). The range of T, denoted R(T') is the set of all
its images

R(T)={veV:v="Tufor someucU}.
For any v € R(T), the inverse image T~1(v) is the set
T'v)={ueU: Tu=v}.
In particular, the null space of T, denoted by N(T'), is the inverse image of
the zero vector 0 € V,

NT)={ueU: Tu=0}.

2.4. T e L(UYV)is one-to-one if for all x,y e U, x £y — Tx#
Ty or, equivalently, if for every v € R(T) the inverse image T~ 'v is a
singleton. T is onto if R(T) = V. If T is one-to-one and onto, it has an
inverse T~ € L(V,U) such that

T Y Tu)=u and T(T"'v)=v,VucUvev, (17a)
or, equivalently,
T 'T=1Iy, TT ' =1y, (17b)

in which case T is called invertible or nonsingular.

2.5. Given:

e a linear transformation A € £L(C",C™); and
e two bases U = {uy,... ,u,t and V = {vy,...,v,} of C™ and C",
respectively;

the matriz representation of A with respect to the bases {U,V'} is the m xn
matrix Agyyy = [ai;] determined (uniquely) by

AVj = Z a5 Ug, j € ].,777, (18)
i=1

For any such pair of bases {U/,V}, (18) is a one-to-one correspondence be-
tween the linear transformations £(C", C™) and the matrices C™*", allow-
ing the customary practice of using the same symbol A to denote both the
linear transformation A : C* — C™ and its matrix representation Ay ;.

If A is a linear transformation from C” to itself, and V = {vq,... ,v,}
is a basis of C", then the matrix representation Ayy y) is denoted simply
by Agyy. It is the (unique) matrix Agyy = [ag;] € C™*" satisfying

AVj = Z Qij Vi, Jj€1ln. (19)
=1

The standard basis of C™ is the basis &, consisting of the n unit vectors
En=AHe1,...,en}.

Unless otherwise noted, linear transformations A € £(C",C™) are repre-
sented in terms of the standard bases {&,,,En}-
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For any A € C"™*™ we denote, as in Section 2.3 above,

R(A) ={y € C™": y = Ax for some x € C"}, the range of A, (20a)
N(A) ={xe€C": Ax =0}, the null space of A. (20Db)

2.6. Let (-,-) denote the standard inner product. If A € C™*™ then
(Ax,y) = (x,A"y), forallxeC" yeC™. (21)

H € C™"*™ is Hermitian if and only if

(Hx,y) = (x,Hy), forall x,y e C". (22)

If (Ax,x) = (x, Ax) for all x, then A need not be Hermitian. Example: A =
(56)-

2.7. Let (-,-)c» and (-, -)¢m be inner products on C™ and C™, respec-

tively, and let A € L(C™ C™). The adjoint of A, denoted by A*, is the
linear transformation A* € £L(C™,C™) defined by

<AV’ u>C’" = <V’ A*u>(C" (23)

for all v.€ C", u € C™. Unless otherwise stated, we use the standard inner
product, in which case adjoint = conjugate transpose.

2.8. Given a subspace L of C", define
L+ := {x € C": x is orthogonal to every vector in L}. (24)
Then Lt is a subspace complementary to L. L is called the orthogonal
complement of L. If M C L' is a subspace, then L @ M is called the

1
orthogonal direct sum of L, M and denoted by L & M. In particular, C™ is
the orthogonal direct sum of L, L*,

Lol
C'=L®L* (25)
With any matrix A € C™*" there are associated four subspaces
N(A), R(A*) inC",
N(A"), R(A) in C™.
An important result is that these pairs form orthogonal complements.
THEOREM 1. For any A € C™*™,
N(A) = R(A")", (26)
N(A%) = R(A)*. (27)
PROOF. Let x € N(A). Then LHS(21) vanishes for all y € C™. It follows
then that x 1 A*y for all y € C™ or, in other words, x L R(A™). This proves
that N(A) C R(A*)™*.
Conversely, let x € R(A*)*, so that RHS(21) vanishes for all y € C™. This
implies that Ax 1 y for all y € C™. Therefore Ax = 0. This proves that

R(A*)* C N(A), and completes the proof.
The dual relation (27) follows by reversing the roles of A, A*. O
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2.9. A (matriz) norm of A € C™*™, denoted by ||Al|, is defined as a
function: C™*™ — R that satisfies

Al >0, ||Al=0 onlyifA=0, (M1)
lad]l = oAl (M2)
A+ B[ < [[All + B, (M3)
for all A, B € C™*" « € C. If, in addition,
IAB]| < [[A]ll| B]] (M4)
whenever the matrix product AB is defined, then || || is called a multiplica-

tive norm. Some authors (see, e.g., Householder [432, Section 2.2]) define
a matrix norm as having all four properties (M1)—(M4).

2.10. IfAeC™™™ 0+#xeC" and A € C are such that
Ax = Xx, (28)

then A is an eigenvalue of A corresponding to the eigenvector x. The set
of eigenvalues of A is called its spectrum, and is denoted by' A(A). If X is
an eigenvalue of A, the subspace

{xeC": Ax = I\x} (29)
is the corresponding eigenspace of A, its dimension is called the geometric
multiplicity of the eigenvalue A.

2.11. If H € C"*" is Hermitian, then:

a) the eigenvalues of H are real;

b) eigenvectors corresponding to different eigenvalues are orthogonal;
c¢) there is an o.n. basis of C™ consisting of eigenvectors of H; and
d) the eigenvalues of H, ordered by

(
(
(
(
ALZ> A2 > 2> A,
and corresponding eigenvectors,
I‘IXJ‘Z)\J‘X]‘7 jeﬁ,

can be computed recursively as

A1 = max {(Hx,x) : ||x|| =1} = (Hx1,x1),

Aj =max {(Hx,x): x| =1, xL{x1,x9,...,%-1}}

= (Hxj,%;), j€2,n
2.12. A Hermitian matrix H € C™"*™ is positive semidefinite (PSD for

short) if (Hx,x) > 0 for all x or, equivalently, if its eigenvalues are nonneg-
ative. Similarly, H is called positive definite (PD for short), if (Hx,x) > 0

for all x # 0 or, equivalently, if its eigenvalues are positive. The set of n xn
PSD [PD] matrices is denoted by PSD,, [PD,,].

IThe spectrum of A is often denoted elsewhere by (A), a symbol reserved here for
the singular values of A.
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2.13. Let A € C™*™ and let the eigenvalues \;(AA*) of AA* (which
is PSD) be ordered by

AL(AA®) > o> M (AAT) > N1 (AAT) = - = M (AA) = 0. (30)

The singular values of A, denoted by o;(A) or 0, j € 1,7, are defined as

UJ(A)=+\/AJ-(AT*), jeLr, (31a)
Uj(A):+\/m, jelr, (31b)

and are ordered, by (30),

0120’22"'207«>0. (32)

or, equivalently,

The set of singular values of A is denoted by o(A).

2.14. Let A and {o;} be as above, let {u; : i € 1,m} be an o.n. basis
of C™ made of eigenvectors of AA*,

AA*w; = o?u;, i€, (33a)
AA*u; =0, ter+1,m, (33b)
let
1
v, =—A";, jel,r, (34)
0j

and let {v; : j € r+1,n} be an o.n. set of vectors, orthogonal to {v; :
j € 1,r}. Then the set {v; : j € 1,n} is an o.n. basis of C" consisting of
eigenvectors of A*A,

A*Av; =o}v;, jelr, (35a)
A*Av; =0, jer+1,n. (35Db)

Conversely, starting from an on. basis {v; : j € 1,n} of C" satisfying
(35a)—(35b), we construct an o.n. basis of C™ with (33a)—(33b) by

u; = — AV]‘, 1€ 1,77“, (36)
and completing to an o.n. set. See Theorem 6.1.

2.15. Let A, {u; : i € I,m} and {v; : j € 1,n} be as above. Then
(36) can be written as

Alvy -+ vrva_l cee V] o1

=[ug - WUy - Uy .
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or
01
. 0
AV =U3X, whereX = ” . , (37)
i 0 : 0]
and U =[u; -+ uy], V=[vy -+ v,]. Since V is unitary,
A=USV* (38)

called a singular value decomposition (abbreviated SVD) of A. See Theo-
rem 6.2.

Exercises

EX. 12. Let L, M be subspaces of C", with dim L > (k+1), dim M < k. Then
LN M* #{0}.

PROOF. Otherwise L+ M™ is a direct sum with dimension = dim L+dim M+ >
(k+1)+(n—k)>n. O
EX. 13. The QR factorization. Let the o.n. set {qi,...,qr} be obtained from
the set of vectors {ai,...,a,} by the GSO process described in Ex. 7, and let
Q= [q1,...,9-] € C™*" and A = [a1,... ,a,] € C™*" be the corresponding
matrices. Then

A=QR, (39)

where the columns of é are an o.n. basis of R(A) and R € Cr*™ is an upper
triangular matrix. If » < m, it is possible to complete @ to a unitary matrix
Q = [Q Z], where the columns of Z are an o.n. basis of N(A*). Then (39) can
be written as

A=QR (40)

where R = {R] is upper triangular.

0]
The expression (40) is called a QR-factorization of A. By analogy, we call

(39) a QR-factorization of A.

EX. 14. Let U and V be finite-dimensional vector spaces over a field F and let
T € L(U,V). Then the null space N(T') and range R(T') are subspaces of U and
V', respectively.

PROOF. L is a subspace of U if and only if

x,ye€L, aeF — ax+ye€elLl.

If x,y € N(T), then T(x + ay) = Tx + aTy = 0 for all o € F, proving that
N(T) is a subspace of U. The proof that R(T) is a subspace is similar. |

Ex. 15. Let P, be the set of polynomials with real coefficients, of degree < n,
Pn={p: p(@) =po+piz+- - +puz", pi € R} (41)

The name z of the variable in (41) is immaterial.
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(a) Show that P, is a vector space with the operations
P+a=) pa' +y qz'=) (p+a)a’, ap=) (ap)a’,
i=0 i=0 i=0 i=0

and the dimension of P, is n + 1.

(b) The set of monomials U, = {1,z,22,... 2"} is a basis of P,. Let T be
the differentiation operator, mapping a function f(z) into its derivative
f'(z). Show that T € L(P,, P,—1). What are the range and null space
of T'?7 Find the representation of 7' with respect to the bases {Un,Un—1}.

(c) Let S be the integration operator, mapping a function f(z) into its in-
tegral [ f(z)dz with zero constant of integration. Show that S €
L(P,-1, P,). What are the range and null space of S? Find the repre-
sentation of S with respect to {Un—1,Un}.

(d) Let T, 1, , and Sy, ,.u, be the matrix representations in parts (b)
and (c). What are the matrix products Ty, w, ,}S{t,_1,u,}y and
Sty 1 uny Tt u,, 13?7 Interpret these results in view of the fact that
integration and differentiation are inverse operations.

Ex. 16. Let U = {u1,... ,un} and V = {vi,...,v,} be o.n. bases of C™ and
C™, respectively. Then for any A € L(C",C™):
(a) The matrix representation Ay, vy = [aq;] is given by
Aij = <Avj,ui>, \ Z,]

where (-, ) is the inner product on C™ (in which U/ is an o.n. basis.)
(b) The adjoint A* is represented by the matrix A?v,u} = [bie] where bye =
gk, i.e., the matrix A?v,u} is the conjugate transpose of Agy vy.

Ex. 17. The simplest matriz representation. Let O # A € L(C™,C™). Then

there exist o.n. bases U = {u1,... ,um} and V = {vi,... ,vp} of C™ and C",
respectively, such that

A{U,V} :diag(al,... ,0r,0,. .. ,O) eRnXm’ (42)
a diagonal matrix, whose nonzero diagonal elements o1 > o2 > -+ > 0, > 0 are

the singular values of A.

Ex. 18. Let V = {vi1,...,va} and W = {wi,... ,wn} be two bases of C".
Show that there is a unique n X n matrix S = [s;;] such that

wW; = Z sij Vi, J€1l,n, (43)
=1
and S is nonsingular. Using the rules of matrix multiplication we rewrite (43) as
S$11 -ttt Sin
Wi, Wa, ... , W] = [V1,Va,...,Vy] = [v1,Va,...,Va]S, (44)
Sni - Snnm
ie.,
[Vi,V2,...,Vy] = [W1,Wa,... 7wn]S_l. (45)

Ex. 19. Similar matrices. We recall that two square matrices A, B are called
similar if

B=S""AS (46)
for some nonsingular matrix S. If S in (46) is unitary [orthogonal], then A, B are
called called unitarily similar [orthogonally similar].
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Show that two n X m complex matrices are similar if and only if each is a
matrix representation of the same linear transformation relative to a basis of C".
PROOF. If: Let ¥V = {vi,va,...,vp} and W = {wi,wa,... ,w,} be two bases
of C" and let Agyy and Agyy be the corresponding matrix representations of
a given linear transformation A : C* — C". The bases V and W determine a
(unique) nonsingular matrix S = [s;;] satisfying (43). Rewriting (19) as

Alvi,va, ..., vp] = [V1,va, ..., va]A). 47)
we conclude, by substituting (45) in (47), that
Alwi, Wa, ..., Wy] = [Wi,Wa,... ,wn]S_lA{V}S,
and by the uniqueness of the matrix representation,
Apwy =S 1Ay S.
Only if: Similarly proved. O

EX. 20. Schur triangularization. Any A € C™*"™ is unitarily similar to a trian-
gular matrix. (For proof see, e.g., Marcus and Minc [534, p. 67]).

EX. 21. Perron’s approzimate diagonalization. Let A € C™*™. Then for any
€ > 0 there is a nonsingular matrix S such that S™*AS is a triangular matrix

)\1 b12 bln
0 o

STrAS =
L0 - o 0 A

with the off-diagonal elements satisfying

> |bi| <€ (Bellman [56, p. 205))
i

ExX. 22. A matrix in C™*" is:

(a) normal if and only if it is unitarily similar to a diagonal matrix; and
(b) Hermitian if and only if it is unitarily similar to a real diagonal matrix.

ExX. 23. For any n > 2 there is an n X n real matrix which is not similar to a
triangular matrix in R™*™.
Hint. The diagonal elements of a triangular matrix are its eigenvalues.

EX. 24. Denote the transformation of bases (43) by W = V S. Let {U,V} be
bases of {C™,C"}, respectively, and let {4, V} be another pair of bases, obtained
by

U=US, V=VT,

where S and T are m x m and n x n matrices, respectively. Show that for any
A € L(C",C™), the representations Ay, vy and A{g’g} are related by

Aoy =5 " Auwn T. (48)

PROOF. Similar to the proof of Ex. 19. g
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EX. 25. FEquivalent matrices. Two matrices A, B in C™*™ are called equivalent
if there are nonsingular matrices S € C™*"™ and T' € C™*™ such that

B=S""AT. (49)

If S and T in (49) are unitary matrices, then A, B are called unitarily equivalent.

It follows from Ex. 24 that two matrices in C™*™ are equivalent if, and only
if, each is a matrix representation of the same linear transformation relative to a
pair of bases of C™ and C".

EX. 26. Let A € £L(C",C™) and B € L(C?,C"), and let U, V, and W be bases of
C™,C", and CP, respectively. The product (or composition) of A and B, denoted
by AB, is the transformation C* — C™ defined by

(AB)w = A(Bw), for allw e C”.

(a) The transformation AB is linear, i.e., (AB) € L(CP,C™).
(b) The matrix representation of AB relative to {U, W} is

(AB)uwy = Ay Bpowy,

the (matrix) product of the corresponding matrix representations of A
and B.

Ex. 27. The matrix representation of the identity transformation I in C",
relative to any basis, is the n x n identity matrix I.

Ex. 28. For any invertible A € £(C",C") and any two bases {U,V} of C",
the matrix representation of A™" relative to {V, U} is the inverse of the matrix

A vy,
(A Yw,uy = Ay
PRrROOF. Follows from Exs. 26-27. O

EX. 29. The real matrix A = (° §) has the complex eigenvalue A = i, with

geometric multiplicity = 2, i.e., every nonzero x € R? is an eigenvector.

PROOF.
0 1 X1 o X1 2 _
P Bl = e

unless 1 = 2 = 0. Od

Ex. 30. Let A € £L(C™,C"). A property shared by all matrix representations
Agu,vy of A, as U and V range over all bases of C™ and C", respectively, is an
intrinsic property of the linear transformation A. Example: If A, B are similar
matrices, they have the same determinant. The determinant is thus intrinsic to
the linear transformation represented by A and B.
Given a matrix A = (a;;) € C™*", which of the following items are intrinsic
properties of a linear transformation represented by A?
(a) if m=n:
(al) the eigenvalues of A;
(a2) their geometric multiplicities;
(a3) the eigenvectors of A;
(b) if m,n are not necessarily equal:
(b1) the rank of A;
(b2) the null space of A;
(b3) o7y 27y lasl*.
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EX. 31. Let U, = {P1,... ,Dn} be the set of partial sums of monomials

k

pr(x) = Z ', kel n.

=0

(a) Show that Z/~{n is a basis of P,, and determine the matrix A, such that
U, = AU, where U,, is the basis of monomials, see Ex. 15.

(b) Calculate the representations of the differentiation operator (Ex. 15(b))
with respect to to the bases {Un,Un_1}, and verify (48).

(c) Same for the integration operator of Ex. 15(c).

Ex. 32. Let L and M be complementary subspaces of C". Show that the
projector Pr, ar, which carries x € C" into its projection on L along M, is a linear
transformation (from C" to L).

Ex. 33. Let L and M be complementary subspaces of C", let x € C", and let y
be the projection of x on L along M. What is the unique expression for x as the
sum of a vector in L and a vector in M? What, therefore, is Pr vy = PE,M X,
the projection of y on L along M7 Show, therefore, that the transformation Pr, s
is idempotent.

EX. 34. Matriz norms. Show that the functions
0> laul?)'? = (trace A" 4)2 (50)
i=1 j—1
and
max{|a;;|: i € 1,m, j € 1,n} (51)

are matrix norms. The norm (50) is called the Frobenius norm, and denoted
||A]| 7. Which of these norms is multiplicative?

EX. 35. Consistent norms. A vector norm || || and a matrix norm || || are called
consistent if for any vector x and matrix A such that Ax is defined,
[ Ax]| < [LA[[[x]]- (52)
Given a vector norm || || show that
Ax||«
4. = sup 12 (5)
x#0 [|xll«

is a multiplicative matrix norm consistent with ||x||« and that any other matrix
norm || || consistent with ||x||. satisfies

JA]| > [|A[l., for all A. (54)

The norm ||Al|« defined by (53), is called the matriz norm corresponding to the
vector norm ||X||«, or the bound of A with respect to K = {x : [|x||« < 1}; see,
e.g., Householder [432, Section 2.2] and Ex. 3.66 below.

EX. 36. Show that (53) is the same as

Ax||«
Al = max T (55)

o<t [[x[le gl

Ex. 37. Given a multiplicative matrix norm, find a vector norm consistent with
it.
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Ex. 38. Corresponding norms.

Vector norm on C" Corresponding matrix norm on C™*"
1
(14) xllp = |27, (Al = max AxIlp ; (56)
j=1

n m

11 b =Y lel A= max > faul (56.1)
j=1 i=1

(14.00) [|xlloo = max |z;], [ Alloo = max z_; i (56.00)

(14.2) Ixlla = O la51)"?, ||All2 = max{V/X: X an eigenvalue of A" A}.

(56.2)

Note that (56.2) is different from the Frobenius norm (50), which is the Euclidean
norm of the mn-dimensional vector obtained by listing all components of A. The
norm || ||2 given by (56.2) is called the spectral norm.

PRrROOF. Equation (56.1) follows from (55) since, for any x € C",

m n m n
[Ax[0 =D 1> agzl < D0 la|la)

i=1 j=1 i=1 j=1

< Z|$J|Z|au|
j=1 1=1

m
1@;2‘ Z lais ) (1x]l1)

with equality if x is the ™ unit vector, where k is any j for which the maximum
n (56) is attained

m m
Z laix| = 11%1]&%(” Z |ais]-
=1 =1
Equation (56.00) is similarly proved and (56.2) is left as exercise. d

EX. 39. For any matrix norm || || on C™*", consistent with some vector norm,
the norm of the unit matrix satisfies

[1n]l = 1.

In particular, if || ||« is a matrix norm, computed by (53) from a corresponding
vector norm, then

[[£n]l« = 1. (57)
EX. 40. A matrix norm || || on C™*™ is called unitarily invariant if, for any two
unitary matrices U € C™*™ and V € C"*",
|[UAV|| = ||A||, forall A€ C™*".
Show that the matrix norms (50) and (56.2) are unitarily invariant.

EX. 41. Spectral radius. The spectral radius p(A) of a square matrix A € C"*"
is the maximal value among the n moduli of the eigenvalues of A,

p(A) = max{|\| : A € A(A)}. (58)
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Let || || be any multiplicative norm on C"*". Then, for any A € C**",

p(A) < [|A]. (59)
PROOF. Let || || denote both a given multiplicative matrix norm and a vector
norm consistent with it. Then Ax = Ax = |A|||x]| = || Ax]| < || A||||x]]. O

EX. 42. For any A € C™*" and any € > 0, there exists a multiplicative matrix
norm || || such that

|All < p(A) + € (Householder [432, p. 46)).

Ex. 43. If A is a square matrix,
p(A") = p"(4), k=0,1,.... (60)

EX. 44. For any A € C™*", the spectral norm || ||2 of (56.2) equals

[ Allz = p'/*(A* A) = p/?(AA"). (61)
In particular, if A is Hermitian, then
| All2 = p(A). (62)

In general, the spectral norm ||A||2 and the spectral radius p(A) may be quite
apart; see, e.g., Noble [615, p. 430].

EX. 45. Convergent matrices. A square matrix A is called convergent if
A 50, ask— oco. (63)
Show that A € C"*™ is convergent if and only if
p(A) < 1. (64)

PROOF. If: From (64) and Ex. 42 it follows that there exists a multiplicative
matrix norm || || such that ||A]| < 1. Then

AR < |AI" =0, ask — oo,

proving (63).
Only if: If p(A) > 1, then by (60), so is p(A*) for k = 0,1,..., contradicting
(63). O

EX. 46. A square matrix A is convergent if and only if the sequence of partial
sums

Sk=T+A+ A%+ .4 A" =>" A

Jj=0

converges, in which case it converges to (I — A)™!, i.e.,
(I-—A)'=T+A+A+...= ZAj (Householder [432, p. 54]).  (65)
§=0
ExX. 47. Let A be convergent. Then

(I+A)’1:I—A+A2—--~:§:(—1)jAj. (66)

ExX. 48. Stein’s Theorem. A square matrix is convergent if and only if there
exists a PD matrix H such that H — A*HA is also PD (Stein [776], Taussky
[799)).
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3. Elementary Operations and Permutations

3.1. Elementary operations. The following operations on a matrix:
1

(1) multiplying row i by a nonzero scalar a, denoted by E*(«);
(2) adding 3 times row j to row i, denoted by E%(3) (here 3 is any
scalar); and

(3) interchanging rows i and j, denoted by E%, (here i # j);
are called elementary row operations of types 1, 2, and 3, respectively.?

Applying an elementary row operation to the identity matrix I,,, results
in an elementary matriz of the same type. We denote these elementary
matrices also by E'(a), E¥(3), and E%. Elementary matrices of types 1,
2 have only one row that is different from the corresponding row of the
identity matrix of the same order. Examples for m = 4,

100 0 100 0 0010
s, |0 a 0 0 oo 001 00 5 10100
EX)=19 0 1 0o/ E =19 01 0"F =1 00 0
00 0 1 06 0 1 000 1

Elementary column operations and the corresponding elementary matrices
are defined analogously.

Performing an elementary row [column] operation is the same as mul-
tiplying on the left [right] by the corresponding elementary matrix. For
example, E2°(—3)A is the matrix obtained from A by subtracting 3 x row
5 from row 2.

3.2.  Permutations. Given a positive integer n, a permutation of order
n is a rearrangement of {1,2,...,n}, i.e., a mapping: 1,n — 1,n. The
set of such permutations is denoted by S,,. It contains:
(a) the identity permutation m9{1,2,... ,n} ={1,2,... ,n};
(b) with any two permutations 7y, 72, their product w7, defined as m;
applied to {m2(1),m2(2),... ,m2(n)}; and
(¢) with any permutation 7, its inverse, denoted by m~
{r(1),7(2),... ,7(n)} back to {1,2,... ,n}.
Thus S, is a group, called the symmetric group.
Given a permutation 7w € .S,,, the corresponding permutation matriz Py
is defined as Pr = [0x(;),;], and the correspondence 7 «— Py is one-to-one.
For example,

L mapping

0 1 0
m{1,2,3} ={2,3,1} +— P,=1|0 0 1
1 0 0

Products of permutations correspond to matrix products:
Priry = Pr Pry, ¥V m,m €5,.

A transposition is a permutation that switches only a pair of elements, for
example, 7{1,2,3,4} = {1,4, 3,2}. Every permutation 7 € S,, is a product
of transpositions, generally in more than one way. However, the number of

2Only operations of types 1, 2 are necessary, see Ex. 49(b). Type 3 operations are
introduced for convenience, because of their frequent use.
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transpositions in such a product is always even or odd, depending only on
7. Accordingly, a permutation 7 is called even or odd, if it is the product
of an even or odd number of transpositions, respectively. The sign of the
permutation mw, denoted sign 7, is defined as

— +1, if 7 is even,
SIBNT = 21, if s odd.

The following table summarizes the situation for permutations of order 3:

Permutation Inverse Product of sign 7

T a1 transpositions

) {1,273} ™0 7r17r1,7r27r27etc. +1
1 {1,3,2} 1 1 -1
Uy {2, 1,3} Uy’ Uy’ -1
T3 {2,3,1} T4 1T +1
T4 {3,172} T3 2T +1
5 {3,27 1} 5 5 -1

Multiplying a matrix A by a permutation matrix P, on the left [right]
results in a permutation 7 [7~!] of the rows [columns] of A. For example,

0 1 0) a1 a2 a1 a2
0 0 1) [a21 ag| = |a3z1 asz2|,
1 0 0] a1 a3z api; a2

0 1
{bu bi2 b13} 0 0
ba1  bag  bos 10

o~ o
|

_ {513 b1 bu]
bag  ba1r  baa|’

Exercises

EX. 49. Elementary operations.

(a) The elementary matrices are nonsingular, and their inverses are
E'(a)"' = E'(1/a), EY(B)'=E"(-B), (EY)'=EY.  (67)
(b) Type 3 elementary operations are expressible in terms of the other two
types:
EY = E'(-1)E’*(1)E" (-1)E”*(1). (68)

(c) Conclude from (b) that any permutation matrix is a product of elementary
matrices of types 1, 2.

EX. 50. Describe a recursive method for listing all n! permutations in S,,.
Hint: If 7 is a permutation in S,_1, mapping {1,2,... ,n — 1} to

{71'(1),71‘(2),.., ,7T(Tl— 1)}7 (69)
then 7 gives rise to n permutations in S,, obtained by placing n in the “gaps”
{Ur(I)Ur(2)U...Unw(n— 1)U} of (69).

4. The Hermite Normal Form and Related Items

4.1. Hermite normal form. Let C"*™ [R7*"] denote the class of
m x n complex [real] matrices of rank r.
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DEFINITION 1. (Marcus and Minc [534, §3.6]). A matrix in C"*™ is
said to be in Hermite normal form (also called reduced row-echelon form)
if:

(a) the first r rows contain at least one nonzero element; the remaining

rows contain only zeros;

(b) there are r integers

1< <e<--<e <n, (70)

such that the first nonzero element in row ¢ € 1,r, appears in
column ¢;; and
(c) all other elements in column ¢; are zero, i € 1,r. ([l

By a suitable permutation of its columns, a matrix H € C™*" in
Hermite normal form can be brought into the partitioned form

R:[g g} (71)

where O denotes a null matrix. Such a permutation of the columns of H can
be interpreted as multiplication of H on the right by a suitable permutation
matrix P. If P; denotes the § ' column of P, and e; the § ' column of I,,
we have

Pj=e,, wherek=c;, je€l,r,

the remaining columns of P are the remaining unit vectors {e; : k #
¢j, j € 1,r} in any order. In general, there are (n — r)! different pairs
{P, K}, corresponding to all arrangements of the last n — r columns of P.

In particular cases, the partitioned form (71) may be suitably inter-
preted. If R € C**™, then the two right-hand submatrices are absent in
the case r = n, and the two lower submatrices are absent if r = m.

4.2.  Gaussian elimination. A Gaussian elimination is a sequence of
elementary row operations that transform a given matrix to a desired form.

The Hermite normal form of a given matrix can be computed by Gauss-
ian elimination. Transpositions of rows (i.e., elementary operations of type
3) are used, if necessary, to bring the nonzero rows to the top. The pivots
of the elimination are the leading nonzeros in these rows. This is illustrated
in Ex. 51 below.

Let A € C™*™ and let Ey, Ex_1,...,FEs, E1 be elementary row opera-
tions, and let P be a permutation matrix such that
I, K
EAP = [o o}’ (72)
where
E=FEyEg_1---EyEq, (73)

in which case A is determined to have rank r. Equation (72) can be rewrit-
ten as

A=E""! [é g} Pt (74)
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4.3. Bases for the range and null space of a matriz. Let A € C™*™
and let R(A) and N(A) be as in (20).

A basis for R(A) is useful in a number of applications, such as, for
example, in the numerical computation of the Moore—Penrose inverse, and
the group inverse to be discussed in Chapter 4.

The need for a basis of N(A) is illustrated by the fact that the general
solution of the linear inhomogeneous equation

Ax=Db

is the sum of any particular solution x¢ and the general solution of the
homogeneous equation

Ax = 0.

The latter general solution consists of all linear combinations of the elements
of any basis for N(A).

A further advantage of the Hermite normal form EA of A (and its
column-permuted form EAP) is that from them bases for R(A), N(A), and
R(A*) can be read off directly.

A basis for R(A) consists of the e, e e, columns of A, where
the {c¢; : j € 1,7} are as in Definition 1. To see this, let P; denote the
submatrix consisting of the first » columns of the permutation matrix P of
(72). Then, because of the way in which these r columns of P were chosen,

I,
EAP, = [ O} . (75)
Now, AP, is an m X r matrix, and is of rank r, since RHS(75) is of rank r.
But AP, is merely the submatrix of A consisting of the clth, czth, ... ,crth
columns.

It follows from (74) that the columns of the n x (n — r) matrix

P L:f] (76)

are a basis for N(A). (The reader should verify this.)

Moreover, it is evident that the first r rows of the Hermite normal form
E A are linearly independent, and each is some linear combination of the
rows of A. Thus, they are a basis for the space spanned by the rows of A.
Consequently, if

BA = [g} , (77)

then the columns of the n x r matrix
. _ I,
i
are a basis for R(A*).

4.4. Full-rank factorization. A nonzero matrix can be expressed as
the product of a matrix of full column rank and a matrix of full row rank.
Such factorizations turn out to be a powerful tool in the study of generalized
inverses.
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LEMMA 1. Let A € C**", r > 0. Then there exist matrices F' € C"*"
and G € C7*™, such that

A=FG. (78)

PROOF. The @é factorization, Ex. 13, is a case in point. Let F' be any matrix
whose columns are a basis for R(A). Then F € C;**". The matrix G € C™*"
is then uniquely determined by (78), since every column of A is uniquely rep-
resentable as a linear combination of the columns of F. Finally, rankG = r,
since

rank G > rank F'G = r. O

The columns of F' can, in particular, be chosen as any maximal linearly
independent set of columns of A. Also, G could be chosen first as any matrix
whose rows are a basis for the space spanned by the rows of A, and then F
is uniquely determined by (78).

A factorization (78) with the properties stated in Lemma 1 is called a
(full-)rank factorization of A. When A is of full (column or row) rank, the
most obvious factorization is a trivial one, one factor being a unit matrix.

A rank factorization of any matrix is easily read off from its Hermite
normal form. Indeed, it was pointed out in §4.3 above that the first r rows
of the Hermite normal form EA (i.e., the rows of the matrix G of (77))
form a basis for the space spanned by the rows of A. Thus, this G can also
serve as the matrix G of (78). Consequently, (78) holds for some F. As
in §4.3, let P; denote the submatrix of P consisting of the first r columns.
Because of the way in which these r columns were constructed,

GP, = 1I,.
Thus, multiplying (78) on the right by P; gives
F=AP,
and so (78) becomes
A= (AP)G, (79)

where P; and G are as in §4.3. (Indeed it was already noted there that the
columns of AP are a basis for R(A).)

Exercises

EX. 51. Transforming a matriz into Hermite normal form. Let A € C™*"
and let 7o = [A In]. A matrix E transforming A into a Hermite normal form
E A can be found by Gaussian elimination on Ty where, after the elimination is
completed,

ET, =[EA E],

E being recorded as the right-hand m x m submatrix of ETy. We illustrate this
procedure for the matrix

0 2 i 0 4+2i 1
A=10 0 0 -3 —6 -3-3il, (80)
0 2 1 1 4-—4i 1
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marking the pivots by boxes,

0 i 0 4+2i 1 10 0
To=1p 0o 0o -3 -6 -3-3 : 0 1 0|
0 2 1 1 4—4 1 00 1
T1 = E¥ (=2)E'(5;)To
01 5 0 1-20 —2i —5i 0 0
=lo 0 o0 -6 —3-3i 0o 1 of:
000 1 2 ) i 01
T, = E¥*(-1)E*(-1)T)
01 5 0 1—-2 —3i —3i 0 0
=00 o0 1 2 14i : 0 =10
000 0 0 o i i1
From 7> = [EA E] we read the Hermite normal form
[0 1 3 0 1-2 —3i
pa= |0 0001 (s1)
(0 0 0 o 0 0
where
-3 0 0
E=E*-1)E*(-HE*(-2)E'(3)=| 0 -% of, (82)
i |
3

and r = rank A = 2.

Ex. 52. (Ex. 51 continued). To bring the Hermite normal form (81) to the
standard form (72), use

0 0 1 00 0

10 0000
to get EAP = {g [O(}

p_|0 0 010 0 ) 1 (83)

01 : 0000 ~ _ |0 5 1=2i —3i
W“hK_{o 0 2 14

0 0 0010

00 : 00 0 1]

In this example there are 4! different pairs {P, K}, corresponding to all arrange-
ments of the last four columns of P.

Ex. 53. (Ex. 51 continued). Consider the matrix A of (80), and its Hermite
normal form (81) where the two unit vectors of C? appear in the second and

fourth columns. Therefore, the second and fourth columns of A form a basis for
R(A).
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Using (76) with P and K selected by (83), we find that the columns of the
following matrix form a basis for N(A):

0 1 0

—
o o O
o o o o

P[] -

o o o o o

coom~ -
oo~ o
o~oo
— o oo

—_
o o o o o

cocoocor~ o o o o
o
o4 o o o o
NTo

o

-2 —-1—1

r
o

0 1

EX. 54. If A € C™*™ is nonsingular, then the permutation matrix P in (72) can
be taken as the identity (i.e., permutation is unnecessary). Therefore F = A1
and

A=E'E;' - E ' E. (84)

(a) Conclude that A is nonsingular if and only if it is a product of elementary
row matrices.
(b) Compute the Hermite normal forms of

1 2 3
and B= (4 5 6/,

7 8 9
and illustrate (84).

EX. 55. Consider the matrix A of (80). Using the results of Exs. 51-52, a rank
factorization is computed by (79),

2i 0

_ _ 01 5 0 1-2 —3i
A=(AP)G=|0 -3 00 o 1 9 144 (85)
2 1
EX. 56. Given a nonzero m X n matrix A = [a; ... a,], a full-column rank
submatrix F' = [a., ... a.,] can be found by Gram-Schmidt orthonormalization,

see Ex. 7. Indeed, applying the GSO process to the columns of A gives the integers
{Cl7 e ,C,,-}A
EX. 57. Use the GSO process to compute a @}:2 factorization of the matrix A of
(80).

5. Determinants and Volume

5.1. Determinants. The determinant of an n x n matrix A = [a,;],
denoted det A, is customarily defined as

det A = Z sign T H Qr(i),is (86)
TESn i=1
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see, e.g., Marcus and Minc [534, §2.4]. We use here an alternative defini-
tion.

DEFINITION 2. The determinant is a function det: C*"*™ — C such
that:

(a) det (E'(a)) = o, for all « € C, i € 1,n; and

(b) det(AB) = det(A) det(B), for all A, B € C**".

The reader is referred to Cullen and Gale [212] for proof that Defini-
tion 2 is equivalent to (86). See also Exs. 5859 below.
The Binet-Cauchy formula. If A € C**" B € C"**, then

det(AB) = > det Ay, det B,;. (87)
IeQk,n

For proof see, e.g., Gantmacher [296, Vol. I, p. 9].

5.2. Gram matrices. The Gram matriz of {x1,x2,... ,xx} C C" is

the k x k matrix of inner products (unless otherwise noted, (-,-) is the
standard inner product)

G(lex%"' 7xk) = [<Xiaxj>]' (88)
The determinant of G(x1,Xa, . .. ,Xy) is called the Gramian of {x1,X2,... , X}
If X € C"** is the matrix with columns {x;, Xz, ... ,%y}, then by the

Binet—Cauchy formula,

det G(x1,...,%,) =det X*X = Y |det Xp.[*.
I1€Qk,n
5.3. Volume. The matrices in this section are real. Given A € R7"*",
we denote
IZ(A) ={I € Qpum : rank A(I, %) =1},
J(A)={J € Qrn: rank A(x,J) =1},
NA) ={I,J): I€Qrm,J € Qrn, A(L,J) is nonsingular},
or T, J, N if A is understood. Z and J are the index sets of maximal
submatrices of full row rank and full column rank, respectively, and A is
the index set of maximal nonsingular submatrices.

The (r-dimensional) volume of a matrix A € R7*", denoted vol A or
vol,. A, is defined as 0 if » = 0, and otherwise

vol A = > det’ Ay, (89)
(I,))eEN(A)

see also Ex. 69 below.
Exercises
EX. 58. Properties of determinants.

(a) det E”(B) =1,forall € C, i,j €1,n; and

(b) det E¥ = —1, for all 4,5 € 1,n. (Hint: Use (68) and Definition 2.)

(¢) If A is nonsingular, and given as product (84) of elementary matrices,

then

det A = det(Ey ") det(E; ") --- det(E; ")) det(E; ). (90)
(d) Use (90) to compute the determinant of A in Ex. 54(b).
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EX. 59. The Cramer rule. Given a matrix A and a compatible vector b, we
denote by A[j « b] the matrix obtained from A by replacing the j th column by
b.

Let A € C**™ be nonsingular. Then for any b € C", the solution x = [z;] of

Ax=b (91)
is given by
det A[j < b] .
= 1,n. 2
€L det A ) J € s T (9 )

PROOF (Robinson [700]). Write Ax = b as
AL[j «x]=Alj < bl, jeln,
and take determinants
det A det I,,[j + x| = det A[j + b]. (93)
Then (92) follows from (93) since
det I,[j + x| = z;. d
See an extension of Cramer’s rule in Corollary 5.6.

EX. 60. The Hadamard inequality. Let A = [a; a2 -+ a,] € C**". Then
|det A < [T llall2, (94)
=1

with equality if and only if the set of columns {a;} is orthogonal or if one of the
columns is zero.

PrOOF. LHS(94) = the volume of the parallelepiped defined by the columns of
A < the volume of the cube with sides of lengths |la;||2 = RHS(94). O

EX. 61. The Schur complement (Schur [732]). Let the matrix A be partitioned
as

A= {AH Am] , with A1; nonsingular. (95)
A1 Ao
The Schur complement of Ai1 in A, denoted A/A11, is defined by
AJA1 = Agy — Ag1 AT Aja. (96)
(a) If A is square, its determinant is
det A = det A11 det(A/A11). (97)
(b) The quotient property. If Ai; is further partitioned as
A= [g 11:[} , with FE nonsingular, (98)

then
A/A11 = (A/E)/(A11/E) (Crabtree and Haynsworth [210]). (99)
(c) If A, Aq1, and Ago are nonsingular, then

At { (A/Az2)7" — A A (AJAL) Y
— A5y Ao1(A/Az) ! (A/An)™"
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PROOF. (a) follows from

A A I —A7; A12 _ A 0]
Ao A22| |O I Aa1 AJAn

(b) is left for the reader, after noting that A11/FE is nonsingular (since Ai:
and E are nonsingular, and det A1; = det E'det(A11/E) by (97)).
(c) is verified by multiplying A and RHS(100). g

EX. 62. The set S = {x1,...,xx} are linearly independent if, and only if, the
Gram matrix G(S) is nonsingular.
PrROOF. If S is linearly dependent, then

k
Z ;X = 0 (101)
i=1
has a nonzero solution (aua,... ,ax). Therefore
Z (xi,%;) =0, j€Lk, (102)

showing G(S) is singular. Conversely, writing (102) as

k
<Z O[Z'Xi,Xj>:O, jElﬁﬁ

multiplying by «;, and summing we get

k k
<Z Q. Xi,z (073 Xi> =0
i=1 i=1
proving (101). a

EX. 63. For any set of vectors S = {x1,... ,xx} C C", det G(S) is independent
of the order of the vectors. Moreover, det G(S) > 0 and det G(S) = 0 if and only
if the set S is linearly dependent.

Ex. 64. Let A € C"*™ have a rank-factorization A = CR, C € C"*", R €
Cr*™. Then:

(a) Z(A) = Z(C).
(b) J(A) =T (R).
() N(4) =Z(A) x I(A).

PRrROOF. (a) and (b) are obvious, as is M (A4) C Z(A) x J(A). The converse
N(A) DI(A) x J(A),
follows since every Aj; is the product

A1y = CraRuy. (103)
0

Ex. 65. If the matrix C is of full-column rank r then, by the Binet—Cauchy
theorem,

vol2(C) = det CTC, (104)
the Gramian of the columns of C'. Similarly, if R is of full-row rank r,

vol2(R) = det RR™. (105)
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EX. 66. Let A € R**™, r > 0, and let A = CR be any rank factorization. Then

vol? (A) =Y vol? (Ar.) , (106a)
IeT
= > vol} (Auy) (106b)
JeJg
= vol? (C) vol? (R) . (106¢)
PROOF. Follows from Definition (89), Ex. 64(c), and (103). d

EX. 67. A generalized Hadamard inequality. Let A € R]**™ be partitioned into
two matrices A = (A1, A2), A; € RV*™, i =1,2, with r1 + 72 =r. Then

vol, A < vol,, A1 vol, As, (107)

with equality if and only if the columns of A; are orthogonal to those of As.

PROOF. The full-rank case n; = r;, i = 1,2, was proved in [296, Vol. I, p. 254].
The general case follows since every m X r submatrix of rank r has r; columns
from A; and ro columns from As. O

A statement of (107) in terms of the principal angles [3] between R(A;) and
R(Az2) is given in [549].

6. Some Multilinear Algebra

The setting of multilinear algebra is natural for the matrix volume, allowing
simplification of statements and proofs.

Let V. =R", U =R"™. We use the same letter to denote both a linear
transformation in £(V,U) and its matrix representation with respect to
fixed bases in V and U.

Let /\’“c V be the k! exterior space over V', spanned by exterior products
X1 A - A Xy of elements x; € V), see, e.g., [531], [532], and [585]. For
AeRM™™ r>0and k=1,...,r, the k compound matriz Cr(A) is an
element of L(A* V, \¥ U), given by

AXl/\'~-/\AXk:Ck(A)(Xl/\"'/\Xk), Vx;, €V, (108)

see, e.g., [632, §4.2, p. 94]. Then Cj(A) is an (%) x (}) matrix of rank
(2)7 see Ex. 6.22.

To any r-dimensional subspace W C V there corresponds a unique one-
dimensional subspace A" W C A"V, spanned by the exterior product

wh=wi A AW, (109)

where {w1,... ,w,} is any basis of W, e.g., [585]. The () components of
w” (determined up to a multiplicative constant) are the Plicker coordinates
of W.

Results relating volumes, compound matrices, and full-rank factoriza-
tions are collected in the following lemma. The proofs are omitted.

LEMMA 2 (Volume and Compounds). Let r > 0, A € R**" (C €
R™ " have columns ¢9) and let R € R1*™ have rows r(;). Then,

Cr(R) (ry A+ Ax(py) = vol° R, (110a)
Co(CTY (P A - A ey =vol® C. (110b)
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If A = CR is a rank factorization of A, then
Cr(A) = (DA Aoy A Arg) (110c)

is a full-rank factorization® of C.(A). Moreover, the volume of A is given
by the inner product,

(WA neh), Ary Ao ANArgy) = vol? A, (111)
and

vol2 A = vol? C,.(A) = voli C,.(C) vol C,.(R). (112)
Exercises

Ex. 68. Consider the 3 x 3 matrix of rank 2, with a full-rank factorization

1 2 3 1 2 10 —1
A=14 5 6|=CR=1{4 5 {0 1 2}. (113)
7 8 9 7 8
Then the 2-compound matrix is
-3 -6 -3
CQ(A) =|1—-6 —-12 —-6| = CQ(C) C2(R)
-3 -6 -3

-3
60 2 1,
B

a full-rank factorization. The volume of A is calculated by (112),
vol3 A = vol(C) voli(R) = (9+36 +9)(1+4+1) = 324.

Ex. 69. For k = 1,...,r, the k-volume of A is defined as the Frobenius norm
of the k" compound matrix C (A4),

voly A := Z |det Ag|? (114a)
1€Qk,m, JEQK n

or, equivalently,

volkAz\J > (H ag(A)>, (114b)

I€Qy,, \i€l
the square root of the k'™ symmetric function of {63(A), - ,02(A)}. We use
the convention
voly A:=0, for k=0 or k> rankA. (114c)

EX. 70. Let S € R™*™, A € R»*". Then
volp, (SA) = | det S| vol A. (115)

3This is a restatement of (103).
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PROOF. If S is singular, then both sides of (115) are zero. Let S be nonsingular.
Then rank(SA) = m, and

ol (SA) = [ Y det® (SA).y

JEQm,n

= \/ D det® Sdet A

JEQm,n
= |det S| vol A. 0

7. The Jordan Normal Form
Let the matrices A € C"*", X € (CZXk, and the scalar A € C satisfy

A1 0 - 0]
0o X 1
AX = XJx(N), where Jy(\)=[: .. .. .. | €CFFo(116)
: a1
0 -+ - 0 A
or, writing X by its columns, X = [x; X2 - -+ Xg],
AXl = /\X17 (117)
AXj:Al‘j +Xj_1, ]:2, ,k. (118)
It follows, for j € 1, k, that
(A=XI)Yx;=0, (A=XI)"'x;=x #0, (119)

where we interpret (A—X1)Y as I. The vector x; is therefore an eigenvector
of A corresponding to the eigenvalue X\. We call x; a A-vector of A of
grade j or, following Wilkinson [872, p. 43], a principal vector® of A of
grade j associated with the eigenvalue A. Evidently, principal vectors are a
generalization of eigenvectors. In fact, an eigenvector is a principal vector
of grade 1.

The matrix Jx(A) in (116) is called a (k x k) Jordan block corresponding
to the eigenvalue A. The following theorem, stated without proof (that can
be found in linear algebra texts, see, e.g., [495, Chapter 6]), is of central
importance:

THEOREM 2 (The Jordan Normal Form). Any matriv A € C**" is
similar to a block diagonal matriz J with Jordan blocks on its diagonal,
i.e., there exists a nonsingular matriz X such that

Ji, (A1) 0] 0]
L 0] Jiy(A2) - 0
XAX=J=| | . , o (120)
0] O Ik, (M)
and the matriz J is unique up to a rearrangement of its blocks. O

4The vectors Xj, j € 2, k, are sometimes called generalized eigenvectors associated
with A, see, e.g., [678, p. T4].
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The matrix J is the Jordan normal form of A. The scalars {\,... , A}
in (120) are the eigenvalues of A. Each Jordan block J;(A;) corresponds
to k; principal vectors, of which one is an eigenvector.

Writing (120) as

A=XJX 1 (121)
we verify
A*=XJ°X"t for all integers s > 0, (122)
and, for any polynomial p,
p(4) = Xp(H)X . (123)
Using (120) and (127) below we verify
O O (0]
o ?2 --- O
A-xDPr=x |, . X
0O 0 ... 7

where exact knowledge of the 7 blocks is not needed. Continuing in this
fashion we prove

THEOREM 3 (The Cayley—Hamilton Theorem). For A as above,

(A=XN DM (AN Dk (A=), D* = 0. (124)
ProOOF.
LHS(124) =
o o0 -~ 0][? O o ? 0 -+ O
@) ? .. 0O O O --- 0O O ? o0
x|\ e X
oo - 7] 0 o ? 0 O o)
O

This result can be stated in terms of the polynomial
eA) = (A =AM A= 22)2 - (A=A, (125)

called the characteristic polynomial of A, see Ex. 72. Indeed, LHS(124)
is obtained by substituting A for the variable A, and replacing A; by \; I.
The n roots of the characteristic polynomial of A are the eigenvalues of
A, counting multiplicities. The Cayley—Hamilton theorem states that a
matrix A satisfies the polynomial equation ¢(A) = O, where ¢()) is its
characteristic polynomial.

If an eigenvalue J\; is repeated in ¢ Jordan blocks,

J]l(AZ)7JJ2()"L)a 7‘]jq()\i)7 with jl 2.72 Z Z.jq)
then the characteristic polynomial is the product of factors
. Ci()\) = ()\ — )\i)th"
A)=c(A A) - ep(A th . ) .
) = eal) g, witn {GNZOSNT
The exponent a; is called the algebraic multiplicity of the eigenvalue X;. It
is the sum of dimensions of the Jordan blocks corresponding to A;. The
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dimension of the largest block, ji, is called the index of the eigenvalue \;,
and denoted v()\;). By (127) below it is the smallest integer k& such that
(le (/\1) -\ Ijl)k =0, (']j2 ()‘l) -\ Ijz)k =0, -, (qu ()‘1) =\ Ijq)k =0,
see also Ex. 82.

Let m;(A) = (A — \;)Y). Then the polynomial

M) = ma(A) ma(A) -+ my(A)

satisfies m(A) = O, and has the smallest degree among such polynomials.
It is called the minimal polynomial of A.
Exercises

EX. 71. Let A € C™*™ have the Jordan form (120). Then the following state-
ments are equivalent:

(a) A is nonsingular;

(b) J is nonsingular; and

(c) 0is not an eigenvalue of A.
If these hold, then

ATt =XxJ X (126)
and (122) holds for all integers s, if we interpret A~* as (A7')".

EX. 72. Let A € C**". Then the characteristic polynomial of A is c¢()\) =
(—1)" det(A — AI).

EX. 73. Let A € C™*™. Then ) is an eigenvalue of A if and only if X is an
eigenvalue of A™.

PROOF. det(A* — A1) = det(A — A 1). O
EX. 74. Let A be given in Jordan form
J3(A1) O o o O o
O J2(A1) O o O 0
_ o 0 J2(A1) 0 o 0 1
A=X1 o 0 0 n(\n) O o | X

O o O o J2(A2) O

o o o 0 o J2(A2)
Then the characteristic polynomial of A is c¢(A) = (A — A\1)¥(A — A2)? and the

minimal polynomial is m(X) = (A — A1)*(A — A2)?. The algebraic multiplicity
of A1 is 8, its geometric multiplicity is 4 (every Jordan block contributes an
eigenvector), and its index is 3.

EX. 75. A matrix N is nilpotent if N* = O for some integer k > 0. The smallest

such k is called the index of nilpotency of N. Let Ji(A\) be a Jordan block and
let j € 1,k. Then

(Je(N) = Mi)? = Je(0) =

o 1 - ... O'j o --- 1 --- 0]
1 :
= |: oo = 1, (27
1 ;
10 0] K 0]
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with ones in positions {(¢,7 + j) : ¢ € 1,k — 7 }, zeros elsewhere. In particular,
(Jk(\) = A I)F71 £ O = (Jp(X) — M Ii)*, showing that (Jix(X\) — X ;) is nilpotent

with index k.

EX. 76. Let Jx(\) be a Jordan block and let m be a nonnegative integer. Show

that the power (Ji(\))™ is
')\m m}\m—l (7;)>\m—2

0 A™ mA™!

(Je()™ =
\m
Lo 0
= jz_é ?)Amﬂ(Jk(A)—,\Ik)J
= SO -y

m
k-1

(

(p)x?

m)\mfl

))\m—k+1-

(128a)

(128b)

(128¢)

where p(A) = \™, p) is the jth derivative, and in (128), (TZ) is interpreted as

zero if m < /.

Ex. 77. Let Ji(\) be a Jordan block and let p(\) be a polynomial. Then p(Jx(\)

is defined by using (128)

0 p) T

p(Jr(A) = | : 70" (A)
p(N) ALY
L 0 R ce 0 p(/\) J

() AN "N et T

=3 PP () AL, asin (1250).

(129)

Ex. 78. ([365, p. 104]). Let P, be the set of polynomials with real coefficients, of
degree < n, and let T be the differentiation operator T'f(x) = f'(z), see Ex. 15(b).
The solution of f'(z) = Af(x) is f(x) = e*®, which is a polynomial only if A\ = 0,
the only eigenvalue of T'. The geometric multiplicity of this eigenvalue is 1, its

algebraic multiplicity is n + 1.

EX. 79. Let the n x n matrix A have the characteristic polynomial

c(A) ="+ i A" o e A2 e+ co.

Then A is nonsingular if and only if ¢y # 0, in which case

_ 1 n—
A = - (A" e A" P At al).

Co
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EX. 80. Let A be a nonsingular matrix. Show that its minimal polynomial can
be written in the form

m(A) = e(1 = Aq(V) (130)
where ¢ # 0 and ¢ is a polynomial, in which case
A7t = q(A). (131)
See also Ex. 6.87 below.

EX. 81. Let the 2 x 2 matrix A have eigenvalues 4. Find A7
Hint: Here c(A\) = m(\) = A? + 1. Use Ex. 79 or Ex. 80.

EX. 82. For a given eigenvalue A, the maximal grade of the A-vectors of A is the
index of .

8. The Smith Normal Form

Let Z denote the ring of integers 0,£1,4+2, ... and let:

Z™ be the m-dimensional vector space over Z;

Z™*™ be the m x n matrices over Z; and

Z7*™ be the same with rank r.
Any vector in Z™ will be called an integral vector. Similarly, any element
of Z™*™ will be called an integral matriz.

A nonsingular matrix A € Z"*" whose inverse A~! is also in Z"*" is
called a unit matrizc; e.g., Marcus and Minc [534, p. 42].

Two matrices A, S € Z™*"™ are said to be equivalent over 7 if there
exist two unit matrices P € Z™*™ and @ € Z™*™ such that

PAQ = S. (132)

THEOREM 4. Let A € Z"*". Then A is equivalent over Z to a matriz
S = [s;i5] € Z7*" such that:

(a) s;; #0, i€l,r;

(b) si; =0 otherwise; and

(c) sy divides Si41,i41 forie l,r —1.
REMARK. S is called the Smith normal form of A, and its nonzero elements
sy (1 € 1,7) are the invariant factors of A; see, e.g., Marcus and Minc [534,
pp. 42-44].
PROOF. The proof given in Marcus and Minc [534, p. 44] is constructive and
describes an algorithm to:

(i) find the greatest common divisor of the elements of A;

(ii) bring it to position (1,1); and

(iii) make zeros of all other elements in the first row and column.
This is done, in an obvious way, by using a sequence of elementary row and
column operations consisting of

interchanging two rows [columns], (133)

subtracting an integer multiple of one row [column)]
from another row [column]. (134)

The matrix B = [b;;] so obtained is equivalent over Z to A, and
b11 divides bij (Z > 1,j > 1);
bi1:b1j:0 (i>1,j>1).
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Setting s11 = b11, one repeats the algorithm for (m—1) x (n—1) matrix [b;;] (¢ >
1,5 > 1), ete.

The algorithm is repeated r times and stops when the bottom right (m —
r) X (n — r) submatrix is zero, giving the Smith normal form.

The unit matrix P[Q] in (132) is the product of all the elementary row
[column] operators, in the right order. (]

Exercises

Ex. 83. Two matrices A, B € Z™*" are equivalent over Z if and only if B

can be obtained from A by a sequence of elementary row and column operations
(133)—(134).

EX. 84. Describe in detail the algorithm mentioned in the proof of Theorem 4.

9. Nonnegative Matrices
A matrix A = [a;;] € R™*" is:
(a) nonnegative if all a;; > 0; and

(b) reducible if there is a permutation matrix @ such that

T A |A1n Al
Q" AQ = {O Aoy |

where the submatrices A11, Ao are square, and is otherwise irre-
ducible.

THEOREM 5 (The Perron-Frobenius Theorem). If A € R™*™ s non-
negative and irreducible then:

(135)

(a) A has a positive eigenvalue, p, equal to the spectral radius of A.
(b) p has algebraic multiplicity 1.
(¢) There is a positive eigenvector corresponding to p.

Suggested Further Reading

SECTION 4.4. Bhimasankaram [97], Hartwig [380].

SECTION 5. Schur complements: Carlson [166], Cottle [207], Horn and
Johnson [428], Ouellette [624].

SECTION 6. Finzel [273], Marcus [531],[532], Mostow and Sampson [584],
Mostow, Sampson, and Meyer [585], Niu [613].

SECTION 9. Berman and Plemmons [91], Lancaster and Tismenetsky [495,
Chapter 15].



CHAPTER 1

Existence and Construction of Generalized
Inverses

1. The Penrose Equations

In 1955 Penrose [635] showed that, for every finite matrix A (square or rect-
angular) of real or complex elements, there is a unique matrix X satisfying
the four equations (that we call the Penrose equations)

AXA = A, (1)
XAX = X, (2)
(AX)" = AX, (3)
(XA)* = XA, (4)

where A* denotes the conjugate transpose of A. Because this unique gen-
eralized inverse had previously been studied (though defined in a different
way) by E.H. Moore [575], [576], it is commonly known as the Moore—
Penrose inverse, and is often denoted by Af.

If A is nonsingular, then X = A~! trivially satisfies the four equations.
It follows that the Moore—Penrose inverse of a nonsingular matrix is the
same as the ordinary inverse.

Throughout this book we shall be much concerned with generalized
inverses that satisfy some, but not all, of the four Penrose equations. As
we shall wish to deal with a number of different subsets of the set of four
equations, we need a convenient notation for a generalized inverse satisfying
certain specified equations (see also Notes on Terminology in p. 51.)

DEFINITION 1. For any A € C™*" let A{i,7,...,k} denote the set of
matrices X € C"*™ which satisfy equations (i), (j),... , (k) from among
equations (1)—(4). A matrix X € A{i,j,... ,k} is called an {i,j,... ,k}-
inverse of A, and also denoted by A(H7 k),

In Chapter 4 we shall extend the scope of this notation by enlarging the
set of four matrix equations to include several further equations, applicable
only to square matrices, that will play an essential role in the study of
generalized inverses having spectral properties.

Exercises

Ex. 1. If A{1,2,3,4} is nonempty, then it consists of a single element (Penrose
[635)).

40
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PRrOOF. Let X,Y € A{1,2,3,4}. Then
X = X(AX)" = XX A" = X(AX)" (AY)"
— XAY = (XA) (YA)'Y = A°Y"Y

= (YA)'Y = Y. -
EX. 2. By means of a (trivial) example, show that A{2,3,4} is nonempty.
2. Existence and Construction of {1}-Inverses
It is easy to construct a {1}-inverse of the matrix R € C"*" given by
I, K
= . . 1
we[s 5] o
For any L € C(»=")*(m=") the n x m matrix
I. O
s 7]

is a {1}-inverse of (0.71). If R is of full column [row] rank, the two lower
[right-hand] submatrices are interpreted as absent.

The construction of {1}-inverses for an arbitrary A € C™*" is sim-
plified by transforming A into a Hermite normal form, as shown in the
following theorem:

THEOREM 1. Let A € C**" and let E € C2*™ and P € C*™ be such
that

I, K
EAP = {0 O] . (0.72)
Then, for any L € C=m)X(m=") "the n x m matriz
I, O
X=P [ 5 L} E (5)

is a {1}-inverse of A. The partitioned matrices in (0.72) and (5) must be
suitably interpreted in case r =m orr =n.

PROOF. Rewriting (0.72) as

_ —1 Ir K —1
A=E { s o] P (0.74)
it is easily verified that any X given by (5) satisfies AX A = A. O

In the trivial case of r = 0, when A is therefore the m x n null matrix,
any n X m matrix is a {1}-inverse.

We note that since P and F are both nonsingular, the rank of X is the
rank of the partitioned matrix in RHS(5). In view of the form of the latter
matrix,

rank X =r +rank L. (6)

Since L is arbitrary, it follows that a {1}-inverse of A exists having any
rank between r and min{m,n}, inclusive (see also Fisher [274]).

Theorem 1 shows that every finite matrix with elements in the complex
field has a {1}-inverse, and suggests how such an inverse can be constructed.
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Exercises

EX. 3. What is the Hermite normal form of a nonsingular matrix A? In this case,
what is the matrix F and what is its relationship to A? What is the permutation
matrix P? What is the matrix X given by (5)7

EX. 4. An m x n matrix A has all its elements equal to 0 except for the (i,j)th

element, which is 1. What is the Hermite normal form? Show that E can be
taken as a permutation matrix. What are the simplest choices of E and P?
(By “simplest” we mean having the smallest number of elements different from
the corresponding elements of the unit matrix of the same order.) Using these
choices of ¥ and P, but regarding L as entirely arbitrary, what is the form of the
resulting matrix X given by (5)? Is this X the most general {1}-inverse of A?
(See Exercise 6, Introduction, and Exercise 11 below.)

EX. 5. Show that every square matrix has a nonsingular {1}-inverse.

EX. 6. Computing a {1}-inverse. This is demonstrated for the matrix A of (0.80),
using (5) with E as computed in (0.82), and an arbitrary L € Cr=mx(m=r)  Uging
the permutation matrix P selected in (0.83), and the corresponding submatrix
K, we write

1 0:0 L 1-2 L o
EAP = 0 1 0 0 2 144> and take L = 5 E(C4X17
0 0:0 0 0 0
since m =3, n =6, r =2. A {1}-inverse of A is, by (5),
I. O
X_P[O L]E
0 0:1 0 0 O |1 o0:o0
1 0:0 000/ |o 1:0
: 0 0'al|™2¢ 0 0
_ {000 1 0 0 | ¢ —1 o
0 1:0 0 0 0f |0 0:8 iz 1
000 0 1 0[]0 0:x
0 0i0 0 0 1] Lo 0:4]
1e% %a o
- 0 0
i3 i3 B
= 0 i% 0 (7)
o3y Y
L6 L5 5

Note that, in general, the scalars ia,i0,iy,i0 are not pure imaginaries since
a, B,7,0 are complex.

3. Properties of {1}-Inverses

Certain properties of {1}-inverses are given in Lemma 1. For a given matrix
A, we denote any {1}-inverse by A1), Note that, in general, A" is not a
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uniquely defined matrix (see Ex. 8 below). For any scalar A\ we define \f

by
AL EEA#£D
T ) )
A _{0, if A= 0. ®

It will be recalled that a square matrix E is called idempotent if E? =
E. Idempotent matrices are intimately related to generalized inverses, and
their properties are considered in some detail in Chapter 2.

LEMMA 1. Let A C™*™, A e C. Then:

(a) (AM) € A*{1}.

(b) If A is nonsingular, AV = A=1 uniquely (see also Ex. 7 below).

(c) MAD e (AA){1}.

(d) rank A > rank A.

(e) If S and T are nonsingular, T"*AMS~1 € SAT{1}.

(f) AA® and AM A are idempotent and have the same rank as A.

PROOF. These are immediate consequences of the defining relation (1); (d) and
the latter part of (f) depend on the fact that the rank of a product of matrices
does not exceed the rank of any factor. O
If an m x n matrix A is of full-column rank, its {1}-inverses are its left
inverses. If it is of full row rank, its {1}-inverses are its right inverses.
LEMMA 2. Let A € C"*™. Then:
(a) AMA = I, if and only if r = n.
(b) AAMW) =T, if and only if r =m
PROOF. (a) If: Let A € C"*™. Then the n x n matrix A" A is, by Lemma 1(f),
idempotent and nonsingular. Multiplying (A®M A4)2 = AM A by (AD A)~1 gives
AVA=1,.
Only if: AMA =1, — rankAYA=n =— rankA =n, by Lemma 1(f).
(b) Similarly proved. (]

Exercises

EX. 7. Let A= FHG where F is of full-column rank and G is of full-row rank.
Then rank A = rank H. (Hint: Use Lemma 2.)

Ex. 8. Show that A is nonsingular if and only if it has a unique {1}-inverse,
which then coincides with A™*.

PrOOF. For any x € N(A) [y € N(A")], adding x [y*] to any column [row] of
an X € A{1} gives another {1}-inverse of A. The uniqueness of the {1}-inverse
is therefore equivalent to

N(A4) ={0}, N(4")={0},
i.e., to the nonsingularity of A. O
EX. 9. Show that if AV € A{1}, then R(AAM) = R(A), N(AAW) = N(A),
and R((AMA)*) = R(A*).
PrRoOOF. We have
R(A) D R(AAM) 5 R(AAW A) = R(A),

from which the first result follows.
Similarly,

N(A) c N(AD 4) € N(AAD A) = N(A)
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yields the second equation.
Finally, by Lemma 1(a),

R(A") D R(A*(AMY") = R((AM A)*) 5 R(A*(AM)* 4*) = R(A™). a

Ex. 10. More generally, show that R(AB) = R(A) if and only if rank AB =
rank A and N(AB) = N(B) if and only if rank AB = rank B.

PrOOF. Evidently, R(A) D R(AB), and these two subspaces are identical if
and only if they have the same dimension. But, the rank of any matrix is the
dimension of its range.

Similarly, N(B) C N(AB). Now, the nullity of any matrix is the dimension
of its null space, and also the number of columns minus the rank. Thus, N(B) =
N(AB) if and only if B and AB have the same nullity, which is equivalent, in
this case, to having the same rank, since the two matrices have the same number
of columns. O

EX. 11. The answer to the last question in Ex. 4 indicates that, for particular
choices of E and P, one does not get all the {1}-inverses of A merely by varying
L in (5). Note, however, that Theorem 1 does not require P to be a permutation
matrix. Could one get all the {1}-inverses by considering all nonsingular P and
Q@ such that

I, O
QAP = {o o} ? 9)
Given A € C"*", show that X € A{1} if and only if
L. O
X=P {O L} Q (10)

for some L and for some nonsingular P and @Q satisfying (9).
SoruTION. If (9) and (10) hold, X is a {1}-inverse of A by Theorem 1.

On the other hand, let AXA = A. Then, both AX and X A are idempotent
and of rank 7, by Lemma 1(f). Since any idempotent matrix E satisfies E(E—1I) =
O, its only eigenvalues are 0 and 1. Thus, the Jordan canonical forms of both
AX and X A are of the form

I, O
o o)

being of orders m and n, respectively. Therefore, there exist nonsingular P and
R such that
I. O

O O

-1 o
R AXR—{ 0 O

} , PlXAP= {IT O} )
Thus,
R'AP =R "AXAXAP = (R 'AXR)R '"AP(P"'XAP)
[ 0] I, O
_[O O}R AP[O O]
It follows that R~'AP is of the form
., [H O
RAP = [O O] ,
where H € C[.*", i.e., nonsingular. Let

o H! 0] -1
Q—{O ImJR .
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Then (9) is satisfied. Consider the matrix P~ XQ™". We have

6 o (PTXQ = (@ar)rxQ ) = QaxQ”!

- {H(; I,?J K) 8} {g JmOJ] B E) 8}

and
1 1 -[r O —1 —1 —1
(P XQ ) o O = (P XQ )(QAP)=P XAP
I O
“ |10 O}
From the latter two equations it follows that
Y -1 _|I. O
PxQ = { L L}
for some L. But this is equivalent to (10). O

4. Existence and Construction of {1,2}-Inverses

It was first noted by Bjerhammar [103] that the existence of a {1}-inverse
of a matrix A implies the existence of a {1,2}-inverse. This easily verified
observation is stated as a lemma for convenience of reference.

LEMMA 3. Let Y, Z € A{1}, and let
X=YAZ

Then X € A{1,2}.

Since the matrices A and X occur symmetrically in (1) and (2), X €
A{1,2} and A € X{1,2} are equivalent statements, and in either case we
can say that A and X are {1,2}-inverses of each other.

From (1) and (2) and the fact that the rank of a product of matrices
does not exceed the rank of any factor, it follows at once that if A and X
are {1, 2}-inverses of each other, they have the same rank. Less obvious is
the fact, first noted by Bjerhammar [103], that if X is a {1}-inverse of A
and of the same rank as A, it is a {1, 2}-inverse of A.

THEOREM 2 (Bjerhammar). Given A and X € A{1}, X € A{1,2} if
and only if rank X = rank A.

PrROOF. If: Clearly R(XA) C R(X). But rank XA = rank A by Lemma 1(f)
and so, if rank X = rank A, R(X A) = R(X) by Ex. 10. Thus,

XAY =X
for some Y. Premultiplication by A gives
AX = AXAY = AY,
and therefore

XAX = X.

Only if: This follows at once from (1) and (2). ]
An equivalent statement is the following:
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COROLLARY 1. Any two of the following three statements imply the
third:

X € A{1},
X € A{2},
rank X = rank A. O

In view of Theorem 2, (6) shows that the {1}-inverse obtained from the
Hermite normal form is a {1, 2}-inverse if we take L = O. In other words,

I, O
X=P [ 0 O} E (11)
is a {1, 2}-inverse of A where P and F are nonsingular and satisfy (0.72).

Exercises
EX. 12. Show that (5) gives a {1, 2}-inverse of A if and only if L = O.

EX. 13. Let A = [ai;] € C™*" be nonzero and upper triangular, i.e., a;; = 0 if
¢ > j. Find a {1, 2}-inverse of A.
SOLUTION. Let P, @ be permutation matrices such that
T K
QAP — [ ! O}

where T is upper triangular and nonsingular (the K block, or the zero blocks, are
absent if A is of full-rank.) Then

X:P{T‘l O]Q

O O
is a {1,2}-inverse of A (again, some zero blocks are absent if A is of full-rank.)
Note that the inverse T~ ! is obtained from T by back substitution. t

5. Existence and Construction of {1,2,3}-, {1,2,4}-, and
{1,2,3,4}-Inverses

Just as Bjerhammar [103] showed that the existence of a {1}-inverse implies
the existence of a {1, 2}-inverse, Urquhart [824] has shown that the exis-
tence of a {1}-inverse of every finite matrix with elements in C implies the
existence of a {1,2,3}-inverse and a {1, 2,4}-inverse of every such matrix.
However, in order to show the nonemptiness of A{1,2,3} and A{1,2,4} for
any given A, we shall utilize the {1}-inverse not of A itself but of a related
matrix. For that purpose we shall need the following lemma:

LEMMA 4. For any finite matriz A,
rank AA* = rank A = rank A* A.

PROOF. If A € C™*™, both A and AA* have m rows. Now, the rank of any
m-rowed matrix is equal to m minus the number of independent linear relations
among its rows. To show that rank AA*™ = rank A, it is sufficient, therefore, to
show that every linear relation among the rows of A holds for the corresponding
rows of AA™, and vice versa. Any nontrivial linear relation among the rows of
a matrix H is equivalent to the existence of a nonzero row vector x* such that
x*H = 0. Now, evidently,

x*A=0 = x"AA"=0,
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and, conversely,
x"AA"=0 = O0=x"AA"x=(A"x)"A"x
= A'x=0 = x'A=0.

Here we have used the fact that, for any column vector y of complex elements
y'y is the sum of squares of the absolute values of the elements, and this sum
vanishes only if every element is zero.

Finally, applying this result to the matrix A* gives rank A*A = rank A™ and,
of course, rank A* = rank A. O

COROLLARY 2. For any finite matriz A,
R(AA*) = R(A) and N(AA*) = N(A).
PROOF. This follows from Lemma 4 and Ex. 10. O
Using the preceding lemma, we can now prove the following theorem:

THEOREM 3 (Urquhart [824]). For every finite matriz A with complex
elements,

Y = (A*A)WA* € A{1,2,3} (12a)
and
Z = A*(AA)D € A{1,2,4}. (12b)
PROOF. Applying Corollary 2 to A* gives
R(A™A) = R(A7),
and so,
A" = ATAU (13)
for some U. Taking conjugate transpose gives
A=U"A"A. (14)
Consequently,
AYA=U"A"A(A"A)WA"A=U"A"A = A.

Thus, Y € A{1}. But rankY > rank A by Lemma 1(d) and rankY < rank A* =
rank A by the definition of Y. Therefore

rankY = rank A,
and, by Theorem 2, Y € A{1,2}. Finally, (13) and (14) give
AY = U A" A(A" AW A" AU = U* A" AU,

which is clearly Hermitian. Thus, (12a) is established.

Relation (12b) is similarly proved. ]

A {1,2}-inverse of a matrix A is, of course, a {2}-inverse and, simi-
larly, a {1, 2, 3}-inverse is also a {1, 3}-inverse and a {2, 3}-inverse. Thus, if
we can establish the existence of a {1, 2,3, 4}-inverse, we will have demon-
strated the existence of an {%,,... ,k}-inverse for all possible choices of
one, two, or three integers 4, j, ... , k from the set {1,2,3,4}. It was shown
in Ex. 1 that if a {1, 2, 3,4 }-inverse exists, it is unique. We know, as a mat-
ter of fact, that it does exist, because it is the well-known Moore—Penrose
inverse, AT. However, we have not yet proved this. This is done in the next
theorem.



48 1. EXISTENCE AND CONSTRUCTION OF GENERALIZED INVERSES

THEOREM 4 (Urquhart [824]). For any finite matriz A of complex

elements,
AL 4 A13) — gt (15)
PROOF. Let X denote LHS(15). It follows at once from Lemma 3 that X €
A{1,2}. Moreover, (15) gives
AX = AAYD XA =A0D 4,
But, both AA®® and A% A are Hermitian, by the definition of A®%) and
A®Y | Thus
X € A{1,2,3,4}.

However, by Ex. 1, A{1,2,3,4} contains at most a single element. Therefore, it
contains exactly one element, namely At and X = AF. O

6. Explicit Formula for Af

C.C. MacDuffee apparently was the first to point out, in private communi-
cations about 1959, that a full-rank factorization of a matrix A leads to an
explicit formula for its Moore—Penrose inverse, Af.

THEOREM 5 (MacDuffee). If A € C"*™, r > 0, has a full-rank factor-
1zation

A= FG, (16)
then
Al = G*(F*AG*)"'F~. (17)
PROOF. First, we must show that F*AG™ is nonsingular. By (16),
F*AG" = (F"F)(GG™), (18)

and both factors of the right member are r X r matrices. Also, by Lemma 4,
both are of rank r. Thus, F* AG™ is the product of two nonsingular matrices and,
therefore, nonsingular. Moreover, (18) gives

(F*AG")™ ' = (G*G) " (F*F)~".
Denoting by X the right member of (17), we now have
X =G*GG") " (F*F)'F*, (19)
and it is easily verified that this expression for X satisfies the Penrose equations

(1)-(4). As AT is the sole element of A{1,2,3,4}, (17) is therefore established. [J
Exercises

EX. 14. Theorem 5 gives an alternative proof of the existence of the {1,2,3,4}-
inverse (previously established by Theorem 4). However, Theorem 5 excludes the
case r = 0. Complete the alternative existence proof by showing that if » = 0,
(2) has a unique solution for X, and this X satisfies (1), (3), and (4).

EX. 15. Compute A" for the matrix A of (0.80).

EX. 16. What is the most general {1, 2}-inverse of the special matrix A of Ex. 47
What is its Moore—Penrose inverse?

EX. 17. Show that if A = FG is a rank factorization, then
AT =GTF1, (20)
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EX. 18. Show that for every matrix A:

(a) (AN = 4; (b) (A")" =

(c) (AT)T = (AN, (d) AT = (A" A)TA* AT (AAM)T.
Ex. 19. If a and b are column vectors, then
(a) at = (a*a)Ta™; (b) (ab*)’ = (a*a)f(b*b) ba*.

EX. 20. Show that if H is Hermitian and idempotent, H' = H.

EX. 21. Show that H' = H if and only if H? is Hermitian and idempotent and
rank H? = rank H.

EX. 22. If D = diag(d1,ds, ... ,d,), show that DT = diag (d},d},... ,d}).

Ex. 23. Let J;(0) be a Jordan block corresponding to the eigenvalue zero. Then
(Je(0)T = (Jx(0))7, showing that, for a square matrix A, A" is in general not a
polynomial in A (if it were, then A and AT would commute).

EX. 24. Let A,B € C"*" be similar, i.e., B = S~'AS for some nonsingular S.
Then, in general, Bf £ S~1AfS.
EX. 25. If U and V are unitary matrices, show that
AVt =v*AtUu*
for any matrix A for which the product UAV is defined.

In particular, if A, B € C"*™ are unitarily similar, i.e., B = U~ *AU for some
unitary matrix U, then Bt = U71ATU.

7. Construction of {2}-Inverses of Prescribed Rank

Following the proof of Theorem 1, we described A.G. Fisher’s construction
of a {1}-inverse of a given A € CI"*" having any prescribed rank between
r and min(m, n), inclusive. From (2) it is easily deduced that

rank A <r.

We note also that the n x m null matrix is a {2}-inverse of rank 0, and
any A2 is a {2}-inverse of rank 7, by Theorem 2. For 7 > 1, is there a
construction analogous to Fisher’s for a {2}-inverse of rank s for arbitrary
s between 0 and r? Using full-rank factorization, we can readily answer the
question in the affirmative.

Let X € A{1,2} have a rank factorization

Xo=YZ
Then, Y € C"*" and Z € CI*", and (2) becomes
YZAYZ =Y Z.

In view of Lemma 2, multiplication on the left by Y1) and on the right by
ZW) gives (see Stewart [780])

ZAY =1,. (21)

Let Y denote the submatrix of Y consisting of the first s columns and let
Zs denote the submatrix of Z consisting of the first s rows. Then, both Y
and Z, are of full rank s, and it follows from (21) that

Z,AY, = I,. (22)
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Now, let

Xs =Y Zs.
Then, rank X = s, by Ex. 7 and (22) gives

X, AX, = X,.
Exercises
EX. 26. For
1 0 0 1
1 1 0 O
A= 0 1 1 0
0 0 1 1

find elements of A{2} of ranks 1, 2, and 3, respectively.

EX. 27. With A as in Ex. 26, find a {2}-inverse of rank 2 having zero elements
in the last two rows and the last two columns.

Ex. 28. Show that there is at most one matrix X satisfying the three equations
AX =B, XA =D, XAX = X (Cline; see Cline and Greville [202]).

EX. 29. Let A = FG be a rank factorization of A € C**", i.e., F € CI**", G €
Cr*™. Then:

(a) GOFW ¢ AL} (i=1,2,4); b)) GWFY e A{j} (j=1,2,3).
PROOF.
(a),i=1:

FGGYFYFG = FG,

since
FYF=GGY =1,, by Lemma 2.
(a), i =2
G2 O peG@ O — @) pO),
since
FOR—I.. ¢®aa® =a®.
(a), 7 =4:
GYFYFG =6"a = (@GWa6)".
(b)  Similarly proved, with the roles of F and G interchanged. g

Ex. 30. Let A, F,G be as in Ex. 29. Then

At = gt p® — LD gt
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Notes on Terminology

Some writers have adopted descriptive names to designate various classes of
generalized inverses. However there is a notable lack of uniformity and consis-
tency in the use of these terms by different writers. Thus, X € A{1} is called
a generalized inverse (Rao [671]), or pseudoinverse (Sheffield [749]), or inverse
(Bjerhammar [103]). X € A{1,2} is called a semi-inverse (Frame [285]), or
reciprocal inverse (Bjerhammar), or reflezive generalized inverse (Rohde [705]).
X € A{1,2,3} is called a weak generalized inverse (Goldman and Zelen [301]).
X € A{1,2,3,4} is called the general reciprocal (Moore [575], [576]), or general-
ized inverse (Penrose [635]), or pseudoinverse (Greville [324]), or natural inverse
(Lanczos [497, p. 124]), or Moore—Penrose inverse (Ben-Israel and Charnes [77]).
In view of this diversity of terminology, the unambiguous notation adopted here
is considered preferable. This notation also emphasizes the lack of uniqueness of
many of the generalized inverses considered.

Suggested Further Reading

SECTION 1. Urquhart [825].

SECTION 2. Rao [671], Sheffield [749].

SECTION 3. Rao [670], [673].

SECTION 4. Deutsch [228], Frame [285], Greville [330], Hartwig [378],
Przeworska—Rolewicz and Rolewicz [653].

SECTION 5. Hearon and Evans [410], Rao [673], Sibuya [757].

SECTION 6. Sakallioglu and Akdeniz [721].



CHAPTER 2

Linear Systems and Characterization of
Generalized Inverses

1. Solutions of Linear Systems

As already indicated in Section 3 of the Introduction, the principal appli-
cation of {1}-inverses is to the solution of linear systems, where they are
used in much the same way as ordinary inverses in the nonsingular case.
The main result of this section is the following theorem of Penrose [635],
to whom the proof is also due.

THEOREM 1. Let A € C™*™ B € CP*1, D € C™*4. Then the matrix
equation

AXB=D (1)
is consistent if and only if, for some AW, B,
AAYDBYB = D, (2)
in which case the general solution is
X =AWDpBW +y — AW AYBBW (3)

for arbitrary Y € C™*P.

PROOF. If (2) holds, then X = AMDBW is a solution of (1). Conversely, if X
is any solution of (1), then

D=AXB=AAYAXBBYB = AAWppWp.

Moreover, it follows from (2) and the definition of A and B™) that every matrix
X of the form (3) satisfies (1). On the other hand, let X be any solution of (1).
Then, clearly

X=A9DBW + x - AV AxBBW,

which is of the form (3). ]
The following characterization of the set A{1}, in terms of an arbitrary
element A™) of the set, is due essentially to Bjerhammar [103].

COROLLARY 1. Let A € C™*" A ¢ A{1}. Then
A1} = {AD 1+ 7 - AW AZAAD : 7 € MY, (4)

PROOF. The set described in RHS(4) is obtained by writing Y = A®) + Z in the
set of solutions of AXA = A as given by Theorem 1. O
Specializing Theorem 1 to ordinary systems of linear equations gives:

52
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COROLLARY 2. Let A € C™*" b € C™. Then the equation

Ax=b (5)
is consistent if and only if, for some AW,
AAWD = b, (6)
in which case the general solution of (5) is*
x=AWb 4 (I - AW A)y (7)
for arbitrary y € C™. ]

The following theorem appears in the doctoral dissertation of C.A.
Rohde [704], who attributes it to R.C. Bose. It is an alternative character-
ization of A{1}.

THEOREM 2. Let A € C™*" X € C"*™. Then X € A{1} if and only
if, for all b such that Ax = b is consistent, x = Xb is a solution.

PROOF. If: Let a; denote the 3 column of A. Then
Ax = a;
is consistent and Xa; is a solution, i.e.,

AXa;=a; (j€ln).

Therefore
AXA = A
Only if: This follows from (6). O
Exercises
EX. 1. Consider the matrix A of (0.80) and the vector
14 + 5¢
b= |-154+3:
10 — 152
Use (1.7) to show that the general solution of Ax = b can be written in the form
0 10 0 O 0 0 Y1
S I R U S S B
_ 1 Y3
*=ls5_ilTloo 0o 0o -2 —1-d| |y
0 00 0 O 1 0 Ys
0 00 0 O 1 Y6
where y1,¥2,...,yes are arbitrary.

Note: y2 and ys do not matter, since they multiply zero columns, showing the
general solution to have four degrees of freedom, in agreement with (1.7).
EX. 2. Kronecker products. The Kronecker product A ® B of the two matrices

A = (a;;) € C™*", B € C?*? is the mp x ng matrix expressible in partitioned
form as

anB ai2B -+ ainB
A9 B = a21B  a22B .-+ a.B
amlB a'm2B ot amnB

1See also Theorem 7.1, p. 258.
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The properties of this product (e.g., Marcus and Minc [534]) include
(A B =A"®B*, (A®B)" =A" @ B, (8)
and
(A®B)(P®Q) = AP ® BQ 9)

for every A, B, P, for which the above products are refined.
An important application of the Kronecker product is rewriting a matrix
equation

AXB=D (1)
as a vector equation. For any X = (z;;) € C™*", let the vector vec(X) = (vi) €
C™™ be the vector obtained by listing the elements of X by rows. In other words,

Un(i—1)4j = Tij (1 € I,m;j € 1,n).

For example,

1
1 2] |2
Vel s 4] T |3
4
The energetic reader should now verify that
vec(AXB) = (A® B") vec(X). (10)
By using (10), the matrix equation (1) can be rewritten as the vector equation
(A® BT)vec(X) = vec(D). (11)

Theorem 1 must therefore be equivalent to Corollary 2 applied to the vector
equation (11). To demonstrate this we need the following two results:

AW @ BY e (A® B){1} (follows from (9)), (12)
(AT e AT{1}. (13)
Now (1) is consistent if and only if (11) is consistent, and the latter statement
— (A® B")(A® B")Yvec(D) = vec(D) (by Corollary 2),
= (4@ B")(AY & (BM))vee(D) = vee(D)  (by (12), (13)),
— (44" @ (BYB)T) vec(D) = vec(D) (by (9)),
— AAYDBYB =D (by (10)).

The other statements of Theorem 1 can be similarly shown to follow from their
counterparts in Corollary 2. The two results are thus equivalent.

EX.3. (A®B)' = A" ® BT (Greville [326]).
ProOF. Upon replacing A by A® B and X by AT ® BT in (1.1)~(1.4) and making
use of (8) and (9), it is easily verified that (1.1)—(1.4) are satisfied. d

EX. 4. The matrix equations
AX =B, XD=E, (14)

have a common solution if and only if each equation separately has a solution
and

AE = BD.
PROOF. (Penrose [635]). If: For any A, DM,
X =AYB+EDY — AV AEDY
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is a common solution of both equations (14) provided AE = BD and
AAYB =B, EDWYD=E.
By Theorem 1, the latter two equations are equivalent to the consistency of

equations (14) considered separately.
Only if: Obvious. O

EX. 5. Let equations (14) have a common solution Xo € C™*". Then, show
that the general solution is

X =Xo+ (I —AYA)Y (I - DDW) (15)
for arbitrary A € A{1}, DW ¢ D{1}, Yy e C™*™.

Hint: First, show that RHS(15) is a common solution. Then, if X is any common
solution, evaluate RHS(15) for Y = X — Xj.

2. Characterization of A{1,3} and A{1,4}

The set A{1} is completely characterized in Corollary 1. Let us now turn
our attention to A{1,3}. The key to its characterization is the following
theorem:

THEOREM 3. The set A{1,3} consists of all solutions for X of
AX = AADD) (16)
where A1) is an arbitrary element of A{1,3}.
PROOF. If X satisfies (16), then clearly
AXA=AAYD A = A,

and, moreover, AX is Hermitian since AA®*®) is Hermitian by definition. Thus,
X € A{1,3}.
On the other hand, if X € A{1, 3}, then

AATD = AX AATD = (AX)"AATY = X AT (AT A

= X"A" = AX,
where we have used Lemma 1.1(a). (|
COROLLARY 3. Let A € C™*" A1) ¢ A{1,3}. Then
A{1,3} = {ADD) 1 (T - ABDA) 7z . Z e C ™Y, (17)
PROOF. Applying Theorem 1 to (16) and substituting Z + A% for ¥ gives
(1. ]

The following theorem and its corollary are obtained in a manner anal-
ogous to the proofs of Theorem 3 and Corollary 3.

