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THE ALGEBRAIC THEORY OF THE MASLOV INDEX 3

1. VARIOUS FUNCTIONS

Definition 1.1. (i) The jump of a function f: R — R at z € R is
Jr(z) = lm(f(z+e) = flz—€)) eR.
(ii) Given a real number = € R let [z] € Z be the integral part and
let {z} € [0,1) be the fractional part, so that
r = [z]+{z} eR.

(iii) The sawtooth function of z € R is

{z} —1/2 ifzeR\Z

_ €(=1/2,1/2) .
(@) {0 ey €121/

(iv) The reverse sawtooth function of x € R is

pwz) = 1-2{z} € (-1,1]

U
Proposition 1.2. (I) The fractional function
{} : R=1[0,1); z— {2} = z—[z]
has the following properties:
(i) { } is continuous on R\Z, with jump function
. -1 if ez
Jow) = 0  otherwise .
. _ _ )0 o +{y} <1
(ili) {x +1} = {z}.
() {2} + (-2} = {2} +{1-2} = {; e

)12 ifo<{a} <1/2
() Lo +1/2) = {a} = {—1/2 if1/2 < {z} < 1.
(vi) n{z} — {nz} = [nz] —nl[z] € ZC R (n € Z).

(IT) The sawtooth function

{2} - 1/2 ifz €R\Z

() s R (-1/2,1/2); 2 (@) = {0 ey
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has the following properties:

(i) (()) is continuous on R\Z, with jump function

-1 z
Jylx) = { yxe

0 otherwise .

(i) ((z +1)) = ((x)), (=) = =((2)).
(i) ((0)) = ((1/2)) =0, ((1/4)) = =1/4, ((3/4)) = 1/4.
(iv) ((2)) = & + ([=2] = [#])/2 = ({«} = {-2})/2.

{z} if 0 <{z} <1/2
0 if {x} =1/2
{z} -1 f1/2<{z} <1
(vi)
2(((x)) + ((v)) = ((x+y))) = —sgu(sinmesinrysinm(z +y))
0 ifxeZ oryeZ orz+y€Z
= {1 if0<{z}+{y} <1
1 ifl<{z}+{y} <2
In particular, for x =y
2(2((x)) — ((2x)) ) = —sgn(sin27x) € Z C R.
(vii) For any n € Z

2(n((z)) — ((nx))) = — isgn(sin masinkrrsin (k+ 1)7mx) € Z C R.
(viii) For any 01,6, € R
sgn(sin 6y sin Oy sin (6, + 02)) — 2sgn( (sin 01 /2)(sin b2 /2)(sin (61 + 62)/2) )
= 2(2((01/2m)) = ((61/7))) + 2(2((62/27)) — ((62/7)))
—2(2(((01 + 6)/2m)) — (61 + 62)/7)))

= —sgn(sinf;) — sgn(sin ) + sgn(sin (6, + 62)) € Z .

(III) The reverse sawtooth function
o R—=(=1,1; z—1-2{x}
has the following properties:

() plx) = {1—2«@) ;iiuzg\z



THE ALGEBRAIC THEORY OF THE MASLOV INDEX 5

(ii) p is continuous at x € R\Z, with jump function

i) = {2 ifr€Z

0 otherwise .

+1 o< {z}+{y} <1

(ii)) p(z) +puly) —ple+y) =9 if1< (o} + [y} <2
(iv) p(0) =1, u(1/2) = 0.
(v) p(z+1) = p(x) forx € R.
: 0 ifzeR\Z
(i) pa) (=) = 5 HTE T

(Vi) p(e) — o+ 1/2) = 20(x) - p(22) = {j yo< s} <2

U
Remark 1.3. (i) Fourier expansion of sawtooth function

(@) = Y (_i)f sin (2mn(z — 1/2)) .

n=1

(ii) Eisenstein’s formula for x = p/q € Q

Remark 1.4. The E-function of Barge and Ghys [4, p.239]

E :R—-Z1/2] CR;
[z] +1/2 ifz € R\Z
x if v € Z

v a— () = ([¢] =[-2])/2 = {

is such that

and for any z,y € R
E(x+y) - E(@) - E(y) = ((z))+((v) = (z+y))
= —sgn(sinmrsinmysinm(r +y))/2
0 ifreZoryeZorx+yel
= (¢-1/2 f0<{z}+{y} <1
12 ifl<{z}+{y} <2
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Proposition 1.5. (Rademacher [45], Walsh [60], Paley [41])
(I) The Rademacher functions

¢n : R—{-1,0,1} ; o+ sgn(sin2"7z) (n > 0)
are such that
+1 if0<{z} <1/2

(i) ¢o(z) = sgn(sin27z) = < -1 if1/2<{z} <1
0 if{z}=00r1/2.

(i) ¢n(x) = ¢o(2"x) = 2((2"'x)) — 2"*2((x)).

(ili) gn(x + 1) = (), dn(x+1/2) = pp(—2x) = —@(x).

(iv) 60 (0) = 6(1/2) = 0.

(v) p(z) — p(z +1/2) =2u(z) — p(2x) = ¢o(x) for 2z € R\Z.

(II) The Walsh functions ¢, : R — {—1,0,1} (n > 0) are defined by

Yo(z) = 1, V() = ¢y (2)Pny(T) ... by (2)
(n=2M 42" 4 ... 4 2M)

In particular
Yo () = On(x) = ¢o(2"x) = sgn(sin2" 7).

The Walsh functions constitute a complete orthonormal set with respect
to

mmHéﬂmmm

behaving like trigonometric series on I:

! )1 difm=n
/0 Yn(@)pn(z)de = {o ifm£n .

Every Lebesgue integrable function f : I — R has a Walsh-Fourier
expansion

F(z) = ) catn(x) with ¢, = /0 f(@)n(z)dr € R

with F(z) = f(x) if f is continuous at x € (0,1).
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Example 1.6. The Fourier-Walsh expansion of the reverse sawtooth
function pu(z) is

,u(:v) _ Zw2k($)/2k+l _ Z¢O(2kx)/2k+1 :

with
! 1/261if p = 2F
n dr =
| ey wyie {O -
Definition 1.7. The n-invariant function is
p@/m)y=1-2{0/r} if0/m € R\Z
= () (6/m) {0 if0/r e

O

Proposition 1.8. The n-invariant function n : R — (—1,1] has the
following properties:

() n is continuous at 0 € R\wZ, jumping by 2 at 6 € wZ.
(i) n(7n/2) =0 (n € Z).

(iii) (6 + m) = n(0), n(=0) = —n(6),

2n(0) —n(20) = n(0) + n(w/2 — 0) = sgn(sin 26).

(iv)

n@) = =2(0/n)) = —20/7+([0/7] - [-0/7])
B 1200/} if0/7 e R\Z
= 2B(0/n) — 20/ = {O FoimeL.
(v)
n(0) +n(¢) —n(0 + ¢)

2((((0+¢)/m)) — ((0/m) — ((¢/7)))
—2(E((0+¢)/7)) — E(0/7) — E(¢/7))
sgn (sin(6)sin(¢)sin(6 + ¢))

1 if0/m,¢/m,(0+ ¢)/m € R\Z and 0 < {0/7} + {¢/7} < 1,
= <—1 if0/m ¢/m, (0 +¢)/m € R\Z and 1 < {0/7} +{o/7} <2,

0 otherwise .

In view of the identity
sin(260) + sin(2¢) — sin(2(6 + ¢)) = 4sin(0)sin(¢)sin(d + ¢)
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we also have

n(0) +n(¢) —n@+¢) = 2((((0+¢)/m)) — ((0/m)) — ((6/7)))
— sgn(sin(20) + sin(2¢) — sin(2(0 + ¢)))
= sgn(sin(f)sin(¢)sin( + ¢)) € {-1,0,1} .

O

The exponential function e : C — C\{0} is defined as usual by

o0

¢ = Zji! e C\{0}

j=0
such that

(i) z — €* is continuous
(i) ¥ =1, et =e*e? € C
(i) e* = e € C\{0} if and only if z — w = 27ik for some k € Z.

The principal logarithm function
log : C\{0} » R+i(—m,7]CC
is defined as usual by
log(z) = log(|2|) + targ(z) (arg(z) € (=, 7])

such that

(i) z — log(z) is continuous on C\{(—o0,0]}.
((ug i(;g(l) =0, log(—1) = 7, log(+i) = +mi/2.

z = re € C\{0} (r > 0,0 € R)
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then
. m—0
log(z) = log(r) +m,u(7)

m™—0

=1 (1 —2

o(r) + mif1 — 2 "})
0+
log(r) + 27rz((2—)) for 0/m € R\(2Z + 1),

7r

_ 0

- with 27r((%)) € (—m,m)

log(r) + i for 0/m € 2Z 4+ 1, with z = —r

for 0/m € R\(2Z + 1),
for 0/m € 2Z + 1, with z = —r.

0+
log(r) — min(——)
log(r) + mi

|

Proposition 1.9. The exponential and principal logarithm functions
have the following properties:

(i) €8 = 2z € C\{0} for all = € C\{0}.
(ii) Forz=ax+iy e C
log(e*) = z—2mike C (2k—D)mr <y < (2k+ 1)7m) ,
that s
log(e™*™) = x + mi(1 — 2{”2—;?/}) e C\{0} .
(iii) If z € C\{(—o0,0]} then
0

/ 1
(iv) For zy, 29 € C\{0}

r—z

1
r—1

(

(o)

log(z) )dz € C .

log(z122) — log(z1) — log(z2)

i(arg(z129) — arg(z1) — arg(z2))

2mi if — 27 < arg(z1) +arg(ze) < —7
=<0 if —m <arg(z)+arg(z) <7
—2mi if m < arg(zy) + arg(zq) < 27 .
(v) For 01,0, € R
log(e'®*%)) —log(e"™") — log(e”?)
( . . ™ — 01 mw — 92
-9 < 1/2
mio if 0<A{ o Z—i—{ o ;< /
. T— U m— U3
= <
e R
. . T — U T— 0
<
\2m if 3/2 < { o F+A{ o } <2
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O
Example 1.10. For any § € R
n(@) = —2((6/m))
1 . 0 .
—log(—e 20y = 1-2{=} ife?#£+1
_ | toae) (5} ey
0 if e = +1 .
O
Given complex numbers Ay, Ag, ..., A\, € C let
MM 0 ... 0
0 X ... O
DA, Ay Ap) = - .| € M, (C)
0 0 ... A\

be the diagonal n x n matrix.

The exponential of a complex n x n matrix A € M,(C) is the
invertible complex n x n matrix defined by

and satisfies

(i) exp(D(A1, Mg, ..., \n)) = D(eM er2 ... e ) € GL,(C) for any
Ay Aoy A\, € C In particular, exp(On) =
(ii) exp(A; + Ag) = exp(A;)exp(4z) € GL,(C).
[

(iii) det(I, — 2A) = exp(— il “(j—A) i) e C[).

The eigenvalues of A € M,(C) are the roots A, Ag,..., A\, € C of
the characteristic polynomial

cha(z) = det(zl, — A:C"[z] —» C"[z H Cl7] .

=1
A is diagonalizable if and only if C™ has a basis {bl, by, ..., by} consist-
ing of eigenvectors of A, in which case B = (by by ... b,) € GL,(C) is
such that
A = BD(A\, )y, ..., \)B™' € M, (C) .

A is invertible if and only if each eigenvalue \; # 0 € C.
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The logarithm of a diagonalizable A € G L, (C) is the complex n xn
matrix defined by

log(A) = BD(log(\1),log(X2),...,log(\,))B~! € M,(C)

Proposition 1.11. The logarithm function satisfies:

(i) exp(log(A)) = A € GL,(C).

(11) 10g(D()\1, )\2, ey )\n)) = D(log()\l), log()\g), e ,IOg()\n)) S GLn((C)
(€ C\{0}).

(iii) exp(tr(log(A))) = det(A) = A\ A2... A\, € C\{0}.

(iv) For diagonalizable Ay, As, A1 Ay € GL,(C)

tr(log(A1Az)) — tr(log(A;)) — tr(log(As)) € 2miZ C C .

(v) If A € GL,(C) is diagonalizable and the eigenvalues are not in
(—00,0] then

log(A) — /Oo(x_lA _ x_lln)d:c € GL.(C) .

(vi) If A: I — GL,(C) is a continuous function such that each A(s) €
GL,(C) is diagonalizable and the eigenvalues are not in (—oo,0] then

log(A) : I — GL,(C); s+ log(A(s))

s a continuous function.

2. GROUP COHOMOLOGY

The cohomology groups H"(G; A) are abelian groups defined for any
discrete groups GG, A and n > 0. In terms of the classifying space BG

H"(G;A) = H"(BG;A) (n>0) .

We shall only be concerned with the cases n = 1,2, with A abelian.

The first cohomology group of a discrete group GG with coefficients
in an abelian group A is

H'(G;A) = Hom(G, A)
the abelian group of group morphisms f : G — A. The function
HY(G;A) — HY(BG;A) = [BG,BA]; f+ Bf

is an isomorphism.
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An A-valued cocycle on G is a function
T:GxGE—A
such that
T(z,y) + 7(2y, 2) = 7(x,y2) +7(y,2) € A (x,y,2 € G) .

The coboundary of a function a : G — A is the cocycle
da : GxG—= A; (x,y) = da(r,y) = alz) +aly) — a(zy) .
The second cohomology group is

H?*(G; A) = {cocycles 7}/{coboundaries da} ,

i.e. the abelian group of equivalences of cocycles 7, with the cocycles
7,7 equivalent if there exists a function o : G — A such that

T(z,y) — 7'(z,y) = da(z,y) = a(z)+aly) —a(zy) € A,
and addition by
(m+7)(z,y) = 1(r,y) +m(z,y) € A.

Proposition 2.1. H*(G; A) classifies the central group extensions of
G by A

Proof. A cocycle T determines the group extension
0— A Gx, AL G—>0

where G X, A =G x A (as sets) with group law
(z,a)(y,b) = (zy,a+b+7(z,9)),

and
pr: GX, A= G (z,a) =T,

¢+ A= Gx; A5 a— (1,a) .

Conversely, given a central group extension

0 A.qg g 0

and a section s : G — G of p such that
p(s(x)) = z (v € @)
the function 7 : G x G — A determined by the identity
qr(z,y) = s(x)sy)s(zy) " €ker(p: G - G) = im(qg: A — G)
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is a cocycle such that there is defined an isomorphism of central group
extensions

0—A"-Gx, A2>G—=0

with

G —= Gx,A; z— (px),a), qla) = sp(z)z™" .
For any function a: G — A the coboundary
da : GXxG—A; (z,y) = da(z,y) = alr)+aly) — alzy)

is such that there is defined an isomorphism of central group extensions

0—=A—1oGxAL oG —>0

*|

0— =A% Gxsu AL G —50

with
GXxA— Gx5aA; (x,0) = (z,a+ az)) .

Remark 2.2. H?(G; A) is isomorphic to H*(BG; A).

