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I. INTRODUCTION

1. The k-dimensional connectivity numbers of an ordinary, smooth n-space
may either be obtained geometrically by calculating the maximal number of
k-cycles of the space that are independent modulo the bounding cycles or
analytically by calculating the maximal number of exact, k-dimensional symbolic
differential forms '

w = Z A.‘,....’kdl'.'l e dl‘.’k

(integrands of multiple integrals) that are independent, in the large, modulo
the derived forms. The geometrical method of approach has been extended to
compact metric spaces by Vietoris! and to still more general spaces by Cech.?
Moreover, this branch of the theory has been very greatly perfected by the
introduction of Pontrjagin’s cycles with real coefficients reduced modulo 1.

Now, if we use Pontrjagin’s cycles, the k** connectivity group of a compact,
metric space becomes a compact, metric group. Moreover, by a theorem of
Pontrjagin,? every such group may be identified with the character group of a
countable, discrete group. This immediately suggests the advisability of re-
garding the discrete group, rather than its equivalent (though more compli-
cated) metric character group, as the kth invariant of the space, and of looking
for a revised theoretical treatment leading simply and directly to this group.
We give such a treatment below, based on a suitable combinatory adaptation
of the second, or analytic, method of approach.

One decided advantage of taking the discrete groups rather than their metric
character groups as the fundamental connectivity groups of the space is that
we can then define the productt (as distinguished from the sum) of two elements
of the same or of different groups. The combined groups of all dimensionalities
(or, more precisely, their direct sum) will thus become a connectivity ring, as
distinguished from a set of isolated connectivity groups.

2. A rough sketch of the present theory was given by the author in two

L L. Vietoris: “Uber den hoheren Zusammenhang kompakter Riume und eine Klasse
von zusammenhangstreuen Abbildungen,” Math. Ann. 97 (1927), pp. 454-472.

2 E. Cech: “Théorie générale de ’homologie dans un espace quelconque,” Fund. Math.
19 (1932), pp. 149-183.

3 L. Pontrjagin: ‘“The theory of topological commutative groups,”’ these Annals of
Mathematics, 35 (1934), pp. 361-388.

¢ The bracket product of §11.
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notes which appeared in the Proceedings of the National Academy,® and in a
paper read at the First International Topological Conference in Moscow.®
Essentially the same theory was also developed, quite independently, by A.
Kolmogoroff and likewise presented by him at the Moscow Congress. The
definition of the product of two group elements (the analogue of the product of
two symbolic differential forms) as originally given by Kolmogoroff and the
present author has recently been modified by Cech,7 so that the revised product
is a p*® part of the original one, where p is a constant depending on the dimen-
sionalities of the two factors. This modification is an essential improvement,
as may be seen, for example, when the theory is applied to manifolds.® Nor is
it in any way trivial, for in the theory as originally developed it is not clear,
a priori, that the product of two elements has a ptt part. We have adopted
Cech’s modified definition of the product in this paper, although the change has
~ necessitated a complete re-casting of all our proofs. The present paper deals
only with the most fundamental definitions and theorems. Further develop-
ments of the theory will be given subsequently.

II. SymBoLic COMPLEXES AND SPACES

3. We start with an arbitrary set of entities v; called (symbolic) vertices.
Any set of n + 1 distinct vertices, (n = 0, 1,2, ...) will be called a (symbolic)
n-simplez, or simplex of dimensionality n. Moreover, for the sake of uni-
formity, the null set (containing no vertices at all) will be called a simplex of
dimensionality —1. The null set will be the only simplex of negative dimen-
sionality.

A simplex S will be a component of a simplex T if every vertex of S is a vertex
of T. If Sis a component of T the vertices of T, but not of 8, will determine
a component S’ of T called the complement of S with respect to T. Two sim-
plexes will be incident if either is a component of the other. The null set will,
of course, be a component of every simplex S and, therefore, incident to every S;
a simplex S will be a component of itself and, therefore, incident to itself.