THEOREM 4. The set A{1,4} consists of all solutions for X of
XA=AMY4.
COROLLARY 4. Let A € C™*" A4 ¢ A{1,4}. Then
A{1,4} = {A0D L V(I — AADY) . Y e CmY,

Other characterizations of A{1,3} and A{1,4} based on their least-
squares properties will be given in Chapter 3.

Exercises

EX. 6. Prove Theorem 4 and Corollary 4.
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EX. 7. For the matrix A of (0.80), show that A{1,3} is the set of matrices X of

the form
0 0 0 1 0 0 0 0 0
-100 3 9 0 0 -2 0 —1+2i i
L 1o 0 0 00 1 0 0 0
X=3l9 —12 2/FTloo 0o o -2 —1-47%
0 0 0 00 0 O 1 0
0 0 0 00 0 O 1

where Z is an arbitrary element of C%*3.

EX. 8. For the matrix A of (0.80), show that A{1,4} is the set of matrices Y of

the form
0 0 0
0 20— 18i 42 L iy
Y=1rs g —159_—9;1' —92—12% £z 00 0 o],
0 —2+4i 24+30i o 0 0
0 —20+30i —36+ 3

where Z is an arbitrary element of C%*3.

EX. 9. Using Theorem 1.4 and the results of Exs. 7 and 8, calculate AT. (Since
any AMY and A®® will do, choose the simplest.)

Ex. 10. Give an alternative proof of Theorem 1.4, using Theorem 3 and 4.
(Hint: Take X = A"))

EX. 11. By applying Ex. 5 show that if A € C™*™ and A®3% ¢ A{1,3,4},
then

A{1,3,4} = {AD3D 4 (1 — ADSDA)Y (1 — AATPY) Yy e C)L
EX. 12. Show that if A € C™*™ and A®?3) € A{1,2,3}, then
A{1,2,3} = {A"2® L (1 - AD2D Q) zA02D . 7 e CVMY.

EX. 13. Similarly, show that if A € C™*™ and A®2% e A{1,2,4}, then
A{1,2,4} = (A2 + AU2VZ(1 - AADPY): Z e C™

3. Characterization of A{2}, A{1,2}, and Other Subsets of A{2}
Since

XAX =X (1.2)

involves X nonlinearly, a characterization of A{2} is not obtained by merely
applying Theorem 1. However, such a characterization can be reached by
using a full-rank factorization of X. The rank of X will play an important
role, and it will be convenient to let A{i,j,...,k}s denote the subset of
A{i,j,..., k} consisting of matrices of rank s.

We remark that the sets A{2}q, A{2,3}9, A{2,4}o and A{2,3,4}( are
identical and contain a single element. For A € C™*™ this sole element is
the n x m matrix of zeros. Having thus disposed of the case of s = 0, we
shall consider only positive s in the remainder of this section.

The following theorem has been stated by G.W. Stewart [780], who
attributes it to R.E. Funderlic.
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THEOREM 5. Let A € C**" and 0 < s <r. Then
A{2}, ={YZ:Y € C"™*, Z € CX™, ZAY = I,}. (18)
PROOF. Let
X=YZ, (19)

where the conditions on Y and Z in RHS(18) are satisfied. Then Y and Z are of
rank s and X is of rank s by Ex. 1.7. Moreover,

XAX =YZAYZ =YZ=X.

On the other hand, let X € A{2}, and let (19) be a full-rank factorization. Then
Y eC}*°, Z € C3*™ and

YZAYZ =Y Z. (20)
Moreover, if YY) and Z() are any {1}-inverses, then by Lemma 1.2
yWy =zzW = I..
Thus, multiplying (20) on the left by Y*) and on the right by Z®) gives
ZAY =1I;. O
COROLLARY 5. Let A e C"*". Then
A{1,2}={YZ: Y eC"™ ZeC™™, ZAY =1I,}.
PROOF. By Theorem 1.2,
A{1,2} = A{2},. ]
The relation ZAY = I of (18) implies that Z € (AY){1,2,4}. This

remark suggests the approach to the characterization of A{2,3} on which
the following theorem is based.

THEOREM 6. Let A € C"*™ and 0 < s <r. Then
A{2,3}, ={Y(AY)T: AY e CT**}.
PROOF. Let X = Y(AY)', whereAY € C™**. Then we have
AX = AY (AY)'. (21)

The right member is Hermitian by (1.3), and

XAX = Y(AY)TAY (AY) = Y (AY) = X.
Thus, X € A{2,3}. Finally, since X € A{2}, A € X{1}, (21) and Lemma 1.1(f)
give

s =rank AY = rank AX = rank X.

On the other hand, let X € A{2,3};. Then AX is Hermitian and idempotent
and is of rank s by Lemma 1.1(f), since A € X{1}. By Ex. 1.20

(AX)' = AX,
and so
X(AX)' = XAX = X.

Thus X is of the form described in the theorem. |
The following theorem is proved in an analogous fashion:

THEOREM 7. Let A € C"*™ and 0 < s <r. Then
A{2,4}, = {(YA)TY : YA e T},
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Exercises

EX. 14. Could Theorem 6 be sharpened by replacing (AY)! by (AY)(i’j’k) for
some 1, j, k? (Which properties are actually used in the proof?) Note that AY
is of full column rank; what bearing, if any, does this have on the answer to the
question?

EX. 15. Show that, if A € C"*",
A{1,2,3} = {Y(AY)": AY € C™*"},
A{1,2,4} ={(YA)Y : YAe C*™}.
(Compare these results with Exs. 12 and 13.)

EX. 16. The characterization of A{2, 3,4} is more difficult, and will be postponed
until later in this chapter. Show, however, that if rank A = 1, A{2, 3,4} contains
exactly two elements, AT and O.

4. Idempotent Matrices and Projectors

A comparison of (1) in the Introduction with Lemma 1.1(f) suggests that
the role played by the unit matrix in connection with the ordinary inverse
of a nonsingular matrix is, in a sense, assumed by idempotent matrices in
relation to generalized inverses. As the properties of idempotent matrices
are likely to be treated in a cursory fashion in an introductory course in
linear algebra, some of them are listed in the following lemma:

LEMMA 1. Let E € C™*™ be idempotent. Then:

(a) E* and I — E are idempotent.

(b) The eigenvalues of E are 0 and 1. The multiplicity of the eigenvalue

1 is rank F.

(¢) rank E = trace E.

(d) EH-E)=(I-E)E=0.

(e) Ex =x if and only if x € R(E).

(f) E € E{1,2}.

(g) N(E)=R(I-E).
PROOF. Parts (a) to (f) are immediate consequences of the definition of idem-
potency: (c) follows from (b) and the fact that the trace of any square matrix
is the sum of its eigenvalues counting multiplicities; (g) is obtained by applying
Corollary 2 to the equation Ex = 0. (|

LEMMA 2 (Langenhop [499]). Let a square matriz have the full-rank
factorization

E=FG.
Then E is idempotent if and only if GF = 1.
PROOF. If GF = I, then clearly
(FG)* = FGFG = FG. (22)
On the other hand, since F' is of full column rank and G is of full row rank,
FOFp=gaW =1

by Lemma 1.2. Thus if (22) holds, multiplication on the left by F® and on the
right by G gives GF = I. O
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Let P s denote the transformation that carries any x € C™ into its
projection on L along M; see §0.1.3. It is easily verified that this transfor-
mation is linear (see Ex. 0.33). We shall call the transformation Pp, ps the
projector on L along M, or, oblique projector.

We recall, see §0.2.5, that every linear transformation from one finite-
dimensional vector space to another can be represented by a matrix, which
is uniquely determined by the linear transformation and by the choice of
bases for the spaces involved. Except where otherwise specified, the basis
for any finite-dimensional vector space, used in this book, is the standard
basis of unit vectors. Having thus fixed the bases, there is a one-to-one cor-
respondence between C™*™, the m x n complex matrices, and L(C™,C™),
the space of linear transformations mapping C™ into C™. This correspon-
dence permits using the same symbol, say A, to denote both the linear
transformation A € L£L(C™,C™) and its matrix representation A € C™*".
Thus the matrix—vector equation

Ax=y (AeC™™ xeC’ yeC™)

can equally be regarded as a statement that the linear transformation A
maps X into y.

In particular, linear transformations mapping C" into itself are repre-
sented by the square matrices of order n. Specializing further, the next
theorem establishes a one-to-one correspondence between the idempotent
matrices of order n and the projectors P, »; where L@ M = C™. Moreover,
for any two complementary subspaces L and M, a method for computing
Pr, u is given by (27) below.

THEOREM 8. For every idempotent matriz E € C"*", R(E) and N(E)
are complementary subspaces with

E = Pr(p),n(B)- (23)

Conversely, if L and M are complementary subspaces, there is a unique
idempotent Pp, pr such that R(Pr ) = L, N(Ppv) = M.
PROOF. Let FE be idempotent of order n. Then it follows from Lemma 1(e) and
(g), and from the equation

x = Ex+ (I — E)x, (24)
that C™ is the sum of R(FE) and N(E). Moreover, R(E) N N(E) = {0}, since

Ex=(I-E)y = Ex=F>x=El-E)y=0,

by Lemma 1(d). Thus, R(E) and N(E) are complementary and (24) shows that,
for every x, Ex is the projection of x on R(FE) along N(E). This establishes (23).

On the other hand, let {xi,x2,...,%¢} and {y1,y2,...,¥m} be any two
bases for L and M, respectively. Then Pp jr, if it exists, is uniquely determined
by

Pr.vxi = xi, (iel,0), (25)
Prvyi =0, (i e1,m).
Let X =[x1 x2 --- x¢] denote the matrix whose columns are the vectors x;.

Similarly, let Y =[y1 y2 -+ ¥ym]. Then (25) is equivalent to
Pou[X Y]=[X O (26)
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Since [X Y] is nonsingular, the unique solution of (26), and therefore of (25), is
Py =I[X O]X Y] (27)
Since (25) implies
Pou[X Ol=[X O,

P, m as given by (27) is clearly idempotent. (]
The relation between the direct sum (0.1) and the projector? P s is
given in the following:

COROLLARY 6. Let L and M be complementary subspaces of C". Then,
for every x € C™, the unique decomposition (0.2) is given by

Pruyx=y, (I—-Pru)x=z

If AW € A{1}, we know from Lemma 1.1(f) that both AA™) and A™M A
are idempotent and, therefore, are projectors. It is of interest to find out
what we can say about the subspaces associated with these projectors. In
fact, we already know from Ex. 1.9 that

R(AAMY = R(A), N(AMA)=N(A), R(ADA)*)=R(A*). (28)

The following is an immediate consequence of these results:

COROLLARY 7. If A and X are {1,2}-inverses of each other, AX is
the projector on R(A) along N(X), and X A is the projector on R(X) along
N(A).

An important application of projectors is to the class of diagonable
matrices. (The reader will recall that a square matrix is called diagonable
if it is similar to a diagonal matrix.) It is easily verified that a matrix
A € C™*™ is diagonable if and only if it has n linearly independent eigen-
vectors. The latter fact will be used in the proof of the following theorem,
which expresses an arbitrary diagonable matrix as a linear combination of
projectors.

THEOREM 9 (Spectral Theorem for Diagonable Matrices). Let A €
C™*™ with s distinct eigenvalues A1, Aa, ..., As. Then A is diagonable if

20ur use of the term “projector” to denote either the linear transformation Pr, as
or its idempotent matrix representation is not standard in the literature. Many writers
have used “projection” in the same sense. The latter usage, however, seems to us to
lead to undesirable ambiguity, since “projection” also describes the image Pr, arx of
the vector x under the transformation Pr, ps. The use of “projection” in the sense of
“image” is clearly much older (e.g., in elementary geometry) than its use in the sense
of “transformation.” “Projector” describes more accurately than “projection” what is
meant here, and has been used in this sense by Afriat [3], de Boor [117], Bourbaki [125,
Ch. I, Def. 6, p. 16], [126, Ch. VIII, Section 1], Greville [323], Przeworska—Rolewicz
and Rolewicz [653], Schwerdtfeger [735], and Ward, Boullion, and Lewis [851]. Still
other writers use “projector” to designate the orthogonal projector to be discussed in
Section 7. This is true of Householder [432], Yosida [882], Kantorovich and Akilov
[467], and numerous other Russian writers. We are indebted to de Boor for several of
the preceding references.



4. IDEMPOTENT MATRICES AND PROJECTORS 61

and only if there exist projectors FEy1, Fs, ..., Es such that
EiEj = (5”' Ei, (29&)

I, = Z E;, (29b)
=1

A= Z \ Ei. (29¢)
=1

PROOF. If: For i € 1,s, let r; = rank E; and let X; € C"*"i be a matrix whose
columns are a basis for R(E;). Let

X=[X1 X2 - Xs]
Then, by Lemma 1(c), the number of columns of X is
Z ri = Z trace E; = tracez FE; = trace I,, = n,
i=1 i=1 i=1

by (29b). Thus X is square of order n. By the definition of X;, there exists for
each 7 a Y; such that

E; = X;Y;.
Let
Y1
Y>
Yy =
Y,
Then

XY = zs:XzYz = ZS:Ez =In,
i=1 i=1
by (29b). Therefore X is nonsingular. By Lemma 1(e),
EX; = X,
and therefore, by (29a) and (29c),

AX = Z MNEXi =X dXe - AXS]
= ;7, (30)
where
D =diag (M1, Aalry, ..., Asly,). (31)

Since X is nonsingular, it follows from (30) that A and D are similar.
Only if: If A is diagonable,

AX = XD, (32)

where X is nonsingular and D can be represented in the form (31). Let X
be partitioned by columns into X1, X2,..., X, in conformity with the diagonal
blocks of D and, fori=1,2,...,s, let

E;i=[0 -~ O X; O ... 0O]x "
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In other words, E; = j(vinl, where 5(7 denotes the matrix obtained from X by
replacing all its columns except the columns of X; by columns of zeros. It is then
easily verified that F; is idempotent and that (29a) and (29b) hold. Finally,

STNE =[MX1 XXy - AX X T'=XDX =4,
i=1
by (32). O

The idempotent matrices {E; : i € 1, s} (shown in Ex. 24 below to be
uniquely determined by the diagonable matrix A) are called its principal
idempotents or Frobenius covariants. Relation (29c) is called the spectral
decomposition of A. Further properties of this decomposition are studied
in Exs. 24-26.

Note that R(FE;) is the eigenspace of A (space spanned by the eigen-
vectors) associated with the eigenvalue \; while, because of (29a), N(E;) is
the direct sum of the eigenspaces associated with all eigenvalues of A other
than A;.

Exercises
Ex. 17. Show that I,{2} consists of all idempotent matrices of order n.

Ex. 18. If E is idempotent, X € E{2} and R(X) C R(FE) show that X is
idempotent.

EX. 19. Let E € C!*™. Then E is idempotent if and only if its Jordan canonical
form can be written as

. O

O O]

Ex. 20. Show that Pr a» A = A if and only if R(A) C L and APy v = A if and
only if N(A) D M.

EX. 21. AB(AB)M A = A if and only if rank AB = rank A and B(AB)VAB =
B if and only if rank AB = rank B. (Hint: Use Exs. 20, 1.9, and 1.10.)

EX. 22. A matrix A € C™™" is diagonable if and only if it has n linearly
independent eigenvectors.

PRrROOF. Diagonability of A is equivalent to the existence of a nonsingular matrix
X such that X 'AX = D, which in turn is equivalent to AX = XD. But the
latter equation expresses the fact that each column of X is an eigenvector of A,
and X is nonsingular if and only if its columns are linearly independent. 0

Ex. 23. Show that I — Pr v = Pur.

EX. 24. Principal idempotents. Let A € C™*™ be a diagonable matrix with s
distinct eigenvalues A1, A2, ..., As. Then the idempotents F1, Fa, ... , Es satisfy-
ing (29a)—(29c) are uniquely determined by A.

PROOF. Let {F; : ¢ € 1,s} be any idempotent matrices satisfying

F»L‘Fj = O7 if 4 7& j, (298.*)
I,=>_F, (29b+)
i=1

A= N F. (29¢x)
=1
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From (29a) and (29c) it follows that

EA=AE = NE; (i€1,5). (33)
Similarly, from (29ax) and (29cx),
FiA=AF, = \F, (i€T,s), (33%)
so that
Ei(AF;) = )\ E:F;
and

(E;A)F; = M E F;,
proving that
E;F; =0, ifi#j. (34)
The uniqueness of {F; : i € ﬂ} now follows:
E;=E; iFj, by (29bsx),
j=1
= E,'I;Z', by (34),

= (Z E;)F;, by (34),

= F,, by (29b). 0
Ex. 25. Let A € C"™" be a diagonable matrix with s distinct eigenvalues
A1, A2,...,As. Then the principal idempotents of A are given by
pi(4) .
E; = 1€1,s), 35
i) ( ) (35)
where
piV) =T =) (36)
=1
12

PROOF. Let G; (i € 1, s) denote RHS(35) and let E1, Eo, ... , E;s be the principal
idempotents of A. For any 4,5 € 1, s,

S

1
GE; = —— A—-MNI)E;
J p’()‘l)hl;[l( nl)E;
heti
1 S
= Aj — MI)E;, by (33),
pl()"b)hl;[l(J h) J Y( )
he#i
o, i)
=\ E, ifi=j
Therefore, G; = G 35, Ej = E; (i € 1,5). d

Ex. 26. Let A be a diagonable matrix with p distinct eigenvalues A; and
principal idempotents F;, ¢ € 1,s. Then:
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(a) If p(A\) is any polynomial,

(b) Any matrix commutes with A if and only if it commutes with every E;
(iel,s).

PROOF. (a) Follows from (29a), (29b), and (29c¢).
(b) Follows from (29c) and (35) which express A as a linear combination of
the {E; : i € 1,5} and each F; as a polynomial in A. O
See Corollary 8 for polynomials in general square matrices.

EX. 27. Prove the following analog of Theorem 5 for {1}-inverses: Let A € C7**"
with r < s < min(m,n). Then

A{l}s = {YZ Y €CY*, Z e CX ZAY = [g 8] } ) (37)

PROOF. Let X =Y Z, where the conditions on Y and Z in RHS(37) are satisfied.
Then rank X = s by Ex. 1.7. Let

Y=WY) Z= [ZJ,

where Y7 denotes the first » columns of Y and Z; the first r rows of Z. Then (37)
gives
Z1AYy =1, Z1AY; =O0. (38)

Let X1 = Y1Z1. Then it follows from the first equation (38) that X; € A{2}.
Since by Ex. 1.7, rank Xy = r =rank A, X1 € A{1} by Theorem 1.2. Thus

AXA = AX\AXA = AYi(Z1AY)ZA = AVi[L, O] {?] A
2
=AV1Z1A=AX1A=A
On the other hand, let X € A{1}, and let X = UV be a full-rank factorization.
Then U € C2*°, V € C*™, and

VAUVAU = VAU

and so VAU is idempotent and is of rank r by Ex. 1.7. Thus, by Ex. 19, there is
a nonsingular 7" such that

TVVAUT ' = [Ir O] )

O O
If we now take

Y =UT""', Z=TV,
then

Y eCl*®, ZeCci™,

L. O

ZAY = {O 0

}, and YZ=UV = X. O
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5. Matrix Functions

Let f(2) be a complex scalar function or a mapping f : C — C. If A € C"*"
and if f is analytic in some open set containing A(A), then a corresponding
matrix function f(A) can be defined. We study here matrix functions, and
the correspondence

f(z) = f(A). (39)

As an example, consider the (scalar) inhomogeneous linear differential equa-
tion

&+ ax = b(t),

and its general solution

t
z(t) = e "y + e*at/ e**b(s)ds,

where y is arbitrary. The corresponding (vector) differential equation, with
given A € C"*" and b(t) € C",

x(t) + Ax(t) = b(t) (40)

has the analogous general solution
t
x(t) = e Aty + e*At/ e*b(s) ds (41)

with arbitrary y. The matrix function e=4? plays here the same role as the
scalar function e~%, see Ex. 31.

If a matrix A € C™*" is diagonable and if a function f is defined
in A(A4), then a reasonable definition of the matrix function f(A) is, by
Theorem 9,

f(A) = > fNEs, (42)

AEA(A)

where F) is the principal idempotent associated with A\. We study here
matrix functions for general matrices and obtain (42) as a special case.

Let A € C™*™ have s distinct eigenvalues {A1,..., s}, and a Jordan
form

A=XJX '=XJY

J(\1) O O Y:

O J(A2) O Y,

:[X1 Xy - Xs] ) : _
o o J(As)] LYs

- Z X; J(\) Y, (43)



66 2. LINEAR SYSTEMS AND GENERALIZED INVERSES

where X and Y = X! are partitioned in agreement with the partition of
J and

Ji (i) 0 0
O  JpW) - O S ,
J) =1 . - N R I - PR C Y
0 O o J5(N)

are the Jordan blocks corresponding to \;, i € 1,s. Let
E,, = X,Y;. (45)

Since AX; = X;J(\;), it follows that AE; = X; J(\;)Y; and, therefore, by
(43),

A:zs: /\iEiJrzs:(A—/\iI) E;. (46)
=1 =1

Note that the second terms (A — A\;I) E; in (46) are zero for eigenvalues A;
of index 1.
An analog of Theorem 9 for general square matrices is:

THEOREM 10 (Spectral Theorem for Square Matrices). Let the matric

A € C"*™ have s distinct eigenvalues. Then there exist s unique projectors
{Ex: A€ A(A)} such that

E)\Ep, = 6>\ME)\7 (293‘)
IL,= Y E, (29b)
AEA(A)
A= 3" XEx+ > (A-ADEy, (46)
AEN(A) AEA(A)
AE)\ = E\A, for all A € A\(A), (47)
Ex(A—=ADF =0, forall e X(A), k>v()\). (48)

PROOF. By definition and properties of the inverse matrix, the matrices Ex, =
X,;Y; are projectors and satisfy (29a), (29b), and (46). The commutativity (47)
is a consequence of (29b) and (46), see also Ex. 29. Equation (48) follows from
Ex. 0.75. Uniqueness is proved as in Ex. 24. O

As in the previous section, the projectors {Ey : A € A(A)} are called
the principal idempotents or Frobenius covariants of A, and (46) is called
the spectral decomposition of A. The principal idempotents of A are poly-
nomials in A, see Ex. 29.

EXAMPLE 1. Let

0 -2 0 -5 2
0O -1 0 -2 0
A=1|0 o 0 2 0
0 1 0 2 0
-2 -2 1 -8 4
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Then the Jordan form of A is A = XJX !, with:

1
[J1(1) 2 1
J= J2(2) = 0 2 (zero blocks omitted),
i J2(0) 0 1
0 0
1:=2 11 0
-1:0 0:0 -2
X=1l2:0 02 o0 :{lengXo]'
1:0 00 1
| 2:-2 0:0 1]
Then
o 1 0 2 0]
O
Y=X"'=|1 1 -1 3 -1|=|Y
0 -1 3 -2 0 Yo
(0 -1 0 -1 0
and the projectors Eo, E1, Ey are, by (45),
0 -1 3 -2 0 01 0 2 0
0 2 0 2 0 0 -1 0 -2 0
Eo=XoYo=10 -2 1 -4 0|,Ei=Xxva=10 2 0 4 o0,
0 -1 0 -1 0 0 1 0 2 0
0 -1 0 -1 0 0 2 0 4 0
1 o -3 0 o0
0 0 0 0 0
E;=XaY>=|0 0 0 0 0
0 0 0 0 0
0 -1 0 -3 1

One can verify all statements of Theorem 10. In particular, (46) is verified by
A= AEo+ E1+2E> + (A—21)Es.
See also Ex. 30 below.
For any polynomial p, the matrix p(A), can now be computed.
COROLLARY 8. Let A € C™*™ and let p be a polynomial with complex
coefficients. Then

v(A)—1 (k)
= Y By By (19)
k=0 ’

AEN(A)

where v(X) is the index of \.

PROOF. Use (0.123) and Ex. 0.77. (]
Matrix functions are defined analogously.
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DEFINITION 1. For any A € C"*™ with spectrum A(A), let F(A) denote
the class of all functions f : C — C which are analytic in some open set
containing A(A). For any scalar function f € F(A), the corresponding
matriz function f(A) is defined by

v(A)—1

ZEAZ

AEA(A)

Note that (46) is a special case, with f(A) = A.
Definition (50) is equivalent to

f(A) =p(4), (51a)

where p(\) is a polynomial satisfying

(k)( ) (A= \TI,)". (50)

PPN =f®N), E=0,1,...,0(\) =1, foreach A€ A(A), (51b)

i.e., p(\) is the polynomial interpolating the spectral data {f*)(\) : X €
AA), k =0,...,v(A) — 1}. Given the spectral data, the interpolating
polynomial of degree < ZA@(&) v(A) — 1 is unique; see Ex. 35.

If f:C — C is analytic in an open set U and the boundary I of U is
a closed rectifiable Jordan curve, oriented in the customary way, then, for
any A € U, Cauchy’s formula gives

10 =5 [ 1%

21t Jp 2z — )\
An analogous expression for matrix functions is given in the following:

THEOREM 11 (Cartan, see [691, p. 399]). Let A € C"*", let f € F(A)
be analytic in a domain containing the closure of an open set U containing
A(A), and let the boundary T of U consist of finitely many closed rectifiable
Jordan curves, oriented in the customary way. Then f(A) is a Riemann
contour integral over T,

(52)

o / F2) (2T — A)~L d. (53)

PROOF. Let A have eigenvalues {A1, ..., A\s} with corresponding indices {v1,... ,vs}
andlet I' = U;:1 I'; where I';j surrounds A; and no other eigenvalue. Substituting

(57) in (53),

vij—1

R e e

Ty

M 0)
_ZEAZAf,\jI) s

by Cauchy’s formula. U
Exercises

Ex. 28. (Dunford and Schwartz [246, Theorem 3, p. 556]). Let p and ¢ be
polynomials and let A € C**". Then p(A) = q(A) if and only if p — g has a zero
of order v()\) at each point A € A\(A).
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EX. 29. (Schwerdtfeger [734]). Let A € C™*™ have distinct eigenvalues A1, ..., As
with respective indices v1, ... ,vs, and let m(z) be the minimal polynomial of A.
Then the principal idempotents E», are polynomials of A,
E)\i = g’b(A)7
where the g;’s are defined from the partial fractions expansion
1 ° hj(z) N hi(z)m(z)
m(z) - ; (z— N\j)vi’ as  gi(z) = Gz )i
Ex. 30. For the matrix A of Example 1, the minimal polynomial is m(z) =
22(z = 1)(z — 2)? and
Lo (142:\1 1 (52 1
m(z) 4 22 z2—1 4 (z —2)%"
Therefore,
1422
@) = () G- 0E-27 B =)
=—1QA+ID(A-T)(A-2I)7
a(2) = 22z — 2)2, By = gi(A) = A%(A - 21)?,
5—-2
92(2) = ( 4 Z) 2*(z - 1), Ep = g2(A)
=—1(2A—-50)A*(A-1).
EX. 31. The exponential function e** is, by (50),
v(M—=1 ¢k
U A—AD" (54)

oAt — Z JoN Z .

AEA(A) k=0

For any A € C"*", and s,t € C:
(a) edset = At and
(b) e is nonsingular and (eAt)_1 =e At

EX. 32. We compute e?, for A of Example 1, in two ways:
Method 1: Definition (50). Given the projectors Ey, E1, F> (computed in Exam-

ple 1 or Ex. 30),
f(A) = f(0)Eo + f(0)AEo + f(1)Ex + f(2)E2 + f'(2)(A = 21) Ez,
for any f € F(A).

e = By + tAEy 4 €' By + €' By + te** (A — 21) Es.

Method 2: Interpolating polynomial. The eigenvalues of At are A\g = 0, \1
t,\o = 2t, with indices vo = 2,11 = 1,v2 = 2. The polynomial p(z) = a +

Bz 4 v2% + 82 + e2* interpolating f(t) = e** is given by
f(0)=1=q,
F(0)=t=p,
f=e'=a+p+v+5+e
f2t) =€ = a+ 20+ 4y + 85 + 16¢,
F(2t) = te® = B+ 4y + 126 + 32¢,

a system that can be solved for a, 3,7, 9, e. Then
e = al + BA+ A% + 64°% + eA*.
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See also Moler and Van Loan [573].

EX. 33. (Dunford and Schwartz [246, Lemma 6, p. 568]). Let A € C"*". The
resolvent of A, denoted R(), A), is defined by

R\ A) = (M — A7 YV AZAA). (55)
It satisfies the following identity, known as the resolvent equation:
R\, A) = R(u, A) = (= NR(\, A)R(, A). (56)

PrOOF. Multiply both sides of
(ul — A)(AL — A) [R(A, A) = R(p, A)] = (n = A1
by R(A\, A)R(u, A). O

EX. 34. Let A € C"*" have spectrum A(A) = {\1, A2,... ,As} and let z & A\(A).
Then

K] V(/\J) 1
(A— )\ Ik
(1= =3 Z [CEWE= Ex;- (57)
Jj=1 =
Ex. 35. (Lagrange interpolation). Let A € C™*™ have s distinct eigenvalues
A1, ..., As with respective indices v1, ... ,vs, 3 ;_; ¥ = v < n. The interpolating

polynomial of degree < v — 1 is obtained as follows:
(a) If s =1, then

vi—l1 () )
( +Z f )\1)7'.
(b)IfI/lzl/Q:"':Vs:l,theH
1;[(2*)\3')
FE]
Zf [T —A5)
J#l

(c) In the general case, the interpolating polynomial p(z) is obtained from

SEON1 (CERED S FANIE
where
()= P
(%) H(z )
i#£]

Ex. 36. (Fantappié [268]). The correspondence
f(z) «— f(4) (39)

to be useful, must satisfy certain formal conditions. The following four conditions
are due to Fantappie:
I If f(z) =k, then f(A) = kI.
II  If f(2) = z, then f(A) = A.
IIT  If f(2) = g(2) + h(z), then f(A) = g(A) + h(A).
IV If f(2) = g(2)h(2), then f(A) = g(A)h(A).
A fifth condition serves to assure consistency of compositions of matrix functions:
VI f(2) = h(g(2)), then f(A) = h(g(A)).
Matrix functions given by Definition 1 satisfy the above conditions, see Rinehart
[691] and Robinson [696].
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6. Generalized Inverses with Prescribed Range and Null Space

Let A € C™*" and let A1) be an arbitrary element of A{1}. Let R(A) = L
and let N(A) = M. By Lemma 1.1(f), AA™ and AM A are idempotent.
By (28) and Theorem 8,

AAW =PL g, AWA= Py,

where S is some subspace of C™ complementary to L, and T is some sub-
space of C" complementary to M.

If we choose arbitrary subspaces S and T' complementary to L and M,
respectively, does there exist a {1}-inverse A(!) such that N(AAM) = §
and R(AMWA) = T? The following theorem (parts of which have appeared
previously in the works of Robinson [697], Langenhop [499], and Milne
[655]) answers the question in the affirmative.

THEOREM 12. Let A € C*" R(A) = L, N(A) =M, L& S =C™,
and M &T = C". Then:

(a) X is a {1}-inverse of A such that N(AX) =S and R(XA) =T if

and only if
AX =Ppg, XA=Pr,. (58)
(b) The general solution of (58) is
X = Pry AV Py g + (I, — AV A)Y (I, — AAW), (59)

where AN is a fized (but arbitrary) element of A{1} and Y is an
arbitrary element of C™*™.

(c) A%’g) = Pr AN P 5 is the unique {1,2}-inverse of A having

range T and null space S.
PROOF. (a) The “if” part of the statement follows at once from Theorem 8 and
Lemma 1(e), the “only if” part from Lemma 1.1(f), (28) and Theorem 8.

(b) By repeated use of Ex. 20, along with (28), we can easily verify that (58)
is satisfied by X = Prayy AM Py g. The result then follows from Ex. 5.

(c) Since PrAV P s is a {1}-inverse of A, its rank is at least r by
Lemma 1.1(d), while its rank does not exceed r, since rank Pr,s = r by (58)
and Lemma 1.1(f). Thus it has the same rank as A, and is therefore a {1,2}-
inverse, by Theorem 1.2. It follows from parts (a) and (b) that it has the required
range and null space.

On the other hand, a {1, 2}-inverse of A having range 7' and null space S
satisfies (58) and also

XAX = X. (1.2)

By Ex. 1.28, these three equations have at most one common solution. ([l

COROLLARY 9. Under the hypotheses of Theorem 12, let Ag})s be some

{1}-inverse of A such that R(Ag},)SA) =T, N(AA(T{)S) =S, and let A{l}7 g
denote the class of such {1}-inverses of A. Then

A{lyrs = {AP) + (I — AT A)Y (I, — AAYY) 1 Y € C™™). (60)

For a subspace L of C™, a complementary subspace of particular in-
terest is the orthogonal complement, denoted by L+, which consists of all
vectors in C™ orthogonal to L. If, in Theorem 12, we take S = L+ and
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T = M+, the class of {1}-inverses given by (60) is the class of {1,3,4}-
inverses and A%’? = Af,

The formulas in Theorem 12 generally are not convenient for compu-
tational purposes. When this is the case, the following theorem (which
extends results due to: Urquhart [824]) may be resorted to:

THEOREM 13. Let A € C"*" U € C"*P, V € C**™, and
X =UWvAu)Vy,

where (VAU)Y is a fived, but arbitrary element of (VAU){1}. Then:

(a) X € A{1} if and only if rank VAU = r.

(b) X € A{2} and R(X) = R(U) if and only if rank VAU = rank U.

(¢) X € A{2} and N(X) = N(V) if and only if rank VAU = rank V.

(d) X = Ag(’?),N(V) if and only if rank U = rank V = rank VAU = r.
PROOF. (a) If: We have rank AU = r, since

r =rank VAU < rank AU <rank A =r.

Therefore, by Ex. 1.10, R(AU) = R(A) and so A = AUY for some Y. Thus by
Ex. 21,

AXA=AU(VAU)PVAUY = AUY = A.
Only if: Since X € A{1},
A=AXAXA=AU(VAU)PVAU(VAU)PV A,
and therefore rank VAU =rank A =r.
(b) If: By Ex. 21,
XAU =U(VAU)P VAU = U,
from which it follows that X AX = X and also rank X = rankU. By Ex. 1.10,
R(X) = R(U).
Only if: Since X € A{2},
X = XAX = U(VAU)DVAU(VAU) DV
Therefore
rank X <rank VAU < rankU = rank X.
(c) Similar to (b).
(d) Follows from (a), (b), and (c). |

Note that if we require only a {1}-inverse X such that R(X) C R(U)
and N(X) D N(V), part (a) of the theorem is sufficient.

Theorem 13 can be used to prove the following modified analog of
Theorem 12(c) for all {2}-inverses, and not merely {1, 2}-inverses.

THEOREM 14. Let A € C"*", let T be a subspace of C" of dimension
s <r, and let S be a subspace of C™ of dimension m —s. Then, A has a
{2}-inverse X such that R(X) =T and N(X) =S if and only if

AT & S =C™, (61)

in which case X s unique.
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PROOF. If: Let the columns of U € CJ*° be a basis for T and let the columns
of V* € C™**® be a basis for S*. Then the columns of AU span AT. Since it
follows from (61) that dim AT = s,

rank AU = s. (62)
A further consequence of (61) is
AT NS = {0}. (63)
Moreover, the s X s matrix VAU is nonsingular (i.e., of rank s) because
VAUy=0 = AUyl St = AUyeS
= AUy =0, (by (63),
= y=0, (by(62).
Therefore, by Theorem 13,
X =UWVAU)"'V

is a {2}-inverse of A having range T and null space S (see also Stewart [780]).
Only if: Since A € X{1}, AX is idempotent by Lemma 1.1(f). Moreover, AT =
R(AX) and S = N(X) = N(AX) by (28). Thus (61) follows from Theorem 8.
Proof of uniqueness: Let X1, X2 be {2}-inverses of A having range T and null
space S. By Lemma 1.1(f) and (28), X1 A is a projector with range 7' and AX>
is a projector with null space S. Thus, by Ex. 20,

Xy = (X14) X2 = X1(AX,) = Xi. O

COROLLARY 10. Let A € C7"*™, let T be a subspace of C™ of dimension
r, and let S be a subspace of C™ of dimension m —r. Then, the following
three statements are equivalent:

(a) AT® S =Cm.

(b) R(A)®S=C™ and N(A) T = C".

(¢) There exists an X € A{1,2} such that R(X) =T and N(X) = 5.

The set of {2}-inverses of A with range 7" and null space S is denoted
A{2}rs.
Exercises
Ex. 37. Show that A%’? is the unique matrix X satisfying the three equations

AX=Prs, XA=Prnm, XPrs=2X.

(For the Moore-Penrose inverse this was shown by Petryshyn [641]. Compare
Ex. 1.28.)

EX. 38. For any given matrix A, AT is the unique matrix X € A{1,2} such that
R(X) = R(A") and N(X) = N(A4").

EX. 39. Derive the formula of Mitra [559] and Zlobec [891],
At = A"y 47,
where Y is an arbitrary element of (A*AA™){1}.
EX. 40. Derive the formula of Decell [224],
Al = A" XAV A",

where X and Y are any {1}-inverses of AA™ and A* A, respectively.
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Ex. 41. Penrose [635] showed that the Moore-Penrose inverse of a product
of two Hermitian idempotent matrices is idempotent. Prove this, using Zlobec’s
formula (Ex. 39).

EX. 42. Let A be the matrix of (0.80) and let

—~ o o
_
\/

N
[
=)

coor oo

cor~rooo

Calculate A(le’sz) .

EX. 43. If F is idempotent and the columns of F' and G* are bases for R(E)
and R(E*), respectively, show that E = F(GF)™'G.

Ex. 44. 1If A is square and A = FG is a full-rank factorization, show that A has
a {1,2}-inverse X with R(X) = R(A) and N(X) = N(A) if and only if GF is
nonsingular, in which case X = F(GF)™2G (Cline [201)).

7. Orthogonal Projections and Orthogonal Projectors

Given a vector x € C™ and a subspace L of C", there is in L a unique
vector uy that is “closest” to x in the sense that the “distance” ||x — ul|
is smaller for u = uy than for any other u € L. Here, ||v| denotes the
FEuclidean norm of the vector v,

n
IVl = +V(v,v) = +Vviv =+ | > [uif,
j=1

where (v, w) denotes the standard inner product, defined for v,w € C" by

Not surprisingly, the vector uy that is “closest” to x of all vectors in L is
uniquely characterized (see Ex. 47) by the fact that x — uy is orthogonal
to ux, which we shall denote by

X — Uy L ug.

We shall therefore call the “closest” vector uy the orthogonal projection of
x on L. The transformation that carries each x € C™ into its orthogonal
projection on L we shall denote by Pr, and shall call the orthogonal projector
on L. Comparison with the earlier definition of the projector on L along
M (see Section 4) shows that the orthogonal projector on L is the same as
the projector on L along L*. (As previously noted, some writers call the
orthogonal projector on L simply the projector on L.)

Being a particular case of the more general projector, the orthogonal
projector is representable by a square matrix which, in this case, is not only
idempotent but also Hermitian.

In order to prove this, we shall need the relation

N(A) = R(A*)*, (0.26)
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which, in fact, arises frequently in the study of generalized inverses.

Let L and M be complementary orthogonal subspaces of C™ and con-
sider the matrix P} ;,. By Lemma 1(a), it is idempotent and therefore a
projector, by Theorem 8. By the use of (0.26) and its dual

N(A%) = R(A)* (0.27)
it is readily found that
R(Pf ) = M*, N(Pyy) =L+
Thus, by Theorem 8,
Pr oy = Paepe (64)

from which the next lemma follows easily.

LEMMA 3. Let C* = L@ M. Then M = L* if and only if P is
Hermatian.

Just as there is a one-to-one correspondence between projectors and
idempotent matrices, Lemma 3 shows that there is a one-to-one correspon-
dence between orthogonal projectors and Hermitian idempotents. Matrices
of the latter class have many striking properties, some of which are noted
in the remainder of this section (including the Exercises).

For any subspace L for which a basis is available, it is easy to construct
the matrix Pr. The basis must first be orthonormalized (e.g., by Gram-—
Schmidt orthogonalization). Let {x1,Xa,...,%;} be an o.n. basis for L.
Then

l
PL =) x;x}. (65)
j=1

The reader should verify that RHS(65) is the orthogonal projector on L
and that (27) reduces to (65) if M = L+ and the basis is o.n..

In the preceding section diagonable matrices were studied in relation to
projectors. The same relations will now be shown to hold between normal
matrices (a subclass of diagonable matrices) and orthogonal projectors.
This constitutes the spectral theory for normal matrices. We recall that a
square matrix A is called normal if it commutes with its conjugate transpose

AA* = A A.

It is well known that every normal matrix is diagonable. A normal matrix
A also has the property (see Ex. 54) that the eigenvalues of A* are the
conjugates of those of A, and every eigenvector of A associated with the
eigenvalue )\ is also an eigenvector of A* associated with the eigenvalue \.

The following spectral theorem relates normal matrices to orthogonal
projectors, in the same way that diagonable matrices and projectors are
related in Theorem 9.

THEOREM 15 (Spectral Theorem for Normal Matrices). Let A € C**™
with k distinct eigenvalues A1, A2, ..., Ag. Then A is normal if and only if
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there exist orthogonal projectors E, Fo, ... , Ey such that

k
I, =) E (67)
i=1

k
A=>"\E;. (68)
i=1

PROOF. If: Let A be given by (68) where the principal idempotents are Hermit-
ian. Then

k k
AA* = (Z A E) (Z by Ej)
i=1 j=1
k
=Y |MPE =A"A
i=1
Only if: Since A is normal, it is diagonable; let F1, Fa, ... , Ey be its principal

idempotents. We must show that they are Hermitian. By Ex. 54, R(FE;), the
eigenspace of A associated with the eigenvalue \; is the same as the eigenspace of
A* associated with \;. Because of (66), the null spaces of corresponding principal
idempotents of A and A* are also the same (for a given i = h, N(E}) is the direct
sum of the eigenspaces R(E;) for all i # h, i.e.,

k
N(En) =Y ®R(E:) (heLk).
iZh
Therefore, A and A* have the same principal idempotents, by Theorem 8. Con-
sequently,

A" = MNE;,

-

i=1

by Theorem 9. But taking conjugate transposes in (68) gives

k
A" =" NE],
=1

and it is easily seen that the idempotents E; satisfy (66) and (67). Since the
spectral decomposition is unique by Ex. 24, we must have

E;,=Ef, i€el,k. O
Exercises

Ex. 45. Let A, B be matrices and let a, b be vectors of appropriate dimensions.
Then

Ax=a = Bx=b
if and only if there is a matrix Y such that
B=YA, b=Ya.

PrOOF. If: Obvious.
Only if: The general solution of Ax = a is

x=Ala+ Pyeayy, y arbitrary.
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Substituting in Bx = b we get
BATa + BPn(a)y =b, y arbitrary.
Therefore BPy(a) = O, i.e., B =Y A for some Y and b = Ya follows. O

Ex. 46. Orthogonal subspaces or the Pythagorean theorem. Let Y and Z be
subspaces of C". Then Y L Z if and only if

ly +21* = llyl* +|lzl]*>, forally eV, ze Z (69)
PROOF. If: Let y € Y, z € Z. Then (69) implies that
(y,¥) + (z,2z) = lylI* + |Iz]* = |y + zI*
=(y+z,y+z)=(y,y) +(z,2) +(y,2) +(z,y)

and, therefore,

(v.2) + (z,y) = 0. (70)
Now, since Z is a subspace, iz € Z, and replacing z by iz in (70) gives
0= (y,iz) + (iz,y) = i(y, z) — i(z,y). (71)

(Here we have used the fact that (av,w) = a(v,w) and (v, Bw) = B(v,w).) It
follows from (71) that

(v,y) = (2,2) =0,
which, in conjunction with (70), gives

(v,y) = (z,2) =0,

ie,y 1z
Only if: Let Y L Z. Then, for arbitrary y € Y, z € Z,

ly +z|*=(y+2zy+2)
=(y,y)+(z,2z), since (y,z) = (z,y) =0,
= llyll* + [|zI1>. O

EX. 47. Orthogonal projections. Let L be a subspace of C". Then, for every
x € C", there is a unique vector ux in L such that, for all u € L different from
Ux,

[[x = ux || < [lx —ul].
Among the vectors u € L, ux is uniquely characterized by the fact that
X —ux L ux.

PROOF. Let x € C". Since L and L' are complementary subspaces, there exist
uniquely determined vectors x1 € L, x2 € L+ such that

X = X] + Xo. (72)
Therefore, for arbitrary u € L,
% —ul* =[x +x2 —ul*
= |x1 —ull* + [Ix2|1%, (73)

by Ex. 46, since x; —u € L, xo € L. Consequently, there is a unique u € L,
namely ux = x1, for which (73) is smallest.

By the uniqueness of the decomposition (72), ux = xi is the only vector
u € L satisfying

x—u Ll u. O
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EX. 48. Let L be a subspace of C", let V € C"*" be a matrix whose columns

{vi,...,v,} are a basis of L, and let G(v1,...,v,) be the corresponding Gram
matrix, see §0.5.2. Then, for any x € C",

Pox=Y &V, (74)

where

¢ = det V*V[j + x|
77 det G(vi,...,vr)]
PROOF. Since (x — Prx) L L we get from (74) the system

jel,r. (75)

(x=> &v;,vi)=0, kelr,
j=1

or
Do &vivi) = (xvi), kel
j=1

whose solution, by Cramer’s rule, is (75). |

EX. 49. Let L and {vi,...,v,} be as in Ex. 48. Then the Euclidean norm of
P; 1 x is given by
det G(vi,...,vr,X)
P 2 — b ) b .
1P x| det G(vi,...,vy)
For proof see Ex. 51 below, or Gantmacher [296, Vol. I, p. 250].

(76)

Ex. 50. Simplify the results of Exs. 48-49 if the basis {v1,...,v,} is o.n.

Ex. 51. Orthogonal projections. Let L be a subspace of R" of dimension r and
let L be spanned by vectors {v1,... ,vi}. Let x € R" be written as x = xp +x 1
where x;, € L and x; 1 is orthogonal to L. Then

volrq1(Vi, ... , Vi, X)

eIl = volr(Vi,... , Vi) (77)
where (v1,...,vg) is the matrix with v; as columns.
PROOF. If x € L, then both sides of (77) are zero. If x ¢ L, then

volfﬂ(vl, cey VE,X) = volzﬂ(vl, ey Vi, Xp1),
by properties of determinants,
=vol2(vy,...,vi) voli(v,.), by Ex. 0.67,
which completes the proof since vol3(x;1) = ||x, .|| g
Note that (76) is a special case of (77).
EX. 52. Let x € C" and let L be an arbitrary subspace of C™. Then
(| Px|| < [1x]], (78)

with equality if and only if x € L. See also Ex. 67.
ProOOF. We have

x=Prx+ (I — PL)x = PLx + P, 1%,
by Ex. 23. Then, by Ex. 46,
Ix)1* = ([ Pex|* + || Ppox]|?,

from which (78) follows.
Equality holds in (78) if and only if P;1x = 0, which is equivalent to x € L. 0O
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EX. 53. Let A be a square singular matrix, let {ui,us, ... ,u,} and {x1,x2,...,
Xn} be o.n. bases of N(A*) and N(A), respectively, and let {a1,az,... ,an} be
nonzero scalars. Then the matrix

Ag = A+Za¢u¢x;
=1

is nonsingular and its inverse is
"1
-1
Ayt = AT+ E — x;u;.
— Qi
i=

PROOF. Let X denote the expression given for Aal. Then, from x;x; = §;; (i,j €
1,n), it follows that

AoX = AAT + Zn: X; X
i=1
= AAT + Py(asy, by (65),
= AA" 4+ (I, — AA"), by Lemma 1(g),
=1I,.
Therefore, A is nonsingular and X = Aj L Od
EX. 54. If A is normal, Ax = Ax if and only if A*x = Ax.

Ex. 55. If L is a subspace of C" and the columns of F' are a basis for L, show
that

P, =FF' = F(F*'F)'F".
(This may be simpler computationally than orthonormalizing the basis and using
(65).)
Ex. 56. Let L be a subspace of C". Then
P, =1I,— Pr.
(See Ex. 23.)

EX. 57. Let A € C™*", X € C**™. Then X € A{2} if and only if it is of the
form

X = (EAF)T,

where E and F are suitable Hermitian idempotents (Greville [330]).
Proor. If: By Ex. 38,

R((EAF)Y) c R(F), N((EAF)')> N(E).
Therefore, by Ex. 20,

X = (EAF)' = F(EAF)" = (EAF)'E.
Consequently,

XAX = (EAF) EAF(EAF)' = (EAF)' = X.
Only if: By Theorem 12(c) and Ex. 38,
X" = Prix+)APr(x),
and, therefore, by Ex. 1.18,
X = (Prex+)APr(x))" (79)
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REMARK. Equation (79) states that if X € A{2}, then X is the Moore-Penrose
inverse of a modification of A obtained by projecting its columns on R(X™) and
its rows on R(X).

EX. 58. Tt follows from Exs. 37 and 1.28 that, for arbitrary A, A" is the unique
matrix X satisfying

AX = Preay, XA=Pga, XAX=X.

Ex. 59. By means of Exs. 58 and 20, derive (79) directly from XAX = X
without using Theorem 12(c).

Ex. 60. Prove the following amplification of Penrose’s result stated in Ex. 41:
A square matrix F is idempotent if and only if it can be expressed in the form

E = (FG)!
where F' and G are Hermitian idempotents. (Hint: Use Ex. 17.)
In particular, derive the formula (Greville [330])
Prov = Py Pr) = (I = Pur)Pp)'. (80)

EX. 61. Let S and T be subspaces of C™ and C", respectively, such that
AT S=C",
and let Agg denote the unique {2}-inverse of A having range 7' and null space
S (see Theorem 14). Then
AR = (PgL APr)T.

EX. 62. Show that Pr, + Py is an orthogonal projector if and only if L L M, in
which case

Pr+ Pv = Prym.

Ex. 63. Show that Pr Py is an orthogonal projector if and only if Py, and Pas
commute, in which case

PPy = Pran.

EX. 64. Show that L = LN M & LN M= if and only if Py, and Py commute.
EX. 65. For any matrix A € C"*™ we denote by A = O the fact
(x,Ax) >0, for all x € C". (81)

For any two matrices A, B € C"*™, A = B denotes that (A — B) > O. This is
called the Léwner ordering on (C"X” It is transitive (A > B,B = C — A =
C) and is antisymmetric (A = B,B = A = A = B) if A, B are Hermitian,
see Chipman [186].

Similarly, we denote by A > O the fact that

(x,Ax) >0, forall0#£xe€C" (82)

A Hermitian matrix H € C™*" is:
positive semidefinite (PSD) if H > O; and
positive definite (PD) if H > O.
The set of n x n PSD [PD] matrices is denoted by PSD,, [PD,].
If A, B € C"*" are Hermitian, then A = B is equivalent to A— B = L*L for
some L € C"*™ [379, p. 223]. See also Ex. 79 below.

EX. 66. Let P, and Py be orthogonal projectors on the subspaces L and M of
C™, respectively. Then the following statements are equivalent:
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(a) Pr — Py is an orthogonal projector; (b)  Pr = Pur;
(¢) |I1Pcx]|| > ||Pux]|| for all x € C™; (d) McCL;
(e) PLP]u = Pju; (f) P]uPL = PM.

EX. 67. Let P € C"*" be a projector. Then P is an orthogonal projector if and
only if

[Px|| < x|, forall xe C". (83)

PROOF. P is an orthogonal projector if and only if /— P is an orthogonal projector.

By the equivalence of statements (a) and (c) in Ex. 66, I — P is an orthogonal

projector if and only if (83) holds. a
Note that for any non-Hermitian idempotent P (i.e., for any projector P

which is not an orthogonal projector) there is by this exercise a vector x whose

length is increased when multiplied by P, i.e., |[Px| > |[x|. For P = (}}) such

a vector is x = (1).

EX. 68. Let P € C**". Then P is an orthogonal projector if and only if

P=PP
EX. 69. It may be asked to what extent the results of Exs. 62-64 carry over

to general projectors. This question is explored in this and the two following
exercises. Let

C'"=LeM=QaS.

Then show that Pr a + Pg,s is a projector if and only if M D Q and § D L, in
which case

Prv + Pg,s = Pryg,mns.
SOLUTION. Let Pi = P v, P» = Pg,s. Then
(PL+ P2)* = Pi+ P+ PLPy + P2 P
Therefore, P, + P, is a projector if and only if
PP+ PP =0. (84)

Now, if M D @ and S D L, each term of LHS(84) is O.
On the other hand, if (84) holds, multiplication by P; on the left and on the
right, respectively, gives

PP+ PIP,Pr =0 =PiPP+ PP
Subtraction then yields
PPy — PP, = O, (85)
and (84) and (85) together imply
PP, =PP =0,

from which it follows by Lemma 1(e) that M D @ and S D L. It is then fairly
easy to show that

P+ Py = Prig,mns.

Ex. 70. With L, M,Q, S as in Ex. 69 show that if Py and Pg s commute,
then

Pr.vPo,s = Po,sPr.yv = Prng,m+s- (86)
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Ex. 71. If only one of the products in (86) is equal to the projector on the right,
it does not necessarily follow that the other product is the same. Instead we have
the fOllOWing result: With L, M, Q, S as in Ex. 69, PL,]VIPQ,S = PLQQ,M+S if and
only if @ = LNQ&MnNQ. Similarly, Po,sPr,m = Prng,m+s if and only if
L=LnNne&LNSs.

PROOF. Since LNM = {0}, (LNQ)N(MNQ) = {0}. Therefore LNQ+MNQ =
LNQ&MNQ. Since M+SDOM+Qand L+ 5D LNQ, Ex. 69 gives

Prrg,m+s + Pung,n+s = Pru,

where T=LNQOMNQ,U=(L+S)N(M+S). Clearly Q DT and U D S.
Multiplying on the left by Pr v gives

Pr v Pru = PrLag,m+s- (87)
Thus, if T'= Q, we have U = S, and

PrvPq,s = Prog,m+s. (88)
On the other hand, if (88) holds, (87) and (88) give
Pg,s = Pruv+ H, (89)

where Pr .y H = O. This implies R(H) C M. Also, since T C @, (89) implies
R(H) C Q and, therefore, R(H) C MNQ. Consequently, R(H) C T and therefore
(89) gives PT,UPQ7S = PQ,S. This implies rankPQS < rank PT,U~ Since Q@ D T
it follows that T' = @. This proves the first statement and the proof of the second
statement is similar. (]

EX. 72. The characterization of A{2,3,4} was postponed until orthogonal pro-
jectors had been studied. This will now be dealt with in three stages in this exer-
cise and in Exs. 73 and 75. If E is Hermitian idempotent show that X € E{2,3,4}
if and only if X is Hermitian idempotent and R(X) C R(E).
PROOF. If: Since R(X) C R(E), EX = X by Lemma 1(e), and taking conjugate
transposes gives XE = X. Since X is Hermitian, £FX and X E are Hermitian.
Finally, XEX = X? = X, since X is idempotent. Thus, X € E{2,3,4}.

Only if: Let X € E{2,3,4}. Then X = XEX = EX"X. Therefore R(X) C
R(E). Then EX = X by Lemma 1(e). But EX is Hermitian idempotent, since
X € E{2,3}. Therefore X is Hermitian idempotent. d

Ex. 73. Let H be Hermitian and PSD, and let
k
H=Y ME,. (90)
i=1

be its spectral decomposition as in (68), with orthogonal projectors as the prin-
cipal idempotents. Then X € H{2,3,4} if and only if

k
X =Y MF, (91)
i=1

where, for each i, F; € E;{2,3,4}.
PROOF. If: Since E; is Hermitian idempotent, R(F;) C R(E;) by Ex. 72. There-
fore (29a) gives

EiF; = FiE; =0 (i#j), (92)
and, by Lemma 1(e),
B, F;, =FFE;, =F; (Z S 1,7)
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Consequently,

k
HX = ZFZ-:XH.

Since each Fj is Hermitian by Ex. 72, HX = X H is Hermitian. Now,
FiFy = FEjF; =0 (i # ),
by (92) and, therefore,

k
XHX =) NF!=X
=1
by (91), since each F; is idempotent.
Only if: Let X € H{2,3,4}. Then, by (29b),

k k
X=IXI=> Y EXE; (93)
=1 j=1
Now, (90) gives
k k
HX =Y MNEX =Y MNX'E, (94)

1=1 =1

since HX = X™*H. Similarly,

k k
XH=Y MNXE =) MEX" (95)

i=1 i=1
Multiplying by Fs on the left and by E; on the right in both (94) and (95) and
making use of (29a) and the idempotency of E, and E; gives

NE.XE, = ME,X"E,, (96)
MEsXE, = sE;X*Ey (s, t € 1,k). (97)
Adding and subtracting (96) and (97) gives
(As + A)EsXEy = (A\s + A\)Es X “Ey, (98)
e = M)EXEy = —(As — \)E. X" Ey. (99)

The \; are distinct, and are also nonnegative because H is Hermitian and PSD.
Thus, if s # t, neither of the quantities As + A+ and As — A\; vanishes. Therefore,
(98) and (99) give

EXE, =EX'E,=—-EXE =0 (s#t). (100)

Consequently, (93) reduces to

k
X =) EXE,. (101)
i=1
Now, (90) gives
k

X =XHX =) MXEX,

i=1
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and, therefore, by (100),
E.XE, = \sE;XE,XE, = \,(E;XE,)?, (102)
from which it follows that E; X Es = O if As = 0. Now, take
F,=\NEXE; (i€1,k). (103)

Then (101) becomes (91), and we have only to show that F; € E;{2,3,4}. This
is trivially true for that ¢, if any, such that A\; = 0. For other i, we deduce from
(96) that it is idempotent. Finally, (103) gives R(F;) C R(E;), and the desired
conclusion follows from Ex. 72. (|

Ex. 74. Prove the following corollary of Ex. 73. If H is Hermitian PSD and
X € H{2,3,4}, then X is Hermitian PSD, and every nonzero eigenvalue of X is
the reciprocal of an eigenvalue of H.

EX. 75. For every A € C™*",
A{2,3,4} ={YA": Y € (A"A){2,3,4}}.

Ex. 76. A{2,3,4} is a finite set if and only if the nonzero eigenvalues of A*A
are distinct (i.e., each eigenspace associated with a nonzero eigenvalue of A* A is
of dimension 1). If this is the case and if there are k such eigenvalues, A{2,3,4}
contains exactly 2* elements.

EX. 77. Show that the matrix

9—-3¢ 12—47 10— 10¢
Ao |38 4—4i 0
T 10 64+6i 8+8 0
6 8 0
has exactly four {2, 3, 4}-inverses, namely,
0 6 + 61 12 —12¢ 12
Xi=A'=L1 0 8+8i 16— 16 16 ,
35+35: —5—150 —30+10¢ —20—10¢
-9 -3¢ 34+ 3 6 — 6t 6
Xo=2 |-12—4i 4+4i 8 —8i 8 ,

25425 —5—-151 —30+10¢ —20-—10¢
63+21¢ 15+ 157 30—30: 30

X3 = ﬁ 84 4+ 28 204 20¢ 40 — 4017 40 ,
35+35¢ 5+15¢ 30—10¢ 20+ 102

X4 =0.

EX. 78. The x-order. A partial order on C"™*", called the *-order and denoted
2, is defined as follows:
AA* = AB*,

A*A = A"B. (104)

A2B<:>{

The *-order was introduced by Drazin [234] for semigroups with involution.
For A, B € C™*", the following statements are equivalent;:

(a) A< B.
(b) AATB= A= BAtA.
(c) AT < B
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Ex. 79. (Hartwig [382]). Exercise 78(c) shows that the Moore—Penrose inverse
preserves the x-ordering. This is not the case for the Lowner-ordering, as shown
by the example

B=(31), A=(9}) with B> A, but Bl — AT =1(109).

In fact, the Moore—Penrose inverse may reverse the Lowner-ordering even for PSD
matrices. A precise statement is:
Let A, B € PSD,, with B > A. Then:

(a) At = Bt <= R(A) C R(B).

(b) Bt = AT «—= A?=AB.

8. Efficient Characterization of Classes of Generalized Inverses

In the preceding sections, characterizations of certain classes of generalized
inverses of a given matrix have been given. Most of these characterizations
involve one or more matrices with arbitrary elements. In general, the num-
ber of such arbitrary elements far exceeds the actual number of degrees of
freedom available.

For example, in Section 1 we obtained the characterization

A{1} = {AD 4 Z - AW AZAAW ; 7 e CPmY, (4)

Now, as Z ranges over the entire class C"*™, every {1}-inverse of A will
be obtained repeatedly an infinite number of times unless A is a matrix of
zeros. In fact, the expression in RHS(4) is unchanged if Z is replaced by
Z + ADAWAAD | where W is an arbitrary element of C**™. We shall
now see how in some cases this redundancy in the number of arbitrary
parameters can be eliminated. The cases of particular interest are A{1}
because of its role in the solution of linear systems, A{1,2} because of the
symmetry inherent in the relation

X e A{l,2} = AeX{1,2},

and A{1,3} and A{1,4} because of their minimization properties, which
will be studied in the next chapter.
As in (4), let A1) be a fixed, but arbitrary element of A{1}, where

A€ Cmxn Also, let F e C™0 Kgx e X B e CT be
given matrices whose columns are bases for N(A), N(A*), and R(A(M A),
respectively. We shall show that the general solution of
AXA=A (1.1)
is
X =AW + FY + BZK, (105)
where Y € C»=7)*™ and Z € C™(m=") are arbitrary.

Clearly AF = O and KA = O. Therefore RHS(105) satisfies (1.1).
Since R(I,, — AWM A) = N(A) and R((I,, — AAM)*) = N(A*) by (28) and
Lemma 1(g), there exist uniquely defined matrices G, H, D such that

FG=1,-AMA, HK=1I,—-AAY, BD=AWA. (106)
Since these products are idempotent, we have, by Lemma 2,

GF=DB=1, KH=I,. (107)
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Moreover, it is easily verified that

GB=0, DF=0. (108)
Using (107) and (108), we obtain easily from (105)
Y =G(X - AW, Z=DX - AY)H. (109)

Now, let X be an arbitrary element of A{1}. Upon substituting in (105)
the expression (109) for Y and Z, it is found that (105) is satisfied. We
have shown, therefore, that (105) does indeed give the general solution of
(1.1).

We recall that AN, F, G, H, K, B, D are fixed matrices. Therefore, not
only does (105) give X uniquely in terms of Y and Z, but also (109) gives
Y and Z uniquely in terms of X. Therefore, different choices of Y and
Z in (105) must yield different {1}-inverses X. Thus, the characterization
(105) is completely efficient, and contains the smallest possible number of
arbitrary parameters.

It is interesting to compare the number of arbitrary elements in the
characterizations (4) and (105). In (4) this is mn, the number of elements
of Z. In (105) it is mn — r?, the total number of elements in Y and Z.
Clearly, (105) contains fewer arbitrary elements, except in the trivial case
r = 0, as previously noted.

The case of A{1, 3} is easier. If, as before, the columns of F are a basis
for N(A), it is readily seen that (17) can be written in the alternative form

A{1,3} = {ADD) L FY . ¥ e cnmr)xmy, (110)

This is easily shown to be an efficient characterization. Here the number of

arbitrary parameters is m(m — r). Evidently, this is less than the number

in the efficient characterization (105) of A{1}, unless r = m, in which case

every {1}-inverse is a {1, 3}-inverse, since AA! = I,,, by Lemma 1.2.
Similarly, if the columns of K* are a basis for N(A*),

A{1,4} = {A0Y LYK Y e C(mY (111)

where A(M%) is a fixed, but arbitrary element of A{1,4}.
Efficient characterization of A{1,2} is somewhat more difficult. Let
A(12) be a fixed, but arbitrary element of A{1,2}, and let

A(l’z) = YOZ0

be a full-rank factorization. As before, let the columns of F' and K* form
bases for the null spaces of A and A*, respectively. Then we shall show
that

A{1,2y ={(Yo + FU)(Zy + VK) : U e C"*" 1 e C™(m=1} (112)

Indeed, it is easily seen that (1.1) and (1.2) are satisfied if X is taken as
the product expression in RHS(112). Moreover, if

FG=1I,- A" A, HEK =1, —AA",
it can be shown that

U=GXAY,, V=Z,AXH. (113)
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It is found that the product in RHS(112) reduces to X if the expressions
in (113) are substituted for U and V.

Relation (112) contains r(m + n — 2r) arbitrary parameters. This is
less than the number in the efficient characterization (105) of A{1} by
(m —r)(n —r), which vanishes only if A is of full (row or column) rank, in
which case every {1}-inverse is a {1, 2}-inverse.

Exercises

EX. 80. In (106) obtain explicit formulas for G, H, and D in terms of A, AD),
F, K, B, and {1}-inverses of the latter three matrices.

Ex. 81. Consider the problem of obtaining all {1}-inverses of the matrix A
of (0.80). Note that the parametric representation of Ex. 1.6 does not give all
{1}-inverses. (In this connection see Ex. 1.11.) Obtain in two ways parametric
representation that do in fact give all {1}-inverses: first by (4) and then by (105).
Note that a very simple {1}-inverse (in fact, a {1, 2}-inverse) is obtained by taking
all the arbitrary parameters equal to zero in the representation of Ex. 1.6. Verify
that possible choices of F' and K are

10 0 0
0 1 —1+42 0
0 -2 0 i .
F=|y o o g 4 K=Bi 13
0 0 1 0
0 0 0 1

Compare the number of arbitrary parameters in the two representations.

EX. 82. Under the hypotheses of Theorem 12, let F' and K* be matrices whose
columns are bases for N(A) and N(A"), respectively. Then, (59) can be written
in the alternative form

1,2
X =ApY + FZK, (114)
where Z is an arbitrary element of C*~"*(m=") Moreover,
rank X = r 4+ rank Z. (115)

PROOF. Clearly the right member of (114) satisfies (58). On the other hand,
substituting in (59) the first two equations (106) gives (114) with Z = GY H.
Moreover, (114) and Theorem 12(c) give

XPrs=AR2,
and, therefore,
X(Im — PL,s) = FZK.

Consequently, R(X) contains the range of each of the two terms of RHS(114). Fur-
thermore, the intersection of the latter two ranges is {0}, since R(F) = N(A) =
M, which is a subspace complementary to 1" = R(A%’?). Therefore, R(X) is the
direct sum of the two ranges mentioned and, by statement (c) of Ex. 0.1, rank X
is the sum of the ranks of the two terms in RHS(114).

Now, the first term is a {1,2}-inverse of A and its rank is therefore r by
Theorem 1.2, while the rank of the second term is rank Z by Ex. 1.7. This
establishes (115). O
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Ex. 83. Exercise 82 gives
A{lyrs = {A}D + FZK : Z e Cm Xy

where A{1}r s is defined in Corollary 9. Show that this characterization is effi-
cient.
EX. 84. Show that if A € C™*", A{1}r,s contains matrices of all ranks from r

to min{m,n}.

Ex. 85. Let A = ST be a full-rank factorization of A € C**™, let Yy and Z be
particular {1}-inverses of T' and S, respectively, and let F' and K be defined as
in Ex. 82. Then, show that:

S{1} ={Zo+ VK : Ve ("},
T{1} ={Yo+ FU : U e C"" 7"},
AA{1} = SS{1} = {S(Zy + VK) : V e CT*(" T},
A{A=T{} T ={(Yo + FU)T: U € (C(n*r)xr}’
A{1} = {YoZo + YoVK + FUZy + FWK :
Ue C(”—T)XT’ Ve CT><(m—r)7 W e (C(n—v‘)x(m—'r)}’
= A{1,2} + {FXK : X e cl""x(m=0y,
Show that all the preceding characterizations are efficient.

EX. 86. For the matrix A of (0.80), obtain all the characterizations of Ex. 85.
Hint: Use the full-rank factorization of A given in (0.85), and take

1.
_ _EZ 0 0
ZO,[O 5 }

9. Restricted Generalized Inverses
In a linear equation
Ax = b,

with given A € C"™*™ and b € C™, the points x are sometimes constrained
to lie in a given subspace S of C™, resulting in a “constrained” linear equa-
tion

Ax=b and x€8. (116)
In principle, this situation presents no difficulty since (116) is equivalent to
the following, “unconstrained” but larger, linear system

A b
|:PSL:| X = [0} ,  where Pg1. =1 — Pg.

Another approach to the solution of (116) that does not increase the size
of the problem is to interpret A as representing an element of £(S,C™),
the space of linear transformations from S to C™, instead of an element of
L(C™,C™), see, e.g., Sections 4 and 6.1. This interpretation calls for the
following definitions.
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Let A € L(C™,C™) and let S be a subspace of C". The restriction of
A to S, denoted by A[g), is a linear transformation from S to C™ defined
by

A[S]X =Ax, x€S8S. (117)

Conversely, let B € L(S,C™). The extension of B to C", denoted by ext B,
is the linear transformation from C" to C™ defined by

Bx, ifxe S,

0, if x e St (118)

(ext B)x = {
Restricting an A € £L(C™,C™) to S and then extending to C™ results in
ext(Ag)) € L(C",C™) given by

Ax, ifxels,

0, if x € S*. (119)

eXt(A[S])X = {
From (119) it should be clear that if A € £(C™,C™) is represented by the
matrix A € C™*", then ext(A[g)) is represented by APs. The following
lemma is then obvious:
LEMMA 4. Let A € C™*" b e C™, and let S be a subspace of C™*. The
system

Ax = b, x €S, (116)
is consistent if and only if the system
APsz =b (120)
is consistent, in which case X is a solution of (116) if and only if
x = Pgz,
where z is a solution of (120). O

From Lemma 4 and Corollary 2 it follows that the general solution of
(116) is

x = Pg(APs) Vb + Ps(I — (APs)M) APs)y, (121)
for arbitrary (APs)Y) € (APs){1} and y € C™.

We are thus led to study generalized inverses of ext(Ag)) = APg, and from
(121) it appears that Pg(APg)("), rather than A™M) | plays the role of a {1}-
inverse in solving the linear system (116); hence the following definition:

DEFINITION 2. Let A € C™*™ and let S be a subspace of C™. A matrix
X € C™*™ ig an S-restricted {i,j,... ,k}-inverse of A if

X = Pg(APg)(0d:F) (122)

for any (APg)®3%) € (APs){i,j,... ,k}.

The role that S-restricted generalized inverses play in constrained prob-
lems is completely analogous to the role played by the corresponding gen-
eralized inverse in the unconstrained situation. Thus, for example, the
following result is the constrained analog of Corollary 2.
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COROLLARY 11. Let A € C™*" and let S be a subspace of C". Then
the equation

Ax=b, x€S8, (116)

is consistent if and only if
AXb =Db,
where X is any S-restricted {1}-inverse of A. If consistent, the general
solution of (116) is
x=Xb+ (I -XA)y

with X as above, and arbitrary y € S. O
Exercises

Ex. 87. Let I be the identity transformation in £(C",C") and let S be a
subspace of C™. Show that

eXt(I[S]) = Ps.
EX. 88. Let A € L(C",C™). Show that A[r(a«)], the restriction of A to R(A™),
is a one-to-one mapping of R(A*) onto R(A).
SOLUTION. We show first that Ajg(4~)) is one-to-one on R(A*). Clearly it suffices

to show that A is one-to-one on R(A"). Let u,v € R(A") and suppose that
Au = Av, i.e., u and v are mapped to the same point. Then A(u —v) =0, i.e.,

u—v e N(A).

But we also have
u-—v e R(AY),

since u and v are in R(A"). Therefore,
u—veNA)NR(AY)

and by (0.26), u = v, proving the A is one-to-one on R(A").
We show next that A[ga~) is a mapping onto R(A), i.e., that

R(A[r(axy)) = R(A).
This follows since, for any x € C™,
Ax = AATAx = APpa+)x = A[p(a=)X.

ExX. 89. Let A € C™*"™. Show that
ext(A[R(A*>]) = A. (123)

EX. 90. From Ex. 88 it follows that the linear transformation
Alr(an) € L(R(A"), R(A))
has an inverse
(Afr(a=)) " € L(R(A), R(AY)).
Show that this inverse is the restriction of AT to R(A), namely
(AN ey = (Agras) ™" (124)

SOLUTION. From Exs. 88, 38, and 58 it follows that, for any y € R(A), A'y is
the unique element of R(A*) satisfying

Ax =y.



10. THE BOTT-DUFFIN INVERSE 91

Therefore
Aly = (Ajpa=y) 'y, for ally € R(A).
EX. 91. Show that the extension of (A(g(a+))~" to C™ is the Moore-Penrose
inverse of A,
ext((A{r(asy) ") = A (125)

Compare with (123).
EX. 92. Let each of the following two linear equations be consistent

Ai1x = by, (126a)

Aox = ba. (126b)

Show that (126a) and (126b) have a common solution if and only if the linear
equation

A2Py(ay)y = bz — A2AVby

is consistent, in which case the general common solution of (126a) and (126b) is

x = AMby + Pyiayy(A2Pray) P (ba — A2 A b1) + N(A1) N N(A2)
or, equivalently,

x = Abs + Pyay) (A1 Pray) M (b1 — A1 AV b2) + N(A1) N N(Az).
Hint. Substitute the general solution of (126a),

X = A(ll)bl + Pn(a,)y, Yy arbitrary,

in (126b).
EX. 93. Exercise 92 illustrates the need for PN(Al)(A2PN(A1))(1>7 an N(A1)-
restricted {1}-inverse of A2. Other applications call for other, similarly restricted,
generalized inverses. The N(A;)-restricted {1,2,3,4}-inverse of Az was studied

for certain Hilbert space operators by Minamide and Nakamura [556] and [557],
who characterized it as the unique solution X of the five equations

A1 X =0,
A2 XAy = Az on N(A1),
XAsX = X,
(A2 X)" = A2 X,

and
Py(a)(XA2)" = XA> on N(Ai).

Show that PN(Al)(AQPN(Al))T is the unique solution of these five equations.

10. The Bott—Duffin Inverse
Consider the constrained system

Ax+y=b, zelL, yelt, (127)
with given A € C"*" b € C™", and a subspace L of C". Such systems
arise in electrical network theory; see, e.g., Bott and Duffin [120] and Sec-

tion 13 below. As in Section 9 we conclude that the consistency of (127) is
equivalent to the consistency of the following system:

(AP, + Pp)z=b (128)
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and that [ﬂ is a solution of (127) if and only if

X:PLZ, y:PLLZ:b—APLZ, (129)
where z is a solution of (128).
If the matrix (APy, + Pp.) is nonsingular, then (127) is consistent for
all b € C™ and the solution
X = P(AP, + P;.) 'b, y=b— Ax,
is unique. The transformation
PL(APp + Ppo)™!

was introduced and studied by Bott and Duffin [120], who called it the
constrained inverse of A. Since it exists only when (APr + Py1) is nonsin-
gular, one may be tempted to introduce generalized inverses of this form,
namely

PL(APL+PLL)(i7j7...7k) (1S17.77 ak§4),

which do exist for all A and L. This section, however, is restricted to the
Bott—Dulffin inverse.

DEFINITION 3. Let A € C™*™ and let L be a subspace of C™. If
(AP, + Pr.) is nonsingular, the Bott—Duffin inverse of A with respect to

L, denoted by AE;; ), is defined by
Agz)l) :PL(APL+PLL)71. (130)

Some properties of Agz)l ) are collected in

THEOREM 16 (Bott and Duffin [120]). Let (APL+P; 1) be nonsingular.
Then:

(a) The equation

AX+y=b7 J,‘EL, yeLl7 (127)

has for every b, the unique solution
x = A b, (131a)
y = (I - AA{;)b. (131b)

(b) A, P, and AEZ)I) satisfy

Py = Al AP, = PLAA( ), (132a)

(=1) _ (=1) _ 4(=1
ALY =LAl = AP (132b)

PROOF. (a) This follows from the equivalence of (127) and (128)—(129).
1)

(b) From (130), PLAEZ)1> = AEZ)I). Postmultiplying AEE) (APL+Pp1) = Pr

by Pp, gives A"Y AP, = Pp. Therefore ATV P, =0 and AV P, = ACD.

(L) (L) (L) (L)
Multiplying (131b) by Pr gives (Pr — PLAAE;)I))b = 0 for all b, thus P =
PLAALD). 0
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From these results it follows that the Bott—Duffin inverse Agz)l )7 when-
ever it exists, is the {1,2}-inverse of (PpAPr) having range L and null
space L.

COROLLARY 12. If APy, + Pr. is nonsingular, then:

() A = (AP = (PLa)y) = (PLAPL) 7). ; and

(b) (AL = PLAPL.

PROOF. (a) From (132a), dim L = rank P;, < rank AEZ)I). Similarly, from (132b),

rank AV < dim L, R(A{;) € R(P) = L, and N(A{;) > N(Pp) = L*.
Therefore,

rank AEZ)U =dimL (133)

and

R(A) =1L, N(ALY)=L" (134)

Now AE;;) is a {1, 2}-inverse of APr:

APLAEZ)UAPL = AP, by (132a),

and

AV APLAT Y = ALY, by (132a) and (132D).

That Agz)l) is a {1,2}-inverse of Pr A and of Pp APy, is similarly proved.

(b) We show first that (A{;}))(;}” is defined, ie., that (A )Py + Pp.) is
nonsingular. From (132b), AEZ;)PL + P = AEZ;) + P, 1, which is a nonsingular
matrix since its columns span L + L = C™, by (134). Now P APy is a {1,2}-
inverse of AEZ)I), by (a), and therefore by Theorem 1.2 and (133),

rank Pr, AP;r, = rank AE;;) =dim L.

This result, together with
R(PLAPL) C R(PL) =L, N(PLAPL)D> N(P.)=L",
shows that
R(PLAPL) =L, N(PLAPp)=L",
proving that
PLAP, = (A
— (ACD)ED. 0

) @
Exercises

EX. 94. Show that the following statements are equivalent, for any A € C"*"
and a subspace L C C™:

(a) APp + Pp. is nonsingular.

(b) C" = AL @ L*, ie., AL = {Ax : x € L} and L* are complementary

subspaces of C".

(c) C" = PLR(A) @ L*.

(d) C" = PLAL® L*.

(e) rank PLAPr = dim L.
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Thus, each of the above conditions is necessary and sufficient for the existence of

AEL;), the Bott—Duffin inverse of A with respect to L.

EX. 95. A converse to Corollary 12. If any one of the following three {1,2}-
inverses exist

(AP (LAY, (PLAPL) Y

then all three exist, APr, + P, . is nonsingular, and

(APL) 2 = (PLA) D = (PLAPL) P = ALY,

L, L+ L,L+ (L)

Hint. Condition (b) in Ex. 94 is equivalent to the existence of (APL)(L2>

L,LLt-

EX. 96. Let K be a matrix whose columns form a basis for L. Then AE L) exists
if and only if K*AK is nonsingular, in which case

ALY = K(K*AK)"'K*  (Bott and Duffin [120]).
PRrROOF. Follows from Corollary 12 and Theorem 13(d). ]
Ex. 97. If A is Hermitian and AEL) exists, then AEZ)I) is Hermitian.
Ex. 98. Using the notation
A=lay] (i,5€Ln)
A =1lts] GjeTn)

(L)
da,, = det(APy + L™), (135)
Ya,L =logda,r (136)
show that:
O, R —
(a) ﬁ =t (i,5 € 1,n).
Otr

(b) o = tritj (i,7,k,0 € 1,n).  (Bott and Duffin [120, Theorem 3]).
ij
Bott and Duffin called d 4,1 the discriminant of A and 14,1, the potential of Agz)l).
Ex. 99. Let A € C™*" be nonsingular and let L be a subspace of C". Then
AEL;) exists if and only if AELP exists.
Hint. Use A™'P, . + Pp = A"'(APr + Pp1) to show that (A™'P,. + Pr)™ ' =
(APL =+ PLL)ilA.
ExX. 100. Let A € C"*™ be nonsingular, let L be a subspace of C*, let da,, and
14,1 be given by (128) and (136), respectively, and similarly define
dA—l,LL = det(Ail.PLL + IDL)7
¢A71’LL = IOgdA71’LL.
Then:

da,r
(a) dp—1p1 = det

A’
(b) (A*l)ggi)) A— AAEL)UA (Bott and Duffin [120, Theorem 4]).

Ex. 101. If #({Au, u) > 0 for every nonzero vector u, then

dar #0, R(A{L u,

for every vector u and R(t;;) > 0, where A(L> = [ti;] (Bott and Duffin, [120,
Theorem 6]).

u) >0
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ExX. 102. Let A, B € C™*™ and let L be a subspace of C" such that both ACD

(L)
and B((Z)D exist. Then

1 -1 —
By Ay = (APLB) ).

11. An Application of {1}-Inverses in Interval Linear
Programming

For two vectors u = (u;),v = (v;) € R™, let

u<v
denote the fact that u; < v; for ¢ = 1,... ,m. A linear programming
problem of the form
maximize{c’x : a < Ax < b}, (137)

with given a,b € R™, ¢ € R", A € R™*" is called an interval linear
program (also a linear program with two-sided constraints) and denoted
by IP(a, b, c, A) or simply by IP. Any linear programming problem with
bounded constraint set can be written as an IP, see, e.g., Robers and Ben-
Israel [694)].

In this section, which is based on the work of Ben-Israel and Charnes
[79], the optimal solutions of (137) are obtained by using {1}-inverses of A,
in the special case where A is of full row rank. More general cases were stud-
ied by Zlobec and Ben-Israel [893], [894] (see also Exs. 103 and 104), and
an iterative method for solving the general IP appears in Robers and Ben-
Israel [694]. Applications of interval programming are given in Ben-Israel,
Charnes, and Robers [80], and Robers and Ben-Israel [693]. References for
other applications of generalized inverses in linear programming are Pyle
[661] and Cline and Pyle [203].

The IP (137) is called consistent (also feasible) if the set

F={xeR": a< Ax <b} (138)

is nonempty, in which case the elements of F' are called the feasible solutions
of IP(a,b,c, A). A consistent IP(a, b, c, A) is called bounded if

max{c’x: z € F}

is finite, in which case the optimal solutions of IP(a, b, c, A) are its feasible
solutions xy which satisfy

c’xg = max{c’x: x € F}.
Boundedness is equivalent to ¢ € R(AT) as the following lemma shows:

LEMMA 5. Leta,b € R™, ¢ € R", A € R™*" be such that IP(a, b, c, A)
is consistent. Then IP(a,b,c, A) is bounded if and only if

ce N(A)™. (139)
PROOF. From (138), F = F' + N(A). Therefore,
max{c'x: x € F} =max{c"x: x € F + N(A)}
= max{(Prs7yc + Py(aye)'x: x € F+ N(A)}, by (0.26),
= max{cTPR(AT)X :x € F}+max{c"x: x € N(A)},
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where the first term
max{cTPR(AT)X :x € F} =max{c"ATAx : a < Ax < b}
is finite and the second term
max{c’x :x € N(A)}

is finite if and only if ¢ € N(A)*. ]
We introduce now a function 7: R™ x R™ x R™ — R™, defined for
u,v,w € R™ by

77(117"7“’) = ['I’]J (Z € 17m)7

where

ui7 lf w; < 0,

i = § Vi, if w; >0, (140)

ity + (1 — )\i)vi, where 0 < \; < 1, if w; = 0.
A component of n(u, v, w) is equal to the corresponding component of u or
v, if the corresponding component of w is negative or positive, respectively.
If a component of w is zero, then the corresponding component of n(u, v, w)
is the closed interval with the corresponding components of u and v as
endpoints. Thus 7 maps points in R™ x R™ x R™ into sets in R™, and
any statement below about n(u, v, w) is meant for all values of n(u, v, w),
unless otherwise specified.

The next result gives all the optimal solutions of IP(a, b, c, A) with A
of full row rank.

THEOREM 17 (Ben-Israel and Charnes [79]). Let a,b € R™, ¢ €
R™ A € R™" be such that IP(a,b,c, A) is consistent and bounded and

let A be any {1}-inverse of A. Then the general optimal solution of
IP(a,b,c, A) is

x=AWn(a, b, AV c) +y, ye N(A). (141)

PROOF. From A € Rjp*™ it follows that R(A) = R™, so that any u € R™ can
be written as

u= Ax (142)
where
x=AYu+y, ye N(A), by Corollary 2. (143)
Substituting (142) and (143) in (137) we get, by using (139), the equivalent IP
max{cTA(l)u :a<x<b}
whose general optimal solution is, by the definition (140) of 7,
u=n(a,b, AN ¢)

which gives (141) by using (143). (]
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Exercises

Ex. 103. Let a,b € R™,c € R", A € R™*" be such that IP(a,b,c, A) is
consistent and bounded. Let A" € A{1} and let zo € N(AT) satisfy

zTnO <0
for some 1, € n(a,b, (A" Pr(ay)Tc + zo). Then
X0 = A(l)PR(A)no +y, yeN(4)

is an optimal solution of IP(a, b, ¢, A) if and only if it is a feasible solution (Zlobec
and Ben-Israel [894]).

EX. 104. Let be R™, c € R", A € R™*™ and let u € R" be a positive vector
such that the problem

min{c’x: Ax =b,0 <x < u} (144)
is consistent. Let zo € R(AT) satisfy
ZT’I"O <z"A™b
for some 1y € (0,1, Py(a)c + 2o). Then
xg = A'b 4 Prayng

is an optimal solution of (144) if and only if it is a feasible solution (Zlobec and
Ben-Israel [894]).

12. A {1,2}-Inverse for the Integral Solution of Linear Equations

We use the notation Z, Z™, Z"™*"™, Z™*" of Section 0.8.

Any vector in Z™ will be called an integral vector. Similarly, any ele-
ment of Z™*™ will be called an integral matriz.

Let A€ Z™*™ b € Z™ and let the linear equation

Ax=Db (5)

be consistent. In many applications one has to determine if (5) has integral
solutions, in which case one has to find some or all of them. If A is a unit
matriz (i.e., A is nonsingular and its inverse is also integral) then (5) has
the unique integral solution x = A~!b for any integral b.

In this section, which is based on the work of Hurt and Waid [434],
we study the integral solution of (5) for any A € Z™*"™ and b € Z™.
Using the Smith normal form of A (Theorem 0.4), a {1, 2}-inverse is found
(Corollary 13) which can be used to determine the existence of integral
solutions, and to list all of them if they exist (Corollaries 14 and 15).

COROLLARY 13 (Hurt and Waid [434]). Let A € Z™*". Then there is
an n X m matrix X satisfying
AX A=A, (1.1)
XAX =X, (1.2)
AX ezZm™ ™ XAeZ™ "™ (145)
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PROOF. Let
PAQ =S (0.132)
be the Smith normal form of A and let
A=Qs'P. (146)
Then
PAQ = S = S5TS = PAQSTPAQ = PAAAQ,

proving A = AAA. AAA = Ais similarly proved. The integrality of AA and AA
follows from that of PAA = SSTP and AAQ = QS'S, respectively. (|

In the rest of this section we denote by A, B the {1, 2}-inverses of A, B
as given in Corollary 13.

COROLLARY 14 (Hurt and Waid [434]). Let A, B, D be integral matri-
ces and let the matriz equation

AXB=D (1)
be consistent. Then (1) has an integral solution if and only if the matrix
ADB
is integral, in which case the general integral solution of (1) is
X = ADB+Y — AAYBBB, Y € 7™,

PROOF. Follows from Corollary 13 and Theorem 1. (]

COROLLARY 15 (Hurt and Waid [434]). Let A and b be integral, and
let the vector equation

Ax=Db (5)
be consistent. Then (5) has an integral solution if and only if the vector
Ab
is integral, in which case the general integral solution of (5) is
x=Ab+ (I — AA)y, yeZ"
Exercises

Ex. 105. Use the results of Sections 11 and 12 to find the integral optimal
solutions of the interval program

max{c'x: a<x <b}
where a, b, c, and A are integral.