A group morphism f : G — H induces group morphism
froo HYHA) — HY(G; A) 5 [7] = [f*7]
by sending a cocycle 7 : H x H — A to the cocycle
' GG = A (2,y) = 7(f(2), f(y)

with a morphism of central extensions

qf*r Pr*r

0 A G Xjer A G 0
g
0 A—T pgx, A" g 0

A short exact sequence of abelian groups

0 A B C 0
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induces a long exact sequence of cohomology groups
HY(G; A) — H'(G; B) — H'(G: C) >~
H?*(G; A) — H*(G; B) — H*(G;C) .
If o : C"— B is a section of B — (' the connecting map
0« HY(G:C)— HX G A) ; [f] = 7]
sends a group morphism f : G — C to the A-valued cocycle

m(x,y) = o(f(x) +a(f(y) —o(f(zy))
€ker(B— C) = im(A— B) .

For G = C' the connecting map sends 1 € H'(C;C) = Hom(C,C) to
the class §(1) = [r] € H*(C; A) classifying the extension 0 — A —
B — C — 0 itself. If 0,0’ : C — B are two sections of B — C' then

T—7 =0a : Cx(C— A

with
a:C—=A; x—o(x)—d),
and §(1) = [r] = [7'] € H*(C; A).

The infinite cyclic covers of a space X
v/ XX

are classified by cohomology classes f € H'(X) = [X, BZ] = [X, S,
with

X = f'R = {(z,t) € X xR| f(x) =™ € §'}
the pullback of the universal cover p : R — S'; ¢ s 2%

q

7Z X .x

ro
Z——>R—>g"
with ¢ : Z — R the inclusion, and f: X — R; (x,t) — .

For any topological group G let G denote the discrete group un-
derlying G. The identity function j : G° — G is continuous, so that
it induces a map of classifying spaces j : BG? — BG and hence mor-
phisms

j* . H*(BG) — H*(BG®) = H*(G’;Z) .
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For the classifying space X = BG of a discrete group G the forgetful
map H%(BG) — H?*(G;Z) is an isomorphism. For a topological group
G with 71 (G) = Z and universal cover G the morphism

§* « H*(BG) =7 — H*(BG®) = H*(G%;7)
sends the generator 1 € H*(BG) = Z to the central extension
052G =G —{1}.
(See Rawnsley [29] for the construction of G).

The classifying space of S! (regarded as a topological group) is the
infinite-dimensional complex projective space

BS' = BU(1) = CP> .

For any space X the cohomology group [X, CP*]| classifies C-bundles
over X

a: C—Ela) —X

with the first Chern class defining an isomorphism

[X,CP>*] — H*(X) ; ar ci(a).
The generator

1€ H*(BS') = H*(CP>) = Z
classifies the canonical C-bundle

A : C — Hopf bundle — CP*
with ¢;(\) = 1 € H*(CP>) = Z.
Definition 2.3. The Chern cocycle is
u SV xSV 7 (277 ¥ s [z +y] — [7] — [y]

0 ifo<{z}+{y} <1
<

= {et+{y} —{z+y} = {1 if 1 < {z}+{y} <2

O

Proposition 2.4. The Chern cocycle u corresponds to the central ex-
tension

0 71RO P, g1 0.

determined by the universal cover

q

0 7Z R gt 0
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with
p: R— St x|
q:Z—->R;1—1.
The cohomology class
[l = Bj*(1) = j*B(1) = a(j*\) € HA(BSY) = H*(S";Z)
is the first Chern class of the pullback j*\ : BSYY — BS*.

Proof. The projection p has section
v SY SR = ™ {2} (0K <)
with corresponding cocycle
u S xSV 7 (P W)
u(e®™, e2™) = wv(x) +o(y) —v(z +y)
o<z 1
S P 7 N Py g {‘f e,

such that
[u] = 6(1) €im(0 : H(SY; SY) — H?(SY;7Z))
= ker(H?(S'%;Z) — H?*(S1%;R?%)) .
The function
fi R =S¥, Z: a2 (7™ [z])
is an isomorphism of groups, with inverse
7 S, Z =R (¥ m) — {z}+m .

The isomorphism f defines an isomorphism of central group extensions

0 7Z—4 RSP g 0
=

0— =7 -2o8¥ x 7281 .

Proposition 2.5. (i) For any n € Z the cocycles
nu @ S xSY 57
(€2, e2™) = nu(e?™*, ™) = n({z} + {y} — {z +y}) ,
u(n xn) : S xSY 7,

(e2miT 2™ 1y (2 27nY) = Ina) + {ny} — {n(x +y)}
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are such that
nu—u(nxn) = da : S¥ xSV 7
with
a : SY =7 e n{x} — {na} = [nx] —nlz] .

The group morphism n : S — S92 s 2" is thus such that the
cohomology class

n*u] = [u(n xn)] = [nu] = nfu] € H(SY;7)
corresponds to the central extension
0—>7Z-">Rx 7, >89 50

with

Pn @ RO X Zy — SY 5 (2,1) s 2mile=r/m)

Gn : Z—ROXZy; 1+ (1/n,1) .
(ii) For p,q,r € S define the cyclic order

0 if two of p,q,r coincide

ord(p,q,7) = <1 ifq € (r,p)
-1 qu € (p7 T)

= {area of the ideal triangle in the Poincaré disc
with vertices at p,q,r}/T .

as in Barge and Ghys [8, p.238], such that for x,y,z € R
ord (¢, 27, i) = 2(E(z — y) + By — 2) + E(z — )

= 2(((y = 2) + ((z = y)) + ((z = 2)))
= sgu(sinm(z —y)sinn(y — 2)sinw(z — x)) .
The function
€ 1 SV x Sy 7 : (2T 2T 1y (2T o2miv)
— ord(1, 27, 2mi(e+y))

=2(((=) + (1) — (= +v)))

= —sgn(sinmz sinmy sinm(z + y))
is the area cocycle of Kirby and Melvin [22]such that

] = 2[u] € H*(SY;Z)
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and
2u( erie e27riy) _ €(€2m$, €2m'y)
= 2({z} +{y} —{z +y}) —2(((@) + ((v) — ((z +v)))
= Bx) +By) — Bz +y) ,

' 0 ifxeZ
Bler) = 2o} —2((@)) = {2} +{-z} = {

1 ife&Z.

Proof. (i) The section of p,
vy + SV SR X Z, 5 €7 s ({x},0)
is such that
Un(9) + va(h) = vn(g +h) = guun(g,h) € R’ X Z,
with cocycle
nu : S x SY 7 (¥ ™) s ({2} + {y} — {z +y)) .
The function
fo t ROXZy — S X0 Z s (z,7) = (2™ r 4+ n[z —7/n))
is an isomorphism of groups, with inverse
fl s S Z =R X Zy ; (2,m) — (x,m)
with = € R the unique real number such that e?™{*} = »z € S and
o = {Mﬂn] if {m/n} < {)
m/n]+1 if {m/n} > {z}.
The isomorphism f,, defines an isomorphism of central group extensions

0—=7Z - " RIx7, —22s g16 0

=l

0—-s7 I qnu 6XnuZ Pnu Sléﬁo

(iii) By construction. O
Example 2.6. Specialize to the case n = 2, and consider the extension
0—>Z —2>R° x Zy 2> S —— 0

classified by 2u € H%(S';Z), with
p2 @ RO X Zy— SY; (z,7) s e2mi@=7/2)
@ Z—RXZy; n— (n/2,n(mod2)) .
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The two sections of po
vy 1 S 5 RI X Zy ; €2 ({2},0)
(((2)),0) = (0,0) if 2™ = 1
1

Ué:515—>R5xZ2;62wixH{ |
(@) 1) = (fa) — 1/2,1) i 275 £ 1

differ by
vy — vy = qa : S 5 Z =R x Z
with
) f 27T’iCC:1
a: SY 57 ¥, 0 1 62A
1 if eo™ £ 1.

The corresponding cocycles
vy @ S x SV 7
(627”'3:’ eQﬂ'iy) — <q2)—1(v2( me) + vy ( 27riy) . U2(627ri(;z+y)))
2({z} +{y} —{z +y})
vh ot SY xS 7
(7,67 o (@) )+ () = )
2(((#)) + ((9)) = ((z +9)))
differ by the coboundary
vy — Uy = O .
vh is the signature cocycle 7 of Atiyah [3, (2.7)] (= the area cocycle
e of Proposition I3 (iii))
Ué(e%rix?e?ﬂiy) — Ué(e%m) + U2( Qm‘y) . Ué(e%ri(x—l—y))
= 2((() + (W) = ((z +1)))
_ €(e2mx 27rzy)
= —sgn(sinmz sinmy sinw(x + y))
— —2(E(z) + E(y) — E(z +))
0 ifreZoryeZorx+yel
= ¢—-1 ifo<{z}+{y} <1
1 ifl<{z}+{y} <2

[V = [va] = 2[u] = 6(2) € ker(H?(SY;Z) — H*(SY;R?%))
m(6 : H'(SY; S1) — H2(SY: 7)) .
U
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Example 2.7. Specialize to the case n = 4, and consider the extension
0—=Z >R x Zy > 51—
classified by 4u € H?(S';Z), corresponding to the extension
0—=2Z >R x Zy —> 8% —0
with
py 2 ROXZy— SY (z,7) rs e2mile=r/4)
@ Z—R X Zy; n— (n/4,n(mod4)) .
The section of p,
vy @ S SR X Zy; ¥ ({2},0)
is such that
va(9) +va(h) —va(g +h) = qva(g,h) € R* x Zy
with cocycle
vy = 20y 1 SV xSV 7 (2 M) s A({z} + {y} — {z +y}) .
The function
fo t ROXZy— SY %, Z; (x,7) = (¥ r + 4z — r/4])
is an isomorphism of groups, with inverse
fl s SV, Z R X Zy s (2,m) > (x,m)

with € R the unique real number such that e>™{#} = »z € S and

o [l < )
m/4]+ 1 if {m/4} > {z}.

The isomorphism f; defines an isomorphism of central group extensions

0—>7Z 2. R x7, s gW0 0

s

0——7 D9 gy 72U g5
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3. GEOMETRIC COBORDISM CONSTRUCTIONS

3.1. Unions of cobordisms. Manifolds M are oriented, and —M will
denote the same manifold with the opposite orientation. Isomorphisms
f: M — M’ will be assumed to be orientation-preserving, unless stated
otherwise.

The orientation convention for a cobordism (W; M, M’) is
oW = MuU-M".

As we shall be dealing with various ways of regarding the same closed
manifold M as a boundary it is convenient to consider manifolds with
boundary (N,0N) and a particular isomorphism i : M = 9N :

Definition 3.1. (i) An (m + 1)-dimensional coboundary (N, M, i)
consists of an (m + 1)-dimensional manifold with boundary (N,9N),
a closed m-dimensional manifold M and an isomorphism i : M = ON.
The cobooundary with the opposite orientation is

(N, M,i) = (=N, —M,i).

(ii) The union of (m+1)-dimensional coboundaries (Ny, M, o), (N1, M, 1)
is the closed (m + 1)-dimensional manifold

(No, M,ig) U —(Ny, M,iy) = (NoU—Ny)/(io(x) ~ iy(z) forz € M) .

with M C (No, M,i9) U —(N1, M,i1) a separating codimension 1 sub-
manifold. When i, i; are clear this is written as

(No, M, ig) U —(Ny, M,i1) = NoUp —Ny .
]

We shall make frequent use of the fact that boundaries of manifolds
are collared:

Proposition 3.2. For any (m + 1)-dimensional coboundary (N, M, :
M — ON) the isomorphism i extends to an embedding e : M x [ — N
such that

e(r,0) = i(z) e N (xe M) .
The (m + 1)-dimensional manifold with boundary

(N',ON") = (cl.(N\e(M x I)),e(M x {1}))

s such that there are defined isomorphisms

i+ M — 0N ; z—e(x1),

(f? 1) : (N/7M’Zl>% (N’M7,L>
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with
fle(x,1)) = e(z,0) = i(x) € ON (x € M) .
O
Definition 3.3. The collared union of two (m + 1)-dimensional
coboundaries (N, M, ig), (N1, M, ;) is the closed (m + 1)-dimensional
manifold
(No,M,io) UM x TU —(Nl,M,il) = (N0|_|M x Il _Nl)/ ~
io(x) ~ (2,0), ia(x) ~ (2,1) (z € M)
with Ny, =Ny C (No, M, i) UM x IU—(Ny, M, i) disjoint codimension
1 submanifolds. When g, 7; are clear this is written as
(No,M,io) UM xITU —<N1,M,7:1> = N()UM x U —N1 .
O

Definition 3.4. Let M be an m-dimensional manifold. The data for

a surgery on M is an embedding A x 9B C M for some manifolds
with boundary (A, 0A), (B,0B) with m = dim(A) + dim(B) — 1. The
effect of the surgery on A x 0B C M is the m-dimensional manifold

M = c.(M\AXxOB)UJA x B .
The trace of the surgery is the cobordism (W; M, M) with
W = MxIUAXxB, oW = MU-M".
O

Remark 3.5. The surgery in Definition B4 is an evident generalization
of the usual case of surgery on an m-dimensional manifold with

(A,04) = (D*,S*™Y) |, (B,0B) = (D, 8" (p+q—1=m).
O

3.2. The twisted double, mapping torus and cyclic unions. We
consider geometric cobordism constructions related to the mapping
torus and the twisted double, which will motivate the development
of algebraic analogues.

Definition 3.6. (i) The twisted double of an (m + 1)-dimensional
manifold with boundary (N,0N) and an automorphism f : M =
ON — M is the closed (m + 1)-dimensional manifold

U(f) = NUy—N
with Euler characteristic
X(U(f)) = 2x(N) = x(M) = (14 (=1)"™")x(N) .
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(ii) The mapping torus of an automorphism f : M — M of a closed
m-dimensional manifold M is the closed (m + 1)-dimensional manifold

T(f) = M x[0,1]/{(z,0) ~ (f(z),1) |z € M}
which is a fibre bundle over S! with monodromy f
M —T(f)— S,

and Euler characteristic x(T'(f)) =0 € Z.
U

Example 3.7. The mapping torus of f: M — M is a twisted double
T(f) = UQluf:MUM— MUM).
O

Definition 3.8. Given an (m+1)-dimensional manifold with boundary
(N,0ON) and an automorphism f : M = ON — M use a collaring of
M in N to identify the twisted double U(f) (BH) with

U(f) = (Nx{0}uMxITUN x{1})/

{(2,0) ~ (i(2),0), (x,1) ~ (if(2),1) [z € M}
with ¢ : M — N the inclusion. The twisted double cobordism
(V(f);U(f), T(f)) is the trace of the surgery on N x {0,1} C U(f),
with

V(f) = U(f) x I Unxgoay N x I,
noting that the effect of the surgery is
cL(U(H)\N x{0,1}) Uy M xI = M xITUypMxI = T(f) (B3) .
The Euler characteristic of V(f) is

X(V(f) = x(U()—x(N) = x(N)=x(M) = (-1)""'x(M) € Z.
O

Remark 3.9. The twisted double cobordism (V(f);U(f),T(f)) of f:

M — M can be expressed more concisely as
VIf) = (Nx[=L2){(z,6) ~ (f(z), 1 =) |z € M, t € [-1,0]},

U(f) = Nx{=12}/{(z,=1) ~ (f(x),2) [z € M},
T(f) = M x[0,1]/{(2,0) ~ (f(x),1) |z € M} .
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Proposition 3.10. (i) For any (orientation-preserving) automorphism
f M — M there is defined an orientation-reversing isomorphism of
the mapping tori of f and f~*: M — M

T(f) = T(f) 5 [a,t] = [2,1 1],

giving an identification of (oriented) manifolds

T(F) = ~T()
(ii) For any automorphisms f,g: M — M there is defined an isomor-
phism
T(gf) = T(fg); [zt = [f(z),t] .
O

Definition 3.11. (i) Suppose that (N;,0N;) (0 < j < k— 1) are k
(m + 1)-dimensional manifolds with the same boundary

M = (9N0 - 8N1 = ... = aNk,l.
The (m + 2)-dimensional manifold with boundary
k-1 k—1
(P,oP) = (M x D*U | N; x LT[ N; U =Nj1) (Ni = No)
=0 =0

is the thickened union of the stratified set
k—1
(JT N»)/AM ~ ONg ~ ONy ~ -+ ~ ONg_1 }

J=0

which is a deformation retract of P, with
k—1
x(P) = ZOX(NJ') — (k=1)x(M),
]:
k—1
x(0P) = 2 Z%X(Nj) — kx(M) .
iz

(ii) Given a closed m-dimensional manifold L and k automorphisms
fos fi,---, fu—1 : L = L such that

fr—ifv—2.. . fifo =1 : L= 1L

define the cyclic union to be the thickened union (m+ 2)-dimensional
manifold with boundary as in (i)

(Q,0Q) = ((L x{0,1} x D2)UL_JL><I>< [,HT(fj))
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of the k null-cobordisms N; = L x I of M = L x {0, 1} determined by
Jos J1, -+ k-1, such that

X(@) = 2=k)x(L), x(9Q) =

The case k = 3 is of particular interest:

Definition 3.12. Let f,g: M — M be two automorphisms of a closed
m-~dimensional manifold M.