Now, let .S be any simplex of dimensionality greater than zero, and let the’
vertices of S be %, 1, --- , 2, (n = 1). Then the various possible permuta-
tions of the vertices z; may be divided into two classes such that two permuta-
tions belong to the same or to different classes according as they differ by an
even or by an odd number of inversions. We shall call a definite, though arbi-
trary, one of the two classes the positive class and the other the negative class

' ““On the chains of a complex and their duals,” and “On the ring of a compact metric
space,”’ Proc. Nat. Acad. 21 (1935), pp. 509-512.

¢ September 1935.

7 “Multiplications on a complex” by E. Cech in the present number of these Annals,
pp. 681-697. A similar modification was also suggested independently by H. Whitney
in a letter to L. Zippin. The definition of the product announced by the author in the
second of the two Proceedings notes referred to above is not the significant one, as was
noticed by him while the note was in press. His revised definition was equivalent to
Kolmogoroff’s.

¢ Cf. Cech, loc. cit.
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thereby orienting the simplex. The simplex can have either of two opposite
orientations, corresponding to the two possible ways of naming the permuta-
tion classes. If s denotes an oriented simplex, then —s will denote the same
simplex with the opposite orientation. An oriented simplex will often be de-
noted by a positive permutation of its vertices, s = o, #1, - -+ , To. We shall
not orient the simplex of dimensionality —1 nor the simplexes of dimen-
sionality 0.

4. A (symbolic) complex will be any set of simplexes such that there is at
least one simplex in the set and such that every component of every simplex
of the set is in the set. The set need not be finite nor even countable; it may
contain simplexes of all dimensionalities. Every complex will contain the null
set. A complex II’ will be called a subcomplex of a complex II if every simplex
of I’ is a simplex of II.

- 5. A (symbolic) space will be any set of complexes II, such that to each pair
of complexes II,,, and II,, of the set there corresponds at least one complex II,
of the set which is a common subcomplex of both II,, and II,,. To illustrate the
topological significance of this definition we shall show the connection between
a symbolic space, as here defined, and an ordinary abstract space in the sense
of classical point set theory. Consider an arbitrary point set =. A covering
[¢] of Z will be any set of subsets ¢ of Z such that each point of Z belongs to at
least one of the subsets o. A covering [o1] will be a refinement of a covering [o]
if every element o, of [a] is a subset of at least one element ¢ of [¢]. An ab-
stract space will consist, essentially, of a point set = and of a set of coverings
[¢] of = such that to each pair of coverings [¢1] and [o2] of the set there corre-
sponds at least one covering [o3] which is a common refinement of both [¢;] and
[o2]. (We shall get specific types of spaces by making specific assumptions
about the coverings.) Now, every abstract space determines a definite sym-
bolic space such that: (a) the points of the abstract space are the underlying
vertices of the symbolic space; (b) each covering [o] of the abstract space deter-
mines a complex II, of the symbolic space consisting of all simplexes such that
their vertices belong to the same element of the covering [¢]. Since two cov-
erings [o1] and [o2] always have a common refinement, two complexes II,, and II,,
will always have a common subcomplex II,,. Therefore, the complexes II, will
determine a symbolic space, as required.

A symbolic space will be more general than an abstract space, in the sense
that not every symbolic space can be determined by an abstract space.

III. Skew SyMMETRIC FuNcTIONs ON A COMPLEX

6. Let R be an arbitrary ring (which need not necessarily be commutative.?
An m-function, (m = 1, 2, ...), will be any skew-symmetrical function

9 It can, perhaps, be shown that the only essentially independent invariants of a com-
plex or space are the ones obtained by taking R to be the ring of all integers. This question
should be further investigated.
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o(Zo, -+ , Zm) of m 4 1 variable vertices z;, such that the values of the func-
tion are numbers in the ring B. When the vertices z; are all distinct they
determine an oriented m-simplex s = zo, Z1, - - - , Tm. The value of the func-
tion ¢ corresponding to the vertices of s will be called the value of g on s. Since
the function ¢ is skew symmetrical, every even permutation of the vertices z;
leaves its value unaltered and every odd permutation merely changes its sign.
The function ¢ will therefore have a unique value on s, and its value on the
oppositely oriented simplex —s will be the negative of its value on s. If two or
more of the vertices z; are identical the value of ¢ will, of course, be zero.
A 0-function will simply be a function ¢(z) of a single variable vertex z. It will
have a definite value on each 0-simplex. For the sake of uniformity, we shall
regard the elements of the ring R as functions of dimensionality —1 defined on
the null set (the simplex of dimensionality —1).