Ex. 106. If Z is the ring of polynomials with real coefficients, or the ring of
polynomials with complex coefficients, the results of this section hold; see, e.g.,
Marcus and Minc [534, p. 40]. Interpret Corollaries 13 and 15 in these two cases.
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n2
[ ]
b by bs
/ n3 bs
ny b6 'n4

FIGURE 1. An example of a network.

13. An Application of the Bott—Duffin Inverse to Electrical
Networks

In this section which is based on Bott and Duffin [120], we keep the dis-
cussion of electrical networks at the minimum sufficient to illustrate the
application of the Bott—Duffin inverse studied in Section 10. The reader is
referred to the original work of Bott and Duffin for further information.

An electrical network is described topologically in terms of its graph
consisting of nodes (also vertices, junctions, etc.) and branches (also edges),
and electrically in terms of its (branch) currents and voltages.

Let the graph consist of m elements called nodes denoted by n;, i €
1,m (which, in the present limited discussion, can be represented by m
points in the plane), and n ordered pairs of nodes called branches denoted
by bj, j € 1,n (represented here by directed segments joining the paired
nodes).

For example, the network represented by Figure 1 has four nodes nq, no, ns,
and nyg, and six branches by = {ny,na}, ba = {na,n3}, by = {na, N4}, by =
{713,711}, b5 = {TL3,TL4}, and bﬁ = {7?,4,7?,1}.

A graph with m nodes and n branches can be represented by an m x n
matrix called the (node-branch) incidence matriz, denoted by M = [m;;]
and defined as follows:

(i) The i row of M corresponds to the node n;, i € 1, m.

(ii) The §t column of M corresponds to the branch bj, j €1, n.
(iii) If b; = {ng,n}, then

1, i=k,
mi; = —]., i = l,
0, ikl

For example, the incidence matrix of the graph of Fig 1 is

1 0 0o -1 0 -1
-1 1 1 0 0 0
M= 0 -1 0 1 1 0
0 o -1 0 -1 1
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Two nodes ng and n; (or the corresponding rows of M) are called directly
connected if either {ny,n;} or {n;,ny} is a branch, i.e., if there is a column
in M having its nonzero entries in rows k and I. Two nodes nj and n; (or
the corresponding rows of M) are called connected if there is a sequence of
nodes

{ng,np, ... ,ng,n}

in which every two adjacent nodes are directly connected. Finally, a graph
(or its incidence matrix) is called connected if every two nodes are con-
nected.

In this section we consider only direct current (DC) networks, referring
the reader to Bott and Duffin [120] and to Ex. 108 below, for alternating
current (AC) networks. A DC network is described electrically in terms of
two real valued functions, the current and the potential, defined on the sets
of branches and nodes respectively.

For j =1,...,m, the current in branch b;, denoted by y;, is the current
(measured in amperes) flowing in b;. The sign of y; is positive if it flows in
the direction of b; and is negative if it flows in the opposite direction.

For ¢ =1,... ,m, the potential at node n;, denoted by p;, is the voltage
difference (measured in volts) between n; and some reference point, which
can be taken as one of the nodes. A related function which is more often
used, is the wvoltage, defined on the set of branches. For j = 1,... ,n,
the voltage across branch b; = {nj,n;}, denoted by z;, is defined as the
potential difference

Tk =Pk = P1-

From the definition of the incidence matrix M it is clear that the vector
of branch voltages x = [z;] and the vector of node potentials p = [p;] are
related by

x=M"p. (147)

The currents and voltages are assumed to satisfy Kirchhoff laws. The
Kirchhoff current law is a conservation theorem for the currents (or electri-
cal charges), stating that for each node, the net current entering the node is
zero, i.e., the sum of incoming currents equals the sum of outgoing currents.
From the definition of the incidence matrix M it follows that the Kirchhoff
current law can be written as

My = 0. (148)

The Kirchhoff voltage law states that the potential function is single valued.
This statement usually assumes the equivalent form that the sum of the
branch voltages directed around any closed circuit is zero.

From (147), (148), and (0.26), it follows that the Kirchhoff current and
voltage laws define two complementary orthogonal subspaces:

N (M), the currents satisfying Kirchhoff current law; and
R(MT), the voltages satisfying Kirchhoff voltage law.

Each branch b;, j € 1, n, of the network will be regarded as having a series
voltage generator of v; volts and a parallel current generator of w; amperes.
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These are related to the branch currents and voltages by Ohm’s law
aj(xj — ’Uj) + (y] — wj) = 0, ] S 1,7’/7,, (149)

where a; > 0 is the conductivity of the branch b;, measured in mhos.?
Thus the branch currents y and voltages x are found by solving the
following constrained system:

Ax+y=Av+w, xcRWMT), yeNM), (150)

where A = diag (a;) is the diagonal matrix of branch conductivities, v and
w are the given vectors of generated voltages and currents, respectively, and
M is the incidence matrix. It can be shown that the Bott—Duffin inverse

of A with respect to R(M7T), A(};(lMT)), exists; see, e.g., Ex. 107 below.
Therefore, by Theorem 16, the unique solution of (150) is
X = A(R(MT (Av +w), (151a)
1)
= (I = AAG (o)) (AV + W), (151b)

The physical 51gn1ﬁcance of the matrix A( R( MT)) should be clear from
(151a). The (z,]) entry of A(R(MT))

a result of inserting a current source of 1 ampere in branch b;; 4,5 € 1,n.

is the voltage across branch b; as

Because of this property, AE}_%(lj)WT)) is called the transfer matriz of the
network.
Since the conductivity matrix A is nonsingular, the network equations

(150) can be rewritten as
A'y+x=A"'w+v, yeNM), xecRM"). (152)
By Exs. 107 and 99, the unique solution of (152) is

Y = (A (A7 W + ), (153a)
x = (I - A (A ) AT W + VA w + ). (153b)

The matrix (A_l)gx,l&w)) is called the dual transfer matriz, its (i, j) th entry
being the current in branch b; as a result of inserting a 1 volt generator

parallel to branch b;. Comparing the corresponding equations in (151) and

(=1)

n (153), we prove that the transfer matrices A(R(MT)) and (Afl)(N(M))

satisfy

ATHATY G + AR

(V) A=1, (154)

M )
which can also be proved directly from Ex. 100(b).

The correspondence between results like (151) and (153) is called elec-
trical duality; see, e.g., the discussion in Bott and Duffin [120], Duffin [241],
and Sharpe and Styan [745], [746], [747], for further results on duality and
on applications of generalized inverses in electrical networks.

3mho7 the unit of conductance, is the reciprocal of ohm, the unit of resistance.
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Exercises

EX. 107. Let A € C™ ™ be such that (Ax,x) # 0 for every nonzero vector x in
L, a subspace of C". Then AEZ)I) exists, i.e., (APr + Pp.) is nonsingular.
PROOF. If Ax +y = 0 for some x € L and y € L*, then Ax € L' and therefore
(Ax,x) = 0. O
See also Exs. 101 and 94(b) above.

Ex. 108. In AC networks without mutual coupling, equations (149) still hold
for the branches, by using complex, instead of real, constants and variables. The
complex a; is then the admittance of branch b;. AC networks with mutual cou-
pling due to transformers, are still represented by (150), where the admittance
matriz A is symmetric, its off-diagonal elements giving the mutual couplings; see,
e.g., Bott and Duffin [120].

EX. 109. Incidence matriz. Let M be a connected m X n incidence matrix.
Then, for any M%) e M{1,3},

[— MM = L ge?,
m

where ee” is the m x m matrix whose elements are all 1. See also Tjiri [436].
PrROOF. From (I — MM™)M = O it follows for any two directly connected
nodes n; and n; (i.e., for any column of M having its +1 and —1 in rows 4 and j),
that the ith and jth columns of I — MM®3) are identical. Since M is connected,
all columns of I — MM™® are identical. Since I — MM™3) is symmetric, all its
rows are also identical. Therefore, all elements of I — MM ™) are equal, say
I—MM®® = aeeT,

for some real a. Now I — MM™?) ig idempotent, proving that o = 1/m. O
Ex. 110. Let M be a connected m X n incidence matrix. Then rank M = m — 1.
PrOOF.

PN(]MT> =1- PR(M)7 by (0.27),
=1- MM(I‘?’), by Ex. 1.9 and Lemma 3,

B ee’, by Ex. 109,
m
proving that dim N(M7T) = rank Pyury =1 and, therefore,

rank M = dim R(M) = m — dim N(M") =m — 1. O
Ex. 111. Set inclusion matrices, Bapat [45]. Let 0 < r < ¢ < n be integers.
The set inclusion matrix W,. and the set intersection matrizc W,. are (’:) X (2)

matrices, with rows indexed by r—element sets, and columns indexed by c—element
sets, and the (R, C) th element

1, if RC C,
Wie[R,C] = { 0, otherwise,
Wrc[Rv C] - { 0, otherwise.

When r = 0, both Wy, and Woe are the 1 x (2) vector of all ones.
Let 0 <r <c<n-—r. Then

wi = Z (;WWZ;W”.

= ("0
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EX. 112. Trees. Let a connected network consist of m nodes and n branches,
and let M be its incidence matrix. A tree is defined as consisting of the m nodes,
and any m — 1 branches which correspond to linearly independent columns of M.
Show that:

(a) A tree is a connected network which contains no closed circuit.

(b) Any column of M not among the m — 1 columns corresponding to a given
tree, can be expressed uniquely as a linear combination of those m — 1
columns, using only the coefficients 0, +1, and —1.

(¢) Any branch not in a given tree, lies in a unique closed circuit whose
other branches, or the branches obtained from them by reversing their
directions, belong to the tree.

EX. 113. Let A = diag(a;), aj # 0, j € 1,n, and let M be a connected m X n
incidence matrix. Show that the discriminant (see Ex. 98)

dA,R(MT) = det(APR(MT) + PN(M))
is the sum, over all trees {b;,,bj,,...,b;, _,} in the network, of the products

aj,aj, -+ aj, _, (Bott and Duffin [120]).

Suggested Further Reading

SECTION 1. Bjerhammar [103], Hearon [409], Jones [450], Morris and Odell
[583], Sheffield [749].

SECTION 4. Afriat [3], Chipman and Rao [191], Graybill and Marsaglia
[319], Greville [330], [347], GroB and Trenkler [355], [356], Li and Wei [516],
Mizel and Rao [571], Takane and Yanai [793], Wedderburn [853].

SECTION 5. Bhatia [96], Dunford and Schwartz [246, pp. 556-565], Frame
[285], [286], [287], [288], Gantmacher [296], Lancaster [494], Lancaster and
Tismenetsky [495, Chapter 9], Rinehart [691], Robinson [696].

SECTION 6. Ward, Boullion, and Lewis [851].

SECTION 7. Afriat [3], Anderson and Duffin [21], Ben-Israel [65], Chipman
and Rao [191], Glazman and Ljubich [299], Greville [330], Petryshyn [641],
Stewart [780], Trenkler [815].

PARTIAL ORDERS FOR MATRICES. Baksalary [31], Baksalary and Hauke [32],
Baksalary and Mitra [35], Baksalary and Pukelsheim [36], Baksalary, Pukelsheim
and Styan [37], Bapat, Jain, and Snyder [48], Carlson [167], Drazin [235], Grof§
[342], [346], [348], GroB, Hauke, and Markiewicz [349], [350], Gro8 and Troschke
[357], Guterman [362], [361], Hartwig [384], Hartwig and Drazin [389], Hartwig
and Styan [395], Hauke and Markiewicz [400], [399], Jain, Mitra, and Werner
[443], Liski [518], Liski and Wang [519], Markiewicz [535], Mitra [561], [562],
[663], [664], Mitra and Hartwig [565], Nordstrom [617].
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SEcTION 11. For applications of generalized inverses in mathematical pro-
gramming see also Beltrami [58], Ben-Israel [64], [68], Ben-Israel and Kirby [82],
Charnes and Cooper [175], Charnes, Cooper, and Thompson [176], Charnes and
Kirby [178], Kirby [475], Nelson, Lewis, and Boullion [604], Rosen [710], [711],
Zlobec [890].

SECTION 12. Batigne [52], Batigne, Hall, and Katz [53], Bowman and Burdet
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CHAPTER 3

Minimal Properties of Generalized Inverses

1. Least-Squares Solutions of Inconsistent Linear Systems

For given A € C"™*™ and b € C™, the linear system
Ax=Db (1)

is consistent, i.e., has a solution for x, if and only if b € R(A). Otherwise,
the residual vector

r=b - Ax (2)

is nonzero for all x € C", and it may be desired to find an approzimate
solution of (1), by which is meant a vector x making the residual vector (2)
“closest” to zero in some sense, i.e., minimizing some norm of (2). An ap-
proximate solution that is often used, especially in statistical applications,
is the least-squares solution of (1), defined as a vector x minimizing the
Euclidean norm of the residual vector, i.e., minimizing the sum of squares
of moduli of the residuals

m m

Dol =016 =Y aizi = |b — Ax|. 3)

i=1 i=1 j=1

In this section the Euclidean vector norm — see, e.g., Ex. 0.10 — is denoted
simply by || ||.

The following theorem shows that ||Ax — b|| is minimized by choosing
x = Xb, where X € A{1,3}, thus establishing a relation between the
{1, 3}-inverses and the least-squares solutions of Ax = b, characterizing
each of these two concepts in terms of the other.

THEOREM 1. Let A € C"™*" b € C™. Then ||Ax — b| is smallest
when x = AL3)b, where AT3) € A{1,3}. Conversely, if X € C*™™™ has
the property that, for all b, ||Ax — b|| is smallest when x = Xb, then
X € A{1,3}.

PROOF. From (0.26)

b= (PR(A) 4+ PR(A)l)b- (4)
S b—Ax = (PR(A)b — AX) + PN(A*)b.
o ||Ax = b||> = ||[Ax — Pr(a)b||® + ||Pn(a=)b||?, by Ex. 0.46. (5)

Evidently, (5) assumes its minimum value if and only if
AX = PR(A)b, (6)

104
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which holds if x = A®®b for any A® € A{1, 3}, since, by Theorem 2.8, (2.28),
and Lemma 2.3,

AA(I’S) = PR(A)~ (7)

Conversely, if X is such that for all b, ||[Ax — b|| is smallest when x = Xb, (6)
gives AXb = Pr(4)b for all b, and therefore

AX = Pp(a).
Thus, by Theorem 2.3, X € A{1,3}. O
COROLLARY 1. A vector x is a least-squares solution of Ax = b if and
only if
Ax = Ppayb = AAM9Db.
Thus, the general least-squares solution is

x = A3b 4 (1, — A1 Ay, (8)

with A13) € A{1,3} and arbitrary y € C".
It will be noted that the least-squares solution is unique only when A

is of full column rank (the most frequent case in statistical applications).
Otherwise, (8) is an infinite set of such solutions.

Exercises and Supplementary Notes

EX. 1. Normal equation. Show that a vector x is a least-squares solution of
Ax = b if and only if x is a solution of

A*Ax = A'Db, (9)

often called the normal equation of Ax = b.
SOLUTION. It follows from (4) and (6) that x is a least-squares solution if and
only if

Ax —b € N(4"),

which is (9). O
ALTERNATIVE SOLUTION. A necessary condition for the vector x° to be a least-
squares solution of Ax = b is that the partial derivatives df/0x; of the function

fx) = lAx = bl> =Y "> ayz; - bi)*(z aijT; — bi) (10)

i=1 j=1
vanish at x°, i.e., that V£(x°) = 0, where
vre) = (L)
is the gradient of f at x°. Now it can be shown that the gradient of (8) at x° is
Vf(x%) = 24" (Ax — b),
proving the necessity of (9). The sufficiency follows from the identity
(Ax — b)*(Ax — b) — (Ax” — b)*(4x" — b)
= (x—a") A" A(x — %) + 2R{(x — 2°)" A% (x — 2")},
which holds for all x,x° € C™. O

EX. 2. For any A € C™*™ and b € C™, the normal equation (9) is consistent.
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EX. 3. The general least-squares solution of Ax = b,
x =AYb+ (I, - ATV )y, yecC, (8)
= (A" AP A D+ (I, — (A" AP A% Ay, yecC, (11)

where (A*A)Y is any {1}-inverse of A*A.
PROOF. By (1.12a), (A*A)M A* is a {1, 2, 3}-inverse of A (little more than needed
here). d

EX. 4. Ill-conditioning. The linear equation Ax = b and the matrix A are said
to be ill-conditioned (or badly conditioned) if the solutions are very sensitive to
small changes in the data, see, e.g., [615, Chapter 8] and [873].

If the matrix A is ill-conditioned, then A*A is even worse conditioned, see
Ex. 6.11 below. The following example illustrates the ill-conditioning of the nor-
mal equation. Let

1 1
A=le 0 and let the elements of AT A = [
0 €

be computed using double-precision and then rounded to single-precision with ¢
binary digits. If |e] < v2=¢, then the rounded A” A is

1 1
1 1

1+ € 1
1 1+ €2

(ATA) = [ ] (fl denotes floaating point)

which is of rank 1, whereas A is of rank 2. Thus for any b € R?, the computed
normal equation

fi(ATA)x = fi(A"Db)
may be inconsistent, or may have solutions which are not least-squares solutions
of Ax = b.
EX. 5. Noble’s method. Let again A € C’*™ and assume that A is partitioned

as

A= {Al} where A; € C*".
Az

Then A may be factorized as

A= M A1 where § = A A7 e ClmTmX, (12)

Now let b € C™ be partitioned as b = {El} , b1 € C". Then the normal equation
2
reduces to
(I +5*S)A1x =b; + S*bs (13)

(which reduces further to A1x = by if and only if Ax = b is consistent).
The matrix S can be obtained by applying Gauss—Jordan elimination to the
matrix

A1 b; I
As b2 O

transforming it into

I A7'by A7
O by—Sb;y -8

from which S can be read. (See Noble [615, pp. 262-265].)
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EX. 6. Iterative refinement of solutions. Let x(® be an approximate solution of
the consistent equation Ax = b and let X be an exact solution. Then the error
ox = % — x satisfies

Adx = A% — Ax®

=b - Ax?

© 0

=r the residual corresponding to x

This suggests the following iterative refinement of solutions, due to Wilkinson
[872] (see also Moler [572]):

The initial approximation: X(0>, given.

The k™ residual: r® = b — Ax*).

The kP correction, 6x*), is obtained by solving Adx*) = r*).

The (k+1) st approximation: x*+1) = x® 4 §x*)

Double precision is used in computing the residuals, but not elsewhere.
The iteration is stopped if [|[dx** || /||6x® || falls below a prescribed num-

ber.
If the sequence {x(k) : k=0,1,...} converges, it converges to a solution
of Ax =b.

The use of this method to solve linear equations which are equivalent to the
normal equation, such as (66) or (13), has been successful in finding, or improving,
least-squares solutions. The reader is referred to Golub and Wilkinson [312],
Bjorck [105], [107], and Bjorck and Golub [111].

EX. 7. Show that the vector x is a least-squares solution of Ax = b if and only

if there is a vector r such that the vector Lj is a solution of

- o B =[e] as

Ex. 8 Let A € C™*" and let by,ba,...,by € C™. Show that a vector x
minimizes

k
> IAx —byf?
i=1
if and only if x is a least-squares solution of

k
Zbi.
=1

Ax =

i

EX. 9. Let A, e C"™*" b; € C™ (i=1,...,k). Show that a vector x minimizes

k
> lAix — by (15)
i=1

if and only if x is a solution of

(iAZAi)x - iAZbi. (16)
i=1 i=1
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SOLUTION. x minimizes (15) if and only if x is a least-squares solution of the
system

Ay b
A2 b2
X = s
Ak b
whose normal equation is (16). ]

Constrained Least-Squares Solutions

Ex. 10. A vector x is said to be a constrained least-squares solution if x is a
solution of the constrained minimization problem: Minimize ||Ax — b|| subject to
the given constraints. Let Ay € C™'*" by € C™, Ay € C"™*" by € R(A2).
Characterize the solutions of the problem:

minimize ||A1x — by (17a)
subject to A2x = ba. (17b)

SOLUTION. The general solution of (17b) is
x = A by + (I — A5V Ay, (18)
where Aél) € A2{1} and y ranges over C". Substituting (18) in A;x = by gives

the equation

Al(I — Agl)Az)y = b1 — A1A<21)b2, (19&)
abbreviated as Ay = b. (19b)

Therefore x is a constrained least-squares solution of (17) if and only if x is given
by (18) with y a least-squares solution of (19),

x = AVby + (1 — AV A)A b+ (1 - A"V A)z), zeC,  (20)
where 4% is an arbitrary {1, 3}-inverse of 4. O
Ex. 11. Show that a vector x € C" is a solution of (17) if and only if there is a

vector y € C™?2 such that the vector [;] is a solution of

ATAr A3l (x| _ [Aiby

{ Ay ollyl =1 b | (21)
Compare this with Ex. 1. Similarly, find a characterization analogous to that
given in Ex. 7. See also Bjorck and Golub [111].

2. Solutions of Minimum Norm
When the system (1) has a multiplicity of solutions for x, there is a unique
solution of minimum-norm. This follows from Ex. 2.88, restated here as,

LEMMA 1. Let A € C™*". Then A is a one-to-one mapping of R(A*)
onto R(A). O

COROLLARY 2. Let A € C™*", b € R(A). Then there is a unique
solution of

Ax=Db (1)

given as the unique solution of (1) which lies in R(A*).
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PRrROOF. By Lemma 1, Eq. (1) has a unique solution xo in R(A*). Now the
general solution is given as
Xx=Xo+y, yE&N(4),
and, by Ex. 2.46,
lI%* = Ilxoll* + llyI*

proving that ||x|| > ||xo|| unless x = xo. O

The following theorem relates minimum-norm solutions of Ax = b and
{1, 4}-inverses of A, characterizing each of these two concepts in terms of
the other.

THEOREM 2. Let A € C™*™ b € C™. If Ax = b has a solution for x,
the unique solution for which ||x|| is smallest is given by

X = A(174)b,

where AMY € A{1,4}. Conversely, if X € C**™ is such that, whenever
Ax = b has a solution, x = Xb is the solution of minimum-norm, then
X € A{1,4}.
PROOF. If Ax = b is consistent, then for any A% € A{1,4}, x = AYb is
a solution (by Corollary 2.2), lies in R(A*) (by Ex. 1.9) and thus, by Lemma 1,
is the unique solution in R(A*), and thus the unique minimum-norm solution by
Corollary 2.

Conversely, let X be such that, for all b € R(A), x = Xb is the solution
of Ax = b of minimum-norm. Setting b equal to each column of A, in turn, we
conclude that

XA=A09

and X € A{1,4} by Theorem 2.4. |

The unique minimum-norm least-squares solution of Ax = b, and the
generalized inverse At of A, are related as follows:

COROLLARY 3 (Penrose [636]). Let A € C™*™ b € C™. Then, among
the least-squares solutions of Ax = b, A'b is the one of minimum-norm.
Conversely, if X € C"*™ has the property that, for all b, Xb is the
minimum-norm least-squares solution of Ax = b, then X = At.

PROOF. By Corollary 1, the least-squares solutions of Ax = b coincide with the
solutions of
Ax = AAD, (6)

Thus the minimum-norm least-squares solution of Ax = b is the minimum-norm
solution of (6). But, by Theorem 2, the latter is
x =AY A4y
=A'b

by Theorem 1.4.

A matrix X having the properties stated in the last sentence of the theorem
must satisfy Xb = A'b for all b € C™ and, therefore, X = A'. O

The minimum-norm least-squares solution, xo = A'b (also called the
approzimate solution; e.g., Penrose [636]) of Ax = b, can thus be charac-
terized by the following two inequalities:

|Axo — b|| < ||[Ax —Db||, for all x (22a)
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and

1ol < [I[l (22b)

for any x # x¢ which gives equality in (22a).
Exercises and Supplementary Notes

EX. 12. Let A be given by (0.80) and let

b=|1
1

Show that the general least-squares solution of Ax = b is

0 1 0 0 O 0 0 Y1
1 0 0 —3 0 —1+42 4 Y2
0 00 1 0 0 0 Y3
_ 1
=% 4l Tloo 0o 0o —2 —1—il| |yl
0 00 0 O 1 0 Ys
0 00 0 O 0 1 Y6
where y1,¥y2, ... ,ys are arbitrary, while the residual vector for the least-squares
solution is
21
1—19 12
—2

Ex. 13. In Ex. 12 show that the minimum-norm least-squares solution is

0

26 — 36i

L 13— 18

X= 8 | _55-9;
1292
—46 + 59i

Ex. 14. Let A € C™*", b € C™, and a € C". Show that if Ax = b has a
solution for x, then the unique solution for which ||x — al| is smallest is given by

x =AYb 4 (1 - A" A)a
= A<1’4)b + PN(A)a.

EX. 15. Matriz spaces. For any A, B € C™*" define

R(A,B)={Y =AXBeC™": X eC"™™} (23)
and

N(A,B)={X eC"™™: AXB = 0} (24)

which we shall call the range and null space of (A, B), respectively. Let C™*"™ be
endowed with the inner product

(X,Y) =trace Y'X = Z Z Tij Yij, (25)

i=1 j=1
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for X = [zi;], Y = [yi;] € C™*". Then, for every A, B € C™*", the sets R(A, B)
and N(A*, B*) are complementary orthogonal subspaces of C™*™.
SOLUTION. As in Ex. 2.2 we use the one-to-one correspondence

Un(i—1)+j =i (€ 1,m, j€1,n) (26)

between the matrices X = [z;;] € C™*™ and the vectors v = vec(X) = [vi] €
C™™. The correspondence (26) is a nonsingular linear transformation mapping
C™*™ onto C™". Linear subspaces of C™*™ and C™" thus correspond under
(26).

It follows from (26) that the inner product (25) is equal to the standard
inner product of the corresponding vectors vec(X) and vec(Y). Thus (X,Y) =
(vec(X), vec(Y)) = vec(Y)*vec(X). Also, from (2.10) we deduce that under (26),
R(A, B) and N(A*, B*) correspond to R(A® BT) and N(A*® B*"), respectively.
By (2.8), the latter is the same as N((A ® B7)*), which by (0.27) is the orthog-
onal complement of R(A ® BT) in C™. Therefore, R(A, B) and N(A*, B*) are
orthogonal complements in C™*™. O

EX. 16. Let A, B, C be matrices of compatible dimensions. Then the following
statements are equivalent:

(a) R(C) C R(A) and R(B*) C R(A™),

(b) BAWC is invariant under the choice of AM) € A{1},

(¢c) N(A,A) C N(B,O).
PROOF. (a) = (b) (this part is due to Rao and Mitra [678, Lemma 2.2.4(iii)]).
Let BA{1}C denote {BXC: X € A{1}}. Then

BA{1}C = BA'C 4+ {BZC — BATAZAA'C : Z arbitrary}, by Corollary 2.1,
={BA'C} if B=BA'A,C=AA'C.
(b) < (c) Let Z =21+ Zs, AZ1A=0, Zy = A*XA*. Then
BA{1}C = BA'C + {BZ,C + BA*XA*C — BATAA*XA"AATC : AZ,A =0}
= BA'C+{BZ,C: AZ\A =0}
= {BA'C} if and only if (c).

(c)=(a) Suppose R(B*) ¢ R(A"), i.e., there is a vector x € R(B*) with
X = X1 + X2,%X1 € R(A"),0 # x2 € N(A). Let the vector y satisfy C*y # 0
(C # O can be assumed), and let X = x5 y*. Then

AXA=0, BXC#O,
contradicting (c). An analogous proof applies to the case R(C) ¢ R(A). d

Ex. 17. Characterization of {1,3}-, {1,4}-, and {1,2,3,4}-inverses. Let the
norm used in C™*™ be the Frobenius norm

| X||F = Vtrace X*X. (0.50)
Show that for every A € C™*™:
(a) X € A{1,3} if and only if X is a least-squares solution of
AX = I, (27)

i.e., minimizing ||AX — I||F.
(b) X € A{1,4} if and only if X is a least-squares solution of

XA=1I,. (28)

(c) AT is the minimum-norm least-squares solution of both (27) and (28).
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SOLUTION. These results are based on the fact that the norm ||X||r defined by
(0.50) is merely the Euclidean norm of the corresponding vector vec(X).
(a) Writing (27) as

(A® Ivec(X) = vec(I), (29)
it follows from Corollary 1 that the general least-squares solution of (29) is
vee(X) = (A@ D) vee() + (I — (A TP (A® D))y, (30)

where y is an arbitrary element of C™". From (2.8) and (2.9) it follows that for
every A3 ¢ A{1, 3}, (A(l’g) ® I) is a {1,3}-inverse of (A ® I). Therefore the
general least-squares solution of (27) is the matrix corresponding to (30), namely

X =A% 41 -AM )y, vyeCm™,

which is the general {1, 3}-inverse of A by Corollary 2.3.
(b) Taking the conjugate transpose of (28), we get

A*X" =1,.
The set of least-squares solutions of the last equation is, by (a),
A™{1,3},
which coincides with A{1,4}.
(c¢) This is left to the reader. O

Ex. 18. Let A, B, D be complex matrices having dimensions consistent with the
matrix equation

AXB = D.
Show that the minimum-norm least-squares solution of the last equation is
X = A'DB"  (Penrose [636]).

EX. 19. Let A € C™*™ and let X be a {1}-inverse of A; i.e., let X satisfy
AXA=A (1.1)
Then the following are equivalent:
(a) X = AT
(b) X € R(A™,A"); and
(¢) X is the minimum-norm solution of (1.1) (Ben-Israel [67]).
PROOF. The general solution of (1.1) is, by Theorem 2.1,

X =A"AA"+Y — ATAY AAT, Y eC™ ™,
=AT+v - ATAY AAT, (31)
Now it is easy to verify that
AT € R(A*,A%), Y — ATAYAA' € N(4, A),
and using the Frobenius norm (0.50) it follows from Ex. 15 that X of (31) satisfies
X5 = AT)E + [V — ATAy AAT I3,
and the equivalence of (a), (b), and (c) is obvious. O

EX. 20. Restricted generalized inverses. Let the matrix A € C™*™ and let the
subspace S C C" be given. Then, for any b € C™, the point Xb € S minimizes
|Ax — b|| in S if and only if X = Ps(APs)*® is any S-restricted {1.3}-inverse
of A.

PROOF. Follows from Section 2.9 and Theorem 1. O
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EX. 21. Let A, S be as in Ex. 20. Then for any b € C™ for which the system
Ax=Db, x€S5, (2.116)

is consistent, X'b is the minimum-norm solution of (2.116) if and only if X =

Ps(APs)® is any S-restricted {1,4}-inverse of A.

Proor. Follows from Section 2.9 and Theorem 2. (|

Ex. 22. Let A, S be as above. Then, for any b € C™, Xb is the minimum-norm

least-squares solution of (2.116) if and only if X = PS(APS)T, the S-restricted
Moore-Penrose inverse of A (Minamide and Nakamura [556]).

Ex. 23. Constrained least-squares solutions. Let A; € C™*" by € C™, Ay €
C™2*"™ by € R(A2). The minimum-norm solution of

minimize [|A;x — by |?, (17a)
subject to Asx = ba, (17b)
is
x = Alb2 + Px(a,) (A1Py(a,)) ' (b1 — A1Abo). (32)
PROOF. Follows as in Ex. 10, with z = 0 in (20). O

See also Ex. 6.92 below.

Ex. 24. (Albert [10, Lemma, p. 185]). Let V € C™*" be Hermitian and
nonsingular and let X € C***. Then

(‘/71)()Jr = XTV(I - (VPN(X*))T(VPN(X*)))~ (33)

PRroOF. Denote Py(x+) by @. The unique minimum-norm least-squares solution
of

V1'X)x=y
is = (V7'X)"Ty. If u* minimizes | X*u — y||?, then x* := Vu" minimizes
[(V™'X)*x — y|*>. Moreover,
Ix*|| = |[Vu®|| > ||X]| unless %= Vu".

The general least-squares solution of X u =1y is
u(w) = X'y — Qw, w arbitrary. (a)
The square
Vaw)|* = [VX™Ty - VQw|?
is minimized when
w=(VQ)vx-ly. (b)
Moreover,
Vu(w) = %, (c)
for otherwise ||[Vu(W)| > ||X|| and, for 4 := V'%,
[Vall = [IX]| < [Va(w)]
a contradiction to u(w) minimizing ||Vu||. Combining (a), (b), and (c) we get

VX)) Ty =1 -V (vQ)vXxTy
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for all y, proving (33). (|

3. Tikhonov Regularization
Let A € C™*", b € C™. The minimum-norm least-squares solution of
Ax=Db (1)
is x = AT b. It is literally the solution of a two-stage minimization problem:
Stage 1:
minimize [[Ax — b||. (34)
Stage 2:
minimize {[|x|| among all solutions of Stage 1}. (35)

The idea of Tikhonov regularization (Tikhonov [806], [805]) is to replace
these two stages by one problem,

min - fo2(x) (36)
where the function
faz(x) = | Ax = b||* + o?||x]? (37)

depends on a positive real parameter a?. Let x,2 be the miminizer of f,e.
Then

faz — ATb as a—0, see Ex. 25 below,

and it may seem that the limit o — 0 is desirable, for then (36) tends to
coincide with the two-stage problem (34)—(35). There are, however, appli-
cations and contexts where the minimization problem (36), with positive
a?, is preferred. Some examples:

(a) The constrained least squares problem
minimize ||Ax — b|| subject to ||x|| =p (38)

has the function (37) as Lagrangian and o? as the Lagrange multiplier, see
Ex. 29.

(b) The norm ||x,z|| is a monotone decreasing function of «, see The-
orem 3. Positive values of a are required, if it is necessary to control the
norm of the solution. An example is ridge estimation, see Section 8.4, where
a trade-off between bias (which increases with «) and wvariance (or norm,
decreases with «), may determine an optimal a.

(c) If A is ill-conditioned, the solution x,2 of (36) is more stable, nu-
merically, than the minimal-norm least-squares solution, see Ex. 6.13.

The dependence of the solution x,2 is described in the following:

THEOREM 3. The function f.2(x) has a unique minimizer Xn2 given
by
Xo2 = (A*A+a*I)71A™D (39)

whose norm ||Xaz2|| is a monotone decreasing function of .
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PROOF. The function (37) is a special case of (15) with k = 2,41 = A, Ay =
al, b1 = b, and bz = 0. Substituting these values in (16) we get

(A*A+ o’I)x = A™Db, (40)

which has the unique solution (39), since (A*A + o*I) is nonsingular.
Using (0.26) or Lemma 1, it is possible to write b (uniquely) as

b=Av+u, veERA"), ueN(A". (41)
Substituting this in (39) gives
Xo2 = (A"A+a’I) 'A% Av. (42)
Now let {vi,va,...,v,} be an o.n. basis of R(A*) consisting of eigenvectors of
A* A corresponding to nonzero eigenvalues, say
A*Av; =ojv; (0;>0,5€T,7). (0.35a)

If v.=37"_, Bjv; is the representation of v in terms of the above basis, then
(42) gives

whose norm squared is
2
2 ] 2 2
oz l* =3 (27002 1831%
j=1 7
a monotone decreasing function of a?2. O
Problems of minimizing expressions like (37) in infinite-dimensional
spaces and subject to linear constraints often arise in control theory. The
reader is referred to [645], especially to Section 4.4 and pp. 353-354, where
additional references are given. Tikhonov regularization originated, and is
still mainly used, for solving linear operator equations, see references on
page 151.
Exercises
EX. 25. (den Broeder and Charnes [136]). For any A € C™*™, as A\ — 0 through
any neighborhood of 0 in C, the following limit exists and
lim (A* A4+ XI)"'A* = AT, (43)
A—=0
Proor. We must show that
lim (A*A 4+ A 'A*y = Aly (44)
A—0
for all y € C™. Since N(A*) = N(A"), by Ex. 2.38, (44) holds trivially for
y € N(A*). Therefore it suffices to prove (44) for y € N(A*)* = R(A). By

Lemma 1, for any y € R(A), there is a unique x € R(A*) such that y = Ax.
Proving (44) thus amounts to proving, for all x € R(A™),

lim (A"A + M) TATAx = AT Ax (45)
=x, since AtA = Pr(ax.
It thus suffices to show that
lim (A"A + M) AT A = Preasy.
Now let A*A = FF*, F € C!'*" be a full-rank factorization. Then
(A*A+\,,) " A*A = (FF* + \I,) " 'FF*
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for any A for which the inverses exist. We now use the identity
(FF* 4+ \IL,) 'FF* = F(F*F + \I,) 'F*

and note that F*F is nonsingular so that limy_,o(F*F 4+ A\I[.)™! = (F*F)™'.
Collecting these facts we conclude that

lim (A*A+ \,,) 'A*A = F(F*F)"'F*
A—0
=FF'" = Ppeas

since the columns of F' are a basis for R(A*A) = R(A"). g
See also Exs. 4.21 and 6.13 below, Chernoff [185], Foster [283], and Ben-

Israel [70].

EX. 26. An alternative proof of (43).

PRrooOF. It suffices to prove

lim (A"A + M)A Ax = x (3.45)
forall x € R(A"). Let {v1,...,v,} be a basis for R(A") consisting of eigenvectors
of A*A, say

A*Av; =ojv; (0;>0,5€T,7). (0.35a)

Writing x € R(A") in terms of this basis

T
x=> &vj,
=1

we verify that, for all A # —o%, —02,... ,—02,
* —1 4% - 0‘;5]
(A"A+ )" A Ax:za2+)\ i
j=1 17
which tends, as A — 0, to 22:1 &ivi =x. 0

EX. 27. (Boyarintsev [130, Theorem 1.2.3]). The approximation error of (43)
for real positive A is

AT = (A"A+ADT A2 < A AT (46)

where || - ||2 is the spectral norm (0.56.2).
Proor.

AT — (ATA+ AT A = (A"A+ D) TH((ATA+ A AT — A7)
=M(A"A+A)"TAT, since AT = ATAAT
=A(AA+ M) TTATAATAT AT since ATAT = ATA.
If A > 0, then ||(A*A 4+ AI)"'A*Al|2 < 1 and, therefore,
AT — (A*A+ M) 7T A" < Al ATAT AT,
and (46) follows since || - ||2 is multiplicative. d

EX. 28. Use Theorem 3 and Ex. 25 to conclude that the solutions {x,2} of the
minimization problems:

minimize {||Ax — b||2 + OCQHXHQ}

converge to A'b as @ — 0. Explain this result in view of Corollary 3.
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Ex. 29. Let A € C**", b € C™, and let 0 < p < /7||u|| where u is given by
(41). Show that the problem

minimize ||Ax —b|| subject to ||x||=p (38)
has the unique solution
x=(A"A+a’I)'A'b
where « is (uniquely) determined by
[(A*A+*I) "' A*b|| = p.

Hint. Use Theorem 3.
See also Forsythe and Golub [282, Section 7] and Forsythe [281].

Ex. 30. For a given A € C™*™, b € C™, and a positive real number p, solve the
problem

minimize ||Ax — b|| subject to ||x| < p. (47)
SOLUTION. If
A"l < p, (48)

then x = A'b is a solution of (47) and is the unique solution if and only if (48)
is an equality.

If (48) does not hold, then (47) has the unique solution given in Ex. 29. O
See also Balakrishnan [40, Theorem 2.3].

4. Weighted Generalized Inverses

It may be desired to give different weights to the different squared residuals
of the linear system Ax = b. This is a more general problem than the one
solved by the {1,3}-inverse. A still further generalization which, however,
presents no greater mathematical difficulty, is the minimizing of a given PD
quadratic form in the residuals or, in other words, the minimizing of

| Ax — bl[3 = (Ax —b) W (Ax — b), (49)

where W is a given PD matrix, see Ex. 0.4.

When A is not of full column rank, this problem does not have a unique
solution for x and we may choose from the class of “generalized least-squares
solutions” the one for which

I1x[3, = x*Qx (50)

is smallest, where @ is a second PD matrix. If A € C™*" W is of order m
and @ of order n.

Since every inner product in C™ can be represented as x*Qy for some
PD matrix Q (see Ex. 0.4), it follows that the problem of minimizing (49),
and the problem of minimizing (50) among all the minimizers of (49), differ
from the problems treated in Sections 1 and 2 only in the different choices of
inner products and their associated norms in C™ and C”. These seemingly
more general problems can be reduced by a simple transformation to the
“unweighted” problems considered in Sections 1 and 2. Every PD matrix
H has a unique PD square root: that is a PD matrix K such that K2 = H
(see, e.g., Ex. 31 and Ex. 6.37 below). Let us denote this K by H'/? and
its inverse by H~1/2,
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We shall now introduce the transformations
A=W"AQ7'?, x=QY*x, b=W"?Db, (51)
and it is easily verified that
| Ax = bllw = [|A% — | (52)
and

Xl = [1XIl; (53)

expressing the norms || ||w and || || in terms of the Euclidean norms of
the transformed vectors.
Similarly, the relations

X=Q YV:yw'2 = or Y=QV2Xxw1/2 (54)
result in
X=Yb <= x=Xb, (55)
AYA=A = AXA=A, (56)
(AY)* = AY <= (WAX)" = WAX, (57)
(YA =YA <+ (QXA)*=QXA. (58)

These observations lead to the following two theorems.

THEOREM 4. Let A € C™*" b € C™, and let W € C"™*™ be positive
definite. Then ||Ax — b|\w is smallest when x = Xb, where X satisfies

AXA=A, (WAX)* =WAX. (59)

Conversely, if X € C"*™ has the property that, for all b, ||Ax — bl|lw is
smallest when x = Xb, then X satisfies (59).

PROOF. In view of (52), it follows from Theorem 1 that ||Ax — b||w is smallest
when X = Y'b, where Y satisfies

AYA=A, (AY)" = Ay, (60)

and also if Y € C"*™ has the property that, for all b, | AX — b is smallest when
X = Yb, then Y satisfies (60).
Now let X,Y be related by (54) with @ = I. The proof then follows from
(55), (56), and (57). ]
See also Ex. 33.

THEOREM 5. Let A € C™*" b € C™, and let Q € C"*™ be positive
definite. If Ax = b has a solution for x, the unique solution for which
Ix|lq is smallest is given by x = Xb, where X satisfies

AXA=A, (QXA)"=QXA. (61)

Conwversely, if X € C"*™ is such that, whenever Ax = b has a solution,
x = Xb is the solution for which ||x||q is smallest, then X satisfies (61).
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PROOF. In view of (51),
Ax=b <= AX=h.

Then it follows from (53) and Theorem 2 that, if Ax = b has a solution for x, the
unique solution for which ||x||g is smallest is given by X = Y'b, where Y satisfies

AYA=A, (YA =YA, (62)

and, furthermore, if Y € C"*™ has the property that, whenever Ax = b has a
solution, ||x||q is smallest when X = Y'b, then Y satisfies (62).

As in the proof of Theorem 4, let X,Y be related by (54) with W = I. The
proof is completed by (55), (56), and (58). ]

See also Ex. 35.

From Theorems 4 and 5 and Corollary 3, we can easily deduce:

COROLLARY 4. Let A € C™*"™ b € C™, and let W € C™*™ and
Q € C™*™ be positive definite. Then, there is a unique matric

X = Al € A{1,2}

satisfying
(WAX) =WAX, (QXA)"=QXA. (63)

Moreover, ||Ax — b||w assumes its minimum value for x = Xb, and in the
set of vectors x for which this minimum value is assumed, x = Xb is the
one for which ||x||q is smallest.

If Y € C™*™ has the property that, for all b, x = Y'b is the vector of
C™ for which ||x||q is smallest among those for which ||Ax —b|lw assumes

its minimum value, then Y = Agll/{fé)). O
AE%,[’,%) is called the {W,Q}-weighted {1,2}-inverse of A. See also

Exs. 36-43.

Exercises

Ex. 31. Square root. Let H be Hermitian PD with the spectral decomposition
k
H=> M\E. (2.90)
i=1
Then

k
HY? =3 \?E..
=1

EX. 32. Cholesky factorization. Let H be Hermitian PD. Then it can be factor-
ized as

H = Ry Ry, (64)

where Ry is an upper triangular matrix. Equation (64) is called the Cholesky
factorization of H; see, e.g., Wilkinson [872].

Show that the results of Section 4 can be derived by using the Cholesky
factorization

Q=R5HRg and W = RjyRw (65)
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of @ and W, respectively, instead of their square-root factorizations.
Hint: Instead of (51) use

A=RwAR;', %=Rgx, b=Rwb.

Ex. 33. Let A, b, and W be as in Theorem 4. Show that a vector x € C"
minimizes ||[Ax — b||w if and only if x is a solution of

A"WAx = A"Wh,
and compare with Ex. 1.

EX. 34. Let A € (lexn, b: € (le, Ay € (Cm2><n, b, € R(AQ), and let W &€
C™1*™1 bhe PD. Consider the problem

minimize ||A1x — bi||lw subject to Azx = ba. (66)
Show that a vector x € C™ is a minimizer of (66) if and only if there is a vector
y € C™2 such that the vector {;} is a solution of
{A’{WA1 A;} [x} _ [AIWbl}
A2 O Yy b2 ’
Compare with Ex. 11.

Ex. 35. Let A € C™*", b € R(A), and let Q € C"*" be PD. Show that the
problem

minimize ||x||q subject to Ax=Db (67)

has the unique minimizer
x=Q 'A"(4Q A" p
and the minimum value
b*(AQ A" Vb

where (AQ ' A")M) is any {1}-inverse of AQ~'A* (Rao [671, p. 49]).
OUTLINE OF SOLUTION. Problem (67) is equivalent to the problem

minimize ||X|| subject to AX =b,

where X = Ql/Ql;, A= AQ™Y2, b =b. The unique minimizer of the last problem
is, by Theorem 2,

X = Yl?), for any Y € 2{1,4}.
Therefore the unique minimizer of (67) is
x=Q 2Xb, for any X € (AQ"*){1,4}.
Complete the proof by choosing
X =Q '2Ar(aQ AW
which by Theorem 1.3 is a {1, 2, 4}-inverse of AQ~Y/2.

EX. 36. The weighted inverse AE‘l/I’fé?). Chipman [187] first called attention to
the unique {1, 2}-inverse given by Corollary 4. However, instead of the second

equation of (63) he used
(XAV)* = X AV.

Show that these two relations are equivalent. How are Q and V' related?
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EX. 37. Use Theorems 4 and 5 to show that

Agé{fg) — Q_l/Q(Wl/zAQ_I/Q)TWUQ, (68&)

or, equivalently, using (65),
AGL) = Ro' (Rw ARG Ry (68b)
See also Ex. 6.93.

EX. 38. Use Exs. 33 and 35 to show that

AGL) = QT ATWA(A WAQ ™ AW A) W AW

EX. 39. For a given A and an arbitrary X € A{1,2}, do there exist PD matrices

W and @ such that X = Agt{,%) ? Show that this question reduces to the following

simpler one. Given an idempotent F, is there a PD matrix V', such that VE is
Hermitian? Show that such a V is given by

V=EHE+ (I - E)K(I - E),

where H and K are arbitrary PD matrices. (This slightly generalizes a result of
Ward, Boullion, and Lewis [851], who took H = K = I.)
SoLUTION. Since H and K are PD, x*Vx = 0 only if both the equations

Ex=0, (I-E)x=0, (69)

hold. But addition of the two equations (69) gives x = 0. Therefore V is PD.
Moreover,

VE=FE'HE
is clearly Hermitian. O

EX. 40. As a particular illustration, let £ = ({ ) and show that V can be
taken as any matrix of the form

V= {Z Z] (70)
where b > a > 0. Show that (70) can be written in the form
V=aE"E+c(I—-E")I-E),
where a and c are arbitrary positive scalars.

EX. 41. Use Ex. 39 to prove that if X is an arbitrary {1, 2}-inverse of A, there
exist PD matrices W and @ such that X = AE‘l,[‘/Qég) (Ward, Boullion, and Lewis
[851]).
Ex. 42. Show that
(1,2)  _ 4(1,2)

Agwg) = Ars
(see Theorem 2.12(c)), where the subspaces T',S and the PD matrices W, Q are
related by

T=Q 'NA™* (71)
and
S =WT'R(A) (72)
or, equivalently, by
Q = Py(a),7@Q1Pnay,r + PrnvayQ2Pr n(a) (73)
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and

W = Pra),sWiPra),s + P r(ayWaPs, r(a) (74)

where Q1, Q2, Wi, and Wy are arbitrary PD matrices of appropriate dimensions.
SOLUTION. From (63), we have

XA=Q '4A*X"Q,

and therefore
R(X) = R(XA) = QT'R(A") = Q"' N(4)"

by Corollary 2.7 and (0.26). Also,

AX = WX AW,
and therefore

N(X)=N(AX) = NA*"W) =W 'N(A*) = W 'R(A)*

by Corollary 2.7 and (0.27). Finally, from Exs. 39 and 2.23 it follows that the
general PD matrix Q mapping T onto N(A)™* is given by (73). Equation (74) is
similarly proved. (|

Ex. 43. Let A = FG be a full-rank factorization. Use Ex. 42 and Theo-
rem 2.13(d) to show that

ALy = QTGN (FTWAQTI\GY) T W

Compare with Ex. 37.

5. Least-Squares Solutions and Basic Solutions

Berg [86] showed that theMoore-Penrose inverse A is a convex combina-
tion of ordinary inverses {A7; : (I,J) € N(A)},

A= > Ay, (75)
(I,J)eN(A)

where X denotes that X is padded with the right number of zeros in the
right places.

Equivalently, for any b € R™, the minimum-norm least-squares solu-
tion' of the linear equations

Ax=Db (1)
is
ATb= > Ay A by (76)
(I,J)eEN(A)

a convex combination of basic solutions AI_} by, where by is the T th gub-
vector of b. The representation (76) was given by Ben-Tal and Teboulle
[84] for A of full column rank, from which the general case follows easily.

What is curious about these convex combinations is that the weights
are proportional to the squares of the determinants of the Ay ;’s,

detzAU

Z det2AKL ’
(K,L)eEN(A)

(I,J) € N(A). (77)

Aty =

Here norm means Euclidean norm.
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We recall that the sum of squares in the denominator of (77) is the volume
of A, see Section 0.5.

For the sake of motivation, consider a trivial system with one variable
x’

The least-squares solution is

72)\11a

a convex combination of the basic solutions {x; = ai_lbi : a; # 0} with
weights

which explains (77) for the case n = 1. This explanation also works for the
general case, since by taking exterior products the system of equations (1)
reduces to a system with one column, whose nonzero coefficients are the
r X r determinants {det Ar;: (I,J) € N(A)}.

LEMMA 2 (Solution of Full-Rank Systems).

(a) Let C € R"™*", b € R™. Then the (unique) least-squares solution

y of
Cy = b, (78)
18
> unCrlbr, (79)
I€Z(C)
where . s given by
vol? O,
. = . 80
M= o2 (80)
(b) Let R e RI*™, y € R". Then the minimum-norm solution of
Rx =1y, (81)
18
X = Z ve Ry, (82)
JeET(R)
where v, is given by
1> R,
Vg = VoL g (83)

vol?’R
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PROOF. (a) The coefficients y; satisfy the normal equation
cTcy =C"p,
rewritten as,
CTeW A ACT D ACTOACT T A A CT )
=y (CTcM A ACTc™).  (84)
The left-hand side of (84) is
CACTYeD A A D ABACTY A A

which simplifies to

LHS(84) = > det Cr. det Cr.[i  by]
I€Z(C)
Z det? Crs (C;klb[)i,
1€Z(C)
and RHS(84) is y; times (0.110b). The Cramer rule for the least-squares solution
is therefore

yi= Y w(Crn'br)s, (85)

I€Z(C)

with g7 given by (80), and (C;.'by); is the N component of the solution C;.'br
of the r X r system

CI* Yy = b]. (86)
Combining (85) for ¢+ = 1,...,r, we obtain the least squares solution y as the
convex combination (79) of “basic solutions”.? ]

Lemma 2(a) is due to Jacobi [442] and has been rediscovered by Sub-
rahmanyan [785], Ben-Tal and Teboulle [84], and others. See Farebrother
[269], Sheynin [750], and [85] for further details and references.

REMARK 1. Lemma 2 suffices for computing A' b, the minimum-norm
least-squares solution of a linear equation

Ax = b, (1)
for general A € R™*™. Indeed, AT b is literally the solution of a two-stage
minimization problem:

Stage 1:

minimize [|Ax — b|]. (34)
Stage 2:
minimize {||x|| among all solutions of Stage 1}. (35)

Stage 1 (least squares) has a unique solution only if » = n. Stage 2 has the
(unique) solution x = Af b, see also Ex. 45 below.

For any full-rank factorization A = C'R the above two stages can be
separated:

Stage 1:
minimize ||Cy — b||. (87)

2This derivation follows that of Marcus [531, §3.1, Example 1.5(c)] and Ben-Tal
and Teboulle [84].
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Stage 2:
minimize {||x|| among all solutions of Rx = y}. (88)

Stage 1 now has the unique solution y = Cb. This is an implementation
of the fact that

AT = RICt (1.20)

is a full-rank factorization of Af.
Combining Remark 1 and Lemma 2, we prove Berg’s theorem in geo-
metric form.

THEOREM 6 (Berg [86]). Let A € R™*" b € R™. Then the minimum-
norm least-squares solution of

Ax = b, (1)
18 the convex combination
x= > AsA;bg, (89)
(I,J)EN(A)

with weights given by (77).
PROOF. Follows by substituting (79) in RHS(81). Then (89) follows from (82)
with weights

ALJ = [LIx Vg

which, by (80) and (0.83), are (77). (]
Since (89) holds for all b, we proved Berg’s representation (75) of the
Moore—Penrose inverse as a convex combination of ordinary inverses of r x r
submatrices,

A= 3" My Ap), (75)
(I,J)eN

where A} is an n x m matrix with the inverse of Ar; in position (J, )
and zeros elsewhere.
Consider next a weighted (or scaled) least-squares problem

minimize HDl/Q(Ax —b)|l, (90)

where D = diag (d;) is a given diagonal matrix with all (weights) d; > 0.

THEOREM 7 (Ben-Tal and Teboulle [84]). The solutions of (90), i.e.,
the least-squares solutions of

DY2Ax = D'/?p, (91)
satisfy the normal equation

ATDAx = AT Db. (92)
The minimum-norm (weighted) least-squares solution of (91) is

x(D)=" > As(D)Ap by, (93)
(I,J)eN(A)
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with weights

(H dl) detQA[J
Ay (D) = el . 94
14(D) (II di) det®Axy, &9
(K,L)EN(A) icK
PROOF. If A= CR is a full-rank factorization of A, then D'/?A = (D'/2C)R is
a full-rank factorization of DY/2A. The first stage (87) for the problem (91) is

minimize || D'/?Cy — D'/?b|, (95)
whose solution, using Lemma 2(a), is
y= Y m(DV)Cr b, (96)
IEZ(A)

with
(H dl) detQC[*
el

(T] di) det® Cr.’

KET(A) ieK

pre(DY?) =

(97)

The second stage is still (88),
minimize {||x||: Rx =y},

with y from (96). Therefore the minimum-norm (weighted) least-squares solution
of (91) is (93) with weights (94). ]
Theorem 7 was proved, in the full-rank case, by Ben-Tal and Teboulle
in [84], together with extensions from least squares to minimizing isotone
functions of |Ax — b|, the vector of absolute values of Ax — b.
Note that the scaling matrix D appears only in the convex weights A; ;.
Therefore, for any scaling matrix D, the solution x(D) is in the convex hull

= —

of the basic solutions {A; by : (I,.J) € N(A)}, a compact set that does
not depend on D. This fact is important for the convergence of interior
point methods,? in particular, the Dikin method [231], see also Vanderbei
and Lagarias [833].

Put differently, let Dy denote the positive diagonal matrices and, for
any D € D, , consider the operators

£p:R™ = R", defined by &, (b) = (ATDA)TATDb, (98)
np: R™*" 5 R™*™  defined by np(A) = A(ATDA)YATD, (99)

mapping b into the solution (93) and the matrix A into the oblique pro-
jector A(ATDA)T AT D, respectively. The above results imply the uniform
boundedness of these operators over D, .

The uniform boundedness is lost if the weight matrix D is nondiagonal,
as shown by following example:

ExAMPLE 1. (Forsgren and Sporre [280, p. 43]).

A:H, W(e):[z j with  (ATW()4) L ATW(e) = [2 1].

3Such methods solve, in each iteration, a weighted least-squares problem with fixed
A, b and a different scaling matrix.
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Exercises

EX. 44. Other representations of A', e.g., [138], can be obtained by summing
(75) in special ways. Summing (75) over I € Z(A) we obtain, using Ex. 0.64 and
(0.103),

At= 3" a4l (100)
JET(A)

a convex combination of the Moore—Penrose inverses of maximal full column rank
submatrices A., with weights
VOl2 A*J
Moy = 2 101
J vol2 A (101)
and A' | is the n x m matrix with AT in rows J and zeros elsewhere.
Similarly, summing (75) over J € J(A) gives

AT = 3" anAl, (102)
IEZ(A)
where
VOl2 A]*
Al = ————, 103
! vol? A (103)

—

and Al is an n x m matrix with A} in columns I and zeros elsewhere.
EX. 45. The two stages (34)—(35) can be combined (in the limit):
minimize ||Ax — b||> + o?||x||?, where a@ — 0.
EX. 46. Corresponding r x r submatrices of A and A'. Let A € RT™"*™ r >

0. Then the determinants of the corresponding (in transposed position) r X r
submatrices of A and A’ are proportional,

det(AT),r = STy (1 gy e na) (104)
vol” A
PROOF. From (0.110a)—(0.110c) we calculate
1 r
Cr(A) = m(ru) A Arg) (e A ey (105)
We conclude that N'(AT) = J(A) x Z(A) and (104) follows from (0.103). O

6. Minors of the Moore—Penrose Inverse

This section, based on Miao and Ben-Israel [550], is a continuation of the
previous section, but otherwise does not belong in this chapter on minimal
properties of generalized inverses.

If the matrix A € R™*™ is nonsingular, then the adjoint formula for its
inverse

1
~ det A

has a well-known generalization, the Jacobi identity, which relates the mi-
nors of A™! to those of A. First, some notation: for index sets o, 8 € Q.
denote by:

adj A, (106)

Ala, ], the submatrix of A having row indices o and column indices
3; and
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Ald/, '], the submatrix obtained from A by deleting rows indexed
by « and columns indexed by (.

Then the Jacobi identity is: For any o, 8 € Qg n,

_ det A[o/, (']
1 s(a)+s(B) o P
det A7 [B,a] = (-1)° et d

where s(«) is the sum of the integers in «, see, e.g., Brualdi and Schneider
[137]. By convention, det A[f, §] = 1.

Moore [575] gave, for any A € R"™"*", a determinantal formula for
the entries of the Moore-Penrose inverse Af, see Appendix A, Section A.2.
This formula was rediscovered by Berg [86] and was further generalized
to matrices defined over an integral domain by Bapat, Bhaskara Rao, and
Prasad [49].

A similar result holds for the minors of AT, for A € R™*". Theorem 8
expresses them in terms of the minors of the maximal nonsingular sub-
matrices Ary of A. This requires the notation of §0.5.3. In addition, for

o€ Qk,’ma ﬁ € Qk,nv let

(107)

T(0) = {T€T(A): a C 1},
J(B)={JeT(A): BC J},
N(a,8)={I,J)eNA): «CI, 3C J}.

Then, by Ex. 0.64(c),
N(a, B) = Z(a) x T (B).
For a = (ai,...,ax) and 8= (b1,...,0k) in Qk n, we denote by:
A[G «+ I,] the matrix obtained from A by replacing the 3; th olumn
with the unit vector e,,, for alli € 1,k.

Finally, the coefficient (—1)*(®)+5(8) det A[a/, '], of det A[a, §] in the
Laplace expansion of det A, is denoted by

0

—|A|. 108
T (108)

Using the above notation we rewrite (108) as
9 |A] = (=1)*@+B) det Alo/, '] = det A[f + 1], (109)

9l Aasl
and the Jacobi identity as
_ det A[§ « 1,,]
1 —
det A7 [5,a] = det A , (110a)
— 1 T

THEOREM 8. Let A € R™"*™ and 1 <k <r. Then, for any
o€ Qk,’ma ﬁ € Qk,’ru

0, if N(a,p) =10,
1

Z det A[J
VoI’ A (1,.7)éN (.8) 9| Aagl

det AT[3,a] =

|Ass], otherwise.

(111)
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PROOF. See proof of [550, Theorem 1]. ]

As a special case, if a = I € Z(A), 8 = J € J(A), then N(a, )
contains only one element, i.e., (I,.J). Now Theorem 8 gives the identity,
det Ary
vol? A
We saw in Section 5 that the Moore—Penrose inverse is a convex combination
of ordinary inverses of r X r submatrices

= > M JAL, (75)

(I,J)eEN

det(A") ;7 = , Y (I,J) e N(A) . (3.104)

where each A;} is an n X m matrix with the inverse of A;; in position
(J,I) and zeros elsewhere, and

d€t2 AIJ
vol® A

Theorem 8 allows a stronger claim than (3.75), i.e., every minor of Af in

Arg = s (I,J)EN(A) (77)

position (3, @) is the same convex combination of the minors of AI_}’S in
the corresponding position.

THEOREM 9. Let A € R7™*™ and 1 < k <r. Then, for any
o€ Qk,m; /6 € Qk,n:

det AT[ﬁv OZ] = Z )\IJ det A;Il [ﬂ? a}' (112)
(I,J)EN(A)
PROOF. From Theorem 8 it follows that

2
detalpa]= o A dtAulel)
(1,J)EN (0, 8) vol® A detAU

= Z )\IJ det A;} [ﬁa CM},

(I,J)eN (o, )

by (110a). We prove (112) by showing that the sum over N'(a, 3) is the same as
the sum over the larger set AN'(A). Indeed, if (I, J) € N(A), and either I ¢ Z()
or J & J(B), then there is at least one column, or row, of zeros in AI’} [8, a], thus
det A7;[83,0] = 0. O

By applying Berg’s formula to Af, it follows from (104) that the same
weights appear in the convex decomposition of A into ordinary inverses of
the submatrices (A") sz,

A=Y My(AD], (113)
(I,0)EN(A)
where (AT)7] is the m x n matrix with the inverse of the (.J, nt " submatrix
of A" in position (7, .J) and zeros elsewhere.
Finally applying (112) to AT, we establish a remarkable property of the
convex decomposition (113) of A: Every minor of A is the same convex

combination of the minors of (AT)7}’s.
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THEOREM 10. Let A € R"*™, r > 0. Then there is a conver decom-
position of A,

A= Z A1y Brs (114)
(I,J)EN (A)
such that, for allk=1,... 7 and for every a € Qr.m, B € Qi n,
det Ale, 8] = Y Ary det Brylo, 8], (115)
(I,))EN(A)
where By is an m X n matriz with an r X r nonsingular matriz in position
(I,J), zeros elsewhere.
Exercises

Ex. 47. (Miao and Ben-Israel [550, Corollary 1]). Reasoning as in Theorem 9,
it can be shown that summing (112) over I € Z(a) is equivalent to summing
over I € Z(A). Similarly, summing over J € J(B3) or over J € J(A) give the
same result. We summarize these observations as follows: Let A € R**™ and
1 < k <. Then, for any @ € Qk,m, 8 € Qk,n,

det A'[B,a] =0 if J7(B) =0 or Z(a) = 0,

and, otherwise,

det AT[B,0] = > Ay detA JBal= > Ay det Al [B,ql,

JeT(A) JeT(B)
Z Alx detAI* [8,a] = Z Ar. det AT_[8,0].
IE€T(A) 1€Z(a)

7. Essentially Strictly Convex Norms and the Associated
Projectors and Generalized Inverses

(This section requires familiarity with the basic properties of convex functions
and convex sets in finite-dimensional spaces; see, e.g., Rockafellar [703].)

In the previous sections various generalized inverses were characterized
and studied in terms of their minimization properties with respect to the
class of ellipsoidal (or weighted Euclidean) norms

Ixllo = (x*Ux)*2, (50)

where U is positive definite.
Given any two ellipsoidal norms || ||w and || || on C™ and C”, re-
spectively (defined by (50) and two given PD matrices W € C™*™ and

U € C"*™), it was shown in Corollary 4 (page 119) that every A € C™*"

has a unique {1,2}-inverse Ang,) with the following minimization prop-
erty:

For any b € C™, the vector AgW [)])b satisfies

144l b = bllw < [ Ax = blw, for all x € C", (116a)
and

1A bllu < IIx]lu (116b)
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for any AEIlAfz])b # x € C™ which gives equality in (116a). In particular, for
W =1,, and U = I,, the inverse mentioned above is the Moore—Penrose
inverse

AE}:S)LL) = A", for every A € C™x™,

In this section, which is based on Erdelsky [255], Newman and Odell
[609], and Holmes [427], similar minimizations are attempted for norms in
the more general class of essentially strictly convex norms. The resulting
projectors and generalized inverses are, in general, not even linear trans-
formations, but they still retain many useful properties that justify their
study.

We denote by «, 3, ¢,... various vector norms on finite-dimensional
spaces; see, e.g., Ex. 0.8.

Let ¢ be a norm on C™ and let L be a subspace of C". Then for any
point x € C" there is a point y € L which is “closest” to x in the norm ¢,
i.e., a point y € L satisfying

oy —x) = inf{p(£ —x) : £ € L}, (117)
see Ex. 48 below. Generally, the closest point is not unique; see, e.g., Ex. 49.
However, Lemma 1 below guarantees the uniqueness of closest points, for
the special class of essentially strictly convex norms.
From the definition of a vector norm (see § 0.1.5), it is obvious that
every norm ¢ on C" is a conver function, i.e., for every x,y € C" and
0< A<,

P(Ox+ (1= Ny) < Ap(x) + (1 = No(y).

A function ¢ : C* — R is called strictly convez if, for all x # y € C" and
0< A<,

PAx+ (1= A)y) < Ad(x) + (1 = A)o(y). (118)

If ¢ : C™ — R is a norm, then (118) is clearly violated for y = ux, pu > 0.
Thus a norm ¢ on C" is not strictly convex. Following Holmes [427], a
norm ¢ on C" is called essentially strictly conver (abbreviated e.s.c.) if ¢
satisfies (118) for all x # 0 and y & {ux : p > 0}. Equivalently, a norm ¢
on C" is e.s.c. if

x#£yeCr
o(x) = o(y) = ¢Ax+(1=XNy) < Ao(x) + (1 = A)o(y).
0<A<1
(119)
The following lemma is a special case of a result in Clarkson [199].
LEMMA 3. Let ¢ be any e.s.c. norm on C™. Then for any subspace
L C C" and any point x € C™, there is a unique pointy € L closest to x,
i.e.,

oy —x) = inf{p(£ —x) : £ € L}. (117)

PROOF. To prove uniqueness, let yi1, y2 € L satisfy (117) and y1 # y2. Then,
forany 0 < A < 1,

d(Ay1 + (1= Ny2 —x) < ¢(y1 —x), by (119),
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showing that the point Ay1 + (1 — A)y2, which is in L, is closer to x than y1, a
contradiction. O

DEFINITION 1. Let ¢ be an e.s.c. norm on C" and let L be a subspace
of C™. Then the ¢-metric projector on L, denoted by Py, 4 is the mapping
Pr.4 : C* — L assigning to each point in C" its (unique) closest point in
L,ie.,

PL,¢(X) €L

and

d(Prg(x) —x) < o€ —x), forallxeC", £ L. (120)

If ¢ is a general norm, then the projector Pp, 4 defined as above is a
point-to-set mapping,* since the closest point Pr, 4(x) need not be unique
for all x € C™ and L C C™.

Some properties of Pr, 4 in the e.s.c. case are collected in the following
theorem, a special case of results by Aronszajn and Smith, and Hirschfeld;
see also Singer [763, p. 140, Theorem 6.1].

THEOREM 11. Let ¢ be an e.s.c. norm on C™. Then, for any subspace
L of C™ and every point x € C™:

(a) Pre(x)=xif and only if x € L;

3(X) = Ppy(x);
Pr.(Ax) = APr ¢(x) for all A € C;

(x+y)=Pre(x)+y forally € L;

[6(x = Prg(x)) = ¢(y = PLo(y))| < ¢(x —y) forally € C";
P(x = Ppg(x)) < o(x);

¢(Prg(x)) < 2¢(x); and

(i) Pr,e is continuous on C".

PROOF. (a) Follows from (117) and (120) since the infimum in (117) is zero if
and only if x € L.

(*) PE (%) = Pro(Prs(x)
= Pps(x), by (a), since Pr 4(x) € L.
(c¢) For any z € L and A # 0,

d(Ox —2) = ¢ (Ax - A%)

=g (x— %)
> A (x — Pro(x)), by (120),
= ¢(Ax — AP (%)),

which proves (c) for A # 0. For A =0, (c) is obvious.
(d) From (120) it follows that, for all z € L,

H(Pre(x)+y —(x+y) <dz+y—(x+Vy)),

proving (d).
(e) Follows from (d).

4Excellent surveys of metric projectors in normed linear spaces are given in Deutsch
[230], and Holmes [427, Section 32]; see also Exs. 6876 below.
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(f) For all x, y € C™,
d(x — Prp(x) < o(x— Prg(y) <ox—y) + oy — Prs(y))

and, thus,

d(x — Pr,g(x)) — ¢y — Prg(y)) < d(x —y),

from which (f) follows by interchanging x and y.
(g) Follows from (f) by taking y = 0.

) HPLo(X) < HPLo(x) = %) + 9(x)
<2¢(x), by (g)
(i) Let {xx} C C™ be a sequence converging to x,

lim x; = x.
k— o0

Then the sequence {Pr 4(xx)} is bounded, by (h), and hence contains a conver-
gent subsequence, also denoted by {Pr,s(xx)}. Let

lim PL,¢(X1€) =Y.

k— o0

Then

&(Pr,¢(xx) — Xx) < ¢(Pr,¢(x) — xx)

for k =1,2,... and in the limit,

Py = %) < ¢(Prg(x) —x)

proving the y = Pp 4(x). (|
The function P 4 is homogeneous by Theorem 11(c) but, in general,
it is not additive; i.e., it does not necessarily satisfy

Pro(x+y)=Prex)+ Prgs(y), foralx,yeCr

Thus, in general, Py, 4 is not a linear transformation. The following three
corollaries deal with cases where Pr, 4 is linear.
For any £ € L we define the inverse image of £ under Pr, 4, denoted by
P é(ﬁ), as
PL_;(E) ={x e C": Ppy(x) =4}
We recall that a linear manifold (also affine set, flat, linear variety) in C"
is a set of the form

x+L={x+4£:£LecL}
where x and L are a given point and subspace, respectively, in C”.
The following result is a special case of Theorem 6.4 in Singer [763].

COROLLARY 5. Let ¢ be an e.s.c. norm on C" and let L be a subspace
of C™. Then the following statements are equivalent:

(a) Pr.e is additive;

(b) PE;(O) is a linear subspace; and

(c) PE;(@) is a linear manifold for any £ € L.
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PROOF. First we show that

Pp3(0) = {x— Pp4(x): x€C"}. (121)
From Theorem 11(f) it follows that

Pp4(0) D {x—PrLy(x): xeC"}.
The reverse containment follows by writing each x € P (IP(O) as

x =x — Pr¢(x).
The equivalence of (a) and (b) is obvious from (121). The equivalence of (b) and
(c) follows from
Py () =£+ P;,(0), forall£€ L, (122)

which is a result of Theorem 11(d) and (e). ]

COROLLARY 6. Let L be a hyperplane of C", i.e., an (n—1)-dimensional
subspace of C". Then Pr 4 is additive for any e.s.c. norm ¢ on C".

PROOF. Let u be a vector not contained in L. Then any x € C™ is uniquely
represented as

x=Au+4£ where \e€C,£LcL,
Therefore, by (121),

Ppy(0)={ u+(L—Prs(Au+0): NeC, Le L}
={Au+ Prg(—Au): A€ C}, by Theorem 11(d),
={Au—Prg(u)): A€ C}, by Theorem 11(c),
is a line, proving that Pr, 4 is additive, by Corollary 5. |

COROLLARY 7 (Erdelsky [255]). Let ¢ be an e.s.c. norm on C" and
let v be an integer, 1 < r < n. If Pp g is additive for all r-dimensional
subspaces of C™, then it is additive for all subspaces of higher dimension.
PROOF. Let L be a subspace with dim L > r and assume that P4 is not
additive. Then by Corollary 5, PL_;(O) is not a subspace, i.e., there exist x1, x2 €
PL_;(O) such that Pp ¢(x1 + x2) =y # 0. Now let M be an r-dimensional
subspace of L which contains y. Then xi, X2 € P&ld,(O), but Pare(x1 + x2) =

y # 0, a contradiction of the hypothesis that Pus,¢ is additive. O
See also Exs. 71-74 for additional results on the linearity of the projec-
tors P, 4.

Following Boullion and Odell [123, pp. 43-44] we define generalized
inverses associated with pairs of e.s.c. norms as follows.

DEFINITION 2. Let a and 3 be e.s.c. norms on C™ and C”, respectively.
For any A € C™*" we define the generalized inverse associated with o and
0 (also called the a-( generalized inverse, see, e.g, Boullion and Odell [123,

p. 44]), denoted by A}, as
ALY = (I = Pyayp) A Priay.a (123)

where AW is any {1}-inverse of A.
RHS(123) means that the three transformations
PR(A),a :C" — R(A),
AL . cm -,
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and

(I Puays) : € = Pyl 4(0),

see, e.g., (121), are performed in this order. We now show that A( 1)
a single-valued transformation which does not depend on the partlcular
{1}-inverse used in its definition. For any y € C™, the set

{AD Priayaly) : AV € A{1}}

obtained as A ranges over A{1} is, by Theorem 1.2, the set of solutions
of the linear equation

Ax = Pr(a),a(y),

a set which can be written as
A Prayaly) +{z: z€ N(A)}.
Now, for any z € N(A), it follows from Theorem 11(a) and (d) that

(I — Pnay,p) (AT Priayaly) +2) = (I — Pynayg) AT Priaya(y)
proving that

AL [})( ) = (I — Px(a),8)A' Priayaly), forallyeC", (124)

independently of the {1}-inverse A" used in the definition (123).

If the norms « and 3 are Euclidean, then Pgr(4) o and Py(4) g reduce
to the orthogonal projectors Pr(a) and Py(4), respectively, and Af;g) is,

by (124), just the Moore-Penrose inverse Af; see also Exs. 69-72 and 76
below. Thus many properties of A are specializations of the corresponding
properties of A((;Bl ), some of which are collected in the following theorem. In
particular, the minimization properties of Af are special cases of statements
(i) and (j) below.

As in the case of linear transformations, we denote

Nmf h={yecm: A7, (y) =0},
R(A ) = {A, 5 (y): y e C"}

THEOREM 12 (Erdelsky [255], Newman and Odell [609]). Let o and
B be e.s.c. norms on C™ and C™, respectively. Then, for any A € C™*":

(a) A(_l) C™ — C™ is a homogeneous transformation.
(b) A is additive (hence linear) if Ppa).o and Pn(ay g are additive.

1) _
(c) N <A<> Pliy.a(0).
1 _

(d) R(AS ) = Pyla 5(0).
(e) A,(y 5) = Pr(a),a-
(f) A “A I — Py(ayp-
(8) AAL, A= 4.
(h) A( 1>AAA< ) =A0.
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(i) For any b € C™, an a-approximate solution of Ax = b is defined
as any vector x € C" minimizing a(Ax —b). Then x is an a-
approzimate solution of (1) if and only if

Ax = AAL ) (b). (125)
(j) For any b € C™, the equation
Ax=Db (1)

has a unique a-approzimate solution of minimal B-norm, given by
A(il)(b); that is, for every b € C™,

a,B
a(AA((ljg)(b) —b) <a(Ax—Db), foralxeC", (126a)

and
BALS (b)) < B(x) (126b)

for any x # A((;g)(b) with equality in (126a).

PROOF. (a) Follows from the definition and Theorem 11(c).
(b) Obvious from definition (123).
(c) From (123) it is obvious that

N(A:;)) ) Pzg(lA),a(O)-
Conversely, if y # Pg(lA)’a(O); ie., if Pl;(lA)’a(y) # 0, then A‘LP}&lA%a(y) #0
since (AT)[R(A)] is nonsingular (see Ex. 2.90) and, consequently,
I - PN(A),g)ATPg&)ya(y) # 0, by Theorem 11(a).
(d) From (121) and the definition (123) it is obvious that
1 _
R(Afy,g)) C PN(lA),ﬁ(O)‘
Conversely, let x € Plg(lA),B(O)' Then, by (121),
x = (I — Pn(ay,5)z, forsomezeC",
= ([ — PN(A)’Q)PR(A*)Z, by Theorem 11(d),
= (I — PN(A)VB)ATAZ
= (I = Pn(a),p)A' Priay.a(Az)
= A} (Az). (127)

(e) Obvious from (124).

(f) For any z € C" it follows from (127) that (I — Pn(a),3)z = Aéjﬁl)(Az).
(g) Obvious from (e) and Theorem 11(a).

(h) Obvious from (f) and (d).

(i) A vector x € C" is an a-approximate solution of (1) if and only if

a(Ax —b) < aly —b), forally € R(A),
or, equivalently,

AX = PR(A),a(b), by (120),
= AATD (b), by (e).
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(j) From (125) it follows that x is an a-approximate solution of (1) if and
only if
x=ATAA[ ) (b) +2, ze N(A), (128)
= A"Priaya(b) +2, z€ N(A), by (e). (129)
Now, by Lemma 3 and Definition 1, the S-norm of
A'Priaya(b) +2, z€ N(A),
is minimized uniquely at
z = —Py(a),3A" Pr(ay,a(b),
which substituted in (128) gives
x = (I = Pn(a),5)A" Pr(a).a(b)
= A} (b).
See Exs. 76-79 for additional results on the generalized inverse A((X_/; ).
Exercises
EX. 48. Closest points. Let ¢ be a norm on C" and let L be a nonempty closed
set in C™. Then, for any x € C", the infimum
inf{¢p(£ —x): L€ L}
is attained at some point y € L called ¢-closest to x in L.
PROOF. Let z € L. Then the set
K=LNn{LeC": ¢(£—x) <¢p(z—x)}

is closed (being the intersection of two closed sets) and bounded, hence compact.
The continuous function ¢(£ — x) attains its minimum at some £ € K but, by
definition of K,

inf{p(£ —x): £ K} =inf{p(£—x): £€ L}. g

EX. 49. Let ¢ be the ¢1-norm on R?,

009 =6 (|22]) =l + fol,

see, e.g., Ex. 0.10, and let L = {x € R?: x; + 2 = 1}. Then the set of ¢-closest
points in L to (1) is {( %) : -1 <a<1}.
Ex. 50. Let || || be the Euclidean norm on C", let S C C™ be a convex set, and

let x,y be two points in C": x ¢ S and y € S. Then the following statements
are equivalent:

(a) y is || ||-closest to x in S.
(b) se S = R(y—-x,s—y)>0.
PrROOF. (Adapted from Goldstein [302, p. 99]).
(a) = (b) Forany 0 < A<1lands¢€S,
y+A(s—y)es.
Now
0< lx—y = As—y)|* — lIx — |
— 2AR(y — x5 — y) + A%[ls — x]°
2R(y —x,s —y)

<0, if R(y—x,s—y)<0and0< A< — e

)

a contradiction to (a).
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(b) = (a) For any s € S,
I = s]|* = [l = y[|* = [Is[|* = 2R(s, %) + 2R(y, x) — [ly[|”
= s —yl* +2R(y —x,5 —y)
>0, if (b). 0

Ex. 51. A hyperplane separation theorem. Let S be a nonempty closed convex
set in C™, x a point not in S. Then there is a real hyperplane

{zeC": R(u,z) =a}, forsome0#uecC" acR,
which separates S and x, in the sense that
R(u,x) <a and R(u,s) >aforallses.

PROOF. Let xg be the || ||-closest point to x in S, where || || is the Euclidean
norm. The point xs is unique, by the same proof as in Lemma 3, since || || is
e.s.c. Then, for any s € S,
R(xs — x,8) > R(xs — x,x5), by Ex. 50,
> R(xs — x,x),
since
Rixs — x, x5 — X) = ||xs5 — X||2 > 0.
The proof is completed by choosing

u=xs—x, a=%RNXs—x,Xg).

Gauge Functions and Their Duals

Ex. 52. A function ¢ : C" — R is called a gauge function (also a Minkowski
functional) if:

(G1) ¢ is continuous, and for all x,y € C™;

(G2) ¢(x) > 0 and ¢(x) = 0 only if x = 0;

(G3) ¢(ax) = ap(x) for all & > 0; and

(G4) d(x+y) < ¢(x) + o(y)-

A gauge function ¢ is called symmetric if, for all x = (z1,xa,... ,z,)7 € C™:
(G5) ¢(x) = Pp(x1,x2,... ,Tn) = O(Tr1), Tr(2),--- s Tx(n)), fOr every permu-
tation {7 (1), 7(2),...,m(n)} of {1,2,... ,n}; and
(G6) d(x) = d(z1,22,... ,2n) = P(A1T1, AaT2,... , AnZy), for every scalar
sequence {A1, Az, ..., An} satisfying
Nl=1,  if¢:C" SR,
Ni=4+1, ifé:R" SR,

1€ 1,n.

Let ¢ : C" — R satisfy (G1)-(G3). The dual function® of ¢ is the function
¢p : C" — R defined by

(130)
Then:

50riginally, ¢pp was called the conjugate of ¢ by Bonnesen and Fenchel [116] and
von Neumann [839]. However, in the modern convexity literature, the word conjugate
function has a different meaning, see, e.g., Rockafellar [703].
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(a) The supremum in (130) is attained, and

op(y) = xmgf%, i=1or ¢, (131a)
where
Si={xeC": |x|h =) || =1} (131b)
=1
and
Sy ={xeC": ¢(x) =1} (131c)

(b) ¢p is a gauge function.

(¢) ¢p satisfies (G5) [(G6)] if ¢ does.

(d) If ¢ is a gauge function (i.e., if ¢ also satisfies (G4)), then ¢ is the conju-
gate of ¢p (Bonnesen and Fenchel [116], von Neumann [839]).

PRrROOF. (a) From (G3) it follows that the constraint x # 0 in (130) can be
replaced by x € S; or, alternatively, by x € Sy,. The supremum is attained since
S1 is compact.

(b),(c) The continuity of ¢p follows from (G1), (131a) and the compactness
of Si. It is easy to show that ¢ shares with ¢p each of the properties (G2), (G3),
(G5), and (G6), while (G4) holds for ¢p, by definition (130), without requiring
that it hold for ¢.

(d) From (130) it follows that

Ry,x) < ¢(x)¢pp(y), forall x,y € C", (132)
and, hence,
Ry, x)
02 R 159

To show equality in (133) we note that the set
B={s: 6(z) <1}

is a closed convex set in C", an easy consequence of the definition of a gauge
function. From the hyperplane separation theorem (see, e.g., Ex. 51 above) we
conclude:

If a point x is contained in every closed half-space {z : R(u,z) <1}
which contains B, then x € B, i.e., ¢(x) < 1. (134)

From (131a) and (131c) it follows that
BcC{z: R(y,z) <1}
is equivalent to
¢p(y) < 1.
Statement (134) is thus equivalent to

{on(y) <1 = R{y,x) <1} = o(x) <1,

which proves equality in (133). a
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Convex Bodies and Gauge Functions

Ex. 53. A convez body in C" is a closed bounded convex set with nonempty
interior.

Let B C C™ be a convex body and let 0 € int B where int B denotes the
interior of B. The gauge function (or Minkowsk: functional) of B is the function
¢ : C" — R defined by

¢”(x) = inf{\A > 0: x € AB}. (135)
Then:

(a) ¢ is a gauge function, i.e., it satisfies (G1)-(G4) of Ex. 52.

(b) B={xeC": 6"(x) < 1}.

(c) int B={xeC": ¢"(x) < 1}.

Conversely, if ¢ : C" — R is any gauge function, then ¢ is the gauge function ¢
of a convex body B defined by

B={xeC": ¢’ (x) <1}, (136)
which has 0 as an interior point.

Thus (135) and (136) establish a one-to-one correspondence between all gauge
functions ¢ : C" — R and all convex bodies B C C" with 0 € int B.

Ex. 54. A set B € C" is called equilibrated if
xe€B, [N<1 = Xxe€B.
Clearly, 0 is an interior point of any equilibrated convex body.

Let B be a convex body, 0 € int B. Then B is equilibrated if and only if its
gauge function ¢Z satisfies

#(Mx) = [N¢Z(x), forallAeC,xeC". (137)

EX. 55. Vector norms. From the definition of a vector norm (§0.1.5) and a
gauge function (Ex. 52) it follows that a function ¢ : C* — R is a norm if and
only if ¢ is a gauge function satisfying (137).

Thus (135) and (136) establish a one-to-one correspondence between all
norms ¢ : C* — R and all equilibrated convex bodies B € C" (Householder
[432, Chapter 2]).

EX. 56. If anorm ¢ : C" — R is unitarily invariant (i.e., if p(Ux) = ¢(x) for all
x € C" and any unitary matrix U € C"*"), then ¢ is a symmetric gauge function
(see Ex. 52). Is the converse true?

Dual Norms
EX. 57. The dual (also polar) of a nonempty set B C C" is the set Bp defined
by

Bp={yeC":xeB = R(y,x) <1} (138)
Let B C C™ be an equilibrated convex body. Then:

(a) Bp is an equilibrated convex body.
(b) (Bp)p = B, i.e., B is the dual of its dual.
(c) Let ¢® be the norm corresponding to B via (135). Then the dual of ¢,
computed by (130),
Ry, x)

op(y) = SUD B ) (139)

is the norm corresponding to Bp. The norm ¢35, defined by (139), is
called the dual of ¢Z.
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(d) (gbg)D = ¢, ie., ¢® is the dual of its dual. Such pairs {¢®,¢B} are
called dual norms (Householder [432, Chapter 2]).

EX. 58. ¢y,—norms. If ¢ is an £p-norm, p > 1 (see Exs. 0.9-10), then its dual is
an {4-norm where ¢ is determined by

11 _

s+s=1
In particular, the ¢1- and foc-norms are dual, while the Euclidean norm (the
lo-norm) is self-dual.

EX. 59. The generalized Cauchy—Schwartz inequality. Let {¢, ¢p} be dual norms
on C". Then

R(y,x) < ¢(x)¢p(y), forall x,y € C", (132)

and for any x # 0[y # 0] there exists a y # 0[x # 0] giving equality in (132).
Such pairs {x,y} are called dual vectors (with respect to the norm ¢).

If ¢ is the Euclidean norm, then (132) reduces to the classical Cauchy—
Schwartz inequality (0.4) (Householder [432]).

EX. 60. A Tchebycheff solution of Ax = b, A € CUTV*™ A Tchebycheff
approximate solution of the system

Ax=Db (1)

is, by the definition in Theorem 12(i), a vector x minimizing the Tchebycheff
norm

Irlle = max_{Iril}
of the residual vector
r=b — Ax. (2)

Let A€ C{"™*" and b € C"*! be such that (1) is inconsistent. Then (1) has a
unique Tchebycheff approximate solution given by

x=Al(b+r), (140)
where the residual r = [r;] is
52 (Paasy b ?
R T (Paanyb): iceT,n+l (141)
=S |(Pr(ab)il’ 7 .