(i) The double mapping torus cobordism (7'(f, ¢); T(f)UT (g ) T(gf))
is the cyclic union (B0 (ii)) with fo = f, fi=g, fo = f'g~! and

x(T'(f,9)) = —x(M) .

(ii) For M = ON define the twisted double cobordism (U(f, g); U(f)U
U(g),U(gf)) is the thickened union (B (i)) with Ng = N3 = No = N

X(U(f.9)) = 3x(N) —2x(M) = (L+2(=1)"")x(N) .

O

Remark 3.13. Given an (m+ 1)-dimensional manifold with boundary
(N, M) and two automorphisms f, g : M — M we have two cobordisms

(T(f,9); T(f)UT(9),T(gf) » (T'(f,9):T(f)UT(9). T(9f))
with T'(f,g) as in BI2 (i) and
T'(f.9) = (V(f)uV(g) UV(gf)) Yoo Uf:9)
with U(f, g) as in B2 (ii), such that
X(T(f,9)) = —x(M) = (=1+(=1)"")x(N),
X(T'(f,9)) = x(U(f,9)) =3xWU(f)) +3x(V(f))
= —2x(M) = 2(=1+ (=1)"™*")x(N) .

Let F} be the free group on k generators g, x1,...,Tp_1.

Example 3.14. A pair of pants for a 3-dimensional animal with a total
of k heads and legs is the 2-dimensional manifold with boundary

(P(k),0P(k)) = (cL.(S>\]] D). ]]Ss"

such that
k) ~ \/Sl , m(P(k)) = Fip/(xory...x5-1) = Fr
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with x(P(k)) = 2 — k, and z; € m(P(k)) represented by the jth
boundary circle S' C OP(k). O

Example 3.15. The human pair of pants P(k) for k = 3 is the double
torus cobordism with

(N,M) = (D',S% , f =1 : M— M,
VU.T() = (PB); S STUSY) .
It is also the thickened union (b) for Ny = Ny = N, = D!, with

2 k—1
(P,OP) = (M xD?*U J N; x I, [ N; Ups —Njp1)
j=0 j=0

= (P(3),S*ustush
P3)~Stv St x(P@3))=-1.
This is also the cyclic union (B (ii)) for
L

Jo=hH=[fo=1 = {pt.} - L = {pt.}
with

(Q.0Q) = ((Lx{0,1}xD*) Ul J LxIxL ] T(f;) = (P(3),S'us'us") .

=0 =0
U
Definition 3.16. Let (N, M,i : M — ON) be an n-dimensional cobound-

ary, and let f: M — M be an automorphism. The collared twisted
double is the collared union

(N,M,i)UM x TU—(N,M,if) = (Nx{0}U=Nx{1}))UM x I)/ ~
(i(z),0) ~ (2,0), (if(z),1) ~ (z,1) (x € M) .
0

Again, in view of Proposition B2 the collared twisted double is iso-
morphic to the twisted double

(N, M,i)U—(N,M,if) = (N x{0}U—N x {1})/ ~
(i(2),0) ~ (if(2),1) (z € M) .

In cases when 7 : M — ON is clear we shall write the twisted doubles
as

(N,M,i)U—(N,M,if) = NUy—N,
(N,M,i)UM x TU—(N,M,if) = NUM x [U; —N .
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Also, in the untwisted case f =1: M — M write

NU;—N = NUy —N,

(N, M,i)UM x ITU—(N,M,i) = Nx{0}UM xIU-N x{1}.
Example 3.17. For any n-dimensional coboundary (N, M,i : M —
ON) there is defined an n-dimensional relative cobordism

(N xI; N x {0}, N x {1}; M)
with boundary the collared untwisted double of (N, M, )
ONxI) = Nx{0}UM xIU—-N x{1}.
O

Proposition 3.18. (i) The mapping torus of an automorphism f :
M — M is a twisted double

T(f) = (M x ) Ug —(M x 1)

with
ful : oM x1I) = Mx{0,1} - M x {0,1} ;

(z,0) = (f(z),0), (x,1) = (x,1)
and also a collared twisted double
T(f) = (M x1I)x{0}UM x0I xIUjspy—(MxI)x{1}.

(i) Let (N, M,1) be a coboundary, and let f : M — M be an automor-
phism. The collared twisted double

U(f) = (Nx{0}) UM x TUy—(N x{1})
is related to the mapping torus T(f) by a canonical cobordism (V(f); U(f), T(f))
of collared twisted doubles
V(f) = U(f) X IUNX{O,I}X{I} —N x 1T

the trace of the surgery on U(f) replacing N x{0,1} C U(f) by M x 1.
The disjoint submanifolds

V+(f) = N X {O} X [UNX{O}X{l} N x [071/3] )
V=(f) = N x {1} x I Unyqyxqy N x [1/3,1] C V(f)
are related by the evident isomorphism, and
V(f) = VI(f)Uur (M x I xTUN x[1/3,2/3])(5xym UV (f)

is a collared twisted double.
(iii) The canonical cobordism of (ii) for the collared twisted double of

(i)
T(f) = U(fUul) = (M xI)x{0}UM x0I xIUp;; —(M xI)x{1}
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(V(fUL;T(f). T(fU1))

= (cl(T(f) x IN(M x D?)); T(f) x {0}, T(f) x {1} U (M x S%)) .
0

3.3. Thickened union.

Definition 3.19. Given a closed m-dimensional manifold M and k
(m + 1)-dimensional manifolds (N;,dN;) (j =0,1,...,k —1) with

ONgy = ON; = ... = ONp.1 = M

define the thickened union (m+2)-dimensional manifold with bound-
ary

k—1 k—1
(P,oP) = (M x D*U | J(N; x I), T[] N; Unt =Nj1) (N = No) -
j=0 j=0

The trace of the surgery on

k—1
[[~; xorcop

Jj=0

is the (m + 2)-dimensional manifold with boundary

k—1
(P oP") = (0P x TU(]J]N;) x I, M x ")
j=0
such that
P = M x D*Uyxst P .
Let
i; = inclusion : M - N; (0<j<k—1)
and set

iy = 19 : M — N, = Ny.
If M, Ny, N1, ..., N._1 are connected then
NoUp =Ny, NyUpyp —Noy oo ) N1 Uy =Ny, P
are connected, with fundamental groups

M (N Un =Njpa) = m(N;) « m(Njsa) {5 (y) = d5(y) [y € m(M)}
m(P) = 5 mN)/{i5(0) = i) |y € m(M)} .
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Given a closed m-dimensional manifold L and k automorphisms
€0,€1,...,€x_1: L — L write
e, = € : L— L,
fi = (ej41)7te; : L>L(0<j<k—-1),
i; = ejUejpr + M = Lxdl—-N; = LxI,

noting that fyfi_1...fifo =1: L — L. The thickened union of the
(m + 1)-dimensional manifolds with boundary

(N;, ON;) = (L x 1,i;(M))

is the (m + 2)-dimensional manifold with boundary

k—1 k—1
(Q,0Q) = (M x D*U | J(N; < I), [] N; Unt =Nji1)
j=0 J=0

with jth boundary component the mapping torus of f;

AG'JA4-—]V3+1 = Txf}:AL —é‘L)

= Lx1I/{(z,0)~ (f;(x),1) |z €L}

If L is connected then so is (), with fundamental group

m(Q) = mi(L)* Fyr/{zjy = fi(y)z;ly € m(L)},
and the inclusion 7'(f;) — @ induces the evident morphism

m(T(f;)) = m(L) = (x;)/{zzy = fi(y) |y € m(L)} = m(Q) -
The projections
pj - T(f;) = S'; [x,t] — ™
extend to a map p: Q — P(k) inducing the surjection
pe + m(Q) = m(P(k)) = Fy1; xj 025, y— {1}

which fits into an exact sequence

{1} m(L) m(Q) —> Fiy {1} .

As above, let (K,0K = L) be an (m + 1)-dimensional manifold with
boundary, with k automorphisms eg,e1,...,e,_1 : L — L, and let
M =L x {0,1}. The k (m + 1)-dimensional manifolds

(Nj, ON;) = (L x I, (ejUejyr)(M))

is an (m + 2)-dimensional manifold with boundary

k—1 k—1
(P,oP) = (M x D*U | J(N; x I), ]] N; Unt =Njaa)

Jj=0 J=0
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with
N; Uy Njyr = T(f;: L— L) (f; = (ej41) 'e;)

In view of Proposition B2

Proposition 3.20. (i) For any coboundary (N, M,i: M — ON) there
1s defined an isomorphism of coboundaries

(9,09) : (M xI,—M x{1},i1) U (N, M,i), M,io) — (N, M,1)
io(x) = (x,0), i1(x) = (z,1) (x € M)
such that
0g(z,0) = i(x) € ON (x € M) .
(ii) The union and collared union of coboundaries (Ny, M, o), (N1, M, 1)
are related by an isomorphism

f = foufi + (No, M,ig)U(—Ny, M,iy) — (No, M, ig)UM X ITU(—Ny, M, iq)
such that
flz) = (x,1/2) € (No, M,ig) UM X I U (—=Ny, M,iy) (x € M)
with the restrictions of f isomorphisms
fo © No— NoUnixoy M x[0,1/2],
fi o+ Ny —= M x [1/2,1] Upruqay Ni -

3.4. Relative cobordisms and k-cyclic unions.

Definition 3.21. (i) An n-dimensional relative cobordism (P; Ny, Ny;
M, ig,11) is an n-dimensional manifold P with boundary

0P = (NmM,Zb)UMXIU(—Nl,—M,’il)
for given (n — 1)-dimensional coboundaries (No, M, i), (N1, M, iy).
(ii) The union of relative cobordisms (Py; No, N1; M, g, 1), (Pr; N1, No;
M, iy,i5) is the relative cobordism

(PO;N07N1;M7Z‘O>Z.1) U (Pl;NlaNZ;Ma 7;177;2)
= (PyUn, —Py; N1, No; Mg, ia)
]

In view of Proposition there is no essential difference between a
relative cobordism (P; Ny, N1; M, ig, 1) as in B20 and an n-dimensional
manifold with boundary (P,0P) together with a codimension 1 sepa-
rating submanifold M C 0P = Ny Uy —Ny.
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For any relative cobordism (P; Ny, Ni; M) there exists a real-valued
Morse function p : P — I with

p| = projection : M xI —1,p '0) = Ny, p (1) = Ny .
If p has no critical values then

(P; No, Ny; M) = (Ng x I; Ng x {0}, —Ng x {1}; M) .
Definition 3.22. Let k£ > 1. The k-cyclic union of k n-dimensional
relative cobordisms
(Pj; Nj, Njyis M) (j=0,1,.... k= 1)
along an isomorphism
(f,0f) : (Ng,ONg = M) — (No, 0Ny = M)

is the n-dimensional manifold with boundary

PaP:]_[

with
( € Njs1 C Pj) ~ (x € Njp1 C Pja) (1 =0,1,...,k—2),
(x € Ny C Peq) ~(f(z) e NgC By) .
The union of real-valued Morse functions
pi - Pp—= ity (fo<ti <---<tp=ty+1)
such that
p;lt;) = Ni, p;t(ti) = Njja C Py,
p(z,s) = (1— S)tj +stjy (x e M,sel)
is a circle-valued Morse function
p: P—=5SY o P (p e P))

such that A
p—1(€27rztj) — N C P

p([z,t] = ™ (re M,tel).
U

Example 3.23. (i) The 1-cyclic union of an n-dimensional relative
cobordism (Fy; Ny, N1; M) along an isomorphism

(f,&f) : (leaNl - M) — (No,aNO = M)
is an n-dimensional manifold with boundary

(P,0P) = (Ry/(x ~ f(x)),T(9f)) (x € Ny)
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A real-valued Morse function py : Py — I such that
Pyt (0) = No, po'(1) = MiC Ry,
p(x,s) = s(zreM,sel)
determines a circle-valued Morse function
p: P— S g 20 (1€ Ry
such that
p (1) = Ny C P, p| = projection : 9P = T(9f) — S* .

(ii) Suppose given an (n + 1)-dimensional manifold with boundary
(P,0P) and a map (p,dp) : (P,0OP) — S! such that dp : OP — S!
is the projection of a fibre bundle, with 0P = T(f : M — M). As-
sume p is transverse regular at 1 € S'. Cutting (P, 0P) along the
codimension 1 framed submanifold

(p.Op)™" = (NM)CP

there is obtained an n-dimensional relative cobordism (Py; Ny, Ni; M)
with an isomorphism

(f7af) : (Nh&Nl :M) — (N0,8N02M>

such that (P,dP) is the 1-cyclic union.
U

Proposition 3.24. Let (P,0P) be a k-cyclic union as in 322, and fix
a sequence

to<thi < - <tp1<tp = to+1€eR.
The projection p : T(Of) — S extends to a Morse function dp : P —
St such that the restrictions op| : Py — St lift to Morse functions
P+ (P Ny Njpas M) = [t t544] (0<j <k —1)

and ‘

op(x) = ePi@ ¢ St (z € P))

pit(t;) = Nj o p; (i) = Njn

]

Definition 3.25. (i) A submanifold M™ C P™ is framed if the normal
bundle is trivialized, so that M has a neighbourhood M x D"~™ C P.
(ii) The exterior of a framed M™ C P™ is the n-dimensional manifold
with boundary

(P, OPy) = (cl.(P\M x D™™™), M x S"~™1)
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such that

P = MxD"™ Upsx gn—m—1 Py .
(iii) An ambient coboundary of a framed submanifold M™ C P™ is
a framed submanifold N™*! C P™ such that N = M.

(iv) A framed submanifold M C P cobounds ambiently if there
exists an ambient coboundary N C P.

O

We shall be mainly concerned with framed submanifolds M™ C P"
with codimension n —m =1 or 2.