An m-~function (m = —1) will be said to vanish on a complex IT if it vanishes
on every m-simplex of II. Two m-functions will be said to be identical on II
if their difference vanishes on II.

7. With every m-function ¢ there is associated an (m 4 1)-function ¢’ deter-
mined by the following relation®

m+1
(7:1) ﬂa,(x()y et 7xm+l) = ; (-1)i‘|o(x07 cet ,j:iy Tty xm+l) .

We shall call the function ¢’ the derivative of the function ¢. Its value on any
oriented (m 4 1)-simplex 8 = xy, - - - , Tm41 Will clearly be the sum of the values
of ¢ on the m-components of s, with due regard to the proper orientation of the
latter. The proof that the function ¢’ is skew symmetrical and, therefore,
actually an (m 4 1)-function follows, at once, from the obvious fact that when
we permute any two consecutive vertices z, and z,,1 we merely change the sign
of the function.

8. THEOREM 1. The second derivative o'’ of ¢ (t.e., the derivative of the deriva-
tive) always vanishes identically.
For we have

m+2
‘P”(xoy ) Im+2) = Z (‘—1)1 ‘P’(xoy Tty ji! Tttty xﬂH—?)
0
= Z (“l)kH‘P(xOs sy By ey Ey e ,Im+2)
k<1

-

™

(= 1)+t o(xg, vy Fiy ooy Bhy «+ +y Tmsa) -

+

Lo
-

>
Moreover, the two sums in the last member cancel one another, since they only

10 The symbol Z; will be used throughout to denote the absence of the variable z;. Thus

o(Zoy +ov 5 Tiy -0 yxm+l) = lP(Io, frt oy Tiely Tigly 20y 2m+l)-
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differ in sign. (This may be seen by permuting the dummy indices k and ¢
in either one of them.)

An m-function will be said to be exact (with reference to a complex II) if its
derivative vanishes on II; it will be said to be derived (with reference to II) if
it is identical on II with the derivative of some (m — 1)-function ¢.

CoroLLARY. Every derived function ¢ s exact.

Because

o=y (on II)

implies
o =y =0 (on II) .
9. We shall next define a law of composition according to which an m-func-
tion ¢ and an n-function ¢ will combine to determine an (m + n)-function

[¢¢], called the bracket product of ¢ and y. Let us arrange the underlying
vertices v; in a definite, though arbitrary, linear order a.!* Then, if the variables

To, T1, - -+ , Tmyn Tepresent distinct vertices in normal order with respect to a,
we shall assign to the product [¢y] the value
(9:1) [¢¢]((Eo, Tty xm+ﬂ) = (0(10, Tty xm) ‘I/(zm, ctty xm+n) y

where the expression on the right is the ordinary product of two elements of
the ring R. Since the function [gy] is skew symmetric, its value will now be
determined for arbitrary choices of the variables z;. (It should be noticed that
the functions ¢ and ¢ in the right-hand member of (9:1) both involve the
variable Z...)

Since the right-hand member of (9:1) is an ordinary product in the ring R
we can verify, at once, that bracket multiplication is distributive with respect
to addition:

9:2) [(e1 + 22) (@1 + ¥2)] = lew] + lewa] + [eadn] + [o2¥a] -

Of course, the bracket product is also associative though not, in general, com-
mutative.

The function [¢y] depends essentially on the linear ordering « of the vertices.
When we wish to emphasize this dependence we shall write [g¥]. in place

of [¢y].