2, |(Pncasb)s|
i=

(The real case appeared in Cheney [184, p. 41] and Meicler [540].)
PrROOF. From

r(x) —b=—-Ax € R(A)
it follows that any residual r satisfies
Prn(asyr = Pyas)b

or, equivalently,

<PN(A*)b,I'> = <b,PN(A*)b>, (142)
since dim N(A*) =1 and b ¢ R(A). (Equation (142) represents the hyperplane
of residuals; see, e.g., Cheney [184, Lemma, p. 40]). A routine computation
now shows, that among all vectors r satisfying (142) there is a unique vector

of minimum Tchebycheff norm given by (141), from which (140) follows since
N(A) = {0}. O
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EX. 61. Let A € C"™ "™ and b € C"*' be such that (1) is inconsistent. Then,
for any norm ¢ on C", a ¢-approximate solution of (1) is given by
x=A"(b+r),

where the residual r is a dual vector of Py(4+)b with respect to the norm ¢, and
the error of approximation is

(b, Pn(a*)b)
o(r) = > Dveand),
¢D(PN(A*)b)
PRrROOF. Follows from (142) and Ex. 59. O

Ex. 62. Let {¢,¢p} be dual norms with unit balls B = {x : ¢(x) < 1} and
Bp = {y : ¢p(y) < 1}, respectively, and let {xo,yo} be dual vectors of norm
one, i.e., ¢(xo0) =1, ¢p(y) =1, and
R(x0,¥0) = ¢(x0)¢n(¥0)-
Then:
(a) The hyperplane

H = {x: R(yo,x) = ¢(x0)¢p(yo)}
supports B at xg, that is, xo € H and B lies on one side of H, i.e.,
xeB = Ryo,x) < R(yo,x0) = ¢(x0)9p(¥y0)
(b) The hyperplane

{y : Rixo,y) = ¢(x0)ép(y0)}
supports Bp at yo.

PRrROOF. Follows from (132). d

EX. 63. A closed convex set B is called rotund if its boundary contains no line
segments or, equivalently, if each one of its boundary points is an extreme point.
A closed convex set is called smooth if it has, at each boundary point, a
unique supporting hyperplane.
Show that an equilibrated convex body B is rotund if and only if its dual set
Bp is smooth.
ProOF. If: If B is not rotund, then its boundary contains two points xo # X1
and the line segment {Ax1 4+ (1 — A)xo : 0 < A < 1} joining them; that is

¢(AX1+(1—)\)XQ) = 1, OS)\S 1,

where ¢ is the gauge function of B.
For any 0 < A < 1 let yx be a dual vector of xx = Ax1 + (1 — A\)xo with
¢p(yr) =1. Then

R(xa,ya) =1
and, by (132),
3?<X07Y)\> = 3?<X1>Y)\> = 17

showing that y, is a dual vector of both xo and x: and, by Ex. 62(b), both
hyperplanes

{y: Rxr,y) =1} A=0,1,

support Bp at ya.
Only if: Follows by reversing the above steps. O
For additional results on rotundity see the survey of Cudia [211].
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EX. 64. Let ¢ be a norm on C™ and let B be its unit ball,
B={x:o(x) <1}
Then:

(a) ¢ is e.s.c. if and only if B is rotund.
(b) ¢ is Gateaux differentiable; that is, the limit

I T ¢(x+t}')_¢(x)
¢ (XaY) _}%f

exists for all x,y € C" if and only if B is smooth.
ExX. 65. Give an example of dual norms {¢, ¢p} such that ¢ is e.s.c. but ¢p is

not.
SOLUTION. Let

x
B:{L«“j ER?: a1 > d(za+1)° 1, 22 > %(x1+1)271}.
Then B is an equilibrated convex body. B is rotund but not smooth (the points
(%) and (:}) are “corners” of B), so, by Ex. 61, the dual set Bp is not rotund.
Hence, by Ex. 64(a), the gauge function @B is an e.s.c. norm, but its dual ¢35 is
not. O

Norms of Homogeneous Transformations

EX. 66. (Bauer [54], Householder [432]). Let a and 8 be norms on C" and
C™, respectively. Let A : C* — C™ be a continuous transformation that is
homogeneous; that is,

A(Mx) = MA(x), forallAeC,xeC".
The norm (also least upper bound) of A corresponding to {a, [}, denoted by

|Alla,s (also by lubg,g(A)), is defined as
B(Ax)
Alla,g = su
A4 = sup 2
= Jnax, B(Ax), (143)

since A is continuous and homogeneous. Then for any A, A;, A2 as above:
(a) ||A|la,s = 0 with equality if and only if A is the zero transformation.
() |AAlla,8 = |Al |Alla,s  for all X € C.
(¢) ll1A1+ Azlla,s < |A1lla,s + [|A2]la,p-
(d) If B, Bg are the unit balls of a, 3, respectively, then
||A||a”5 = inf{>\ >0: AB, C )\B@}

(e) If A4 : C* — C™ and Az : C™ — CP are continuous homogeneous
transformations, and if «, 3, and ~ are norms on C", C™, and CP, re-
spectively, then

[AzA1]la,y < [[Atlla,s [ Azlls,~-

(f) If A: C* — C™ is a linear transformation, and if a = §, i.e., the same
norm is used in C" and C™, then definition (143) reduces to that given
in Ex. 0.35.

ExX. 67. Let a and 8 be norms on C" and C™, respectively. Then, for any
Ac men,

[ Alla,s = 1A lp - (144)
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PROOF. From (132) and (143) it follows that, for all x € C", y € C™,

R{Ax,y) < B(Ax) Bo(y) < [|Alla.s a(x) Bp(y),
with equality for at least one pair x # 0, y # 0. The dual inequalities

R(x,A"y) < a(x)ap(A"y) < [|[Alsp.ap Ao (y)a(x)
then show that

[1A]

from which (144) follows by reversing the roles of A and A* and by using Ex. 57(d).
O

Projective Bounds and Norms

EX. 68. (Erdelsky [255]). Let a be an e.s.c. norm on C". The projective bound
of a, denoted by Q(«), is defined as

Qo) = sup | Pral

a8 < ||A*||5D10‘D7

aa (145)

where the supremum is taken over all subspaces L with dimension 1 < dim L <
n — 1. (The a-metric projector Pr o is continuous and homogeneous, by Theo-
rem 11(c) and (i), allowing the use of (143) to define || Pr,a||a,a-) Then:

(a) The supremum in (145) is finite and is attained for a k-dimensional sub-
space for each k =1,2,... ,n— 1.
(b) The projective bound satisfies

1<Q(a) <2 (146)

and the upper limit is approached arbitrarily closely by e.s.c. norms.

EX. 69. (Erdelsky [255]). An e.s.c. norm « on C™ for which the projective
bound

Qla) =1
is called a projective norm. All ellipsoidal norms,
Ix|lv = (x*Ux)"/?, U positive definite, (50)

are projective.

Conversely, for spaces of dimension > 3, all projective norms are ellipsoidal,
both in the real case (Kakutani [455]) and in the complex case (Bohnenblust
[115]). An example of a nonellipsoidal projective norm on R? is

al 171) = (Jz1 [P + |z2|P) /P, if z122 > 0,
w2|) (@] + |22| )V, i mae <O,
where (1/p) +(1/q) =1, 1 <p # 2.

Ex. 70. (Erdelsky [255]). If « is a projective norm, L is a subspace for which
the a-metric projector Pp, . is linear, and N denotes

N = P} 1(0), (147)
then

L= Py(0). (148)
PROOF. L C Py, (0): If x € L and y € N, then

PlL(x+y)=x,
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by Theorem 11(a) and, consequently,

a(x) < [|Prallaa a(x+y)
<Qa)alx+y)
=a(x+y)

for all y € N, proving that Pn.o(x) = 0.
PJQ’la(O) CL: Ifxe PJQ}Q(O), then, by (121), it can be written as

X=X1+X2, X1 €L, X2 €N.
Therefore,
0 = Pn,o(X) = Pn,a(x1) +x2, by Theorem 11(d),
= x2, since L C PJQL (0),
proving that

x=x1 € L. Od
Projective Norms and the Linearity of Metric Projectors

The following four exercises probe the relations between the linearity of the a-
metric projector Pr . and the projectivity of the norm «. Exercise 71 shows
that

« projective = Pp , linear for all L,

and a partial converse is proved in Ex. 73.
Ex. 71. (Erdelsky [255]). If « is a projective norm on C", then Pr  is linear
for all subspaces L of C".
Proor. By Corollary 7 it suffices to prove the linearity of Pr, . for all one-
dimensional subspaces L.
Let dimL =1, £ € L, a(€) =1, and let £+ N be a supporting hyperplane
of Bo = {x: a(x) <1} at £. Since
a(l) < a(x), forallxe €+ N,

it follows from Definition 1 that

Pn,o(€) =0
and hence

L C Py,(0).

Now Pn,q is linear by Corollary 6, since dim N = n — 1, which also shows that
P];la (0) is a one-dimensional subspace, by (121), and hence

L=Pg.(0).
From Ex. 70 it follows then that
N = P;4(0),
and the linearity of Pr  is established by Corollary 5(b). ]

EX. 72. (Erdelsky [255]). If v is an e.s.c. norm on C", L is a subspace for which

Pr, .« is linear, and N denotes
N = P ,(0), (147)

s

then

L=Pg.(0) (148)



146 3. MINIMAL PROPERTIES OF GENERALIZED INVERSES

if, and only if,
PL,Q+PN,a =1
PROOF. Follows from (121). O

Ex. 73. (Erdelsky [255]). Let o be an e.s.c. norm on C™" and let 1 <k <n—1
be an integer such that, for every k-dimensional subspace L of C",

Pr, o is linear
and
L = Py ,(0), (148)

where N is given by (147). Then « is projective.
PROOF. Let a be nonprojective; i.e., let Q(a) > 1. Then there is a k-dimensional
subspace L and two points x,y in C™ such that

Y = Pr.o(x) (149a)

and
a(y) = [|Pr.alla.o a(x) = Q(a) a(x) > a(x). (149b)

Let N = P; ! (0). Then

0#y—x€N, by (149b), (149a), and (121), (149c¢)

and
a(x) =aly — (y —x)) < a(y). (149d)

Now

Y =Pra(y)+ Pn,a(y), Dby (148) and Ex. 72

=y + Pno(y), Dby (149a) and Theorem 11(a), (149¢)

proving that
Pn.a(y) =0, (149¢)
which, by (149¢) and (120), contradicts (149d). g

Ex. 74. (Newman and Odell [609]). Let ¢, be the £p-norm, 1 < p < oo, on C".
The Pp,g, is linear for every subspace L if and only if p = 2.
Essentially Strictly Convex Norms

EX. 75. (Erdelsky [255]). Let « be an e.s.c. norm on C", 0 # x € C" and let
L be a subspace of C". Then

x € P 1(0)
if, and only if, there is a dual y of x with respect to « (i.e., a vector y # 0
satisfying (y,x) = a(x) ap(y)), such that y € L*.

Ex. 76. (Erdelsky [255]). If a and ap are both e.s.c. norms on C", L is a
subspace of C" for which P, o is linear, and N = PL’,L(O)7 then:

(a) Lt = PJ;LQD(O).

(b) Pyiap = (Pra)
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PROOF. (a) Since both o and ap are e.s.c., it follows from Exs. 64(a), 63, and 62
that every 0 # x has a dual 0 # y with respect to a and x is a dual of y. Now

yeP,l, (0) < xeN""=N\,

XD

by Ex. 75, which also shows that
xeN <« yelLt

proving (a).
(b) By (a) and Corollary 5(b), Py ., is linear. Let x and y be arbitrary
vectors, written as

Xx=x1+X2, x1 €L, xo €N, by (121),
and

y=yi4+y2, yi€N’, yaeL", by (a)and (121).
Then
(Pr,a(x),y) = (x1,¥1) = (%, Py 1 ap, () 0
Ex. 77. (Erdelsky [255]). Dual norms. Let o and ap be dual norms on C".
Then:

(a) If @ and ap are both e.s.c., then Q(«a) = Q(ap).
(b) If « is projective, then ap is e.s.c.
(¢) If v is projective, then so is ap.

a-0 Generalized Inverses

EX. 78. (Erdelsky [255]). Let a and 8 be e.s.c. norms on C™ and C", respec-
tively, and let A € C™*™.
If B € C™*™ satisfies

AB = PR(A),o” (150&)
then rank B = rank A, (150c)
B=A}.

Thus, if the a-8 generalized inverse of A is linear, it can be defined by (150a)—
(150¢c).

EX. 79. (Erdelsky [255]). Let a and 8 be e.s.c. norms on C™ and C", respec-
tively. Then

(ACDITD =4, forall A€ T, (151)

if and only if  and § are projective norms.
ProOOF. If: If « and (8 are projective, then A;T[;) is linear for any A, by Theo-
rem 12(b) and Ex. 71. Let R = R(A'})) and N = N(A{}’). Then, by Exs. 70,
71, 75, and Theorem 12(c), (d), (e), (g), and (h),
-1
A A=1—Pyays = Pp

AALS = Pruaye =1 Py
rank A:g) =rank A,

and (151) follows from Ex. 78.
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Only if: If (151) holds for all A € C™*™, then

—1 —1 —1 —1
I—Pyeays=AS5 A=A (A5
—1 —DN(=1) 4(—1

Pray,a = AAE),,B) = (A;,,B))Ei,a) Afy,ﬁ)

and « and [ are projective by Ex. 73.

|

Ex. 80. (Erdelsky [255]). If & and 3 are e.s.c. norms on C™ and C", respectively,

then

(AL ) =(@Aang for all A € C™*",

Bp,ap’

PROOF. From Theorem 12(d) and (f) and Exs. 70, 71, and 72,

AA((:;[;) = PR(A),a =1- PN,oca

and

R(A) = Pyl(0),
N(A) = Py'5(0).

N = Pply o (0),
ALY A=T—Pyiays=Pup, M=Pyl ,(0),

(152)

Since ap and Bp are e.s..c. norms, by Ex. 77(b), it follows from Ex. 76(b) that

1 * *

AAEI,B) =1- (PR(A)L,aD) :I_(PN(A*),aD) >
-1 * *
ALY A= Py pp)” = (Priasyp)

and hence

(Af):ﬁl))* A* == I_PN(A*),aDa
* —1)\*
AT (ALY = Preay,p

from which (152) follows by using Ex. 78.

|

Ex. 81. (Erdelsky [255]). If & and S are e.s.c. norms on C™ and C", respectively,

then, for any O # A € C™*™,

1
—
||A((1,ﬁ)”6,a
q
< 4
g —1 )
1465 15,0
where
1, if rank A = m,
4= Q(a), otherwise.

In particular, if « is projective,
_

-1
1455 150

A special case of (154) is given in Ex. 6.30 below.

<inf{||X|lap: X € cmr rank(A + X) < rank A}

=inf{||X||a,s : X € C™*", rank(A + X) < rank A}.

(153)

(154)
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8. An Extremal Property of the Bott—Duffin Inverse with
Application to Electrical Networks

An important extremal property of the Bott—Duffin inverse, studied in
Sections 2.10 and 2.13, is stated in the following theorem:

THEOREM 13 (Bott and Duffin [120]). Let A € C"*™ be Hermitian
and let L be a subspace of C™ such that AE;;) exists.% Then, for any two

vectors v,w € C™, the quadratic function

q(x) = % (x—Vv)*Ax—Vv) —w"x (155)
has a unique stationary value in L, when
x = A (Av + w). (156)

Conversely, if the Hermitian matriz A and the subspace L are such that for
any two vectors v,w € C", the quadratic function (155) has a stationary
value in L, then Agz)l) exists and the stationary point is unique for any
v, w given by (156).

PROOF. A stationary point of ¢ in L is a point x € L at which the gradient
Vq(x) = [%q(x)] (j € 1,n), is orthogonal to L, i.e.,

Vq(x) € L*. (157)
The value of g at a stationary point is called a stationary value of q.
Differentiating (155) we get from (157),
Vg(x) = A(x—v)—we LT,
and, by taking y = —V¢q(x), we conclude that x is a stationary point of ¢ in L if
and only if x is a solution of
Ax+y=Av+w, xelL,yelL™". (158)

Thus the existence of a stationary value of ¢ for any v, w is equivalent to the
consistency of (158) for any v, w, i.e., to the existence of AE;;), in which case
(156) is the unique stationary point in L. O

COROLLARY 8. Let A € C™"*™ be Hermitian positive definite and let L

be a subspace of C™. Then, for any v, w € C", the function

q(x) = % (x —Vv)"A(x —v) —w'x (155)
has a unique minimum in L when
x = A (Av + w). (156)

PROOF. Follows from Theorem 13, since Agz)l) exists, by Ex. 2.107, and the
stationary value of ¢ is actually a minimum since A is PD. O

We return now to the direct current electrical network of Section 2.13,
consisting of m nodes {n; : i € 1,m} and n branches {b; : j € 1,n}, with

a; > 0, the conductance of by;

A = diag (a;), the conductance matriz;

x;, the voltage across b;;

Yy;, the current in b;;

vj, the voltage generated by the sources in series with bj;

63ee Ex. 2.94 for conditions equivalent to the existence of AEZ)D.
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wj, the current generated by the sources in parallel with bj; and
M, the (node-branch) incidence matriz.

We recall that the branch voltages x and currents y are uniquely de-
termined by the following three physical laws:

Ax+y=Av+w (Ohm’s law), (159)
y € N(M)  (Kirchhoff’s current law), (160)
x € R(MT)  (Kirchhoff’s woltage law), (161)

and that x, y are related by

x = Al )y (AV + W), (2.151a)
y = (I = AAG G ) AV + W), (2.151D)

or, dually, by (2.153b) and (2.153a).

A classical variational principle of Kelvin [804] and Maxwell [537, pp.
903-908], states that the voltages x and the currents y are such that the
rate of energy dissipation is minimized. This variational principle is given
in the following corollary:

COROLLARY 9. Let A, M, x,y, v, w be as above. Then:

(a) The vector xg of branch voltages is the unique minimizer of
4(x) = L (x = v)" Alx — v) - w'x (155)
in R(IMT), and the vector yo of branch currents is
yo = —Vq(x0) = —A(xg —v) +w € R(MT)* = N(M). (162)
(b) The vector yq is the unique minimizer of
ply) =5y —w) A (y —w) —v'y (163)
in N(M), and the vector xq is
x0 = —Vp(yo) = —A Y yo —w) +v e N(M)* = R(MT). (164)

PROOF. Since the conductance matrix A is PD, it follows by comparing (156) and
(2.151a) that xo is the unique minimizer of (155) in R(M7T), and the argument
used in the proof of Theorem 13 shows that yo = —Vg(x0) as given in (162).
Part (b) follows from the dual derivation (2.153a) and (2.153b) of yo and xo,
respectively, as solutions of the dual network equations (2.152). ([l

Corollary 9 shows that the voltage x is uniquely determined by the
function (155) to be minimized subject to Kirchhoff’s voltage law (161).
Kirchhoff’s current law (160) and Ohm’s law (159) are then consequences
of (162).

Dually, the current y is uniquely determined by the function (163) to
be minimized subject to Kirchhoff’s current law (160), and the other two
laws (159) and (161) then follow from (164).

Corollary 9 is a special case of the Duality Theory of Convex Program-
ming; see, e.g., Rockafellar [703].
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Exercises

Ex. 82. Let A € C"*" be Hermitian PD, and let the subspace L C C™ and the
vector w € C" be given. Then the quadratic function

Ix"Ax — w'x (165)
has a minimum in L if and only if the system
Ax—wel*", xel, (166)

is consistent, in which case the solutions x of (166) are the minimizers of (165)

in L.

Ex. 83. Show that the consistency of (166) is equivalent to the condition
xel, Ax=0 = w'x=0,

which is obviously equivalent to the boundedness from below of (165) in L, hence
to the existence of a minimizer in L.

Ex. 84. Show that AEZ;) exists if and only if the system (166) has a unique
solution for any w € C", in which case this solution is

_ A=D1
X = A<L) w.

EX. 85. Give the general solution of (166) in case it is consistent but AEZ)D does

not exist.

Suggested Further Reading

SECTION 1. Desoer and Whalen [226], Eldén [249], [250], Erdélyi and Ben-
Israel [265], Leringe and Wedin [508], Osborne [621], Peters and Wilkinson
[640], Robinson [698], and the references on applications to statistics on p. 328
and system theory on p. 329.

SECTION 2. Erdélyi and Ben-Israel [265], Osborne [622], Rosen [712].

SECTION 3. See the references in p. 369.

SECTION 5. The geometry of approximate solutions: Hanke and Neumann
[372], Miao and Ben-Israel [551], [552], Zietak [888].

The bounds on ||, || and ||n ||, and associated condition numbers, were stud-
ied by Stewart [782] and Todd [810], and studied further, applied, and extended,
by Bobrovnikova and Vavasis [114], Forsgren [279], Forsgren and Sporre [280],
Gonzaga and Lara [313], Hanke and Neumann [372], Ikramov [437], O’Leary
[619], Vavasis and Ye [834], M. Wei [857], and others.

SECTION 6. Bapat [46].

SECTION 7. Bhatia [96].

SECTION 8. Further references on the extremal properties of the network
functions and solutions are Dennis [225], Stern [777], [778], Guillemin [359].



CHAPTER 4

Spectral Generalized Inverses

1. Introduction

In this chapter we shall study generalized inverses having some of the spec-
tral properties (i.e., properties relating to eigenvalues and eigenvectors) of
the inverse of a nonsingular matrix. Only square matrices are considered,
since only they have eigenvalues and eigenvectors.

If A is nonsingular it is easy to see that every eigenvector of A associated
with the eigenvalue A is also an eigenvector of A~! associated with the
eigenvalue A~!. (A nonsingular matrix does not have 0 as an eigenvalue.)

A matrix A € C"*" that is not diagonable does not have n linearly
independent eigenvectors (see Ex. 2.22). However, it does have n linearly
independent principal vectors, see §0.7.

It is not difficult to show (see Ex. 2) that, if A is nonsingular, a vector
x is a A -vector of A™! of grade p if and only if it is a A-vector of A of
grade p. In the remainder of this chapter, we shall explore the extent to
which singular matrices have generalized inverses with comparable spectral
properties.

The four Penrose equations of Chapter 1,

AXA = A, (1)
XAX = X, (2)
(AX)* = AX, (3)
(XA)* = XA, (4)

will now be supplemented further by the following equations applicable only
to square matrices

AFX A = A, (1
AX = XA, (5
AFX = X AF, (5%
AXF = xkA, (6%

In these equations k is a given positive integer.

This chapter deals mostly with the {1¥,2,5}-inverse of A, where k is
the indexr of A. This inverse, called the Drazin inverse, has important
spectral properties that make it extremely useful in many applications. We
also study a special case of the Drazin inverse, the group inverse.

152
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Exercises

Ex. 1. A square matrix A is diagonable if and only if all its principal vectors
are eigenvectors.

EX. 2. If A is nonsingular, x is a A~ '-vector of A™! of grade p if and only if it is a
A-vector of A of grade p. (Hint: Show that A™P(A—AI)P = (=A\)P(A™1 = A711)P.
Using this and the analogous relation obtained by replacing A by A~!, show that
(A= A)"x =0 if and only if (A™' = A™'I)"x =0 forr =0,1,...)

EX. 3. If A is nonsingular and diagonable, A~ is the only matrix related to A
by the property stated in Ex. 2.

EX. 4. If A is nonsingular and not diagonable, there are matrices other than A™!
having the spectral relationship to A described in Ex. 2. For example, consider

A:B ﬂ X:[/\; Afl] (A, ¢ #0).

Show that for p = 1,2, x is a A~ '-vector of X of grade p if and only if it is a
A-vector of A of grade p. (Note that X = A™! for ¢ = —A72.)

2. The Matrix Index

It is readily seen that the set of three equations (1¥), (2), and (5) is equiv-
alent to the set

AX = XA, (5)
Ak+1X — Ak7 (7)
AX?=X. (8)

It is evident also that if (7) holds for some positive integer k, then it holds
for every integer ¢ > k. It follows also from (7) that

rank A® = rank A**1, (9)

Therefore, a solution X for (7) (and, consequently, of the set (5), (7), (8))
exists only if (9) holds. In this connection, the following definition is useful.
DEFINITION 1. The smallest positive integer k for which (9) holds, is
called the indez! of A, and denoted Ind A.
The next lemma collects properties of the matrix index that are needed
below.

LEMMA 1. Let A € C*"*™ and Ind A = k. Then:

(a) All matrices {A® : € > k} have the same rank, the same range and
the same null space.

(b) Their transposes {(AY)T : £ > k} all have the same rank, the same
range and the same null space.

(c) Their conjugate transposes {(A*)* : £ > k} all have the same rank,
the same range and the same null space.

(d) Moreover, for no { less than k do A* and a higher power of A (or
their transposes or conjugate transposes) have the same range or
the same null space.

ISome writers (e.g., MacDuffee [528]) define the index as the degree of the minimal
polynomial.
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PROOF. It may be well to point out first that (9) necessarily holds for some
positive integer k (see Ex. 7).
(a) It follows from (9) and Ex. 1.10 that

R(AFTY) = R(AM). (10)
Therefore (7) holds for some X, and multiplication on the left by A“~* gives
AP =ATX (0> k). (11)

It follows from (11) that all the matrices {A* : £ > k} have the same range and
the same rank. From Ex. 1.10 and the fact that A* and A¢ have the same rank,
it follows that they have the same null space. (See Ex. 6 for an alternative proof
of R(A%) = R(A**Y) for all £ > k.).

(b) and (¢) The statements about the transposes and conjugate transposes
are obtained by applying (a) to AT and A* and noting that (A%)” = (AT)¢ and
(A" = (A")".

(d) If an equality of ranges of the kind ruled out in part (d) should occur,
there must be some ¢ < k such that A* or its transpose or conjugate transpose
have the same range as the corresponding matrix with exponent ¢ + 1. But this
would imply rank A® = rank A**!, and k& would not be the index of A. Similarly,
equality of null spaces would imply that A and A*"! have the same nullity, and
therefore the same rank. ([l

THEOREM 1. Let A € C"*™. Then the following statements are equiv-
alent:

(a) Ind A = k.

(b) The smallest positive exponent for which (7) holds is k.

(¢) If A is singular and m(\) is its minimal polynomial, k is the multi-

plicity of A =0 as a zero of m(A).

(d) If A is singular, k is the maximal grade of 0-vectors of A.

PROOF. (a)<=(b) Clearly (11) implies
rank AT = rank A”, (12)
and by Ex. 1.10, (12) implies
R(A™) = R(AY),

so that (11) holds. Thus (12) and (11) are equivalent, proving (a).
(b) <= (c) Let

m(X) = Ap(A)

where p(0) # 0. Let k be defined by (b), and we must now show that k = £. We
have

p(A)A" = 0.
If £ > k, then
O = p(A)A°X = p(A)A"",

where \"!p()\) is of lower degree than m()), contrary to the definition of the
minimal polynomial.
Since p(0) # 0, we can write?

m(A) = eX (1 — Ag(N), (13)

2For this device we are indebted to M.R. Hestenes (see [77, p. 687, footnote 56]).
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where ¢ # 0 and ¢ is a polynomial. It follows that
Ag(A) = AL (14)
If £ < k, this would contradict (b).

(a) <= (d) Let A have index k and let h be the maximal grade of the
0-vectors of A. We must show that h = k. The definition of h implies that
N(AY) = N(A") for all £ > h, but N(A"!) is a proper subspace of A(A"). It
follows from Lemma 1 that h = k. O
Exercises
EX. 5. Let A € C"*™ have index k, and let £ be a positive integer. Then R(A*)
and N(A*) are complementary subspaces if and only if £ > k.

PrOOF. Let A € C™ ™. If A is nonsingular, R(A*) = C" and N(A*) = {0}
for all £ = 1,2,.... Thus R(AZ) and N(Ae) are trivially complementary. Since
a nonsingular matrix has index 1, it remains to prove the theorem for singular
matrices. Now, for any positive integer £,
dim R(A") + dim N(A") = rank A® + nullity A* = n.

It therefore follows from statement (c) of Ex. 0.1 that R(A’) and N(A*) are
complementary if and only if

R(A") N N(A") = {0}. (15)
Since, for any positive integer ¢,

R(A™™) c R(AY),
and N(AY) € N(A“Y),

it follows that (15) is equivalent to
dim R(A") = dim R(A“™), (16)

or { > k, by Definition 1. |
EX. 6. Let A € C™*™. If, for some positive integer k,

R(A™) = R(A"), (10)
then, for all integers £ > k,

R(A™T) = R(AY).
[Hint: R(AFT') = AR(A¥) and R(A") = A*"*R(A¥) )]

EX. 7. Let A € C™*". Show that (9) holds for some k between 1 and n, inclusive.
PROOF. Since n > rank(A*) > rank(A*™!) > 0, eventually rank A* = rank A*T!
for some k € 1,7n. O

3. Spectral Inverse of a Diagonable Matrix

In investigating the existence of generalized inverses of a singular square
matrix, we shall begin with diagonable matrices because they are the eas-
iest to deal with. Evidently some extension must be made of the spectral
property enjoyed by nonsingular matrices, because a singular matrix has 0
as one of its eigenvalues. Given a diagonable matrix A € C"*", let us seek
a matrix X such that every eigenvector of A associated with the eigenvalue
A (for every A in the spectrum of A) is also an eigenvector of X associated
with the eigenvalue AT, where AT is defined in (1.8), page 43.
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Since A has n linearly independent eigenvectors, there is a nonsingular
matrix P, having such a set of eigenvectors as columns, such that

AP =PJ (17)
where
J = diag(A1, Ag, ..., A\p)

is a Jordan form of A. We shall need the diagonal matrix obtained from J
by replacing each diagonal element \; by /\j. By Ex. 1.22, this is, in fact,
the Moore—Penrose inverse of J; that is,

Jt=diag(A[, AL ... D).

Because of the spectral requirement imposed on X, we must have

XP=PJ'. (18)
Solving (17) and (18) for A and X givs
A=PJP7!, X=PJPL (19)

Since J and JT are both diagonal, they commute with each other. As a
result, it follows from (19) that X € A{1,2,5}.

We do not wish to limit our consideration to diagonable matrices. We
began with them because they are easier to work with. The result just
obtained suggests that we should examine the existence and properties
(especially spectral properties) of {1,2,5}-inverses for square matrices in
general.

4. The Group Inverse

It follows from (5) and from Corollary 2.7 that a {1,2,5}-inverse of A, if
it exists, is a {1, 2}-inverse X such that R(X) = R(A) and N(X) = N(A).
By Theorem 2.12, there is at most one such inverse.

This unique {1,2,5}-inverse is called the group inverse of A, and is
denoted by A#. The name “group inverse” was given by I. Erdélyi [258],
because the positive and negative powers of a given matrix A (the latter
being interpreted as powers of A%), together with the projector AA¥ as
the unit element, constitute an Abelian group; see Ex. 10. Both he and
Englefield [254] (who called it the “commuting reciprocal inverse”) drew
attention to the spectral properties of the group inverse. As we shall see
later, however, the group inverse is a particular case of the Drazin inverse
[233], or {1%,2, 5}-inverse, which predates it [258] and [254].

The group inverse is not restricted to diagonable matrices; however, it
does not exist for all square matrices. By Section 2.6 and Theorem 2.12,
such an inverse exists if and only if R(A) and N(A) are complementary
subspaces. This is equivalent, by Ex. 5, to A having index 1. We have,
therefore, the following theorem.

THEOREM 2. A square matrix A has a group inverse if and only if
IndA =1, ie.,

rank A = rank A2, (20)

When the group inverse exists, it is unique. (|
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The following theorem gives an alternative condition for the existence
of A# and an explicit formula for its computation.

THEOREM 3 (Cline [201]). Let a square matriz A have the full-rank
factorization

A=FG. (21)
Then A has a group inverse if and only if GF is nonsingular, in which case
A* = F(GF)™%G. (22)
PROOF. Let r = rank A. Then GF € C"™*". Now
A’ = FGFG,

and so
rank A? = rank GF

by Ex. 1.7. Therefore (20) holds if and only if GF' is nonsingular, and the first
part of the theorem is established. It is easily verified that (1), (2), and (5) hold
with A given by (21) and X by RHS(22). Formula (22) then follows from the
uniqueness of the group inverse. O

For an important class of matrices, the group inverse and the Moore—
Penrose inverse are the same. We shall call a square matrix A range-
Hermitian (such a matrix is also called an EP, or EP matriz, e.g., Schw-
erdtfeger [735], Pearl [631] and other writers) if

R(A*) = R(A), (23)
or, equivalently, if
N(A*) = N(4), (24)

the equivalence follows from (0.26).
Using the notation of Theorem 2.12; the preceding discussion shows
that

_4(1,2)
A% = ARia) viay
while Ex. 2.38 establishes that
_ o 4(1,2)
AT = Apii nasy

The two inverses are equal, therefore, if and only if R(A) = R(A*) and
N(A) = N(A*). Thus we have proved:

THEOREM 4. A# = A" if and only if A is range-Hermitian. O

The approach of (19) can be extended from diagonable matrices to all
square matrices of index 1. To do this we shall need the following lemma:

LEMMA 2. Let J be a square matriz in Jordan form. Then J is range-
Hermitian if and only if it has index 1.

PROOF. Only if: Follows from Ex. 12.

If: If J is nonsingular, rank J = rank J2 and J is range-Hermitian by Ex. 14.
If J has only 0 as an eigenvalue, it is nilpotent. In this case, it follows easily
from the structure of the Jordan form that rank J? < rank J unless J is the null
matrix O, in which case it is trivially range-Hermitian.
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If J has both zero and nonzero eigenvalues, it can be partitioned in the form

J = [‘(])1 ?0} , (25)

where Ji is nonsingular and has as eigenvalues the nonzero eigenvalues of J, while
Jo is nilpotent. By the same reasoning employed in the preceding paragraph,
rank J = rank J? implies Jo = O. It then follows from Ex. 14 that J is range-
Hermitian. O

THEOREM 5 (Erdélyi [258]). Let A have index 1 and let
A=PJP !,
where P is nonsingular and J is a Jordan normal form of A. Then
A* =pJjipt, (26)

PROOF. It is easily verified that relations (1), (2), (5), and (20) are similarity
invariants. Therefore

J#* =plA*P (27)

and also rank J = rank J2. Tt then follows from Lemma 2 and Theorem 4 that
J*=Jt, (28)
and (26) follows from (27) and (28). ]

Exercises

EX. 8. An alternative proof of uniqueness of the group inverse in Theorem 2 is
as follows. Let X,Y € A{1,2,5}, F = AX = XA, and F = AY = YA. Then
E = F since

E=AX =AYAX =FE,
F=YA=YAXA=FE.
Therefore,

X=EX=FX=YE=YF=Y.

EX. 9. (Properties of the group inverse).

a) If A is nonsingular, A% = A~
b) A## = A.
9)

EX. 10. Let A have index 1 and denote (A#)? by A7 for j = 1,2,.... Also
denote AA# by A°. Then show that

AlAm _ AZ+m
for all integers ¢ and m. (Thus, the “powers” of A, positive, negative and zero,
constitute an Abelian group under matrix multiplication.)
Ex. 11. Show that
A% = A(A*)W 4, (29)

where (A%)") is an arbitrary {1}-inverse of A®.
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EX. 12. Every range-Hermitian matrix has index 1.
PROOF. If A is range-Hermitian, then by (0.26), N(A) = R(A)*. Thus R(A)
and N(A) are complementary subspaces. (]

EX. 13. Let A be range-Hermitian, and let P = Pg(ay = Pga~). Then Al is
the unique solution of the system

AX =XA=P, (30a)
PX=XP=X. (30b)

EX. 14. A nonsingular matrix is range-Hermitian.

EX. 15. A normal matrix is range-Hermitian. [Hint: Use Corollary 1.2.]
REMARK. It follows from Exs. 12 and 15 that

{Hermitian matrices} C {normal matrices}

C {range-Hermitian matrices} C {matrices of index 1}.
EX. 16. A square matrix A is range-Hermitian if and only if A commutes with
Al

EX. 17. (Katz [471]). A square matrix A is range-Hermitian if and only if there
is a matrix Y such that A* =Y A.

Ex. 18. (Katz and Pearl [473]). A matrix in C™*" is range-Hermitian if and
B O

only if it is similar to a matrix of the form (o O)7 where B is nonsingular.
PROOF. See Lemma 2. O
ExX. 19. (Ben-Israel [70]). Let A € C"*™. Then A has index 1 if and only if the
limit
lim (AL, + A)"'A
A—0
exists, in which case
lim (AL, + A) 'A = AA*.
A—0
REMARK. Here A — 0 means A — 0 through any neighborhood of 0 in C which
excludes the nonzero eigenvalues of A.

PROOF. Let rank A = r and let A = F'G be a full-rank factorization. Then the
identity

(A, +A)"A=F0\I,. +GF)"'G

holds whenever the inverse in question exists. Therefore the existence of

lim (AL, + A)"'A

A—0
is equivalent to the existence of

lim (Al + GF)™*

A—0
which, in turn, is equivalent to the nonsingularity of GF'. The proof is completed
by using Theorems 2 and 3. O
EX. 20. Let A € C"*™. Then A is range-Hermitian if and only if

. -1 gt

PrROOF. Follows from Ex. 19 and Theorem 4. Od
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EX. 21. Let O # A € C™*". Then
lim (AL, + A*A)'A* = A" (den Broeder and Charnes [136]). (3.43)
—

PROOF.
. * —1 4% _ q: * —1 *
(since R(A") = R(A"A))
= (A"A)'A*  (by Ex. 20 since A" A is range-Hermitian)

= A" (by Ex. 1.18(d)). .
EX. 22. The “reverse-order” property for the Moore—Penrose inverse. For some
pairs of matrices A, B the relation

(AB)' = BTA" (31)
holds, and for others it does not. There does not seem to be a simple criterion
for distinguishing the cases in which (31) holds. The following result is due to
Greville [327].

For matrices A, B such that AB exists, the reverse-order relation (31) holds
if and only if

R(A*AB) C R(B) and R(BB*A*)C R(A"). (32)
PrOOF. If: We have
BB'A"AB = A*AB (33)
and
ATABB*A* = BB A*. (34)

Taking conjugate transposes of both sides of (33) gives
B*A*ABB' = B*A* A, (35)
and then multiplying on the right by AT and on the left by (AB)*' yields
ABB'A" = AB(AB)'. (36)
Multiplying (34) on the left by Bf and on the right by (AB)*T gives
BYATAB = (AB)'AB. (37)

It follows from (36) and (37) that BT AT € (AB){1, 3,4}.
Finally, the equations,

B*A* = B*BBYATAA*, B'A' =B B*TB*A*A*T Al
show that
rank BY A" = rank B*A* = rank AB,

and therefore BY AT € (AB){2} by Theorem 1.2, and so (31) holds.
Only if: We have

B*A* = B'ATABB* 4”,
and multiplying on the left by ABB* B gives
ABB*(I — ATA)BB*A* = 0.



5. SPECTRAL PROPERTIES OF THE GROUP INVERSE 161

Since the left member is Hermitian and I — AT A is idempotent, it follows that
(I —ATA)BB*A* = 0,

which is equivalent to (34). In an analogous manner, (33) is obtained. O

EX. 23. (Arghiriade [24]). For matrices A, B such that AB exists, (31) holds if

and only if A*ABB* is range-Hermitian.

PRrROOF. We shall show that the condition that A*ABB* be range-Hermitian is

equivalent to (32), and the result will then follow from Ex. 22. Let C denote
A*ABB™, and observe that

R(A*AB) = R(C), R(BB*A") = R(C™)
because
CcB*' = A4*AB, C*A'=BB*A".
Therefore it is sufficient to prove that R(C') = R(C™) if and only if R(C') C R(B)
and R(C™) C R(A").

If: A*A and BB™ are Hermitian, and therefore of index 1 by Ex. 12. Since
R(BB*) = R(B) by Corollary 1.2, it follows from Ex. 54 with FF = A*A, G =
BB* that

R(C) = R(A™) N R(B).
Reversing the assignments of F' and G gives
R(C*) = R(A")N R(B).

Thus R(C) = R(C™).
Only if: Obvious. O

5. Spectral Properties of the Group Inverse

Even when A is not diagonable, the group inverse has spectral properties
comparable to those of the inverse of a nonsingular matrix. However, in this
case, A% is not the only matrix having such properties. This has already
been illustrated in the case of a nonsingular matrix (see Ex. 4).

We note that if a square matrix A has index 1, its 0-vectors are all of
grade 1, i.e., null vectors of A. This follows from the fact that (20) implies
N(A?) = N(A) by Ex. 1.10.

The following two lemmas are needed in order to establish the spectral
properties of the group inverse. The second is stated in greater general-
ity than is required for the immediate purpose because it will be used in
connection with spectral generalized inverses other than the group inverse.

LEMMA 3. Let x be a A-vector of A with X # 0. Then x € R(A") where
£ is an arbitrary positive integer.

PROOF. We have

(A-XD)Px=0

for some positive integer p. Expanding the left member by the binomial theorem,
transposing the last term, and dividing by its coefficient (—A\)?~! # 0 gives

X = C1AX + 2 APX + - + ¢ AP, (38)

ci = (=1)""IA7! <’;>

where
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Successive multiplication of (38) by A gives
Ax = 01A2x + 02A3x + -4 cpAp'Hx,
A’x = ) ABx + oAt -+ cpAp+2x,

i (39)
AT = A e AT cpAp“*lX,
and successive substitution of equations (39) in RHS(38) gives eventually
x = Alg(A)x,
where ¢ is some polynomial. O
LEMMA 4. Let A be a square matriz and let
XA = A* (40)

for some positive integer £. Then every A-vector of A of grade p for A # 0
is a X" '-vector of X of grade p.

PROOF. The proof will be by induction on the grade p. Let A # 0 and Ax = Ax.
Then A*T'x = A*'x, and therefore x = A1 A" 'x. Accordingly,

Xx=A""1xA" % = 2" x.

proving the lemma for p = 1.
Suppose the lemma is true for p = 1,2,... ,r, and let x be a A-vector of A
of grade r + 1. Then, by Lemma 3,

x=A'y

for some y. Thus

(X =2'Dx=(X-2'DAyY = x(A" = XtATy
=X(I-X"A)Ay =-2"'X(A-AD)x
By the induction hypothesis, (A — AI) x is a A~ '-vector of X of grade . Conse-
quently
(X =A'"D(A=A)x =0,
z=(X - X" A-N)x#0,

Xz =)'z
Therefore
(X =AD" x=-2"X(X -2 (A= X)x =0,
(X = A'D"x=-X"'Xz=-\""z2#0.
This completes the induction. O

The following theorem shows that for every matrix A of index 1, the
group inverse is the only matrix in A{1} or A{2} having spectral properties
comparable to those of the inverse of a nonsingular matrix. For convenience,
we introduce:

DEFINITION 2. X is an S-inverse of A (or A and X S-inverses of each
other) if they share the property that, for every A € C and every vector x,
x is a A\-vector of A of grade p if and only if it is a Af-vector of X of grade

p-



6. THE DRAZIN INVERSE 163

THEOREM 6. Let A € C™ " have index 1. Then A% is the unique S-

inverse of A in A{1} U A{2}. If A is diagonable, A% is the only S-inverse
of A.
PROOF. First we shall show that A is an S-inverse of A. Since X = A¥ satisfies
(40) with £ = 1, it follows from Lemma 4 that A# satisfies the “if” part of the
definition of S-inverse for X # 0. Replacing A by A¥ establishes the “only if”
part for A # 0, since A#*# = A (see Ex. 9(b)).

Since both A and A% have index 1, all their O-vectors are null vectors as
pointed out in the second paragraph of this section. Thus, in order to prove
that A% satisfies the definition of S-inverse for A = 0, we need only show that
N(A) = N(A#). But this follows from the commutativity of A and A% and
Ex. 1.10.

Let r = rank A and consider the equation

AP =PJ

where P is nonsingular and J is a Jordan form of A. The columns of P are
A-vectors of A. Since A has index 1, those columns which are not null vectors
are associated with nonzero eigenvalues, and are therefore in R(A) by Lemma 3.
Since there are r of them and they are linearly independent, they span R(A).
But, by hypothesis, these columns are also A™'-vectors of X and therefore in
R(X). Since rank X = r, these r vectors span R(X), and so R(X) = R(A). Thus
X is a {1,2}-inverse of A such that R(X) = R(A) and N(X) = N(A). But A*
is the only such matrix, and so X = A%,

It was shown in Section 3 that if A is diagonable, an S-inverse of A must be
a {1,2,5}-inverse. Since A* is the only such inverse, this completes the proof. [

6. The Drazin Inverse

We have seen that the group inverse does not exist for all square matri-
ces, but only for those of index 1. However, we shall show in this section
that every square matrix has a unique {1¥,2, 5}-inverse, where k is its in-
dex. This inverse, called the Drazin inverse, was first studied by Drazin
[233] (though in the more general context of rings and semigroups without
specific reference to matrices).

We start informally. Let A € C™*" have index k. Then R(A*) and
N(AF) are complementary subspace, see Ex. 5, and the restriction AlR(ar)]
of A to R(A¥) is invertible (being a one-to-one mapping of R(A¥) onto
itself.) Let X € C™*™ be defined by

Al ogu, if u € R(AF)
Xu= [R(AR)] ™ ’ 41
" {0, if ue N(AF). (41)

It follows from this definition that the relations AXu = X Auand XAXu =
Xu hold for u € R(A*) and for u € N(A*), and therefore in all of C". The
matrix X is thus a {2, 5}-inverse of A.

Definition (41) says that AX is the identity in R(AF), i.e., AX AFx =
AFx for all x € C", allowing for zero in both sides (if x € N(A4*).) There-
fore, X is also a {1*}-inverse of A.

The matrix X is thus a {1¥,2, 5}-inverse of A, properties that define it
uniquely, as shown in Theorem 7 below. X is called the Drazin inverse of
A, and is denoted by AP.
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The following lemma is needed for proving the existence and uniqueness
of the Drazin inverse.

LEMMA 5. IfY is a {1°,5}-inverse of square matriz A, then
X = Atyt!
is a {1¢,2,5}-inverse.
PROOF. We have
ATy = A, AY =Y A.
Clearly X satisfies (5). We have then
ACXA = A2Hy L g2yt L g2yl gt
and

XAX — A2Z+1y22+2 — A2€y2€+1 — .= AZyZ+1 - X. |:|
THEOREM 7. Let A € C™*™ have index k. Then A has a unique
{1*,2,5}-inverse, which is expressible as a polynomial in A, and is also
the unique {1¢,2,5}-inverse for every £ > k.
PROOF. The matrix g(A) of (14) is a {1* 5}-inverse of A. Therefore, by
Lemma 5,

X = AM(g(A) (42)

is a {1]“7 2,5}-inverse.® This proves the existence of such an inverse.

A matrix X that satisfies (7) clearly satisfies (11) for all £ > k. Therefore, a
{1%,2, 5}-inverse of A is a {1¢,2,5}-inverse for all £ > k.

Uniqueness will be proved by adapting the proof of uniqueness of the group
inverse given in Ex. 8. Let X,Y € A{1°,2,5}, E = AX = XA, and F = AY =
Y A. Note that E and F' are idempotent. Then F = F', since

E=AX = A'X' = AYA'X' = FAX = FE,
F=YA=Y'A" =Y'A* XA =YAE = FE.

The proof is then completed exactly as in the case of the group inverse. O
This unique {1’“, 2, 5}-inverse is the Drazin inverse, and we shall denote
it by AP. The group inverse is the particular case of the Drazin inverse for
matrices of index 1.
The Drazin inverse has a simple representation in terms of the Jordan
form:

THEOREM 8. Let A € C"*" have the Jordan form

A=XJX'1=X {Jol z] X! (43)

where Jy and Jy are the parts of J corresponding to zero and nonzero eigen-
values. Then

Jrt 0] -
AP =Xx |71 X 44
o (4)
PROOF. Let A be singular of index k (i.e., the biggest block in the submatrix Jo
is k x k). Then the matrix given by (44) is a {17, 2, 5}-inverse of A. ]

3See also Ex. 34 below.
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EXAMPLE 1. The matrix

0o -2 0 -5 2
0o -1 0 -2 0
A=10 0 0 2 0
0 1 0 2 0
-2 -2 1 -8 4
has the Jordan form
1
Ji(1) 2 1
A=X Jo(2) X'=Xx 0 2 X!
J2(0)

0 1
0 0

see Example 2.1, p. 66. The Drazin inverse AP s, by Theorem 8,

1
(L)~ i i
AP =X (J2(2))7* X '=x 0 1 x!
o 0 0
0 0
13 -3 7 -3
0 -1 0 -2 0
=0 2 0 4 0
0 1 0 2 0
i 2 -1 4 o

For A € C™*™ with spectrum A(A), and a scalar function f € F(A),
the corresponding matrix function f(A) is

(k)
f= Y By TNy (2.50)

(see Definition 2.1). The analogous result for the Drazin inverse is:

COROLLARY 1. Let A € C™*™ have spectrum A(A). Then

v(A)—

AP =y EAZ )\kJr)l A—\I,)F (45)

0£AEA(A

PROOF. Theorem 8 shows that the Drazin inverse is the matrix function corre-
sponding to f(z) = 1/z, defined on nonzero eigenvalues. (]

EXAMPLE 2. An alternative expression of the Drazin inverse of A in Exam-
ple 1, using (45) and the projectors E1, E2 of Example 2.1, is

AP = E1 + 1By — 1Eo(A - 2I).

In the computation of AP when the index of A exceeds 1, it is not
easy to avoid raising A to a power. When ill-conditioning of A is serious,
perhaps the best method is the sequential procedure of Cline [201], which
involves full-rank factorization of matrices of successively smaller order,
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until a nonsingular matrix is reached. Thus, we take

A= BlGl, (46&)
GiBi = Bi1Giyn (1=1,2,...,k—1), (46b)

where k is the index of A. Then

AP = BB, - Bi(G.Br) " 1GLGr_1 - Gy. (46¢)

We saw in Exs. 0.79-0.80 that the inverse of a nonsingular matrix A is a
polynomial in A. An analogous result is:

COROLLARY 2 (Englefield [254]). Let A € C" ™. Then there is a
{1, 2}-inverse of A expressible as a polynomial in A if and only if Ind A =1,
in which case the only such inverse is the group inverse, which is given by

AF = Aq(4))?, (47)

where q is defined by (13).

PROOF. Only if: A {1,2}-inverse of A that is a polynomial in A necessarily
commutes with A, and is therefore a {1,2,5}-inverse. The group inverse A% is
the only such inverse, and A has a group inverse if and only if its index is 1.

If: If Ind A = 1, then A has a group inverse, which is a {1, 2}-inverse, and
in this case coincides with the Drazin inverse. It is therefore expressible as a
polynomial in A by Theorem 7. Formula (47) is merely the specialization of (42)
for k =1. (Il

COROLLARY 3 (Pearl [633]). Let A € C"*". Then AT is expressible as
polynomial in A if and only if A is range-Hermitian.

Exercises

EX. 24. Show that, for a matrix A of index k that is not nilpotent, with B; and G;
defined by (46a) and (46b), Gy By, is nonsingular. (Hints: Express A¥ and AFT!
in terms of B; and G; (i =1,2,... ,k), and let 7, denote the number of columns
of By, which is also the number of rows of GGx. Show that rank AF = T, while
rank A*t! = rank GxBy. Therefore rank A**! = rank A® implies that G By is
nonsingular.)

EX. 25. Use Theorem 7 to verify (46c).

EX. 26. The Drazin inverse preserves similarity: If X is nonsingular, then

A=XBX ' = AP =XxBPx %

EX. 27. Properties of the Drazin inverse.

(a) (A")P =(AP)".

(b) (A7) = (AP)T.

(c) (AHP = (AP) fort=1,2,....

(d) If A has index k, A® has index 1 and (A9)# = (AP)* for £ > k.

(e) (AP)P = A if and only if A has index 1.

(f) AP has index 1, and (AP)# = A%AP.

( D)D)D — AD.

( A has index k, R(A”) = R(A®) and N(AP) = N(A*) for all £ > k.

—
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EX. 28. Let A be a square singular matrix, Ind A = k. If the system
Ax =b, xe R(AY),
has a solution, it is uniquely given by
x = A"b.

PROOF. Let a solution x be written as x = A*y for some y. Then A**ly = b,
and

x = Aby = AFF1 4Dy
— AP ARy
= A"b.
Uniqueness follows from R(A*) N N(A*) = {0}, see Ex. 5. d

EX. 29. R(AP) is the subspace spanned by all the A-vectors of A for all nonzero
eigenvalues A, and N (AD ) is the subspace spanned by all the 0-vectors of A, and
these are complementary subspaces.

Ex. 30. AAP = APA is idempotent and is the projector on R(AP) along
N(AP). Alternatively, if A has index k, it is the projector on R(A*) along N (A®)
for all £ > k.

Ex. 31. If A and X are S-inverses of each other, they have the same index.
Ex. 32. AP(AP)# = AAP.

EX. 33. (Campbell and Meyer [159, Theorem 7.8.4]). Let A, B € C"*". Then:
(a) (AB)” = A[(BA)*|B.

If AB = BA then:
(b) (AB)? = BPAP = AP BP; and
(c) APB = BAP and ABP = BP A.

ProOOF. (a) Let Y = A[(BA)?]”B. Then it is easy to verify that Y is a {2,5}-
inverse of AB. Let k = max{Ind(AB),Ind(BA)}. Then

(AB)* 2y = (AB)**?A[(BA)*|” B = (AB)* "' ABA[(BA)*|’B
= (AB)"" A(BA)PB = A(BA)*"'(BA)’ B = A(BA)*B
= (AB)k+17

showing that Y is a {1¥}-inverse of AB.
(b) and (c) follow from the fact that A”, B are polynomials in A, B, re-
spectively; see Theorem 7. O

Ex. 34. Let A € C"*" have index k. Then, for all £ > k,
AP = A(q(A)),

where ¢ is defined by (13). See also (42).

EX. 35. If A is nilpotent, A? = O.

EX. 36. If £ >m >0, A™(AP)" = (AP)"—™.

EX.37. If m>0and £ —m >k, A% (AP)™ = A",
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EX. 38. Let A have index k, and define as follows a set of matrices B; where j
ranges over all the integers:

A7 for j > k,
B; = AF(APYFT for 0 < j <k,
(AP for j < 0.

Is the set of matrices {B;} an Abelian group under matrix multiplication with
unit element By and multiplication rule B¢B;, = B¢+m? Is there an equivalent,
but easier way of defining the matrices B;?

EX. 39. (Greville [328]). If ¢ is any integer not less than the index of A,
AP — 45421 4, (48)

where (A7) is an arbitrary {1}-inverse of A2**!. Note that (29) is a partic-
ular case of (48).

Ex. 40. (Cline [201]). If £ is any integer not less than the index of A,
(AP)! = (4 4241 (A1)
HINT: Use Ex. 2.61, noting that R(A”) = R(AY) and N(AP) = N(A).

EX. 41. (Meyer [543], Boyarintsev [130, Theorem 1.8.6]). If A € C™*" has
index k then

AP = lim (A" + o’ 7T AR, a real,

a—0

and the approximation error is

||AD _ (Ak+1 +a2[)—1Akzl| < a2|‘ADHk+2
< T- Ao

where || - || is the spectral norm (0.56.2).

7. Spectral Properties of the Drazin Inverse

The spectral properties of the Drazin inverse have been studied by Cline
[201] and Greville [328]; some of them will be mentioned here.

The spectral properties of the Drazin inverse are the same as those of
the group inverse with regard to nonzero eigenvalues and the associated
eigenvectors, but weaker for 0-vectors. The necessity for such weakening is
apparent from the following theorem.

THEOREM 9. Let A € C™*™ and let X € A{1} U A{2} be an S-inverse
of A. Then both A and X have index 1.
PROOF. First, let X € A{1}, and suppose that x is a O-vector of A of grade
2. Then, Ax is a null-vector of A. Since X is an S-inverse of A, Ax is also a
null-vector of X. Thus,

0= XAx = AX Ax = Ax,
which contradicts the assumption that x is a 0-vector of A of grade 2. Hence,
A has no 0-vectors of grade 2, and therefore has index 1, by Theorem 1(d). By
Ex. 31, X has also index 1.
If X € A{2}, we reverse the roles of A and X. |
Accordingly, we relax the definition of the S-inverse (Definition 2,
p. 162) as follows.
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DEFINITION 3. X is an S’-inverse of A if, for all A # 0, a vector x is
a A" l-vector of X of grade p if and only if it is a A-vector of A of grade p,
and x is a O-vector of X if and only if it is a 0-vector of A (without regard
to grade).

THEOREM 10. For every square matriz A, A and AP are S’-inverses
of each other.
PROOF. Since AP satisfies

AP ARFY — AR A(APY? = AP,

the part of Definition 3 relating to nonzero eigenvalues follows from Lemma 4.
Since A® has index 1 by Ex. 27(f), all its O-vectors are null vectors. Thus the
part of Definition 3 relating to 0-vectors follows from Ex. 29. |

8. Index 1-Nilpotent Decomposition of a Square Matrix

The following theorem plays an important role in the study of spectral
generalized inverses of matrices of index greater than 1. It is implicit in
Wedderburn’s [853] results on idempotent and nilpotent parts, but is not
stated by him in this form.

THEOREM 11. A square matriz A has a unique decomposition

A=B+N, (49)
such that B has index 1, N is nilpotent, and
NB = BN =0. (50)
Moreover,
B = (AP)#. (51)
See Ezx. 42.

PROOF. Suppose A has a decomposition (49) such that B has index 1, N is
nilpotent and (50) holds. We shall first show that this implies (51), and therefore
the decomposition is unique if it exists.

Since
B* = B(B*)? = (B¥)’B,
we have
B*N =NB* =0.
Consequently,
AB* = BB* = B¥ A. (52)
Moreover,
A(B*)? = B(B*)* = B*. (53)
Because of (50), we have
A'=(B+N)'=B'"+N' (¢t=1,2,...). (54)

If ¢ is sufficiently large so that N* = O,
AL — B
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and for such £,
A p* = B B* = B, (55)

It follows from (52), (53), and (55) that X = B# satisfies (5), (7), and (8), and
therefore

B* = AP

which is equivalent to (51).
It remains to show that this decomposition has the required properties.
Clearly B has index 1. By taking

N =A—(AP)# (56)
and noting that
(AP)# = A2AP
by Ex. 27(f), it is easily verified that (50) holds. Therefore (54) follows, and if k
is the index of A,
A = B* 4 N* — A%6(APY* 4 N* — AF 4 N*,
and therefore N* = O. (|

We shall call the matrix N given by (56) the nilpotent part of A and
shall denote it by AMY).

THEOREM 12. Let A € C"*". Then A and X are S’'-inverses of each
other if

XP = (AP)#, (57)

Moreover, if X € A{1} U A{2}, it is an S’-inverse of A only if (57) holds.

PRrOOF. If (57), A and X have the same range and the same null space, and
consequently the projectors X X and AAP = AP (AP)# are equal. Thus, if £ is
the maximum of the indices of A and X,

XA = X(AP)#FAP AT = XxxP A = A° (58)
by Ex. 30. By interchanging the roles of A and X we obtain also
AXTT = X° (59)

From (58) and (59), Lemma 4, Ex. 29 and the fact that A” and X have the
same null space, we deduce that A and X are S’-inverses of each other.

On the other hand, let A and X be S’-inverses of each other, and let X €
A{1}. Then, by Ex. 29,

N(A”) = N(XP),
and so,
(APY# XN = (XPY# AN Z 0,
Similarly, since
R(A”) = R(X"),
(2.59) gives

N(AP") = N(x7"),
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and therefore
XM (AP = (xP)*A™N = 0.
Consequently
A=AXA = (APYH(XP)#(APY# 4 AN x4
and therefore
AP = AP AAP = AAP(XP)* AAP = (XP)#, (60)

since AAP is the projector on the range of (X)# along its null space. But (60)
is equivalent to (57).

If X € A{2}, we reverse the roles of A and X. ]

Referring back to the proof of Theorem 6, we note that if A has index
1, a matrix X that is an S-inverse of A and also either a {1}-inverse or
a {2}-inverse, is automatically a {1,2}-inverse. However, a similar remark
does not apply when the index of A is greater than 1 and X is an S’-inverse
of A. This is because A®) is no longer a null matrix (as it is when A has

index 1) and its properties must be taken into account. (For details see
Ex. 50.)

Exercises

EX. 42. Let A € C"*™ be given in Jordan form

. -1 Ji O 1
A=XJX _X{O JO]X (43)

where Jy and J; are the parts of J corresponding to zero and nonzero eigenvalues.
Then

Ji O

B:X[o 0

}X’l, N:X{O O} x!

o Jo (61)

give the Wedderburn decomposition (49) of A, see Theorem 11. If A is nonsin-
gular, (61) reads: B=A, N = O.

9. Quasi-Commuting Inverses

Erdélyi [259] calls A and X quasi-commuting inverses of each other if they
are {1,2, 5% 6*}-inverses of each other for some positive integer k. He noted
that for such pairs of matrices the spectrum of X is obtained by replacing
each eigenvalue A of A by Af. The following theorem shows that quasi-
commuting inverses have much more extensive spectral properties.

THEOREM 13. If A and X are quasi-commuting inverses, they are S’-
muverses.

PROOF. If A and X are {1,2,5%, 6}-inverses of each other, then
XA = A'XA =AY
and similarly,

AXT = x° (59)
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In view of Lemma 4 and Ex. 29, all that remains in order to prove that A and
X are S'-inverses of each other is to show that AP and X have the same null
space. Now,

APx=0 = 0=A"A"x=A'%
—  0=X"A'x=A'X"x=X"% (by (59))
—  0=(x")""x'x=Xx"x.
Since the roles of A and X are symmetrical, the reverse implication follows by
interchanging them. O

COROLLARY 4. A and X are quasi-commuting inverses of each other if
and only if (57) holds and AN and XN) are {1,2}-inverses of each other.
PrROOF. If: A and X are {1,2}-inverses of each other by Ex. 47. Choose £
sufficiently large so that (A(N))Z = 0. Then

XA = (X7 + XN ((4P)%)"
= (XP)F + XY (X)) = (XP)#) T = ax,

By interchanging A and X, it follows also that A commutes with X*.

Only if: By Theorem 13, A and X are S’-inverses of each other. Then, by
Theorem 12, (57) holds, and by Ex. 50, A™) and X are {1, 2}-inverses of each
other. |:|

10. Other Spectral Generalized Inverses

Greville [328] calls X a strong spectral inverse if equations (19) are satisfied.
Although this is not quite obvious, the relationship is a reciprocal one, and
they can be called strong spectral inverses of each other. If A has index 1,
Theorem 5 shows that A% is the only strong spectral inverse. Greville has
shown that strong spectral inverses are quasi-commuting, but, for a matrix
A with index greater than 1, the set of strong spectral inverses is a proper
subset of the set of quasi-commuting inverses. Strong spectral inverses have
some remarkable and, in some respects, complicated properties, and there
are a number of open questions concerning them. As these properties relate
to matrices of index greater than 1, which are not for most purposes a very
important class, they will not be discussed further here. The interested
reader may consult Greville [328].

Cline [201] has pointed out that a square matrix A of index 1 has a
{1, 2, 3}-inverse whose range is R(A). This is, therefore, a “least-squares”
inverse and also has spectral properties (see Exs. 50 and 51). Greville
[329] has extended this notion to square matrices of arbitrary index, but
his extension raises some questions that have not been answered (see the
conclusion of [329]).

Exercises
EX. 43. If A has index 1, A = 0.
EX. 44. If A is nilpotent, rank A**! < rank A® unless A* = O,

EX. 45. If A is nilpotent, the smallest positive integer ¢ such that A® = O is
called the index of nilpotency of A. Show that this is the same as the index of A
(see Definition 1).
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EX. 46. A and A®) have the same index.

EX. 47. rank A = rank A” 4 rank A",

Ex. 48. APAWN) = AN AP = 0.

EX. 49. Every 0-vector of A of grade p is a 0-vector of A of grade p.

EX. 50. Let A and X satisfy (57). Then X € A{1} if and only if A®Y) € A {1}
Similar statements with {1} replaced by {2} and by {1, 2} are also true.

EX. 51. If A has index 1, show that X = A#* AA" € A{1,2,3} (Cline). Show that
this X has the properties of an S-inverse of A with respect to nonzero eigenvalues
(but, in general, not with respect to 0-vectors). What is the condition on A that
this X be an S-inverse of A?

EX. 52. For square A with arbitrary index, Greville has suggested as an extension
of Cline’s inverse

X = AP AAT + AW AW #T
where AY) is an arbitrary element of A{1}. Show that X € A{1,2,3} and has

some spectral properties. Describe its spectral properties precisely.

Ex. 53. Can a matrix A of index greater than 1 have an S-inverse? It can if we
are willing to accept an “inverse” that is neither a {1}-inverse nor a {2}-inverse.
Let

A = AP 4 AN,

Show that A is an S-inverse of A and that X = A®® is the unique solution of
the four equations

AX = X4, AT'X =4
AX = X A—X = A'XY(A-X),
for every positive integer £ not less than the index of A. Show also that A®®) = A%

if A has index 1 and (A(S))(S) = A. In your opinion, can A properly be called
a generalized inverse of A?

EX. 54. Let F be a square matrix of index 1, and let G be such that R(FG) C
R(G). Then,

R(FG) = R(F) N R(G).
PRrooF. Evidently, R(FG) C R(F) and therefore
R(FG) C R(F)N R(G).

Now let x € R(F) N R(G), and we must show that x € R(FG). Since F has
index 1, it has a group inverse F# which, by Corollary 2, can be expressed as a
polynomial in F, say p(F'). We have

x=Fy =Gz
for some y, z, and therefore
x = FF#x = FF*Gz = Fp(F)Gz.
Since R(FG) C R(G),
FG=GH
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for some H, and, consequently,
F'G=GH'
for every nonnegative integer ¢. Thus

x = Fp(F)Gz = FGp(H)z C R(FG). g
(This is a slight extension of a result of Arghiriade [24].)
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CHAPTER 5

Generalized Inverses of Partitioned Matrices

1. Introduction

In this chapter we study linear equations and matrices in partitioned form.
For example, in computing a (generalized or ordinary) inverse of a matrix
A € C™*™ the size or difficulty of the problem may be reduced if A is

partitioned as
A A
A= .
[A21 Aaz
The typical result here is the sought for inverse expressed in terms of the
submatrices A;;.
Partitioning by columns and by rows is used in Section 2 to solve linear
equations and to compute generalized inverses and related items.
Intersections of linear manifolds are studied in Section 3 and used in
Section 4 to obtain common solutions of pairs of linear equations and to
invert matrices partitioned by rows.
Greville’s method for computing A' for A € C™*" n > 2, is based on
partitioning A as
A= [An—l an]
where a,, is the n'" column of A. AT is then expressed in terms of a,, and
Ajkl, which is computed in the same way, using the partition

A= [An—2 an—l]» etc.

Greville’s method and some of its consequences are studied in Section 5.
Bordered matrices, the subject of Section 6, are matrices of the form

A U
)

where A € C™*™ is given and U and V are chosen so that the resulting
bordered matrix is nonsingular. Moreover,

A Ut At v
vV 0 |\t o
expressing generalized inverses in terms of an ordinary matrix.

2. Partitioned Matrices and Linear Equations

Consider the linear equation
Ax=Db (1)
with given matrix A and vector b, in the following three cases.

175
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Case 1. A€ Cl*" ie., Ais of full row rank. Let the columns of A be
rearranged, if necessary, so that the first » columns are linearly independent.
A rearrangement of columns may be interpreted as postmultiplication by a
suitable permutation matrix; thus,

AQ = [Al AQ] or A= [Al AQ}QT, (2)

where @ is an n x n permutation matrix (hence Q! = QT) and A; consists
of r linearly independent columns, so that A; € C.*", i.e., A; is nonsingu-
lar.

The matrix As is in C"*("=") and if n = r, this matrix and other items
indexed by the subscript 2 are to be interpreted as absent.

Corresponding to (2), let the vector x be partitioned

X = [ij , x;€C. (3)
Using (2) and (3) we rewrite (1) as
A aala [ = (1)
easily shown to be satisfied by the vector
)b

which is thus a particular solution of (1).
The general solution of (1) is obtained by adding to (5) the general
element of N(A), i.e., the general solution of

Ax =0. (6)

In (2), the columns of A, are linear combinations of the columns of Ay,
say,

Ay = AT or T= AflAZ c (C?"X(’n—r)7 (7)

where the matrix T is called the multiplier corresponding to the partition
(2), a name suggested by T being the “ratio” of the last n — r columns of
AQ to its first r columns.

Using (2), (3), and (7) permits writing (6) as

aln, 1Q" ) <o, ©

whose general solution is clearly

[Q:Qhﬂm (9)

where y € C"™" is arbitrary.
Adding (5) and (9) we obtain the general solution of (1),

{2] -Q {A lb] +Q { } y, Yy arbitrary. (10)

Thus an advantage of partitioning A as in (2) is that it permits solving
(1) by working with matrices smaller or more convenient than A. We also
note that the null space of A is completely determined by the multiplier T’
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and the permutation matrix @, indeed (9) shows that the columns of the
n X (n — r) matrix

Q [I‘T] (11)

form a basis for N(A).

Case 2. A e C"*", ie., Ais of full column rank. Unlike Case 1, here
the linear equation (1) may be inconsistent. If, however, (1) is consistent,
then it has a unique solution. Partitioning the rows of A is useful for both
checking the consistency of (1) and for computing its solution, if consistent.

Let the rows of A be rearranged, if necessary, so that the first r rows
are linearly independent. This is written, analogously to (2), as

_ |4 _ pr |41
PA_[AJ or A=P |:A2 , (12)
where P is an m X m permutation matrix, and A, € CJ*".

If m = r, the matrix As and other items with the subscript 2 are to be

interpreted as absent.
In (12) the rows of As are linear combinations of the rows of A, say,

A2 _ SA] or S _ AQA;]. c (C(m—T)Xr7 (13)

where again S is called the multiplier corresponding to the partition (12),
giving the “ratio” of the last (m — r) rows of PA to its first r rows.
Corresponding to (12), let the permutation matrix P be partitioned as

P= {Pl} . P eCrm, (14)
P
Equation (1) can now be written, using (12), (13), and (14), as
Ir _ Pl
5] e [2] "

from which the conclusions below easily follow:
(a) Equation (1) is consistent if and only if
P,b=SPb (16)
i.e., the “ratio” of the last m — r components of the vector Pb to

its first  components is the multiplier S of (13).
(b) If (16) holds, then the unique solution of (1) is

x = A;'Pb. (17)

From (a) we note that the range of A is completely determined by the
multiplier S and the permutation matrix P. Indeed, the columns of the
m X r matrix

T Ir
P [ S} (18)
form a basis for R(A).

Case 3. A € C"*", with r < m,n. This general case has some of the
characteristics of both Cases 1 and 2, as here we partition both the columns
and rows of A.
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Since A is of rank r it has at least one nonsingular r X r submatrix Aqq,
which by a rearrangement of rows and columns can be brought to the top
left corner of A, say

All A12:| (19)

PAQ = [Am Ag

where P and () are permutation matrices and Ay, € CJ*".

By analogy with (2) and (12) we may have to interpret some of these
submatrices as absent, e.g., A1 and Ags are absent if n = r.

By analogy with (7) and (13) there are multipliers T € C™*("=") and
S € Cm=m)xT gatisfying

A A
2= T and [Asr Ap] = S[An Al (20)
A22 A21

These multipliers are given by
T=A]Apn and S=AyA7 (21)

Combining (19) and (20) results in the following partition of A € CI"*™,

A= PT |:A11 A12:| QT

A21 A22
I
=P [S} Anll, T)Q", (22)

where A;; € CJ*", P and () are permutation matrices, and S and 7' are
given by (21).

As in Cases 1 and 2 we conclude that the multipliers S and T, and the
permutation matrices P and @, carry all the information about the range
and null space of A.

LEMMA 1. Let A € CI"*™ be partitioned as in (22). Then:

(a) The columns of the n x (n —r) matriz
=T
o/, "] (1)

form a basis for N(A).
(b) The columns of the m x r matrix

Pt [H (18)
form a basis for R(A). O

Returning to the linear equation (1), it may be partitioned by using
(22) and (14), in analogy with (4) and (15), as follows:

H Anll. TIQT [iﬂ = [g] b, (23)

The following theorem summarizes the situation, and includes the results
of Cases 1 and 2 as special cases.
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THEOREM 1. Let A € C"*" b &€ C™ be given and let the linear equa-
tion
Ax=Db (1)
be partitioned as in (23). Then:
(a) Equation (1) is consistent if and only if"

P,b=SPb (16)
(b) If (16) holds, the general solution of (1) is
X1| Al_llplb =T

|:X2:| - Q |: O + Q In—r Y, (24)

where y € C"™7" is arbitrary. a

The partition (22) is also useful for computing generalized inverses. We
collect some of these results in the following:

THEOREM 2. Let A € C"*" be partitioned as in (22). Then:
(a) A {1,2}-inverse of A is

A2 g {A(l)ll g} P (Rao [671]). (25)
(b) A {1,2,3}-inverse of A is
A2 = Q [Agll} (I +5*8)~ [I. S|P (26)
(Meyer and Painter [547]).
(c) A {1,2,4}-inverse of A is

ALY =@ H (I +TT")"" [A O] P. (27)
(d) The Moore—Penrose inverse of A is

AT =Q [Cﬂ (I, + TT*) AL (I + 5*S)" ' [I, S*]P (28)

(Noble [614]).

PROOF. The partition (22) is a full-rank factorization of A (see Lemma 1.4),

A=FG, FeCM™" GeCrXm, (29)
with

F=p" {éﬁ] An, G=II, T|Q, (30)
or, alternatively,

F=p" {g] . G=Aull, TIQ. (31)
The theorem now follows from Ex. 1.29 and Ex. 1.17 by using (29) with either

(30) or (31). O

1By convention, (16) is satisfied if m = r, in which case P> and S are interpreted
as absent.
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Exercises
EX. 1. Schur complements and linear equations (Cottle [207]). Let

A A
A=
[Am Aza

and let A/A;; denote the Schur complement of A;; in A, see (0.96).
(a) Let the homogeneous equation Ax = 0 be partitioned as

:| , A1 nonsingular, (32)

A Ar| (x| |0
a1 )
Eliminating x; we get an equation for x2,
(A/A1)x: = 0, (34a)
and then
X1 = —A1_11A12X2. (34b)
(b) Let the equation Ax = b be partitioned as
A1r Agz| [x1 b,
= . 35
{Am A22] {Xz} [bz] (35)
Then (35) is consistent if and only if
(A/An)XQ = b2 — A21A;11b1 (36&)

is consistent, in which case a solution is completed by

X1 = A;ll (b1 — A12X2). (36b)

EX. 2. Consider the vector {El} in RHS(35) as variable. The system (35) gives
2
b1, b2 in terms of x;,x2. We can likewise express X1, bz in terms of b, x2,
X1 _ A;ll —AfllAlg b1 (37)
bo AglAil (A/All) xa |
The operation that takes
A An : 141_11 _A1_11A12
into 1
Az Ago A1 ATy (A/A1)
is called pivot operation or pivoting, with the nonsingular submatrix A1 as pivot.

EX. 3. Let A, Ai1 be as in (32). Then

rank A = rank Ay (38)
if and only if

A/A11 = O (Brand [135]). (39)
EX. 4. Let A, A1 satisfy (32) and (38).
(a) The general solution of (33) is given by

X1 = fAfllAlng, X2 arbitrary.
(b) The linear equation (35) is consistent if and only if
A2 A'by = by

in which case the general solution of (35) is given by

—1 —1 .
X1 = A11 b1 — All A12X2, X9 arbltrary.
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EX. 5. Let A, Ai; satisfy (32) and (38). Then
An] i

Al = [A11n A]"TH |:A21

where

T = ([A“ Aps]A® {‘:;Dl (Zlobec [891)).

EX. 6. Let A € C}*", r < n, be partitioned by

A An 1. X
A= — "l An[, T), AL ecCn 40
{Am AQJ {S} | , Ane€ (40)

Then the group inverse A% exists if and only if I, + ST is nonsingular, in which
case

A* = {IS] (I, + TS)Awn (I, + TS)) " [I. T] (Robert [695]).  (41)

EX. 7. Let A € C*" be partitioned as in (40). Then A is range-Hermitian if
and only if S =T".

EX. 8. Let A € C**™ be partitioned as in (22). Then the following orthogonal
projectors are given in terms of the multipliers S, T and the permutation matrices
P, Q as:
I’r‘ * — *
(a) Pgreay=P7" {S] (Ir+ 8*S)~' [I. 5] P;
I oy
(b) Prar =Q {T} (L +TT*)" ' [, T]Q";

() Pnwa)y=Q L;i] (I +T*T)" [=T* I,,]Q"; and
-

J—

(d) Pnasy=PT [

REMARK. (a) and (d) are alternative computations since

} (Im—r +8S*) ' [-S  Im—r] P.

PR(A) + PN(A*) =1In.

The computation (a) requires inverting the r X r PD matrix I, +5*S, while in (d)
the dimension of the PD matrix to be inverted is (m —r) x (m —r). Accordingly,
(a) may be preferred if r < m — r.

Similarly (b) and (c) are alternative computations since

Prea=y + Pnay = In
with (b) preferred if r <n — 7.
EX. 9. (Albert [8]). Recall the notation of Ex. 2.65. Let

Hyy Hio
H{, Ha)|’

where H11 and Hao are Hermitian. Then:
(a) H % O if and only if

Hii = 0, H11HLH12 = Hi2 and Hoo — HTQH]TlHIQ = O.
(b) H > O if and only if
Hii = O, Hy —HisHLHiy = O and Hao — HiyHyy ' Hiz > O.

-]
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Ex. 10. (Rohde [705]). Let
Hyy  Hiz
H = - R
|:H12 H22:|
be Hermitian PSD, and denote

H + H oG HiH() Hf?HuG@]

H® = (42)

—G(Q)HfQHl('f) G

where
G = Hy — HyHS His
and « is an integer, or a set of integers, to be specified below. Then:
(a) The relation (42) is an identity for & = 1 and a = {1,2}. This means that
RHS(42) is an {a}-inverse of H if in it one substitutes the {a}-inverses
of Hy1 and G as indicated.

(b) If Hao is nonsingular and rank H = rank Hi1 + rank Hao, then (42) is an
identity with o = {1,2,3} and a = {1, 2, 3,4}.

Ex. 11. (Meyer [544, Lemma 2.1], Campbell and Meyer [159, Theorem 7.7.3]).
Let the matrix M be partitioned as
A X
v=15 3]
where A, B are square. Then M has a group inverse if and only if:
(a) A and B have group inverses; and
(b) (I — AA*)X (I — BB*) = O;

in which case,

A# o A®EX(I - BB*) + (I — AA*)XB#? — A* X B#
M = | o

o B#*

In particular, if A is nonsingular,
A™' . AT2X(I - BB¥)- A"'XB#
M#* = | oo ] (43)

o B*

3. Intersection of Manifolds

For any vector f € C™ and a subspace L of C", the set
f+L={f+¢€:LecL} (44)
is called a (linear) manifold (also affine set). The vector f in (44) is not
unique, indeed
f+L=(f+£)+L, forany#elL.
This nonuniqueness suggests singling out the representation
(f—Pf)+ L=P . f+L (45)
of the manifold (44) and calling it the orthogonal representation of £ + L.

We note that Pr.f is the unique vector of least Euclidean norm in the
manifold (44).
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In this section we study the intersection of two manifolds
{f+L}n{g+ M} (46)

for given vectors f and g and given subspaces L and M in C™. The results
are needed in Section 4 below where the common solutions of pairs of linear
equations are studied. Let such a pair be

Ax =a (47a)
and
Bx = b, (47b)

where A and B are given matrices with n columns and a and b are given
vectors. Assuming (47a) and (47b) to be consistent, their solutions are the
manifolds

Afa+ N(A) (48a)
and
B'b+ N(B), (48b)
respectively. If the intersection of these manifolds
{Aa+ N(4)} N {B'b + N(B)} (49)

is nonempty, then it is the set of common solutions of (47a)—(47b). This is
the main reason for our interest in intersections of manifolds, whose study
here includes conditions for the intersection (46) to be nonempty, in which
case its properties and representations are given.

Since linear subspaces are manifolds, this special case is considered first.

LEMMA 2. Let L and M be subspaces of C", with Py, and Py; the
corresponding orthogonal projectors. Then

Pryar = (Pp + Py)(Pr + Pay)T
:(PL+PM)T(PL+PM) (50)
PROOF. Clearly L + M = R([Pr,  Pu]). Therefore,
Priyv =[P. Pum][PL PM}T
Pr,
Py
= (Pr + Pum)(Pr + PM)T, since Pr, and Py are idempotent,
= (P + PM)T(PL + Pu)
since a Hermitian matrix commutes with its Moore—Penrose inverse. U
The intersection of any two subspaces L and M in C" is a subspace
LN M in C™, nonempty since 0 € L N M. The orthogonal projector Prnas
is given in terms of Pp, and P, in the following:

THEOREM 3 (Anderson and Duffin [21]). Let L, M, Py, and Py be as
in Lemma 2. Then

=[P PM}[ }[PL Pul',  (by Ex. 12),

Pran = 2Pp(Pr + Py) Py,
= 2Py (P + Py)tPp. (51)



184 5. GENERALIZED INVERSES OF PARTITIONED MATRICES

See also Section 8.2.
PROOF. Since M C L + M, it follows that

Priv Py = Py = PuPryw, (52)
and, by using (50),
(Pr + Pum)(Pr + PM)TPM = Py = Pu(Pr + PA{)T(PL + Pu). (53)
Subtracting Pa(Pr + PM)TPM from the first and last expressions in (53) gives
Pr(PrL + Pr)' Py = Py (Pr + Par) Pr. (54)
Now, let
H = 2P (P + Py) Py = 2Py (PL + Py) Py
Evidently, R(H) C L N M and, therefore,
H = PravH = Poam|[Po(Pr + P]\/I)TPIM + Py (Pr + PM)TPL]
= Pram (P + Pu)' (P + Pur)
= PramPryuv, (by Lemma 2),

= Pram,

since LNM C L+ M. O
Other expressions for L N M are given in the following theorem:

THEOREM 4 (Lent [507], Afriat [3], Theorem 4.5). Let L and M be
subspaces of C™. Then:

(a) LN M = [PL O] NP, —Pu])=]0 PylN([P. - Pyl
(b) = N(Pp+ + Pye)
(c) =N — P,Py)=N({ — PyPp).
PROOF. (a) x € LN M if and only if
x = Pry = Pyz, forsomey,zecC",
which is equivalent to

x=[P, O] m =[0 Pu m , where m e N(PL - Pul).

(b) Let x € LN M. Then P;.1x = Py;1x = 0, proving that x € N(P,. +
Py;1). Conversely, let x € N(Pp1 + Py;1), ie.,

([ — PL)X+ (I — P]\{)X =0
or
2x = Prx + Pyx
and, therefore,
2|l < [[Pex|| + |1 Parx]],
by the triangle inequality for norms. But, by Ex. 2.52,
[Pl < IIx[l,  [[Pvx] < Ix].
Therefore,
[P = [Ix[| = [|Prrx]|
and so, by Ex. 2.52, PLx = x = PyX, proving x € LN M.
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(¢) Let x € LN M. Then x = Prx = Pux = PrPux and, therefore,
x € N(I — PpPur). Conversely, let x € N(I — PrPar) and, therefore,

x = PLPyx¢c L. (55)
Also,
1Parx|® + || Pag o x||* = |Ix||* = || P Parx|®

< ||Pux|®>, by Ex. 2.52.
Therefore,

Pyix=0, ie,x€eM,
and, by (55),

xeLNM.

The remaining equality in (c) is proved similarly. ([l

The intersection of manifolds, which if nonempty is itself a manifold,
can now be determined.

THEOREM 5 (Ben-Israel [65], Lent [507]). Let f and g be vectors in C™
and let L and M be subspaces of C™. Then the intersection of manifolds

{f+Lin{g+ M} (46)
is nonempty if and only if
g—fel+ M, (56)

i which case:
(a) {f+L}In{g+M}=f+P(PL+Pu)i(g—f)+LNM

(a") =g—Py(PL+Pu)i(g—f)+LnNM
(b) =f+ (P + Py ) Pyi(g—f)+LNM
(v') =g— (P + Py ) Pi(g—f)+LNM
(c) =f4+ (I —PyP) Pyi(g—f)+LNM
(¢) =g (I —-P,Py)tP(g—f)+LNM.

Proor. {f+ L} n{g+ M} is nonempty if and only if
f+f=g+m, forsomelée L, meM,
which is equivalent to
g-f=f-mecL+M.

We now prove (a), (b), and (c). The primed statements (a’), (b’), and (c’) are
proved similarly to their unprimed counterparts.
(a) The points x € {f + L} N {g + M} are characterized by

x=f+Pru=g+ Pyv, forsomeu,veC". (57)
Thus

[P, — Pyl m =g f. (58)
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The linear equation (58) is consistent, since (46) is nonempty and, therefore, the
general solution of (58) is

{3] =[P, -Pull(g—f)+N(P. - Pu)
.

] (PL+PM)T(g—f)+N([PL — Puyl), by Ex. 12. (59)
Substituting (59) in (57) gives
x=f+[P, O] m

=f+P,(PL+Pu)(g—f)+LNM

by Theorem 4(a).
(b) Writing (57) as

Pru— Pyv=g-—f
and multiplying by P,,1 gives
PyioPru=Pyi(g—f), (60)
which implies
(PoL + Pyi)Pru=Py.(g—1f). (61)
The general solution of (61) is
Pru=(Pp. +PML)TPML(g—f)+N(PLL + Py1)
=(Pyi+ Py ) 'Pyi(g—f)+LNM,

by Theorem 4(b), which when substituted in (57) proves (b).
(¢) Equation (60) can be written as

(I — PyPr)Pru=Py.(g—1)
whose general solution is
Pru= (I —PyPL) Pyi(g—f)+ NI — PuPpL)
= (I — PuP) Pyi(g—f)+ LN M,

by Theorem 4(c), which when substituted in (57) proves (c). (]

Theorem 5 verifies that the intersection (46), if nonempty, is itself a
manifold. We note, in passing, that parts (a) and (a’) of Theorem 5 give
the same representation of (46); i.e., if (56) holds, then

f+ PL(PL+ Pu)f(g —f) = g — Pu(Pr+ Pu)f (g — ). (62)
Indeed, (56) implies that
g—f=Priu(g—1)
= (Pp+ Py)(PL+ Pu)' (g — £),

which gives (62) by rearrangement of terms.
It will now be proved that parts (a), (a’), (b), and (b’) of Theorem 5
give orthogonal representations of

{f+Lin{g+ M} (46)
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if the representations {f + L} and {g 4+ M} are orthogonal, i.e., if

felLt, geM™t (63)
COROLLARY 1. Let L and M be subspaces of C™ and let
feLt, geM*- (63)

If (46) is nonempty, then each of the four representations given below is
orthogonal:

(a) {f+Lin{g+M}=f+P(PL+Pu)l(g—f)+LNM

(a') =g— Py(PL+Py)i(g—f)+LNM
(b) =f+ (Ppo+ Py ) Pyi(g—f)+LNM
(b') =g— (Ppo+ Py ) Pu(g—f)+ LN M.
PROOF. Each of the above representations is of the form
{f+L}n{g+M}=v+LNM, (64)
which is an orthogonal representation if and only if
Pramv =0. (65)

In the proof we use the facts
Prav = PoPrav = PoavPr = PuProav = Poav P, (66)

which hold since L N M is contained in both L and M.

(a) Here v = f + Pr(Pr + PM)T(g — f). The matrix Pr, + Py is Hermitian
and, therefore, (Pr, —|—PM)T is a polynomial in powers of Pr,+ Py, by Theorem 4.7.
From (66) it follows therefore that

Pram(Pr+ Pu)' = (Pp + Pu)'Prau (67)
and (65) follows from
Promv = Pramf + Pram PL(P + Par)' (g — )
= Pramf 4 (Pr + Pa) Prane(g — £), by (66) and (67),
=0, by (63).

(a") follows from (62) and (a).