Definition 3.26. (i) A codimension 2 framed submanifold M"~2 C P"
is circular if the exterior

(P, OPy) = (cL.(P\M x D?), M x S")

is such that the projection dp : 0Py = M x St — St extends to a map
p: PM — St

(ii) An (n,n — 1,n — 2)-dimensional manifold triple (P, N, M) is
an n-dimensional manifold P™ together with a a codimension 2 framed
submanifold M™"2? C P and an ambient coboundary N"~! C P.

O
Proposition 3.27. Let M"2 C P" be a codimension 2 framed sub-
manifold.
(i) The connecting map § in the cohomology exact sequence

e HY(Py) —— HY(M x S~ H2(Pyy, M x S1) —— ...

sends the class Op € HY(M x S*) = [M x S',S'] to
§(0p) = [M] € H*(Py,M x SY) = H,_5(Py) .

(ii) The submanifold M C P cobounds ambiently if and only if M C P
1s circular.

(iii) For a circular M C P it may be assumed that p : Pyy — S is a
Morse function, and:

(a) if t € R is such that e*™* € S* is a reqular value of op then

anl — p71(627rit) C PM

s a codimension 1 framed submanifold ambiently cobounding
ON = M, so that (P,N, M) is an (n,n — 1,n — 2)-dimensional
manifold triple,
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(b) if 2™ € S (0 < j <k —1) are reqular values of p with
to<ti < - <t 1 <t = tg+1eR
then
Pj =

define k relative cobordisms (Pj; Nj, Nji1; M) with N, = Ny

and k-cyclic union

—1 2mi([t;,tis1 . —1 2mit,
p e ([J J+ ]) , Nj — p e J

k-1
(Par,0Py) = (LI Pj/ ~, M x S,
=0
( € Njy1 C Pj) ~ (2 € Njju C Pij) (P = R)

such that
P:MXDZUMXSIPM.

The restrictions p| : P; — S* lift to Morse functions
pi + (B Ny, Njgas M) = [t5,£j14]
such that
p(z) = @ e §t (ze Py,
p; () = Nj, p;'(tis) = Njga
O
Example 3.28. An m-knot is a codimension 2 framed submanifold
M = S"cP =g9m?
which is circular, and cobounds ambiently. The exterior
Py = cl.(S™2\(S™ x D?))

is a (co)homology circle, and the generator 1 € H'(Py;) = Z is repre-
sented by a Morse function p : Py; — S! extending the projection

Op : OPy = S™x S' s S
For any regular value e*™ ¢ St of p
Nm+1 — p71(€2m't) C PM

is an ambient coboundary for M C P, i.e. a Seifert surface for the
knot with ON = M C P, and there is defined an (m + 2, m + 1,m)-
dimensional manifold triple (P, N, M).

O
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n-dimensional coboundaries with common boundary

M():Ml:...:Mk_l:M.
Fix a sequence

lo<ti<--- <t = tg+1€R,

and let

A = {re™ 1< r <2, t; <t <tj},

B (3G 251201

B = {261, <t < (2 4 101)/3) |

Bj = B UB] = {262””!(J 1+ 2t5)/3 <t < (2t +t54)/3)

I; = {2e¥™ | (2t; 4+ tj11)/3 <t < (t; + 2t41)/3}
P; = Njx B;r UMxAij;r M x Aj UMXAjﬁB]._+1 Njj1 X By (N = No) -

The thickened union is the (n 4+ 1,n,n — 1)-dimensional manifold
triple (P, No, M) defined by the k-cyclic union

k—1 k—1
(P,oP) = (M x D*U| J P, [ N;UM x TUN;.)
§=0 j=0

where
N;UMXIUN;4; = Nj><{2627ri(2tj+tj+1)/3}qu]juNj+1X{2627ri(tj+2tj+1)/3} )
The exterior of M x D?> C P

k—1 k—1
(Pa,0Py) = (| J P M x S'UTT(N; UM x TUN;))
j=0 Jj=0

is equipped with a Morse function p : Py, — S* such that
p| = projection : M x S* — S* .
O

Proposition 3.30. Let (N, M,i: M — ON) be an (m~+1)-dimensional
coboundary. For any automorphisms f,g : M — M the thickened
union of the coboundaries

(NOaMOaZ.O) = (NaM7Z) )
(NhMluil) = (N,M,'Lf) )
(NQaM27i2) == (N;M7Zg)
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is an (m+ 2, m + 1, m)-dimensional manifold triple
2
U0 i) x I = (P, Ny, M)
§=0
with boundary the disjoint union of the twisted doubles
OP = (NU;—=N)U(NU,; —=N)U (N Uys —N) .
O
Definition 3.31. Let M be a closed m-dimensional manifold. The
double mapping torus of automorphisms f,g : M — M is the
cobordism (T'(f,q); T(f) UT(g),T(gf)) with T(f,g) the trace of the

surgery on T'(f) U T(g) replacing T (f) U T (g) = M x I x S° by
M x SY x I, with

T (f) = Mx[0,1/2], T_(f) = M x[1/2,1] CT(f),
T(f) = T.(f)UT(f), THHNT(f) = Mx S
The Euler characteristic of T'(f, g) is

x(T'(f,9)) = —x(M) .
0

Proposition 3.32. The double mapping torus T(f, g) is the thickened
union of the 27

4. FORMS, FORMATIONS AND TRIFORMATIONS

We recall from [A6] the basic definitions of forms and formations over
a ring with involution.

In dealing with a noncommutative ring R we shall be working with
left R-modules K, L, ..., writing Homg(K, L) for the additive group
of R-module morphisms K — L. However, most of the rings here will
be commutative.

For p,q > 1 let M, ,(R) be the additive group of p x ¢ matrices

S = (sjr)1<i<pi<i<a
with entries s;, € R. Use the isomorphism
M, ,(R) — Hompg(R?, RP) ; S = (s;) —

q P q
(RY — RP; (x1,%2,...,%q) = (D TkS1k, Y TkS2%k,- -5 O TkSpk))
k=1 k=1 k=1



THE ALGEBRAIC THEORY OF THE MASLOV INDEX 37

as an identification. The composition pairing
Hompg(R?, RP) x Homg(R", R?") — Homg(R", R?) ; (f,g9) — fg
corresponds to the pairing given by matrix multiplication
q
My g(R) X Mgr(R) = My, (R) 5 (5,T) = ST = {Z Sijtik bi<i<pi<her

J=1

For p = ¢ write M, ,(R) = My,(R).

Now suppose that R is equipped with an involution
R—R;a—a.

Use the involution on R to define the dual of an R-module K to be
the R-module

K* = Homgr(K,R), Rx K*— K" ; (a,f) = (x — f(x)a) .

The dual of an R-module morphism f : K — L is the R-module
morphism
ffro L= K5 g0 (e g(f(2))

The natural R-module morphism

K—>K"; z— (f— f(x))

is an isomorphism for f.g. free K, which will be used to identify K =
K** for such K. For f.g. free K, L duality thus defines an isomorphism

« : Hompg(K,L) — Homg(L*, K*); f— f*.

The duality isomorphism for K = RP, L = RY corresponds to the
conjugation isomorphism

* 0 Myp(R) = My(R) 5 S = (sn) = 5™ = (55)

via the isomorphism

p
RV — (RP)"; (1,22, .., 2p) — (Y1, Y2, - - -5 Yp) — Zyﬁ,) )
i=1

4.1. Forms and formations.

Definition 4.1. Let € = +1 or —1.
(i) An e-symmetric form over R (K, ¢) is defined by a f.g. free R-
module K and a function

¢ KxK—=R; (v,y) — ¢(x,y)
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such that
P+ y+y) = olx,y) +o(x,y) + o2, y) + o(',y) ,
¢(ax,by) = bo(x,y)a,

o(y,r) = ep(z,y) € R (z,2' € K, y,y € K, a,b € R).
The adjoint of ¢ is the R-module morphism
¢+ K=K xm (y— éz,y))

such that ¢* = e¢. There is virtually no difference between the form
and the adjoint.

(ii) An e-symmetric form (K, ¢) is nonsingular if ¢ : K — K* is an
isomorphism, or equivalently if ¢* : K — K* is an isomorphism.

(iii) A morphism of e-symmetric forms over R

[ (K.9) = (K, ¢)

is an R-module morphism f : K — K’ such that f*¢'f = ¢, or equiv-
alently such that

oz, y) = ¢(f(x), f(y) € R (z,y € K) .

(iv) Given an e-symmetric form (K, ¢) over R and a submodule L C K
define the submodule

Lt = {ze€K|¢(x,y)=0€ Rforallyec L} C K .

For L = K this is the radical K+ = ker(¢ : K — K*) of (K, ¢).

(v) A sublagrangian for a e-symmetric form (K, ¢) is a submodule
L C K such that L C L*. If (K,¢) is nonsingular and L C K is
a direct summand there is induced a nonsingular e-symmetric form
(L*+/L,[¢]). A lagrangian is a sublagrangian L such that L = L*. In
particular, L is a lagrangian of H.(L).

(vi) A nonsingular e-symmetric form is hyperbolic if it admits a la-
grangian. The standard hyperbolic nonsingular e-symmetric form is
defined for any e-symmetric form (K, ¢)

HAK,¢) = (K'® K.6), 0 = (O ;)
with

0(f,z)(g,y) = fly) +eg(z) +9(v,y) €ER (v,y € K, f,g€ K").

The form H (K, ¢) has lagrangian K*.
(vii) An e-symmetric automorphism (K, ¢, A) is a nonsingular sym-
plectic form (K, ¢) over R with an automorphism A : (K, ¢) — (K, ¢).
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(viii) An e-symmetric formation (K, ¢; L, Ly) is a nonsingular e-
symmetric form (K, ¢) with two lagrangians L, Lo.
(ix) An isomorphism of formations
f : (Ka (b; Lla L2> - (K/a ¢/; L/la Ll2>
is an isomorphism of forms f : (K, ¢) — (K', ¢) such that

f(Ly) = Ly, f(Le) = Lj.
(x) A stable isomorphism of formations
[f] : (K7 ¢7 L17 LQ) — (K/7 (bla Llla LIQ)
is an isomorphism of the type
[ (K¢ Ly Lo)®(H(M); M, M*) — (K, ¢ Ly, Ly)®(H(M'); M', M™)

for some f.g. free R-modules M, M’.
(xi) The boundary of an e-symmetric form (K, ¢) over R is the —e-
symmetric formation over R

K, ¢) = (H-(K); K,T(xg)
with
Pk = {(x,0(x) e KO K |z e K}

the graph lagrangian.
O

Terminology For ¢ = 1 (resp. —1) an e-symmetric form is called a
symmetric (resp. symplectic) form. Similarly for formations.
O

Example 4.2. Given an e-symmetric automorphism (K, ¢, A) and
a lagrangian L of (K, ¢) there is defined an e-symmetric formation
(K, ¢; L, A(L)).

L]

Proposition 4.3. (i) The inclusion of a sublagrangian j : (L,0) —
(K, ¢) in a nonsingular e-symmetric form extends to an isomorphism
of e-symmetric forms over R

~

wrower (! ) == wo

with (L*,v) an e-symmetric form over R. In particular, the inclusion
of a lagrangian j : (L,0) — (K, ¢) extends to an isomorphism

7 s wor (! 5z - 0o
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for any morphism 5 L* — K such that ]*gb} =1:L"— L~

(ii) If (K, ¢; L1, L) is an e-symmetric formation over R such that L =
Ly N Ly is a direct summand of K (e.g. if R is a field) then L is a
sublagrangian of (K, ®), and the inclusion (L,0) — (K, ¢) extends to
an isomorphism of e-symmetric formations over R

(- /L. [6); Lo/ L. Lo/ L) & (L@ L (0 1);L,L> ~ (K, L1, Ls) .

€ v
(iii) If 1/2 € R then for any e-symmetric form (L*,v) over R there is
defined an isomorphism of e-symmetric forms over R

(é ”*1/2> (Lo L (0 i)) = H(L) = (L@L*,(S é))

€

which is the identity on L.
(iv) If 1/2 € R then for any e-symmetric formation (K, ¢; L1, Ly) over
R there exists an e-symmetric automorphism (K, ¢, A) with A(Ly) =
L.

]

Remark 4.4. The condition 1/2 € R in Proposition B33 (iii),(iv) can
be dropped for e-symmetric formations (K, ¢; L1, Ly) such that

¢ = Y+ep 1 K— K*
for some ¢ € Hompg(K, K*) such that
b(z;)(z;) € {r —er|r € R} (25 € Ly, j=1,2).

See Ranicki [46] for the theory of e-quadratic forms and formations.
U

Definition 4.5. Let R be a ring with involution, ¢ = +1.

(i) The Witt group of e-symmetric forms L°(R, ¢) is the abelian
group with one generator for each isomorphism class of nonsingular
e-symmetric forms (K, ¢) over R, with relations

(K,¢) + (K ¢) = (KO K¢ D¢,
(K,¢) = 0if (K, ¢) admits a lagrangian.

(i) The Witt group of e-symmetric formations L'(R,¢) is the
abelian group with one generator for each isomorphism class of non-
singular e-symmetric formations (K, ¢; Ly, Lo) over R, with relations

(K7¢7L17L2)+(KI7¢/7L117L/2) = (K@Klué@gb/le@LIDLQ@LIQ)?
(K,¢;L1,Ly) ® (K, ¢; Ly, L3) = (K,¢; Ly, Ls) ,
(K,qb;Ll,Lg) =0if K = Ll@LQ.
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(iii) The e-symmetric automorphism Witt group LAut’(R,e) is
the abelian group with one generator for each isomorphism class of
e-symmetric automorphisms (K, ¢, A) over R, with relations

(K, 0, A4) + (K, ¢, A') = (KoK, 90D, ADA),
(K,$,A) = 0¢c LAut’(R,¢)
if (K, ¢) admits a lagrangian L such that A(L) = L .

Warning 4.6. In general
(K, 6, A) + (K, 6, B) # (K, 6, AB) + (K, 6,1) € LAut’(R, )

Remark 4.7. (i) For any (—e)-symmetric form (K, ¢) over R
AK.6) = 0€ L'(R.e)

since K* is a lagrangian in H.(K') which is a direct complement to both
the lagrangians K, I' g 4).

(ii) For any e-symmetric automorphism (K, ¢, A) the diagonal lagrangian
of (K@ K,p®—0)

A = {(z,2)|lzre K} C KoK
is such that

(A A)(Ag) = Ak CKD K,
so that

—(K,$,A) = (K,—¢,A) € LAut*(R, ) .

(iii) The forgetful map
LAutO(R7 6) - Ll(Rv 6) ) (K7 ¢7 A) = (K@Ka ¢€B_¢; AK? (AGBl)AK)
is onto, with kernel generated by the elements of type

(K,p,A) + (K,$,B) — (K,p,AB) — (K, ¢,1) € LAut’(R, ¢) .

4.2. Algebraic surgery.

Definition 4.8. (i) An e-symmetric n x n matrix form over R is
an n x n matrix Z € M, (R) such that

Z" = eZ € My(R)
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corresponding to the e-symmetric form (R", 7). The metabolic e-
symmetric 2n x 2n matrix form over R is

H.(Z) = (S ;) .