10. THEOREM 2. If ¢ is any m-function and ¢ any n-function, then the deriva-

11 The idea of defining the bracket product [¢y] with reference to a specific ordering of
the vertices v; is due to Cech and Whitney. In the original definitions of Kolmogoroff and
the present author, the vertices were not ordered, and the product consisted of a set of
terms corresponding to various permutations of the vertices. An extraneous numerical
factor was thus introduced.
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tive of the bracket product [oy] satisfies the relation
(10:1) oWl = o] + (=D)m o]

For we may write

m+n+1

[‘P‘”I (IO, b " y xm+n+l) = ;0 (—1)l [W] (IO, Tty i'i, crty Im+n+l)
= z':: (-1) ‘P(xoy sy By e, 13,,.+1) ‘I’(xﬂﬂ-l; oy xm+n+l)
m+n

+1
+ El (‘l)iﬂv(l'o’ ] -Tm) ‘P(lm; ] j:"r R ] xm+n+l) .
m+

Moreover, if we add the sum (—1)"tlp(2o, - - - , Zm)¥(Zmt1y * * + ) Tmintr) tO the
first sum in the last expression, and substract it from the second, we obtain,
at once, the desired relation (10:1).

CoRrOLLARY 1. The bracket product [¢y] of two exact functions ¢ and ¢ s
always exact.

For the functions ¢’ and ¢’ vanish on II. Therefore, by (10:1), the function
[e¥]’ also vanishes on II.

COROLLARY 2. The bracket product [¢¢] of an exact function by a derived func-
tion or of a derived function by an exact function is a derived function.

Proor. Suppose, for instance, that ¢ is exact and ¢ derived. Then there
exists a function 6 such that

vy =0 (on 1) .
Moreover, we also have
¢ =0 | (on II)
therefore, by (10:1)
[e6] = (=1)™ [¢8’] . (on ) ;
therefore, finally
[(—=D)meb]l” = [0'] = [e¥] (on II) .

The case where ¢ is derived and y exact is treated in essentially. the same
manner.

IV. Tue CoNNEcTIVITY RING OF A COMPLEX

11. Let II be an arbitrary complex. Then the set of all m-functions that are
exact with respect to II may be regarded as an abelian group G% under the
operation of addition. Moreover, the set of all m-functions that are derived
with respect to II may be regarded as a subgroup G7 of the group G7%, by the
corollary to Theorem 1. We shall call the residue group G™ = G% mod G the
mt connectivity group of II. Each element ® of the group G™ will be a class
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of exact functions, such that two functions belong to the same class if, and only
if, their difference is a derived function.

The groups G™ (m = 0, 1, ... ) are inter-related in the following manner.
Let  be an arbitrary element of the mt: group G™ and ¥ an arbitrary element
of the nt® group G*. Then the elements & and ¥ together determine an ele-
ment [#¥] of the group G™+~ called the bracket product of ® and ¥. The element
[®¥] will be the class containing the function [¢y], where ¢ and ¢ are arbitrary
functions of the classes ® and ¥ respectively. It is easy to see that the class
[®¥] is independent of the choice of the functions ¢ and ¥ within their respective
classes. For the class ® is composed of exact functions of the type

‘P=¢0+f7

where ¢, is an arbitrary element of the class and f an arbitrary derived function.
Similarly, the class ¥ is composed of exact functions of the type

v=v%+g

where y is in the class and g a derived function. Now, by the distributive law
of bracket multiplication, we have

(11:1) led] = letol + leng] + (ol + [fg] .

Moreover, by Corollary 2 of Theorem 2, the last three terms on the right are
derived functions. Therefore, the functions [¢¢] all belong to the same class
as the functions [p].

12. TeeoreM 3. The bracket product [®¥] is independent of the ordering «
of the vertices v; and is, therefore, a function of the group elements & and ¥ alone.

Proor. We shall first consider the case where the number of underlying
vertices v; is finite, since the general case involves a slight added complication.
When the number of vertices is finite we can pass from any linear arrange-
ment a to any other linear arrangement 8 by a finite sequence of simple steps,
such that at each step we merely permute two consecutive vertices. The
problem therefore reduces to showing that if the arrangement g8 differs from
the arrangement « by a single permutation of two consecutive vertices v, and
vr41 of @ then the difference [¢y]s — [¢¥]. is identical on IT with a derived func-
tion ¢’.  We shall actually construct an (m + n — 1)-function { such that its
derivative satisfies the relation

(12:1) ¢ = ledls — ledla (on 1) .