(b) Here v = f + (P;. + Py1) Pyi (g — f). The matrix Ppi + Py,1 is
Hermitian and, therefore, (P, . + Py;1)" is a polynomial in P, 1 + Py, ., which
implies that

Prom(Ppi + Py) = 0. (68)
Finally, (65) follows from
Pramv = Proamf + Poam (Pri + PML)TPML (g—1)
=0, by (63) and (68).
(b") If (63) holds, then
g—f=P, (g 1)
= (Ppr + Pya)'(Ppe + Pya)(g — ),
by Lemma 2 and, therefore,
f+ (Ppo +PML)TPML(g_ f)=g— (Prx +PML)TPLL(g—f)7
which proves (b’) identical to (b), if (63) is satisfied. ]
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Finally, we characterize subspaces L and M for which the intersection
(46) is always nonempty.
COROLLARY 2. Let L and M be subspaces of C"™. Then the intersection

{f+L}n{g+ M} (46)
is nonempty for oll £,g € C" if and only if
LtnM* = {o}. (69)

PROOF. The intersection (46) is by Theorem 5 nonempty for all f,g € C”, if
and only if L + M = C", which is equivalent to {0} = (L + M)+ = L* n M*, by
Ex. 13(b). ([l
Exercises

Ex. 12. Let P, and Py be n x n orthogonal projectors. Then

[P+ Pyt = [iPIﬁM} (Pp + Pu)'. (70)

PrOOF. Use AT = A*(AA")" with A = [P, + Pu, and the fact that Py, and
Pys are Hermitian idempotents. O

Ex. 13. Let L and M be subspaces of C". Then:
(a) (LNM)* =L+ M™"; and
(b) (L*nMH* =L+ M.
PROOF. (a) Evidently, L* C (LN M)* and M+ c (LN M)*; hence
LY+ M c(@LnM)*.
Conversely, from LT C Lt + M* it follows that
(L*+MY* cL =L
Similarly, (L* + M*)* C M, hence
(L*+MY* cLnM
and, by taking orthogonal complements,

(LNM)-c L™+ M*.

(b) Replace in (a) L and M by L* and M~ respectively. O
EX. 14. (von Neumann [840]). Let L1, Lo,... , Ly be any k linear subspaces of
C", k> 2, and let

Q=P Pr,_, - PryPr,Pry--- Pri_, Pry. (71)

Then the orthogonal projector on ﬂle L; is limy, 00 Q™.

Ex. 15. (Pyle [660]). The matrix @ of (71) is Hermitian, so let its spectral
decomposition be given by

q
Q-3 nE
i=1
where
AL 2 A2 > 2 Ay
are the distinct eigenvalues of () and

Ei, Es,... B,
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are the corresponding orthogonal projectors satisfying

Ei+Bst--+E =1

and
E:E; =0, ifi#j.
Then
1>2M2>2X2>--2>2X2>0
and

k
m L; # {0}, if and only if \y =1,
i=1

in which case the orthogonal projector on ﬂle L; is Fh.
Ex. 16. A closed-form expression. Using the notation of Ex. 15, the orthogonal
projector on ﬂle L; is

QM+ =) — (@ -Q" MY, forv=23,.... (72)

If Ag, the smallest eigenvalue of @, is positive, then (72) also holds for v =1, in
which case Q° is taken as I (Pyle [660]).

4. Common Solutions of Linear Equations and Generalized
Inverses of Partitioned Matrices

Consider the pair of linear equations
Ax = a, (47a)
Bx =b, (47Db)
with given vectors a, b and matrices A, B having n columns.

Assuming (47a) and (47b) to be consistent, we study here their common
solutions, if any, expressing them in terms of the solutions of (47a) and
(47D).

The common solutions of (47a) and (47b) are the solutions of the par-

titioned linear equation
A a
sl L) @

which is often the starting point, the partitioning into (47a) and (47b) being
used to reduce the size or difficulty of the problem.
The solutions of (47a) and (47b) constitute the manifolds

Afa + N(A) (48a)
and B'b + N(B), (48b)

respectively. Thus the intersection
{ATa+ N(A)}n{B'b+ N(B)} (49)

is the set of solutions of (73) and (73) is consistent if and only if (49) is
nonempty.

The results of Section 3 are applicable to determining the intersection
(49). In particular, Theorem 5 yields the following:
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COROLLARY 3. Let A and B be matrices with n columns and let a and
b be vectors such that each of the equations (47a) and (47b) is consistent.
Then (47a) and (47b) have common solutions if and only if

B — Afa € N(A) + N(B), (74)
in which case the set of common solutions is the manifold:
(a) Ata + PN(A)(PN(A) + PN(B))T(BTb — ATa) + N(A) n N(B)
(a’) = B'b— PN(B)(PN(A) + PN(B))T(BTb — ATa) + N(A) N N(B)
(b) = (ATA+ B'B)t(Afa+ B'b) + N(A) N N(B).
PROOF. Follows from Theorem 5 by substituting
f=A4'a, L=N(A), g=B'b, M=N(B). (75)

Thus (74), (a), and (a’) follow directly from (56), (a), and (a’) of Theorem 5,
respectively, by using (75).

That (b) follows from Theorem 5(b) or (b’) is proved as follows. Substituting
(75) in Theorem 5(b) gives

{ATa+ N(A)}n{B™ + N(B)}
= A'a+ (A"A+ B'B)'B'B(B'b — Afa) + N(4) N N(B)
= (A" —(ATA+ B'B)'B'BAY) a+ (ATA + B'B)'B'b
+ N(A)NN(B), (76)
since Py(xy1 = Prx+) = X'X for X = A, B.
Now R(A") = R(A*) C R(A*) + R(B*) and, therefore,
A" = (A'"A+ B'B)"(ATA+ B'B)A!
by Lemma 2, from which it follows that
A" —(A"A+ B'B)'B'BA" = (A'A + B'B)" AT,
which when substituted in (76) gives (b). (|
Since each of the parts (a), (a’), and (b) of Corollary 3 gives the so-

lutions of the partitioned equation (73), these expressions can be used to
obtain the generalized inverses of partitioned matrices.

THEOREM 6 (Ben-Israel [65], Katz [472], Mihalyfy [554]). Let A and
B be matrices with n columns. Then each of the following expressions is a

{1,2,4}-inverse of the partitioned matrix [g] :

(a) X =[A" O]+ Pyay(Pnay + Pns)'[-AT BT, (77)

(a’) Y =[0 BY = Py (Pyay+ Py AT BT, (78)

(b) Z = (ATA + B'B)'[AT BT]. (79)
Moreover, if

R(A*) N R(B*) = {0}, (80)

then each of the expressions (77), (78), (79) is the Moore—Penrose inverse
y A
of | 5|
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PROOF. From Corollary 3 it follows that whenever
A a
5= L) ™

is consistent, then X {a]’ Y [{j, and Z {Z} are among its solutions. Also the

representations (48a) and (48b) are orthogonal and, therefore, by Corollary 1, the
a

representations (a), (a’), and (b) of Corollary 3 are also orthogonal. Thus X {b ,

Y {g] ,and Z {E} are all perpendicular to

N(A)N N(B) = N [g] .

By Theorem 3.2, it follows therefore that X, Y, and Z are {1,4}-inverses of {g} .

We show now that X, Y, and Z are {2}-inverses of [g]
(a) From (77) we get

X {g} — A'A 1 Pyiay(Puay + Pasy) (—ATA + B'B).
But
(—ATA+ B'B) = Py(a) — Pn(s) = (Pn(a) + Pns)) — 2Pn(B).
Therefore, by Lemma 2 and Theorem 3,
X {g} =ATA+ PnayPnay+NnB) — Praynn(s)

= A"A+ Py(ay — Py(aynns), since N(A) C N(A) + N(B),

= In — Pn(a)ynn(B), since Pyay =1 — At A. (81)
Since R(H') = R(H*) = N(H)* for H = A, B,

Pnaynne Al =0, Pyaynne Bl =0, (82)

and therefore (81) gives

A
X {B} X =X = Py(aynns) Pray(Pyca) + Paes)[-AT BT,

PynaynnB) = Pnaynns) Py = Praynn )Py sy,

A
X {B} X = X — 3 Pyiaynn(s) (Pyay + Pus) (Pra) + Pres)'[-AT B

= X — 1 Py(aynne) Prayin) —A"T BY], by Lemma 2,
=X — {Pyvaynnes AT BT,

since N(A) N N(B) C N(A) + N(B),
=X, (by (82).

(') That Y, given by (78), is a {2}-inverse of [A

B} is similarly proved.
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(b) The proof that Z given by (79) is a {2}-inverse of {g

} is easy since

z {g} — (A"A+ B'B) (ATA + B'B)

and therefore

z [g] Z—(ATA+ B'B) (ATA+ B'B)(ATA+ B'B)'[AT B
= (A"A+ B'B)T[AT BT
=Z.

Finally, we show that (80) implies that X,Y, and Z given by (77), (78), and

(79), respectively, are {3}-inverses of {A} Indeed, (80) is equivalent to

B
N(A) + N(B) = C", (83)

since N(A) + N(B) = {R(A*) N R(B*)}* by Ex. 13(b).
(a) From (77) it follows that

BX = [BA" O]+ BPy(a)(Pn(ay + Pnsy)'[-AT BT (84)
But
(Px(ay + Pus)(Puay + Py)' = In (85)
by (83) and Lemma 2. Therefore,
Py (ay(Pn(ay + Prns)' = B(Px(ay + Py(s) — Prna))(Pray + Paes)' = B,
and so (84) becomes
BX =[O0 BBT].

Consequently,

Al .. [AAT O
=15 ]

which proves that X is a {3}-inverse of {g} .

(a’) That Y given by (78) is a {3}-inverse of [g] whenever (80) holds is
similarly proved or, alternatively, (77) and (78) give

Y =X =[-A" B~ (Py + Py) Py + Pys)[-AT BT
=0, by (85).

g} when (80)
holds. By Ex. 2.38, the Moore—Penrose inverse of any matrix H is the only {1, 2}-
inverse U such that R(U) = R(H*) and N(U) = N(H*). Thus, H' is also the
unique matrix U € H{1,2,4} such that N(H*) C N(U). Now, Z has already

(b) Finally, we show that Z is the Moore—Penrose inverse of

and it therefore suffices to prove that

been shown to be a {1, 2, 4}-inverse of g ,

N([A* B*])C N(2). (86)
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Let [‘V‘} € N([A* B*]). Then
A'u+B'v=0,
and, therefore,

A'u=-B'v=0, (87)

since, by (80), the only vector common to R(A*) and R(B”") is the zero vector.
Since N(HT) = N(H*) for any H, (87) gives

Atu=Blv= 0,
and therefore by (79), Z {3} = 0. Thus (86) is established, and the proof is

complete. 0
If a matrix is partitioned by columns instead of by rows, then Theorem 6
may still be used. Indeed,

A"
permits using Theorem 6 to obtain generalized inverses of g*}, which is

partitioned by rows and then translating the results to the matrix [A B,
partitioned by columns.
In working with the conjugate transposes of a matrix, we note that
X eA{i} <= X'eA i}, (i=12),
X e A{3} <= X"eA"{4}, (89)
Xe A4} = X*eA*{3}.

Applying Theorem 6 to [g*] as in (88), and using (89), we obtain the
following:

COROLLARY 4. Let A and B be matrices with n rows. Then each of the
following expressions is a {1, 2, 3}-inverse of the partitioned matriz [A B] :

[AT] —Af i

(a) X=1o| ]| gt | P + Pyss) Prias), (90)
[O] —Af

(a) Vi=1pi| — [ Bt } (Pn(a=y + Pn(s) Pn(s), (91)
e

(b) Z = |pt (AAT + BB, (92)

Moreover, if
R(A) N R(B) = {0}, (93)

then each of the expressions (90), (91), (92) is the Moore—Penrose inverse
of [A B]. O

Other and more general results on Moore-Penrose inverses of parti-
tioned matrices were given in Cline [200]. However, these results are too
formidable for reproduction here.



194 5. GENERALIZED INVERSES OF PARTITIONED MATRICES

Exercises

EX. 17. In the following expressions () denotes any {1}-inverse.
(a) A {1}-inverse of {g} is [X Y] where
Y =1 -AYA)(B-BAYAY X =AY —yBAW, (94)
. .| X
(b) A {1}-inverse of [A B] is {Y
Y = (B—AAYB)WD (1 — 4AW)), X =AY — AP By, (95)

] where

EX. 18. Let the partitioned matrix {g} be nonsingular. Then

(a) |:g:| _ = [AJr O] + Pn(a)(Pnay + PN(B))_l[—AT BT]
(al) = [O BT] - PN(B)(PN(A) + PN(B))_I[—AT BT]
(b) :(ATA+BTB)71[AT BJr].

PrOOF. Follows from Theorem 6. Indeed the nonsingularity of [g] guarantees

that (80) is satisfied, and also that the matrices Pn(a)+ Pn(p) and ATA+B'B =

Pr(a*y + Pr(p~) are nonsingular. O
A 1 1], .
Ex. 19. Let A=[1 1], B=[1 2]. Then gl =11 o nonsingular. We
calculate now its inverse using Ex. 18(b).
Here
1 ; 1 1
T_1 fA—=1
veif) vl
t_1]|l tp_ 1|1 2
o'=il] R i}
t tp_ 1 [T 9 t tov—1 |13 =9
A'A+B'B= {9 13], (A'A+ B'B) —{_9 E

and, finally,

-1
L/.rﬂ — (A'A+B'B)'[4" B

(B8 =907 9| _[2 -1

-9 7|09 13| |-1 1]|°
EX. 20. Series expansion. Let the partitioned matrix {g} be nonsingular. Then

A"A+B'B=T+K, (96)
where K is Hermitian and
K| < 1. (97)
From (96) and (97) it follows that

(A'A+B'B)™! = i(—l)jKj, (98)

=0
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Substituting (98) in Ex. 18(b) gives

5 - SRl B (99)

J

Similarly,

Pneay+Pypy=I—-A'A+T-B'B
=1 — K, with K asin (96),

and, therefore,
(PN(A)+PN(B))71 :ZKj. (100)
§=0

Substituting (100) in Ex. 18(a) gives

{gy — Al O]+(I—ATA)§%Kj[—AT BY. (101)

EX. 21. Let the partitioned matrix {A} be nonsingular. Then the solution of

B
A a
5= L) ™
for any given a and b, is
x=> (-1YK'(Ala+ B'b) (102)
§=0
=Ala+ (I - ATA)> " K/(B'b — A'a), (103)
7=0
with K given by (96).
PROOF. Use (99) and (101). g
REMARK. If the nonsingular matrix {g is ill-conditioned, then slow convergence

may be expected in (98) and (100), and hence in (99) and (101). Even then the

a
b] . Thus,

for example, if ||[B'b — A'a)| is sufficiently small, then (103) may be reasonably
approximated by its first few terms.

convergence of (102) or (103) may be reasonable for certain vectors {

Ex. 22. Common solutions for n matriz equations. For each i € 1,n let the
matrices A; € CP*9, B; € CP*" be given, and consider the n matrix equations

AX =B, ieTn (104)
For k € 1,n define recursively
Cy = Aply—1, Dy = By — AgEy—1,
Ey=Ey 14+ Fo1CiDy and  Fy = Fy_1(I — CJCy), (105)
where

Eo = Ogxr, Fo=1,.
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Then the n matrix equations (104) have a common solution if and only if
CiCID; = D;, ieln, (106)
in which case the general common solution of (104) is
X=E,+F.Z, (107)
where Z € C7*" is arbitrary (Morris and Odell [583]).

EX. 23. (Morris and Odell [583]). For i € 1,n let A; € C'*?, and let C;
be defined by (105) for ¢ € 1,n. Let the vectors {A1, Aa, ..., Ay} be linearly
independent. Then the vectors {A1, As, ..., Ax41} are linearly independent if
and only if Cry1 = O.

Ex. 24. (Morris and Odell [583]). For i € 1,n let A;,C; be as in Ex. 23. For
any k < n the vectors {C1,Cs,...,Ck} are orthogonal and span the subspace
spanned by {A1, A, ..., Ax}.

5. Generalized Inverses of Bordered Matrices

Partitioning was shown above to permit working with submatrices smaller
in size and better behaved (e.g., nonsingular) than the original matrix. In
this section a nonsingular matrix is obtained from the original matrix by
adjoining to it certain matrices. Thus, from a given matrix A € C™*" we
obtain the matrix

ool (108)

which, under certain conditions on U and V*, is nonsingular, and from
its inverse At can be read off. These ideas find applications in differential
equations (Reid [683]) and eigenvalue computation (Blattner [113]).

The following theorem is based on the results of Blattner [113]:

THEOREM 7. Let A € C"*™ and let the matrices U and V satisfy:
(a) Ue (C?:nx_(:;_r) and the columns of U are a basis for N(A*).
by Ve C?nx_(:)_r) and the columns of U are a basis for N(A).

Then the matrix

A U
oo (108)
is monsingular and its inverse is
Af oyt
[UT o } . (109)

PROOF. Premultiplying (109) by (108) gives
AAt Ut AvHt
{ VAt V*V*T] '
Now, R(U) = N(A*) = R(A)* by assumption (a) and (0.26) and, therefore,
AAT+UUT =1, (111)

(110)

by Ex. 2.56. Moreover,
VAT = VFATAAT = v A" AT AT = (AV)* AT AT = O, (112)
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by (1.2), (1.4), and assumption (b), while
AVt = AVt = AVTv VT = A(vTvTiry s
=Avvivi =0, (113)

by (1.2), Ex. 1.18(b), (1.3), and assumption (b). Finally, V* is of full row rank
by assumption (b) and, therefore,

Vvt =1, ., (114)

by Lemma 1.2(b). By (111)—(114), (110) reduces to Ip,+n—r and, therefore, (108)
is nonsingular and (109) is its inverse. |

The next two corollaries apply Theorem 7 for the solution of linear
equations.

COROLLARY 5. Let A,U,V be as in Theorem 7, let b € C™, and con-
sider the linear equation

Ax =b. (1)
Then the solution x,y of
A Ul |x b
i~ ol 5] -[o] )
satisfies
x = A'b, the minimal-norm least squares solution of (1),

Uy = Py(a=)b, the residual of (1).

COROLLARY 6 (Cramer’s Rule, Ben-Israel [71], Verghese [835]). Let
A,U,V,b be as in Corollary 5. Then the minimal-norm least-squares solu-
tion x = [z;] of (1) is given by

Alj+<Db] U
det {V*[j <o o
xj; = , jEln. (116)
det AU
Vv O
PROOF. Apply the proof of Cramer’s rule, Ex. 0.59, to (115). O

Exercises

EX. 25. A special case of Theorem 7. Let A € C"*™ and let the matrices
UeC™ ™) and Ve C™*"~") satisfy

AV =0, V'V=1I,,, A'U=0, and U'U=1I,_,. (117)
Then the matrix
A U
o (108)
is nonsingular and its inverse is

[AT 14

- o} (Reid [683]). (118)
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EX. 26. Let A, U, and V be as in Ex. 25, and let

o = min{[[Ax| : x € R(A"), x| = 1}, (119)
B =max{||A"y| : y € C", |ly|| = 1}. (120)

Then
af =1 (Reid [683]). (121)

ProoF. If y € C", |ly|| = 1, then
z=A'y
is the solution of

Az = (I, —UU")y, V'z=0.

Therefore,
a|Aly|| = allz|| < ||Az|, by (119),
=[(Im —UU )yl
<|lyll, by Ex. 2.52 since I, — UU" is an orthogonal projector,
=1.

Therefore a3 < 1. On the other hand, let
x € R(AY), |zl =1,

then
x = Al Ax,
so that
1= x| = [|A"Ax|| < Bl Ax],
proving that a8 > 1, and completing the proof. O

See also Exs. 6.4 and 6.7.
Ex. 27. A generalization of Theorem 7. Let

B C
=15 G
be nonsingular of order n, where B is m X p, 0 < m < n, and 0 < p < n. Then
A1 is of the form
-1 _|E F
AT = {G O] , (122)
where E is p X m, if and only if B is of rank m + p — n, in which case
_ 2 _ p12) _ (12
E=Bxp)rey F=Dyimjoy &= Cr,p).rw) (123)

PROOF. We first observe that since A is nonsingular, C' is of full column rank n—p
for, otherwise, the columns of A would not be linearly independent. Similarly, D
is of full row rank n — m. Since C is m X (n — p), it follows that n —p < m or,
in other words,

m-+p>n.

If: Since A is nonsingular, the m xn matrix [B  C] is of full row rank m, and
therefore of column rank m. Therefore, a basis for C™ can be chosen from among
its columns. Moreover, this basis can be chosen so that it includes all n—p columns
of C'; and the remaining m + p — n basis elements are columns of B. Since B is of
rank m+p—n, the latter columns span R(B). Therefore R(B)NR(C) = {0} and,
consequently, R(B) and R(C) are complementary subspaces. Similarly, we can
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show that R(B*) and R(D™) are complementary subspaces of C? and, therefore,
their orthogonal complements N(B) and N (D) are complementary spaces.

The results of the preceding paragraph guarantee the existence of all {1, 2}-
inverses in the right member of (123). If X now denotes RHS(122) with E, F, G
given by (123), as easy computation shows that AX = I,,.

Only if: It was shown in the “if” part of the proof that rank B is at least
m—+p—n. If A7! is of the form (122) we must have

BF = 0. (124)

Since A~ is nonsingular, it follows from (122) that F is of full column rank n—m.
Thus, (124) exhibits n —m independent linear relations among the columns of B.
Therefore the rank of B is at most p — (n — m) = m + p — n. This completes the

proof. O
Ex. 28.
(a) Let C € R™™" and let the columns of Uy € R™*™~" be an o.n. basis of
N(CT). Then
det® [C' Up] = vol® (C). (125)
(b) Let R € RI*™ and let the columns of Vo € R™* (™~ be an o.n. basis of
N(R). Then
det? [B;} — vol? (R). (126)
Vo

PRrROOF. (a) Follows from Ud Uy = I,

det’ [C Up) =det[C Up)" det[C Uy,

and
c vtlc vg=]¢¢ O]
o ULy

(b) Similarly proved. d

EX. 29. Let A € R, and let Uy € R™*™~") and V; € R™*("~") be matrices
whose columns are o.n. bases of N(AT) and N(A), respectively. Then:

(a) The m-dimensional volume of [A Up] equals the r-dimensional volume

of A.
(b) The n-dimensional volume of [‘;44 equals the r-dimensional volume of
0
A.

PROOF. (a) Every m x m nonsingular submatrix of [A Up] is of the form
[Avs Uol, JeJ(A),

and therefore, vol2,[A  Up] = vol2(A.s), by Ex. 28(a). The proof is completed
by (0.106b). O
Ex. 30. Let A, U, and Vj be as in Ex. 29.

(a) Consider the bordered matrix

A Uo}

B(4) = [VOT a (127)
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Then
vol2(A) = det® B(A), (128)
= det[AA” + UoUJ ], (129)
= det[AT A+ VoV . (130)

(b) If A is square, then
vol?(A) = det?[A 4+ U Vy' . (131)
PROOF. (a) Since the columns of
o
@)

form an o.n. basis of N([A Up]”), we can use Ex. 28(b) and Ex. 29(a) to prove
(128),

det® B(A) = vol2,[A  Up] = vol? (A),
and (129),
volZ,[A Up) =det ([A Uo][A Uo)") = det [AAT + Uy Uy ]. O

Suggested Further Reading

SECTION 2. Ben-Israel [69].

SCHUR COMPLEMENTS. Ando [22], Burns, Carlson, Haynsworth, and Markham
[140], Butler and Morley [144], Carlson [165], Carlson, Haynsworth, and Markham
[168], Corach, Maestripieri, and Stojanoff [205], Crabtree and Haynsworth [210],
Haynsworth [403], Li and Mathias [515], Liu and Wang [520], Neumann [608],
Ostrowski [623], Wang, Zhang, and Zhang [845], Zhang [887]. Other references
given on p. 39.

SECTION 3. Afriat [3].

SECTION 4. Baksalary and Styan [39], Hartwig [379], Harwood, Lovass—
Nagy and Powers [398].

SECTION 5. Further references on bordered matrices are Bapat and Zheng
[50], Blattner [113], Germain—Bonne [298], Hearon [406], Reid [683].

CRAMER’S RULE. Further extensions of Cramer’s rule are Chen [181], Cim-
mino [198], Wang [847], [849], Werner [864].



CHAPTER 6

A Spectral Theory for Rectangular Matrices

1. Introduction

We study in this chapter some consequences of the singular value decom-
position (SVD), encountered previously in §§0.2.14-0.2.15.

The SVD, repeated in Theorem 2, states that for any A € C"*" with
singular values 0(A) = {01,02,...,0,} there exist two unitary matrices
U e U™ ™ (the set of m X m unitary matrices) and V € U™*™ such that
the m x n matrix

01

S = U*AV = : (1)

Oy

) : O]

is diagonal. Thus any m X n complex matrix is unitarily equivalent to a
diagonal matrix

A=UXV". (2)

The corresponding statement for linear transformations is that for any lin-

ear transformations A : C* — C™ with dim R(A) = r, there exist two

orthogonal bases U = {uj,us,... ,u,} and V = {vy,va,... ,v,} of C™

and C", respectively, such that the corresponding matrix representation
Aqy,vy is diagonal,

A{L{,V} = diag (01,... ,0r,0, ... ,0) €Rn><m, (042)

ie.,

3)

AVjZO'jUj, j€17,
Av; =0, jer+1,n.

The expression

01

A=UXV*, Y= . , UeUm™m™ vVeU™n,

Or

201
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is called the singular value decomposition (abbreviated SVD) of A.

The SVD is of fundamental importance in the theory and computations
of generalized inverses, especially the Moore—Penrose inverse. It is the basis
for a generalized spectral theory for rectangular matrices, an extension of
the classical spectral theory for normal matrices. This chapter covers the
SVD and related topics.

Exercises
Ex. 1. A and A* have the same singular values.

EX. 2. Unitarily equivalent matrices have the same singular values.
PROOF. Let A € C™*", and let U € U™*™ and V € U™*™ be any two unitary
matrices. Then the matrix

(UAVY(UAV)* = UAVV AU = UAA™U”
is similar to AA™, and thus has the same eigenvalues. Therefore the matrices

UAV and A have the same singular values. |

EX. 3. (Lanczos [496]). Let A € C;**™. Then ( { &) has 2r nonzero eigenvalues
given by +0;(A), j €1,r.

EX. 4. An extremal characterization of singular values. Let A € CI**™. Then

or(A) = max{||Ax|| : ||x||=1,x L x1,... ,xk-1}, kel,r, (5)
where
|| || denotes the Euclidean norm,
{x1,X2,... ,Xk—1} is an o.n. set of vectors in C", defined recursively by

[ Ax1 || = max{[|Ax]| : [|x|| =1},

A%, | = max{[Ax]| s [xll =1, x Lx1,0xpm1t, G =2 k=1,
and RHS(5) is the (attained) supremum of ||Ax|| over all vectors x € C" with
norm one, which are perpendicular to x1,Xa2,... ,Xg—1.

PRrROOF. Follows from the corresponding extremal characterization of the eigen-
values of A* A, see §0.2.11(d),

Ae(ATA) = max{(x, A"Ax) : ||x]| =1, x L x1,... ,Xk_1}
= (xk, A"Axy), k=1,...,n

since (x, A*Ax) = (Ax, Ax) = ||Ax||®. Here the vectors {X1,...,X,} are an o.n.
set of eigenvectors of A A,
A*Axy, = M(A"A)xi, keT,n. 0

The singular values can be characterized equivalently as

or(A) = max{[|A"y[l: yll=1y Ly1,...,ye-1} = [[A7yl],
where the vectors {yi1,...,yr} are an o.n. set of eigenvectors of AA*, corre-
sponding to its positive eigenvalues

AA*yk = /\k(AA*)yk, ke ﬁ

We can interpret this extremal characterization as follows: let the columns of A
be a;, 7=1,...,n. Then

A"y Z [(aj,y

Thus y1 is a normalized vector maximizing the sum of squares of moduli of its
inner products with the columns of A, the maximum value being o5 (A), etc.
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EX. 5. The singular values of A are the stationary values of

[ Ax|]

fx) = : (6)
[
PROOF. From A*Ax = o®x we get 0° = ”ﬁ:l““; = f%(x). Differentiating f?(x)
and equating the gradient to zero, we again get A*Ax = f2(x)x. a
EX. 6. If A€ C*" is normal and its eigenvalues are ordered by
M (A)] = [A2(A)] = - 2 A (A)] > Arsi(A)] = - = [M(A)]| = 0,
then the singular values of A are o;(A4) = |\;(A)], je€T1,r.
Hint. Use Ex. 4 and the spectral theorem for normal matrices, Theorem 2.15.
EX. 7. Let A € C™*™ and let the singular values of A" be ordered by
o1(AY) > ga(AT) > - > 0. (AT).
Then
oAl = — — jeTr (7)
or—j+1(A)
Proor.
o7 (AT) = \;(A™A"), by definition (0.31b),
=X\ ((AA")T), since ATTAT = A*TAT = (447)T,
. 1
A1 (AAY)
1
= ————, by definition (0.31a).
‘77%—34-1(14) ( ) O
EX. 8. Let || ||F be the Frobenius matrix norm
2 1/2
|A||7 = (trace A™ A) (ZZ |aij] ) (0.50)
=1 j=1
defined on C™*", see, e.g., Ex. 0.34. Then, for any A € C**",
Al =" o3 (A). (8)
j=1
PROOF. Follows from trace A*A =37"_, \;(A"A). d
See also Ex. 62 below.
EX. 9. Let || ||2 be the spectral norm, defined on C™*™ by
|Al|2 = max{V/A : X an eigenvalue of A*A}
— o1 (A), (0.14.2)
see, e.g., Ex. 0.38. Then, for any A € C**", r > 1,
A)
Al AT2 = 1A 9
I4ll4" = 245 )

PROOF. Follows from Ex. 7 and definition (0.14.2). g
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Ex. 10. A condition number. Let A be an n X n nonsingular matrix, and consider
the equation

Ax =b (10)

for b € C". The sensitivity of the solution of (10) to changes in the right-hand
side b is indicated by the condition number of A, defined for any multiplicative
matrix norm || || by

cond(A) = [|A[[[|A7"]. (11)

Indeed, changing b to (b + &b) results in a change of the solution x = A7'b to
X + dx, with
ox = A '6b. (12)

For any consistent pair of vector and matrix norms (see Exs. 0.35-0.37), it follows
from (10) that

bl < [[Al[lIx]- (13)
Similarly, from (12),
]| < [|A™[l|ob]|. (14)
From (13) and (14) we get the following bound:
lox[l [9b]] _ [9b]]
< MANAT I = cond) g (1)

relating the change of the solution to the change in data and the condition number
(11).

Ex. 11. The spectral condition number corresponding to the spectral norm
(0.14.2) is, by (9)

cond(A) (16)

Prove that for this condition number
cond(A*A) = (cond(A))?,
showing that A*A is worse conditioned than A, if cond(A4) > 1 (Taussky [798]).

EX. 12. Weyl’s inequalities. Let A € C}*™ have eigenvalues \1,... , A, ordered
by

and singular values
012022 2 0.

Then

I/\
:h m»

_

3

| A

2
i

<.
[l
—

for k=1,...,r (Weyl [869], Marcus and Minc [534, pp. 115-116]).



2. THE SINGULAR VALUE DECOMPOSITION 205

2. The Singular Value Decomposition

There are several ways to approach the SVD, see, e.g., Stewart [783].Our
approach follows that of Eckart and Young [248]. First we require the
following theorem:

THEOREM 1. Let O # A € C"*", let 0(A), the singular values of A,

be

oL>09> >0, >0, (0.32)
let {ug,ug,... ,u.} be an o.n. set of eigenvectors of AA* corresponding to
its nonzero eigenvalues:

AA*w; = olu;, ieT,r, (19a)

(wj,uj) =65, 4,j€1l,r, (19b)
and let {vi,va,... ,v,} be defined by

v, = %A*ui, i€1,r. (20)
Then {vi,Va,... ,v.} is an o.n. set of eigenvectors of A*A corresponding
to its nonzero eigenvalues

A*Av; = olv;, ie€l,r, (21a)

(vi,vj) =405, i,j€ 1, (21b)
Furthermore,

u; = %Avi, iel,r. (22)

Dually, let the vectors {vi,va,...,v,.} satisfy (21) and let the vectors

{uy,us,... ,u,} be defined by (22). Then {uy,ua,...,u,.} satisfy (19) and
(20).
PROOF. Let {v;: i € 1,7} be given by (20). Then,
A*Avi = i A*AA*U»L'
ai
0;A"u;, by (19a),
o?vi, by (20),

and

(vi,vi) = (A"u;, A"uy)

I
—~
£
=1
~
N
on
<
—
i
©
QO
=

J
=i, by (19b).
Equations (22) follow from (20) and (19a). The dual statement follows by inter-
changing A and A*. O
An easy consequence of Theorem 1 is the following:
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THEOREM 2 (The Singular Value Decomposition). Let O # A € C"*"
and let

o1 >09>-->0,.>0 (032)

be the singular values of A.
Then there exist unitary matrices U € U™*™ and V € U™*™ such that
the matriz

g1

S =U*AV = : (1)

o

0) 0

is diagonal.

PROOF. For the given A € C[**™ we construct two such matrices U and V as
follows.

Let the vectors {uy,... ,u,} in C™ satisfy (19a) and (19b), and thus form
an o.n. basis of R(AA*) = R(A); see, e.g., Corollary 1.2. Let {u,41,... ,um} be
an o.n. basis of R(A)™ = N(A*). Then the set {ui,... , Uy, Urt1,... , Uy} is an
o.n. basis of C™ satisfying (19a) and

A'w; =0, iertLm. (23)

The matrix U defined by
U=[ui ... Ur Urg1 ... U] (24)

is thus an m X m unitary matrix.

Let now the vectors {vi,...,v,} in C" be defined by (20). Then these
vectors satisfy (21a) and (21b), and thus form an o.n. basis of R(A*A) =
R(A*). Let {V.41,...,vs} be an on. basis of R(A*)* = N(A). Then the
set {Vi,...,Vy,Vry1,...,Vn} is an o.n. basis of C" satisfying (21a) and

Av; =0, i€r+1,n. (25)
The matrix V defined by
V=[VL ... Vi Veg1 ... Vy] (26)

is thus an n X n unitary matrix.
With U and V as given above, the matrix

Y =U"AV = (Z[,j]), i€l,m,jeln,

satisfies
Y[i,j]=ujAv; =0 ifi>rorj>r, by (23)and (25),
and, for 4,5 =1,...,r,
X[, j] = uiAv;
= UijuZAA*uj, by (20),
=ojuju;, by (19a),
=05 6ij, by (19b),
completing the proof. O

A corresponding decomposition of AT is given in
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COROLLARY 1 (Penrose [635]). Let A, ¥, U, and V be as in Theorem 2.
Then

AT =Vxiu* (27)
where
T : 1 1 nxm
St=diag (| —,...,—,0,...,0) €R . (28)
g1 O

PROOF. Equation (27) follows from Ex. 1.25. The form (28) for X is obvious.
O
Let A € C7**™ and let the matrices X, U, and V be as in Theorem 2.
We denote by Uy, Vix), and X the submatrices
U(k) = [ul uk] S Cka, V(k) = [Vl Vk] S (CnXk,
01
Z(k) = e Ckxk, (29)

Ok

Using this notation, the SVD’s of A and Af can be written as

A= iy =Umn SV, (30a)
=1
"1

AT =N —vul =V 2 U, 30b
z’:zlaivuz (== (30b)

For 1 < k < r we write, analogously,
k
Ay = Z oiwvi = Uwy SV, € CI " (30c)
i=1

In particular, A = A,).
Exercises
EX. 13. Recall the limit formula for the Moore—Penrose inverse
lim (A"A + A)TTAT = AT (3.43)
There are cases where stopping at a positive A is better than going to the limit

A=0. Let A € C**" and let {uy,us,...,u,} and {vi,va,...,v,} be o.n. bases
of R(A™) and R(A), respectively, as in Theorem 1. Consider the equation

Ax =b, (10)

where b € R(A) is expressed as

b= i ﬁsz
=1

The least-norm solution x = A'b is then

r
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If A is ill-conditioned, this solution is sensitive to errors ¢ in the smaller singular
values, as seen from

o+e o o2 o3
Instead of (31), consider the approximate solution

x(\) = (A"A+ XI)"'A*b

_ o B
Z o2 —i—)\ (32)

where A\ is positive. It is less sensitive to errors in the singular values, as shown
by

(c+te) . o o =\ 5—&—0(02_3)\)52—1—--‘
(0+e)2+A " 024+ (02+))2 (02 + N)3 ’
where the choice A = o2 gives
_(ote) 1 _ 1.
(c+e)2+X 20 103° T
See also Section 8.4.
EX. 14. Let the SVD of A € C"*™ be written as
_y |Eo O
A=U [ 0 O] |4
where X, is as in (29). The general {1}-inverse of A is
So0X
G:V{)(j) Z} U (33)

where X, Y, Z are arbitrary submatrices of appropriate sizes. In particular,
Z = Y 3y X gives the general {1, 2}-inverse;
X = O gives the general {1, 3}-inverse; and
Y = O gives the general {1, 4}-inverse;

finally, the Moore—Penrose inverse is (33) with X = O, Y = O, and Z = O.

Ex. 15. Simultaneous diagonalization. Let A1, Ao € C™*™. Then the following
are equivalent:

(a) There exist two unitary matrices U, V such that both 31 = U*A,V, ¥y =

U* A,V are diagonal real matrices (in which case one of them, say D,

can be assumed to be nonnegative).
(b) A1A3 and A3A; are both Hermitian (Eckart and Young [248]).

Ex. 16. Let A;, A2 € C™*" be Hermitian matrices. Then the following are
equivalent:
(a) There is a unitary matrix U such that both ¥, = U*A U, X3 = U AU
are diagonal real matrices.
(b) A1As and A2 A; are both Hermitian.
(C) A1A2 = A2A1.

Ex. 17. (Williamson [876]). Let A1, A2 € C™*". Then the following are
equivalent:
(a) There exist two unitary matrices U, V such that both 31 = U*A,V, ¥y =

U™ A3V are diagonal matrices.
(b) There is a polynomial f such that A1 A5 = f(A247), A5A1 = f(ATA2).
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EX. 18. UDV™-decomposition. In some cases it is convenient to rewrite the SVD
(4) as

dy

A=UDV* D= : , Ueu™m™ veu™™n, (34)

O )

where the diagonal elements d(A) = {d; : i € 1,7} are complex numbers satisfying

‘d2| = 0y, 2'61777‘. (35)
Indeed, (34) is obtainable by inserting 1 = e¢?e~", for some @ € R, in (4). For
example, let {Gk_: k € 1,r} be real numbers, let © = diag(6x), and denote
e*'© = diag (£ €'%). Then:

A=U _g g_ V*, (E = diag (Ui)a (XS 1,7’),

(> O] [e® O]l[e™® O *
=Ulo o_{o OHO O]V’

(> O] [e® O][e*® o *
7U_O O_{O O]{O IJV’
=UDW",

where,

_[Z 0][e® 0]  [diag(dx) O i —
D—|:O O:| |:O O:|—|: 0 ol di = ore ,]{/‘El,?“, (36)
" e® 0 *

W _[ ; IJ v (37)

The matrix W in (37) is unitary, and will be denoted by V to give (4) and (34)
a similar look. We call (34) a UDV™-decomposition of A.

Theorems 1-2 can be restated for the U DV *-decomposition, for example, by
replacing (20) and (22) by

1. L
vi=—=—A%,;, iel,r, (20%)
and
1 . . *
ui = Av;, i€ 1,r, respectively. (22%)

EX. 19. Normal matrices. If O # A € C}*™ is normal and its nonzero eigenval-
ues are ordered by

then the scalars d(A) = {d1,... ,d,} in (35) can be chosen as the corresponding
eigenvalues
di=MNi, 1E 1,77‘ (39)

This choice reduces both (20*) and (22*) to

u, =v;, 1€l,r. (40)
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ProoOF. The first claim follows from Ex. 6.

Using Exs. 0.22 it can be shown that all four matrices A, A*, AA*, and A*A
have common eigenvectors. Therefore, the vectors {ui,...,u,} of (19a) and
(19b) are also eigenvectors of A* and (20*) reduces to (40). O

EX. 20. Normal matrices. If O # A € C*™ is normal, and the scalars d(A) are
chosen by (39), then the UDV™-decomposition (34) of A reduces to the statement
that A is unitarily similar to a diagonal matrix

A=UDU", see Ex. 0.22(a).

EX. 21. An alternative definition of the matriz volume. The volume of a matrix
A € C**™ with singular values {o; : i € 1,7} is the product of these singular
values

vol A = H 0. (41)
i=1

PrROOF. The SVD (30a) is a full-rank factorization of A, A = CR, with C =
U(,«)E(r), R = ‘/(i) (or, alternatively, A = C1R1, Ch1 = U(r)7 Ry = E(r) ‘/(:))
Therefore
vol A =vol C vol R, by Ex. 0.66,
= vol Uy vol Xy vol V{7,
=vol ¥y, (by Ex. 0.65 since U,yUqry = ViyViry = 1),

|det X(,y|, since X,y is nonsingular.

O

A geometric interpretation: Equations (3) show that the r-dimensional unit
cube O(v1,...,v,) is mapped under A into the cube of sides oy u; (i = 1,...,7),
whose (r-dimensional) volume is

"
|| ;i
i=1

the volume of the matrix A. Since the singular values are unitarily invariant,
it follows that all r-dimensional unit cubes in R(A”) are mapped under A into
parallelepipeds of volume vol A.

See Ex. 8.32 for the special case m =3, n=r = 2.

EX. 22. Let Cx(A) be the k-compound of A € R**". It is an (') x (}) matrix of
rank (Z)7 and its singular values are all products o;, 0y, - - - 0, of singular values
of A. It follows that C,(A) is of rank 1 and its nonzero singular value equals
vol A.

EX. 23. Let o.n. bases of R(A) and R(AT) be given by the {u;} and {v;} of
the SVD (3). Then the Pliicker coordinates of R(A) are given by

u/\:ul/\.../\ur
and those of R(A™) by
v =Vi A AV
Moreover,
Co( AV =vol Au”, Co(ANu = —— V™, (42)

vol A
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correspond to the facts that A is invertible as a mapping: R(A”) — R(A) and A'

is invertible as a mapping: R(A) — R(AT), see also Marcus [533]. In particular,
1

vol A~

We show next that each singular value of the Moore—Penrose inverse Af is dom-

Cr(AT) = (Cr(A)T, and  vol (A1) =

inated by a corresponding singular value of any {1}-inverse of A.

Ex. 24. A minimum property of the Moore—Penrose inverse (Bapat and Ben-
Israel [47]). Let G be a {1}-inverse of A € C7**™ with singular values

01(G) > 02(G) > - > 0,(G), (43)
where s = rank G (> rank A). Then
oi(G) > oi(AY), i=1,...,7 (44)

PRrROOF. Dropping U, V we write

N vt oX] [t vy
so=[v 2% 7
2 xxe
o ? 71’
where 7 denotes a submatrix not needed in this proof. Then, fori=1,... 7,

07 (G) :== M(GGY)
>M(2724+ XX") | eg., [529, Chapter 11, Theorem 11],
>M(27%), eg., [529, Chapter 11, Theorem 9],
= o7 (A"). O
From (44) and definition (0.114b) we conclude that for each k =1,... ,r the
Moore—Penrose inverse A" is of minimal k-volume among all {1}-inverses G of A,

voly G > vol, AT, kE=1,...,r (45)
Moreover, this property is a characterization of A, as shown next.

EX. 25. Let A € R7"*"™ and let k be any integer in 1, 7. Then the Moore-Penrose
inverse A is the unique {1}-inverse of A with minimal k-volume.

PrRoOOF. We prove this result directly, by solving the k-volume minimization
problem, showing it to have the Moore—Penrose inverse as the unique solution.

The easiest case is k = 1. The claim is that A" is the unique solution
X = [x;5] of the minimization problem
minimize 3 vol] X subject to AXA = A, (P.1)

where, by (0.114b),
vol [zi;] = Z lzi;|° = trace X7 X.
ij
We use the Lagrangian function
L(X,A) := L trace X" X — trace AT (AXA — A) (46)

where A = [)\;;] is a matrix Lagrange multiplier. The Lagrangian can be written,
using the “vec” notation, as

L(X,A) = i (vecX,vecX) — (vecA, (AT ®A) vec X)
and its derivative with respect to vec X is
(Vx L(X,A)" = (vec X)" — (vecA)" (AT @ A),
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see, e.g., [529]. The necessary condition for optimality is that the derivative
vanishes,

(vec X)" = (vec M) (AT ® A) = vecO,
or, equivalently,
X = ATAAT. (47)

This condition is also sufficient, since (P.1) is a problem of minimizing a convex
function subject to linear constraints. Indeed, the Moore—Penrose inverse A' is
the unique {1}-inverse of A satisfying (47) for some A (see, e.g., [67]). Therefore
At is the unique solution of (P.1).

For 1 < k < r the problem analogous to (P.1) is

minimize 3 volf X, subject to AXA = A. (P.k)
We note that AXA = A implies
Cr(A)Cr(X)Cr(A) = Cr(A). (48)

Taking (48) as the constraint in (P.k), we get the Lagrangian

L(X,A) = % Z |det X[J|2

I1€Qk,n
Jer,vn

— trace Cx(A)" (Cr(A)Cr(X)Cr(A) — Cr(A)).
It follows, in analogy with the case k = 1, that a necessary and sufficient condition
for optimality of X is
Ce(X) = CL(AT)CL(A)Cr(AT). (49)

Moreover, AT is the unique {1}-inverse satisfying (49), and is therefore the unique
solution of (P.k). d
Note: The rank s of a {1}-inverse G may be greater than r, in which case the
volumes

V01r+1 (G), V01T+2(C7Y)7 ceey VOlS (G)

are positive. However, the corresponding volumes of A" are zero, by (0.114c), so
the inequalities (45) still hold.

3. The Schmidt Approximation Theorem

The data Aqy = {X¢, Uy, Vi } is of size 7 +mr +nr = r(m +n + 1).
In applications where storage space is restricted, or speed of transmission
is important, it would seem desirable to reduce the data size. One such
idea is to approximate the original matrix A = A, by lower rank matrices
A(k), provided the error of approximation is acceptable. This error, using

the Frobenius norm (0.50), is
_ s [¥w © H
P HE [ O Olllr

by O N
14~ Awle = |o(=- [ O])v
— || diag (0,... ,0,0%s1,. 00,0, ,0)||r

O O
(£ )"

i=k+1

The question if there is a better approximating matrix of rank k requires
the following
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DEFINITION 1. Given a matrix A € CI"*" and an integer k, 1 <k <r,
a best rank-k approzimation of A is a matrix X € C;"*" satisfying

[A=X|r=inf JJA=-Z|p. (51)
ZeCy ™

The following theorem confirms that Ay is the best rank-k approxi-
mation of A. The theorem has a long history (see Stewart [783]) and is
often credited to Eckart and Young [247] and Mirsky [558].

THEOREM 3 (The Schmidt approximation theorem [727]). Let A €
Crrxm et 1 <k < r, and let X, Uwy, Vir) be as above. Then a best
rank-k approzimation of A is

A(k) = U(k)Z(k)‘/(}';), (30(3)

which is unique if, and only if, the k™ and the (k+ 1)St singular values of
A are distinct:

Ok 7# O1- (52)

The approzimation error of Ay is

r /
A= Awllr= ( > 0?>1 " (50)
i=k+1

PROOF. For any X € C"™*",
JA = X|[7 = [U(A=X)V[[F = |£=Y|[F = f(Y), say,
where
Y = U*XV = [yij].

Let L be any subspace with dim L < k and let P, denote the orthogonal projector
on L. Then the matrix Y = PrY minimizes f(Y) among all matrices Y with
R(Y) C L, and the corresponding minimum value is

I — PLE|% = [|QE||F = trace £Q* QY
m
= trace XQX = Z crfqii,
i=1
where Q = I — Pr, = [gi;] is the orthogonal projector on L~. Now
inf [A-X|%= inf |Z-Y|%
xecpxn yecy ™
= inf{||¥ — PX||% : over all subspaces L with dim L < k}

= inf{z quii . Q = [qi]’] = PLL, dim L < k}
i=1

and, since 0 < ¢;; < 1 (why?), 7", qis = m —dim L, it follows that the minimiz-
ing

Q= {8 I 0 J is unique if and only if ok # oK1,

and the minimizing Y is, accordingly,

o oo
Y_PLZ_[O O}E
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or
o, ifl1<i=j<k,
Yis = 0, otherwise.
See Ex. 29 for an alternative proof.
An important application of matrix approximation is the total least-
squares (TLS) problem, whose development below is based on Nievergelt
[612]. Given a linear system

O

Ax=Db (53)
the least-squares problem is to solve an approximate system
Ax=b (54)
where
b e R(A) minimizes |[b— blf,. (55)
The TLS problem is to solve an approximate system
Ax=b (56)

where b € R(A) and the pair {4, b} minimizes ||[A:b] — [A:b]||p.
Note that in the TLS problem, both the matrix A and the vector b are
modified.

Since (56) is equivalent to
{_"1] € N([A'b]), (57)

the TLS problem is

find [A:b] e C*(+1)
so as to
minimize |[[A:b] — [A:b]|p (58)

subject to (57), for some x.
THEOREM 4. Let A € CI"*™, let the system (53) be inconsistent, let

[A:b)] have the SVD

. n+1
[A:b] =USV* = Zalulvl, (59)

and let o be the smallest singular value such that vy has nonzero last
component vi[n + 1]. Then a solution of the TLS problem is

[A:b] = [A'b] — o) upvi (60)
and the error of approximation is

I[A:b] — [A:b]||F = o%. (61)

The solution (60) is unique if and only if the smallest singular value oy, as
above, is unique.
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PRrOOF (Y. Nievergelt!). Since (53) is inconsistent, it follows that

rank([A'b])=n+1<m and b#0,

which in turn guarantees the existence of v; with nonzero last component. Denote
the index set of such vectors by

J={j:vln+1#0}, (62)

and their number by [J|. The unitary matrix U = [u1 -+ un] in (59) is m X

m. Consider its submatrix U = [u1 -+ u,+41] whose columns form a basis for
R([A:b]). Let

[A:b] = [A:b] = UY diag (01,... ,00:1)V" (63)

for some Y = [y;;] € C D> ("D 156 that

I[A:B] — [ATb]|F = (a;" il + > oF \yij|2). (64)

2 VE)

Any solution [_XJ of (57) is a linear combination of the singular vectors v;, say

{fl] = Z ;v + Z B;v;, with last component Z a;vin+1] = -1

jed igr jes
Then
o % n+1
0=[A:D] {_J = (Z o uin) (Z avi+ Yy [31"’1)
i=1 jeJ Jg¢J
— ﬁYdiag (o1, yont1)V”™ (Z a;vi+ Z ijj)
JjE€J J¢J

=S ajow+ > Bioju; - a;UYoe;— Y B UY oje;.

Ji€J JEJ jeJ JEJ

Multiplying on the left by {uj : i € J} we get |J| equations
;0 :Z aje; Yejo; —‘,—Z BijeiYe;o,

jeJ J¢J
= yis(a0) + Y v (Bjoy), i€ (65)
jeJ J¢J

Similarly, premultiplication by {uj : ¢ &€ J} gives the n + 1 — |J| equations
Bioi =Y i (o) + > vy (Bo5), i (66)
j€J 2y
Equations (65)—(66) show that the matrix Y = [y;;] has an eigenvalue 1, implying
Y]l > 1.

A matrix Y = [y;;] minimizing (64) has therefore one nonzero, yir = 1 where
or = min{o; : j € J}. (]
If (n+1) € J, i.e., if the smallest singular value o,,41 corresponds to a

singular vector v, 4+; with nonzero last component, then the matrix [Z : B]

IPrivate communication.
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is the best n-rank approximation of [A:b]. In this case Theorem 4 is a
corollary of the Schmidt approximation theorem.

See Ex. 36 for the case where A has deficient column rank.
Exercises
Ex. 29 is an alternative proof of the Schmidt approximation theorem, using the
inequalities for singular values given in Exs. 26-28. These inequalities were proved
by Weyl [868] for integral operators with symmetric kernels and appear here as
given in Stewart [783].

Ex. 26. Let A € C"*™ and let B € C™*" have rank < k < r. Then
Ul(A*B) 20k+1(A). (67)

PROOF. Let A = UXV™ be the SVD of A, and let B = XY " where X,Y have k
columns. Denote by V(1) the submatrix of the first k + 1 columns of V. From
Ex. 0.12 with L = R(V(x41)), M = R(Y) it follows that R(V(;4+1)NN(Y™) # {0},
i.e., there is a linear combination of the first £ + 1 columns of V/,

z=Cvi+Gvet -+ Cer1 Vit
with Y*z = 0. Normalizing z so that ||z||* = ¢f + -+ + (7,1 = 1 we get

01(A—B)? >2z"(A— B)"(A— B)z

=z"A"Az

= (iot +(os + -+ GRaoig

> 0£+1. O
EX.27. If A= A" + A”, then

Oitj—1 < 0i+ ), (68)

where 0,0}, and o/ are the singular values of A, A", and A”, respectively, ar-
ranged in descending order.
Proor. For i = j =1 and ui, vi as in Theorem 1,

o1 = <u1,AV1> = <U1,A/V1> + <U.1,A”V1> < O'i +U¥.

Now, o1(A" — Al;_,)) = 0i(A") and 01(A” — A{;_,)) = 0;(A”) where A{,_,, and
A{;_1y are defined by (30c). Therefore

o+ 05 = 01(A" = Ali_)) + o1 (A" = A(j_yy)
> o01(A = Ali_1y — Al—1)
> 0irj-1, by (67), since rank(A{;_1) + Aj_1) <i+j—2. O
Ex. 28. If A € C**", B € C"*™ with k < r, then
Ul(A*B) 20k+z(A), 121,2, . (69)

ProoF. Use Ex. 27 with A’ = A — B, A” = B, and j = k + 1. The conclusion is
obtained from (68), since ox41(B) = 0. g

Ex.29. If Ae C**™, B e C**", k <, then it follows from (69) that
|A =Bl > 0f41 + - + o7 (70)

This, together with (50), proves the Schmidt approximation theorem.
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EX. 30. Let O # A € C**™ have singular values
o1>022>--2>20,>0

and let M,_, = Z;é (CL”X" be the set of m x n matrices of rank < r — 1. Then
the distance, using either the Frobenius norm (0.50) or the spectral norm (0.14.2),
of A from M,_1 is

inf ||A— X|| = o, (71)
XeM,_4

Two easy consequences of (71) are:
(a) Let A be as above and let B € C™*™ satisfy

1Bl <o,
then
rank(A + B) > rank A.

(b) For any 0 < k < min{m,n}, the m X n matrices of rank < k form a closed
set in C™*™,

In particular, the n x n singular matrices form a closed set in C"*™. For any
nonsingular A € C"*™ with singular values

01202220, >0,
the smallest singular value oy, is a measure of the nonsingularity of A.

Ex. 31. A minimal rank matriz approzimation. Let A € C™*™ and let € > 0.
Find a matrix B € C™*" of minimal rank, satisfying

[A—Bllr<e

for the Frobenius norm (0.50).
SoLUTION. Using the notation of (29),

where k is determined by
T 1/2 T 1/2
(> a@?) " >e (X @) <e (Golub [304]), .
i=k i=k+1

EX. 32. A unitary matriz approzimation. Let U™*™ denote the set of n x n
unitary matrices. Let A € C*™ with an SVD

A=UXV* ¥ =diag(o1,...,0r,0,...,0) € R"*™,
Then

T

inf JA-W|r=|S—1Ilr=,|> 1-0)2+n—r

Weunxn
=1

is attained for

W =UV* (Fan and Hoffman [267], Mirsky [558], Golub [304]).

Ex. 33. The following generalization of Ex. 32 arises in factor analysis; see, e.g.,
Green [321] and Schénemann [728].
For given A, B € C™*", find a W € U™*"™ such that

|[A—BW|r <||A—BX|F forany X € U"*".
SOLUTION. W = UV™* where B*A = UXV™ is an SVD of B*A. O
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EX. 34. Let A be a best rank-k approximation of A € C**" (as given by
Theorem 3). Then Afy), Ax)Afy), and AfyyA(r) are best ran‘k-k approximations
of A;AA*, and A*A, respectively. If A is normal, then Agk) is a best rank-k
approximation of A7 for all j =1,2... (Householder and Young [433]).

EX. 35. Real matrices. If A € R7**"™, then the unitary matrices U and V in the
SVD (4) can also be taken to be real, hence orthogonal.

EX. 36. In Theorem 4, let A € C**™ with r < n, and let the system (53) be
inconsistent. How do the conclusions change?

HINT. Here rank([A:b]) =7+ 1, and the SVD (59) becomes
r+1

i=1

Let {V,42,...,Vns1} be a basis of N([A:b]). The index set (62) is nonempty,
since b # 0, but cannot include any j € r + 2,n + 1 for otherwise (53) is consis-
tent. |

4. Partial Isometries and the Polar Decomposition Theorem

A linear transformation U : C* — C™ is called a partial isometry (some-
times also a subunitary transformation) if it is norm preserving on the
orthogonal complement of its null space, i.e., if

|Ux|| = |||, forallx € N(U)* = R(U"), (72)
or, equivalently, if it is distance preserving
|Ux — Uy|| = ||x —y||, forallx,y € N(U)™-.

Except where otherwise indicated, the norms used here are the Euclidean
vector norm and the corresponding spectral norm for matrices, see Ex. 0.38.

Partial isometries in Hilbert spaces were studied extensively by von
Neumann [840], Halmos [366], Halmos and McLaughlin [367], Erdelyi
[263], and others. The results given here are special cases for the finite-
dimensional space C™.

A nonsingular partial isometry is called an isometry (or a unitary trans-
formation). Thus a linear transformation U : C* — C™ is an isometry if
U]l = ||x]| for all x € C™.

We recall that U € C"*" is a unitary matrix if and only if U* =
U~'. Analogous characterizations of partial isometries are collected in the
following theorem, drawn from Halmos [366], Hestenes [414], and Erdélyi
[256].

THEOREM 5. Let U € C™*™. Then the following eight statements are
equivalent:

(a) U is a partial isometry.

(a*)  U* is a partial isometry.

(b) U*U is an orthogonal projector.

(b*)  UU* is an orthogonal projector.
(c) vu*U =U.
(¢*)y U*UU*=U".
(d) U*=U"
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(e) Ut is a partial isometry.
PROOF. We prove (a) <= (b), (a) <= (e), and (b) <= (c¢) <= (d). The obvious
equivalence (c) <= (c*) then takes care of the dual statements (a*) and (b*).
(a)==(b) Since R(U*U) = R(U"), (b) can be rewritten as

U*U = PR(U*)~ (73)
From Ex. 0.22(b) it follows for any Hermitian H € C"*™ that
(Hx,x) =0, forallxeC", (74)

implies H = O. Consider now the matrix
H = Pry- — U"U.
Clearly,
(Hx,x) =0, forallx e R{U*)" = N(U),
while, for x € R(U™),
(Pru+x,x) = (x,x)
= (U"Ux,x).

Thus (a) implies that the Hermitian matrix H = Pgy~) — U™U satisfies (74),
which in turn implies (73).
(b)=>(a) This follows from

({Ux,Ux) = (U"Ux,x)
= (Prw~x,x) by (73),
= (x,x), ifxe R(U").
(a) < (e) Since
y=Ux, xeR({U"),
is equivalent to
x=U'y, yeR®U),
it follows that
(Ux,Ux) = (x,x), forallxe RU"),
is equivalent to
(y,y) = (U'y,U'y), forally e R(U)=NU")".

(b) <= (c)<=(d) The obvious equivalence (c) <= (c*) states that U* €
U{1} if, and only if, U* € U{2}. Since U* is (always) a {3,4}-inverse of U, it
follows that U™ is a {1}-inverse of U if, and only if, U* = UT. (]

Returning to the SVD of Section 2, we identify some useful partial
isometries in the following theorem:

THEOREM 6 (Hestenes [414]). Let O # A € C™*"™, and let
A=USV", (4)

the unitary matrices U € U™*™ V€ U™*™ and the diagonal matriz ¥ €
R"*™ given as in Theorem 2. Let Uy, Xy, and Vi be defined by (29).
Then:
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(a) The matrices Uy, Vi) are partial isometries with
UnUgy = Preay, UnUs =1, (75)
V(T)V(j) = Pra~), V(’;)V(T) =1I,. (76)
(b) The matriz
E=UnVi (77
18 a partial isometry with
EE* = Ppay, E"E = Pg(a«). (78)
PROOF. (a) That U(,), V|, are partial isometries is obvious from their definitions
and the unitarity of U and V (see, e.g., Ex. 39). Now
UnUe = Ir
by definition (29), since U is unitary, and
Priasy = ATA = AIT)A(,.)
=VinE i UnUmEm Vi, by (30a) and (30b),
=Vin Vi,

with the remaining statements in (a) similarly proved.
(b) Using (75) and (76), it can be verified that

E' = ViU, = EY,

from which (78) follows easily. ]

The partial isometry E thus maps R(A*) isometrically onto R(A).
Since A also maps R(A*) onto R(A), we should expect A to be a “multiple”
of E. This is the essence of the following theorem, proved by Autonne [30)]
and Williamson [876] for square matrices, by Penrose [635] for rectangular
matrices, and by Murray and von Neumann [589] for linear operators in
Hilbert spaces.

THEOREM 7 (The Polar Decomposition Theorem). Let O # A € CI**™.
Then A can be written as

A=GE = EH, (79)

where E € C™*" js a partial isometry and G € C™*™ H € C"*" are
Hermitian and PSD.
The matrices E, G, and H are uniquely determined by

R(E) = R(G), (80a)
R(E*) = R(H), (80b)
in which case
G* = AA*, (81a)
H? = A A, (81b)

and E is given by
E=UnVa). (77)
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PROOF. Let
A=UXV* ¥ =diag(o1,...,0.,0,...,0) (4)

be the SVD of A. For any k, r < k < min{m, n}, we use (29) to define the three
matrices

Yy = diag(o, ... ,o5) € R
Ugy=[ur ... ux] € cmxk, Vi =[v1 ... vi] € crek,
Then (4) can be rewritten as
A= U Zw Vi
= U ZwUk) Um Vi),  since UgyUn) = Ik,
= U Vi) (Viwy Em Vi) ), since Vi Viy = I,
which proves (79) with the partial isometry
E = U Vi (82)
and the PSD matrices
G =UwmEmUm, H=VZmVi- (83)

This also shows E to be nonunique if » < min{m,n}, in which case G and H are
also nonunique, for (83) can then be replaced by

G =UwyS Uy + Ubr1up41,
H = Vi B Vik) + Vi1 Vig,

which satisfies (79) for the E given in (82).
Let now E and G satisfy (80a). Then, from (79),

AA" = GEE*G = GEE'G = GPrp)G = G°,

which proves (81a) and the uniqueness of G; see also Ex. 37 below. The uniqueness
of E follows from

E=FEE'E=GG'E=G'GE=G"A. (84)

Similarly (80b) implies (81b) and the uniqueness of H, E.
Finally, from

G? = AA”
=UmEm Vi VinEmUiy, by (30a),
2 *
= U(T>E(T>U(T)
we conclude that
G=UnEnUi
and, consequently,
G =UwnS UGy (85)
Therefore,
E=G'A, by (84)
= U(T)E;TﬁU(*T»)U(r)E(r)V(f.), by (85) and (30a),
= U(T)V(TA), proving (77). 0
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If one uses a general UDV*-decomposition of A instead of the SVD,
then the matrices G and H defined by (83) are merely normal matrices and
need not be Hermitian. Hence, the following corollary:

COROLLARY 2. Let O # A € C**™. Then, for any choice of the
scalars d(A) in (35), there exist a partial isometry E € C™*™ and two
normal matrices G € C™*™ H € C"*" satisfying (79). The matrices
E, G, and H are uniquely determined by (80a) and (80b), in which case

GG* = AA™, (86)
H*H = A*A, (87)
and E is given by (77). O

Theorem 7 is the matrix analog of the polar decomposition of a complex
number

z=x+1y, x,y real

as
_ i0
z = |zle", (88)
where
2] = (22)'/% = (&% + y*)'/?
and

6 = arctan g.
T

Indeed, the complex scalar z in (88) corresponds to the matrix A in (79),
while 2, |z|, and €? correspond to A*, G (or H), and E, respectively. This
analogy is natural since |z| = (22)'/2 corresponds to the square roots G =
(AA*)Y/2 or H = (A*A)Y/? while the scalar e satisfies

O = 2|, forall z€C,

which justifies its comparison to the partial isometry FE; see also Exs. 55
and 59.

Exercises

Ex. 37. Square roots. Let A € C}'*™ be Hermitian PSD. Then there exists a

unique Hermitian PSD matrix B € C}*™ satisfying

B? = A, (89)

|ze

B is called the square root of A, denoted by A2,
PROOF. Writing A as

A=UDU", U unitary, D =diag(\1,...,A,0,...,0),
we see that
B=UDY2U*, DY? = diag (A}/Q,... V20 ,o) ,
is a Hermitian PSD matrix satisfying (89). To prove uniqueness, assume that B

is a Hermitian matrix satisfying (89). Then, since B and A = B? commute, it
follows from Ex. 16 that

B=UDU"
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where D is diagonal and real, by Ex. 0.22(b), hence
D =D"? by (89). O
Partial Isometries

EX. 38. Linearity of isometries. Let X,Y be real normed vector spaces and let
f: X — Y be isometric, i.e.,

If(x1) — fF(x2)|ly = ||Ix1 — x2||lx, for all xq, x2 € X,
where || [|x and || ||y are the norms in X and Y, respectively. If f(0) = 0, then f

is a linear transformation (Mazur and Ulam). For extensions and references see
Dunford and Schwartz [246, p. 91] and Vogt [837].

EX. 39. Partial isometries. If the n x n matrix U is unitary and Uy, is any
n X k submatrix of U, then Uy is a partial isometry. Conversely, if W € (CZXk
is a partial isometry, then there is an n X (n — k) partial isometry V' such that
the matrix U = [W V] is unitary.

EX. 40. Any matrix unitarily equivalent to a partial isometry is a partial isom-
etry.
PROOF. Let A=UBV*, U e U™ ™,V € U"™". Then

A =VB'U*, by Ex. 1.25,
=VB"U", if Bis a partial isometry,
= A", O
EX. 41. Let A € C**™ have singular values o(A) = {o; : i € 1,7}. Then Aisa
partial isometry if, and only if,
or=1, 1€ 17

Consequently, in any U DV *-decomposition (34) of a partial isometry, the diago-
nal factor D has

ldi| =1, iel,r.

Ex. 42. A linear transformation E : C* — C™ with dim R(F) = r is a partial

isometry if, and only if, there are two o.n. bases {v1,...,v,} and {ui,... ,u,}
of R(E*) and R(E), respectively, such that
ui:Evi7 ’L':L...,TA

Ex. 43. Contractions. A matrix A € C™*" is called a contraction if
|Ax|| < [|x[|, forall x € C". (90)

For any A € C*™ the following statements are equivalent:

(a) A is a contraction.
(b) A* is a contraction.
(¢) For any subspace L of C™ containing R(A), the matrix P, — AA* is PSD.

PROOF. (a)<= (b) By Exs. 0.35 and 0.38, (a) is equivalent to
[All2 < 1,
but
|All2 = ||A|]2, by (0.14.2) and Ex. 1.
(b) <= (c) By definition (90), the statement (b) is equivalent to
0 < (x,x) — (A"x, A"x)
={(I — AA™)x,x), forallxe C™,
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which in turn is equivalent to (c). d

EX. 44. Let A € C™*" be a contraction and let L be any subspace of C™
containing R(A). Then the (m + n) x (m + n) matrix M (A) defined by

is a partial isometry (Halmos and McLaughlin [367], Halmos [366]).
PROOF. The square root v/ P, — AA* exists and is unique by Exs. 43(c) and 37.
The proof then follows by verifying that

M(A)YM(A)*M(A) = M(A). O

EX. 45. Eigenvalues of partial isometries. Let U be an m X n partial isometry
and let A be an eigenvalue of U corresponding to the eigenvector x. Then

N = | Prw x|l
A = ——
[BS]

hence
[A\| <1 (Erdélyi [256]).
PRrROOF. From Ux = Ax we conclude
Al = 1Ux]| = [UPraw=)x|| = [ Praw=)xI|- O
EX. 46. The partial isometry

1 0 O
U=10 2 o
0o 1 o0
has the following eigensystem:
[0
A=0, x=|0]| € N(U),
11
[1
A=1, x= (0| € R(U"),
10
3 0 0 0 0
A=Y x= |2 =L+ " V3l e R(UY), 0 e N(U).
% 0 3 0 3

EX. 47. Normal partial isometries. Let U be an n x n partial isometry. Then
U is normal if and only if it is range-Hermitian.
PROOF. Since any normal matrix is range-Hermitian, only the “if” part needs
proof. Let U be range-Hermitian, i.e., let R(U) = R(U*). Then UU* = U"U, by
Theorem 5. U
EX. 48. Let U be an n x n partial isometry. If U is normal, then its eigenvalues
have absolute values 0 or 1.
PRrROOF. For any nonzero eigenvalue A of a normal partial isometry U, it follows
from Ux = Ax that x € R(U) = R(U"), and therefore

IAllIxI| = U]l = [Ix]|- U
EX. 49. The converse of Ex. 48 is false. Consider, for example, the partial
isometry U = (§3).
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EX. 50. Let £ € C"*" be a contraction. Then F is a normal partial isometry if,
and only if, the eigenvalues of F have absolute values 0 or 1 and rank E = rank
E? (Erdelyi [260, Lemma 2]).
EX. 51. A matrix E € C"*" is a normal partial isometry if, and only if,
W O, .«
0] O} v
where U and W are unitary matrices (Erdelyi [260]).
Polar Decompositions

Ex. 52. Let A € C™*" and let

p-u|

A=GE, (79)
where G is PSD and F is a partial isometry satisfying
R(E) = R(G). (80a)
Then A is normal if, and only if,
GE = EG,

in which case E is a normal partial isometry (Hearon [408, Theorem 1], Halmos
[366, Problem 108]).

EX. 53. Let A € C™*™ have the polar decompositions (79) and (80a). Then A
is a partial isometry if and only if G is an orthogonal projector.
ProOF. If: Let

G=G" =G (91)
Then
AA* = GEE*G, by (79),
=G?, since BE* = Pr(q) by Theorem 5(b*) and (80a),
=G, by (91),

proving that A is a partial isometry by Theorem 5(b*).
Only if: Let A be a partial isometry and let A = GFE be its unique polar
decomposition determined by (80a). Then

AA* =G?

is a Hermitian idempotent, by Theorem 5(b*), and hence its square root is also
idempotent. O

EX. 54. (Hestenes [414]). Let A € C™*" have the polar decomposition (79)
satisfying (80a) and (80b). Then o is a singular value of A if, and only if,

Ax = ocEx, for some 0 # x € R(E"), (92)

or, equivalently, if and only if

Ay =cE"y, forsome0+#y € R(E). (93)
PROOF. From (79) it follows that (92) is equivalent to

G(Ex) = o(Ex),
which, by (81a), is equivalent to
AA*(Ex) = 0*(Ex).

The equivalence of (93) is similarly proved. |
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EX. 55. Let 2 be any complex number with the polar decomposition
z = |z|e’. (92)
Then, for any real «, the following inequalities are obvious:
|z —e“| < |z—e| < |z + €.
Fan and Hoffman [267] established the following analogous matrix inequalities.
Let A € C™*™ be decomposed as
A=UH,
where U is unitary and H is PSD. Then, for any unitary W € U™*", the inequal-
ities
[A=Ul <[[A-W[ <A+ U]
hold for every unitarily invariant norm.
Give the analogous inequalities for the polar decomposition of rectangular

matrices given in Theorem 7. See also Schénemann [728] and Bjorck and Bowie
[110].

EX. 56. Generalized Cayley transforms. Let L be a subspace of C". Then the
equations

U= (P +iH)(P, —iH), (94)
H=i(P, —U)(Py+U)', (95)

establish a one-to-one correspondence between all Hermitian matrices H with
R(H)CL (96)

and all normal partial isometries U with
R(U)=1L (97)
whose spectrum excludes —1 (Ben-Israel [62], Pearl [629], [630], Nanda [590]).
PROOF. Note that
(PL iZH) and (PL —+ U)
map L onto itself for Hermitian H satisfying (96) and normal partial isometries
satisfying (97), whose spectrum excludes —1. Since on L, (P +iH) and (Pr £U)

reduce to (I £ iH) and (I £ U), respectively, the proof follows from the classical
theorem; see, e.g., Gantmacher [296, Vol. I, p. 279]. |

EX. 57. Let H be a given Hermitian matrix. Let L; and L2 be two subspaces
containing R(H) and let Uy and Uz be the normal partial isometries defined,
respectively, by (94). If L1 C Lo, then Uy = UsPr,, i.e., Ui is the restriction of
U to Li. Thus the “minimal” normal partial isometry corresponding to a given
Hermitian matrix H is

U = (Presy + iH)(Premy — iH)'.
Ex. 58. A well-known inequality of Fan and Hoffman [267, Theorem 3] is

extended to the singular case as follows.
If Hy, Hy are Hermitian with R(H1) = R(H2) and if

Uk:(PR(Hk)+7;Hk)(PR(Hk)*l‘Hk)T, k=1,2,
then
U1 = Ua|| < 2|[Hy — Ha|

for every unitarily invariant norm (Ben-Israel [62]).
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Trace Inequalities

EX. 59. Let z be a complex scalar. Then, for any real «, the following inequality
is obvious:

2] > R{ze'}.

An analogous matrix inequality can be stated as follows:
Let H € C"*™ be Hermitian PSD. Then

trace H > R{trace(HW)}, for al W € U"*",

where U™*™ is the class of n X n unitary matrices.
PROOF. Suppose there is a Wy € U™*™ with

trace H < R{trace (HW)y)}. (98)
Let
H=UDU* withU e U™", D =diag(a,...,an),
where {a1,...,an} are the eigenvalues of H. Then
Zai = trace H < R{trace(UDU " Wy)}, by (98),
= R{trace A}, where A=UDV", V" =U"W,, (99)

= S‘E{Z Ai},  where {A1,..., A\, } are the eigenvalues of A.

But AA* = UDV*VDU* = UD?U*, proving that the nonzero {a;} are the
singular values of A. Thus (99) implies that

Sai< S
a contradiction of Weyl’s inequality (17). O

EX. 60. Let A € C"*"™ be given and let W,”*™ denote the class of all partial
isometries in C;"*", where £ = min{m, n}. Then

sup  R{trace(AW)}

mxn
wew,

is attained for some Wy € W,**". Moreover, AWy is Hermitian PSD, and

sup  R{trace(AW)} = trace(AWp) = Z o, (100)
Wew, X i=1
where {o1,...,0,} are the singular values of A. (For m = n, and unitary W,

this result is due to von Neumann [839].)
PRrOOF. Without a loss of generality, assume that m < n. Let

A=GE (79)

be a polar decomposition, where the partial isometry E is taken to be of full rank
(using (82) with k = m), so E € W,*". Then, for any W € W2 *",

trace(AW) = trace(GEW)

S

where the submatrices E- and W+ are chosen so as to make

{bﬂ] and [W W]
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unitary matrices; see, e.g., Ex. 39. Since

G O] . E
[O O} is PSD, and [EJ_

is unitary, it follows from Ex. 59 and (101), that
sup  R{trace(AW)}

Wewpxm

[ w

is attained for Wy € W2*™ satisfying
AWy = G,
and (100) follows from (83). d

EX. 61. Let A € C**™ and B € C2*™ have singular values a3 > ag > --- >
ar >0and B1 > P2 > - > [Bs > 0, respectively. Then
sup R{trace(AX BW)}
is attained for some Xo € U™*™ Wy € U™*™, and is given by
min{r,s}
trace (AXoBWy) = Z aifi.
i=1

This result was proved by von Neumann [839, Theorem 1] for the case m = n.
The general case is proved by “squaring” the matrices A and B, i.e., adjoining
zero rows and columns to make them square.
Gauge Functions and Singular Values

The following two exercises relate gauge functions (Ex. 3.52) to matrix norms
and inequalities. The unitarily invariant matrix norms are characterized in Ex. 62
as symmetric gauge functions of the singular values. For square matrices these
results were proved by von Neumann [839] and Mirsky [558].

EX. 62. Unitarily invariant matriz norms. We use here the notation of Ex. 3.52.

Let the functions || || : C™*™ — R and ¢ : C™ — R be defined, for any
function ¢ : R® — R, £ = min{m,n}, as follows: For any A = [a;;] € C™*" with
singular values

01202220 >0,

|A]|¢ and #(a11, ... ,amn) are defined as
[Ally = ¢(arn,... ,amn) = (01, ... ,0r,0,...,0). (102)
Then:
(a) If ¢ : RY — R satisfies conditions (G1)-(G3) of Ex. 3.52, so does ¢ :
Ccm™ = R.

(b) [UAV ||y = ||A]l for all A € C™ ", U € U™*™, V € Un*™.

(c) Let ¢ : R® — R satisfy conditions (G1)-(G3) of Ex. 3.52 and let ¢p :
R® = R be its dual, defined by (3.130). Then, for any A € C™*", the
following supremum is attained and

sup R{trace(AX)} = || Allsp - (103)
XeCnxm || X|g=1

(d) If ¢ : R® — R is a symmetric gauge function, then éﬁ\ :C™ 5 Ris a
gauge function, and || ||4 : C™*"™ — R is a unitarily invariant norm.

(e) If || || : C™*™ — R is a unitarily invariant norm, then there is a symmetric
gauge function ¢ : R® — R such that || || = || |4
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PROOF. (a) Follows from definition (102).
(b) Obvious by Ex. 2.
(c) For the given A € C™*",

sup R{trace(AX)}

Xecnxm
1X]lp=1
= sup R{trace(AUXV): U U™,V eU™ ™}, by (b),
X€C7L><7’L
IX]lp=1

= sup 0; &, by Ex. 61,
(&1, ,80)=1 ZZ:

=¢p(o1,...,0r), by (3.131a) and (3.131c),
= [Allep, by (102),

where 01 > 02> - >0, >0 and & > & > --- > & > 0 are the singular
values of A and X, respectively.

(d) Let ¢p be the dual of ¢ and let (¢p) : C™™ — R be defined by (102) as

(¢p)(ar, ..., amn) = [Allop, for A= ai].
Then
(#p)(a11, ... s amn) = [|A"[lsp, by Ex. 1,
= sup R{trace(A*X)}, by (103),

X:[zij]ecmxw,
G (@110, Tmn)=1

= sup Y @y,

é(x11, Tmn)=1 4;
proving that @ : C™ — R is the dual of ¢ : C™" — R, by using (3.131a) and
(3.131c). Since ¢ is the dual of ¢p (by Ex. 3.52(d)), it follows that ¢ is the dual
of (¢pp) and, by Ex. 3.52(d), ¢ : C™" — R is a gauge function. That I s is a
unitarily invariant norm then follows from (b) and Ex. 3.56.

(e) Let || || : C™*™ — R be a unitarily invariant matrix norm and define
¢ :RY = R by
$(x) = d(a1, 72, ,x¢) = || diag (|21, , |ze])|| € .
Then ¢ is a symmetric gauge function and || || = || ||4- O

EX. 63. Inequalities for singular values. Let A, B € C™*™ and let
o> >0 >0

and

fr>-2>Bs>0

be the singular values of A and B, respectively. Then, for any symmetric gauge
function ¢ : R® — R, £ = min{m, n}, the singular values

Mz 27w >0
of A+ B satisfy
¢(’Yl7'~~ 77t707"' 70)§¢(a17"' 7a7‘707"' 7O)+¢(/817 7BS707"' 70) (104)

(von Neumann [839]).
PROOF. The inequality (104) follows from (102) and Ex. 62(d), since

1A+ Blle <[|Alls +[IBllo- U
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5. Principal Angles Between Subspaces

This section is based on Afriat [3], where more details, results, and refer-
ences can be found.
We use the Euclidean vector norm and the corresponding matrix norm
|| - ||2. All results are stated for the real case, analogous results hold for C™.
DEFINITION 2. (Afriat [3]). Let L, M be subspaces in R™. The sub-
spaces are:

(a) orthogonal if L C M+ and M C L+, which is equivalent to Py Py =
0;

(b) inclined otherwise; and

(c) orthogonally incident if LN (LN M)+ and M N (L N M)+ are or-
thogonal.

(d) L is completely inclined to M if LN\ M+ = {0}; and

(e) L, M are totally inclined if they are completely inclined to each
other.

(f) The dimension of inclination between L, M is

r(L, M) = rank(Pr, Pyy).
(g) The coefficient of inclination between L, M is
R(L, M) = trace (Pr,Py).
(h) A pair of subspaces L1, My are reciprocal in L, M if
L, = P.M,, M, =PyL,; and

(i) a pair of vectors x,y are reciprocal if they span reciprocal lines.

In particular, the inclination coefficient between a pair of vectors x,y,

R(x,y) = trace(

(xx7) <ny>):( Oy o sy}, (105)

(x"x) (y"y) x"x)(y"y)
giving the angle 0 < Z{x,y} < m/2 between the vectors.

Eigenvalues and eigenvectors of the products Py, Py;, Py P, are used
below. The following properties are stated for complex matrices:

LEMMA 1. Let L, M be subspaces of C™ and let x, denote an eigen-
vector of P, Py corresponding to the eigenvalue A. Then:

(a) The eigenvalues X are real and 0 < X < 1.

(b) If A # p, then xx, x,, are orthogonal.

(¢) An eigenvector xy (i.e., PLPyx = %) is in LN M (the eigenvectors
x1 span LN M ).

1L
(d) An eigenvector xq (i.e., PLPyx =0) is in M+ & (M N L*).
(e) If the columns of the matrices Qr € C™ * Qu € C™™ are o.n.
bases for L and M, respectively, then

MPLPy) ={0?: 0 € a(QsQum)},

i.e., the eigenvalues of P, Py are the squares of singular values of

Q1.
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PROOF. If A # 0, then
Pr.Pyxy = Axx
shows that x) € L and, therefore,
Pr Py Prxy = Axy,

but Pr, Py Pr, = PLPJ%/_[PL = PLij(PLP]u)*, showing that Pr, Py Pr, is Hermitian
and PSD, proving (b) and 0 < A. The inequality A < 1 is from

A = 0 PrPuxs)
(xx,%2)
Part (e) follows from Pr, = QLQL, Pu = QuQiy- 0

THEOREM 8 (Afriat [3], Theorem 4.4).

(a) Any reciprocal vectors X,y in L, M with inclination coefficient o2
are eigenvectors of Pr, Py, Py Pr, both with the eigenvalue o2.
(b) If x is an eigenvector of Pr Py with eigenvalue o2, then y = Pyx
s an eigenvector of Pyy Pp with the same eigenvalue, and X,y are
reciprocal vectors in L, M with inclination coefficient o2.
PROOF. If x,y are reciprocals, then \x = Pry, puy = Pux, for some A\, u € R,
and

Mx,x) = (x, PLy) = (x,y). .. A= g:i;
wly,y) =y, Pux) = (y,x). .. p= é;: yi,
A= b y)” = cos’ Z{x,y} = 0.

(x,x)(y,y)
. PLPux = pPry = Aux = o? X,

PMPLy = APyx = Apy = 0-2 y,

proving (a). Conversely, if x is an eigenvector of Py, Py for the eigenvalue o2 and,
if y = Pux, then Pry = PLPyx = o?x and Py Pry = o2Pyx = Uzy, S0 y is
an eigenvector of Py Pr with eigenvalue o2, and x,y are reciprocals. O

THEOREM 9 (Afriat [3], Theorem 5.4). If xx,yx are reciprocal vectors
of L, M with inclination \, A = «, 3 # 0, then the orthogonality conditions
Xqo L X3, Xa L Y, Ya uE X3, Ya 1 Ys, (106)
are equivalent, and hold if o # 3.
PROOF. Let the vectors be normalized, so that (xx,yx) = A and
PLyA :)\1/2X)\, PMX)\ :)\1/2}’»
Then

<Xltvy)\> = <Xlt7 PLyA> = )‘1/2 <XH7X>\>7
showing that x, L yn <= x, L x,, since A # 0. The remaining equivalences
follow by symmetry. The computation

a' 28 (ya,x5) = a'*(ya, PLys) = a/*(PLya,y5) = a(Xa,¥5),

a' 2B (ya,x5) = B (Prrxa, x5) = 8% (X, Puxs) = B{Xa,y5),
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gives
Oé(XUH y/5> = /B<X047 yﬁ>

and (106) holds if a # (. (]
Let L, M be subspaces and consider the reciprocal subspaces Pr, M, Py L.
They have the same dimension,

dim PpM = dim Py L =r(L, M), (107)
and their coefficient of inclination is
R(Py L, PLM) = R(L,M). (108)

The subspaces P, M, Py L are spanned by pairs x;,y; of reciprocal vectors,
which are eigenvectors of Pr, Pys, Py Pr, corresponding to nonzero eigenval-
ues 0?2 = cos? Z{x;, yi}.

DEFINITION 3. The angles 0, = Z {x;, y;} between reciprocal vectors,
0<6<b<-- <0, <2, r=r(LM) (109)

are called the principal angles, or canonical angles, between L and M.
Using Lemma 1(a,b) and the extremal characterization of the eigen-
value of Hermitian matrices, §0.2.11(d), we get the following result, an
alternative definition of principal angles:
THEOREM 10. Let L, M be subspaces in R™, with dimension of incli-
nation v = r(L, M). The principal angles between L and M,

0<b << <6,<7 (109)
are given by
cosb; = {xi,yi) (110a)
[l
(x,y) xeL, x.L1zx —_—
:max{i: ’ ’ kGl,zfl},
x|yl yeM, yLyw
where
(x5, yi) €L xM, iel,r, (110Db)
are the corresponding pairs of reciprocal vectors. ([l

Lemma 1(e) allows using the SVD to compute principal angles as fol-
lows:

LeEMMA 2 (Bjérck and Golub [112]). Let the columns of Qr, € R"**
and Qpr € R™ ™ be o.n. bases for L and M, respectively, let r = r(L, M),
and let

o1>2022>--20,>0

be the singular values of QEQL, then

cosl; =0, i1€l,r, (111)

and
o1=-=0r=1>041 ifandonlyif dim(LNM)=k. O
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The following concept is another measure of the angles between sub-
spaces:

DEFINITION 4. Let L, M be subspaces of R™. The distance between L
and M is

dist(L, M) = ||Pr — Pasl|2 (112a)
pL-P

= sup M (112b)
xER™ [l

The geometric meaning of dist(L, M) is given in the next lemma, which
follows from the CS-decomposition of Stewart [781]. We give a geometric
argument.

LEMMA 3. Let L, M be subspaces of R"™. Then
dist(L, M) = sin 0* (113)

where 0% is the mazimal angle between vectors x € LN (LN M)t and
yeMn(LNM)*.

PROOF. An elementary geometric argument shows that RHS(112b) < 1, see
Ex. 67. If LN M™* # {0} or M N L+ # {0}, then * = 7/2 and RHS(112b) = 1

by taking x in the nonempty intersection. Assume L, M are totally inclined (and
therefore dim L = dim M by Ex. 0.12). Then

dist(L, M) = sup | (114)
xeL  |IXIl
Indeed,
RHS(112b) > RHS(114), by definition,
and
[(Pr — P )x|| which is infinite in the excluded
< av - 70
RES(L2b) < sup =5 case ML # {0}),
= RHS(114).

Consider the right triangle with sides ||x|, ||x — PmX||, || Pamx]|. The ratio ||x —
Purx||/||x]] is the sine of the angle between x and Pyx. We conclude that

Xy — yr
RHS(114) = w

where x,, y, = PuX, are the reciprocal vectors, corresponding to the largest
principal angle between L, M. O
See also Exs. 68-69 below.