(ii) An e-symmetric n x n matrix formation over R (X,Y,7) is a
triple of n x n matrices X,Y,Z € M, (R) such that Z is e-symmetric
and

G/() . (R",0) = (R"® R", H.(Z))

is the inclusion of a lagrangian

L = 1m(<§£> :R"— R"®R"),
i.e. such that
XY +eY'X+Y'ZY = 0€ M,(R)

and the sequence

X
(Y) (eV* X*+Y*2)
0—=R'-——> R"®R" R 0

is exact. Then (R" & R™, H.(R"); R, L) is an e-symmetric formation
over R, which is also denoted by (X,Y, Z).
(iii) An isomorphism of e-symmetric n X n matrix formations over R

(F,G,H) : (X.Y,Z) = (X",Y", Z')
is given by F,G, H € GL,(R) such that
H+eH + F'Z(F*)™? = 7' € M,(R) .

Then

(F FH

0 (F*)—1> : (R"® R",H(Z)) = (R*"® R",H.(Z"))

is an isomorphism of e-symmetric forms sending L to L', i.e. such that
the diagram

R G R
O g5 ) 1B

R"® R" R"® R"
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commutes.
(iv) A stable isomorphism from an e-symmetric n x n matrix forma-
tion over R to an n’ X n’ matrix formation over R

[F,G,H| : (X,Y,Z)— (X",)Y',Z)
is an isomorphism of the type
(F,G,H) : (X,Y,Z)® (0, 1y,0,) = (X", Y',Z') ® (0, I,,,0,,)

(v) The boundary of an e-symmetric n x n matrix form Z is the
(—e€)-symmetric n X n matrix formation

07 = (I,,Z2,0) .

Proposition 4.9. (i) An e-symmetric nxn matriz formation (X,Y, Z)
is stably isomorphic to (0,0) if and only if Y € M,(R) is invertible.
In particular, the boundary 0P = (1,®) of a matriz form ® is stably
isomorphic to (0,0) if and only if © is invertible (= (R™, ®) is nonsin-
gular).

(il) An e-symmetric n x n matriz formation (X,Y, Z) is isomorphic to
the boundary 0Q of a (—e)-symmetric nxn matriz form Q if and only if
X € M, (R) is invertible, in which case there is defined an isomorphism

(X1 1,0) : (X,Y,Z) = 0X*Y .
O

Definition 4.10. There are three types of algebraic surgery on an e-
symmetric n X n matrix formation (X,Y, Z) over R.
(i) (ii) The data (P, Q) for a type II algebraic surgery is an m x n
matrix P € M,, ,(R) together with a m x m matrix form @ € M,,(R)
such that

P*ZP = Q —eQ* € M, (R) ,

ker((Y P):R"®R™— R") =~ R*
for some £ > 0. The effect of the type II algebraic surgery is the
e-symmetric (m + n) X (m 4 n) matrix formation (X', Y’ Z’) with

X 0 Y P Z 0
X' = (0 Im)’Y/: (P*X Q)’Z/: (o 0)6Mm+n(3)'

The trace of the type II algebraic surgery is the (—¢)-symmetric k X K
matrix form form over R defined by the
_ (0 (X +YrZP\
U = 0 Q ) = —eU" :
ker((Y P) R"®R™ — R") = RF = (RF)*~ RV
with the boundary OU stably isomorphic to (XY, Z) & (= X", Y, Z").
O
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Proposition 4.11. (i) For any e-symmetric matriz formation (X,Y, Z)
there is defined a stable isomorphism

(X,Y,Z)® (Y,X,Z) = d(X*Y) .

The effect of the algebraic surgery on (X,Y, Z) with data (I,,0) and
trace X*Y is an e-symmetric matriz formation (X', Y’ Z") with stable
1somorphisms

(XY Z) = (=Y, X,?), (X,V,Z)® (=X',Y",?) = d(X*Y) .

(i1) Two e-symmetric matriz formations (X,Y, Z), (X', Y', Z") are such
that (X,Y,Z) = (X',Y',Z") € L'(R,¢) if and only if (X',Y', Z') is
stably isomorphic to the effect of a sequence of algebraic surgeries on
(X.Y,Z).

(i) An e-symmetric matriz formation (X,Y,Z) is stably isomorphic
to the boundary 0Q of a (—e)-symmetric form Q, if and only if there
exists a type II algebraic surgery on (X,Y,Z) with data (P,Q) such
that

Y= (PYX _EQP*) € Myin(R)

1s tnwvertible.

4.3. Triformations.

Definition 4.12. (i) An e-symmetric triformation (K, ¢; Ly, Lo, L3)
over R is a nonsingular e-symmetric form (K, ¢) over R with three la-
grangians Ly, Lo, L3 C K such that the R-module

U = {(ZEl,l’Q,l’g)6L1@L2@L3|$1+I2+1‘3:0€K}
= ker((j1 jz2 js) : L1 ® Lo ® L3 — K)

is f.g. free, with j; : L; — K (i = 1,2, 3) the inclusions.
(ii) The union of the triformation is the (—¢)-symmetric form over R

U(K, ¢7 L17 L27 L3) = (U7 w>
with

o2 U= U5 (21, 20,33) = (Y1, 52, 53) = 0(j1(21)) (G2(12))) -
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Remark 4.13. (i) It follows from

0 jigje O 0 0 —ji¢ss 00 0
0 0 o] =1{(o0 o0 = (0 0 j304s
0 0 0 00 O 00 0
0 00 0 00 0 0 0
= |-s2¢n 0 0f = 0O 00 =1({0 0 0
0 00 Jz¢i 00 0 —Jj3¢j2 O
U —=U”"

that ¢* = —eyp : U — U*. More directly, for any (x1, x2, 23), (Y1, Y2, y3) €
U
(@1, w2, 23) (Y1, Y2, ¥3) + VY1, Y2, y3) (21, T2, 23)
= ¢(1(21))(2(y2)) + €0 (j1(y1)) (J2(2))
= o(j1(21))(J2(y2)) + ¢ (j2(22)) (1 (1))
(J1(z1) + Ja2(22), J1(y1) + J2(y2))
(73(z3))(js(y3)) = 0O (since jr¢j; =0 fori=1,2,3) .

X1

<

= ¢

(ii) The union construction of Definition BT2 is a generalization to
an arbitrary R of the constructions of Wall [67] and Kashiwara and
Shapira [20] (for R = Z in the symplectic case e = —1).
(iii) If R is commutative and a principal ideal domain then every sub-
module of a f.g. free R-module is f.g. free, so that an e-symmetric tri-
formation (K, ¢; L1, Ly, L3) over R is a nonsingular e-symmetric form
(K, ¢) over R with three lagrangians Ly, Lo, L3 C K.

O

Proposition 4.14. Let (U,v) = U(K, ¢; L1, Lo, L3) be the union of an
e-symmetric triformation, as in Definition [.13.
(i) The R-module isomorphism

ker((j3¢j1 j30d2) : In @ Ly — Lf) —
U = (ker(jy j2 j3) : L1 © Lo ® L3 — K) ;
(w1, 22) = (21, T2, —J1(21) — Jo(22))

defines an isomorphism of forms

(er((Gson 5002 L L= 19, (D16 )) = 0.



46 ANDREW RANICKI

If j5¢g2 + Ly — L% is an isomorphism, there is defined an isomorphism
of forms

<_(j§¢j2)11(j§¢jl)) b (L, = (i ¢d2) (73 62) 1 (G5 61))
= (ker((j§ @ J3¢52) * Lo @ Lo — L), (8 ji*gh)) |
(ii) The radical of (U,) is
(U, )t = {(z1,22,73) € U| (21, 39,73) =0 € U*}

= ker((j1 jg) : L1 ) L2 — K) + ker((jg jg) : L2 ) Lg — K)
—i—ker((jl j3) : L1 () L3 — K)

= (ker((j1 jg) : L1 ) L2 — K) () ker((j2 j3) : LQ () L3 — K)

dker((ji j3) 1 L@ Ly — K) |/

e
ker(| js¢ | - K — Lt ® Ly @ LY)
Jz®
_ (LN Ly) @ (LN Ls) @ (L3N Ly) cU
LiNLyNLs -

(i) If Ly + Lo + Ly = K the form (U, 1)) is nonsingular if and only if
Ly, Lo, Ly are pairwise complements in K, if and only if each of

Ji®je + Lo — Ly, j3¢ja @ Lo — Ly, js¢ji @ L1 — Lj

s an isomorphism.
O

Example 4.15. Let R = R, ¢ = —1. The lagrangians of the symplectic
form (K, ¢) = H_(R) are the 1-dimensional subspaces L C K, with

L = L#)=im(j(#) C K (0 €R),

sin ¢
j(0)'¢ = (—sinf cosf): K = R&R—>R.
For any 61,0, € R
J(02)*pj(61) = sin(6; —0y) : R—TR.

The following conditions are equivalent:

j(6) = (Cose) R K = RoR,

(1) L(61) = L(62),
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(2) 6, — 03 = nx for some n € Z.

(3) §(62)*p7(6y) = 0.

For any 6,605,605 € R the union of the symplectic triformation (K, ¢;
L(6:), L(63), L(#3)) is the symmetric form

(Ua ¢) = U(K7 ¢; L(91)7 L<02)7 L(GS))
given by Proposition B-T4 to be such that

U

sin 91 sin 62 sin 63

_ ker(<c0891 cos 0 00893) . RORGR - ROR)

= ker((sin (‘91 — 63) sin (82 — 93)) ReR — R) ,
VYo U= U5 (21,22) = (Y1, y2) = sin(y — 01)(21)(12)) ,
Ut = (ker((cosel COSQ?) ‘R&R > RaR)

sin ‘91 sin 62

@ker( <COS Oz cos 93) ‘R&R - RO R)

sinf, sinfs

@ker( (COS s cos 91) ‘ROR—-R® R))/

sinf; sin 6,

—sinf; cosb;
ker(| —sinfy sinfy | RGR—-R®R®R) .
—sin 93 sin 63

Thus
(U 1/)) ~ (R, sin(91 — 92) sin(92 — 93) sin(93 — 91)) if dlmR(U) =1

T 1 (RBR,0) if dimg(U) = 2,
noting that dimg(U) = 2 if and only if

SiH(Gl — 92) = sin(@z — 93) = Sin(93 — 91) =0 s
if and only if
L(Ql) = L((92> = L(eg) c R?.
[

Example 4.16. Let Ny, Ny, N3 be three (k — 1)-connected (2k + 1)-
dimensional manifolds with the same (k — 1)-connected 2k-dimensional
boundary

M = 0N, = ON, = ON;,
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and let

3 3
(P,oP) = (M x D*U|JN; x I, T N; Uns Njsa) (Ny = Ny),
j=1 j=1
be the thickened union, the k-connected (2k + 2)-dimensional manifold
with boundary constructed in §8. Each of

K = Hp(M), L; = ker(Hp(M) — Hp(V;)) (i =1,2,3) ,
U = ker((j1 jg ]3) L1 D Ly P L3 — K) (]2 = inclusion)

is f.g. free, so that there is defined a (—1)*-symmetric triformation
(K, ¢; Ly, Lo, L3) over Z with ¢ the intersection form, such that the
union U(K, ¢; Ly, Lo, L3) = (U, ) is the intersection form on

U = Hk+1(P) = ker((j1 jg ]3) Ly Ly ® Lg — K)
= ker((j3¢51 j3¢je) : L1 © Lo — L3) .

4.4. The algebraic mapping torus.

Definition 4.17. (i) An e-symmetric automorphism (K, ¢, A) deter-
mines the inclusion of a lagrangian

j(4) = (jl) L (K,0) > (K@K, 0@ —9) .

(ii) The mapping torus of an e-symmetric automorphism (K, ¢, A)
over R is the e-symmetric formation over R

T(A) = (Ko K,¢& —¢;j(1)(K),j(A)(K))

with A = {(z,2)|r e K} C K @ K.
U

Proposition 4.18. Let (K, ¢, A1), (K, ¢, A3), (K, ¢, A3) be e-symmetric
automorphisms over R.
(i) The isomorphism of e-symmetric forms

1A« (KoK ¢ —¢) > (KS K, ¢d—¢)
defines an isomorphism of e-symmetric formations

T(A7'A) = (K@K, 0@ —¢;j(A)(K),j(A)K) .
(ii) The R-module morphism

i(A2) (6 & —0)i(Ar) = (1 Aj) (?f _0¢> (i)
= ¢(1-A;'4) : K> K~
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is an isomorphism if and only if 1 — A;'A; : K — K is an automor-
phism.
(iii) The union of the e-symmetric triformation

(K@K, ¢ ®—¢;5(A1)(K), j(A2)(K), j(A3)(K))

is (isomorphic to) the (—e)-symmetric form

(U,y) = (ker(((Al — A3) (As— Ag)) KoK — K), (8 o1 — 642_1141))) '

The union is the trace of an algebraic surgery on T(Az"A))@T (A5 As)
with effect T(A;' A1), with a stable isomorphism

O(U ) = T(A7'A) ® T(A7 Ag) ® ~T(A;" Ay)
so that

T(AF'A) +T(APA3) = T(A7'A) € LY(R,e) .
(iv) If Ay — A3 : K — K is an automorphism the R-module isomor-
phism

K == U5 ae (0, —(As — A5) (A — A)(@))
defines an isomorphism of forms

(U) = (K, ¢(1— Ay A)(1 = A7 A) 71 (1 = A7 AY)

(v) For A3 = Ay A; there is defined a commutative square

(A1—Az Azx—A3)

KoK K
1A Ay | = ~ At
Kok (1-Az 1-Ay)

inducing an isomorphism of (—e)-symmetric forms

(U 0) = (ker((1— Ay 1—-4)): KK — K), (8 —o(l _0A21A1>>) :

If1— A, : K — K is an automorphism the R-module isomorphism

K —U;z~— (2, —(Ay — A1Ay) 1 (A1 — A1 Ay) (2)
defines an isomorphism of forms

(U) = (K,0(1 — A7 A1) (1 — AJTAT Ag)7H(1 — A31))
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Proof. (i)-(iv) Apply Proposition B14.
(v) Apply (iii)+(iv). O
Example 4.19. Let R = R, e = —1. For 0 € R define the rotation
automorphism

cosf) —sind

RO) = (g o) (0) = H®) - (.0)

corresponding to ¢ = cosf + isinf € C, so that R(f) = R(¢) if and
only if @ — 0 = 2nr for some n € Z. It is immediate from the identities
e~ = ()71 itz = i0it62)
et _ itz — (2 sin (91 _ 92)/2) el(m+01+62)/2
that
R(O)™ = R(=0), R(01)R(02) = R(01 +03) ,
R(01) — R(62) = (2sin(0; — 02)/2)R((7m + 61 + 65)/2) ,
R(#)—1 = 2sin0/2R((w +6)/2) .

As in Proposition B8 (iii) for any 60,6,,05 € R there is defined a
symplectic triformation over R

(K& K,¢® —¢; L(61), L(02), L(03))
with the lagrangian of (K, ¢)

L(6:;) = j(R(0:))(K) = {(z,R(6:)(z)) |z € K}
depending only on 26;/m € R/Z. The union is the symmetric form over
R

(U ) = (ker(((R(61) — R(63)) (R(02) — R(63)) : K & K — K),

(8 o(1 — R(GS)_lR(Ql))))

(K @ K,0) if R(0,) = R(6,) = R(03)
i

2

sin (01 — 03)/2sin (05 — 03)/2sin (65 — 01)/2) otherwise .
If R(6,) = R(02) = R(63) then
(U,) = (K® K,0), o(U,9p) = 0.
If R(61), R(62), R(#3) are not all the same the R-module isomorphism
KU aes (RO — R(0) (@), (R(:) — R6))(@)))
defines an isomorphism of symmetric forms over R

[ (K, sin (0, — 0)/2sin (0 — 05)/2sin (05 — 601)/2) — (U,v)
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so that
o(U,¢) = 2sgn(sin (6; — 0)/2sin (0 — 05)/2sin (03 — 61)/2)) € Z .
U

Proposition 4.20. (i) If (K, ¢, A) is an e-symmetric automorphism
over R there is defined an isomorphism of e-symmetric formations over

R
() 9) s r-Ta,
with

T(A) = (K"K, (S ;),K*,im(<[¢_AA) K> K eK)),

so that
T(A) = T'(A) € L*(R,e) .