Since the function { must be skew symmetrical (when it involves more than
one variable) it will be sufficient to define its value for the case where the
vertices Zo, - - - , Tm+n—1 are all distinct and in normal order with respect to a.
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Under these circumstances, we shall write
(=D)™Ho(xo, -+ + ) Tmety Tm)¥ (Emety Tmy -+ 5 Tngn)
(12:2) ¢(xo, - - - ) Trmgna) = or
0,

where the upper determination is to hold when the two particular variables
Zm—1 and . have the values v, and v, respectively, while the lower one is to
hold in all other cases. . To complete the argument, we merely have to verify
that the derivative ¢’ of ¢, '

m+n
(12:3) ;’(ZO, et ,xm+n) = ; (_l)ir(xO; ce 7i'i, M yxm+n) )

satisfies Relation (12:1). Here, again, we may, of course, assume that the
vertices r; are distinct and in normal order with respect to a.

For convenience, we shall consider four separate cases which will exhaust all
the various possibilities.

Case 1. The two vertices », and v,,, are not both present among the ver-
tices ;.

Then, by the defining relation (12:2) of ¢, all terms in the right-hand member
of (12:3) must vanish; therefore, we must have {’ = 0. Moreover, in this
case, the vertices z; are in normal order with respect to 8 as well as with respect
to a; therefore, we have

[e¥ls = [@¥]a = (@0, -+, Zm) Y(Tmy « + + 5 Tomsn) -

Thus, the difference [¢¥]s — [¢¥]. vanishes, and Relation (12:1) is valid.

In the remaining three cases, two (necessarily consecutive) variables z; and
z:41 will take on the values v, and v,,, respectively.

Case2. Zmy = Vr; Tm = Vry1.

In this case, the first m + 1 terms in the right-hand member of (12:3) are
zero, since it is only for ¢ > m that the (m — 1)** and mt variables in
¢(xo, -+, &iy - -+ , Tmyn) have the respective determinations », and v,,;. We
therefore have

g"(xo, R} xm+ﬂ)

(12:4) m+n ]
= (=Dmo(xo, -+ ) Tm—t, Tm) ; (= 1) YLty Tmy o+ 5 Fiy o+, Trgn) ©

On the other hand,

[W]B (370, A} x'n+n) = - [‘P"”ﬁ (.’L‘o, R} xm; Tm—1y * xm+ﬂ)

— @(Zo, -+ ,&Emy Tme1) Y(Tmety Tmity * =+ 5 Tmpn)

Il

‘P(xOy Tty xm) 'p(x"h-ly Tmily ** y Tmin) ’
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and ]

[e¥la (@0, -+ ) Tmin) = @(%0, -+ ) Tm) ¥(Tmy Tty * -+ 5 Tmsn) -
Therefore ‘

[evls — le¥la
a2:5) = e(Zo, + -+, Zm) (Y (Tmety Tty -+ 5 Tmin) — Y(Tmy Tty ==+ ) Tmtn) }

= (=Dm o2, -+, Tm) il (=1 @mety -y iy - o+ ) Tmen)

Now, if we substract this last expression from (12:4) we have

¢ — {levls — lpvla}
m+tn
= (_1)m+1 ‘P(x% Tty xm) Zl (‘1)‘ ‘p(xm—l, M ,x‘i, Ctty xm+n)

= (_ 1)m+1 (0(370, Tty xm) ‘p,(xm—l, Tty xm+n) )

which vanishes because the derivative ¢’ of the exact function y must be zero.
Case3. ZTm = Uy} Tmi1 = Vpp1.
This case is essentially like the last. In the right-hand member of (12:3)
all terms after the m*» are zero. We therefore have

¢(To, -+, Tmin)

= (RS (e, o B o ) W Ty T
Moreover,
fobls — [l = (=12 (=15 p(an, - By - ami) $lom, =+ Zmi)

Therefore

¢ = {ledls — [la} = (=)™ 9" (o, -+ ) Tms1) ¥(@my +++ 5 Tmsn)

since ¢ is exact, and (12:1) is valid.