We next discuss inequalities involving principal angles. Let

0<b << <6< (109)
be the principal angles between the subspaces L, M and define
T
sin{L, M} := [ sin 6;, (115a)
i=1
cos{L, M} := H cos 6;. (115b)

i=1
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Note that (115a) and (115b) are just notation, and not ordinary trigono-
metrical functions. In particular,

sin? {L, M} + cos* {L, M} < 1.

Let L be a subspace of R™ of dimension r, spanned by vectors {vy,... ,vy}.

Let x € R™ be decomposed as x = x;, + x,. with x; € L, x;. € Lt and
let the one-dimensional subspace M be spanned by x. Then the equation

voly41(V1, ..., Vg, X)
= 2.77
Izl vol.(vi,...,Vg) (2.77)
can be written as
volp41(V1, ..oy Vi, X) = vola(vy, ..., vg) ||x]|2 sin6, (116)

where 6 is the principal angle between x, L. For the general case, Afriat
gave the following “equalized” Hadamard inequality.

LEMMA 4 (Afriat [3], Corollary, p. 812). Let
A=[A; Ay), A} € RP*E Ay € RX™,
Then
volgym A = vol Ay vol Ay sin{R(A1), R(A2)}, (117)
where sin{R(A1), R(As)} is the product of principal sines between R(A;)
and R(As). O

In Lemma 4 the matrices Ay, As are of full column rank. A general-
ization of the Hadamard inequality follows; see also Ex. 70 below.

THEOREM 11 (Miao and Ben-Israel [549], Theorem 4). Let
A=[A; Ay, Ay e R}*™, Ay e R rank A = { + m.
Then
vol A = vol Ay vol As sin{R(A1), R(A2)}. (118)
Proor.
vol? A= "vol® A,
7

where the summation is over all n x (¢ + m) submatrices of rank ¢ + m. Since
every n X (£ + m) submatrix of rank ¢ + m has ¢ columns A, from A; and m
columns A, j, from As, then

Vol2 A = ZZVO]Q[A*JI A*Jz},

Jy J2
= Z Zvol2 Ay g, vol? A.y, sin®{R(A1), R(A2)}, by Lemma 4,
Jy J2
= VOl2 Al VOl2 A2 SiHQ{R(Al), R(AQ)}
]

The Cauchy—Schwarz inequality, Ex. 0.2, is next extended to matrices
of full column rank.
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THEOREM 12 (Miao and Ben-Israel [549], Theorem 5). Let B, C €
R*". Then

| det(BTC)| = vol B vol C cos{R(B), R(C)}, (119)

where cos{R(B), R(C)} is the product of principal cosines between R(B)

and R(C), see (115Db).

PROOF. Let @p and Q¢ be o.n. bases for R(B) and R(C), respectively, so that,
B=QsRp, C=«QcRoc,

for some matrices Rg, Rc € R.*". Then

|det(BCO)| = | det(Rj)|| det(Rc)| | det(QEQc),

= vol B vol C cos{R(B), R(C)}, by Lemma 2. |
Exercises
EX. 64. (Afriat [3, Theorem 4.6]).
LN (PLM)"=LNM"=Ln(PuL)". (120)

PRrOOF. If u = Prv, then Pru = u and, therefore,
u=FP,v, PyPru=0 <= u=PFPrv, Pyu=0,
proving L N (PLM)J‘ = L N M*. The other statement is proved similarly. O

EX. 65. (Afriat [3, Theorem 4.7]). If the subspaces L, M are inclined, then the
reciprocal subspaces Pr M, Py L are totally inclined.

ProOOF. Since Pr, Py and Pr, Py Pr, = PPy (PLPM)T have the same range, any
0 # x € PLM is x = P, Py Prv for some v, and therefore x is not orthogonal to
the vector Py Prv € Py L. O

EX. 66. (Afriat [3, Theorem 4.8]). If L, M are inclined subspaces in R", then:

i

(a) L= (PLM)& (LnM™t).
L

(b) M = (PuL)® (MNL™").

(¢) PLM, Py L are totally inclined.

(d) dim PM = dim Py L = r(L, M).

(e) PuL L (LNM™*Y).

(f) PLM L (M N L™%).

(g) (LAM*Y) L (MnL%).

EX. 67. Let L, M be subspaces of R™. Then
1P — Pull2 < 1.

PROOF. Use the definition (112b), and for any x € R™ consider the right triangle
{0,x, PLx}. Then the point Prx is on a circle of diameter ||x|| centered at x/2.
Similarly, the right triangle {0, x, Pyx} shows that the point Pysx lies on a circle
of diameter ||x|| centered at x/2. Therefore the two points Prx, Pax are on
a sphere with diameter and center as above, and the length of the difference
||Prx — Parx|| is no greater than ||x||, the diameter of the sphere. O

EX. 68. Let L, M be inclined subspaces of R™. Then the following statements
are equivalent:

(a) dist(L, M) < 1.

(b) LAM* = {0}, MNL* = {0}.

(¢) dim L =dim M = dim (PLM).
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PrOOF. (a) => (b) If0#x¢€& LM, then Prx = x and Pux = 0.
. (Pr — Pam)x = x, showing that ||Pr — Pa||2 > 1, contradicting (a). The other
statement follows by interchanging L and M.

(b) = (c) If dim L > dim M then there is 0 # x € LN M* (see
Ex. 0.12). Similarly, dim L < dim M is excluded by (b). It remains to show that
dim L = dim(Pr,M). Suppose dim(PrM) < dim L. Since PLM C L it follows
that there exists 0 # x € L such that x € (PLM)L. Therefore x = Prx € M+,
and x € L[ M™, a contradiction.

(¢) = (a) From (c) and Ex. 66(a) we conclude that L = Pr M. Similarly,
(c) and Ex. 66(b,d) yield M = Py L. Therefore, by Ex. 66(c), L and M are totally
inclined, so the maximal angle #* between x € LN(LNM)* andy € MN(LNM)*
is acute. Then (a) follows from Lemma 3. g

Ex. 69. Let L, M be subspaces of R". Then dist(L, M) = 0 if and only if
L=M.
EX. 70. A generalized Hadamard inequality. Let A = [A1 As] be a square matrix
and let A; € R™**, Ay € R™*™. Then

| det(A| = volg(A1) vol(A2) sin{R(A1), R(A2)}.
ProoOF. Follows from Theorem 11. O

In the following exercises we use the notation of §0.5.3, p. 29. In addition:

The basic subspaces of dimension r of R™ are the (:f) subspaces

Ti={x=zx] ER": 2, =0k &I}, JEQrn, (121)
which, for » = 1, reduce to the n coordinate lines

Rijyi={x=[z] eR": 2, =0if k #j}, jeln (122)

EX. 71. (Miao and Ben-Israel [549, Corollary 2]). Let A € R7"™*™ T € Qpm.
Then

oA ry Lot
cos{R(A),Rf"} = = (123)
for any J € J(A).
Proor. Let I = {i1,i2,...,ir}, B = [ei,... €], and for any J € J(A) let
C = A.y. Then
R(B) =R}, R(C)=R(A), and B"C= Ay,

and, by Theorem 12,

cos{R(A), RY'} = cos{ R(B), R(C)} = L9t 417] O

VOl A*J ’

Note that for any I € Qy m, the ratio |det Ars|/ vol A.s is independent of
the choice of J € J(A).

EX. 72. Let
1 2 3
A=|4 5 6],
7 8 9
with rank 2 and let I = {1, 2}, J = {1, 2}. Then

|det Ars| =3, vol Awy = /32 + 62 + 32 = 36,
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and, by (123),
cos{R(A), Ry} = L.

Ex. 73. (Miao and Ben-Israel [549, Corollary 3]). Let L C R™ be a subspace
of dimension 7. Then

Z cos’{L,RT"} = 1.
1€Qr,m

PROOF. Follows from (123) since vol® A,y = Drera det?Ar. g

EX. 74. (Miao and Ben-Israel [553, Theorem 2]). If L and M are subspaces of
R"™ of dimension r, then
cos{L,M} < Z cos{L,R7} cos{M,R7},
JEQrn

with equality if and only if the corresponding Pliicker coordinates of L and M
have the same signs.

EX. 75. Let A € R7"*". Recall the representation of the Moore—Penrose inverse
A" as a convex combination of basic inverses (see p. 122),

AT= 3" Ay, (3.75)
(I,J)eEN(A)
with weights
detQA]J
g = . (I, J) € N(A). 3.77
1 S det?Axs (I1,J) e N(4) (3.77)
(K,L)EN(A)

Reversing the roles of A, AT, and using (3.104), we get a representation of A as a
convex combination

det? AIJ
=2 > opa @i (124)

I€Z(A) JeT(A)

where (AT)7; is an m x n matrix with the inverse of the (J, I) th submatrix of At
in position (7, J) and zeros elsewhere. An alternative statement of (124) is given
below.

EX. 76. (Miao and Ben-Israel [553, Theorem 3]). If A € R**™, r > 0, then
there exist linear operators {Bys : (I,J) € N(A)} such that Bry : R} — R} is
one-to-one and onto, N(Bry) = (R?)L, and

A= Z Z cos’{R(A),R}"'} cos’{R(A"),R"}} Br.. (125)
I€Z(A) JeT(A)

OUTLINE OF PROOF. Let A = CR be a rank factorization and apply (124) to
C, R, separately, to get

Then use (123) and the facts Z(A) = Z(C), R(A) = R(C), J(A) = J(R),
R(AT) = R(RT), and A" = RTCT. O
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6. Perturbations

We study the behavior of the Moore—Penrose inverse of a perturbed matrix

A+ E, and its dependence on Af and on the “error” E. Only a few results

are shown, the reader is referred to Stewart [781] and Stewart and Sun

[784, Chapter III] for more details, references, and related results. Again,

the results are stated for real matrices, the complex analogs are easy to see.
If A € R™™™ is nonsingular, then all matrices

{A+ BB <1/1471}
are nonsingular, with inverse
(A+E)y 't =Aa"1"—(A'RA ! +(A'E)?A - (127)

see Ex. 77. Therefore the set R?*™ of nonsingular matrices is open (as a
subset of R"*™), and the inverse function f(A) = A™! is continuous in this
set,

|Bx]| =0 = (A+E,)"!' = A7!

for every nonsingular A, see also Ex. 78.
The example

S A

shows that the Moore-Penrose inverse is not continuous
E, -0 == (A+Ey) - A"
The main result in this section is
(A+ E)t - A«  rank(A + E;) — rank(4),

a condition violated by (128), where rank(A + Ej) = 2 for all k.

The matrix norms || - || used here are unitarily invariant. We denote
by A=A+E a perturbation of the matrix A € RI™*™. We can sim-
plify the notation by multiplying with suitable unitary matrices U, V', since
IUTAV| = ||A|. T U = [U; Us] € U™™ and V = [Vi Vo] € U™ are
unitary matrices with R(A) = R(Uy), R(AT) = R(V1), then

UT AV, UlTAVQ] _ [AH 0}

T _
UrAV = [UQTAvl UTAV,| ~ |0 o

(129a)

where Aj; is 7 X r and nonsingular. Applying the same matrices U,V to E
and A we get

Tt |ULEVL ULEVy|  [Ein Eio
UTEV — [UQTEvl orev| = e mel (129D)
~ AL+ E, FE A, E
Ty - |An 1 EBu| _ |An B 19
U'AV By, Eoy By Esl’ (129¢)

where [A11+E11 Elg] € R™"™,
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DEFINITION 5. (Wedin [855]). The matrix A = A+ E is an acute
perturbation if

HPR(A) — PR(A")HQ <1 and ||PR(AT) — PR(A“T)”Q < 1, (130)

in which case we say that A and A are acute.

THEOREM 13 (Stewart and Sun [784], Theorem II1.3.1). Let A, E €
R™*" A=A+ E. The following statements are equivalent:

(@) [Preay — Preall2 <1;
(b) R(A)NR(A)* = {0} and R(A)R(A)* = {0}; and
(c) rank(A) = rank(A) = rank(Pr(4)4).
Corresponding statements hold for the subspaces R(AT), R(ZlT).

PROOF. See Ex. 68 above. ]
For AT to remain well behaved, the perturbation A cannot stray too
far from the original matrix A. This is the case for acute perturbations.
THEOREM 14 (Stewart and Sun [784], Theorem II1.3.3). Let A €
R ™. Then A is an acute perturbation if and only if the r X r subma-
triz /Ll 18 nonsingular and

Eyy = Ey AT Ery (131)
in (129c¢), in which case,
~ L]~
A= [S} Anll, T) (132)
with
T = Ex A7}, S=A7'Eis, (133)
and
~ ~ 11t
Af =1, Tt A7} [S} : (134)

PROOF. If Aj; is singular, then Theorem 13(b) is violated. Condition (131)
is then equivalent to Theorem 13(c). The rest follows as in (5.22) and Theo-
rem 5.2(d). ]

It follows that lim 3, , rank(A) = rank(A) if and only if A is eventually
an acute perturbation and the Moore—Penrose inverse is continuous on the
set of acute perturbations. The following theorem shows what to expect in
the nonacute case:

THEOREM 15 (Wedin [855)). If A, A are not acute, then
~ 1

AT = Aly > e,

1E]2

L

IE]l2

(135a)

| ATz > (135b)
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PROOF. Let A be nonacute. Then one of the two equations in Theorem 13(b),
or one of the analogous statements for the subspaces R(AT), R(AT), is violated.
Suppose there is a 0 # x € R(A) N R(A)* (the other three cases are similarly
treated) and assume ||x||2 = 1. Then
x=xTAATx =x (A + E);{itx =xTEA'x

< || Bll2)| AT 2.

1=xTx=x" PR<A)

- ~ 1
AT > AT > TER
proving (135b). Since ATx = 0 (from x € R(A)* = N(A")) we have

AT — AT|l2 > ||(AT — A)x]|2 = | ATx|2 >

- HEH
completing the proof. B O
Explicit expressions for Af are available:
THEOREM 16.
AT — AT = —ATEAT + ATPy(ar) — Py 5 AT (136a)
ATPR(A EPR(AT)AT +A R(A)PN(AT)
Py g)PR(AT)AT (136b)
— _Af Py EPparyAf + (AT A)tP AT)E Pyary
— Py B Preay(AAT)T. (136¢)
Ifﬁ s acute,
At — AT = —ATEAT, (136d)

PROOF. That A" +RHS(136a) is the Moore-Penrose inverse of A 4+ E can be
checked directly. The last two terms in RHS(136a) drop if A s acute, giving
(136d). Finally, (136b)—(136¢c) are obtained from (136a) by inserting harmless
factors, such as Pp47) in front of At (]

Expression (136¢), with E, AT, and At appearing in all terms, allows
writing an error bound for LHS(136a) in the form:

THEOREM 17 (Wedin [855]). If ||| is a unitarily invariant norm, then
1A — AT < p max{||AT|1%, |AT|IP}] E]], (137)
where = 3 (sharper values of p are given for specific norms). O

In the acute case, error bounds for || AT — Af|| are obtained from (134).

Exercises
EX. 77. Let A € R™™" be nonsingular and let || || be any multiplicative matrix
norm (see p. 13). Then A + E is nonsingular for any matrix E satisfying
1
1Bl < 5= (138)
[A=H]

and its inverse is (127).
PrROOF. From

A+E=A(I+A'E)
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and Ex. 0.47, it follows that A 4+ E is nonsingular if A™'E is convergent which,
by Ex. 0.41, is implied by ||[A™'E|| < 1, and therefore by ||A™!||||E|| < 1. The
expansion (127) is obtained by taking the inverse

(A+E)'=I+A"'E)'a™!
and expanding (I + A~'E)™", as in (0.66). d
See also Ex. 30.
EX. 78. The inverse function f(A) = A~! is differentiable in R} *",

fl(A)dXx =—-A""dx A", (139)
PROOF.
im [(A+dX)"t - A" —(AHdX ATY| _ 0
lldX || =0 [dX ||
by (127). O

EX.79. If A € C™ ™, E € C™*™, then the last n—r singular values of A = A+FE
satisfy

Gy o+ < |E|E

PRrOOF. Use (70). d
EX. 80. If the matrices A, E in R™*"™ satisfy
R(E) C R(A), (140)
R(ET) c R(AT), (141)
and
|ATE|| < 1 (142)

for any multiplicative matrix norm, then
(A+E) =1 +AE)'AT (143)

PrOOF. The matrix B = I + ATF is nonsingular by (142) and Exs. 0.41 and 0.47.
Since

A+E=A+AA'E, by (140),
= A(I + A'E),

it suffices to show that the matrices A and B = I + A' have the “reverse order”
property (4.31),

(AU+ATE) = (I + ATE) AT
which by Ex. 4.22 is equivalent to
R(ATAB) c R(B) (144)
and
R(BB"A") c R(AT). (145)
Now (144) holds since B is nonsingular and (145) follows from
R(BBT"A") = R((I + ATE)(I + ATE)" AT)
=RAT + ETATTAT + ATE(I + ATE)TAT)
C R(AT), by (141). O
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EX. 81. Error bounds for generalized inverses (Ben-Israel [63]). Let A, E satisfy
(140)—(142) or, equivalently, let A, A be acute with zero blocks Eiz, E21, Fa2 in
(129b). Then,

|ATE|||| A"

At B) — Al <] . 14

Ia+ Byt - af) < WA (146)

If (140) and (141) hold, but (142) is replaced by
IATIE] < 1, (147)
then
12
t_ 4t < JATIEIE]

I(a+B) — ') < {2 (148)

ProoF. From Ex. 80 it follows that
(A+E) —A' =14+ ATE) AT — AT
=> (-1)*(A'E)* AT — AT, by (142) and Ex. 0.47,
k=0
=S (AT AT

k=1

and, hence,
I(A+E)T = AT <> AT E) | )AT|
k=1
_ lIATE||| AT
=SaE ™ (142).

The condition (147), which is stronger than (142), then implies (148). g

7. A Spectral Theory for Rectangular Matrices

The following theorem, due to Penrose [635], is a generalization to rectan-
gular matrices of the classical spectral theorem for normal matrices (The-
orem 2.15).

THEOREM 18 (Spectral Theorem for Rectangular Matrices). Let O #
A e C™™ and let d(A) = {d1,... ,d,} be complex scalars satisfying

di| =05, i€, (35)
where
o1 >09>->0,>0 (0.32)

are the singular values, o(A), of A.
Then there exist r partial isometries {E; : i € 1,7} in CT"*" satisfying

EE =0, BE;=0, 1<i#j<r, (149a)

where

E= Z E; (150)
=1
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is the partial isometry given by (77) and

A=Y dE; (151)
=1

Furthermore, for each i = 1,...,r, the partial isometry (d;/|d;|)E; is
unique if the corresponding singular value is simple, i.e., if a; < ;1 and
a; > a1 for2<i<randl <i<r-—1, respectively.

PROOF. Let the vectors {ui,us,...,u,} satisfy (19a) and (19b), let vectors
{v1,va,...,v,} be defined by (20), and let
Ei:uivf, i:l,...,r. (152)

E; is a partial isometry by Theorem 5(c), since E; E; E; = E; by (19b) and (21b),
from which (149a) also follows. The statement on uniqueness follows from (152),
(35), (19a), (19b), and (20). The result (151) follows from (30a), which also shows
the matrix F of (77) to be given by (150). Finally, (149b) follows from (150),
(151), and (149a). 0

As shown by the proof of Theorem 18, the spectral representation (151)
of A is just a way of rewriting its SVD. The following spectral representation
of At similarly follows from Corollary 1.

COROLLARY 3. Let A,d;, and E;, i = 1,...,r, be as in Theorem 18.
Then
"1
AT=N" —E,. 153
> (153)
= a

If A € C*™" is normal with nonzero eigenvalues {\; : i € 1,7} ordered
by

A= [Aa| = - = A (38)

then, by Ex. 19, the choice

di=X;y t€1,7, (39)
guarantees that
w=v; iclr, (40)

and, consequently, the partial isometries E; of (152) are orthogonal projec-
tors

P,=wu;, ielr, (154)
and (151) reduces to
A=>" NP, (155)
i=1

giving the spectral theorem for normal matrices as a special case of Theo-
rem 18.

The classical spectral theory for square matrices (see, e.g., Dunford
and Schwartz [246, pp. 556-565]) makes extensive use of matrix functions
[ Cm*m — C™*" induced by scalar functions f : C — C, according to
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Definition 2.1. Similarly, the spectral theory for rectangular matrices given
here uses matrix functions f : C"™*™ — C™*™ which correspond to scalar
functions f : C — C, according to the following:

DEFINITION 6. Let f: C — C be any scalar function. Let A € C"*"
have a spectral representation

A=Y "d;E; (151)
i=1

as in Theorem 18. Then the matriz function f : C™*"™ — C™*" corre-
sponding to f : C — C is defined at A by

A) = Z f(di)E;. (156)

Note that the value of f(A) defined by (156) depends on the particular
choice of the scalars d(A) in (35). In particular, for a normal matrix A €
C™*™ the choice of d(A) by (39) reduces (156) to the classical definition —
see (170) below — in the case that f(0) = 0 or that A is nonsingular.

Let

di
A= U(T)D(T) ‘/(:)a D(T) = . ) (30&)
dr
be a UDV*-decomposition of a given A € C**". Then Definition 6 gives
f(A) as
f(dy)
f(A) =Um f(De)Viey, (D)) = : (157)
f(dr)
An easy consequence of Theorem 18 and Definition 6 is the following:

THEOREM 19. Let f,g,h : C — C be scalar functions and let f,g,h
Cmxm — C™*™ be the corresponding matriz functions defined by Defini-
tion 6.

Let A € CI"*™ have a UDV*-decomposition

A =Ur Dy Viyy (30a)
and let the partial isometry E be given by
E=UpnVi). (77)

Then:

(a) If f(2) = g(2) + h(2), then f(A) = g(A) + h(A).
(b) If f(2) = g(2)h(z), then f(A) = g(A)E"h(A).
(e) If f(2) = g(h(2)), then f(A) = g(h(A)).

PROOF. Parts (a) and (c) are obvious by Definition (156).
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(b) It f(2) = g(2)h(2), then

oE ) = (3 o)) (30 5) (3 M E).
i—1 j=1 k=1
by (156) and (150),

= Zg(di)h(di)Ei, by (149a) and Theorem 5(c),

:Zf(di)Ei = f(A). O

For matrix functions defined as above, an analog of Cauchy’s integral
theorem is given in Corollary 4 below. First we require

LEMMA 5. Let A € C"*™ be represented by
A=Y "d;E;. (151)
i=1

Let {C/l; : j €1,q} be the set of distinct {d; : i € 1,7} and let

E;:Z{Ei;di:@}, i=1,....q. (158)

3

For each j €1,q letT; be a contour (i.e., a closed rectifiable Jordan curve,
positively oriented in the customary way) surrounding d; but no other dj.
Then:

(a) For each j € 1,q, l/?; is a partial isometry and

—k

L= 1 (zE — A) dz. (159)

2w Jr,

(b) If f: C — C is analytic in a domain containing the set surrounded

by
q
r=Jr,
j=1
then
_ 1
S H@E; = 5 [ FEGE - 4) d (160)
e 271 r
i particular,
At =L 1(;/;E — Al dz. (161)
2 Jp 2

PROOF. (a) From (149a) and Theorem 5 it follows that E‘; and E; " are partial
isometries for each j € 1,¢. Also, from (150), (151), and Corollary 3,

(zE - A)f = Z#Ek (162)

z—d
k=1 k
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hence

1 |

Ly {dy=d;}

by the assumptions on I'; and Cauchy’s integral theorem,

=FE,, by (158).

(b) Similarly, we calculate

o [reeE- Asz—ZZ(Qm/ SO Vg =y B

j=1k=1 Ly j=1

= Zf E;, proving (160).
Finally, (161) follows from (160) and Corollary 3. (]

Cartan’s formula for matrix functions
1
f(A) = — / f(2)(zI — A)~tdz (2.53)
2me Jp

is extended to rectangular matrices as follows:
COROLLARY 4. Let A, E,T', and f be as in Lemma 5. Then

1
- i _ At
7(4) E(2m /F F(2)(2E — A) dz)E. (163)
PROOF. Using (150) and (160) we calculate
T s ' * i
(357 e =4 ) = (S m) (2 10055 ()
= Zf(dj)Ej, by (149a) and Theorem 5(c),
=1
= f(A). O
The generalized resolvent of a matrix A € C™*™ is the function ﬁ(z, A):
C — C™*™ given by
R(z,A) = (zE — A)f, (164)

where the partial isometry E is given as in Theorem 18. This definition is
suggested by the classical definition of the resolvent of a square matrix as

R(z,A) = (21 — A)™!,  for all z & A(A). (2.55)

In analogy to the classical case — see (2.56) — we state the following identity,
known as the (first) resolvent equation.

LEMMA 6. Let A € C"*™ and let d(A) and E be as in Theorem 18.
Then

R(\ A) = R(u, A) = (1 = NR(X, A)R(p, A) (165)

for any scalars A, u & d(A).
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PROOF.
EOJD*§WJD=OE*AV*WE*AV,bYUM%

72(/\ de  p— k)
_Z()\ di)(u — dk)
- (u—A)(;AfdkEis)E(; - Fi).

by (149a), (150) and Theorem 5(c),
= (u— AR\, A)R(u, A), by (162). O

E}, (162),

E

%

The resolvent equation, (165), is used in the following lemma, based on
Lancaster [494, p. 552].

LEMMA 7. Let A € C™*"  let d(A) and E be given as in Theorem 18,
and let the scalar functions f,g : C — C be analytic in a domain D con-
taining d(A). If T is a contour surrounding d(A) and lying in the interior
of D, then

2m / FOOR(, A) d)\) ( 2; /F g(A)ﬁ(A,A)dA)
= — / FIVGR(, A) . (166)

PROOF. Let I't be a contour surrounding I" and still lying in the interior of D.
Then
1 1
g R, A) dA

2wt S ~ omi ry

which when substituted in LHS(166) gives

2m/f AAd@ @%Agmmmﬂm@

g()R(u, A) dp,

~ 0z /Fl/ fOx R(\, A)ER(u, A) dA\dpu
_ xm—mmm
_47r /Fl/f - d\du, by (165)

= 2m/f R\, A)d),

since [ [9(n)/(X — w)]dp = —2mig(\) and [L[f(N)/(A — p)]dX = 0, by our
assumptions on I', I';. O

We illustrate now the application of the above concepts to the solution
of the matrix equation

AXB=D (167)
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studied in Theorem 2.1. Here the matrices A € C™*" B € CF*¢, and
D € C™*¢ are given and, in addition, the matrices A and B have spectral
representations, given by Theorem 18 as follows:

b p
A=>"dtE},  E*"=) E} p=rankA, (168a)
and
q q
B=> dfEP, EP=) EFP, q=rankB. (168b)
; =1

THEOREM 20. Let A, B, D be as above, and let 'y and I'y be contours
surrounding d(A) = {df',... ,d2'} and d(B) = {df,... ,dP}, respectively.
If (167) is consistent, then it has the following solution:

1 R(A\, A)DR(y, B)
X=-— dpdA. 1
472 /1“1 Ty Ap a (169)

PROOF. From (163) it follows that

_ Al L 5 A
A=E (W /Fl /\R()\,A)dA)E

and
1 ~
B=EP(— B)du ) E®
(2m. /F2 nR(p, )du)
Therefore,
AxB =4[ i/ R( / R”’ d)\]B
21 27rz
=E* / R A A) d)\ / R (u, B d,u ,
27T

by a double apphcatlon of Lemma 7,
= EY(E*"DEP) E®, by (160) with f =1,
= Pr(ayDPg~), by (78),
= AA'DB'B
= D, if and only if (167) is consistent, by Theorem 2.1.

Alternatively, it follows from (161) and (169) that X = ATDB', a solution of
(167) if consistent. |

For additional results along these lines see Lancaster [494] and Wimmer
and Ziebur [879].

Exercises

EX. 82. If A € C**™ is normal with a spectral representation

A= NP (155)
i=1
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then, for any f € F(A), definition (2.42) gives

Zf )Pi + £(0)Py(a), (170)

since the eigenvalues of a normal matrix have index one.

EX. 83. Generalized powers. The matrix function f : C™*"™ — C™*™ corre-
sponding to the scalar function

f(z) = 2",k any integer,
is denoted by
F(4) = A"

and called the generalized | th power of A € C"™*™. Definition 6 shows that

Z drE;, by (156), (171a)
or, equivalently,
A" = Uy DV, by (157). (171b)
The generalized powers of A satisfy
E, k=0,
AR = AR=D R A, k>1, in particular, A" = A, (172)
ASRFD B A=) k< -—1.

Ex. 84. If in Theorem 18 the scalars d(A) are chosen as the singular values of
A, ie., if d(A) = o(A), then for any integer k,

ey G (173a)
ACHD = 4(A%A)F = (AA%)F A, (173b)

in particular,
A gt (173c)

Ex. 85. If A € C}*” is normal and if the scalars d(A) are chosen as the
eigenvalues of A, i.e., if d(A) = A(A), then

A*, k>1,
A<k> = PR(A)a ]C = O, (174)
(AhE, k< -—1.

EX. 86. Ternary powers. From (173b) follows the definition of a polynomial in
ternary powers of A € C™*™ as a polynomial

ZpkAleLl) — Zpk(AA*)kA
k k

Such polynomials were studied by Hestenes [417] in the more general context of
ternary algebras.

In (177) below, we express A' as a polynomial in ternary powers of A*. First
we require the following:
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Ex. 87. (Albert [9, p. 75]). Let A € C**™ be Hermitian and let a vanishing
polynomial of A, i.e., a polynomial m(\) satisfying m(A) = O, be given in the
form

m(A) = eX (1 — Ag(N)) (4.13)
where ¢ # 0, £ > 0, and the leading coefficient of ¢ is 1.
Then
A" = q(A) + q(0)[Aq(A) - 1], (175)
and, in particular,
A™' =¢q(A), if A is nonsingular. (0.131)

PROOF. From (4.13) it follows that
A= A" q(A)
and since A is Hermitian
AT = (AN A = AATq(A)
= AAT[g(A) — q(0)] + AAT4(0)
= q(A) — q(0) + AATq(0) (176)

since q(A) — q(O) contains only positive powers of A. Postmultiplying (176) by
A gives

ATA = [q(A) — q(O)]A + Aq(O)
= q(A)A = Aq(A),

which, when substituted in (176), gives (175). |
Alternatively, (175) can be shown to follow from the results of Section 4.6, since
here AP = AT,

EX. 88. Let A € C™*™ and let
m(A) = eA“(1 = Ag(\)) (4.13)
be a vanishing polynomial of A*A, as in Ex. 87. Then
Al = g(A"A)A* (177)
(Penrose [635], Hestenes [417], Ben-Israel and Charnes [77]).
PROOF. From (175) it follows that
(A" A)" = q(A"A) + q(0)[A" Ag(A”A) - 1,
so, by Ex. 1.18(d),
Al = (A"A)TA" = g(A"A)A™. O
A computational method based on (177) is given in Decell [223] and in Albert
(9]
EX. 89. Partial isometries. Let W € C™*™. Then W is a partial isometry if
and only if
W = i
for some A € C™*".
PRrROOF. Follows from (157) and Exs. 40-41. O
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EX. 90. Let U € C™*™. Then U is a unitary matrix if and only if
U =e" 4 Py (178)

for some Hermitian matrix H € C™*". Note that the exponential in (178) is
defined according to Definition 6. For the classical definition 2.1 (page 68), Eq.
(178) should be replaced by

U=e". (178")

Ex. 91. Polar decompositions. Let A € C**™ and let
A=GE=EH (79)

be a polar decomposition of A, given as in Corollary 2. Then, for any function
f, Definition 6 gives

f(A)=f(G)E = Ef(H), (179)
in particular,

A® = GFE = EH", for any integer k. (180)

8. Generalized Singular Value Decompositions

This section is based on Van Loan ([831]. Two generalizations of the SVD
are described. For more details, and other generalizations, see the suggested
reading list on p. 256.

8.1. The B-SVD. The SVD concerns the diagonalization of an m xn
matrix using unitary transformations. The generalized SVD described here
is about a simultaneous diagonalization of two n-columned matrices.

The singular values of a matrix A are defined as the elements of the set

o(A)={o: >0, det(A*A—o°I)=0}.

A natural generalization is the following;:
DEFINITION 7. Let A € C**", B € C**". The B-singular values of A

are the elements of the set
w(A,B) ={u: p>0, det(A*A— p?*B*B) = 0}. (181)
A corresponding generalization of the SVD, see Theorem 2, is the fol-
lowing theorem.

THEOREM 21 (The B-Singular Value Decomposition, Van Loan [831],
Theorem 2). Let A € C**™, B € C™™ and a > n. Then there exist unitary
matrices U € U and V € U** and a nonsingular matriz X € C**"
such that

U'AX =¥, =diag(aq,... ,an), «a; >0, (182a)
V*BX =Xp =diag(f1,...,08,), B >0, (182b)

where ¢ = min{b,n}, r = rank(B), and

Bi> > P> Bopr = =By =0, (182¢)
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Moreover,
{p: p>0} if aj =0 foranyjer+1n,
A, B)= «; — 183
& ) {Z RS 177"} , otherwise. (183)
Bi
A .
PROOF. Let k = rank B and consider the SVD,
<Al L. _|D O
where Y, Z are unitary, 1 > -+ > Y > Ye41 = - = v, = 0, and D =
diag(y1,--- ,7&) is nonsingular. Let Z) denote the submatrix formed by the
first k columns of Z, and define A1, By by
Ay A 1
5] - [s) 7w
It follows from (184) that
ATA1 + B;Bl = 1. (185)
Let the SVD of By be
V*BlW:diag(ﬁl,... ,ﬂp)7 /81 > ZﬁZH (186)
where V, W are unitary and p = min{b, k}. Define the nonsingular matrix
D'W O
X=2 [ o In—lc:| . (187)
It follows then from (184) and (186) that, with ¢ = min{b,n},
V*BX:dlag(ﬁla 76‘1)7 /8P+1:"':ﬂq:07 (188)

A comparison of (186) and (188) shows that rank B = rank B; and (188) reduces
o (182b)—(182c¢).
The columns of AW form an orthogonal set
(AW)* (A W) = W*(I, — B B1)W, by (185),
=diag (1 - B,...,1—f7), by (186).
Therefore there exists a unitary matrix U € U*** and real «; such that
AW =U diag (au,... ,ax) € coxk

where the a; can be assumed nonnegative and ordered: a1 > --- > ak. Defining
a; =0 for i € k+ 1,n, we write

.o o D'w o] _ ..
U'AX =U AZ{ o In,k}_dlag(al""’a")

which is (182a). Finally, it follows from (182a)-(182b) that

det(A"A —p ’B* B) =det(X 2H ,u2ﬂi2) H al.

1=r+1
which implies (183). ]
REMARK 1. (a) If B € C"*™ is nonsingular, with singular values 3; >
- > [Bp > 0, there is a unitary matrix ¢ such that

Q" (A"A - »B*B)Q = (AQ)"(AQ) — p* diag(f7, ..., B7)-
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The B-singular values of A are then, in agreement with (183),

1223 3,
where the «; are the singular values of A.

(b) If both a < n and b < n, then the conclusions of Theorem 21 need
not hold, as shown by the example A=[1 0], B=1[0 1].

(¢) The last n — k columns of X, which by (187) are the last n — k
columns of Z, form an o.n. basis of a subspace that is orthogonal to the
subspace spanned by the first k£ columns of X.

(d) If aj = 0 for any j € 7 + 1,n, then the 5 column of X satisfies
Ax = 0, Bx = 0. It follows that the case {u : > 0} in (183) is equivalent
to N(A)N N(B) # {0}.

The next example illustrates the usefulness of the B-SVD. See also
Ex. 92 below.

ExXAMPLE 1. (Lawson and Hanson [504]). Consider the quadratic func-
tion

f(x) = [[Ax = b|* + X* || Bx — c||?, (189)

where A € R**", B € R*™ a > n, and A > 0. It is required to find the
(unique) minimum-norm minimizer of f, i.e., the vector X = Z(\) such that

f®) = min f(z) and ||| = min{]lz] : f(x) = f()}.
Applying Theorem 21 and using
y=X"'x, b=U*b, ¢=V"c, (190)
we get
Fx) =Zay = BI* + X[ Spy — €
n q
=3 (aiyi —0:)* + XD (Biy; — &) = fly). (191)
i=1 j=1

The minimum-norm minimizer y = [ﬂj] of f(y) can be read from (191)

ajgj + AZﬂjEj

:1 P = kB
Yi=19q b o (192)
7]» J€T+17n7 ij#o,
Q;
0, jer+1,n, a; =0,

and X = X¥ is a minimizer of f(x). We now show that X is the minimum-
norm minimizer. Denote by X, the submatrix formed by the first &
columns of X. Similarly, X(z) and ¥ () denote the first k-component sub-

vectors of X and y, respectively. It follows from r = rank B < k = rank [g]
and Remark 1(d) that
Xk = XY € R(A") + R(B),
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while, by Remark 1(c),

completing the proof.

8.2. The {W,Q}-SVD. The singular values of A € C™*™ are the
stationary values of || Ax||/||x||, see Ex. 5. A natural generalization is the
following:

DEFINITION 8. Let A € C™*™ let W € C™*™, and let @ € C"*"™ be
positive definite. The {W, Q}-singular values of A are the elements of the
set

Ity

uw,o(A) = {u : p is a stationary value of X
XllQ

where, necessarily, p > 0.

One more definition is needed:

DEFINITION 9. Let Q € C™*™ be positive definite. A matrix V e C"*™
is @Q-orthogonal if VQV = 1.

The analog of the SVD is then

THEOREM 22 (The {W,@Q}-singular value decomposition, Van Loan
[831], Theorem 3). Let A € C™*", and let W € C™*™ and Q € C"*™ be
positive definite. Then there exist a W-orthogonal matrix U € C™*™ and
a Q-orthogonal matrix V- € C"*™ such that

U YAV = Dy = diag(p, - -, fin) (194)
where

pw,(A) ={p1, .. s pn}. (195)
PROOF. Let B = W'Y24Q /2 and let
U'BV =D
be the SVD of B. Then
U=W U, and V = Q "?V (196)

are W-orthogonal and Q-orthogonal, respectively, and satisfy (194). Using La-
grange multipliers we can see that the stationary values of ||Ax||w /||x||q are the
zeros of det(A*W A — ;2Q). The calculation

det(A*WA — Q) = det(Q) det(B*B — 1°1)
= det(Q) det(D*D — 1°I)
=det(Q) [ ] (u? - 1*)

=1

then proves (195). (]
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Exercises

EX. 92. Constrained least-squares. Let A € R**"™, B € R®*™, ¢ > n. It is re-
quired to find a minimum-norm solution of the constrained least-squares problem
minimize || Ax — b||?,

subject to Bx =c. (197)

Using Theorem 21 and the transformation (190), the problem becomes

minimize ||Xay — 5”2’

~ 198
subject to Xpy =c. (198)

A minimum-norm solution of the transformed problem (198) is
G
B’
7, =1 b, 199
v bi7 jer+17n7 0@750, ( )
a;
0, jer+1,n, aj =0.

j=1,---,r=rank B,

Then, reasoning as in Example 1, X = Xy is the minimum-norm solution of the
original problem (197).

EX. 93. Weighted least-squares. Let A € R™*", b € R™, and let W € C™*™
and @ € C"*™ be PD. It is required to find a vector X minimizing ||[Ax — b||w
and of minimal ||x||g-norm among all such minimizers. This problem was solved
in Corollary 3.4 using the {W, Q}-weighted {1, 2}-inverse,

% = AL b. (200)
An alternative expression of this solution is enabled by the {W, @}-SVD of A,
U AV = Da = diag (1, . . . , pin) (194)
giving
x=VDLU 'b. (201)

Indeed, using (196), we can show that
VDUt = Q—1/2(W1/2AQ—1/2)TW1/2

in agreement with (3.68a).

Suggested Further Reading

HiSTORICAL NOTES. The singular value decomposition (SVD) was proved
by Beltrami [57], Jordan [452], [453], and Sylvester [790], [791] for square real
matrices, by Autonne [30] for square complex matrices, and by Eckart and Young
[248] for rectangular matrices. In parallel, singular values of integral operators
were studied by Schmidt [727] and Weyl [868]. For the history see Horn and
Johnson [429, Chapter 3] and Stewart [783].

SECTION 2. Businger and Golub [142], Golub and Kahan [306], Golub and
Reinsch [309], Good [314], Hartwig [381], Hestenes [414], Lanczos [496], Pan
and Sigmon [626], Roch and Silbermann [701], Wedin [854].

APPLICATIONS OF SVD. Hanson [375], Hanson and Norris [376], Hoskuldsson
[430].

SECTION 3. Antoulas [23], Chipman [188], Householder and Young [433],
Golub and Kahan [306]; Gaches, Rigal, and Rousset de Pina [294], Franck [289],
Nievergelt [611].

TOTAL LEAST SQUARES. Golub and Van Loan [311], De Moor [219], Jiang
and Berry [446], Nievergelt [610], [612], Van Huffel and Vanderwalle [830].
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SECTION 4. Bjbrck and Bowie [110], Erdélyi [256], [262], [260], [263], [261],
Erdélyi and Miller [266], Halmos and Wallen [368], Hearon [408], [407], Hestenes
[414], [415], [416], [417], Poole and Boullion [644].

SECTION 5. Afriat [2], [3], Davis and Kahan [214], Deutsch [229], Hotelling
[431], Ipsen and Meyer [438], Scharnhorst [725], Seidel [743], Sun [786], Wedin
(856].

PRINCIPAL ANGLES. A brief history of principal angles appears in Stewart and
Sun [784, p. 45]. An excellent reference is Afriat [3], a study of the geometry of
subspaces in R" in terms of their orthogonal and oblique projectors. An important
application of principal angles in Statistics is the canonical correlation theory of
Hotelling [431], see also Baksalary, Puntanen, and Yanai [38].

GEOMETRY OF SUBSPACES. Grofl and Trenkler [352], Jiang [447], Robinson
[699].

SECTION 6. Golub and Pereyra [308], Moore and Nashed [578], Nashed
[5694], Pereyra [638], Stewart [779], [781], Wedin [854], [855], Wei and Wang
(860].

SECTION 7. Hawkins and Ben-Israel [402], Hestenes [414], [415], [416],
[417]), Lanczos [496] and Penrose [635], Rose [709], Rothblum [715].

SECTION 8. Chu, Funderlic, and Golub [196], De Lathauwer, De Moor, and
Vanderwalle [216], [217], Eldén [250], Levy [513], Paige and Saunders [625],
Van Loan [831], [832], Wimmer [878].



CHAPTER 7

Computational Aspects of Generalized
Inverses

1. Introduction

There are three principal situations in which it is required to obtain nu-
merically a generalized inverse of a given matrix:

(i) the case in which any {1}-inverse will suffice;

(ii) the cases in which any {1,3}-inverse (or sometimes any {1,4}-
inverse) will do; and

(iii) the case in which a {2}-inverse having a specified range and null
space is required.

The inverse desired in case (iii) is, in the majority of cases, the Moore—
Penrose inverse, which is the unique {2}-inverse of the given matrix A
having the same range and null space as A*. The Drazin inverse can also
be fitted into this pattern, being the unique {2}-inverse of A having the
same range and null space as A¢, where ¢ is any integer not less than the
index of A. When ¢ = 1, this is the group inverse.

Generalized inverses are closely associated with linear equations, or-
thonormalization, least-squares solutions, singular values, and various ma-
trix factorizations. In particular, the QR-factorization and the Singular
Value Decomposition (SVD) figure prominently in the computation of the
Moore—Penrose inverse.

The two principal ways of computing the @) R-factorization are

(1) Using a Gram—Schmidt type of orthogonalization; see, e.g., Rice
[689] and Bjorck [106] where a detailed error analysis is given for
least-squares solutions.

(2) Using Householder transformations or other rotations; see, e.g.,
Wilkinson [872], Parlett [628], and Golub [305].

QR factorization is implicit in the main algorithm for SVD, of Golub
and Kahan [306], where the matrix in question is first transformed, by
rotations, to an upper bidiagonal form.

These topics have been studied extensively and many excellent refer-
ences are available in the numerical analysis literature, see, e.g., Bjorck
[109], Golub and Van Loan [311], and Lawson and Hanson [504]. For
this reason we can keep this chapter brief, restricting our efforts to listing
some computational methods for generalized inversion, and discussing the
mathematics behind these methods. No error analysis is attempted.

257
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2. Computation of Unrestricted {1}- and {1,2}-Inverses

Let A be a given matrix for which a {1}-inverse is desired, when any {1}-
inverse will suffice. If it should happen that A is of such a structure, or has
risen in such a manner, that a nonsingular submatrix of maximal order is
known, we can write

An A”] (5.19)

PAQ = [Am Ago

where A7 is nonsingular and P and () are permutation matrices used to
bring the nonsingular submatrix into the upper left position. (If A is of full
(column or row) rank, some of the submatrices in (5.19) will be absent.)
Since rank A is the order of A;q, this implies that

A22 = A21A1_11A12 (Brand [135}) (539)
and a {1,2}-inverse of 4 is
12 _ o |An O
AR =@ |70 I P (C.R. Rao [671]). (5.25)

In the more usual case in which a nonsingular submatrix of maximal order
is not known and, likewise, rank A is not known, perhaps the simplest
method is that of Section 1.2, using Gaussian elimination to bring A to
Hermite normal form,

(0.72)

EAP = {[T K}

O O
(with modifications in the case that A is of full rank), where FE is nonsingular
and P is a permutation matrix, then

I, O
M _ pl|dr
AL = p [o L} E (1.5)

is a {1}-inverse of A for arbitrary L. Of course, the simplest choice is
L = O, which gives the {1, 2}-inverse
I. O
12) _ p | Ir
A P {0 O] E. (1.11)
On the other hand, when A is square, a nonsingular {1}-inverse may some-

times be desired. This is obtained by taking L in (1.5) to be nonsingular.
The simplest choice for L is a unit matrix, which gives

AL = pE.

In applications involving linear equations, it is often the case that a par-
ticular solution suffices. The above results can be easily adapted to obtain
such a solution, whenever it exists.

THEOREM 1. Given A € C"*™ with r < m, and b € C™, consider the
linear equation

Ax = b. (1)
Let E be a nonsingular matriz, P a permutation matriz, such that
I, K
EAP = {O O} (0.72)
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and let b and z be defined by

P 0] _[I. K b
ElA b [OT 1] B {0 @ z} ' @)
Then (1) has a solution if and only if z = 0, in which case a particular
solution is*

x = A1?b = Pb. (3)

PROOF. The first statement is obvious, the second follows from (1.11). ]

As in the nonsingular case, the accuracy may depend on the choice of
pivots used in the Gaussian elimination. (For a discussion of pivoting see,
e.g., Golub and Van Loan [311, §3.4]; for a simple illustration, see Ex. 1
below.)

Exercises

EX. 1. Consider the two nonsingular matrices

e 1 e 1
SR ]
where € is a small, positive number. Compare the various ways (i.e., choices of
pivots) of transforming A and B to their Hermite normal forms. The objective is

a numerically stable process, which here means to avoid, or to postpone, division
by e.

EX. 2. An iterative method for computing a {1}-inverse. Exercise 5.17(b) sug-
gests a finite iterative method for computing a {1}-inverse of a given A € C™*".
The method requires n iterations (an analogous method based on Ex. 5.17(a)
would use m iterations). At the k™ iteration (k=1,2,... ,n) it computes A](Cl),
where Ay, is the submatrix of A consisting of its first k& columns.

First we need some notation. For k = 2,... ,n the matrix Ay is partitioned
as

A = [Ak-1  ax] (4)

where ay, is the k™ column of A. For k = 2,...,n let the vectors di, ci, and by
be defined by

de = A, ax, (5)

cr = ar — Ap_1dg, (6)
o” ifc,=0

b* — ) b 7

k { (ck)(l)(l — Ak,lAg_)l), otherwise, (7)

where Al,(cl_)1 is any {1}-inverse of Ax_i. Then a {1}-inverse of Ay is

1 *
A — dyby ®)
by

Note that at each iteration we only need a {1}-inverse of a vector (the vector ci
if nonzero), a trivial task.

EX. 3. Modify the iterative method in Ex. 2 so as to get a {1,2}-inverse.

INotTE: If r = m, then for any b the vector z is absent, and (3) is a solution.
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3. Computation of Unrestricted {1,3}-Inverses

Let A € C"*™ and let

A=FG (9)
be a full-rank factorization. Then, by Ex. 1.29(b),
X =GWFH, (10)

where GV is an arbitrary element of G{1}, is a {1, 2, 3}-inverse of A.
Recall the QR factorization of A,

A=QR (0.39)
where the columns of Q = [@1 ... g] are o.n., and R is upper triangular.
Then (10) gives

AL — ROQT, (11)
This is useful, since the Moore—Penrose inverse of @ is simply
qaj
Q=% (12)
qa;

and a {1}-inverse of R is also easily obtained: R is of full row rank and it
can be written (by permuting columns as necessary) as

RP=[T K]

where T is nonsingular and upper triangular and P is a permutation matrix.
Then, see Ex. 1.13,

RV =p [TOl] , (13)

here 7! is upper triangular and obtained from T by back substitution.
Exercises

EX. 4. If the factorization (9) has been obtained from the Hermite normal form
of A by the procedure described in §0.4.4, then

F=AP, (14)
where P; denotes the first » columns of the permutation matrix P. Moreover, we
may take G = P;, and (10) gives

X =PF' (15)
Since F' is of full column rank,

F' = (F*F)'F*, (16)

by (1.19). Thus (14), (16), and (15), in that order, give a {1, 2, 3}-inverse of A.

Observe that (15) shows that each of the r rows of F' is a row of X (in
general, not the corresponding row), while the remaining n — r rows of X are
rows of zeros. Thus, in the language of linear programming, X is a “basic”
{1, 2, 3}-inverse of A.
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EX. 5. Obtain a {1, 2, 3}-inverse of

1 0 0 1
11 0 0
A70110
0 0 1 1

using the method outlined in equations:

(a) (11), (12), and (13).
(b) (14), (16), and (15).

4. Computation of {2}-Inverses with Prescribed Range and Null
Space

Let A € C**™, let A{2}gp contain a nonzero matrix X, and let U and
V be such that R(U) = R(X), N(V) = N(X), and the product VAU is
defined. Then, by Theorems 2.13 and 2.14, rank U = rank V' = rank V AU,
and

X =UWVAU)VY, (17)

where (VAU)M) is an arbitrary element of (VAU){1}. This is the basic
formula for the case considered in this section. Zlobec’s formula

Af = A* (A AA")D A* (18)
(see Ex. 2.39) and Greville’s formula
AP — AZ(A%Jrl)(l)AZ’ (448)

where £ is a positive integer not less than the index of A, are particular
cases. Formula (17) has the advantage that it does not require inversion
of any nonsingular matrix. Aside from matrix multiplication, only the
determination of a {1}-inverse of VAU is needed, and this can be obtained
by the method of Section 1.2.

It should be noted, however, that when ill-conditioning of A is a prob-
lem, this is accentuated by forming products like A*AA* or A%**! and, in
such cases, other methods are preferable.

In the case of the Moore—Penrose inverse, Noble’s formula

AT=Q {H (I + TT*) AT (L, + S*S) ', S*]P (5.28)

is available, if a maximal nonsingular submatrix A;; is known, where the
permutation matrices P and ) and the “multipliers” S and T are defined
by

A= PT |:A11 A12:| QT

A21 A22
=pT [g] Ap[l. T)QY, see Ex. 6. (0.78)

Otherwise, it is probably best to use the method of §0.4.4 to obtain a
full-rank factorization

A=FG. (0.78)
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Then, the Moore—Penrose inverse is
Al = G*(F*AG*)™1F*, (1.17)
while the group inverse is
A* = F(GF)™%G, (4.22)

whenever GF' is nonsingular.

Full-rank factorization can also be used for the computation of the
Drazin inverse. If A is a square matrix of index k, Cline’s method (Cline
[201]) employs full-rank factorization of matrices of successively smaller
order,

A= BlGla (4463.)

GiB; =Bi11Giv1 (i=1,2,... k—1), (4.46b)
until the nonsingular matrix G By, is obtained. Then

AD = BlBQ-‘-Bk(GkBk)_k_leGk,1 G1 (446(3)

Exercises

EX. 6. Noble’s method. Let the nonzero matrix A € C”*" be transformed to a
column-permuted Hermite normal form

L. T
O O

where P and () are permutation matrices and F is a product of elementary row
matrices of types (i) and (ii) (see Section 1.2),

E=FEyEp - FEo2Fr,

PEAQ = { } = (PEPT)(PAQ), (19)

which does not involve permutation of rows.
Then E can be chosen so that

0] I, T AR O
PE[A I {g PT}:[O O _5 I (20)

giving all the matrices P, Q, T, S, and A;ll which appear in (5.28). Note that after
the left-hand portion of RHS(20) has been brought to the form (19), still further
row operations may be needed to bring the right-hand portion to the required
form (Noble [614]).

Ex. 7. Singular value decomposition. Let
A =Uu DV (6.30a)
be an SVD of A € C™*™. Then
AT = Vi) Dy Uy
= Vi (Ui AVin) UG (6.30b)
is shown to be a special case of (17) by taking
U=Vy, V=Uj).

A method for computing the Moore—Penrose inverse, based on (6.30b), has been
developed by Golub and Kahan [306]. See also Businger and Golub [141], [142]
and Golub and Reinsch [309].
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Ex. 8. Gram-Schmidt orthonormalization. The GSO of Ex. 0.7 can be modified
to compute the Moore—Penrose inverse. This method is due to Rust and Burrus
and Schneeberger [716]; see also Albert [9, Chapter V].

EX. 9. For the matrix A of Ex. 5, calculate At by:

(a) Zlobec’s formula (18).
(b) Noble’s formula (5.28).
(¢) MacDuffee’s formula (1.17).

EX. 10. For the matrix A of Ex. 5, calculate A¥ by:

(a) Cline’s formula (4.22).
(b) Formula (4.29).

5. Greville’s Method and Related Results

Greville’s method for computing the Moore-Penrose inverse At of a matrix
A € C™*" ig a finite iterative method. At the k™ iteration (k=1,2,...,n)
it computes AL, where Ay is the submatrix of A consisting of its first &
columns. An analogous method for computing a {1}-inverse was encoun-
tered in Ex. 2. As there, we partition

A =[Ar—1 a] (4)
where ay, is the k*™ column of A. For k = 2,...,n let the vectors dj, and
¢ be defined by

dk = A,chlak, (21)
Cr = ap — Ak—ldk (22)

=ay — AkqAL_lak
=a; — Ppa,_)ak
= PN(AZ,l)ak'

THEOREM 2 (Greville [325]). Let A € C™*™. Using the above notation,

the Moore—Penrose inverse of Ay (k=2,...,n) is
T *
At an]f = Ao 4P, (23)
b
where
bi=cl, ifck #0, (24a)
b = (1+djdy)"'djAl |, ifck=0. (24b)
PROOF. Let AL = [Ak—1 ak]Jr be partitioned as
t_ | Bk
A= (25)

where by, is the k™ row of Al. Multiplying (4) and (25) gives
AgAl = Ay_1 By + ayby. (26)
Now by (4), Ex. 2.38, and Corollary 2.7,
N(Af_,) = N(Ai_1) D N(A) = N(A}) = N(AA)),
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and it follows from Ex. 2.20 that

Al AAl = AL (27)
Moreover, since

R(A}) = R(A})
by Ex. 2.38, it follows from (4), (25), and Corollary 2.7 that
R(Bk) C R(Ai—1) = R(A]_,) = R(A|_, Ax-1),

and, therefore,

Al A, 1By = By (28)

by Ex. 2.20. It follows from (27) and (28) that premultiplication of (26) by Al _,
gives
AZ—I = Br + Az_lakbz
= Br + dkbz, (29)

by (21). Thus we may write

(23)

T o *
[Ar—1 alc]]L = [AI%I dkbk:| ,

by,
with by, still to be determined. We distinguish two cases according as ay, is or is
not in R(Ax—_1), i.e., according as ¢, is or is not 0.
Case I (ci # 0)
By using (29), (26) becomes
AgAl = A1 AL |+ (a, — Ap_1dy)bi
= Ap_1AL_, +cibi (30)

by (22). Since AkAL is Hermitian, it follows from (30) that cibj is Hermitian
and, therefore,

b; = dcy, (31)
where § is some real number. From (4) and (22) we obtain
Ap = ApAL Ay, = [Ap_1 4+ cibrAr_ 1 ag — ci + (bhag)ck],
and comparison with (4) shows that
brap =1, (32)
since ¢ # 0. Now, by (22),
cr = Pay,
where P denotes the orthogonal projector on N(Aj_;). Therefore, (31) and (32)
give
1 = bja, = dcrax = da) Pay
= daj P%a; = dcjcx, (33)
since P is idempotent. By (31), (33), and Ex. 1.19(a),

b}, = dcj, = CL.
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Case II (¢, = 0)
Here R(Ax) = R(Ak—1), and so, by (25) and (0.27),
N(bj)) D N(A]) = N(4}) = N(Ai_y) = N(A]_,)
= N(Ap_1 A} ).
Therefore, by Ex. 2.20,
brAy_1 AL | =bj. (34)
Now, (4) and (23) give

AL—I —dkb:Akfl (1 —Oé)dk

Al A, =
Kk b;;Ak_1 (0% ’

(35)

where
o = bray (36)

is a scalar (real, in fact, since it is a diagonal element of a Hermitian matrix).
Since (35) is Hermitian we have

by Ax—1 = (1 — a)dj.
Thus, by (34),

by =bjAs 1AL, = (1 —a)djAL . (37)
Substitution of (37) in (36) gives
a = (1—-a)didy, (38)

by (21). Adding 1 — « to both sides of (38) gives
(1-0)(1+4+dpdy) =1
and substitution for 1 — « in (37) gives (24b). (]

Greville’s method as described above, computes A recursively in terms
of A£ (k=1,2,...,n). This method was adapted by Greville [325] for the
computation of Aly, for any y € C™, without computing Af. This is done
as follows:

Let

A=[4 vyl (39)
Then (23) gives

Al A—dib A

AlA=
b; A

By (21) it follows that dy is the k™™ column of AL_lg for k=2,...,n.
Therefore only the vector b}:g is needed to get ALE from A,ng by (40).
If ¢, = 0, then (24b) gives b,’;g as

biA = (1+djd;) *dA]_ A (41)
If ¢ # 0, then from (24a),
biA = (cicy) 'ciA. (42)
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kth

The computation of (42) is simplified by noting that the element of the

vector cjA is cjay (k=1,2,...,n). Premultiplying (22) by c; we obtain
cj.Cc = cray, (43)

since c;Ar—1 = 0 by (22). Thus the vector (42) may be computed by
computing czg and normalizing it by dividing by its kth element.

In the Greville method as described above, the matrix to be inverted is
modified at each iteration by adjoining an additional column. This is the
natural approach to some applications. Consider, for example, the least-
squares polynomial approzimation problem where a real function y(t) is to
be approximated by polynomials Z?:o z;t7. In the discrete version of this
problem, the function y(t) is represented by the m-dimensional vector

y = [yl] = [y(tl)] (l =1,... ’m)’ (44)

whose "™ component is the function y evaluated at ¢ = t¢;, where the
points t1,ta,... ,t,, are given. Similarly, the polynomial ¢/ (j = 0,1,...)
is represented by the m-dimensional vector

aj11 = [ai7j+1] = [(tz)]] (Z = 1, . ,m). (45)

The problem is, therefore, for a given approximation error € > 0 to find an
integer k = k(e) and a vector x € R*~! such that

[Ar1x =yl < (46)

th

where y is given by (44) and Aj_; € R™*(*~1 is the matrix
Ak,1 = [a1 as - - ak,l] (47)

for a; given by (45). For any k, the Euclidean norm [|A;_1x — y|| is mini-
mized by

X = AL_LY- (48)
If, for a given k, the vector (48) does not satisfy (46), i.e., if
[ e (49)

then we try achieving (46) with the matrix
Ap = [Ap—1 &), (4)

where, in effect, the degree of the approximating polynomial has been in-
creased from k — 2 to k — 1. Greville’s method described above computes
ALy in terms of ALAY’ and is thus the natural method for solving the above
polynomial approximation problem and similar problems in approximation
and regression.

There are applications on the other hand which call for modifying the
matrix to be inverted by adjoining additional rows. Consider, for example,
the problem of solving (or approximating the solution of) the following
linear equation:

ZAl-jxj:yi (’L:l, ,k*].), (50)
j=1
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where n is fixed and the data {a;;,y; : i =1,... ,k—1,j=1,... ,n} are
the result of some experiment or observation repeated k —1 times, with the
row

[ail ;2 Qin yi] (i:l,.,.,k—l)

the result of the i experiment.
Let Z_1 be the least-squares solution of (50), i.e.,

Ty = Azk,l)}’(kﬂ)y (51)

where Ax_1) = [ag] and yp—1) = [ys), i = 1,... k=1, j =1,... ,n.
If the results of an additional experiment or observation become available
after (50) is solved, then it is necessary to update the solution (51) in light
of the additional information. This explains the need for the variant of
Greville’s method described in Corollaries 1 and 2 below, for which some
notation is needed.

Let n be fixed and let A, € Ck*™ be partitioned as

A(k) = |:A(;*1):| , aj€ Cctxn, (52)
k

Also, in analogy with (21) and (22), let
k= aZAJ(rk_nv (53)
c, =a; — dZA(k—ly (54)

COROLLARY 1 (Kishi [476]). Using the above notation
Al = 1AL, —bedi by, (55)
where

by =c;, ifcp#0, (56)
by = (1+djdy) " Al de, if ¢j = 0. (57)

PROOF. Follows by applying Theorem 2 to the conjugate transpose of the matrix
(52). ([l
In some applications it is necessary to compute

Ty = AIk)y(k)v for given y ;) € c*,
but AT,C is not needed. Then Zj may be obtained from Zj_1, in analogy

with Corollary 1, as follows:

COROLLARY 2 (Albert and Sittler [12]). Let the vector y,) € C* be
partitioned as

Yk = {y(zgl)} , y€C, (58)

and let
T = Azk)}’(k)a T = AIk,l)Y(k—l)a (59)
using the notation (52). Then

Tp = Tp—1 + (yp — a5 2x—1)bx, (60)
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with by, given by (56) or (57).
PROOF. Follows directly from Corollary 1.

Exercises

7. COMPUTATIONAL ASPECTS OF GENERALIZED INVERSES

EX. 11. Use Greville’s method to calculate A for the matrix A of Ex. 5.

EX. 12. A converse of Theorem 2. Let the matrix Ap_1 € Cc™* (k=1 K6 obtained
from A € C™*F by deleting its kth column ag. If Ay is of full column rank,

t Th.b*
Al | g1 _ Axbrbi
T k bib; ’

where by, is the last row of A}; (Fletcher [277]).

EX. 13. Let
1 0
A2 = [31 az] =12 1
0 -1
Then
1 1
Al=al=12| =11 2 0],
0
0
dy=Alax =11 2 0]|1|=2,
—1
2
0 1 5
szazfAldQZ 1 — |2 %: é 5
—1 0 1

and, by (24a),

b =cl =

1 20 -2
a=tlo o o]+ g s -

Il
—
Lo
W=
= W=
| corm
ot

Let now a} be computed by (61), i.e., by deleting a; from As.

columns of A5 and rows of A; we obtain

1
_1 1 _57|3 _1
e | 3 6 6| |1 _| 3
Agb2=1 " 1 3| = |4
3 3 3|1 3
3
and
1
3
o — 1 1 17 |1]| -1
b2b2_[3 3 3]3_37
1
3

(61)

Interchanging
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and, finally, from (61),

AI__% %_%_—1 [; 1 1]
of| " |1 1 1 1|3 3 3
L 3 3 3
o3
o0 o]’
or
KRE [0
ab=|1| =11 (Fletcher [277]).
-1 —1

6. Computation of Least-Squares Solutions
The Euclidean norm is used throughout. Given the equation
Ax=Db (1)
and a vector x, the residual r = r(x) is
r=>b— Ax, (62)

and x is a least-squares solution of (1) if ||r(x)]|| is minimum. We recall that
a vector x is a least-squares solution if and only if it is a solution of the
normal equation

A*Ax = Ab. (3.9)

NOTE. The use of the normal equation in finding least-squares solutions is
limited by the fact that the matrix A*A is ill-conditioned and very sensi-
tive to roundoff errors, see, e.g., Taussky [798] and Ex. 6.7. Methods for
computing least-squares solutions which take account of this difficulty have
been studied by several authors. We mention in particular Bjorck [106],
[105], [107], Bjorck and Golub [111], Businger and Golub [141], [142],
Golub and Wilkinson [312], and Noble [615]. These methods can be used,
with slight modifications, to compute the generalized inverse.
To avoid the normal equation, let A be factorized as

A=FG (63)
where G is of full row rank. Then the normal equation is equivalent to
F*Ax = F*b, (64)

a useful fact, if the system (64) is not ill-conditioned, or at least not worse-
conditioned than (1).

In particular, recall the QR factorization of the matrix A € C**"™ (full
column rank is assumed here for convenience; the modifications required
for the general case are the subject of Ex. 15),

A=QR (0.39)
= QR, (0.40)
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here Q € C™*™ is unitary (i.e., @*Q =1), R = {g

upper triangular matrix and @ consists of the first n columns of @, forming
an o.n. basis of R(A).
It follows that the normal equation (3.9) is equivalent to

Q*Ax = Q"b (65)

]WhereRisannxn

or to
Rx = Q*b, (66)

since @*@ = I,. Now R is upper triangular and thus (66) is solved by
backward substitution. The system (65) is not worse-conditioned than the
original system Ax = b; indeed the coefficient matrix Q*A is obtained by
“rotating” the columns of A.
Exercises
Ex. 14. Using the above notation, let

Q*bICI[CZ‘}, 1€ 1,m.
Show that the minimum value of ||[Ax — b||? is ) D |ei)?.
Hint: |Ax — b||* = ||Q*(Ax — b)||* since Q is unitary.
EX. 15. Modify the above results for the case A € C**", r < n.

Ex. 16. Show that the éﬁ—factorization for the matrix of Ex. 3.4, is
1 €

A ¢ 0 f(Q) fi(R) 3 F 1]
=|le 0| =~ = |le - .
V2
0 e 0 A 0 V2

V2
Use this to compute the least-squares solution of
1 1 . 1
e O [ml} =|e€
0 € 2 2¢

SOLUTION. The (rounded) least-squares solution obtained by using (66) with the
rounded matrices 1(Q) and I(R) is

Tr1 = 0, T2 = 1.
The exact least-squares solution is
_ €2 21+ €?)
242 2+ €2

1 T2 =

7. Tterative Methods for Computing Af

An iterative method for computing A is a set of instructions for generating
a sequence { X} : k=1,2,...} converging to Af. The instructions specify
how to select the initial approximation Xy, how to proceed from Xy, to X411
for each k, and when to stop, having obtained a reasonable approximation
of AT.

The rate of convergence of such an iterative method is determined in
terms of the corresponding sequence of residuals

Ry = Priay — AXy, k=0,1,... (67)
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which converges to O as Xj, — Af. An iterative method is said to be a
p™_order method, for some p > 1, if there is a positive constant ¢ such that

[Bsall < cl[Rell”, K =0,1,... (68)

for any multiplicative matrix norm; see, e.g., Ex. 0.34.
In analogy with the nonsingular case — see, e.g., Householder [432, pp.
94-95] — we consider iterative methods of the type

Xk+1 =X, +CyRr, k=0,1,..., (69)

where {Cy : k = 0,1,...} is a suitable sequence and Xy is the initial
approximation (to be specified).

One objection to (69) as an iterative method for computing A" is that
(69) requires at each iteration the residual Ry, for which one needs the
projection Pp(4), whose computation is a task comparable to computing
AT, This difficulty will be overcome here by choosing the sequence {C}} in
(69) to satisfy

Cr = CpPreay, k=0,1,.... (70)
For such a choice we have
CrRy = Cy (Preay — AXy), by (67),
— Oy (I - AXy), by (70), (71)
and (69) can therefore be rewritten as
X1 = X5+ Ch Ty, k=0,1,..., (72)
where
Tpy=1—-AXy,, k=0,1,.... (73)

The iterative method (69), or (72), is suitable for the case where A is an
mxn matrix with m < n, for then R and T} are m x m matrices. However,
if m > n, the following dual version of (69) is preferable to it

Xp =X} +R,Ch k=0,1,..., (69')
where
Ry = Pagay — X[A (67)
and {C},: k=0,1,...} is a suitable sequence satisfying
Ciy = PranCy, k=0,1,..., (70")
a condition which allows rewriting (69’) as
Xp = Xp+T|Chy k=0,1,..., (72))
where
T =I-X.A, k=0,1,.... (73)

Indeed, if m > n, then (72') is preferable to (72), for the former method
uses the n x n matrix 7}, while the latter uses T}, which is an m x m matrix.
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Since all the results and proofs pertaining to the iterative method (69)
or (72) hold true, with obvious modifications, for the dual method (69’) or
(72"), we will, for the sake of convenience, restrict the discussion to the case

m < n, (74)

leaving to the reader the details of the complementary case.

A first-order iterative method for computing A', of type (72), is pre-
sented in the following:

THEOREM 3. Let O # A € C™*™ and let the initial approximation Xg
and its residual Ry satisfy

Xy € R(A*, AY) (75)
(i.e., Xo = A*BA* for some B € C"™*", see Fz. 3.15, p. 110), and
p(RO) <1, (76)

respectively. Then the sequence
X1 = Xi + XoTy
=X+ Xo(I — AXy), k=0,1,..., (77)
converges to At as k — oo and the corresponding sequence of residuals
satisfies
[Beall < [[RollllRll, % =0,1,..., (78)
for any multiplicative matriz norm.
PROOF. The sequence (77) is obtained from (72) by choosing
Cr=Xo, k=0,1,..., (79)

a choice which, by (75), satisfies (70), and allows rewriting (77) as

X1 = X+ XoRy
=Xk+X0(PR(A)7AXk), k=0,1,.... (80)

From (80) we compute the residual

Riy1 = Pray — AXk41
= Py — AXy — AXoRy,
= R — AXoRx
= PrayRr — AXoRy, by (67),
= RoRx, k=0,1,...,

= R§+2, by repeating the argument. (81)
For any multiplicative matrix norm, it follows from (81) that
[Re+ll < [[Rolll| R (78)
From
Rip1=RET2 k=0,1,..., (81)

it also follows, by using (76) and Ex. 0.44, that the sequence of residuals converges
to the zero matrix:

Pray — AXp — O, as k — oo. (82)
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We will now prove that the sequence (77) converges. Rewriting the sequence (77)
as

Xk+1 = X + XoRy, (80)
it follows from (81) that
X1 = Xi + XoRg™!
= Xy, + XoRb + XoRE™!
=Xo(I+Ro+Ry+---+RETY, k=0,1,..., (83)

which, by (76) and Exs. 0.44-0.45, converges to a limit X.
Finally, we will show that X.. = Af. From (82) it follows that

AXo = Pr(ay,

and in particular, that X is a {1}-inverse of A. From (75) and (77) it is obvious
that all X}, lie in R(A*, A*) and, therefore,

Xoo € R(A™, A"),

proving that X, = A, since A is the unique {1}-inverse which lies in R(A*, A*);
see Ex. 3.19. O

For any integer p > 2, a p®_order iterative method for computing AT,
of type (72), is described in the following:

THEOREM 4. Let O # A € C™ ™ and let the initial approximation Xg
and its residual Ry satisfy (75) and (76), respectively. Then, for any integer
p > 2, the sequence

Xpm1 = Xe(U+ T+ TE+ -+ TP (84)
=X (I 4+ (I —AXp) + (I — AXp)? 4+ + (I — AXp)P7Y),
k=0,1,...,

converges to AT as k — oo and the corresponding sequence of residuals
satisfies

[Risill < [|1Re[[”, k=0,1,.... (85)
PROOF. The sequence (84) is obtained from (72) by choosing
Co=Xp(I +Tp + T3 + -+ TF77). (86)

From (75) and (84) it is obvious that all the X}, lie in R(A*, A*), and therefore
the sequence {C%}, given by (86), satisfies (70), proving that the sequence (84)
can be rewritten in the form (69),

Xps1 = Xe(I+ Ry + R+ -+ RVTY, k=0,1,.... (87)
From (87) we compute

Rit1 = Pray — AXkt1
= Ppay — AXw(I+ Ry + R +---+ Ry
:kaAXk(RkJrRiJr“-Jng*l), (88)
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Now, for any j =1,... ,p—1,
R} — AXy R} = Pra)R], — AXyR)],
= RyR], = R,

and, therefore, the last line in (88) collapses to
RkJrl = sz (89)

which implies (85). The remainder of the proof, namely, that the sequence (87)
converges to A, is analogous to the proof of Theorem 3. O
The iterative methods (77) and (84) are related by the following:

THEOREM 5. Let O # A € C™ ™ and let the sequence {Xy : k =
0,1,...} be constructed as in Theorem 3. Let p be any integer > 2 and let
a sequence {)~(J 2 j=0,1,...} be constructed as in Theorem 4 with the
same initial approzimation Xy as the first sequence

Xo = Xo,
Xjp =X, I+ T+ T+ +T07Y, j=0,1,..., (84)
where
Ty =1—-AXy, j=0,1,.... (73)
Then

X;=Xp_1, j=0,1,.... (90)

PROOF. We use induction on j to prove (90), which obviously holds for j = 0.
Assuming

X; =X, 1, (90)
we will show that
Xj1 = Xpit1_,.
From
X = Xo(I + Ro+ R +--- + Rf) (83)
and (90), it follows that
X;=Xo(I+Ro+R2+--+R'). (91)
Rewriting (84) as
Xjp1=X;(I+R; + R+ + RV, (87)
it follows from
Rj = Pr(ay — AX;

= PR(A) - Aij—h by (90)7
= Rpj_l

= RZ', by (81),
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that
X = )?1(1+jo +R§”j ot R(()p—l)pﬂ)
= h P’ —1 p’! 2p? (p—1)p?
=Xo(I+Ro+R3+--+ R NI +RY +R¥ 4+ ...+ Rl )
by (91),

=Xo(I+Ro+ R+ +RE Y
= X,i+1_;, by (83). ~ |
Theorem 5 shows that an approximation X; obtained by the p™P_order
method (84) in j iterations will require p/ — 1 iterations of the first-order
method (77), both methods using the same initial approximation. For any
two iterative methods of different orders, the higher order method will, in
general, require fewer iterations but more computations per iteration. A
discussion of the optimal order p for methods of type (84) is given in Ex. 23.

Exercises
Ex. 17. The condition
Xo € R(A™, A") (75)
is necessary for the convergence of the iterative methods (77) and (84): let
A:% E 1}7 Bze[_l1 _11}7 € #£0,

and let

Xo=A+B.
Then

Ro = Priay — AXo = O
and, in particular, (76) holds, but

Xo & R(A™, A)
and both sequences (77) and (84) reduce to

Xp=Xo, k=0,1,...,

without converging to AF.

EX. 18. Let O # A € C™*" and let Xo and Ro = Pra) — AXo satisfy

Xo € R(A™, A%, (75)
p(Ro) < 1. (76)

Then
Al = Xo(I — Ro) ™. (92)

PROOF. The proof of Theorem 3 shows A to be the limit of
Xy = Xo(I+ Ro+ R+ +Rp) (83)
as k — co. But (83) converges, by Ex. 0.45-46, to RHS(92). O
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The Special Case X, = §A*
A frequent choice of the initial approximation Xy, in the iterative methods
(77) and (84), is

Xo = fA* (93)
for a suitable real scalar 3. This special case is treated in the following
three exercises:

EX. 19. Let O # A € C"*™, let (3 be a real scalar, and let
Ro = Pp(a) — BAA™,
To=1—BAA".
Then the following are equivalent:
(a) The scalar 3 satisfies

2
0<B<m, (94)

where
AM(AAT) > XM(AA™) > - > N\ (AAT) >0

are the nonzero eigenvalues of AA™.
(b) p(Ro) < 1.
(¢) p(To) <1 and XA = —1 is not an eigenvalue of Tp.

PROOF. The nonzero eigenvalues of Ry and Ty are among
{1=BN(AA™): i =1,...,1}
and
{1-BN(AA"):i=1,... ,m},

respectively. The equivalence of (a), (b), and (c¢) then follows from the observation
that (94) is equivalent to

1= BM(AAY)| <1, i=1,...,r 0
EX. 20. Let O # A € C"*™ and let the real scalar 3 satisfy
2
0<pB< MN(AA) (94)
Then:
(a) The sequence
Xo =BA", Xiki1 IXk(I—ﬁAA*)—f—ﬁA*, k=0,1,..., (95)
or, equivalently,
k .
Xp=8Y A"(I-BAA"Y, k=0,1,..., (96)
§=0

is a first-order method for computing AF.
(b) The corresponding residuals Ry = Pr(a) — AX} are given by

Ri = (Preay — BAAY)* . k=0,1,.... (97)
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(c) For any k, the spectral norm of Ry, ||Rk||2, is minimized by choosing

5= 2
A (AA) + A (AAX)
in which case the minimal ||Rx||2 is
A (AA®) = A (AAS)\ T
= k=0,1,....
||Rk“2 (Al(AA*) I )\r(AA*) ’ 07 5 (99)

PROOF. (a) Substituting (93) in (77) results in (95) or, equivalently, in (96).
(b) Follows from (96).
(¢) Ri is Hermitian and therefore

|Rk|l2 = p(Rk), by Ex. 0.44,
=p(R§™"), by (81),
= p""(Ry), by Ex. 0.43.

(98)

Thus, || Rk||2 is minimized by the same 3 that minimizes p(Rp). Since the nonzero
eigenvalues of Ro = Pr(a) — BAA" are

1— BN (AA"), i=1,...,7
it is clear that 8 minimizes
p(Ro) = max{|l — BN;(AA™)|: i=1,...,r}
if and only if
—(1 = BA1(AAY)) =1 — BA-(AA"), (100)
which is (98). Finally (99) is obtained by substituting (98) in
p(Ry) = max{|1 — BN (AA")|* T i=1,...,r}, by (97),
=1 = BA(AA")[FT ) for B satisfying (100). g

Ex. 21. Let A, 3 be as in Ex. 20. Then, for any integer p > 2, the sequence
Xpp1 = Xp(I+Te + T¢ + -+ TP (84)
with
Xo = pA" (93)
is a pth-order method for computing AT. The corresponding residuals are
Ry = (Pr(ay — fAA" )"

and their spectral norms are minimized by 8 of (98). The iterative methods of
Exs. 20 and 21 were studied by Ben-Israel and Cohen [81], Petryshyn [641], and
Zlobec [889].

EX. 22. A second order iterative method. An important special case of Theorem 4
is the case p = 2, resulting in the following second-order iterative method for
computing At. Let O # A € C™*™ and let the initial approximation Xo and its
residual Ry satisfy (75) and (76), respectively. Then the sequence

Xpp1 = Xp(2I — AXy), k=0,1,... (101)
converges to AT as k — co and the corresponding sequence of residuals satisfies
IRkl < ||Rel®, k=0,1,.... (102)

The iterative method (101) is a generalization of the well-known method of Schulz
[731] for the iterative inversion of a nonsingular matrix, see, e.g., Householder
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[432, p. 95]. The method (101) was studied by Ben-Israel [61], Ben-Israel and
Cohen [81], Petryshyn [641], and Zlobec [889]. A detailed error analysis of (101)
is given in Soderstérm and Stewart [766].

ExX. 23. Discussion of the optimum order p. As in Theorem 5 we denote by
{X1} and {X,} the sequences generated by the first-order method (77) and by
the pth—order method (84), respectively, using the same initial approximation
X, = Xo. Taking the sequence {X} as the standard for comparing different
orders p in (84), we use (90) to conclude that, for each k =0,1,..., the smallest
integer k such that the iterate )?% is beyond X, is the smallest integer k satisfying

1>k
and, therefore,
k= (In(k+1)/Inp), (103)

where, for any real «, (@) is the smallest integer > a.

In assessing the work per iteration, we assume that the computational effort
required to add or subtract an identity matrix is negligible compared to the effort
to perform a matrix multiplication. Assuming (74) and hence the usage of the
methods (77) and (84), rather than their duals based on (72'), we define a unit
of computational effort as the effort required to multiply two m X m matrices.
Accordingly, premultiplying an n X m matrix by an m X n matrix requires n/m
units, as does the premultiplication of an m X m matrix by an n X m matrix. The
iteration

Xps1 = Xe(I + T + T8 + -+ TP (84)
=Xpe(I+Th(I+ - +T(I+Tk)--))
thus requires:

n/m units of effort to compute Tk;
p — 2 units of effort to compute Tx(I + -+ +Tk(I +T%)---)); and
n/m units of effort to multiply Xp(I +---+ TP ");

adding to
p—2+22 (104)
m

units of effort.
The figure (104) can be improved for certain p. For example, the iteration

(84) can be written for p =29, ¢ =1,2,..., as
2d—1
Xepr=Xe [JU+TY)
j=1
—1
=X (I +T)I+THA+TH - (I +TF ) (105)
requiring only
n
2(q—1)+2— 106
(@—1)+2— (106)

units of effort, improving on (104) for all ¢ > 3; see also Lonseth [523].

In comparing the first-order iterative method (77) and the second-order
method (101) (obtained from (84) for p = 2) one sees that both methods require
2(n/m) units of effort per iteration. Therefore, by Theorem 5, the second-order
method (101) is superior to the first order method (77).

For a given integer k£ = 1,2,... we define the optimal order p as the or-
der of the iterative method (84) which, starting with an initial approximation
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Xo, minimizes the computational effort required to obtain, or go beyond, the
approximation Xy, obtained by the first-order method (77) in k iterations.

Combining (103), (104), and (105) it follows that, for a given k, the optimal
p is the integer p minimizing

ny\ /In(k+1) _ e
@—2+2E)§—E;—>pf2ﬁpu,p¢2,qflﬂpn (107a)
or
n\ /In(k+1) g
_ i SR = =1,2,.... 1
(20-2+22)( p dp=2 g=1.2, (107b)

Lower bounds for (107a) and (107b) are

p—2+2(n/m)

In(k + 1) np

L p=23,...,p#29, g=1,2,..., (107a)

and

IMk+Dgii%%§ﬂﬂlp=2%q=1apn7 (1070)

respectively, suggesting the following definition which is independent of k. The
approximate optimum order p is the integer p > 2 minimizing

po22nfm) g pota,..,

50) =4 2(g = 1F (nym) (10%)
q1n2 R p:Q,q:LQ,....

The approximate optimum order p depends on the ratio n/m.

EX. 24. Iterative methods for computing projections. Since AAT = Pp(ay, it
follows that for any sequence {Xx}, the sequence {Y; = AX}} satisfies

Yk*)PR(A), ika*)At.

Thus, for any iterative method for computing A, defined by a sequence of succes-
sive approximations { Xy}, there is an associated iterative method for computing
Pra) defined by the sequence {Yx = AXy}. Similarly, an iterative method for
computing Pg(a~) is given by the sequence {Y; = XA} since AtA = Priaxy.

The residuals Rk, k = 0,1,..., of the sequence {Y3} will still be defined by
(67) or, equivalently,

Ry = Preay — Y, k=0,1,.... (109)

Therefore, the iterative method {Yy = AX}} for computing Pr(4) is of the same
order as the iterative method {Xj} for computing A

In particular, a pth-order iterative method for computing Pg(4), based on
Theorem 4, is given as follows:

Let O # A € C™*"™ and let the initial approximation Yy and its residual Ry
satisfy

Yo € R(A, AY), (110)
p(Ro) < 1, (76)

respectively. Then, for any integer p > 2, the sequence
Yigr =YV +Te + T3 + -+ TP7) (111)

with

To=1-Y:, k=01,...,
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converges to Pr(4) as k — oo and the corresponding sequence of residuals (109)
satisfies

[Risall < [[Rell”, k=0,1,..., (85)
for any multiplicative matrix norm.

EX. 25. A monotone property of (111). Let O # A € C™*", let p be an even
positive integer, and let the sequence {Y%} be given by (111), (110), (76), and the
additional condition that Yo be Hermitian. Then the sequence {trace Yy : k =
1,2,...} is monotone increasing and converges to rank A.
PROOF. From (109), (81), and Theorem 5 it follows that
k

Yy = Pgay — R . (112)
From the fact that the trace of a matrix equals the sum of its eigenvalues, it
follows that

trace Pr(a) = dim R(A) =rank A

and

which is a monotone decreasing sequence converging to zero, since p is even, Ro
is Hermitian (by (109) and the assumption that Yp is Hermitian), and therefore
its eigenvalues \;(Ro), which by (76) have moduli less than 1, are real. The proof
is completed by noting that, by (112),

trace Yy = trace Pra) — trace ng
=rank A - > 3" (Ry). O
i=1
EX. 26. A lower bound on rank A. Let O # A € C™*™ and let the sequence
{Yi: k=0,1,...} be as in Ex. 25. Then
rank A > (trace Y%), k=1,2,..., (113)
where (a) is the smallest integer > a.

EX. 27. Iterative methods for computing matriz products involving generalized

inverses. In some applications one has to compute a matrix product A’ B or BAT,

where A € C™*™ is given and B is a given matrix or vector. The iterative methods

for computing A" given above can be adapted for computing such products.
Consider, for example, the iterative method

Xep1 = Xe(T+ T + T + -+ TP7Y), k=0,1,... (84)
where p is an integer > 2,
T.=1—-AXy, k=0,1,..., (73)

and the initial approximation Xy satisfies (75) and (76). A corresponding iterative
method for computing BAT, for a given B € C?*", is given as follows:
Let Xo € C™*™ satisfy (75) and (76) and let the sequence {Z} be given by

Zo = BXo, (114)
Zpy1 = ZpyMy, k=0,1,... (115)
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where
My=I+T,+T¢ +---+T", k=0,1,..., (116)
Tegr =1+ Mp(Tx — 1), k=0,1,..., (117)
and
To = I — AXo.

Then the sequence {Z;} converges to BA" as k — oo (Garnett, Ben-Israel, and
Yau [297]).
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CHAPTER 8

Miscellaneous Applications

1. Introduction

The selection of a few applications to represent the scope and diversity of
generalized inverses is by no means obvious, except for one item, the linear
statistical model, that would be on everyone’s list.

We hope the applications selected here illustrate the richness and po-
tential of generalized inverses.

Section 2 is an introduction to the important operation of parallel sums
with applications in electrical networks, orthogonal projections, and infimal
convolutions.

The linear statistical model, the main application of generalized in-
verses, is the subject of Section 3.

Section 5 describes an application to Newton methods for solving sys-
tems of nonlinear equations, without requiring nonsingularity of the Ja-
cobian matrix. Interestingly, this application calls for a {2}-inverse, the
“most trivial” of generalized inverses.

An application to linear system theory is briefly outlined in Section 6.

Section 7 applies the group inverse to finite Markov chains.

The Drazin inverse is a natural tool for solving singular linear difference
equations. This application is described in Section 8.

The last two sections deal with the matrix volume, a concept closely
related to the Moore—Penrose inverse. It is applied in Section 9 to surface
integrals and in Section 10 to probability distributions.

2. Parallel Sums

“What can you do with generalized inverses that you could not do
without?” My best answer, unchanged in 30 years, is the explicit formula
for the orthogonal projection Prnps on the intersection of subspaces L, M,
in terms of their respective projections

Pran = 2Pp(Pp + Pa)' Py (5.51)
= 2Py (Pp + PM)TPL, (Anderson and Duffin [21]).
This formula, extended to infinite-dimensional spaces in Filmore and Williams

[272], answers the following question in Halmos’s Hilbert Space Problem
Book, [366, p. 58]

Problem 96. If E and F are projections with ranges M
and N, find the projection E A F with range M N N. !