(i) If 1/2 € R and (K, ¢; L1, Ly) is an e-symmetric formation over R
there exists an automorphism A : (K, ¢) — (K, ¢) such that A(Ly) =
Lo, and for any such A

T(A) = (K,¢; Ly, Ly) € LY(R,¢) .

(iii) If1/2 € R, (K, ¢, A) is an e-symmetric automorphism over R and
L is a lagrangian of (K, @) then

T(A) = (K,¢;L,A(L)) € L*(R,e) .

Proof. (i) By construction.
(ii) The inclusions L; — K (j = 1,2) extend to isomorphisms of forms

a; © He(Lj) = (K, 9) .
Now Li, Ly are f.g. free R-modules with
dlIIlR<L1) = dlmR<K)/2 = dimR(Lg),

so there exists an isomorphism as : L1 — L. The automorphism

A= ()@ (K0 - 0

is such that A(L;) = Lo.
Let Ls be a lagrangian of (K, ¢) which is a direct complement of Ly,
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so that Ly @ L3 is a lagrangian of (K @ K, ¢ @ —¢) which is a direct
complement of Ag. Then

T(A) = (KoK, 0@ —¢; Ak, (AD1)Ak)

(KO K, 0@ —¢; L1 © L3, (AD1)(L1 © L3))
= (KO K,¢0®—¢; L1 ® Lz, Ly ® L)

(K, ¢; Ly, Ly) € LI(R, €) .

(iii) Immediate from (ii). O

Remark 4.21. The condition 1/2 € R in Proposition (i) is not
necessary, in the sense that for every e-symmetric formation (K, ¢; L1, Lo)
over any ring with involution R there exists an e-symmetric automor-

phism (K’, ¢, A’) over R such that
(K, ¢; L1, Ly) = T(A') € L'(R,¢)

by Ranicki [#7, Remark 30.29].
U

Definition 4.22. Let (K, ¢, A) be an e-symmetric automorphism over
R. As in Proposition (i) if K = R" the algebraic mapping torus
T'(A) is isomorphic to the e-symmetric n x n matrix formation over R
(Definition B8 (ii))

T'(A) = (X,Y,Z) = (A, 1 —A,9) .
O

Definition 4.23. Let (K, ¢, A) be an e-symmetric automorphism over
R, with K = R". If coker(I — A) is a f.g. free R-module there is 777
U

Definition 4.24. For e-symmetric automorphisms (K, ¢, A1), (K, ¢, As)
the canonical algebraic surgery on

T'(A) @ =T'(A2) = (¢A1, 1 — A1, 0) ® (—dAs, [ — Ay, — )
has data, effect 7"(A;As) and trace (220 (vi))
(P,Q) =7

4.5. The Laurent polynomial extension.
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Definition 4.25. (i) The Laurent polynomial extension R[z, 27|
of a ring with involution R is the ring of finite polynomials

N
p(z) = Z a;z’ (a;j € R, N >0)
j=—N
with involution by z = 27!, that is

N

p(z) = Z a;z7 € R[z,27"] .

j=—N
(ii) Let K,L be f.g. free R-modules. An R[z,27']-module morphism
f:Kl[z,27Y — L[z, 27" is Fredholm if f is injective and coker(f) is
a f.g. free R-module.

U

Example 4.26. For any automorphism A : K — K of a f.g. free
R-module the R[z, 27!]-module morphism

1—2A @ Klz,27Y = K[z, 27]
is Fredholm, with

coker(1 — zA) —» K ; Z Pz Z A7 (x)
j=—o00 j=—00

an R-module isomorphism.

t

Definition 4.27. For an integral domain R let R(z) be the quotient
field of R[z,27!], the localization of R[z,27!] inverting all the polyno-
mials p(z) # 0 € R[z, 2]

U

Proposition 4.28. Let R be an integral domain, and let f : K[z, 271 —
L[z, 27! be an Rz, z"']-module morphism, with K,L f.g. free R-
modules, and let

p(z) = det(f) € R[z,271]

for any bases of K, L.
(i) The following conditions on f are equivalent:
(a) f is Fredholm,

N
(b) p(z) = 3 a;27 € R[z, 27| with ay,an € R units and M < N,
j=M
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(c) the induced R(z)-module morphism
1® f . R(Z) ®R[z,z—1} K[Z, 271] — R(Z) ®R[z,z—1} L[Z, Zﬁl]

18 an isomorphism.

(ii) If R is a field then f is Fredholm if and only if p(z) € R[z,271] is

not constant.

Proof. See Ranicki [47]. O
Definition 4.29. (i) An e-symmetric form (K [z, 27!, @) over R[z, 27|
is nondegenerate if the R[z, 27 !]-module morphism

¢ Klz,27'] = K*[2,27]

is Fredholm.
(ii) The boundary of a nondegenerate e-symmetric form (K|[z, 27, ¢)
over R|[z,z7!] is the nonsingular (—e)-symmetric form (0K, 0¢) over R

0K = coker(¢: K[z, 27 — K*[z,271]),
9¢ : OK x 0K — R; (2,y) = y(¢~'(x)) 1
with the automorphism
A : (0K,00) = (0K,00) ; x> zx .
U

Proposition 4.30. (Ranicki [@7]) Let R be an integral domain with
involution.

(i) Every nonsingular e-symmetric form over R(z) is isomorphic to
R(2) ®ps . (K 2,271, ¢) for some nondegenerate e-symmetric form
(K[z,27Y,¢) over R[z,z71].

(ii) There is defined a long exact sequence

.. —= LO(R[z,27Y],€) — L°(R(2),€) 9,

LAut’ (R, —¢) e LY(R[z,271],—€) — L*(R(2), —€) — ...
with L*(R(z), —€) = 0 and
T : LAut’(R,e) — LY(R[z, 271, €) ;
(K, ¢, A) = T(zA: (K, ¢)[z,27] = (K, 9)[z,271]) ,
0 : L°(R(2),¢) — LAut’(R, —¢) ;
R(2) @Ry (K[z,27], ¢) > (0K, 09, A) .



THE ALGEBRAIC THEORY OF THE MASLOV INDEX 55

(iii) If R is a field then
LY(R,e) = 0,
L°(R[z,271],¢) = L°(R,e)® L'(R,—¢) = L°R,¢),
LY(R[z,271],¢) = LYR,e) ®L°(R,e) = L°(R,¢) .

(iii) If R is a field of characteristic of # 2 there is defined a long exact
sequence

0 — LR, ¢) — LY(R(2),¢) -2~

LAW(R, —€) > L9(R, —¢) —> 0

with
L°(R[z,27Y,¢) = L°(R,e), L'(R[z,27'],—¢) = LY(R,—e) .

5. SIGNATURES

5.1. The triple signature in algebra. The Witt class of a symmetric
form (K, ¢) over R is the signature of the nonsingular symmetric form

(K/K*,[9])
o(K,¢) = o(K/K*[¢]) € L°(R) = Z.
If L is a sublagrangian of (K, ¢) then
(K,¢) = (L*/L,[¢) e L°(R) = Z .
Definition 5.1. Let (K, ¢; Ly, Lo, L3) be a symplectic triformation

over R, as defined by a nonsingular symplectic form (K, ¢) over R
and the inclusions of three lagrangians

(i) (Wall [57]) The Wall nonadditivity invariant of (K, ¢; Ly, Lo, L3)
is the signature
0" (K, ¢: Ly, Ln, Ls) = o(U(K, ¢; Ly, Ly, Ly)) € Z
of the union symmetric form over R (E12)
U(K7 ¢7 L17 L27 LS) = (U7 w)
0 jigjz 0
= (ker((j1 j2 ]3) : L1 D L2 D L3 — K), 0 0 0 )
0o 0 O
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(ii) (Kashiwara and Shapira [20, p.486]) The Maslov index of (K, ¢;
Ly, Lo, L3) is the signature
oM (K, ¢; L1, Ly, Ls) = o(L1 @ Ly ® L, ®123) € Z
of the symmetric form (L; @ Ly @ L3, $123) over R defined by
0 jidd i
Doz = —J§¢]1 ‘0 _ Js®js | + Li@® Ly ® Ly — L@ Ly ® L.
—J3071 —J3¢j2 O
O
Proposition 5.2. W (K, ¢; L1, Ly, L) = o™ (K, ¢; Ly, Ly, Ls) € 7Z.

P’I"OOf. The sublagrangian Ll C L1 D L2 D L3 of (L1 D L2 D Lg, (1)123) is
such that the linear map

U— L ®Ly® Ly ; (1,29, 13) — (0,29, 25)/V2
induces an isomorphism of symmetric forms over R
(U,) = (L /Ly, [@129])
so that
oM(K,¢; L1, Lo, Ls) = o(Ly1 @® Ly @® L3, P1a3)
= o(Li /Ly, [®123]) = o(U. %)
= o (K,¢; Ly, Lo, L3) € Z .
O

Definition 5.3. The triple signature of a symplectic triformation
(K, ¢; Ly, Lo, L3) over R is the signature of the union symmetric form
over R

0<K7 ¢;L17L27L3) = U(U(K7 ¢a L17L27L3))
= 0"(K,¢; Ly, Ly, Ls)
= O-M<K,¢;L1,L2,L3) EZ.

Definition 5.4. Let (K, ¢) = H_(R).
(i) The triple signature of 61,605,065 € R is the triple signature b=3

0(01,02,02) = o(K, ¢; L(01), L(62), L(03)) € Z .
of the symplectic triformation (K, ¢; L(61), L(60s), L(03)), with L(6;) C
K the lagrangians of (K, ¢) given (as in Example B-13) by

L(6;) = im( (2?52) ‘R>ROR) .
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is the signature of the symplectic triformation over R
(K@K, ¢ —¢;j(R(61))(K),j(R(02))(K), j(R(63))(K))

given (as in Example BTH) by the images of the diagonal lagrangian
ACK®K of (K& K,¢p® —¢) under the automorphisms

j(R(6)) = <R(19i)) C(K,0) > (KS K, 0®—¢) (i=1,2,3).

O

Proposition 5.5. (i) The triple signature of 61,0,,03 € R is

0 1 cos 0 cos 6, cos 03
0(01,02,0;) = o(ROR, (—1 O) ) (sin@l) ’ (sin92> ’ (sin93))
= sgn(sin (fy — 01)sin (63 — 03)sin (6, — 03))
= —sgn(sin2(fy — 01) + sin2(03 — O;) + sin2(6; — 03))
= 2((((02 = 01)/m)) + (65 — b2) /7)) + (((61 — 03) /7)) )
= oly(e202701) 20:=02)) () qs in Evample 2B)

_ {—e(z‘jk) € {£1} if {0/2n} < {0,/27} < {0427}

0 otherwise

with €(ijk) the sign of the permutation (123) — (ijk).
(ii) The signature cocycle vl of Example 228 representing vy = 2[u| €
HY(SY:;7Z) is expressed in terms of the triple signature by

vy © SY XS = Z (277, ™) = 0(0, Tz, w(z + y))

B 0 1\ (1 COSTTX cosm(x +y)
o (% ) (O (@) ()
= —sign(sinrzsinTysinm(x +y))

= 2(((z)) + () = ((z +v))) -

(iii) The mapping torus triple signature of 61,0,,03 € R is expressed in
terms of the triple signature by

o(K® K, ¢ ®—¢;5(R(61))(K), j(R(02))(K), j(R(03))(K))

= 20(01/2,05/2,05/2)
= —2sgn(sin (s — 61)/2sin (03 — 6,)/2sin (0, — 63)/2) € Z .
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(iv) The triple signature determines the mapping torus signature
cocycle

20 = —2uvh : SV x SY 5 7 (&2 W)
o(K® K, ¢® —¢;j(R(0)(K), j(R(2mx))(K), j(R(27(x + y)))(K))
= 2sgn(sinmzsinmysinw(z + y))
with cohomology class

20] = —4[u] € H*(S";7Z) .

Proof. (i) As in Definition BT
0(91,02,93) = U(R@R@R,q)ng) S/

The symmetric matrix

0 sin (92 - 91) —sin (01 — 63)
@123 = sin (6’2 - 81) 0 sin (93 — ‘92)
—sin (01 — 03) sin (03 - 92) 0

has principal minors
0, —sin® (0 — 6;) , —2sin (0 — 6;)sin (63 — O;)sin (6; — 05)
and the signature is
o(01,02,03)
= 3 — 2variation of signs(1,0, —sin® (6, — 6;) ,
—2sin (A — 61)sin (03 — 6;)sin (0 — 63))
{sgn(sin (02 — 61)sin (03 — Oy)sin (01 — 05)) if sin (0 —601) #0
0 if sin (6 —60;) =0 .
The other expressions are immediate from the identity
sin (0 — 01)sin (03 — Oq)sin (0 — 03)
= —(sin2(0y — 0y) 4+ sin2(03 — O5) +sin2(6; — 63))/4 .
(ii) By Proposition 223 (i) the function
e 1 S X S 75 (B By s o(((2) + ((9) — (5 + 1))
is a cocycle representing 2[u] € H?(S;Z). The group morphism
9 . Gy 10 iy 20

induces
2 =2 : H*(S";Z)— H*(S";Z)
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so that
o = 2% : SUxSY = Z; (27, e*™) s 2(((22))+((2y)—((2(z+y))) )

is a cocycle representing 4[u] € H?(S;7Z).
(ili) By Example BT9.
(iv) By Example 278 O

Summary: the image of 1 € H?(BSY;Z) = Z is the cohomology class
[u] € H?(BSY;Z) represented by the cocycle

w o SV xSV 57 (e ) s (a2} + {y) — {z+y) .
The area cocycle
e S x SY 7 (¥ ™) s —sgn(sin7a sin Ty sinw(z + y))
represents
€] = 2[u] € H*(S*;7Z) .
The mapping torus signature cocycle
o SYx SY 7 (e 2™ 1y 2sgn(sina siny sinm(z 4 y))

represents
(0] = —4[u] € H*(S;7Z) .

5.2. The triple signature in topology. The signature of 4k-dimensional
manifold with boundary (W, W) is the signature of the symmetric in-
tersection form ¢y on H2*(W,0W;R)

o(W) = o(H*(W,0W;R), ¢w) € Z .

Novikov [40] proved that if (Wy, 0W;), (W, 0Ws,) are cobordisms with
an = —(9W2 then

O'(Wl Uan) = U(W1)+U(W2) cZ.