Case4. z; = v,;Tip1 = vy, but s = m — 1, m.

This case is particularly simple. All terms in the right-hand member of
(12:3) are zero; therefore, {’ = 0. Moreover, we have at once [p¥]ls = [¢¥]a.
Therefore (12:1) is again valid.

This completes the argument for the finite case. If the arrangement 8 differs
from the arrangement « by more than a single permutation of two consecutive
vertices, we can pass from « to 8 by a sequence of elementary steps, corre-
sponding to each of which we can construct a function of the form of {. Let
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x(Zo, -+ + , Tmin—1) be the sum of these functions. Then we shall, of course,
have
(12:6) x' = [e¥ls — [e¥la (onII) .

When the number of vertices is infinite, the argument must be slightly modi-
fied, since we cannot, in general, pass from an arrangement « to an arrangement 8
by simple steps of the sort described above. Let us observe, however, that if
we take any finite subset z;, (¢ = 0, 1, ... ), of the vertices »; arranged in a
sequence according to a, we can rearrange them in a sequence according to 8
by permutations of consecutive vertices. Therefore, if the vertices z; are the
vertices of any finite subcomplex II, of II, we can construct a function x such
that a relation similar to (12:6) is valid at least on II,. The problem will thus
be to determine the function x in such a way that it will be independent of I,
in which case Relation (12:6) will be valid over II as a whole.

We notice that if z; (¢ = 0, 1, ... k) is any finite sequence of vertices ar-
ranged according to a, we can rearrange them according to 8 by a sequence of
steps performed in precisely the following order. Let z, be the first vertex
such that the subsequence zo, z,, - - - z, is not in normal order with respect to 8.
Then the two vertices x,_, and r, must clearly be in inverted order with respect
to 8. The first step in the rearrangement will be to permute these two vertices.
We shall then operate in a similar manner on the arrangement resulting from
the first permutation, and so on. Since each permutation reduces by one the
number of inversions with respect to 8, the process will obviously come to an
end after a finite number of steps, with the vertices arranged according to 8.
Now, the essential point to notice is the following. When we rearrange the
sequence z; according to the above rule, we simultaneously rearrange every
subsequence of z; according to precisely the same rule. For at the moment
when we ‘permute two vertices of the complete sequence according to rule, we
either leave the arrangement of the subsequence unaltered or change it according
to rule, depending on whether or not the two permuted vertices belong to the
subsequence.

With the above in view, let us form the complex II, consisting of any (m + n)-
simplex s together with all its components of lower dimensionalities. On the
complex II, we shall define the function x in the manner indicated above. That
is to say, we shall start with the vertices of II, in normal order according to a,
rearrange them according to 8 by applying our rule, and construct the func-
tions { corresponding to the various steps in the transition. Moreover, we
shall define the function x on II, as the sum of the functions { thus constructed.
Now, we have only to notice that on any (m + n — 1)-component

8f=x0"'fi"'xn+m

of s the value of the function { corresponding to any given step is zero unless
the two vertices that are permuted at this particular step both belong to s;.
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The value of x on s; is, therefore, equal to the sum of the functions ¢ corre-
sponding to the rearrangement of the vertices of s; alone. In other words, the
value of x on s; is independent of the (m 4 n)-simplex s of which s; is a com-
ponent. Hence, the function x is uniquely determined.

V. Tue CoNNECTIVITY RING OF A SPACE

13. An m-function ¢ will be said to be derived with reference to a symbolic
space if it is derived with reference to any subcomplex II, of the space; it will
be said to be exact with reference to the space if it is exact with reference to
any complex II, of the space. With this understanding, the entire discussion,
beginning with Theorem 3, will be applicable to symbolic spaces as well as to
symbolic complexes. However, the ring of a symbolic space has a natural
topology which we shall discuss in a subsequent paper. We shall also discuss
the dual relation between the connectivity groups as here defined and the con-
nectivity groups of Vietoris-Cech.

THE INSTITUTE FOR ADVANCED STUDY.