Halmos goes on, apparently not believing that an explicit answer is possible:

282
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Halmos refers the reader to von Neumann [840, p. 55] where the projection
E A F is obtained in the limit as an infinite product of the respective pro-
jections E and F', each projection appearing infinitely often, see Ex. 5.14,

ENF = lim (EFE)", (366, p. 257), (1)

an idea used in the Kaczmarz iterative method [454] for solving linear
equations, and elsewhere.

The Anderson—Dulffin result is a special case of their parallel sum, de-
fined for A, B € C™*" by

A:B=A(A+B)'B, [21]. (2)
Other definitions of the parallel sum are
AEB = (A" + BN, Rao and Mitra [678, p. 187], (3)

and if A, B are PSD, A: B is defined by an extremal principle due to Morley
[580],

(2, A: Bx) = inf {{y, Ay) + (2, Bz) : y +2 = x}, (4)

shown by Morley to be equivalent to the Anderson—Duffin definition.

Definitions (2)—(4) have a common physical motivation: if two resis-
tances Ry and R, are connected in parallel, the resulting resistance is the
parallel sum

11\
Ri:Ro=|(—+ — , compare with (3),
1:4t2 <R1 Rg) p (3)
RiR
= ﬁ, the scalar version of (2).

A current x through R;: Ry splits into currents y and z, through R; and
R, respectively, so as to minimize the dissipated power

(v, R1y) + (z, Roz), the motivation for (4).

In physical and engineering applications the matrices A, B are PSD, and
so they are here. The projection result (5.51) is then a special case

Pray = 2P : Py, (5)

and Morley’s result gives

2 (2, Ppaux) = inf {{y, PLy) + (z, Pyz) : y + 2 =X} .

Here is a convex-analytic proof of the equivalence of definitions (3)—(4) if
A, B are PSD. The proof is stated for real matrices.

“The problem is to find an “expression” for the projection described. Al-
though most mathematicians would read the statement of such a problem
with sympathetic understanding, it must be admitted that rigorously speak-
ing it does not really mean anything. The most obvious way to make it
precise is to describe certain classes of operators by the requirement that
they be closed under some familiar algebraic and topological operations, and
then try to prove that whenever E and F belong to such a class, then so does
E A F, etc.” (ibid, pp. 58-59).



284 8. MISCELLANEOUS APPLICATIONS

First some preliminaries (the word convez is used below to mean proper
convezr, see, e.g., [703]). The conjugate of a convex function f : R” — R is

£1(6) = sup {{€:3) ()}, (708, p. 104 (6)

f* is convex (even if f in (6) is not), and f = f** if and only if f is a closed
convex function [703, Theorem 12.2]. Two cases where the conjugate is
readily available:

(a) If A is PSD, then the conjugate of f(x) = 1 (x, Ax) is

ciey | 3(&ATE),  if €€ R(A),
118 = { —21-00, otherwise. (7)
PROOF. V{(£,x) — f(x)} = & — Ax, etc. ]
(b) The infimal convolution of two convex functions f, g : R® — R,
(fDg)(x) = inf{f(y) + g(x —y)} (8)

is convex and
(fOg) (&) = f"(&) +g7(&), [703,p. 145]. (9)

PROOF OF (3) < (4):
RHS(4) = 2(fOg)(x) where f(x) = 1(x,Ax) and g(x) = 3(x,Bx). The
proof follows then from (9), (7), and (fOg) = (fOg)*". ]

3. The Linear Statistical Model

This section is based on Albert [10]. Given a random vector y = [y;] with
expected value By = p =[], its covariance matriz is

Covy =E{(y —p)(y — )"} = [E (i — i) (y; — 115)].

A common situation is statistics is where a random vector y depends lin-
early on a vector of parameters,

y=XB+e (10)
where:
e y € R" is observed or measured in some experimental set-up;
e the parameters 3 € RP are unknown,;
e the matrix X € R"*? (the design matriz) is given; and
e e € R” is a random vector representing the errors of observing y,

which are not systematic, i.e.,
Ee =0, (11)
and have covariance,
Cove = VQ, (12)

where the matrix V', assumed known, is symmetric PSD.
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Note that, as a consequence of (10)—(12), we have
Ey=X3, Covy=V2 (13)

This situation falls under several names, including: linear statistical model
(abbreviated linear model), linear regression, and the Gauss—Markov model.
We denote this model by (y, X3,V ?).

The problem is to estimate a linear function of the parameters, say

B, for a given matrix B € R™*?, (14)

from the observed y (the problem of estimating the variance V2, if un-
known, is not treated here.)
A linear estimator (abbreviated LE) of B is

Ay, for some A € R™*™. (15)
It is a linear unbiased estimator (abbreviated LUE) if

E{Ay} = BB, forall 3eR?, (16)

and it is the best linear unbiased estimator (abbreviated BLUE)if its vari-
ance is minimal, in some sense, among all LUEs. In general, not all linear
functions have LUESs, see Ex. 2.

The function B is called estimable if it has an LUE, i.e., if there is a
matrix A € R™*™ such that (16) holds (Bose [119], Scheffé [726, p. 13]).
See also Ex. 4 .

The unbiasedness condition (16) reduces to an identity

AX(B = BB, forall 3,
and, consequently, a linear equation
AX = B, (17)

giving a necessary and sufficient condition? for the estimability of B3. The
estimability of B3 is thus equivalent to the statement that the rows of B
are linear combinations of the rows of X.

There are two cases for the design matrix X € R}*P: it is either of full
column rank (r = p) or not (r < p). For the matrix V2 (PSD because it is
a covariance matrix) there are two cases: it is either nonsingular (i.e., PD)
or it is singular. There are therefore four main cases for the linear model
(y, XB,V?), corresponding to the dichotomies on X and V2, and many
special cases with a huge literature, see selected references in p. 328. The
simplest case is studied next.

3.1. X of Full Column Rank, V Nonsingular. Consider the spe-
cial case where the n x p matrix X is of full column rank, i.e., R(XT) = RP.
Then any linear function B3 is estimable. In particular, for B = I, the lin-
ear equation (17) reduces to AX = I, and we conclude that Ay is an LUE
of 3 whenever A is a left inverse of X. The set of LUEs of 3 is therefore

LUE(B) = {XWy: XM ¢ X{1}}.

2For other conditions see Alalouf and Styan [6], [7] and their references.
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and the mimimum-norm LUE of 3 is
. -1
8= (XTX) XTy = X'y. (18)

Without loss of generality (see Ex. 6) we can assume that the variance
V2 = ¢?I (i.e., the errors have equal variances and are uncorrelated). We
now state a basic version of the main result on the linear statistical model.

THEOREM 1 (The Gauss-Markov Theorem). Consider the linear model
(y, XB,0%1) with X of full column rank. Then for any B € R™*P:

(a) The linear function BB is estimable.
(b) The estimator B@ = BX'y is BLUE in the sense that

CovAy » CovBp (19)

for any otheAr LUE Ay of BS3.
(c) The BLUE BB = BX'y belongs to the class of estimators

E(X):={Ay: A= KX, for some matriz K}. (20)
If Ay is any LUE in E(X) (i.e., the rows of A are in R(X)), then

Ay = B,@, with probability 1. (21)

PROOF. (a) was shown above. To prove (b) let Ay be any LUE of B3. The
covariance of Ay is

Cov Ay = 62 AAT, see Ex. 1,
while the covariance of B,@ is
CovB(XTX) TXTy = J2B(XTX) “ipr
= o?AX (XTX)ilXTAT, (B = AX by (17)).
. Cov Ay — CovBp = U2A([ ~X (XTX)71XT> AT, (22)

which is PSD.
(c) The estimate BX Ty isin £(X) since X7 = (X7 X)"XT. Then (21) follows
from

RHS(22) = 0? APy x1 A" = O,
if A= KXT for some K. ([l
Note that all LUEs in £(X) are indistinguishable, by (21), while for any
LUE Ay outside £(X) the difference Cov Ay — Cov BB in (22) is a nonzero
PSD matrix. In this sense, B[’)’ can be said to be the unique BLUE.
Consider now the problem of estimating linear functionals (b,3). A

linear estimate (a,y) is in the class £(X) if and only if a € R(XT). Theo-
rem 1 then reduces to

COROLLARY 1. Let (y,XB,0%I) and X be as in Theorem 1. Then for
any b € RP:

(a) The linear functional (b, 3) is estimable.
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(b) The estimator (b,,5'> = (b, BX'y) is BLUE in the sense that
Var (a,y) = Var(b.B)

o~

for any other LUE (a,y) of (b, 3).
(c) If (a,y) is any LUE of (b, 3) with a € R(XT), then
(a,y) = (b, 3) with probability 1. O

3.2. The General Case. An analog of Theorem 1, for the general
linear model, is the following:

THEOREM 2 (The Generalized Gauss—Markov Theorem, Albert [10],
Zyskind and Martin [901]). Let (y, XB3,V?) be a linear model, and let
(b, B) be any estimable functional. Then:

(a) (b,B) has a unique BLUE (b, 3) where

- T
B=x' (1= (VPyxr)'V) y. (23)
(b) B € R(XT), and if B* is any other LUE in R(XT),
CovB* » Covp. (24)

PROOF. The projection Py xry appears repeatedly and will be denoted by Q.
(a) The unbiasedness condition (17) here becomes

XTa=b (25)

with general solution

a(w)=X""b— Qw, w arbitrary. (26)
The general LUE of (b, 3) is therefore

(a(w),y), with a(w) given by (26),
and its variance

Var (a(w),y) = a(w)” V?a(w)
= VX" - vQw|?
is minimized if and only if
wu) = (VQ)'Vvx" b+ Pn(vgyu, u arbitrary.

Substituting in (26) we get the general BLUE

a(w(w) = (I - QVQ)'V)X"b — QPnvou. (27)
The special case with u = 0 is denoted
a* = -QVQ) V)X b. (28)
We now prove that
(a(w(u)),y) = (a",y), with probability 1. (29)

Indeed,

E(a’ —a(w(u)),y) = u’ Py @XB =0, (30)
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since @QX = O. The variance
Var (a* —a(w(u)),y) = u’ Pyvg)QVQPxnvou
IVQPywul* =0 (31)

and (29) follows from (30)—(31). Therefore the unique BLUE for (b, 3) is (a*,y)
with a* given by (28) or, equivalently,

a* =1 - (V) Vv)XTipb, (32)

using Q(VQ)" = (VQ)T, which follows since R((VQ)") = R(VQ)Y) c R(Q).
Substituting (32) in (a*,y) we get

@",y) = (b, X'(I - (VQ)'V)"y)
= (b,B), by (23).

(b) B € R(XT) since R(XT) = R(X'). Let 8* be any LUE in R(X”) and
let ¢ be an arbitrary vector. Then (Xt Xc, 3) is estimable and (X Xe¢, 3*) is an
LUE with variance

Var (X" Xc¢, 8%) = ¢" (Cov XTX3%)c
= c"(Cov B*)c, since B* € R(XT).

By its construction, ,£~3 is an LUE with smaller variance. Therefore
¢’ (Cov B*)e > c"(Cov B)c,
for all ¢, proving (24). (Il

The following corollary gives alternative expressions for ,5’, using the
covariance V2 rather than its square root V.

COROLLARY 2 (Alternative forms of the BLUE). The BLUE B of The-
orem 2 18

B=X'I—-(VPyxr)'V)y (23)

= XTI = (Pyxm\V?Py(xm) Pyixny) V) Ty, (33)
and, if V? is nonsingular,

B=(XTv2x) xTv2y. (34)

PROOF. Denote Q := Pyyr). The equivalence of (23) and (33) follows from

(VQ)' = (QV?Q)TQV, which is Ex. 1.18(d) with A = VQ, using the symmetry
of V,Q. To prove (34) we simplify

V)"V = v "'vQv
= (VQVQ)")'VQVQ)T, since Q=Q*=Q",
=VQ(VQ)',
and rewrite (23) as
B=XV({I-WvQT vV ly.
L B=XVI-vQvQHvly
= (VﬁlX)valy, (by Ex. 9),
=xTv2x) xTv2y
using Ex. 1.18(d) with A = V71 X. 0
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In particular, for the model (y, X3, 0%I), the BLUE (34) reduces to
B =xly, (35)

called here the naive least-square estimator, see Ex. 8.
Exercises

EX. 1. Given a linear model (y, X3, V?) with X € R™*P a matrix A € R™*",
and a vector a € R™:

E(Ay +a) = AX3 +a,
Cov (Ay +a) = AVZAT.
EX. 2. Let (y, X8,V?) be a linear model with X € R?*?, r < p. Then:
(a) B does not have an LUE, for otherwise,
EAy = AXB =8, forall 8.
oo AX =1. . rankX =p, a contradiction.

(b) Let 0 # b € N(X). Then (b,3) is not estimable for, otherwise, there is
a € R" such that

E(a,y) = (a,XB8) = (b,3), forall 3,
and B = b gives
0=b|*
EX. 3. Constrained linear models. Let (y,XB3,V?) be a linear model with

X € R"*P. The parameters B can be “forced” to lie in R(XT) by appropriate
linear constraints,

CB=0 (36)
where the rows of C' span N(X). The linear equation
a’X =b" (25)
must hold if B satisfies (36). By Ex. 2.45 there is a vector A such that
@' x —bp")y=A"TC
or
b=X"a-C"X
proving that (b, 3) is estimable for all b.

EX. 4. Constrained linear models (continued). Let (y, X3, V?) be a linear model
with nonhomogeneous linear constraints on the parameters

CB =c, (37)

where the matrix C is arbitrary and ¢ € R(C). It is required to estimate (a, 3)
subject to (37). To accommodate such constraints we replace the linear estimates
(a,y) by affine functions

(a,y)+ @, « scalar.

The functional (b, 3) is estimable if there exist a vector a and a scalar a such
that

E{(a,y) + o} = (b, 8) (38)
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whenever (37) holds. This is equivalent to
CB=c = @X-b"HB=-0
It follows, as in Ex. 3, that there exists a vector A such that
@"x —b")=ATC, —a=(\c).

Therefore the linear function (b, 3) is estimable (subject to (37)) if and only if
there exists a A such that

b=X"a—C"x
in which case any affine unbiased estimate is of the form (a,y) — (X, c).

EX. 5. (Aitken [4]). Let (y, X3,0°V?) be a linear model with X of full column
rank. Then the BLUE of 3 is the solution 8 of

min (X3 - y) 'V AHXB-y). (39)

If V2 = CC7 is a factorization of the covariance V2, then (39) becomes

min u”u, subject to X8+ Cu=y.

See also Kourouklis and Paige [482].

EX. 6. Consider a linear model (y, X3,V?), V2 n x n, PSD. Then there is an
orthogonal matrix U such that

T2 0 --- 0
X0 0| _[A* O
Ty 2 _ T —
U viu= O --- 0 0 --- 0 _{0 0]’
L0 --- 0 0 --- 0l

where r = rank V2, the columns of U are eigenvectors of V2, and \? are its

—1
nonzero eigenvalues. Let T' = {AO ?} UT. Then T is nonsingular and
_[ATY O], 10, [ATY O] _[I O
Cova—{O I}UVU 0 11=1lo ol
showing that the model (y, X3, V?) is equivalent to
I O
(Ty,TX,B, [ o O]). (40)

EX. 7. Let (y,XB,V?), U, and T be as in Ex. 6 and let the covariance matrix
V2 be singular. Partition the matrix U = [U1 Us], where the columns of U, €
R™("=") are a basis of the null space of V2. The model (40) is partitioned
accordingly as

AUy = ATUT X8+ AU e, (40.a)
Uiy =UIXB+Ufe. (40.b)
Since EUY e = 0, CovU{ e = O, (40.b) implies
Uiy =UJ X3, with probability 1,

the “deterministic” part of the model, a consequence of the singularity of V.
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Ex. 8. The BLUE ,@ of (34), and the naive least-squares estimator ,@ of (35),
coincide for the model (y, X3, c%I). Are there other cases where these two esti-
mators coincide for all estimable functionals? This would mean

XTXTy = (I - (VPyxr)'V)XT" X"y, forally,
or
(VPyxr)'VXXT =0, (41)
a necessary and sufficient condition for ﬁ = B Show that (41) is equivalent to
R(V’X) C R(X).

Other necessary and sufficient conditions for ,(~3 = ,(AB are given in Albert [10, p.
186].

Ex. 9. (Albert [10, Lemma, p. 185]). Let X,Q, and V be as in Corollary 2. If
V' is nonsingular, then

(VX)) =XTVI -V, (42)
PROOF. For any vector z, the minimum-norm least-squares solution of
V'X)'x =z (a)

is
= (V'X)"z
If u” is a least squares solution of
XTu =z, (b)
then x* = Vu” is a least-squares solution of (a) and therefore
Ix*|| = [[Vu*|| > ||X|l, wunless X =Vu". (c)
Since @ = Py (x1), the general least-squares solution of (b) is
u(w) = X7z — Qw, (d)
with arbitrary w. Therefore
Vaw)|* = [VX"'z - VQw]|?* (e)
is minimized when u = u(w), where
w=VQ)VvXxTis ()
Suppose
[Vu(w)ll > [IX]]-
Since U = V!X is also a least-squares solution of (b), we conclude
[Vall = [IX]| < [Vaw)l,
a contradiction to u(w) being a mimimizer of ||V ul.
s Vaw)ll = (X,
and, by (c),

Vu(w) = . ()
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From (d), (f), and (g) we get
VX)) 2= X"V(I-VQVQ)e,

and (42) follows since z is arbitrary. d

4. Ridge Regression
Consider the linear model
y=XB+e¢ (10)

with X € R}*? (X is of full column rank), and the error € is normally
distributed with mean O and covariance matrix o2I, a fact denoted by

e ~ N(0,0%1).
If X7 X is ill-conditioned, then the BLUE of 3,
B=x"X)"'X"y, (18)
may be unsatisfactory. To see this, consider the SVD of X,
o -
A2
UTXV =A= Aol s (43)
0 -+ -+ 0
0 - o 0]

where the singular values are denoted by A;. The transformation
z=Ury, ~=VIB, v=U"¢, (44)
then takes (10) into
z=Av+v, (45)

where the parameters to be estimated are v = [;]. Since the matrix V is
orthogonal, it follows that v ~ N(0,02I) and the components z; of z are
also normally distributed
zi ~ N(A\ivi,0°), i€1p, (46a)
2~ N(0,0%), i€p+1,n. (46b)

For i € 1, p, the BLUE (18) of ; is
~ Zi

Vi = )\72’, (47&)

with variance

2 2 g2

L) =% (47b)
which may be unacceptably large if the singular value A; is small, as is
typically the case when X7 X is ill-conditioned. See also Ex. 6.13.

Varf%:E(
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Hoerl and Kennard [423] suggested a way of reducing the variance by
dropping the unbiasedness of the estimator. Their ridge regression estima-
tor (abbreviated RRE) of 3 is

Bk) = (XTX + k1)~ X"y, (48)

W/}\lere k is a positive parameter. The RRE is actually a family of estimators
{B(k) : k> 0} parametrized by k. The value k = 0 gives the BLUE (18)

= B(0).
For the transformed model (45), the RRE of - is

A(k) = (ATA+ kD)~ 'AT g, (49)

and for the i*" component,

. )\izi
N4k

3 (k) ieT,p. (49.1)

The RRE thus shrinks every component of the observation vector z. The
shrinkage factor is

(M, k) = (50)

A2+ K’

see Ex. 12.
If 8" is an estimator of a parameter (3, the bias of 3" is

bias(8") = EB* - 6,
and its mean square error, abbreviated MSE, is
* * 2
MSE(8") = E (8" - 8)

which is equal to the variance of 8" if 8" is unbiased, see Ex. 10.
The RRE (49) is biased, with?

bias(J(k)) = —k(ATA + k), (51)

and for the i** component,

N i . .
bias(%;(k)) = —km, i€1,p. (51.1)

The variance of 4;(k) is

2 9
Ao

Var(;(k)) = ma

(52)

3A weakness of the RRE is that the bias depends on the unknown parameter to be
estimated.
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and the MSE of 4(k) is, by Ex. 10,

- A2 S
MSEG) =2 7 * 2 ey h
3 i=1 g
)\202 +k2 2
Z (24 k)2 (53)

An advantage of the RRE is indicated in the following theorem:
THEOREM 3. There is a k > 0 for which the MSE of the RRE is smaller
than that of the BLUE,
MSE(B(k)) < MSE(B(0)).

PROOF. Let f(k) = RHS(53). We have to show that f is decreasing at zero, i.e.,
f(0) < 0. This follows since

A2 (k2 —O')
_22 YR (54D)

An optimal RRE [A?(k*) may be defined as corresponding to a value
k* where f(k) is minimum. There are two difficulties with this concept:
it requires solving the nonlinear equation f’(k) = 0, and k* depends on
the unknown parameter « (since f’(k) does). For a discussion of the good
choices of RREs, see Goldstein and Smith [303], Obenchain [618], Vinod
[836], and their references.

Exercises

Ex. 10. If 8" is an estimator of a parameter 3, then
MSE(3") = trace Cov 8" + ||bias(8")]|?,

where || - || is the Euclidean norm.

Ex. 11. A generalization of the RRE (48) is defined, for a vector k = [k;] of
positive parameters, by

B(k) = (X" X + diag(k)) "' X"y, (55)

where diag(k) is the diagonal matrix with diagonal elements {k; : i € 1,p}.
Replacing k by k; in (51.1)—(52) we get
N A2o? 4 k2~2
MSE(H(k)) = e v
SE(R(k)) = z:zl (A2 4+ k)2
and the analog of (54) is
A (kv — o?)
k) =2( 5"
V100 =2( (N2 + %) ):
showing that MSE(5(k)) is minimized for k = [0*/77].

EX. 12. (Goldstein and Smith [803]). A shrinkage estimator of « in the model
(45) is defined by

’?i* = C(>‘h k) Ziy (56)
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where ¢(\;, k) is a suitable shrinkage function. A comparison with (49.i) shows
that the RRE is a shrinkage estimator with
Ai
i k)= . 50
k) = 35 (50)
The shrinkage function is assumed to have the properties:
(a) c(Xi,0) = 1/As;
(b) |e(Asy k)| is, for any fixed A;, a continuous, monotone decreasing function
of k; and
(¢) ¢(Xi, k) has the same sign as \;.

Then, for each <, there is a k > 0 such that the shrinkage estimator 4;* =
¢(Xi, k) z; has smaller MSE than the BLUE (47a), for all ¢ € 1, p.

5. An Application of {2}-Inverses in Iterative Methods for
Solving Nonlinear Equations

One of the best-known methods for solving a single equation in a single
variable, say

f(z) =0, (57)
is the Newton (also Newton—Raphson) method
k
o R f(z )7
f1(@F)
Under suitable conditions on the function f and the initial approximation

20, the sequence (58) converges to a solution of (57); see, e.g., Ortega and
Rheinboldt [620]. The modified Newton method uses the iteration

PRl — gk f@*)
(%)’

k=0,1,.... (58)

k=0,1,..., (59)

instead of (58).
Newton’s method for solving a system of m equations in n variables

fl(xl,...7xn) :0

, or f(x)=0, (60)
fm(l'la ce ,In) =0
is similarly given, for the case m = n, by
xM = xk (x0T (xF), k=0,1,..., (61)

where f’(x*) is the derivative of f at x*, represented by the matrix of partial
derivatives (the Jacobian matrix)

o) = (G20 (62)

and denoted below by Jg(x) or by Jx.

The reader is referred to the excellent texts by Ortega and Rheinboldt
[620] and Rall [667] for iterative methods in nonlinear analysis and, in
particular, for the many variations and extensions of Newton’s method
(61).

If the nonsingularity of f/(x*) cannot be assumed for every x* and,
in particular, if the number of equations (60) is different from the number
of unknowns, then it is natural to inquire whether a generalized inverse
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of f(x*) can be used in (61), still resulting in a sequence converging to a
solution of (60).

Interestingly, the {2}-inverse is the natural tool for use here. This may
seem surprising because until now we used the definition

XAX =X (1.2)

in conjunction with other, more useful, properties. Indeed, the {2}-inverse
is trivial in the sense that X = O satisfies (1.2), and is a {2}-inverse.

In this section we illustrate the use of {2}-inverses in Newton’s method
(Theorems 4-5 and Ex. 14).

Except in Corollary 3, where we use the Euclidean norm, we denote by
|| || both a given (but arbitrary) vector norm in R™ and a matrix norm in
R™*"™ consistent with it; see, e.g., Ex. 0.35. For a given point x° € R” and
a positive scalar r we denote by

B r)={xecR":|x—x"|<r}
the open ball with center x° and radius r. The corresponding closed ball is
B0 r)={xecR":|x—x"|<r}

The following theorem establishes the quadratic convergence for a New-
ton method, using suitable {2}-inverses of Jacobian matrices. However, the
iterates converge not to a solution of (60) but to an “approximate solution,”
the degree of approximation depending on the {2}-inverse used.

THEOREM 4 (Levin and Ben-Israel [509], Theorem 1). Let x° € R",
r >0 and let f : R™ — R™ be differentiable in the open ball B(x°,r). Let
M > 0 be such that

[Ju = Jv[ < M u—v| (63)

for allu,v € B(x°,r), where Jy is the Jacobian of £ at u. Further, assume

that, for all x € B(x%,r), the Jacobian Jx has a {2}-inverse Ty € R"*™

Ty Jx T = T (64a)
such that
1Tl £ < o (64b)
and, for all u,v € B(x°,7),
[(Ta = T)EW)|| < N fju - |, (64c)
and
%\\TH\\+N§K< 1, (64d)

for some positive scalars N, K, and o, and

(6%
1—h"

h:=aK <1, r> (64e)

Then:
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(a) Starting at x°, all iterates
<M= xk T f(xF), k=0,1,..., (65)
lie in B(x%,r).

(b) The sequence {x*} converges, as k — oo, to a point x* € B(x9,r),
that is, a solution of

Tyf(x) = 0. (66)
(¢) Forallk >0,
PN
- 1-ha?
Since 0 < h < 1, the above method is at least quadratically con-

vergent.

PROOF. PART 1. Using induction on k we prove that the sequence (65) satisfies,
for k=0,1,...,

x* e B(x",r), (67a)
Hx’“‘1 - ka < ah® 1. (67b)
For k =0, (67b), and for k = 1, (67a), follow from (64b). Assuming (67b) holds

for 0 <j<k—1we get

k+1 k
k+1 0 j j—1 27 -1 (¢}
[ *XHSZHX - X Hﬁazh <m<r
j=1 j=0
which proves (67a). To prove (67b) we write
X xF = T f(x) = % - X - T f(x) + T £(xF7Y), by (65),
= Tgro1 Joron (xF = x"71) = T f(x7) + T £(x71),
since TJT = T implies T'Jx = x for every x € R(T),
= —Txk—l(f(xk) — f(xk_l) — Jxk—l(xk — xk_l)) + (Txk—l - Txk)f(xk).
LT = X < = T () = £ = T (7 = X))
+ [(Tor—1 = T )TN |
M k k=12
< (2= _ _
< (G 1B+ N IE = 5P,
by (63), Ex. 13 below and (64c),

2
<K ka - x’“*l‘ , by (64d). (68)

Consequently, ||x*1 — x*|| < ah?* =1, This inequality is valid for k = 0 because

of (64b). Assuming it holds for any k > 0, its validity for k4 1 follows, since (68)
implies
xEH — x| < K|x* — x*1))? < Ka?h* 72 < ah®* ', proving (67b).

PART 2. From (67b) it follows for m > n

||x'm+1 o XnH S me+1 o me + ||xm _ Xm71|| S Hxn+1 _ Xn”
< b TN A+ R + () Ll 69
< ah TR ) ) < S < (69)

for sufficiently large n > N(e), because 0 < h < 1. Therefore {x*} is a Cauchy
sequence and its limit limg— oo xF = x™ lies in the closure B(x%,r) since x* e
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B(x°,r), for all k& > 0. Now, let us show that x* is a zero of Tyf(x) = 0 in
B(x0,7). From || T f(x")| = [|x**' — x"|| it follows that limg e || Ty £(x*)|| =
0. Note

[Tuf(u) = TE(WV)|| = [[(Tu = Tv)E(v) + Tu(f(u) — £(v))]]
S (T = TO)EW)[| + [[Tu(f(w) — £(v)) ]
< N|ju = v|* + ||Tu||C|ju = v||, where C is a constant,
by (64c) and the fact that f(x) is differentiable,
< Nfu—v|* +flu— vl
by (64d), where C’ is a constant.
Therefore, since f is continuous at x>, T, f(x*) = Ty £(x°°) as x* — x>, and

lim Ty f(x") = T f(x>) = 0,

k—o0

i.e., X is a zero of Txf(x) in B(x°,r).
PART 3. Taking the lim,,— o in (69) we get

2m—1
. m—+1 n oo n ah
_ — _ < .
Jim [ x| = - < P
Since 0 < h < 1, the above method is at least quadratically convergent. U

The limit x*° of the sequence (65) is a solution of (66), but in general
not of (60), unless Tk is of full column rank (in which case (66) and (60) are
equivalent.) Thus, the choice of the {2}-inverses Ty« in Theorem 4, which
by Section 1.7 can have any rank between 0 and rank Jyx, will determine
the extent to which x> resembles a solution of (60). In general, the greater
the rank of the {2}-inverses Tyx, the more faithful is (66) to the original
equation. The “worst” choice is the trivial 7' = O, in which case any x
is a solution of (66) and the iterations (65) stop at x°. The best choice
is therefore a {1,2}-inverse. In particular, the Moore—Penrose inverse is
useful in solving least-squares problems.

COROLLARY 3. Under conditions analogous to Theorem 4, the limit
of the iterates

XM =xb - gl E(xb), k=0,1,..., (70)

XOO

is a stationary point of the sum-of-squares ||£(x)||*> = Y1~ | fi(x)[?, i.e.,
VI (x>) =0, (71)

where || - || denotes the Euclidean norm.

PROOF. Condition (64c) expresses a continuity of the {2}-inverse used. If this
holds for the Moore-Penrose inverse, then (Jr)! — (Jx)' and (66) becomes

(Jx=) 'E(x>) = 0,
and, since N(A") = N(A4*),
Jro£(x%°) =0,
and the proof is completed by noting that
VIEG0|? = 2 T3 (x). O
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REMARK 1. The standard setup for a Newton method (58) is that the
initial value f(z°) is not too large, and the moduli of derivatives |f’(x)]
and |f”(x)| stay bounded below and above, respectively, throughout the
computations. These standard assumptions are present in Theorem 4.

(a) For any nontrivial Tyo, the inequality (64b) bounds the value of f
at x¥ as follows:
!

I £(x%) lI< ,
| Toeo ||

showing that f(x°) cannot be too large.

(b) The inequality (64d) guarantees that ||Jy|| is bounded below for all
ue B(x%r).

(c) Condition (63) is Lipschitz continuity of the derivative in B(x%,r).
It stands here for the boundedness above of the second derivative
(even though f is not assumed twice differentiable).

The following theorem establishes the convergence of a modified New-
ton method, using the same {2}-inverse throughout.

THEOREM 5. Let the following be given:
xeR", r>0,
f:B(x"r) = R™ a function,
AeR™" T eR"™™ matrices,
€>0, &> 0 positive scalars,

such that
TAT =T, (72a)
ellT] =0 <1, (72b)
ITIEC)] < (1= é)r, (72¢)

and, for all u,v € B(x°,7),
[£(u) - £(v) — A(u = v)[| < elu—vl. (72d)
Then the sequence
P = xk — Tf(xb) (73)
converges to a point
x* € B(x,r) (74)
satisfying
Tf(x) = 0. (75)

PROOF. Using induction on k we prove that the sequence (73) satisfies, for
k=0,1,...,

x* € B(XO,T), (76)
kale - ka < 5k(1 —o)r. (77)
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We denote by (76.k) and (77.k) the validity of (76) and (77), respectively, for the
given value of k. Now (77.0) and (76.1) follow from (72c). Assuming (77.5) for
0<j<k—1weget

k—1 k—1
Ix" = x <Y =X < (1= 0)r Y 6 = (1— 6%,
j=0 j=0

which proves (76.k). To prove (77.k) we write

xR = —TE(x)
= -Tf(x"") - T[f(x") — f(x* )]
= T[A(xk —x"h —f(x") + f(xk_l)], by (72a) and (73).

From (72d) and (72b) it therefore follows that

" = x| < TIE(xE) = £(x"71) = A" —x"7h)|

< 3lfx" =X,

proving (77.k). ]

REMARK 2. f is differentiable at x° and the linear transformation A is
its derivative at xV, if

o 86 — £ — AGx = x0)]

x—x0 ||X — XOH

=0.

Comparing this with (72d) we conclude that the linear transformation A
in Theorem 5 is an “approximate derivative,” and can be chosen as the
derivative of f at x° if f is continuously differentiable in B(x",r). See also
Ex. 14 below.

REMARK 3. Note that (72d) needs to hold only for u,v € B(x°,7)
such that u — v € R(T), and the limit x> of (73) lies in

B(x%,r)n{x" + R(T)}.

Exercises

EX. 13. Let C be a convex subset of R, let f : C' — R™ be differentiable, and
let M > 0 satisfy

[|Je(x) — Je(y)|| < M||x —y||, forallx,ye€C.
Then
M 2
[£(x) = £(y) = (V) (x =yl < Sl =7, forallx,y € C.

PrOOF. For any x,y € C, the function g : [0,1] — R™, defined by g(t) :=
f(y +t(x —y)), is differentiable for all 0 < ¢ < 1, and its derivative is

g(t)=Je(y+tx—y))(x—y).
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So, for all 0 <t <1,

1g'(t) = g (O)] = | Je(y +t(x = y))(x —y) = Je(¥) (x = y)|l
< ey +t(x—y)) = JeW)llIx — vl
< Mt||x — yHQ.
L IEx) = £(y) = () (x = y)] = [lg(1) = g(0) — g (0)

= H/ 9’(0))dtH
/ lg'(t) — ¢/ (0) | dt < M/ vt]x — y|?

Zj\lx—yl\ - O

Ex. 14. A Newton method using {2}-inverses of approzimate derivatives. Let
the following be given:

x°eR", r>0,
f:B(x",r) > R™ a function,
€e>0, >0, m>0 positive scalars,

and, for any x € B(x%,7), let

Ay G]Rmxn7 T, eRnxm7

be matrices satisfying, for all u,v € B(x°,r),

[£() — £(v) — Av(u = V)| < eflu —v], (78a)
TuAuTu = Ty, (78b)
[(Tu = TV)EW)[| < nflu = vI], (78c)
e|Tull +n <0 <1, (78d)
I T I < (1 = 8)r. (78e)
Then the sequence
= xF - Taf(x"), k=0,1,..., (65)
converges to a point
x> € B(x%,r) (74)
which is a solution of
Txoof(x) = 0. (79)

PROOF. As in the proof of Theorem 5 we use induction on k to prove that the
sequence (65) satisfies

x" e B(x",r), (76.k)
% — x"|| < 651 — 6)r. (77.k)
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Again (77.0) and (76.1) follow from (78e) and, assuming (77.5) for 0 < j < k—1,
we get (76.k). To prove (77.k) we write

X xF = T £ (xF)
=x" X" ST (X)) + T £ (XY, by (65),
=Tt A1 (x¥ — X7 = T f£(x") + Tt £(x"71),
since TAT = T implies TAx = x for every x € R(T),
= Toer—1 [Agr—1 (x" = x"71) — £(x") + F(x" )] + (Tr 1 — T )F(x").
Therefore
" = x*|| < (e Tnr ]| + m)lx" = x"7"|l, by (78a) and (78c),
<olx" —x"Hl, by (784),
which proves (77.k). d

6. Linear Systems Theory

Systems modeled by linear differential equations call for symbolic com-
putation of generalized inverses for matrices whose elements are rational
functions. Such algorithms were given by Karampetakis [469], [470] and
Jones, Karampetakis, and Pugh [451].

As an example, consider the homogeneous system

AD)x(t)=0 (80)

where x(t) : [0—,00) = R", D := <.
A(D) = AyD?+--- 4+ A1 D + Ay, (81)
and A; € R™*" 4§ =0,1,...,q. Let £ denote the Laplace transform and

let X(s) = L(x(t)). The system (80) transforms to

Ay - Ayl [xlD(0-)
(82)

that allows casting the solution in a familiar form.

THEOREM 6 (Jones, Karampetakis, and Pugh [451], Theorem 4.2).
The system (80) has a solution if and only if

A(s)A(s)Tb(s) = b(s) (83)
in which case the general solution is
x(t) = £71(R(s)) = £ {A(s)B(s) + (I — A(s) A(s))y(s)} (34)

where y(s) € R"™(s) is arbitrary. O
For more details and other applications to linear systems theory, see
the papers cited above, and the references on p. 329.
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7. Application of the Group Inverse in Finite Markov Chains

This section is based on Meyer [544] and Campbell and Meyer [159, Chap-
ter 8]. A system capable of being in one of N states, denoted 1,2,... , N, is
observed at discrete times ¢ = 0,1,2,.... The state of the system at time
t is denoted by X;. The system is a finite Markov chain (or just chain) if
there is a matrix P = (p;;) € RV*Y such that

Prob{X,4, = j| X, =i} =pij, Vi,je€L,N,Vt=0,1,.... (85)

In words: the probability that the system at time ¢ + 1 is in state j, given
it is in state ¢ at time ¢, is equal to p;; (independently of ¢). The numbers
p;i; are called the transition probabilities and the matrix P is called the
transition matriz. It follows that the transition probabilities must satisfy

Z Pij = 1, 71€1,N, (86&)

in addition to

A square matrix P = [p;;] satisfying (86) is called stochastic. Condition
(86a) can be written as

Pe=e (87)
where e is the vector of ones. This shows that 1 is an eigenvalue of P.
Let p( ") denote the n-step transition probability

P = Prob{Xey, = j| X = i},

1)

where p;;” are the previous p;; and, by convention, pl(»?) = 0;5. The n-step

transition probabilities satisfy

pl] Z Dik Pkj,

and, inductively,

n—1 n—1
P sz p Y = Zp( b, (88)

giving the C’hapmaanolmogomv equatzons,

(m+”) Z pE’kn) p,(g)7 for all positive integers m, n. (89)

We conclude that p(n) is the (4, 7) th clement of P".

Some termlnology: a state i leads to state j, denoted by i — j, if
pgb) > 0 for some n > 1, i.e., there is a positive probability that j can be
reached from ¢ in n steps. Two states 7, are said to communicate, a fact
denoted by ¢ & j, if each state leads to the other. Communication is not
reflexive (a state ¢ need not communicate with any state, including itself),

but is symmetric and transitive, see Ex. 17.
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A set S of states is closed if i,j € S = i & j (i = j is possible).
A Markov chain is irreducible if its only closed set is the set of all states
and is reducible otherwise. A chain is reducible if and only if its transition
matrix is reducible, see Ex. 18.

A single state forming a closed set is called an absorbing state: a state
1 is absorbing if and only if p;; = 1. A reducible chain is absorbing if each
of its closed sets consists of a single (necessarily absorbing) state.

A chain with a transition matrix P is regular if, for some k, P* is a
positive matrix.

A state i has period T if p( R except when n = 7,27,37,.... The
period of i 1s denoted 7(¢). If 7(i) = 1, the state ¢ is called aperiodic.

Let fij denote the probability that starting from state i, the system
reaches state j for the first time at the nt step, and let

o0
= Z fi(jn), the probability that j is eventually reached from ¢,
n=1
o0
Hij = Z n Z(j ), the mean first passage time from i to j,
n=1
in particular,
o]
Lk = Z n ,gz), the mean return time of state k, see Ex. 20.
n=1
A state i is recurrent if f;; = 1 and is transient otherwise. A chain is
recurrent if all its states are recurrent.
If i is recurrent and p; = oo, i is called a null state, see Exs. 21-22.
All states in a closed set are of the same type, see Ex. 23.
A state is ergodic if it is recurrent and aperiodic, but not a null state.
If a chain is irreducible, all its states have the same period. An irreducible
aperiodic chain is called ergodic.
The n-step transition probabilities and the mean return times are re-
lated as follows:

THEOREM 7 (Chung [197], Theorem 9, p. 275). For any states i,j of
an irreducible recurrent chain

lim
n—oo 1+ 1

pr L (90)

PROBABILISTIC REASON: Both 51des of (90) give the expected number of
returns to state j in unit time. O

If a chain is irreducible, the matrix P7 is also irreducible, and has spec-
tral radius 1 by Ex. 15 and Ex. 0.73. The Perron-Frobenius Theorem 0.5
then guarantees a positive eigenvector x,

PTx =x, (91)

corresponding to the eigenvalue 1, with algebraic multiplicity 1. The vector
x can be normalized to give a probability vector 7 = [7;],
N b4

™ = @, (92)
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satisfying (91), written in detail as,

N
%kZZPz‘k%m kel N. (93)
=1

7 is called a stationary distribution or steady state. In an irreducible re-
current chain, the stationary distribution is, simply,

1

= )
HEk

~

Tk kel N, (94)

see Ex. 24.
Let wgt) denote the probability that the system is in state ¢ at time t
and collect these probabilities, called state probabilities or distribution, in

the vector 7w(*) = [ﬂ'Et)]. These satisfy

N
) =3 pur ™Y, keLN,t=01,..., (95)
1=1
or
x® = pTrt=1 v _01 ., (96)

and, inductively,
x® = (P t=0,1,..., (97)

where 7(0) = [TI'Z(O)] is the initial distribution, assumed known. In particular,
if the initial state X, is deterministic, say X = i, then w(©) = e;, the ¢ P
unit vector.

The transition matrix P and the initial distribution 7(®) suffice for
studying a Markov chain.

If the chain starts with a stationary distribution, i.e., if 7(9) = 7, then
) = 7 for all ¢t. This justifies the name stationary distribution. On the
other hand, if the probabilities 7'(',(;) — 7"1(@00)’ as t — oo, then the limiting
probabilities 7w(>°) satisfy (93) and are the stationary distribution 7.

The existence of a stationary distribution @ does not mean that the
system converges to that distribution, see Ex. 25. However, if a chain is
ergodic the system converges to its stationary distribution from any initial
distribution.

THEOREM 8 (Feller [271], Theorem 2, p. 325). Let P € RV*N be the
transition matrixz of an ergodic chain. Then:

(a) For every pair j,k € 1, N, the limit

lim p\" =7, >0 (98)

n—oo J
exists and is independent of j.

(b) 7y is the reciprocal of the mean return time pgi of the state k,
1

T = —. 99
r Mk ( )
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(¢) The numbers {m, : k € 1, N} are probabilities,
me >0, Y m=1 (100)

(d) The probabilities 7y, are a stationary distribution of the chain
N
szzpikﬂ'ia kel N. (93)
i=1
The distribution {m} is uniquely determined by (93) and (100).
In an ergodic chain, the stationary probabilities are given by

n

Yoo, jeTN, (101)
k=0

=
which follows by comparing (90) and (99).
For an ergodic chain, Theorem 8(a) states that all rows of P™ converge,
as n — 0o, to the stationary distribution 7r,

~T
™
~T
lim PP =17 =" |. (102)
~T
™

This implies that the Cesaro means of P™ also converge to the same limit

. 1 ~ kAT
e PIL (103)
which is statement (101). The converse, (103) = (102) is in general
false, see Ex. 26.

The stationary probabilities and other objects of interest can be com-
puted by applying the group inverse. First we require:

THEOREM 9 (Meyer [544], Theorem 2.1). If P is a stochastic matriz,
then Q = I — P has group inverse.
PROOF. If P is irreducible it has 1 as eigenvalue with algebraic multiplicity
1, by the Perron—Frobenius Theorem. Therefore ) has the eigenvalue 0 with

algebraic multiplicity 1, has index 1 by Theorem 4.1(c), and has a group inverse
by Theorem 4.2.

If P is reducible, it can written in the form (108). Each of the blocks {R;; :
i € 1,q} has spectral radius p(Ri;) < 1 by Ex. 16. Therefore, each I — R;; is
nonsingular and @ has a group inverse by a repeated use of (5.43). ([l

THEOREM 10 (Meyer [544], Theorem 2.2). Let P be the transition
matriz of a finite Markov chain and let Q = 1 — P. Then:

n
nh—)néo "il kz::() Pk,
1-QQ% = nhﬂrrolo (al + (1 —a)P)", forany0<a<1, (104)
lim P™, if the chain is reqular or absorbing.
n— oo
PROOF. By Ex. 27(a), there exists a nonsingular matrix S such that

I, O

_ o1
P=35 {o K

] S, with 1 & \(K). (105)
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-1 |0 (0] 1 |O O
L Q=817 IiK] S, Q*=sS [o (sz)—l] S.
L T—QQ* =57 {IO’“ 8} s. (106)

Since (I — K) is nonsingular,
I+K+K’+-- -+ K" (I-K'"")(I-K)' (107)
n+1 N n+1 '

From (105)—(107) it follows that
I+P+P*+...4 Pt (I—p*thHQ#

= I1-QQ*
n+1 n+1 + @Q7,
and, since ||(I — P"*1)Q#||o is bounded,
2 n+1
lim I+P+ P+ + P :I—QQ#,

n— oo n+1
proving the first line in (104). The second line is proved similarly, noting that
(al+(1—a)P) is a stochastic matrix and its spectral radius p(af+(1—a)P) < 1,
so (ol + (1 —a)P)" = O as n — oo.
If the chain is regular then, by Ex. 27(b,c), k = 1 and lim,— . K" = O.
{1 (0]

lim P"=5"" 0 O}S:I—QQ#.

n—00

If the chain is absorbing, with exactly r absorbing states, then by rearranging
states as in Ex. 27(d),

n_ | I, (@]
7|l ke 0
. | I O
S PR E o k)R O}’
and, since @ is of the form
[ O (0]
@=| g (I—K)}’

we have, by Ex. 5.11,

o* = [ 0] 0]
T |-U-K)P?R (I-K)'|"
I. O . n
L I-QQ* = (I-K)'R 0} = im_ P,
completing the proof. O
From (102) and Theorem 10 it follows, for an ergodic chain, that
AT
T
~ -~
I - QQ# = HT = )
AT
T

giving the stationary distribution 7 in terms of the group inverse of (I — P).
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Exercises

EX. 15. If P is a stochastic matrix, its spectral radius p(P) = 1.
PROOF. From (0.59) and the fact that the matrix norm (0.56.1) is multiplicative
it follows that p(P) < 1. On the other hand, p(P) > 1 by (87). d

Ex. 16. (Campbell and Meyer [159, Lemma 8.2.1]). Let P = A+ B be a
stochastic matrix, A > O and irreducible, B > O and nonzero. Then p(A) < 1.
PROOF. As in Ex. 15, p(A) < 1. If p(A) > 1, then p(A) = 1, and the Perron—
Frobenius theorem guarantees a positive eigenvector x,

ATx =x. (a)
From (87)

Ae + Be = e. (b)
Multiplying (a) by e and (b) by x we get
eTATx = eTx = xT de + x* Be.
. x"Be =0,

a contradiction since O # B > 0O, x>0, e > 0. O
Ex. 17. Let 4,7, k denote states of a finite Markov chain. Then:

(a) i=j = j&i.

(b) i=jandj=k = i=k
0
0|. Here state 1 is absorbing, states 2 and 3

: 0
3
are transient, and state 3 does not communicate with any state.

ProOF. (b) follows from pEZer) > pE?)p;f>. O

(¢) Consider P =

| M= =
wiv = O

EX. 18. A chain is reducible if and only if the states can be rearranged so that
the transition matrix is
p_ [Pu P12} .

O P

Here P»2 gives the transition probabilities for states in a closed set. Compare
with (0.135).

Ex. 19. If a chain has m minimal closed sets, its transition matrix P = [pij}
can be written, by rearranging states, as

Pow Poi Pos -+ Pom
00 01 02 0 Ri1 Ri2 -+ R
O P, O -+ O
O O P 0] O Rz - Ry
P = 22 " , where Pyo = ) . ,
: . . O O S
O O O - Punm O 0 - Ry
(108)

here {P;; : i € 1,m} are irreducible transition matrices of appropriate sizes, for
each of the minimal closed sets, and the matrices {R;; : i € 1,q} are irreducible.

Ex. 20. For any 4,5 and 1 < n < oo,

(n) _ (®) , (n—t)
iy =2 5 e
t=1
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Ex. 21. (Feller [271, Corollary, p. 324]). A finite Markov chain can have no
null states and it is impossible for all states to be transient.

Ex. 22. (Feller [271, p. 321]). Let ¢ be a state in a finite Markov chain and
consider the series > 7, pu) Then:

(a) The state ¢ is transient if and only if the series converges.

(b) If i is a null state the series diverges and limy,_ o p(”) =0.
(c) If 4 is ergodic, then lim,_ o p( n =1/ ;-
(

d) If ¢ is recurrent nonnull with period 7, then lim,_ p<m

) —T/,Lbn'-

Ex. 23. (Feller [271, Theorem, p. 322]). If two states communicate, they are of
the same type (transient, recurrent, periodic with same period).

Ex. 24. (Chung [197, Theorem 12, p. 278]). Let P be the transition matrix of
an irreducible chain and let 7 = [m;] be given by (94). Then:

(a) = is a solution of (93);

(b) 22 me =1
(¢) mr >0 for all k; and
(d) any solution of (93) is a multiple of .

Proor. For every t > 0,

t+1

( ) = Z pz] Pjk-
Averaging over t we get

1
p—— Z;piffl) Z(n+1 me)pjk,

whose limit, as n — oo, is, by (90) and (94),

N
T = T Dik, (93)
j=1

proving (a). d

EX. 25. Consider the stochastic matrix

P= {(1) (1)} and its stationary distribution 7 = % [ﬂ .

Then (PT)tﬂ'(O) does not converge, as t — oo, for any w(®) # 7. In particular,

T fel, t even, |1 {0
(P )'er = {e% ¢ odd, where e; = {O] , €2 = [1} .

EX. 26. For P of Ex. 25, (103) holds, and

) 1 <
1 P* =
|

k=0

MIERNIES
[

[SIENIES

EX. 27. Let P be a stochastic matrix. Then:
(a) P is similar to a matrix of the form

[Ik O

o K} , where 1 € A\(K).
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(b) If the Markov chain (of which P is the transition matrix) is ergodic, then
k=1, ie., P is similar to
1 O
0O K
(c) If the chain is regular, lim,—o K" = O.
(d) If the chain is absorbing, with r absorbing states, then P can be written,
by rearranging states, as follows:

] ,  where 1 € \(K).

I, O
P—{R K}’ where p(K) < 1.

8. An Application of the Drazin Inverse to Difference Equations

In this section, based on Campbell and Meyer [159, §9.3], we study an
application of the Drazin inverse to singular linear difference equations.
Applications to singular linear differential equations use similar ideas, but
require more details than is perhaps justified here. For these, the reader is
referred to Boyarintsev [130] and Campbell and Meyer [159, Chapter 9],
and their references, as well as references at the end of this chapter.

The following simple example illustrates how the Drazin inverse arises
in such applications.

ExaMPLE 1. Consider the difference equation

AXt+1 = X¢, t:O,l, , (109)

where A is singular, of index k. Since x;41 = Axy1p = -+ = AFxy gy it
follows that a solution x;;1 of (109), for given x;, must belong to R(A¥)
and, therefore, by Ex. 4.28,

xp1 = APz, t=0,1,.... (110)

A sequence {x;} described by (109) is therefore restricted to R(A¥), where

AP is an inverse of A, see (4.41). The representations (109) and (110) are

equivalent. O
The difference equations studied here are of the form

Axt+1 = th + ft7 (].].1)
s.t. xo=c (the initial condition),
where A, B € C"*", A is singular, ¢ € C", and {f; : t =0,1,...} C C".
An equation is homogeneous if f; = 0 for all ¢.
DEFINITION 1.
(a) The initial vector c is called consistent if, given x;, (111) has a
solution.
(b) The difference equation (111) is called tractable if there is a unique
solution for each consistent c.
In the homogeneous case, tractability has a simple characterization:
THEOREM 11 (Campbell and Meyer [159], Theorem 9.3.1). The ho-
mogeneous difference equation
AXt+1 = BXt, t :O,l,... , (112)

is tractable if and only if there is a scalar A € C such that (AA — B) is
nonsingular.



8. THE DRAZIN INVERSE AND DIFFERENCE EQUATIONS 311

PROOF. If: Let A, Ay, and By be as in Ex. 28. The tractability of (112) is
equivalent to that of

Axxii1 = Baxe, t=0,1,.... (113)
Using Ex. 4.42, we write

~  [h 0] .
A=x[l 9)x

where J1 is nonsingular and Jy is nilpotent. From (121) it follows that

A1 —1 0] }X_l,

BXZX{ O Ao-1

and partition x accordingly,
e x(
— xO]-

The equation J xgj_)l =1 -1 xﬁ” is tractable, since J; is nonsingular. It
therefore remains to show that

JoxP =0l - Dx, t=0,1,..., (114)

is tractable. Let Jy have index k and multiply (114) by Jé“_l to get (AJo —
nJEt x\¥ = 0. Therefore JE1 x\¥) = 0 for all ¢. Similarly, multiplying (114)
by J(’f_Q, we show Jg—z X§O> =0 for all t. Repeating this argument we show that
xio) =0 for all ¢, and (114) is trivially tractable.

Only if: Suppose (112) is tractable, but (AA — B) is singular for all A €
C, ie., for each X there is a nonzero v* € C" such that (AA — B)v* = 0.
Let {VM7 v VAS} be a linearly dependent set of such vectors and let
{oa, ..., as} be scalars, not all zero, such that 7, o v = 0. Define xt)‘i =
A vAi. Then the sequence {x; := Do xf"" : t=0,1,...} is not identically
zero, and is a solution of (112), satisfying the initial condition xo = 3°7_, a; v =
0. However, the sequence {x; =0: t =0,1,...} is another such solution, a con-
tradiction to the assumed tractability. O

In what follows, let A € C be such that (AA — B) is nonsingular, and
denote A, = (M — B)"'A by A and By = (M — B)"'B by B. Dropping
the subscript A\ is justified since the results below do not depend on A, as
shown by Ex. 29.

THEOREM 12 (Campbell and Meyer [159], Theorem 9.3.2). If the ho-
mogeneous equation

AXt+1 :th, t:0,1, 5 (112)
is tractable, then its general solution is given by
AADy ift=0

=q ~ x] ’ 115

Xt {(ADB)ty, ift=1,2... (115)

where y € C" is arbitrary. Moreover, the initial vector c is consistent for
(112) if and only if ¢ € R(A¥), where k = index A. In this case, the solution
of (112), subject to xo = c, is

x; = (APB)te, t=0,1,.... (116)
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PROOF. As in the proof of Theorem 11, we transform (112) to an equivalent

system
{Jl 0] xiih] _ {M -1 0 } (”] (1)
O Jof %, 0] Mo — 1| |x©
where J; is nonsingular and Jy is nilpotent, of index k. It follows that
xV = (o —DFIE XY, =0, xV =7 (O - 1'%, (118)

which proves (115), using Theorem 4.8. The remaining statements also follow
from (118). ]
We turn to the nonhomogeneous case.

THEOREM 13 (Campbell and Meyer [159], Theorem 9.3.2). If the equa-
tion

Axt+1 = BXt + ft7 (111)
s.t. Xg=2c,

is tractable, its general solution is, fort > 1,

t—1
x, = (APB)'AAPy + AP Y™ (AP By~ f;
=0

??‘
,_.

— (I — AADP) (AED)@DEH, (119)

i

i
=]

-~

where A = (MA—B)~'A, B= (AM—B)"'B, T, = (\MA—B)~'f;, k = Ind(A)
and 'y € C" is arbitrary. The solution (119) is independent of \.
The initial vector c is consistent if and only if

k—1
c+ (I — AAP) S (ABP)'BPf,; € R(A"). (120)
=0

PROOF. A comparison with (115) shows that the first term of (119) is the general
solution of the homogeneous equation (112). The proof that the remaining two
terms are a particular solution of (111), and the remaining statements, are left
as exercise. (]
Exercises
ExX. 28. (Campbell and Meyer [159, Lemma 9.2.1]). Let A, B € C"*",let A € C
be such that (AA — B) is nonsingular, and define Ay = M —B)'A, By =
(A — B)"'B. Then A\By = By A,.
PROOF. A)\ and B)\ commute since

My —By=1. (121)

d

Ex. 29. (Campbell and Meyer [159, Theorem 9.2.2]). Let A, B € C™*", let
A, Ay, By be as in Ex. 28, and let fx = (M — B)"'f. For all o, 3, for which
(eA — B) and (BA — B) are nonsingular, the following statements hold:

(a) E A fXB/TD

(b) A = APBj and A, BY = A3BY.

(c) Ind( )_Ind(Ag) and R(A,) = R(Az).

(d) AP%, = Agfg
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(e) BPt, = BYTs.
PROOF. (a)

~

= Ag(agﬁ — By)A,, by Ex. 4.33,
DI(BA — B) " (aA — B)A,

The other parts are similarly proved. O
Ex. 30. Complete the proof of Theorem 13.

Ex. 31. In Theorems 12-13 consider the special case where B is nonsingular.
Then A can be chosen as zero and A = B™'A, B = I. Note that Theorem 12
reduces to Example 1.

9. Matrix Volume and the Change-of-Variables Formula in
Integration

This section is based on [73]. The change-of-variables formula in the title
is

/ f(v)dv = / (f o ¢)(u)| det Jy(u)| du, (122)
Vv u

where U,V are sets in R", ¢ : U — V is a sufficiently well-behaved function,
and f is integrable on V. Here dx denotes the volume element |dz; A dxs A
-+ Adxy|, and Jy is the Jacobian matriz (or Jacobian)

0, o(vy,v9,...,0v
Jp = <81¢Z) , also denoted (‘3((u11,u?, — ,u:Ll))’ (123)
representing the derivative of ¢. An advantage of (122) is that integration
on V is translated to (perhaps simpler) integration on U.

This formula was given in 1841 by Jacobi [441], following Euler (the
case n = 2) and Lagrange (n = 3). It gave prominence to functional
(or symbolic) determinants, i.e. (nonnumerical) determinants of matrices
including functions or operators as elements.

If U4 and V are in spaces of different dimensions, say 4/ C R" and
YV C R™ with n > m, then the Jacobian J; is a rectangular matrix and
(122) cannot be used in its present form. However, if Jy is of full column
rank throughout ¢/, we can replace |det Jy| in (122) by the volume vol Jy
of the Jacobian to get

/ f(v)dv = / (f o ¢)(u) vol Jy(u) du. (124)
v u

Recall that the volume of an m x n matrix of rank r is

vol Ai= [ > det? Ay, (0.89)
(I,J)eN
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where Aj; is the submatrix of A with rows I and columns J, and N is the
index set of r X r nonsingular submatrices of A. If A is of full column rank,
its volume is, by the Binet—Cauchy theorem (see Ex. 0.65),

vol A =Vdet AT A. (125)

If m = n, then vol J, = |det Jy|, and (124) reduces to the classical result
(122).

The formula (124) is well known in differential geometry, see, e.g., [87,
Prop. 6.6.1] and [270, §3.2.3]. Although there are elementary accounts of
this formula (see, e.g., [208, Vol. II, Ch. IV, §4], [275, §8.1], and [730,
§3.4]), it is seldom used in applications.

We illustrate (124) for an elementary calculus example. Let S be a
subset of a surface in R? represented by

z=g(z,y), (126)

and let f(x,y,z) be a function integrable on S. Let A be the projection of
S on the xy plane. Then S is the image of A under a mapping ¢,

x X
S=¢(A), or |y|=| vy [|=¢ (i) (fj) c A (127)
z 9(z,y)
The Jacobi matrix of ¢ is the 3 X 2 matrix
1 0
Jowy)= 2802 o 1) (128)
d(z,y) 9 g
x Y

where g, = 0g/0z, g, = 0g/0y. The volume of (128) is, by (125),

vol Jy(z,y) = /14 g2 + g2. (129)

Substituting (129) in (124) we get the well-known formula

/Jw%aw:/fm%wW»1+ﬁ+%mw, (130)
S A

giving an integral over S as an integral over its projection in the xy plane.

The simplicity of this approach is not lost in higher dimensions or
with different coordinate systems, as demonstrated below by elementary
examples. These examples show that the full-rank assumption for Jy is
quite natural and presents no real restriction in applications. We see that
(124) offers a unified method for a variety of curve and surface integrals,
and coordinate systems, without having to construct (and understand) the
differential geometry in each application.

A BLANKET ASSUMPTION: All functions are continuously differentiable
as needed, all surfaces are smooth, and all curves are rectifiable.

EXAMPLE 2. Let a surface S in R™ be given by
Tp = g(z1,T2,...,Tp_1), (131)

let V be a subset on S, and let U be the projection of V on R"~!, the space
of variables (x1,...,2,-1). The surface S is the graph of the mapping
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¢ :U — V, given by its components ¢ = (¢1,02,... ,0n),
Gi(X1ye oo Xp1) =2, i=1,...,n—1,
(T, Tpe1) = g(T1, e o Tpeq)-

The Jacobi matrix of ¢ is

1 0 0 0
0 1 0 0
0 0 0 0
Jo=110 0 1 0
0 0 0 1
dg  0Og dg dg

_5’171 Oz o O%p—2 O0Tp—1 |

and its volume is

vol Jy = |1+ Z <axl) (132)

For any function f integrable on V we therefore have

/ f@1, a1, 2n)dV (133)
%

2
) dry - dr,_1.

n—1
0
:/]/{ f(xlw")xn—hg(xlv'“7xn—1)) 1+; (851

In particular, f = 1 gives the area of V,

n—1

/vldV—/u 1+Z <8:c2) doy - dag_y. (134)

ExAMPLE 3 (Radon Transform). Let H¢ , be a hyperplane in R™ rep-
resented by

Hep = {x eER"™: Z &y = p} ={x: (§x) =p}, (135)

where &, # 0 in the normal vector § = (&1,...,&,) of Hep (we call such
hyperplanes nonvertical). Then He ;, is given by

T (136)

1€l

e (137)

Z (&)2 -
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The Radon transform (Rf)(&,p) of a function f : R™ — R is its integral
over the hyperplane He 5, see [221],

®OEH = [ e (139)

Using (136)—(137), the Radon transform can be computed as an integral in
Rn—l

L€l %

(Rf)(€7 ) |€ | — f(xla"' 7$n717p) dml "'dxnfl (1393’)

where

n—1
f(xl,... n—1,D) = f(xl,... ,xn_l,g — Z é@) (139Db)

In tomography applications the Radon transforms are computed by the
scanning equipment, and the issue is the inverse problem, of reconstructing
f from its Radon transforms (Rf)(&,p) for all &, p. The inverse Radon
transform is also an integral, see, e.g., [221], [603], and can be expressed
analogously to (139), using the method of the next example.

EXAMPLE 4. Consider an integral over R",

f(x)dx = flz1,xa,. .., xp) dey das - - - dxy,. (140)
Rn R'Vl

Since R™ is a union of (parallel) hyperplanes,

U {x: (&,x) =p}, where §#0, (141)
p=—00
we can compute (140) iteratively: an integral over R"~! (Radon transform),
followed by an integral on R,

9] dp
F(x) dx /mngn( NED), (142)

where dp/||€|| is the differential of the distance along & (i.e., dp times the
distance between the parallel hyperplanes He ), and He¢ py1). Combining
(139) and (142) we get the integral of f on R™,

Rn

f(x)dx

R‘Il
/ Fl@,... 201, p) dﬂﬂl"'dzn—1}dp- (143)
|§n| Rr—1
It is possible to derive (143) directly from the classical change-of-variables
formula (122), by changing variables

n
from {z1, -1, 20} to {z1, 201, p =30 it
iz

and using

det 3(1’1,"' 7xn71;xn) _ i
8(1‘1,"' 7xn—1ap) gn
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EXAMPLE 5 (Fourier Transform). The Fourier transform (Ff)(€) of f
is the integral

(€)= s [ e S0 dx (144)

= (271'1)’1/2/]1%” f(m,... ,xn)exp{—i é fkl"k}dmdxgn-dxn_

For &, # 0 we can compute (144) analogously to (143) as
(F1)(€) (145)

n—1
1 /C>O —ip / ~
= e’ flz1,... ;zn_1,p) dxy, ¢ dp.
amel ) L L T vo) [T}

The Fourier transform of a function of n variables is thus computed as
an integral over R"~! followed by an integral on R. The inverse Fourier
transform of a function g(£€) is of the same form as (144),

(Flg)) = o [ g(6) e (146)

and can be computed as in (145).
Exercises

EX. 32. Let ¢ : R? — R be given by

y u . . d(z,y, 2) Tu  Bv
y =¢<L}D, WlthJaCOblaan,:m: Yo Yol

z Zu 2y
assumed of full column rank. Then
vol J, = VEG — F2, (147)
where
E = (zu)”+ (gu)” + (2)”,
F =242y + YulYo + 2u2v,
G = (2)" + ()" + (20)".

T
Explanation of the functions F, F, and G: let r = [y] .
z

Then:
E=|ru|? F=(ru,r.), G=|r|?
and (147) becomes

2
vol Jy = 1| EG (1 - i) — Vel oo P = cos? Z{rwto})

EG
= ||ru|| Irs|| | sin Z{ru,ry}| = area of the parallelogram {r.,r,}.
Since ¢ maps an area element [{du,dv} into O{r.du,r,dv}, we see that
E and G measure the stretching of the sides, while F' gives the distortion of the

angle, under the mapping ¢. In particular, angles are preserved if F' = 0, in which
case shapes are preserved if £ = G. See also Ex. 6.21.
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EX. 33. Let C be an arc on a curve in R", represented in parametric form as
C:=¢([0,1]) = {(z1, @2, ... ,@n) : @i = i(t), 0 <t <1} (148)

The Jacobi matrix J4(t) = (z1,22, - ,xn)/Ot is the column matrix [¢;(¢)] and
its volume is

vol Jy = | 7 (64(6))>.

i=1

The line integral (assuming it exists) of a function f along C, fc f, is given in
terms of the volume of Jy as follows:

1 n , 2\ 1/2
L= [ s o (S ew?) " a (149)

1=1

In particular, f =1 gives

arc length C = /01 (i (¢;(t))2)1/2 dt. (150)

If one of the variables, say a < z1 < b, is used as parameter, (150) gives the
familiar result

1/2
arc length C = / (1 + Z Zzl ) T1.
a 1

EX. 34. Let S be a surface in R® represented by
z = z(r,0) (151)

where {r,0,z} are cylindrical coordinates

x =7 cosé, (152a)
y=rsinb, (152b)
z =z (152c)

The Jacobi matrix of the mapping (152a), (152b), and (151) is

Az, y, 2) cosf —r sinf
or o6

and its volume is

0z A \/ 0z 1 /0z
_ 2 4 g2 - +
vol J¢—\/r " (8r) (89) Tyt (81") (86) ’ (154)
An integral over a domain V C § is therefore

/ flz,y,2)dV (155)
v

_/f(rcos0 rsing, z(r,0))ry/1+ 0z +i 9z 2drd6’
“Ju ’ Y ar r2 \ 90 '
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EX. 35. Let S be a surface in R®, symmetric about the z-axis. This axial
symmetry is expressed in cylindrical coordinates by

0z

z=2z(r), or 2= 0, in (153)-(155).
The volume (154) thus becomes
vol Jp = r/1+ 2'(r)? (156)

with the axial symmetry “built in.” An integral over a domain V in a z-symmetric
surface S is therefore

/ flz,y,2)dV = / f(rcos@,rsinb, z(r)) ri/1+ 2/(r)? dr do.
v u

EX. 36. Again let S be a z-symmetric surface in R®. We use spherical coordinates

T = psing cosf, (157a)
y = psing sinb, (157b)
z = p cos . (157¢)

The axial symmetry is expressed by

p = p(¢) (158)

showing that S is given in terms of the two variables ¢ and 6. The volume of the
Jacobi matrix is easily computed

vol % = p\/P? + (0(9))” sing

and the change of variables formula gives

/ f(@,y,2)dV = / F(6.0)0(6) /P2 + (@) sinpdpds,  (159a)
v u

~

where f(0, ¢) is obtained by substitution of (157) and (158) in f(z,y, 2),
F(0,6) = F(p(9) sin ¢ cos 6, p(9) sin ¢ sin 6, p() cos ¢)p(9). (159b)

EX. 37. The generalized Pythagorean theorem, Lin and Lin [517], [95]. Consider
an n-dimensional simplex

A, = {(xl,zg,... T Z a;zi < ag, x; >0, ieﬁ}, (160)
i=1
with all a; > 0, j € 0,n. We denote the n + 1 faces of A,, by

Fo = {(x1,m27... 1 Tn) € Ay zn:aiwi:ao}a (161a)

i=1
Fji={(z1,22,... ,xp) € An: z; =0}, j€1,n. (161b)

and denote their areas by Ao, Aj, respectively. The generalized Pythagorean
theorem (see [517]) states that

Ag=>" A% (162)
j=1
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We prove it here using the change of variables formula (124). For any j €
I,n we can represent the (largest) face Fy as Fo = ¢V} (F;) where ¢t} =

B, e s

d)fj}(xl,xz,... yIn) =X, 1 F 7,
) L N
@57 (w1, @2, ..., T0) p Z Zi.

h

The Jacobi matrix of ¢{/} is an n x (n — 1) matrix with the i*® unit vector in

row i # j and
(,& _ g2 _Gim1 G _Gn1 ,‘Ln)

.7 ‘7"'7 . b ) P . b .
a; a; aj a; aj a;

in row j. The volume of the Jacobi matrix of d){j} is computed as

2
a; a
vol J ;3 = 1+Z (a—) = = M
itj N 7
where a is the vector (a1,...,an). Therefore, the area of Fy is
Ao :/ (M) I] de: = (M) A;, jeln (163)
7 Mail/ s ||
A X el
=1 =
A} [all? ~

and (162) reduces to the ordinary Pythagorean theorem
n
lall* =" las|*.
j=1
EX. 38. Let Ao be the area of largest face Fy of the regular simplex

fo:{x:Zm:l, xiZO,ieﬁ}.
i=1

Then
Ay = i
(n—1)!
The other n faces have areas
1 . —
Aj = m, J € 1,71.

Ex. 39. Gamma and Beta functions. We collect here results needed below. The
Gamma function T'(p) is

I(p) := / " e " da. (164)
0
Its properties include
ra) =1, (165a)
F(p+1) =pL(p), (165b)

r'(3)=+vr. (165c¢)
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The Beta function is

1
B(p,q) := / (1- x)p_lwq_l dx. (166)
0
Its properties include
L(p)T'(9)
B(p,q) = =229 1672
(p,q) T(p 1 ) (167a)
B(p,q+1) q
_ , 167b
B(p,q) p+q (167b)
Bp+1l,4q9)  p (167¢)

B(p,a) — p+q’
where (167b)—(167¢) follow from (167a) and (165b).

EX. 40. Let
Bn(r) :={x€R": ||x|]| <r}, the ball of radius r,
Sn(r) :={x €R": ||x|]| =r}, the sphere of radius r,
both centered at the origin. Also,

vn(r) := the volume of By (r),
an (1) := the area of S,(r),

where 7 is dropped if r = 1, so that

vy, := the volume of the unit ball 5,,,
an := the area of the unit sphere S,,.
Clearly
On(r) =va ", an(r) =anr™,  dua(r) = vl (r) dr = a,(r) dr, (168)
and it follows that
an =NVp, Nn=2,3,.... (169)
Ex. 41. Integrals on S,, in particular the area a,, can be computed using
spherical coordinates, e.g., [603, § VIL.2], or the surface element of S, e.g., [586].

An alternative, simpler approach is to use the results of Example 2, representing
the “upper hemisphere” as ¢(Bn—1), where ¢ = (¢p1, d2,... ,dn) is

¢i($1,1’2,... 71:11—1):331'7 1e€l,n—1,

¢n(ac1,x2, o

The Jacobi matrix is

1 0 0
0 1 0
Jy = :
T1 T2 ~ Tn-1

Tn Tn Tn
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and its volume is easily computed

1
_— = (170)
1- ;:11 o
The area a,, is twice the area of the “upper hemisphere.” Therefore
N YO
Bp_1 n—1
1- > =2
\/ i=1
27 (171)

where I'(+) is the Gamma function, see Ex. 39 above.
PRroOOF.

L 1 Jo V1I=r2’
1- > z
i=1

@ =2 / dey - den 1 9 1 dvp—1(r)
B

using spherical shells of radius r and volume dvn—1(r),

1 Tn72

—dr,
0 \/1—7“2

n  _ /1 (1- x)*l/Q 232 g , using x = r2,
an—1 0
o (n—1) 1\ T((n—1)/2)T(1/2)
=5( 2) = T(n/2)

2 2
and a, can be computed recursively, beginning with as = 27, giving (171). O

=2an_1 by (169).

Ex. 42. Volume of B,. The volume of the unit ball B, can be computed by
(169) and (171),

7,[,71/2

S T 1)

Alternatively, the volume v,, can be computed as the limit of the sum of volumes

of cylinders, with base dx1 - - - dz,—1 and height 24/1 — 22;11 z2,
Up = 2 /
B

a routine integration.

n:172,--- (172)

n—1
1= a2 dai - daa, (173)
k=1

n—1

EX. 43. The normal vector £ of the hyperplane (135) can be normalized and can
therefore be assumed a unit vector, see, e.g., [221, Chapter 3] where the Radon
transform with respect to a hyperplane

HE",p) = {xeR": (" x)=p}, [€"]=1, (174)
is represented as
RAE ) = [ 7650~ (€",x)) dx.

where 0(-) is the Dirac delta function. If (135) and (174) represent the same
hyperplane, then the correspondence between (Rf)(£,y) and (Rf)(£°, p) is given
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o_ & _ Y
E= e P

EX. 44. The computation of the integrals mentioned above is feasible using
available symbolic algebra software (subject to limitations of such software).
As an illustration consider the Radon transform of the function f(x,y) =

6712792, obtained here by using (139) with the symbolic package DERIVE [492]:

Function f Radon transform Rf(€,p), € = [§]

fa =mwlet - Ry ([f] ) = vEme [ 2]

f(z,y) = EXP [~2? — ¢?] Rf ([g} 7p) — /7 EXP [—%} (vertical line)

10. An Application of the Matrix Volume in Probability

This section is based on [75]. The abbreviation RV of random variable is
used throughout. Consider n RVs (Xy,...,X,,) with a given joint density
fx(x1,... ,x,) and an RV

Y = h(Xy,...,X,) (175)
defined by the mapping h : R — R. The density function fy(y) of Y is

derived here in two special cases,

h_linear:

Xy, -, X)) = Z &X,;, see Corollary 4, (176)

i=1

h sum of squares:

n
Xy, -, Xy) = Z X?, Corollary 5. (177)
i=1
In both cases, the density fy(y) is computed as an integral of fx on the

surface
V(y) :={x e R": h(x) =y},

that is, a hyperplane for (176) and a sphere for (177). These integrals are
elementary and computationally feasible, as illustrated in [75, Appendix A].
Both results are consequences of Theorem 14, and a comparison between
two integrations, one “classical” and the other using the change-of-variables
formula (124).
Notation: For a random variable X we denote:

Fx(z) := Prob{X <z}, the distribution function;

fx(z) = %Fx(x), the density function;

E{X}, the expected value;

Var {X}, the variance;

X ~ U(S), the fact that X is uniformly distributed over the set S;

and
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X ~ N(p,0), normally distributed with E{X} = p,
Var{X} = o2
BLANKET ASSUMPTION: Throughout this section all random variables are
absolutely continuous and the indicated densities exist.
10.1. Probability Densities and Surface Integrals. Let the RV
X = (Xy,...,X,) have joint density fx(z1,...,2,) and let
y=h(z1,...,75) (178)

where h : R — R is sufficiently well-behaved, in particular, Oh/dx,, # 0,
and (178) can be solved for z,,

T :hil(yh:la"' axn—l) (179)
with x1,... ,z,_1 as parameters. By changing variables from {z1,...,z,}
to {21,...,2Zn_1,y}, and using the fact

8(371 S Qin) Oh~1
det{ AR } - , 180
Nz1,... ,Tpn—1,Y) y (180)
we write the density of Y = h(Xy,...,X,) as
~ oh~1!
fy(y) = flylze, ... yzp_1) 5 dzy - - dxn,_1, (181a)
Rn—1 y

where

~

fWlz, ... yzn_1) = fx(@1,. .0, Zpo1, h_l(y|x1, ey Tpe1)). (181b)

Let V(y) be the surface given by (178), represented as

T x1 I
_ : =¢ : . (182)
Tn—1 Tn—1 T 1
Ty =Y (ylz1, ... 20_1) n—

Then the surface integral of fx over V(y) is given, by (133), as

/V L ix

R n—1 8h*1 2
:An,l f(y|5€1, ,.17"_1) 1—|—; < oz, ) dry---dxp_1, (183)

o~

with f(y|z1,...,2n—1) given by (181b).
THEOREM 14. If the ratio

oh~?!
Jdy

n—1 Oh-1 2
1+ T (%)

does not depend on  x1,...,%p_1, (184)
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then

on~!
dy

fr(y) = / fx. (185)

S+ ()

PROOF. A comparison of (183) and (181a) gives the density fy as the surface
integral (185). ]

Condition (184) holds if V(y) is a hyperplane (see Section 10.2) or a
sphere, see Section 10.3. In these two cases, covering many important prob-
ability distributions, the derivation (185) is simpler computationally than
classical integration formulas, e.g., [100, Theorem 5.1.5], [377, Theorem
6-5.4], and transform methods, e.g., [770].

10.2. Hyperplanes. Let

y=hx1,...,2.) = &, (186)
where & = (&1,...,&,) is a given vector with &, # 0. Then (179) becomes
$n:h_1(y|l‘1,... Lp— 1 Z é (187)
ok 2o g,
with
Oh~1 1
- 1
gy &) (1882)

n—1 2 n—1 2
oh~! &i €]l
1+ ( > =,1+ (> = —. 188b
2\ 2 e) “el (1880)
Condition (184) thus holds, and the density of > &; X; can be expressed
as a surface integral of fx on the hyperplane

H(E y) = {X eR™: z": §ivi = y},
=1

i.e., the Radon transform (Rfx)(&,y) of fx. Recall that the Radon trans-
form can be computed as an integral on R"™1, see, e.g., (139).

COROLLARY 4. Let X = (X1,Xg,...,X,) be random variables with
joint density fx(x1,z2,...,x,) and let 0 # & € R™. The random variable

Y=Y 46X, (189)
i=1
has the density
R
fx(y) = (f’f'{)'(fy) (190)
PROOF. Follows from (185), (137), and (139). ]

Explanation of the factor ||| in (190): the distance between the hy-
perplanes H(&, y) and H(&, y + dy) is dy/|[£]-
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10.3. Spheres. Let

y=h@s,... w0) = (191)

i=1
which has two solutions for z,, representing the upper and lower hemi-
spheres,

n—1
T =h "yl 21, ) = £ y—z z?, (192)

i=1

with
ag =+ — (193a)
Y 2\y— i1 @
Oh—1
LR
' Y= iy ¥}

Therefore condition (184) holds and the density of > X? is, by (185),
expressed in terms of the surface integral of fx on the sphere S,(,/y) of
radius /3.

COROLLARY 5. Let X = (X, ..., X,,) have joint density fx(z1,...,Tn).

The density of

Y =) X} (194)
18

fy(y) = (195)

1 / P
P X
2V Js. (v

where the integral is over the sphere S, (\/y) of radius \/y, computed as an

integral over the ball B,_1(\/y) using (133) with g = h™*.

PROOF. Equation (195) follows from (185) and (193a). (]
An explanation of the factor 2,/y in (195): the width of the spherical

shell bounded by the two spheres S,,(1/y) and S,,(v/y + dy) is the difference

of radii

y+dy —
\f

EXAMPLE 6 (Spherical distribution). If the joint density of
X = (X4y,...,X,) is spherical

Fx(er,oan) = (D @), (196)
i=1
then Y = "' | X? has the density
71_71/2

ply)y DL (197)




10. AN APPLICATION OF THE MATRIX VOLUME IN PROBABILITY 327

PROOF. The surface integral of fx over Sn(\/Y) is

) 71_77,/2

/Snm) fx =p(y) an-1(v/y) = p(y) T(n/2) Vy"!, by (171) and (168).

The proof is completed by (195). (Il
Exercises

Ex. 45. Ezponential distribution. Let A > 0 be given and let Y be the mean

L&
Y= Z_; X;
of n independent RVs, identically distributed with exponential density
Ix,(x3) = )\efm"’, x; > 0.
Then the density of Y is

fY(y)—(n_l),y e ™™, y=0
PRrROOF. Use (186) with & = 1/n, (185), and (188) to conclude that
1 Y = &
o A TR B )
n—1
=+/n fx(:nl,... 7xn,1,ny—2xi), (198)
Fo(ny) i=1

where Fo(ny) = {x: Y1, @i =ny, x; > 0,i € I,n} is the simplex face whose
area is, by Ex. 38,

)nfl

Ao(ny) = %(ny

A
The joint density of X = (X4,...,Xy») is fx(z1,... ,2n) = A"e =t . There-
fore

n—1

fx (:cl, e Tp—1,NY — Z a:z> = AW

=1

and (198) becomes
fr(y) = VaX'e A Ag(ny)

— n_—Any \/ﬁ
=Vn\"e (n_l)!(ny

completing the proof. O

EX. 46. Bivariate normal distribution. Let (X1, X2) have the bivariate normal
distribution, with zero means and unit variances,

2 2
fr(w1,m2) = ——— exp {_w} (199)

2my/1 — p? 2(1 —p?)

and let Y := aX; + bX5. The density of Y is, by (190),

1
Ix(y) = N (Rfx)((a,b),y)

2

1 y
= — . 200
V21 \/a? + 2abp + b? P { 2 (a2 4 2abp + b?) } (200)
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Therefore aXq + bX2 ~ N(0,4/a? + 2abp 4+ b?). In particular, X; + X ~
N(0,+/2(1+ p)) and X1 — X2 ~ N(0,+/2(1 — p)).

Ex. 47. Uniform distribution. Let (Xi,X2) be independent and uniformly
distributed on [0, 1]. Their joint density is

f ( )_ 1, if0<x,220 <1,
X\TL%2) =19 |, otherwise,

and the density of aX; + bX is, by (190),

faxi4ox, (y) = L (fo)(m ,y>

VaZ + b2
ly—a—b—|y—al— |y —b[+ |yl
- : 201
2ab (201)
In particular,
fX1+X2(y): 2 -y, if1<y<2,
0, otherwise,

a symmetric triangular distribution on [0, 2].

ExX. 48. x? distribution. If X; ~ N(0,1) and are independent, i € 1,n, their
joint density is of the form (196),

=0

NSE

T
fx(x1,...,xn) = (277)*"/2 exp{—i 12 }

and (197) gives

fx(y) = my("m*l eXp{—%}, (202)

the x? distribution with n degrees of freedom.
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CHAPTER 9

Generalized Inverses of Linear Operators
between Hilbert Spaces

1. Introduction

The observation that generalized inverses are like prose (“Good Heavens!
For more than forty years I have been speaking prose without knowing it” —
Moliere, Le Bourgeois Gentilhomme) is nowhere truer than in the literature
of linear operators. In fact, generalized inverses of integral and differential
operators were studied by Fredholm, Hilbert, Schmidt, Bounitzky, Hur-
witz, and others, before E.H. Moore introduced generalized inverses in an
algebraic setting; see, e.g., the historic survey in Reid [685].

This chapter is a brief and biased introduction to generalized inverses
of linear operators between Hilbert spaces, with special emphasis on the
similarities to the finite-dimensional case. Thus the spectral theory of such
operators is omitted.

Following the preliminaries in Section 2, generalized inverses are in-
troduced in Section 3. Applications to integral and differential operators
are sampled in Exs. 18-36. The minimization properties of generalized
inverses are studied in Section 6. Integral and series representations of gen-
eralized inverses, and iterative methods for their computation, are given in
Section 7.

This chapter requires familiarity with the basic concepts of linear func-
tional analysis, in particular, the theory of linear operators in Hilbert space.

2. Hilbert Spaces and Operators: Preliminaries and Notation

In this section we have collected, for convenience, some preliminary results
that can be found in the form stated here or in a more general form, in the
standard texts on functional analysis; see, e.g., Taylor [800] and Yosida
[882].

(A) Our Hilbert spaces will be denoted by H,Hi,H2, etc. In each
space, the inner product of two vectors x and y is denoted by (x,y) and
the norm is denoted by || [|. The closure of a subset L of H will be denoted
by L and its orthogonal complement by L. LT is a closed subspace of H
and

Lt=T"
The sum, L + M, of two subsets L, M C H is
L+M={x+y:x€L, yeM}

330
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If L, M are subspaces of H and L N M = {0}, then L + M is called the
direct sum of L and M, and denoted by L@® M. If, in addition, L C M+ we

denote their sum by L é M and call it the orthogonal direct sum of L and
M. Even if the subspaces L, M are closed, their sum L + M need not be
closed; see, e.g., Ex. 1. An orthogonal direct sum of two closed subspaces
is closed. Conversely, if L, M are closed subspaces of H and M C L, then

1
L=M&(LnM"). (1)

If (1) holds for two subspaces M C L, we say that L is decomposable with
respect to M. See Exs. 5-6.

(B) The (Cartesian) product of H1,Ha will be denoted by
Hio=H1 xHo={{x,y}: x € H1,y € Ha}
where {x,y} is an ordered pair. H; 2 is a Hilbert space with inner product
({x1,y1} {x2, y2}) = (x1,y1) + (%2, ¥2)-
Let J; : Hi — Hi2, © = 1,2, be defined by
Jix ={x,0}, forall x € Hy,
and

Joy ={0,y}, forally € H,.

The transformations J; and Jo are isometric isomorphisms, mapping H;
and Hs onto

7‘[1,0 =J1H1 =H1 % {O}
and

7‘[072 = JQHQ = {0} X Hg,
respectively. Here {0} is an appropriate zero space.

(C) Let L£L(H1,H2) denote the class of linear operators from Hy to
Ho. In what follows we will use operator to mean a linear operator. For
any T € L(H1,H2) we denote the domain of T by D(T), the range of T by
R(T), the null space of T by N(T), and the carrier of T by C(T), where

C(T) = D(T) N N(T)*. (2)
The graph, G(T), of a T € L(H1,Hs) is
G(T)={{x,Tx}: xe D(T)}.

Clearly, G(T) is a subspace of H; 2 and G(T) N Hp2 = {0,0}. Conversely,
if G is a subspace of H1 2 and G(T') N Ho2 = {0,0}, then G is the graph
of a unique T' € L(H1,Hz), defined for any point x in its domain

D(T) = J; ' Py, ,G(T)
by

Tx =y,
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where y is the unique vector in Hy such that {x,y} € G and Py, , is the
orthogonal projector: Hi 2 — A0, see (L) below.

Similarly, for any T' € L(Ha,H1), the inverse graph of T, G=Y(T), is
defined by

GHT) ={{Ty,y}: y € D(T)}.

A subspace G in H; 2 is an inverse graph of some T' € L(H2, 1) if and
only if GNH1 o = {0, 0}, in which case T is uniquely determined by G (von
Neumann [840]).

(D) An operator T € L(Hi,Hz) is called closed if G(T) is a closed
subspace of H; ». Equivalently, T is closed if
xp € D(T), x5, = X0, Txp, 2> y0 = X0 € D(T) and Txg = yo,

where — denotes strong convergence. A closed operator has a closed
null space. The subclass of closed operators in L(Hi1,H2) is denoted by
C(H1, Ha).
(E) An operator T' € L(H1,H2) is called bounded if its norm ||T|| is
finite, where
x|
orntre, X

The subclass of bounded operators is denoted by B(H1, Hsa). If T € B(H1, Ha),
then it may be assumed, without loss of generality, that D(T") is closed or
even that D(T) = Hy. A bounded T € B(H1,H2) is closed if and only if
D(T) is closed. Thus we may write B(Hy, Ha) C C(H1,Hs). Conversely,
a closed T € C(H1,H2) is bounded if D(T) = H;. This statement is the
closed graph theorem.