Definition 5.6. (i) The signature of a 4k-dimensional relative cobor-
dism (W; Ny, No; M) is
o(W;Ny,Noy; M) = o(W)€eZ.
(ii) The triple signature of a closed (4k — 2)-dimensional manifold
M with three null-cobordisms Ny, Ny, N3 is
o(M; Ny, Ny, N3) = o(K,¢; Ly, Ly, L) € Z

with (K,¢) = (Hau—1(M;R), ¢p) the nonsingular intersection sym-
plectic form over R, and L; = ker(Ho,_1(M;R) — Ha,—1(N;j;R)) the

three lagrangians.
O



60 ANDREW RANICKI

Proposition 5.7. (Wall [57]) The signature of a union of 4k-dimensional
relative cobordisms 1s

o((W; Ny, No; M) U (W' Ny, N3; M)
= o(W; Ny, No; M) + a(W'; Noy Ng; M) + o(M; Ny, No, N3) € Z .
]

If (W4 9W) is a 4k-dimensional manifold with boundary and M*~2 C
W\OW is a codimension 2 framed submanifold with 6(p) = 0 € H*(W, M)
then for any codimension 1 framed submanifold N*~1 c W\OW the
4k-dimensional manifold with boundary

(W', 0W') = (PUyp N x S*, OW)
is cobordant rel 0 to (W,0W) and
oW) = o(W)eZ.

Remark 5.8. For R = R there is defined a split exact sequence
0—I(R) = Z — LO(R(z)) = D7 -2

LA’ (R, ~1)= @ Z—0
co—1

Let (W* OW) be a 4k-dimensional manifold with boundary, and let
(M*=2 9M) C (W,0W) be a codimension 2 framed submanifold with
neighbourhood

(M*=2 9M) x D> C (W,0W) .
The projection M x S* — S! extends on the exterior
(P,0P) = (cl.(W\M x D?*), M x S*Ucl.(0W\OM x D?))

to a map (p,dp) : (P,0P) — S*. Let P = p*R be the pullback infinite
cyclic cover of P, with generating covering translation ¢ : P — P. If
OP = (0p)*R of OP has finite-dimensional homology H,(OP;R) there
is defined an element

o'(P.p) € L°(R(2))
with images
o(P) = o(W)e L'(R) = Z,
00*(P,p) = (Hy_1(0P;R),C|) € LAut’(R, —1)
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Three important special cases:
(i) If W = D% and
oM = S*™ 3 cow = g1

is a knot with M*~2 C W a pushed in Seifert surface, then o, (P, p) €
L°(R(z)) is the high-dimensional knot cobordism class.
(ii) If
oM = 0,0W =10
then P = M x S and
00*(P,p) = (Hop_1(M;R),1) = 0€ LAut*(R, 1) .

(iii) Let M be a closed (4k — 2)-dimensional manifold. The double
mapping torus (Definiton BT (i)) of automorphisms A, B : M — M
is a 4k-dimensional manifold

T(A,B) = MXxIxIUMXxIxIUMXxIxI
with boundary
IT'(A,B) = T(A)UT(B)UT(AB) .
Let
(P(A,B),0P(A,B)) = (cl.(T'(A,B)\M x D*),M x S* UOT(A, B))
be the exterior of the codimension 2 framed submanifold M x D? C
T(A, B). The projection M xS' — S* extends to (P(A, B),0P(A, B)) —
St and
o(P(A,B)) = o(T(A, B))
= triple signaturec(M UM; M x I, M x I,M x I) € L°(R) = Z,
0o*(P(A, B),p)
= (M,A)® (M,B)® (M,-AB) & (M,—1) € LAut’(R, —1) .
O

Proposition 5.9. Given e-symmetric automorphisms (K, ¢, A), (K, ¢, B)
there is an algebraic surgery on T(zA) @& T(2B) over R|z, 2~ '] with ef-
fect T'(22AB). The trace is the nondegenerate (—¢)-symmetric form
over R[z, 2]

T.(A, B)
= (ker((I = A2 [ = Bz2) : K[z, 2z Y1® K|[z,27'| = Klz,27']), ba.B)

daB((v1,01), (v2,92)) = ¢(x1,92)
with a stable isomorphism

OT,(A,B) = T(zA)@T(:B)® —-T(z*AB) ,
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so that
(K,9,A)+ (K,9,B) — (K,¢,AB) — (K, ¢,1) = 0T.(A,B) — 0T,(AB,1)
€ im(0: LO(R(z), —¢) — LAut’(R,¢))
= ker(T : LAut’(R,¢) — LY(R[z, 274, ¢€)) .

Proof. 777 O

Definition 5.10. The double algebraic mapping torus 7'(A, B)
of e-symmetric automorphisms (K, ¢, A), (K, ¢, B) is the trace of the
algebraic surgery on T(A) @ T'(B) with effect T(AB), i.e. the nonde-
generate (—e)-symmetric form over R

T(A,B) = (ket(({—AI—-B): K@&K — K),pap)
¢A,B(($layl)>($2a92)) = ¢(IB17Z/2)

(assuming ker((/ — A) (I — B)) is a f.g. free R-module) with a stable
isomorphism

0T'(A,B) = T(A)eT(B)® -T(AB) .
Definition 5.11. (Meyer [32]) Let R = R, (K, ¢) = H_(RY), so that

Autr (K, ¢) = Sp(2¢,R) is the discrete symplectic group. The Meyer
cocycle is given by

7 : Sp(29,R) x Sp(29,R) = Z ; (A, B) — o(T(A, B™))
with
7(A,B) = o({(z,y) eR¥@R¥[(A™ —1)(2) + (B — 1)(y) = 0},
((z1,91), (22,92)) = d(x1 + 2, (B — 1)(12)) ) -
Proposition 5.12. The Meyer cocycle satisfies

T(z,y) = 7(y,2) = 7(z,2) (if xyz=1) ,
7(x,1) = 7(z, 271 = 0,
T(z,y) = 7(y, ) ,

T(@ by = —7(2,y),
(

wrw Hwyw ) = T(x,y) €EZ .

\]

Example 5.13. The case g = 1: the isomorphism

s o _ [cos@ —sind
57 = Sp(2,R) 5 " = R(0) = (sin9 cose)
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induces an isomorphism
H*(Sp(2,R); Z) = H*(S";Z) .
By Example 19 for any 61,60, € R
T(R(61), R(02)) = 2sgn(sinf;/2sinfy/2sin (0 — 03)/2) € Z
so that by Definition b4 and Proposition b3 the cocycle
T = 20, = 4u € H*(Sp(2¢,R);Z) = H*(S'0;Z) .

6. THE SPACE OF LAGRANGIANS A(n)

Definition 6.1. Let A(n) be the space of lagrangians in the standard
hyperbolic symplectic form over R

H (R") = (R"®R", (_01 (1)))

and let ¢ : A(n) — A(n) be the universal cover.

U
It is known from the work of Arnold [, 2], Leray [25], Lion and
Vergne [28], Souriau [64], Turaev [b6], deGosson [I4, [5], Cappell, Lee

and Miller [10], Bunke [8], ... that there are unique functions
m : An) x A(n) = Z ,
m : A(n) x A(n) - R
such that
m (L, Ly) +M(La, L) + i(Ls, L) = o(q(L1), q(Ls), q(Ls)) ,
m(Ly, Ly) +m(Lg, L3) + m(Ls, L1) = o(Ly, L, L3)
m(A(L1), A(Ls)) = m(Li,Ls) € ZC R (A€ Sp(2n)) .

In the first instance, consider the case n = 1. The function
St A1) ; z=e" = V2= L([/2)
is a diffeomorphism.

Example 6.2. By Example 28 and Proposition b3 the triple signature
of lagrangians L(6,), L(62), L(63) € A(1) is

0(61,09,03) = o(H_(R); L(61), L(05), L(05))
= sgn(sin (fy — 61)sin (A3 — Oy)sin (03 — 6,)) € Z .
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Proposition 6.3. The triple signature function
o : RxRxR—{-1,0,1};
((91, 92, 93) — 0'(91, 92, 93) = SgH(SiH (92 — 91)sin (93 — 92)sin (93 — 6‘1))
has the following properties.
(i) 0(0,0,7/2) = sgn(sin b cos ) = sgn(sin 26).
(ii) The n-function is the average triple signature

0O) = fonn o (6 L(0), L(O))dl

= Joesr 0(Vz, L(0), L(9))d=

1

= o 2T 0 (1/2,0,0)d € R .

o(61,02,03) = o0 +,02+ 1,05+ )
= (02 — 01) +n(0s — 02) + (01 — 03)
= 2(E((61 — 02)/m) + E((02 — 65)/m) + E((05 — 61) /7))
= =2((((01 = 02)/m)) + (62 — 03) /7)) + (05 — 01) /7))
e{-1,0,1} CR.
(iv)
n(01) +n(62) —n(bh +02) = (0,61, —02) = 0(0,02,—01)
+1 it 0<{01/n}+ {6/} <1, 01/, 0/ € R\Z
= ¢—1 ifl<{b/7}+ {07} <2, 01/m 0/7 € R\Z € {-1,0,1} CR .
0 otherwise
For 0, =0,=10
277(9) - 77<29) = 0(0797 _‘9) = ¢0(‘9/7T)
+1 if0<{0/n} <1/2
= sign(sin20) = ¢ -1 if1/2<{0/x} <1 e€{-1,0,1} CR.
0 otherwise
(v)
0(01,02,601 +65) = n(61) —n(02) +n(02—01) = (0,05 —01,6,)
+1 it 0<{(Os—01)/m}+{—0s/7} <1, (62 —01)/7,05/7 € R\Z
= -1 if1<{(0a—01)/7}+{=02/7} <2, (05— 01)/7,6/m € R\Z
0 otherwise .

(vi) 0(0r1): On(2)s On(3)) = sgu(m)o(by, 04, 03) for any m € Xs.
(Vll) O'(—Hl, —02, —93> = —0'(6)1, 62, 93)
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(Vlll) 0(91, 02, 93) =0 Zf 91 = 92.

(IX) 0'(6‘1, (92, (93) == U(O, 02 - 91, 93 - 91)

(x) For any 01,02,03 € R define a loop in A(1) from L(0) = R® 0
through L(mn(02 — 61)) and L(mn(6s — 01) + 7n(03 — 02)) and then back
to L(0)

w(91,02,93) : Sl —>A(1) ;

L(?TT](@Q — 91) + 7T7’](93 — 92) + (3t — 2)71'77(91 — 93)) if 2/3 < t < 1
with lift
@(01,92,03) I — /{H) =R;
e*™ 5 S n(0g — 01) + (3t — 1)n(03 — ) if 1/3<t<2/3

77(92 — 01) + 7’](93 - 92) + (3t - 2)7’](91 — 93) if 2/3 < t < 1
The Maslov index (= degree) of w(01,0z,603) is the triple signature

Mas(w(01,09,03)) = n(02 — 01) +n(0s — 02) +n(6h — 03)
= 0(91,02,93) - Z

(Xl) 0'(91, 02, 0@) = U(L(al), L(QQ), L(eg))
(xii) (Bunke [8, p.404])

1 /W o(L(6), L(6y), L(63))df, = u(93 ; 92) if 0 < 0y,05 <.

™ 61=0
(xiil) (Meyer [82], Atiyah [3]) The surface with 3 boundary components
(X,0X) = (L($\UDY),Us
has m(X) = Fy = {g1, 92} the free group on 2 generators gi,gs. Let

E be the local coefficient system over X of flat hermitian vector spaces
classified by the group morphism

7T1(X):F2—>U(1):S1 : gj|—>ei9j (1=1,2).

The index of a first-order elliptic operator 0 coupled to E is the signa-
ture of (C,i¢), with (H*(X,0X;E) = C,9) the skew-hermitian form
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over C defined by the cup-product and the hermitian form on E, and

o(C,ig) = 2(((61/2m)) + ((62/27)) — (((61 + 62)/27)))
= n((0h +62)/2) —n(01/2) —n(02/2)
= —0'(0, 91/2, —02/2)

—1 if 0 < {0,/27} + {6y/27} < 1
= ¢+1 if 1 <{6;/2n} + {0:/27} <2
0 otherwise .

The discontinuous measurable function
Ul)xU@1) = R;
(e, e) = a(C,ig)/2 = ((61/27)) + ((02/27)) — (((61 + 62)/27))

is a cocycle representing a generator of H*(U(1)) = Z, corresponding
to the universal cover regarded as a central group extension

Z—-R—=U()=S8".

Now for n > 1.

Let (C", (, )) be the standard positive definite hermitian form over
C, with

(,):C"xC"—C;
(z,w) = ((21, 22,y 2n), (W1, W2, ..., wy)) — (z,w) = > Zjw; .
j=1

Given a complex n X n matrix A = (a;,) € M, (C) let
A" = (a;) , A* = (a;) € M,(C) .
Definition 6.4. (i) A unitary matrix is a complex n x n matrix
A = (ap) € Ma(C)
such that AA* = I, corresponding to an automorphism
A (€)= (€0 ))

(ii) The unitary group U(n) is the group of n x n unitary matrices.
U
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Let (R™, (, )) be the standard positive definite symmetric form over
R, with

(,): R"xR"—=R;
(xay) = ((xlwr%”'axn)a(y17y27”‘7yn))'_><x7y> = Zl'rjyj .
]:

Definition 6.5. (i) An orthogonal matrix is a real n x n matrix
A = (an) € My(R)
such that AA! = I, corresponding to an automorphism
ARG ) - R ).

(ii) The orthogonal group O(n) is the group of orthogonal n x n
matrices.

O

Use the isomorphism of real vector spaces
R"®R" - C"; (z,y) —» z+1iy
to identify (C", ¢) over R with H_(R™), where
¢ C"xC"—=R; (w,2) — Im((z,w)) .
Definition 6.6. (i) A symplectic matrix is a real 2n x 2n matrix

a b
A = . d) € M, (R)
(alc = cla, bd = d'b, a'd—cb = I € M,(R))
such that A'¢pA = ¢, corresponding to an automorphism
A: H(R")— H_(R").

(ii) The symplectic group Sp(2n) is the group of symplectic 2n x 2n
matrices.
(iii) Let ESp(2n) C Sp(2n) be the subgroup
ESp(2n) = {Ae€ Sp(2n)|AR" @ {0}) =R*@ {0} € A(n)}
= {Ae€ Sp(2n)|c=0¢e M,(R)}
= {(g (ag)t> la € GL,(R), b € M,(R), ab® = ba'} .

U
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Proposition 6.7. (i) A symplectic matriz A € Sp(2n) is an invertible
2n X 2n matriz

A= (Z Z) € GLy(R)
such that
a'c = cla, b'd = d'b, a'd—cb = 1€ M,(R),
with
AR"@ {0}) = 1m((i) :R" =2 R"@®R") € A(n) .
The linear map
i @ ker(c:R" —R") - R"; x+ a(x)

1 an injection, with

M = ker(i" : R" — ker(c)*) C R"
a direct complement of the image

i(ker(c)) @M = R".
Likewise, the linear map
j o ker(b:R" - R") - R"; 2+ d(z)

1S an injection, with

N = ker(j*: R" — ker(b)*) C R"
a direct complement of the image

j(ker(b)) ® N = R".

The linear map

M — N* 5 () = (7(y) = (,9))
is an isomorphism. The sublagrangian of H_(R") = (R" @& R™, ¢)

L = AR"a® {0})n(R*"® {0}) = i(ker(c))® {0} CR"®R"
1s such that
Lt = LoMao M, (LY/L,[¢]) = H. (M),
H([R"Y = H (L)Y H_(M) .