(F) Let Ty,Ty € L(H1,Ho) with D(T}) C D(T3). If Tox = Tyx for all
x € D(T1), then Ty is called an extension of T and T; is called a restriction
of Ty. These relations are denoted by

Ty C Ty

1Tl =

or by

T1 = (T2)[(p(my))-
Let T € L(H1,H2) and let the restriction of T to C(T) be denoted by Ty

To = Tic(ry-
Then
G(Ty) = {{x.Tx} : x € C(T)}
satisfies
G(To) N Hi, = {0,0}

and hence is the inverse graph of an operator S € L(Hz, H1) with

D(S) = R(Ty).



2. PRELIMINARIES AND NOTATION 333

Clearly,

STx =x, forallxe C(T),
and

TSy =y, forallye R(Tp).

Thus, if Ty is considered as an operator in L(C(T), R(Tp), then Tp is in-
vertible in its domain. The inverse T, ' is closed if and only if Tp is closed.
For T € L(H1,Hz), both C(T') and Ty may be trivial; see, e.g., Exs. 2 and
4.

(G) An operator T € L(H1,H2) is called dense (or densely defined)

it D(T) = Hy. Since any T € L(H1,Hz2) can be viewed as an element of
T € L(D(T),H2), any operator can be assumed to be dense without loss
of generality.

For any T € L(H1,Hz2), the condition D(T') = H; is equivalent to
G(T)* NHio = {0,0},
where
G(T)* = {{y,z}: (y,x) + (2, Tx) =0 for all x € D(T)} C H1 2.

Thus, for any dense T' € L(H1,Hs), G(T)* is the inverse graph of a unique
operator in C(H1,Hsz). This operator is —T™* where T*, the adjoint of T,
satisfies
(T*y,x) = (y,Tx), forallxe D(T).
(H) For any dense T € L(H1, Ha),
N(T)=R(T*)", N(T*)=R(T)". 3)

In particular, T [T*] has a dense range if and only if 7* [T] is one-to-one.

(I) Let T € L(H1,Hs2) be dense.
If both T and T* have inverses, then (T—1)* = (T*)~%.
T has a bounded inverse if and only if R(T*) = H;.
T™* has a bounded inverse if R(T") = Hs. The converse holds if T' is closed.
T* has a bounded inverse and R(T™*) = H; if and only if T" has a bounded

inverse and R(T') = H; (Taylor [800], Goldberg [300]).

(J) An operator T' € L(H1,Hz2) is called closable (or preclosed) if T
has a closed extension. Equivalently, T is closable if

Wﬂ HO’Q = {07 0}7

in which case G(T) is the graph of an operator T, called the closure of T.
T is the minimal closed extension of 7.

Since G(T)*+ = G(T) it follows that for a dense T', T** is defined only
if T is closable, in which case

TCcT*=T
and
T=T
if and only if T is closed.
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(K) A dense operator T' € L(H,H) is called symmetric if
TCT"
and self-adjoint if
T =1
in which case it is called nonnegative, and denoted by T = O, if
(Tx,x) >0, forall xe D(T).

If T € C(Hi,Ho2) is dense, then T*T and TT* are nonnegative, and I +717T*
and I + T*T have bounded inverses (von Neumann [838]).
(L) An operator T € B(H,H) is an orthogonal projector if
P = pP* = P?

in which case R(P) is closed and

H = R(P) & N(P).

Conversely, if L is a closed subspace of H, then there is a unique orthogonal
projector Py, such that

L=R(P,) and L*=N(Pp).

(M) An operator T' € C(H1,H2) is called normally solvable if R(T) is
closed which, by (3), is equivalent to the following condition: The equation
Tx =y
is consistent if and only if y is orthogonal to any solution u of

T*u=0.
This condition accounts for the name “normally solvable.”

For any T € C(H1,H2), the following statements are equivalent:

(a) T is normally solvable.
(b) The restriction Ty = Tic(r)) has a bounded inverse.
(¢) The nonnegative number
IT]|
V(T) = inf T 1 0#xeC(T) (4)

is positive (Hestenes [416, Theorem 3.3]).
Exercises
EX. 1. A nonclosed sum of closed subspaces. Let T € B(H1,H2) and let
D= JiD(T) = {{x,0}: x€ D(T)}.

Without loss of generality we assume that D(T) is closed. Then D is closed. Also
G(T) is closed since T is bounded. But

G(T)+ D
is nonclosed if R(T') is nonclosed, since

{x,y} € G(T)+D <= ye€R(T) (Halmos [366, p. 26]).
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EX. 2. Unbounded linear functionals. Let T be an unbounded linear functional
on H. Then N(T) is dense in H and, consequently, N(T)* = {0}, C(T) = {0}.
An example of such a functional on L]0, o0] is

Tx = / tx(t) dt.
0
To show that N(T) is dense, let xo € L*[0, 00] with T'xo = . Then a sequence
{xn} C N(T) converging to xo is

xn(t) = xo(t), ift<lort>n+1,
YT xo(t) — af/nt, if1<t<n+1.

Indeed,

n+1 2 2
[[%n — x0||* = / ey —— — 0.
1 (nt)? n(n+1)

EX. 3. Let D be a dense subspace of H and let F' be a closed subspace such
that F'* is finite dimensional. Then

DNF =F (Erdelyi and Ben-Israel [265, Lemma 5.1]).
EX. 4. An operator with trivial carrier. Let D be any proper dense subspace of
#H and choose x ¢ D. Let F = [x]*, where [x] is the line generated by x. Then

DNF =F, by Ex. 3. However, D ¢ F, so we can choose a subspace A # {0} in
D such that

D=Ag (DNF).
Define T' € L(H,H) by

D(T)=D
and
T(y+z)=y, ifyeA zeDNF
Then
N(T)=DnNF,
N(T)=DNF=F,
N(I)" = F =[x,

Q

(T) = D(T) N N(T)* = {0}.
EX. 5. (Arghiriade [25]). Let L, M be subspaces of H and let M C L. Then
+ 1
L=M®&(LNnM") (1)
if and only if
Pyxe M, forall xe L.
In particular, a space is decomposable with respect to any closed subspace.
EX. 6. Let L, M, N be subspaces of H such that
1
L=M®&N.

Then

M=LNN>*, N=LnM™.

Thus an orthogonal direct sum is decomposable with respect to each summand.
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EX. 7. A bounded operator with nonclosed range. Let £? denote the Hilbert
space of square summable sequences and let T € B(¢2,¢?) be defined, for some
0< k<1, by

T(owo, a1,00, ..., an, ...) = (a0, kaa, E2as, ..., kK™ ap, ...).

Consider the sequence

1 1
= (1, —, — 0,0
XTL < b 2](:7 3k27 nkn717 bl b )7
and the vector
11 1
= lim Tx,=(1, =, =, ..., —, ... ).
Y= e < 23 n )

Then,
y € R(T), vy ¢ R(T).

EX. 8. Linear integral operators. Let L* = L*[a,b], the Lebesgue square in-
tegrable functions on the finite interval [a,b]. Let K(s,t) be an L?>-kernel on
a < s,t,< b, meaning that the Lebesgue integral

b b
/ / |K (s, t)]> ds dt

exists and is finite; see, e.g., Smithies [765, Section 1.6].
Consider the two operators T1,Te € B(L?, L?) defined by

(Tux)( /Kst a<s<b,

(Tex)(s /Kst a<s<b,

called Fredholm integral operators of the first kind and the second kind, respec-
tively. Then:

(a) R(T2) is closed.

(b) R(T1) is nonclosed unless it is finite dimensional.
More generally, if T € L(H1, Hz) is completely continuous, then R(T") is nonclosed
unless it is finite dimensional (Kammerer and Nashed [465, Prop. 2.5]).

Ex. 9. Let T € C(H1,H2). Then T is normally solvable if and only if T* is
Also, T is normally solvable if and only if 7T or T*T is.

3. Generalized Inverses of Linear Operators Between Hilbert
Spaces

A natural definition of generalized inverses in L(H1,Hz) is the following
one due to Tseng [817].

DEFINITION 1. Let T' € L(H1, Ho). Then an operator T € L(Ha, H1)
is a Tseng inverse of T if

R(T) C D(T9), ()

R(T?) < D(T), (6)

T9Tx = Prpyx, forallx € D(T), (7)
TT% = Py, forally € D(T7). (8)
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This definition is symmetric in T" and 79, thus T is a Tseng inverse of
T9.

An operator T' € L(H1, Hz2) may have a unique Tseng inverse, or infin-
itely many Tseng inverses or it may have none. We will show in Theorem 1
that 7" has a Tseng inverse if and only if its domain is decomposable with
respect to its null space,

D(T) = N(T) & (D(T) N N(T)*)

— N(T) & C(T). )

By Ex. 5, this condition is satisfied if N(T') is closed. Thus it holds for all
closed operators and, in particular, for bounded operators. If T" has Tseng
inverses, then it has a maximal Tseng inverse, some of whose properties
are collected in Theorem 2. For bounded operators with closed range, the
maximal Tseng inverse coincides with the Moore—Penrose inverse and will
likewise be denoted by T''. See Theorem 3.

For operators T without Tseng inverses, the maximal Tseng inverse
Tt can be “approximated” in several ways, with the objective of retaining
as many of its useful properties as possible. One such approach, due to
Erdélyi [264], is described in Definition 3 and Theorem 4.

Some properties of Tseng inverses, when they exist, are given in the
following three lemmas, due to Arghiriade [25], which are needed later.

LEMMA 1. If TY9 € L(H2,H1) is a Tseng inverse of T € L(H1,Ha),
then D(T) is decomposable with respect to R(T7).
PROOF. Follows from Ex. 5 since, for any x € D(T),

PWX = ’Tg,TX7 by (7) D

LEMMA 2. If T9 € L(H2,H1) is a Tseng inverse of T € L(H1,Ha),
then T is a one-to-one mapping of R(T9) onto R(T).
PROOF. Let y € R(T'). Then

y = Py =TT%, by (8),

proving that T(R(T?)) = R(T).
Now we prove that T' is one-to-one on R(T7). Let x1,x2 € R(TY) satisfy

TX1 = TXQ.
Then

X1 = mel = Tngl = TgTXQ = PWXQ = Xo2. |:|

LEMMA 3. If TY9 € L(H2,H1) is a Tseng inverse of T € L(H1,Ha),
then

N(T) = D(T) N R(T9)* (10)
and

C(T) = R(T9). (11)
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PROOF. Let x € D(T). Then, by Lemma 1,

x =x1 + X2, %1€ R(T?Y), x2€ D(T) ﬁR(Tg)L7 x1 L xo.

Now
X = me =TT (x1 + x2) =TTx1
and, therefore,
T9Tx2 = 0,
which, by Lemma 2 with 7" and T interchanged, implies that
Txo =0,
hence
D(T) N R(T?)* ¢ N(T).
Conversely, let x € N(T') be decomposed as in (12). Then

0="Tx="T(x1+x2)
= TX17 by (13)7

which, by Lemma 2, implies that x; = 0 and, therefore,
N(T) c D(T) N R(T?)*,
completing the proof of (10). Now
D(T) = R(T?) & (D(T) N R(T*)*), by Lemma 1,
— R(T°) & N(T),
which, by Ex. 6, implies that
R(T?) = D(T) N N(T)™,

proving (11).

(12)

O

The existence of Tseng inverses is settled in the following theorem an-
nounced, without proof, by Tseng [817]. Our proof follows that of Arghiri-

ade [25].

THEOREM 1. Let T € L(H1,Hz). Then T has a Tseng inverse if and

only if

D(T) = N(T) & C(T),

(9)

in which case, for any subspace L C R(T)*, there is a Tseng inverse T7 of

T, with
1
D(T{)=R(T)® L
and

N(TY) = L.

(14)

(15)
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PROOF. If T has a Tseng inverse, then (9) follows from Lemmas 1 and 3.
Conversely, suppose that (9) holds. Then

R(T) =T(D(T)) = T(C(T)) = R(To), (16)

where Ty = Tic(ry is the restriction of T' to C(T'). The inverse T, " exists, by
Section 2(F), and satisfies

R(Ty ") = C(T)
and, by (16),
D(Ty ') = R(T).
For any subspace L C R(T)", consider the extension T¢ of T; ' with

domain D(T) = R(T) & L (14)
and
null space N(TY) = L. (15)
From its definition, it follows that T} satisfies
D(T}) > R(T)
and
R(T}) = R(Ty ) = O(T) € D(T). (17)
For any x € D(T),

= TO_ITOPWX, by Ex. 5,

= PWLQ,) X, by (17)
Finally, any y € D(T}) can be written, by (14), as
y=yi1+y2 ni€RT), y2€L vy lys,
and, therefore,
= TOTO_IYI =y
=IrRm Y-
Thus T? is a Tseng inverse of T'. ]
The Tseng inverse T5 is uniquely determined by its domain (14) and
null space (15); see Ex. 10.
The maximal choice of the subspace L in (14) and (15) is L = R(T)*.
For this choice we have the following:

DEFINITION 2. Let T' € L(H1,Hs2) satisfy (9). Then the mazimal
Tseng inverse of T, denoted by T, is the Tseng inverse of 7' with domain

1
D(T") = R(T) & R(T)* (18)
and null space

N(T") = R(T)*. (19)



340 9. GENERALIZED INVERSES OF LINEAR OPERATORS

By Ex. 10, the Tseng inverse T so defined is unique. It is maximal in
the sense that any other Tseng inverse of T is a restriction of T'T.

Moreover, TT is dense, by (18), and has a closed null space, by (19).
Choosing L as a dense subspace of R(T)* shows that an operator T may
have infinitely many dense Tseng inverses T'y. Also, T' may have infinitely
many Tseng inverses T} with closed null space, each obtained by choosing
L as a closed subspace of R(T)*. However, T is the unique dense Tseng
inverse with closed null space; see Ex. 11.

For closed operators, the maximal Tseng inverse can be alternatively
defined, by means of the following construction, due to Hestenes [416]; see
also Landesman [498]:

Let T € C(H1,Hs2) be dense. Since N(T) is closed, it follows, from
Ex. 5, that

D(T) = N(T) & C(T), )
and, therefore,
G(T)=N&C, (20)

where, using the notation of Section 2(B), (C), and (F),
(

N =JN(T)=G(T)NHip, (21a)
C={{x,Tx}: xeC(T)}. (21b)
Similarly, since T™ is closed, it follows, from Section 2(G), that
1
G(T): =N*® C* (22)
with
N* = bN(T*) = G(T)* N Ho., (23a)
Cr={-Ty,y}: yeC(T)}. (23b)
Now
1
Hio=G(T) S G(T)*, since T is closed,
11 i
=(NaeC)s (N*aC*), by (20) and (22),
1 i L
=(Ce®N )3 (C*®N)
1
=G o Gh, (24)
where
1
G'=Ca® N*, (25a)
L
G =C* @ N. (25b)
Since

G'NHy0=1{0,0}, by Section 2(F),
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it follows that G is the inverse graph of an operator Tt € C(Hz, H1), with
domain

Jy Py, ,GT=T(C(T)) s N(T*)
_ R(T)& R(T)~, by (16) and (3),
and null space
JyPM* = N(T*) = R(T)*
and such that

1
TiTx = Psyx, for any x € N(T) & O(T),

and
1
TT'y = Pryy. foranyy € R(T) & R(T)™

Thus 77 is the maximal Tseng inverse of Definition 2.

Similarly, G'* is the graph of the operator —T*" € C(H1,Hz), which is
the maximal Tseng inverse of —T7*.

This elegant construction makes obvious the properties of the maximal
Tseng inverse, collected in the following;:

THEOREM 2 (Hestenes [416]). Let T € C(Hq1,H2) be dense. Then:

(a) Tt EC(HQ,Hl);

(b)  D(Th) = R(T) & N(T*); N(T') = N(T*);
(c) R(T")=C(T);

(d) TiTx= me for any x € D(T);

(e) TTty = Pﬁy for any y € D(T");

(f) T =1T;

(g) T =TT

(h)  N(T*1) = N(T);

T*T and TTT* are nonnegative and
(1)t =TT1*t, N(T*T) = N(T); and
TT* and T*'TT are nonnegative and
(TT*)" = T*'Tt,  N(TT*) = N(T*). 0

[
~—

(N
~—

For bounded operators with closed range, various characterizations of
the maximal Tseng inverse are collected in the following:

THEOREM 3 (Petryshyn [641)). If T € B(H1,H2) and R(T) is closed,
then Tt is characterized as the unique solution X of the following equivalent
systems:

(a) TXT=T, XTX=X, (TX)"=TX, (XT)*=XT;

(b)  TX = Ppr), N(X*)=N(T);
(c) TX = Prery, XT = Prer+y, XTX = X;
(d) XTT*=T* XX*'T*"=X;
(e) XTx=x forallxe R(T);
Xy =0 forally e N(T*),
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(f)  XT = Ppr+), N(X) = N(T*); and

() TX = Prer), XT = Prx). O

The notation Tt is justified by Theorem 3(a), which lists the four Pen-
rose equations (1.1)—(1.4).

If T € L(H1,H2) does not satisfy (9), then it has no Tseng inverse, by
Theorem 1. In this case one can still approximate 7T by an operator that

has some properties of T, and reduces to it if 7' exists. Such an approach,
due to Erdélyi [264], is described in the following:

DEFINITION 3. Let T' € £(H1,Hz2) and let T, be the restriction of T'
defined by

D(T,) = N(T) & C(T), N(T,) = N(T). (26)

The Erdélyi inverse of T is defined as T, which exists since 7T} satisfies (9).
The inverse graph of T is

G NT) = {{x,Tx+2z}: xc C(T), z < (T(C(T)))"}, (27)

from which the following properties of T}/ can be easily deduced:

THEOREM 4 (Erdélyi [264]). Let T € L(H1,Hz) and let its restriction
T, be defined by (26). Then:

(a) T =TVif TV exists;
(b) DT} = T(C(T)) & T(C(T))* and, in general, R(T) ¢ D(T1);
() R(T})= C(T) R(T!) = N(T)*;
(d) TiTx= P e (T,);
() TT]y = Pgy R yforallyED(TT)
(f) DT} = N(T) & C(T);
() RUTHI) =T(C(T));
(h)  N((TH]) = N(T);
(i) T c (THi if (9) holds;
(G) T =(THI if and only if N(T) is closed; and
(k) T* C (T*)l if T is dense and closable. O
See also Ex. 15.
Exercises

Ex. 10. Let T € L£(H1,H2) have Tseng inverses and let L be a subspace of
R(T)*. Then the conditions

D(T{) = R(T) & L, (14)

N(TP) = L, (15)
determine a unique Tseng inverse, which is thus equal to T} as constructed in
the proof of Theorem 1.

PROOF. Let TY be a Tseng inverse of T satisfying (14) and (15) and let y € D(T)
be written as

y=y1+y2, yi1€R(T), y2€lL.
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Then
Tgy = Tgy17 by (15)7
=T9Tx1, for some x; € D(T),
= mely by (7)5
= mela by (11).

We claim that this determines 79 uniquely. For, suppose there is an x2 € D(T)
with y1 = T'x2. Then, as above,

Ty = P=——

cm X
and, therefore,
PfC(T) X1 — PfC(T) Xo = PfC(T) (X1 — XQ)
=0, since x1 —x2 € N(T). (]

Ex. 11. Let T' € £(H1,H2) have Tseng inverses. Then Tt is the unique dense
Tseng inverse with closed null space.
PRrROOF. Let TY be any dense Tseng inverse with closed null space. Then

1
D(T%) = N(T°) & C(T?), by Theorem 1,
R(

T)’ by (11)7

which, together with the assumptions D(T9) = Hy and N(T¥9) = N(T9), implies
that

L
=N(T%) &

N(T?) = R(T)™.
Thus, 79 has the same domain and null space as T7 and, therefore, T9 = T, by
Ex. 10. ]
Ex. 12. (Kurepa [491]). Let T' € B(#1,H2) have a closed range R(T') and let
Ty € B(#H1,R(T)) be defined by
Tix=Tx, forallxe H;.

Then:

(a) 17 is the restriction of T* to R(T).

(b)  The operator T1T7 € B(R(T), R(T)) is invertible.

(c) T"= PrerTi (A TY) " Prer)-
Ex. 13. (Landesman [498]). Let T' € C(H1,H2). Then R(T) is closed if and

only if TT is bounded.
PROOF. Follows from Section 2(M). d

Ex. 14. (Desoer and Whalen [226]). Let T' € B(H1,H2) have closed range.
Then

T = (r*1)'T* = T*(TT")".
EX. 15. For arbitrary T € L£(H1, H2) consider its extension T with

D(T)=D(T)+ N(T), N(T)=N(T), T=T onD(T), (28)

which coincides with T' if N(T) is closed. Since D(T) is decomposable with
respect to N (T ) it might seem that T can be used to obtain TJr a substitute for
(possibly nonexisting) 7.
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Show that T is not well defined by (28) if
D(T)NN(T) # N(T) and N(T) # D(T), (29)

which is the only case of interest since otherwise D(T) is decomposable with
respect to N(T') or T is identically O in its domain.
PROOF. By (29) there exist xo and y such that

xo € D(T)NN(T), xo0¢ N(T),

and

y e D(T), y¢&N(T).

~

Then
T(xo+y) =Ty, since xo € N(T),

and, on the other hand,

T(xo+y)=T(x0+Yy), sincexo,y € D(T),
# Ty, since xo € N(T). O

EX. 16. (Petryshyn [641, Lemma 2]). Let T' € B(H1,H2) have closed range.
Then
1

T = —,
1711 =~
where v(7T) is defined in (4).

EX. 17. (Holmes [427, p. 223]). Let F' € B(Hs,H2) and G € B(H1,Hs) with
R(G) = Hsz = R(F™) and define A € B(H1,Hz2) by A= FG. Then

A =G (GG N (F*F)'FT
=G'F.
Compare with Theorem 1.5 and Ex. 1.17.

4. Generalized Inverses of Linear Integral Operators

Consider the Fredholm integral equation of the second kind
b
2(s) = A / K(s,0)2(t)dt = y(s), a<s<b, (30)

written for short as
(- AK)x =y,

where all functions are complex, [a,b] is a bounded interval, A is a complex
scalar, and K (s, t) is a L2~kernel on [a,b] x [a, b]; see Ex. 8. Writing L? for
L?[a,b], we need the following facts from the Fredholm theory of integral
equations; see, e.g., Smithies [765]. For any A\, K as above:

(a) (I —)\K)e€ B(L? L?).

(b) (I —AK)*=1— \K*, where K*(s,t) = K(t,s).

(¢)  The null spaces N(I — AK) and N(I — AK*) have equal finite

dimensions,

dim N(I — AK) =dim N(I — AK*) =n(\), say. (31)
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(d) A scalar X is called a regular value of K if n(A) = 0, in which
case the operator I — AK has an inverse (I — AK)~! € B(L?, L?)
written as

(I =AK)"' =T+ )R, (32)

where R = R(s,t;)\) is an L?-kernel called the resolvent of K.

(e) A scalar A is called an eigenvalue of K if n(A) > 0, in which
case any nonzero x € N(I — AK) is called an eigenfunction of K
corresponding to A.

For any A and, in particular, for any eigenvalue A, both range spaces R(I —
AK) and R(I — AK™*) are closed and, by (3),

R(I = \K)=N(I = XK*)*, R(I-XK*)=N( - \K)*. (33)

Thus, if A is a regular value of K, then (30) has, for any y € L?, a unique
solution given by

x=(+AR)y,
that is,

b
2(s) = y(s) + A / R(s,t, Ny(H)dt, a<s<b (34)
a
If X is an eigenvalue of K, then (30) is consistent if and only if y is orthog-

onal to every u € N(I — AK*), in which case the general solution of (30)
is

n(X)
X = Xg + Z ciX;, ¢; arbitrary scalars, (35)
i=1
where x¢ is a particular solution of (30) and {xi,...,X,(x)} is a basis of
N(I - \K).
Exercises

Ex. 18. Pseudoresolvents. Let A be an eigenvalue of K. Following Hurwitz
[435], an L%kernel R = R(s,t,\) is called a pseudoresolvent of K if for any
y € R(I — AK), the function

z(s) = y(s) + )\/ R(s,t,\)y(t)dt (34)

is a solution of (30).

A pseudoresolvent was constructed by Hurwitz as follows:

Let Ao be an eigenvalue of K and let {x1,...,X,} and {ui,... ,u,} be o.n.
bases of N(I — M K) and N(I — )\70[(*)7 respectively. Then \g is a regular value
of the kernel

Ko(s,t) = K(s,1) = — 3 ui(s) z:(0), (36)

written for short as
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and the resolvent Ry of Ky is a pseudoresolvent of K satisfying
(I +XRo)(I—XK)x=x, forallxec R(I—XK"),
(I =XK)I+XRo)y=y, forally € R(I—XK),
(I+XR)ui=x;, i=1,...,n
PRrROOF. Follows from the matrix case, Ex. 2.53. O

Ex. 19. (Hurwitz [435]). A comparison with Theorem 2.2 shows that I + AR
is a {1}-inverse of I — MK, if R is a pseudoresolvent of K. As with {1}-inverses,
the pseudoresolvent is nonunique. Indeed, for Ry, u;,x; as above, the kernel

Ro + Z cijxiu; (37)
i,5,=1
is a pseudoresolvent of K for any choice of scalars c;;.

The pseudoresolvent constructed by Fredholm [290], who called the resulting
operator I + AR a pseudoinverse of I —AK, is the first explicit application, known
to us, of a generalized inverse.

The class of all pseudoresolvents of a given kernel K is characterized as
follows:

Let K be an L?-kernel, let Ao be an eigenvalue of K, and let {x1,...,x,}
and {u1,...,u,} be o.n. bases of N(I — \gK) and N(I — Ao K™), respectively.
An L?-kernel R is a pseudoresolvent of K if and only if

1 n
R + MKR " ;:1 B;u;, (38a)
1 n
= K+ MREK — — Y xai, b
R + XMoR W izlxa (38b)

where o, 8; € L? satisfy
(ai,xj) = 0i5, (Biu;) =05, i,5=1,...,n (39)

Here KR stands for the kernel K R(s,t) = fab K(s,u)R(u,t)du, etc.
If X\ is a regular value of K, then (38) reduces to

R=K+)AKR, R=K+JARK, (40)
which uniquely determines the resolvent R(s,t, ).

Ex. 20. Let K, Ao, %;, u;, and Rg be as above. Then the maximal Tseng inverse
of I — MK is

(I=XK) =T+XRo—> xuj, (41)

i=1

corresponding to the pseudoresolvent

EX. 21. Let K(s,t) = u(s)uv(t), where

/ab u(s)v(s)ds = 0.

Then every scalar ) is a regular value of K.
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EX. 22. Degenerate kernels. A kernel K (s,t) is called degenerate if it is a finite
sum of products of L? functions, as follows:

K(s.6) =3 £i(s) 3:0). (43)

Degenerate kernels are convenient because they reduce the integral equation (30)
to a finite system of linear equations. Also, any L?-kernel can be approximated,
arbitrarily close, by a degenerate kernel; see, e.g., Smithies [765, p. 40], and
Halmos [366, Problem 137].
Let K (s,t) be given by (43). Then:
(a) The scalar X is an eigenvalue of (43) if and only if 1/) is an eigenvalue of
the m x m matrix

b
B = [bi;], where b;; :/ fi(s) gi(s)ds.

(b) Any eigenfunction of K [K™] corresponding to an eigenvalue X [}] is a
linear combination of the m functions fi,..., fm [g1,... ,gm]-
(c¢) If X is a regular value of (43), then the resolvent at A is

0 LA o ful
det | —g1(t)
: I —)\B
[ —gm(t) -
R(s,t,;\) = det(I — AB) '

See also Kantorovich and Krylov [468, Chapter II].

EX. 23. Consider the equation

z(s) — /\/_ (14 3st)z(t) dt = y(s) (44)

1
with K (s,t) =1+ 3st. The resolvent is
14 3st
1—2)°

K has a single eigenvalue A = § and an o.n. basis of N(I — $K) is

{xl(s) - % 2a(s) = %s}

which, by symmetry, is also an o.n. basis of N(I — %K*) From (36) we get

1

Ko(s,t) = K(s,t) — " > uils)ai(t)

R(s,t;\) =

=(1+3st) —2

o
)
i
8%
S5

=0,
and the resolvent of Ko(s,t) is, therefore,

R()(S, t; A) =0.
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If X # 3, then, for each y € L?[—1, 1], equation (44) has a unique solution

o) = v +A [ TEuOd

If A =1, then (44) is consistent if and only if
1 1
/ y(t)dt =0, / ty(t)dt =0,
-1 -1
in which case the general solution is
z(s) = y(s) + c1 + c2s, c1,ce arbitrary.
Ex. 24. Let
K(s,t)=1+s+3st, —-1<s,t<1.
Then A = 1 is the only eigenvalue and
dim N(I - 1K) = 1.
An o.n. basis of N(I — LK) is the single vector

V3

r1(s) = —=s, —1<s<1.
=15
An o.n. basis of N(I — K*) is
1
ui(s) =—, —-1<s<1
=75
The Hurwitz kernel (36) is
1 V3
Ko(s,t) =(1+s+3st) -2 —=—1
o0 = : (\/5\/5)

=1+4+s—V3t+3st, —-1<s,t<1.

Compute the resolvent Ry of Ko, which is a pseudoresolvent of K.

5. Generalized Inverses of Linear Differential Operators

This section deals with generalized inverses of closed dense operators L €
C(81,82) with D(L) = Sy, where:

(i) S1,8, are spaces of (scalar or vector) functions which are either the
Hilbert space L?[a,b] or the space of continuous functions Cla,b),
where [a, b] is a given finite real interval. Since Cla, b] is a dense
subspace of L?[a, b], a closed dense linear operator mapping C|a, b]
into Sy may be considered as a dense operator in C(L?[a, b], S2).

(ii) L is defined for all x in its domain D(L) by

Lx = Ix, (45)

where ¢ is a differential expression, for example, in the vector case,
d

Ix = Al(t)%x + Ap(t)x, (46)

where Ag(t), A1(t) are n x n matrix coefficients, with suitable
regularity conditions; see, e.g., Ex. 30 below.



5. LINEAR DIFFERENTIAL OPERATORS 349

(iii) The domain of L consists of those functions in &; for which ¢ makes
sense and £x € Sy, and which satisfy certain conditions, such as
wnatial or boundary conditions.

If a differential operator L is invertible and there is a kernel (function, or
matrix in the vector case)

G(s,t), a<s,t<b,
such that, for all y € R(L),

b
(L 1y)(s) = / Gls,)y(t)dt, a<s<b

then G(s,t) is called the Green function (or matriz) of L. In this case, for
any y € R(L), the unique solution of

Lx =y (47)

is given by

x(s) = /b G(s,)y(t)dt, a<s<h. (48)

If L is not invertible, but there is a kernel G(s,t) such that, for any
y € R(L), a particular solution of (47) is given by (48), then G(s,t) is called
a generalized Green function (or matriz) of L. A generalized Green function
of L is therefore a kernel of an integral operator which is a generalized
inverse of L.

Generalized Green functions were introduced by Hilbert [418] in 1904
and, consequently studied by Myller, Westfall, and Bounitzky [124], Elliott
[251], [252], and Reid [682]; see, e.g., the historical survey in [685].
Exercises

EX. 25. Deriwatives (Hestenes [416, Example 1]). Let:
S = the real space L?[0, 7] of real valued functions;
S! = the absolutely continuous functions x(t), 0 <t < 7, whose deriva-
tives x” are in S; and
S?={xecS8':x Sy
and let L be the differential operator d/dt with
D(L) = {x e S": x(0) = x(x) = 0}.
Then:
(a) LecC(s.s), D(L)=s, D(L),

C(L
R(L) {yGS / dt—O} R(L).

(b)  The adjoint L* is the operator —d/dt with
D(L*y=8' Cc(L*)=S8"'NnR(L), R(L*)=S.
() L*L = —d?/dt* with D(L*L) = {x € §? : x(0) = x(7) = 0} and
R(L*L) = 8.
(d) LL* = —d?/dt* with D(LL*) = {x € §* : ¥'(0) = x/(7) = 0} and
R(LL*) = R(L).
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(e) L' is defined on D(L") = S by

t ™
(LTy)(t):/ v(s)ds — %/ y(s)ds, 0<t<m.
0 0
Ex. 26. For L of Ex. 25, determine which of the following equations hold and
interpret your results:
(a) LT =L,
(b) L' =(L*L)'L* = L*(LL*)'; and
(c) LT =L
EX. 27. Gradients (Landesman [498, Section 5]). Let:
S = the real space L*([0,7] x [0,7]) of real valued functions x(t1,t2), 0 <
t1,t2 < m; and
S' = the subclass of S with the properties:
(i) x(t1,t2) is absolutely continuous in ¢;[t2] for almost all ¢3[ti], 0 <
t1,t2 < m; and
(ii) the partial derivatives x/0t; , Ox/0t> which exist almost everywhere
are in S;

and let L be the gradient operator
%
Oto
_ 1 [ x(0,t2) = x(m,t2) = 0 for almost all ¢,
D(L) = {x €S {x(tl,O) = x(t1,m) = 0 for almost all ¢,
Then:
(a) LecC(S,8§xS8), D(L)=S.
(b)  The adjoint L* is the negative of the divergence operator
Cy =0 {m} _ 9 Op
Y2

with domain

Ogtl,tggﬂ'}.

ot1 Oto
with
D(L*)={yeSxS:yecC'}.

(¢)  L*L is the negative of the Laplacian operator

X o* o
rr=-|2 4+ 2
{aﬁ * 81&%}
(d)  The Green function of L*L is
G(Sl, 82,t17t2)
_ 4 i #sin(ms ) sin(ns2) sin(mti ) sin(ntz), 0 < s;,t; <7
_7r2m,7L:1 m2 + n? 1 2 1 2), > Syl ST
(e) If
Y1
= eS xS,
Y [yz}
then

2
™ ™ 8
(LTy)(tl,tg) = Z/ / aiG(Sl,Sz,tl,tz) yj(51,82) dS1 d82.
i=1Jo Jo ©Sj
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EX. 28. Ordinary linear differential equations with homogeneous boundary con-
ditions. Let

S = the real space L*[a, b] of real valued functions;

C*[a,b] = the real valued functions on [a,b] with k derivatives and

k
k) _ d°x .
x" =5 € Cla, b];

SF={xe C* a,b|: x*~1 absolutely continuous, x*) € S};
and let L be the operator

n

E=Zai(t)(%)l} a; € C'[a,b), i=0,1,... ,m, (49)

an(t) #0, a <t <b,
with domain D(L) consisting of all x € 8™ which satisfy
M% =0, (50)

where M € R7*2" is a matrix with a specific null space N(M) and X € R*" is
the boundary vector
" = [x(a),%/(a),... ,x" "V (a); x(b),x'(b),...,x""V(b)].
Finally let L be the operator £ of (49) with D(L) = 8". Then:
(a) LecC(s,S), D(L)=S.

(b)  dim N(L) =n =dim N(L").
(¢) N(L)C N(L), N(L*) C N(L"), hence dim N(L) < n and
dim N(L*) < n.
(d) R(L) is closed.
(e)  The restriction Lo = Ljc(r)) of L to its carrier is a one-to-one mapping
of C(L) onto R(L);
Lo € C(C(L),R(L)).
(1) Ly' e BR(L),C(L)).
(g) LT, the extension of Ly to all of S with N(L") = R(L)* is bounded
and satisfies
LLTy = Pr(n)y, forally € S,
L'Lx = Py(p)1x, for all x € D(L).

For proofs of (a) and (d), see Halperin [369] and Schwartz [733]. The proof of
(e) is contained in Section 2(F), and (f) follows from the closed graph theorem
(Locker [522]).

Ex. 29. For L as in Ex. 28, find the generalized Green function which corre-
sponds to L, i.e., find the kernel L(s,t) such that

(Ly)(s) = /b Li(s,t)y(t)dt, forally e D(L")=S§.

SOLUTION. A generalized Green function of Lis (see Coddington and Levinson
[204, Theorem 6.4]),

o xj(s) det(X; (1))

~ —_—— = <t<s<bd
G(s,t) = ng an(t) det(X (¢))’ r=t=8=0 (51)
0, a<s<t<b

where:

{x1,...,Xk} is an o.n. basis of N(L);
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{x1,..+ yXkyXk+1,..- ,Xn} iS an o.n. basis of N(Z);
X =K@, hi=1..m
X, (t) is the matrix obtained from X (¢) by replacing the jth column by
[0,0,...,0,1]%.
Since R(L) C R(L) it follows, for any y € R(L), that the general solution of

Lx=y
is
b - n
x(s) = / G(s,t)y(t) dt + Z cixi(s), ¢ arbitrary. (52)
@ i=1

Writing the particular solution L'y in the form (52),
L'y =x + Z Ci Xi, (53)
=1

b ~
xo(s) = / (s, )y (t) dt,

we determine its coefficients {ci,... ,cn} as follows:
(a) The coefficients {ci,...,cx} are determined by L'y € N(L)*, since, by
(53),
(L'y,x;)=0 = ¢ =—(x0,%X;), j=1,...,k
(b) The remaining coefficients {ckt1,...,cn} are determined by the bound-
ary condition (50). Indeed, writing (53) as
L'y =x0+ Xe¢, ¢! = [e1,- .. ,enl,
it follows from (50) that
M=o+ MXc=0, where X = [‘;((((Z))] . (54)

A solution of (54) is
c=—(MX)V Mz, (55)

where (MX)® € R™ ™ is any {1}-inverse of MX € R™*". Now
{x1,...,xk} C D(L) and, therefore,

MX =[O0 B], BeRI'"™".

Thus, we may use in (55),

(MX)V = [B(()l):| . for any BY € B{1},

obtaining
O -
c=— {B(l)} MZXo,
which uniquely determines {cx41,...,¢n}.
Substituting these coefficients {ci,...,c,} in (52) finally gives L'(s,t) (Locker

[522)). O
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EX. 30. The vector case (Reid [685] and [686, Chapter II1]). Let S,, and S&
denote the spaces of n-dimensional vector functions whose components belong to
S and S*, respectively, of Ex. 28. Let L be the differential operator

dx
dt

where Ag, A1 are n x n matrix functions satisfying?':

Ix=A1(t)— + Ao(t)x, a<t<b, (46)

(i)  Ao(t) is continuous on [a, b];
(ii)  Ai(t) is continuously differentiable and nonsingular on [a, b];

with domain D(L) consisting of those vector functions x € S, which satisfy
Mx =0, (50)

where M € R2*?" is a matrix with a specified null space N(M) and X € R*" is
the boundary vector

%= [x(“)} . (56)

Let L be the differential operator (46) with domain D(L) = S}. Then:

(a) L €C(Sn,Sn), D(L) = Sn.
(b)  The adjoint of L is the operator L* defined by

Uy = S (AL0y) + A0y (57)
on its domain
D(L*) ={y € S, : y*(b)x(b) — y*(a)x(a) = 0 for all x € D(L)} (58)

= {y €S, P {(I) _OI] ¥ = 0 for any P € R{Z" ™" with MP = O}

() dim N(L) =

(d) Let
k=dim N(L) and k* = dim N(L*).
Then
max {0,n —m} < k < min{n,2n —m}
and

k+m=Ek" +n.

(e) R(L)=N(L)", R(L")=N(L),
hence both R(L) and R(L*) are closed.

(f) Let
X(t) = [x1(t),--. ,xn(t)]
be a fundamental matriz of L, i.e., let the vectors {X1,...,xn} form a
basis of N(L). Then

G(s,t) = Lsign(s — )X (s)X (1) " (59)

is a generalized Green matrix of L.

Weaker regularity conditions will do; see, e.g., Reid [684] and [686, Chapter III].
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X(a)

(g) Let (M)?)(l) be any {1}-inverse of MX where X = [X(b)

]. Then
_1 - oL Ol -1
G(s,t) = 5X(s) | sign(s —t)I — (MX)"'M o0 _I X | X(t) (60)
is a generalized Green matrix of L.
PROOF OF (g). For any y € R(L), the general solution of

Lx=y (47)
is
b . n
x(s) = / G(s,t)y(t)dt + Z cix;(s) (52)
a i=1
or
T
x=x0+ Xc, ¢ =]e,...,cnl,
and from (50) it follows that
c=—(MX)M Mz, (55)
and (60) follows by substituting (55) in (52). O

EX. 31. The differential expression

n i

lx = ; a;(t) %, x scalar function, (49)
is a special case of
dx .
Ix = Ay (t)ﬁ + Ao(t)x, x vector function. (46)

EX. 32. The class of all generalized Green functions (Reid [684]). Let L be as
in Ex. 30 and let Xo(¢) and Yo(¢) be n x k and n X k™ matrix functions whose
columns are bases of N(L) and N(L"), respectively. Then a kernel H(s,t) is a
generalized Green matrix of L if and only if

H(s,t) = G(s,t) + Xo(s)A"(t) + B(s)Yy (t), (61)
where G(s,t) is any generalized Green matrix of L (in particular (60)), and A(t)

and B(s) are n X k and n x k* matrix functions which are Lebesgue measurable
and essentially bounded.

Ex. 33. (Reid [684]). Let Xo(t) and Yy(¢) be as in Ex. 32. If ©(t) and ¥(t)
are Lebesgue measurable and essentially bounded matrix functions such that the
matrices

b b
[ eoxmi [ viouwa
are nonsingular, then L has a unique generalized Green function Ge ¢ such that
b b
/ 07 (s) Gls, ) ds = O, / Gl ) U dl=0, a<st<b  (62)

Thus the generalized inverse determined by Ge,y has null space spanned by the
columns of ¥ and range which is the orthogonal complement of the columns of
©. Compare with Section 2.6.
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EX. 34. Ezistence and properties of L' (Loud [524], [525]). If in Ex. 33 we take
0 =Xy, Y=Y

then we get a generalized inverse of L which has the same range and null space
as L*. This generalized inverse is the analog of the Moore—Penrose inverse of L
and will likewise be denoted by LT.
Show that L' satisfies the four Penrose equations (1.1)—(1.4) as far as can be
expected:
(a) LL'L=1L;
(b)y  LYLLt =Lt
(¢) LL' = Prey;
(LL')* = Pr(ry on D(L*);
(d) L'L = Pg(p+) on D(L); and
(L'L)* = Pr(p).

EX. 35. Loud’s construction of L' (Loud [525]). Just as in the matrix case (see
Theorem 2.12(c) and Ex. 2.38) it follows here that

L' = Pr1-)GPg(1), (63)

where G is any generalized Green matrix.
In computing Pg(r+) and Pg(r) we use Ex. 30(e) to obtain

Prrxy=1—Pn(), Prur)y=1— Py (64)

Here Pn(ry and Py(r+) are integral operators of the first kind with kernels

Ky = Xo(s) (/ab X3 () Xo(u) du)_lxg(t) (65)

and

Ky = Yo(s) ( /a ' Y (u) Yo (u) du)_lyo*(t), (66)

respectively, where Xo and Yy are as in Ex. 32.
Thus, for any generalized Green matrix G(s,t), LT has the kernel

b b
Li(s,t) = G(s,t) — / Kny(s,u)G(u,t)du — / G(s,u)Kn(p)(u,t)du
. b a a
+/ / Ky (s,u)G(u,v) Ky (v, t) dudv. (67)
Ex. 36. (Loud [525, pp. 201-202]). Let L be the differential operator given by
(x=x"—B(t)x, 0<t<1,
with boundary conditions
x(0) = x(1) = 0.
Then the adjoint L* is given by
Cy=-y -B()y

with no boundary conditions.
Let X (¢) be a fundamental matrix for

{x=0.
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Then X (¢)*~! is a fundamental matrix for

'y =0.
Now N(L) = {0} and therefore Ky y = O. Also, N(L") is spanned by the
columns of X (¢)*~! so, by (66),

1
Ko (s,t) = X(s)" " (/ X () X (u)* " du) X(t)~ (68)
0
A generalized Green matrix for L is

X)X @) 0<s<t<1,
G(S’t)_{o, 0<t<s<l.

Finally, by (67),

(69)

1
Li(s,) = Gs,0) = [ Gl (1) du,
0

with G and Ky (r+) given by (69) and (68), respectively.

6. Minimal Properties of Generalized Inverses

In this section, which is based on Erdélyi and Ben-Israel [265], we de-

velop certain minimal properties of generalized inverses of operators be-

tween Hilbert spaces, analogous to the matrix case studied in Chapter 3.
DEFINITION 4. Let T' € L(H1,H2) and consider the linear equation

Tx =y. (70)
If the infimum

Tx —y|= inf |Tx-— 71
7~ vl = inf |Txy]| (71)

is attained by a vector x” € D(T), then x’ is called an extremal solution of
(70). Among the extremal solutions there may exist a unique vector xg of
least norm

[oll < 1[I

for all extremal solutions x’ # xp. Then xg is called the least extremal
solution.

Other names for extremal solutions are virtual solutions (Tseng [820])
and approzimate solutions.

Example 37 shows that extremal solutions need not exist. Their exis-
tence is characterized in the following theorem:

THEOREM 5. Let T € L(H1,Hs) . Then

Tx =y (70)
has an extremal solution if and only if
Pmy € R(T). (72)

PROOF. For every x € D(T),
ITx = yII* = | Py (Tx = y)II* + | Prerys (Tx = y)|°
= || Prey (Tx = 9)I” + | Preryry 1™
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Thus
ITx —yll = | Preryryll, forall x € D(T),

with equality if and only if

Tx = Pryy (73)
Clearly,
inf ||[Tx— = Py 4
X =y = Pryy. (74)
which is attained if and only if (73) is satisfied for some x € D(T). O

See also Ex. 44.

The existence of extremal solutions does not guarantee the existence
of a least extremal solution; see, e.g., Ex. 39. Before settling this issue we
require

LEMMA 4. Let X' and x” be extremal solutions of (70). Then:

(a)  Pnryrx' = Pyiryex"; and

(b) PWX/ € N(T) if and only if PWX” e N(T).

PROOF. (a) From (73),

Tx =Tx" = PR(T)y
and, hence,
T(x' -x")=0, (75)
proving (a).
(b) From (75),
Xl _ X// — PN(T) (X/ _ X”)
and then
PWX/ = PWXH + (X/ — X//),
proving (b). (]

The existence of the least extremal solution is characterized in the
following:

THEOREM 6 (Erdélyi and Ben-Israel [265]). Let x be an extremal so-
lution of (70). There exists a least extremal solution if and only if

PWX € N(T), (76)
in which case, the least extremal solution is
X0 = Py(ryLx. (77)
PROOF. Let x’ be an extremal solution of (70). Then
111 = 1| Py X 1 + | Payry - X7
= HPWX/H2 + HPN(T)J_X||2, by Lemma 4,
proving that
X' > | Pr(ry- x|l
with equality if and only if
Pygyx =0. (78)
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If: Let condition (76) be satisfied and define
X0 =X — PW X.
Then x¢ is an extremal solution since
Txo = Tx.
Also
Pgyxo =0,

which, by (78), proves that xo is the least extremal solution.
Only if: Let xo be the least extremal solution of (70). Then, by (78),

Xo = meo + Pyryr %o = PyryL X,
and hence
X0 = X — PW X.

But

Txo = Tx,
since both xo and x are extremal solutions and, therefore,

TPgey =0,
proving (76). ]

As in the matrix case (see Corollary 3.3, p. 109), here too a unique

generalized inverse is characterized by the property that it gives the least
extremal solution whenever it exists. We define this inverse as follows:

DEFINITION 5. Let T' € L(H1,Ha), let
C(T) = D(T) N N(T)*, (2)

B(T) = D(T) "' N(T), (79)

and let A(T) be a subspace satisfying

D(T) = A(T) & (B(T) & C(T)). (80)

(Examples 42 and 43 below show that, in the general case, this complicated
decomposition cannot be avoided.) Let

Go={{x,Tx}: x€ C(T)}, G1=G(T)" NHoy=JR(T)".
The extremal inverse of T, denoted by T, is defined by its inverse graph
Go+G1={{x,Tx+2z}: xc C(T), z € R(T)*}.

The following properties of 7] are easy consequences of the above con-
struction:

THEOREM 7 (Erdélyi and Ben-Israel [265]). Let T € L(H1,Hz). Then:
(a) D(T}) =T(C(T)) Gl9 R(T)* and, in general, R(T) ¢ D(TJ).

(b)  R(T{) = C(T).

(c) N(TI) = R(T)*.

(d) TTly= Prayy, forally € D(T}).
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L
(e) TJTX:PWX, forallx € N(T) @ C(T). O

See also Exs. 4041 below.
The extremal inverse T is characterized in terms of the least extremal
solution, as follows:

THEOREM 8 (Erdélyi and Ben-Israel [265]). The least extremal solution
xo of (70) ewists if and only if

y € D(T}), (81)
in which case
xo=Tly. (82)
PROOF. Assume (81). By Theorem 7(a),
Prayy =yo € T(C(T)) C R(T),

and, by Theorem 5, extremal solutions do exist. Let xo be the unique vector in
C(T) such that

Pmy =yo = Txo.

Then, by Theorem 3(a), (c), and (e),

Tly = Tlyo = TITx = xo,
and, by Theorem 3(d),

ITx0 = yl| = ITTy = yll = 1Preyy = 1| = | Prery ey 1l,

which, by (74), shows that xo is an extremal solution. Since

xo € R(TJ) ¢ N(T)*,
it follows, from Lemma 4, that

Xo = PN(T)lX

for any extremal solution x of (70). By Theorem 6, x¢ is the least extremal
solution.
Conversely, let xo be the least extremal solution whose existence we assume.
By Theorem 2, x¢ € C(T), and, by Theorem 3(e),
T’;L TXO = Xp.
Since xg is an extremal solution, it follows from (73) that

Txo = Pﬁy S T(C(T))

and, therefore,
xo =TI Tx = TJPWy

=Tly. O

If N(T) is closed then T,/ coincides with the maximal Tseng inverse

TT. Thus, for closed operators and, in particular, for bounded operators,
T} should be replaced by T in the statement of Theorem 8.
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Exercises

EX. 37. A linear equation without extremal solution. Let T and y be as in Ex. 7.
Then

Tx =y
has no extremal solutions.

Ex. 38. It was noted in Ex. 8 that, in general, the Fredholm integral operator
of the first kind has a nonclosed range. Consider the kernel
_ [s(1-1), 0<s<t<1,
G@J)_{ﬂl—ﬂ, 0<t<s<lI,

which is a generalized Green function of the operator
d2
dt?’
Let T € B(L?[0,1], L?[0,1]) be defined by

(Tx)(s) = /0 G(s,t)x(t) dt.

Show that there exists a y € L?[0, 1] for which

0<t<1.

Tx =y
has no extremal solution.

ExX. 39. An equation without a least extremal solution. Consider the unbounded
functional on L?[0, cc],

Tx = / tx(t) dt
0
discussed in Ex. 2. Then the equation
Tx =1
is consistent, and each of the functions
<t<
xn(t):{l/nt’ 1<t<n+1,

0, otherwise,
is a solution, n = 1,2,.... Since
n+1
) 1 1
n||° = dt = — 0,
I /1 (nt)? n(n+1)

there is no extremal solution of least norm.

EX. 40. Properties of (TJ)". By Theorem 7(a) and (c), it follows that D(TJ)
is decomposable with respect to N (T(,Jr ). Thus T has a maximal Tseng inverse,
denoted by TIT. Some of its properties are listed below:

(a) G ={{x+2zTx}: xeC(T),zecC(T)*}).

(b)  D(T{1) = C(T) & O(T)*.
()  R(TI) = T(C(T)).
) NI = OT)*.

ExX. 41. Let T € L(H1,H2) and let

Then:

i L
(a)  D(Ti") =C(T) @ N(T) @ Do(T)", a refinement of Ex. 40(b).
(b)  Do(T) € D(T) N D(T!") and Tip,(ry = (L) pg(r)-
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(¢)  Ti'is an extension of T if and only if D(T') is decomposable with respect
— 1

to N(T), in which case TJ is an extension by zero to N(T) @ D(T)* .

EX. 42. An example of A(T) # {0}, A(T) C D(TI"). Let T be the operator
defined in Ex. 4. Then,

B(T)=D(T)NN(T)=DnN(DNF)=DNF
= N(T),

and C(T') = {0}, showing that

A(T) # {0}, by (80).
Thus

A(T)=A, of Ex. 4,
and

D(T!) = A+ = N(T)).
Finally, from C(T)* = H,

DT =H>A

with

N(TITy =H.

EX. 43. An example of A(T) # {0}, A(T)ND(T}") = {0}. Let H be a Hilbert
space and let M, N be subspaces of H such that

M+#M, N#NCM™.

Let x € (X\Y) denote x € X, x ¢ Y. Choose

yeM\M and z¢€ ML\(Né (Nt n M),
let
X=y+2z
and
D=M®&N & [x]
where [x] is the line spanned by x. Define T' € L(H,H) on D(T) = D by
Tu+v+ax)=v+ax, ueM, veN, oaxc][x|
Then
C(T)=N, N(T)=M, AT)=I[x],
and

x & D(TI).
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EX. 44. (Tseng [820]; see also Holmes [427, Section 35]). Let T' € B(H1, Hz).
Then

Tx =y (70)
has an extremal solution if and only if there is a positive scalar 8 such that

l(y,z)|> < B(z, AA*z), for every z € N(AA™)™ .
EX. 45. (Minamide and Nakamura [557]). Let T' € B(H1,Hz2), S € B(H1,Hs)
be normally solvable, and let
Ts = Tin(s))

denote the restriction of T' to N(S). If Ts is also normally solvable, then Tg is
called the N (S)-restricted pseudoinverse of T. It is the unique solution X of the
following five equations

SX =0,
XTX = X,
(TX)" =TX,

TXT =T on N(5),
Pr(s)(XT)* = XT on N(S).

Ex. 46. (Minamide and Nakamura [557]). Let TS, and Tg be as in Ex. 45.
Then, for any yo € Hz and zo € R(S), the least extremal solution of

Tx =1yo

subject to

is given by

X0 = Tg: (yo - TSTZO) + STZQ.

Ex. 47. (Porter and Williams [647]). Let Hi,H2,Hs be Hilbert spaces, let
T € B(H1,H2) with R(T) = Ha, and let S € B(H1,Hs). For any y € Ha, there
is a unique xo € H1 satisfying

Tx =y (70)
and which minimizes the functional
I5x[1? + [
over all solutions of (70). This x¢ is given by
xo = (I +5°8) Tty
where yo is the unique vector in Ha satisfying

y =TI+ 5*S) 'Ty,.
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Ex. 48. (Porter and Williams [647]). Let Hi, H2,Hs, T, and S be as above.
Then, for any y € Hz,x1 € H1, and y1 € Haz, there is a unique x¢ € H; which is
a solution of

Tx=y (70)
and which minimizes
5% = yull* + [Ix — x|
from among all solutions of (70). This xo is given by
xo = (I + S*S)fl(TTyo +x0+ S"y1)
where yo is the unique vector in Hs satisfying

y=T(+ S*S)fl(TTyo +x1+S%y1).

7. Series and Integral Representations and Iterative
Computation of Generalized Inverses

Direct computational methods, in which the exact solution requires a
finite number of steps (such as the elimination methods of Sections 7.2
7.4) cannot be used, in general, for the computation of generalized inverses
of operators. The exceptions are operators with nice algebraic properties,
such as the integral and differential operators of Exs. 18-36 with their finite-
dimensional null spaces. In the general case, the only computable represen-
tations of generalized inverses involve infinite series, or integrals, approx-
imated by suitable iterative methods. Such representations and methods
are sampled in this section, based on Showalter and Ben-Israel [756], where
the proofs, omitted here, can be found.

To motivate the idea behind our development consider the problem of
minimizing

fx) = (Ax -y, Ax —y), (83)

where A € B(H1,Hz) and H;,Hs are Hilbert spaces.
Treating x as a function x(¢), t > 0, with x(0) = 0, we differentiate
(83):

% f(x) =2R(Ax — y, A%), %= %x,

— 2R(A*(Ax — y), %) (84)
and setting
X =—A"(Ax —y), (85)
it follows from (84) that
@i F(x) = =2/|A"(Ax — y)|* < 0. (86)

This version of the steepest descent method, given in Rosenbloom [713],
results in f(x(t)) being a monotone decreasing function of ¢, asymptot-
ically approaching its infimum as ¢ — oco. We expect x(t) to approach
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asymptotically Aty so, by solving (85),
t
x(t) = / exp{—A"A(t — 5)} A"y ds (87)
0

and observing that y is arbitrary we get
t
AT = lim exp{—A*A(t — s)} A" ds (88)

t—o0 0

which is the essence of Theorem 9 below.
Here as elsewhere in this section, the convergence is in the strong op-
erator topology. Thus the limiting expression

Al = tlim B(t) or B(t)— Al ort — oo (89)

means that, for all y € D(AT),
Aly = lim B(t)y

t—o0

in the sense that
1 T — =
Jim (AT~ B(1)y] = 0. (90)

A numerical integration of (85) with a suitably chosen step size similarly
results in

AT =3"(I - aA*A)FaA®, (91)
k=0
where
2
0<a< —— (92)

IA[J>”
which is the essence of Theorem 10 below.
In statements like (90) it is necessary to distinguish between points
y € Hs relative to the given A € B(H1, Hz). Indeed, the three cases where
Prayy lies in R(AA®), (R(A)\R(AA")), or (R(A)\R(A)), have different
rates of convergence in (90). We abbreviate these cases as follows:

(y €I) means Pzpy € R(AAY),

R(A)
(y € II) means Preny € (R(A)\R(AA™)), (93)
(y €1II) means Prryy € (R(A)\R(A)).

We note that ATy is not defined for (y € III), a case which is impossible if
R(A) is closed.

THEOREM 9 (Showalter and Ben-Israel [756]). Let A € B(H1,H2) and
define, fort >0,

Li(t) = /0 exp{—A"A(t — s)} ds,

Lo(t) = /0 exp{—AA*(t — s)} ds, (94)
B(t) = L1(t)A™ = A" Ly(t).
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Then:
Aly|?[l(AA")Ty|?
a AT — 2 < ”
(@ AT = Byl = [AZ )]+ A1y P
if (y€el) andt >0
(b) ||(AT —B@®)yl|]? is a decreasz'ng function of t > 0,
with limit zero as t — oo, if (y € II).
2 AT ”2
P—— — AB(t 2 ||Y|| ” y
if (y €1) or(yGII) and t > 0.
(d) ||(PR(A) AB(t))y|? is a decreasing function of t >0,
with limit zero as t — oo, if (y € III).

Note that even though A'y is not defined for (y € III), still

AB()—>P(A), as t — oo.

The discrete version of Theorem 9 is the following theorem:
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THEOREM 10 (Showalter and Ben-Israel [756]). Let A € B(Hi, Ha),

let ¢ be a real number, 0 < ¢ < 2, and let
c

a= .
[1All?
For any 'y € Ha define

x=T'y, if(yel) or(yell),

and define the sequence

y 07 xo = 0,

(y—yni1) =T —aAA") (y —yn), if (y€l)or(yell) or(y€lll),
)=

(x—xn41) = —ad"A) (x—xn), f(y€])or(yell),
N=12...

Then the sequence

N
=Y (I-aA*A)fad*, N=0,1,... (95)
k=0
converges to A" as follows:
ATy ||| (AA) Ty |2
a At — By)yl* <
@ A= BV = sy 2 5 N — oo/ 1APTTATY
if (yel) and N=1,2,....
(b) (AT = Bn)yll* = [Ix — xn|?
converges monotonically to zero if (y € II).
Iy [I*[[ ATy
(c) (P ylI? <
1Py aa [ATy |2 + N[(2 = o)/ AlP]lIy 12
if(yel) or(yell) and N=1,2,....
(d) ||(Pm7ABNyH2 = |ly — yn||? converges monotonically to zero
if (y € II). O

The convergence By — A', in the uniform operator topology, was

established by Petryshyn [641], restricting A to have closed range.
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As in the matrix case, studied in Section 7.7, higher-order iterative
methods are more efficient means of summing the series (91) than the first-
order method (95). Two such methods, of order p > 2, are given in the
following:

THEOREM 11 (Showalter and Ben-Israel [756]). Let A, «, and {By :
N =0,1,...} be as in Theorem 10. Let p be an integer

p=>2

and define the sequences {Cnp} and {Dn ,} as follows:

—1
Cop=0aA*, Cni1p=Cn, pz (I — ACn ), (96)
lc:pO ,
Dop = aA*, Dyi1p= Dy, ;O (k> (=ADy )t (97)
Then, for all N =0,1,...,
Bpv+i_1) = Cni1p = Dni1p. (98)

(Il
Consequently {Cx,} and {Dy,} are p*P-order iterative methods for
computing A, with the convergence rates established in Theorem 10; e.g.,

[ATy|?[[(AA*)Ty|?
(AA*)Ty[|2 + (PN = D2 = o)c/|| Al ATy][*’
if (yel) and N=1,2,....

(AT = Cnp)y|* < i

The series (96) is somewhat simpler to use if the term (I — ACy,)* can
be evaluated by only k — 1 operator multiplications, e.g., for matrices. The
form (97) is preferable otherwise, e.g., for integral operators.

Exercises

EX. 49. (Zlobec [892]). Let A € B(H1,H2) have closed range, let b € H2, and
let> B € R(A*, A*). Then the sequence

Xk+1:kaB(AXk7b), kZO,l,... 5 (99)
converges to A'b for all xg € R(A*) if
p(PR(A*) - BA) < 1,

where p(T") denotes the spectral radius of T'; see, e.g., Taylor [800, p. 262].
The choice B = aA™ in (99) reduces it to the iterative method (95). Other
choices of B are given in the following exercise:

EX. 50. Splitting methods (Zlobec [892], Berman and Neumann [89], Berman
and Plemmons [90]). Let A be as in Ex. 49, and write

A= M+ N, (100)
where M € B(H1,Hz) has closed range and N(A) = N(M). Choosing
B=w MT, w # 0,

2For S, T € B(H1,Hz) with closed ranges, R(S,T) = {Z : Z = SWR for some W €
B(Ha,Hi)}-
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in (99) gives
xp1 = [(1 —w)] —wM'N]x, + wM'b, x0 € R(A%), (101)
in particular, for w =1,

Xpi1 = —M'Nx, +M'b, xo€ R(A"). (102)

8. Frames

This section is based on Christensen [194] and Daubechies [213, Chapter
3].

Let H be a separable Hilbert space. A basis of H is a set {f,} C H
such that every f € H is represented as

f— Z enfo (103)

with unique scalar coefficients {c, }. A basis is unconditional if (103) con-
verges unconditionally for all f € H. Unconditional bases are generalized
as follows:

DEFINITION 6. (Duffin and Schaeffer [244, p. 358]). A sequence {f,,} C
H is:
(a) a frame for H, if there exist constants A, B > 0 such that

AlI£? <> E £)* < BJI|?,  for all f € H; (104)

(b) a Bessel sequence if there is a B > 0 such that the upper bound
holds in (104).

Consider the mapping T : ¢ — H given by
T:{cn} = > cnfn. (105)
{f,} is a Bessel sequence if and only if T is a well-defined operator from ¢2
into H, in which case T is bounded, and its adjoint is

T H — 2, T*f={(ff,)}, [194, Lemma 2.2]. (106)

If {f,} is a frame, its frame operator S : H — H is S =TT*, or
Sf=TT*f =" (ff)f,. (107)

S is bounded and surjective, [411], allowing the representation
f=S5Sf = (F,5'f)f,, VEeH, (108)

see [194, Theorem 2.4]. The coefficients (f, S~!f,,) are not unique, however
(108) converges unconditionally, showing frames to be generalizations of
unconditional bases (uniqueness lost).

The following proof uses generalized inverses:

THEOREM 12 (Christensen [194], Theorem 2.5). A sequence {f,} C H
is a frame if and only if T is a well defined operator from (2 onto H.
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PROOF. Only if: Let {f,} be a frame. Then T is a bounded operator from £2
into H (since {f,} is a Bessel sequence) and T is surjective since S is.

If: Let T be a well-defined operator from ¢* onto H. Therefore {f,} is a
Bessel sequence. Let N(T)* be the orthogonal complement of N(T'), the kernel
of T, and let T = TineryLy N(T)* — H be the restriction of T to N(T)*. T is
clearly bounded and bijective and, therefore, has a bounded inverse TT = T '
H — N(T)*. Writing a decomposition of T'f,f € H, as T'f = {(T1f),.}, we
have

f=TT'f = (T"F).f.. (109)
SR = ()2 = (O (T )k, )
<Y NI D UE £ < ITTIPIENP D I £a))°.

D Dl B ICE Ll MF e
2 MBI 2 ’

establishing the lower bound

1 1
A= - , 110
T = 5] o
needed in (104) to make {f,} a frame. ]
The bound (110) was shown in [192] to be optimal.

Suggested Further Reading

SECTION 3. The annotated bibliography of Nashed and Rall [597] is an
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[598], [599], [600], Pietsch [642], Porter and Williams [647], [648], Przeworska—
Rolewicz and Rolewicz [653], Sengupta [744], Sheffield [748], Votruba [843],
Wyler [880], Zarantonello [885].

SENSITIVITY ANALYSIS OF THE MOORE-PENROSE INVERSE. Koliha [478],
Moore and Nashed [577], [578], Nashed [594], Rakocevi¢ [664], Roch and Sil-
bermann [702].
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Walnut [411], and their references.



APPENDIX A

The Moore of the Moore—Penrose Inverse

1. Introduction

This Appendix is based on [76].
E.H. Moore (1862-1932) introduced and studied the general reciprocal
during the decade 1910-1920. He stated the objective as follows:

“The effectiveness of the reciprocal of a non—singular finite matrix
in the study of properties of such matrices makes it desirable to
define if possible an analogous matrix to be associated with each
finite matrix x'2 even if x'2 is not square or, if square, is not
necessarily non—singular.” [576, p. 197].

Moore constructed the general reciprocal, established its uniqueness and
main properties, and justified its application to linear equations. This work
appears in [575], [676, Part 1, pp. 197-209].

The general reciprocal was rediscovered by R. Penrose [635] in 1955 and
is, nowadays, called the Moore—Penrose inverse. It had to be rediscovered
because Moore’s work was sinking into oblivion even during his lifetime: it
was much too idiosyncratic and used unnecessarily complicated notation,
making it illegible for all but very dedicated readers.

Much of Moore’s work is today of interest only for historians. One of
the exceptions is his work on the general reciprocal, that may still interest,
and benefit, mathematical researchers. It is summarized below, and — where
necessary — restated in plain English and modern notation.

To illustrate the difficulty of reading the original Moore, and the need
for translation, here is a theorem from [576, Part 1, p. 202].

(29.3) Theorem.

(O 1 g2 11 12,y

3| A21 type M2 M, 5 G212 )21 — S1L, - 1A 12 = 633212*.

One symbol needs explanation: i stands for the number system used
throughout and 4 ¢ denotes a number system of type C, that is, a quasi—
field with a conjugate and an order relation, see [576, Part 1, p. 174] for

details. All results below are for type C' number systems, so this assumption
will not be repeated. The rest of the theorem, in plain English, is:

(29.3) Theorem. For every matriz A there exists a unique matriz X :
R(A) — R(AM) such that

AX = Pp(a), XA = Ppan). ]
The plan of this appendix:
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Section 2 summarizes the results of Moore’s lecture to the American
Mathematical Society in 1920 [575].

Section 3 is a translation of the main results in [576, Part 1, pp. 197
209].

2. The 1920 Lecture to the American Mathematical Society

This is an abstract of a lecture given by E.H. Moore at the Fourteenth West-
ern Meeting of the American Mathematical Society, held at the University
of Chicago in April 9-10, 1920. There were 19 lectures in two afternoons;
only the abstracts, written by Arnold Dresden (Secretary of the Chicago
Section) appear in the Bulletin. Dresden writes

“In this paper Professor Moore calls attention to a useful extension
of the classical notion of the reciprocal of a nonsingular square
matrix.” [575, p. 394].

The details: Let A be any m x n complex matrix. Then there exists a
unique n x m matrix A, the reciprocal of A, such that:

(1) the columns of A are linear combinations of the conjugate of the
rows of A;
(2) the rows of A are linear combinations of the conjugate of the
columns of A; and
(3) AATA = A.
The relation between A and A' is mutual: A is the reciprocal of At, viz.:

(4) the columns of A are linear combinations of the conjugates of rows

of AT;
(5) the rows of A are linear combinations of the conjugates of columns
of Af; and

(6) ATAAT = AT,

If A is of rank r, then AT is given explicitly as follows:

(r>2):

Allin il = kyoo ok A
A 1 T )A( 1 r)
£y < <ly
(r=1)
AT[ B Z] = A[27J] 5
Alk, 0 Alk, ¢
ke
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where A ( h }glk) denotes the determinant of the k x k matrix with
1 hg

elements Alg;, hj] and T denotes the conjugate of x.

The linear combinations of the columns of A (A') are the linear com-
binations of the rows of AT (A) and constitute the m-dimensional vectors
y (n—dimensional vectors x) of an r—dimensional subspace M (N) of C™
(C™). Let M (N) denote the conjugate space of the conjugate vectors ¥ (X).
Then the matrices A, AT establish one-to-one linear vector correspondences
between the spaces M, M and the respective subspaces N, N; y = Ax is
equivalent to x = A’y and X = ¥ A is equivalent to u = VA'.

3. The General Reciprocal in General Analysis

The centerpiece of Moore’s work on the general reciprocal is Section 29
of [576], his treatise on General Analysis, edited by R.W. Barnard and
published posthumously. These results were since rediscovered, some more
than once.
For a matrix A denote:
A the conjugate transpose of A; and
R(A) the range of A.
For index sets I, J:
Ar. or A[I,*] the submatrix of rows indexed by I;
A,y or A[x, J] the submatrix of columns indexed by J; and
Ajy the submatrix of A with rows in I and columns in J.

If A is nonsingular, its inverse A~! satisfies,
AX =1, XA=1.

Moore begins by introducing generalized identity matrices (orthogonal
projectors) to replace the identity matrices above. This is done in Lemma
(29.1)(5) and (6), and Theorem (29.2). The general reciprocalis then con-
structed in Theorems (29.3) and (29.4), and its properties are studied in
the sequel.

(29.1) Lemma. Let A be a non—zero m x n matriz, and let Ar; be a maz-
imal nonsingular submatriz of A.
(1) AH A, ; is Hermitian and PD".
(2) (A*HJA*J)_I is Hermitian and PD.
(3) Ar. A7y, is Hermitian and PD.
(4) (As )_1 is Hermitian and PD.
(5) PR 2 = Aug (AT AT AR
the generalized identity on R(A).
(6) PR(AH) = Ag (A[*Aﬁ)il A]*,
the generalized identity on R(AM).
(7) Preayx = x for all x € R(A).
(8) xH Preay = x* for all x € R(A).
(9) Preamyx =x for all x € R(AH).

IMoore calls it proper (i.e., the determinants of all principal minors are nonzero),
positive (i.e., the corresponding quadratic form is nonnegative) and Hermitian.
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(10) x Ppiany = x" for all x € R(A™).

(11) Let X := AY (AI*Aﬁ)_ll Ay (AHA,,)7h AR,
= AL (ARAL)  Prall,+]
= Prea+[*, J] (AfJA*J) Af],

the general reciprocal of A.
) X maps R(A®) onto R(A).

(29.2) Theorem. Let M be a finite-dimensional subspace.
1) There exists a unique linear operator® Py such that

Pyx =x, xIPy =x, forallxe M.
(2) Par is Hermitian, PSD, and idempotent.
(3) M = R(Py).
(4) For all x: Pyx € M, (x — Pyx) € M+
(5)x L M < Pyx=0.
(6) For any matriz A,

R(A™) c M,
— Ax =x, forallx e M,

Ax =0, forallx € M* .
(29.3) Theorem. For every matriz A there exists a unique matriz
X : R(A) — R(A™) such that

AX = Pp(ay, XA= Pgiam.

{Axx, forallx e M,
<~

We call X the general reciprocal and denote it by AT.

(29.4) Theorem. For every matriz A the general reciprocal AT satisfies:

(1) ATAAT = AT, AATA = A

(2) rank A = rank At

(3) R(A) = R(A™), R(A™) = R(AT).

(4) ATH = (AH)T A = (AN)T. |
)

(29.45) Corollary. If A[l,J] is a mazimal nonsingular submatriz of A,
then:

(1) AT = Pream)l*, JIAL; Priayll, ).

(2) x"Aly =xH ALy, O

(29.5) Theorem. For any matriz A, the following statements on a matric
X are equivalent:

(a) X = Af.

(b) R(X) C R(AH), AX = Pga.

(c) R(X) C R(A™), R(XH) C R(A), AXA=A. O
(29.55) Corollary. If A = {g g} , then AT = [%T 3] O

2The generalized identity matriz for the subspace M, denoted by éps [576, p. 199].
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(29.6) Theorem. Let the matriz A be Hermitian. Then:
(1) At is Hermitian.
(2) If A is PSD, then so is AT. O
Consider a square matrix A. Then for any principal submatrix Ajy,
Arr = AIIA];[AH
More can be said if A is Hermitian and PSD:

(29.7) Theorem. Let A be Hermitian and PSD. Then, for any principal
submatriz Ay,

(1) AIIA];[AI* = Ap..

(2) A Al A = A 0

(29.8) Theorem. Let A be Hermitian and PSD. Then the following state-
ments, about a vector X, are equivalent:

(a) xH Ax = 0;

(b) x L R(A);

(c) x L R(A"); and

(d) x7 Afx = 0. O

The general reciprocal can be used to solve linear equations
Ax = b,

that are assumed consistent, i.e., b € R(A), or the way Moore expresses
consistency: rank A = rank[A b].

(29.9) Theorem. Let A be a matriz and b a vector in R(A). Then the
general solution of Ax = b is

ATb+ {y:y L R(AT)}. O

REMARK. Moore avoids the concept of null space, and the equivalent
form of the general solution, AT b+N(A). Also, Moore does not consider the
case where Ax = b is inconsistent. A. Bjerhammar [102], R. Penrose [636],
and Yuan-Yung Tseng® [820] would later use A’ to obtain least-squares

solutions. This has become the major application of the Moore—Penrose
inverse.

3Tseng, a student of Barnard at Chicago (1933), extended the Moore—Penrose in-
verse to linear operators, see Definition 9.1, page 336.
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{1, 3}-inverse, 208
{1, 4}-inverse, 208
{1}-inverse, 41, 208, 258
{2}-inverse, 50
basis for null space, 25
basis for range space, 25
Drazin inverse, 164—-168, 261, 262
group inverse, 181, 182, 262
Hermite normal form, 24, 26
Moore—Penrose inverse, 48, 179, 207,
208, 250, 261-263, 272, 277
rank factorization, 26
Smith normal form, 38
condition number, 204
spectral, 204
consistent norms, 19
constrained
inverse, 92
least-squares solution, 108
minimum-norm least-squares solution,
113, 255
contraction, 223
convergent matrix, 21
convex
body, 140
function, 131
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set
rotund, 142
smooth, 142
coordinates

cylindrical, 318
Plicker, 32, 210, 237
spherical, 319
covariance matrix, 284
Cramer’s rule, 30, 78, 124, 197, 200
current, 100
cylindrical coordinates, 318

Decomposable, 331
density function, 323
derivative, 300
determinant, 28
diagonable matrix, 60, 62, 153, 155
difference equation
consistent initial solution, 310
homogeneous, 310
tractable, 310
differentiable, 300
dimension of inclination, 230
direct sum, 331
discriminant, 94
distance between subspaces, 233
distribution
x2, 328
bivariate normal, 327
exponential, 327
function, 323
spherical, 326
uniform, 328
domain, 331
Drazin inverse, 156, 163, 164
Cline’s method, 166, 262
computation, 164-168, 261, 262
limit form, 168
dual
function, 138
norms, 140
set, 140
vectors, 141

Eigenfunction, 345

eigenspace, 13

eigenvalue, 13, 345

eigenvector, 13

electrical network, 99, 149
currents, 99
dual transfer matrix, 101
transfer matrix, 101
voltages, 99

elementary
matrices, 22
operations, 38
row operations, 22

EP matrix, 157

EP, matrix, 157

equilibrated convex body, 140
equivalent

matrices, 18

norms, 9

over 7Z, 38
Erdélyi inverse, 342
ergodic chain, 304
ergodic state, 304
e.s.c., b, 131

norm, 130, 131
essentially strictly convex, see e.s.c., 5
estimable function, 285, 289
Euclidean norm, 8
expected value, 284
extension, 89
extremal

inverse, 358

solution, 356

Factorization

QR, 15, 257, 269

QR, 15, 260, 269

Cholesky, 119

full-rank, see rank factorization, 26
Fredholm integral operators, 336
Frobenius covariants, 62, 66
Frobenius norm, 19, 111, 212
full-rank factorization, see rank factor-

ization, 26

function

convex, 131

strictly convex, 131

Gamma function, 320
gauge function, 138, 140, 228
symmetric, 138
Gauss—Markov
model, 285
theorem, 286
Gaussian elimination, 24
general reciprocal, 370-372
generalized
Green function, 349
power, 249
resolvent, 246
generalized inverse, 1
S-inverse, 162
S-restricted, 89, 112, 113
S’-inverse, 169
a-B, 134, 147
{1, 2, 3}-inverse, 46, 179
{1,2,4}-inverse, 46, 179
{1, 2, 5}-inverse, 156
{1, 2}-inverse, 45, 179
{1, 3}-inverse, 104, 111
{1,4}-inverse, 111
{1}-inverse, 42
{1%,2, 5}-inverse, 152
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{2}-inverse, 295, 296, 301 interval linear program, 95
{,7,...,k}-inverse, 40 bounded, 95
associated with «, 8, 134, 147 consistent, 95
constrained, 92 invariant factors, 38
Drazin inverse, 156, 163, 164 inverse
Erdélyi, 342 Bott-Duffin, 92, 98, 148
maximal Tseng inverse, 339 Drazin, 164
Moore—Penrose inverse, 179 Erdélyi, 342
quasi-commuting inverse, 171 extremal, 358
reverse order property, 160, 174 Moore—Penrose, 4, 40, 43, 48, 111,
strong spectral inverse, 172 122, 125, 128, 131, 207, 211, 238,
Tseng, 336 355
geometric multiplicity, 13 Tseng, 336
grade, 34 weighted, 120
Gram matrix, 29, 78 inverse graph, 332
Gram—Schmidt orthonormalization, see irreducible Markov chain, 304
GSO, 9 irreducible matrix, 39
Gramian, 29 isometry, 218
graph, 99 linearity of, 223
branches, 99 partial, 218, 223
closed graph theorem, 332 iterative method, 270
connected, 100 pth-order, 271
incidence matrix, 99
inverse, 332 Jacobian matrix, 295, 313
linear operator, 331 Jordan
nodes, 99 block, 34
connected, 100 normal form, 35, 65, 164, 171

directly connected, 100
Green function, 349
Greville’s method, 263
group inverse, 156
computation, 157, 181, 182, 262

Kalman filter, 329
Kirchhoff, 100
current law, 100, 150
voltage law, 100, 150

GSO0, 9, 15, 28, 263 Kronecker product, 53
Hadamard inequality, 30, 234, 236 LE, 285 .
Hermite normal form, 24, 26, 41, 258 best unbiased, sec BLUE, 285

unbiased, see LUE, 285

computation, 24, 26 .
least extremal solution, 356

Idempotent, 43, 58 least-squares solution
ill-conditioned, 106 constrained, 108
incidence matrix, 99, 102 minimum-norm, 109
inclination least upper bound, 143
coefficient, 230 length, 7
dimension, 230 linear
index, 153, 154 estimator, see LE, 285
of eigenvalue, 36 regression, 285
of nilpotency, 36, 172 statistical model, 285
inequality ridge regression estimator, 293
Cauchy—Schwartz, 7, 141, 234 linear equations
generalized Cauchy—Schwartz, 141 approximate solution, 104
Hadamard, 30, 234, 236 ill-conditioned, 106
Minkowski, 9 least-squares solution, 104
triangle, 7 linear manifold, 182
Weyl, 216 orthogonal representation, 182
inner product, 7, 330 linear operator
standard, 7 adjoint, 333
integral bounded, 332
matrix, 38, 97 carrier, 331

vector, 38, 97 closable, 333
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closed, 332 range-Hermitian, 157
closure, 333 similar, 16
dense, 333 unitarily equivalent, 18
domain, 331 unitarily similar, 16
extension, 332 matrix
graph, 331 admittance, 102
inverse graph, 332 condition number, 204
nonnegative, 334 convergent, 21
normally solvable, 334 diagonable, 60, 62, 153, 155
null space, 331 function, 68, 244
orthogonal projector, 334 incidence, 99, 102
range, 331 index, 153, 154
restriction, 332 integral, 38, 97
self-adjoint, 334 invariant factors, 38
symmetric, 334 irreducible, 39
linear transformation, 10 nilpotent, 36
extension, 89 nilpotent part, 170
intrinsic property, 18 nonnegative, 39
inverse, 11 normal, 75
inverse image, 11 permutation, 22
invertible, 11 perturbation, 238
matrix representation, 11 polar decomposition, 220
nonsingular, 11 positive definite, 13, 80
null space, 11 positive semidefinite, 13
range, 11 reduced row-echelon form, 24
restriction, 89 reducible, 39
linear unbiased estimator, see LUE, 5 set inclusion, 102
Lowner ordering, 80 set intersection, 102
LUE, 5, 285 singular values, 14
square root, 119, 222
Markov chain, 303 stochastic, 303
absorbing, 304 transfer, 101
closed set, 304 unit, 38, 97
ergodic, 304 volume, 29, 31, 32, 123, 199, 210
irreducible, 304 matrix norm, 13
recurrent, 304 corresponding to a vector norm, 20
regular, 304 Frobenius, 19, 111, 212
state multiplicative, 13
absorbing, 304 spectral, 20, 203
aperiodic, 304 matrix norms
ergodic, 304 unitarily invariant, 20, 228
leads, 303 maximal Tseng inverse, 339
null, 304 mean square error, see MSE, 5
period, 304 minimal polynomial, 36
probabilities, 305 minimum-norm least-squares solution,
recurrent, 304 109
transient, 304 constrained, 113, 255
states minimum-norm solution, 108
communicate, 303 Minkowski functional, 138, 140
stationary distribution, 305 Minkowski inequality, 9
matrices Moore general reciprocal, 370-372
EP, 157 Moore—Penrose inverse, 4, 40, 43, 48,
EP,, 157 111, 122, 125, 128, 131, 179, 207,
equivalent, 18 208, 211, 355
equivalent over Z, 38 computation, 48, 179, 207, 208, 250,
idempotent, 43, 58 261-263, 272, 277
ill-conditioned, 106 discontinuity, 238

orthogonally similar, 16 Greville’s method, 263
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iterative methods, 270
limit form, 115, 160
Noble’s method, 261
perturbations, 238
Schulz method, 277
MSE, 5, 293
multiplicative norm, 13
multiplicity
algebraic, 35
geometric, 13

Naive least-squares estimator, 289
Newton’s method, 295, 296, 301
nilpotent matrix, 36
nilpotent part, 170
Noble’s method, 106, 261, 262
nonnegative matrix, 39
norm, 7, 330
Ly, 9, 141
e.s.c., 130, 131, 146
ellipsoidal, 8, 130, 144
Euclidean, 8
matrix, 13, 20
of homogeneous transformation, 143
projective, 144
Tchebycheff, 141
unitarily invariant, 140
weighted Euclidean, 8
normal form
Hermite, 24, 26, 41, 258
Jordan, 35, 65, 164, 171
Smith, 38, 97
normal matrix, 75
norms
consistent, 19
dual, 147
equivalent, 9
N (S)-restricted pseudoinverse of T', 362
null space, 11, 12, 110, 331
null state, 304

Ohm’s law, 101, 150
on., 5,8

basis, 8
orthogonal, 8

Q, 254

complement, 12, 330

direct sum, 12, 331

projection, 74

projector, 74
orthogonally incident subspaces, 230
orthogonally similar matrices, 16
orthonormal, see o.n., 5

Partial isometry, 218, 223
PD, 5, 13, 117
square root, 117
Penrose equations, 40, 152, 342, 355
period of state, 304

permutation
even, 23
inverse, 22
matrix, 22
odd, 23
sign, 23
permutation matrix, 22
Perron—Frobenius theorem, 39
perturbation, 238
acute, 239
pivot, 180
operation, 180
Pliicker coordinates, 32, 210, 237
polar decomposition, 220
polynomial
characteristic, 35
minimal, 36
positive definite, see PD, 5
positive semidefinite, see PSD, 5
potential, 94, 100
principal
angles, 232
idempotents, 62, 66
vector of grade j, 34
projection, 6
orthogonal, 74
projective
bound, 144
norm, 144
projector
¢-metric, 132
oblique, 59
on L along M, 59
orthogonal, 74
PSD, 5, 13, 80
pseudoinverse, 1, 346
pseudoresolvent, 345
Hurwitz construction, 345

Q-orthogonal, 254

Q R-factorization, 15, 257, 269
QR-factorization, 15, 260, 269
quasi-commuting inverse, 171

Radon transform, 316
range, 11, 12, 110, 331
range-Hermitian matrix, 157
rank factorization, 26, 31-33, 48, 50, 58,
74, 88, 115,122, 124, 157, 165, 179,
210, 260—262
reciprocal
Moore general reciprocal, 373
subspaces, 230
vectors, 230
recurrent chain, 304
recurrent state, 304
reduced row-echelon form, 24
reducible matrix, 39
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regular chain, 304
regular value, 345
residual, 104, 269, 270
resolvent, 70, 246
equation, 70, 246
generalized, 246
restriction, 89
reverse order property, 160, 174
ridge regression estimator, see RRE, 5
rotund convex set, 142
RRE, 5, 293

Schmidt approximation theorem, 213,
216
Schulz method, 277
Schur complement, 30, 39, 180, 200
set inclusion matrix, 102
set intersection matrix, 102
S-inverse, 162
S’-inverse, 169
similar matrices, 16
singular value decomposition, see SVD,
5
singular values, 14
B, 251
{W,Q}, 254
generalized, 251, 254
Smith normal form, 38, 97
smooth convex set, 142
solution
a-approximate, 136
approximate, 104
basic, 122
extremal, 356
least-squares, 104
minimum-norm, 108
Tchebycheff, 141
spectral
condition number, 204
decomposition, 62, 66, 82, 119
norm, 20, 203
radius, 20
spectrum, 13, 68
spherical coordinates, 319
spline approximation, 369
square root of a matrix, 117, 222
S-restricted
{1, 3}-inverse, 112
{1, 4}-inverse, 113
{¢,7,... ,k}-inverse, 89
standard
basis, 6
inner product, 7
standard basis, 11
star order, 84
stationary
point, 149
value, 149

stationary distribution, 305
stochastic matrix, 303
strictly convex function, 131
strong spectral inverse, 172
subspaces

orthogonally incident, 230

reciprocal, 230

totally inclined, 230
SVD, 5, 15, 202, 206, 208-210, 257, 262,

292
generalized, 251, 254
history, 255

Tchebycheff
approximate solution, 141
norm, 9, 141
Tikhonov regularization, 114
TLS, 5, 214

total least-squares, see TLS, 5
totally inclined subspaces, 230
transient state, 304

tree, 103

triangle inequality, 7

Tseng inverse, 336

U DV *-decomposition, 209

unit matrix, 38, 97

unitarily
equivalent matrices, 18, 202, 223
invariant matrix norms, 228
invariant norm, 20, 140
similar matrices, 16

Vector
integral, 38, 97
length, 7
norm, 7, 140
principal, 34
vectors
reciprocal, 230
volume, 29, 31, 32, 123, 199, 210
k-volume, 33

‘Wedderburn decomposition, 169, 171
weighted
{1, 2}-inverse, 119, 121, 255
inverse, 120
least-squares, 125
Weyl inequalities, 216
{W, Q}-singular values, 254
{W, Q}-weighted {1, 2}-inverse, 119, 121,
255
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