(ii) A symplectic matriz A € Sp(2n) is such that AJ = JA for the
standard complex structure

g _ ((1) _01) . R"@R" — R" @ R"
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if and only if and only if A € U(n) C Sp(2n), with
a —c
v = 4(2
= Sp(2n) N O(2n) C Sp(2n) .

Furthermore, the image of the injection

) € GLy,(R) |a'c = cta, ata+ c'c =1}

O(n) = Un) ; a (g 2) (aa = 1)

18

O(n) = U(n)NESp(2n) C Sp(2n) .

(iii) For every A = (i b) € Sp(2n) there exists Uy € U(n) such that

d
AR"®{0}) = Ua(R" @ {0}) € A(n)

with (Us)"*A € ESp(2n). The symmetric form (R",a'a+ c'c) is posi-
tive definite, and

Ux = ((a+ic)e ) € U(n)
is such a unitary matriz for any e € GL,(R) such that

a'a+cc = e'e € GL,(R) .
If A€ U(n) C Sp(2n) then e =1 will do, with Uy = A.
(iv) The inclusion U(n) = Sp(2n) N O(2n) — Sp(2n) induces a diffeo-
morphism

U(n)/O(n) = Sp(2n)/ESp(2n)
to the set Sp(2n)/ESp(2n) of left cosets A.ESp(2n) C Sp(2n), with
inverse A+ Uy. The function
Sp(2n)/ESp(2n) — A(n) ; A.ESp(2n) — AR" @ {0})
is a diffeomorphism, with
Sp(2n)/ESp(2n) — S ; A.ESp(2n) + det(A)?

inducing the Maslov index isomorphism

Y

m1(Sp(2n)/ESp(2n)) — m(S') = 7.

Proposition 6.8. (Arnold [])
(i) Every lagrangian L € A(n) is the image

L = AR"®0)cC"
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for some A € U(n). The function
U(n)/O(n) — A(n) ; A— A(R" @ 0)

s a diffeomorphism.
(ii) The function

Mas : A(n) = S*; L=AR"@®0) > det(AA") = det(A)?

induces the Maslov index isomorphism

~

Mas, : m(A(n)) —= m(S') = Z.
The pullback of the universal cover
R — S'; 2+ ™
is the universal cover of A(n)
¢ : An) = Mas'R = {(L,z) € A(n) x R|det(AA?) = ¢2mir}
— A(n); (Lyz)— L .
(iii) The function
A(n) = U(n)/O(n) = U(n) ; A= (ap)— AA" = (Z o)
=1
1s an embedding, with image the symmetric unitary n X n matrices.
The composite
A(n) = U(n)/O(n) —= U(n) - st
induces

2 1 m(An) = Z—-mUn) = m(S') = Z.

Definition 6.9. (i) The Maslov index of a path o : [ — A(n) is
Mas,(a) = pea(l) —pea(0) € R
for any lift o : I — K(n) with
Py /~\(n)—>]R; (L,x) — x,
Masa(z) = L(ra(x)) € St = A(1) .

(i) The Maslov index of a loop w : S* — A(n) is the integer-valued
Maslov index of the closed path

a I — An); o w(e®®),
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that is
Mas,(w) = Mas,(a) = a(l) —a(0) e ZCR
for any lift a : I — R of a with
Masw(e*™) = Masa(z) = L(ma(x)) € S* = A(1) .

Example 6.10. For n =1
U) = {A@)} cOQ2)
with .
A(9) = (COS 0 —sin 9) € 0(2) (0< 0 < 27)

sin @ cos @
such that

AO)R @ {0}) = L(O) = {(zcosb,zsinf)|zre R} CROR.
a lagrangian of H_(R), and

o = (=(y 1)1
The function
U(1)/O(1) — A(1) ; A(0) — L(6)

is a diffeomorphism.
(i) The function

Sp(2) — U(1)xR? (‘CL Z) H((Z;V—Zjig %V—’;iﬁ),(\/a2+62,¢bz+dz))

is a diffeomorphism.
(ii) The functions

A St = A1) ; €™ L(nx)
Mas : A(1) — St L(f) v~ ¥
are inverse diffeomorphisms, with
Mas, : m(A(1) —= m(SY) = Z.
In other words, every 1-dimensional subspace of H_(R) is a lagrangian,
and A(1) = RPL.
(iii) The pullback along Mas : A(1) — S* of the universal cover of S*

]R—>Sl;xr—>e2m””
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is the universal cover of A(1)
A1) = {(L,z) € A1) x R| L = L(wz) € A(1)}
— A1) ; (L,x) — L(mz) .
The projection

p2 : A1) =R (Lyx)—x
is a diffeomorphism with inverse
(p2)™' : R—= A1) 5 o+ (L(nz),2)

and there is defined a commutative square

Al —2 - R
A(1) _Mas Sl

>~

(iii) The Maslov index of a path « : I — A(1) is
Mas, () = a(1) —a(0) e R
for any lift a : I — R with
a(x) = L(ra(z)) € A(1) .

(iv) The Maslov index of a loop w : S' — A(1) is the integer-valued
Maslov index of the closed path

a I — A1) ; 20 w(e®™™)

that is
Mas,(w) = Mas,(a) = a(l) —a(0) e ZCR
for any lift a : I — R of a with
w(e®™) = a(z) = L(ra(z)) € A(1) .

(v) The loop of (i)

A ST A1) ; ™ s L(ra)
has lift _

A [0,]]=->R; z—x
and Maslov index
Mas,(\) = 1€ Z.

(vi) For any xg,z; € R the path from L(xg) to L(z;) € A(1) defined
by
a: T —=AN1); t— L((1—t)rze + tmxy)
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has Maslov index
Mas,(a) = 21 —x9 € R .
O

The symplectic group Sp(2n) is a closed subgroup of GL(2n,R).
The unitary group is a maximal compact subgroup U(n) C Sp(2n)
such that

Sp(2n) = U(n) x RMHD

with the inclusion U(n) — Sp(2n) inducing a homotopy equivalence
BU(n) — BSp(2n). The generator

1 = c¢1(\,) € H*(BSp(2n)) = H*(BU(n)) = Z
is the first Chern class of the canonical C"-bundle
C" =X\ = C" Xy EU(n) = BU(n) = EU(n)U(n) .
The pullback under the identity j : Sp(2n)° — Sp(2n)
u = j*(1) € HX(BSp(2n)")
is the first Chern class of the pullback C"-bundle
C" = j*\, = C”xsp(Qn)aESp(Qn)5 — BSp(2n)° = ESp(2n)°/Sp(2n)°

corresponding to the universal central group extension

—~——

0 —7Z — Sp(2n) — Sp(2n)° — {1}

determined by the universal cover

Z — Sp(2n) —~ Sp(2n) |
with

e~ —

Sp(2n) = {(A,0) € Sp(2n) x R| det(A) = e € S} .

BUT Sp(2n) IS PERFECT, SO detg : Sp(2n) — {+1} C Z.
HOWEVER, U(n) IS NOT PERFECT (E.G. U(1) = S' IS ABELIAN),
AND detc : U(n) — S IS ONTO.

Remark 6.11. (i) The form 7'(A, B) in Proposition BI8 was first
obtained by Meyer [32, B3], with the signature function

o : Sp(2n)° x Sp(2n)° = Z ; (A, B) s o(T(A, B™Y))
a cocycle for a cohomology class o € H?(BSp(2n)?) with Sp(2n)° =
Aut H_(R™). The signature of an orientable surface bundle

F? 5 E* — B?
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is given by
o(E) = (o.p:[B]) € LZ) = Z

with [B] € Hy(B) the fundamental class and
p : B — BAut(F) — BAut(H'(F;R),$) = BSp(2n)° (n = dimg H(F;R)/2).
(i) Turaev [b6] identified

o = 4u € im(H%*(BSp(2n)) — H*(BSp(2n)%))

Aker(q" - H*(BSp(2n)P) — HA(BSp(an) ))

with the Maslov class u € H?(BSp(2n)°)) the image of the generator
1 € H*(BSp(2n)) = Z, and constructed a function

o : Sp(2n) - 7Z
such that
o(g(A),q(B)) = @A)+ @(B) — ®(AB) € Z .
The signature of an orientable surface bundle F? — E* — B? is thus
o(F) =0 mod 4

a special case of the mod 4 multiplicativity of the signature of fibre bun-
dles obtained (much later) by Hambleton, Korzeniewski and Ranicki
[I8]. The universal cover

Z—U(n) —=U(n)
is given by

Un) = {(A,0) € U(n) x R|det(A) = e € S'} .

The composite

— o

U(n) — Sp(2n) —Z
is given by

D(A,0) = 4i1<9j/2w—<<0j/2w)>>

E@;/2r) e ZCR

-

=4
1

J

with €% € St the eigenvalues of A, 6; chosen so that

9 == iHjE]R,
j=1
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and F as in Barge and Ghys [8, 3.8] (cf. Remark IT4). In particular,
forn=1

d(e? 0) = 4AE(0/2m)
= 20/ — 4((0/2n))

~J40)2r)+2 if0/2m € R\Z
- 20/% if /2 € 7 .

O

Remark 6.12. (i) The classical Dedekind sum is defined for a coprime
pair of integers (a,c¢) with ¢ # 0 to be

1 lel=t km kam
= — t[ == ) cot| —
w0 = g o () ()

=t 7 (K ka
- 2 () (7)) =0
(ii) The Rademacher ¢-function is defined by
¢ : Sp(2,Z) = SL(12,Z) > 7Z ;

b :
0 b p ifc=0
A = —
C d a + d .
— 12sgn(c)s(a,c) if ¢ #0.
c
Define also
v : SL(2,Z) —~Z;
a b sgn(b) ifc=0anda=1
A = < d> >
¢ sgn(c(a+d —2)) otherwise .

The function
© : SL(2,Z) - Q; A —¢(A)/3+v(A)
is then such that
o(U(A,B)) = ¢(A) +¢(B) +¢((AB)™)

= v(A)+v(B) — v(AB) — sgn(cacgcap) €EZ C Q
(Meyer (B3], Kirby and Melvin [22], Barge and Ghys [4]). O
Proposition 6.13. (i) For any A € U(n) the image

L = AR"®{0}) cR"®R" = C"
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is a lagrangian of H_(R™) and
ker(I,—AA":C" — C") = (LN(R"®{0}))®i(LN(R"®{0})) C C",
so that
dime(ker(7, — AA")) = dimg(L N (R" @ {0})) .
The lagrangian L is such that L N (R™ & {0}) = {0} if and only if
I, — AA? is invertible.
(i) For any A, A’ € U(n) let
L = AR"®{0}), L' = AR"®{0}) cCR"®iR" = C".
The linear map
ker(A'(A")! — AAY - (LN L) @i(LNL); o AAY(z) = A'(A) (x)
s an isomorphism of complex vector spaces, so that
dime (ker(A'(A")" — AAY)) = dimg(LN L) .

The lagrangians L, L' are such that LNL" = {0} if and only if A'(A")' —
AA" is invertible.
(iii) The eigenvalues of A € U(n) are on the unit circle S*

e e e e StcC .

A is invertible, with

n
0;

(22 05)
det(A) = e =t~ €S,

(iv) A is diagonalizable: there exists a unitary matriz B € U(n) with
columns an orthonormal basis for C" consisting of eigenvectors for A,
and

A = BD(e e . )BTl € U(n)

with

L0 e {0)) = 3 (Ricos(t)).sin(0) N (R & {0})

dimg(L N (R" @ {0})) = dimc(ker(l, — AA": C" — C"))

= (no. of 0;’s with e = £1) .
(v) The logarithm of A € U(n)
log(A) = BD(log(e"),log(e?),. .. log(e))B~* € M,(C)

has trace

™

tr(log(A)) = Zlog(ewf) = mZu—z{ 2_:3' HecC.
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(vi) A2 € U(n) has

A2 = BD(e¥, %02 c20n)B-1

I,— A% = BD(1—¢*n 1 —¢2%  1—¢e%0B~leUn),

20( 3 05)
det(A?) = det(A)? = e =t €St
n . n — 20.

tr(log(A2)) = S log(e?®) = mi S (1—2{Z_ Iy eC.

i =1 2m

(vii) A% and AA" € U(n) are such that

0;

2(3 0)
det(AA") = det(A?) = e =1 €S,
dimg(ker(Z, — AA* : C" — C")) = dimc(ker(l, — A%: C" — C"))
= (no. of 0;’s with % = +1) € Z ,

tr(log(AAY) = tr(log(A?)) = mé(l_g{ﬂ—%

o hecC.

Proof. (1) Write A = X +¢Y with X,Y € M, (R), so that
ATl = A = Xt—iYt | A = Xt +iY?,
A= (A)" = X —iY €U(n),
I, — AA" = A(A*— A" = —2iAY" € M, (C) .
It follows from
ker(X)Nker(Y) = {0}, Y'X = —X'Y | dimgker(Y) = dimgker(Y")
that the linear map of real vector spaces
ker(Y) — ker(Y") ; w— X (w)
is an isomorphism. Thus
L = AR"®{0}) = {X(w)+iY(w)|weR"} CcC" = R*"@iR",
LN(R"® {0}) = X(ker(Y)) = ker(Y') CC",
ker(I, — AA") = ker(Y") @ iker(Y*) C C™ .
(ii) Let
A" = (A TAeUm), L' = A/R"®{0}) .
The linear map

LNL = L'Nn(R"®{0}); z— (A) ()
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is an isomorphism of real vector spaces, and by (i)
ker(I,—A"(A")": C" - C") = (L"'N(R"&{0})@i(L"N(R"®{0}) C C".
It follows from the identity
L — AV(A"YE = () A(A) — AAL) ()
that the linear map
("N (R*®{0})) ®@i(L"N(R"®{0}) = ker(l, — A"(A")")
— ker(A/(A") — AAY) ; 2 — (AN H(x) .

is an isomorphism of complex vector spaces.
(ili) For any z,w € C"

(A(2), A(w)) = (z,w) e C .

If 2 # 0 € C" is an eigenvector with eigenvalue A € C then A(z) = Az
and

(A(2), A(z)) = M\ (z,2) = (2,2) €C

so that A\ =1 € C.
(iv) Choose an eigenvector by # 0 € C", so that A is an automorphism
of the positive definite hermitian form

(Cn’< ) >) = (Cbh( ) >) D ((Cbl)L’< ) >)
with
(Ch))* = {z€C"|(z,b)=0}.
Now proceed by induction, obtaining an orthonormal basis {b;, bs, . .., b, }
for C™ consisting of eigenvectors of A, and B = (by by ... b,) € U(n)
such that
B7'AB = D(e" e .. ) e U(n) .

(v) Immediate from (iv).
(vi) Immediate from A% = BD(e*% %92 . 29 B~ and (iv).
(vii) It follows from
¢ 2
rog(AA)) — gep(a4) = det(4?) = 1oe(A0) ¢ (0}

that
tr(log(AA")) — tr(log(A?)) € 2miZ C C

As in [0, Proposition 6.3] choose a path
B : I—=Un); s~ B(s)
from B(0) = I,, to B(1) = B, so that
A I —=U(n); s B(s)D(e® e ... e )B(s)™!
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is a path from A(0) = D(e¥ €2 ... e%") to the given A(1) = A €
U(n). For s € I let

Y1(s) = spectrum(A(s)A(s)") ,

Yo(s) = spectrum(A(s)?) = {ef1 202 . 20} c Gt
By (vi)
dimge(ker(I,, — A(s)A(s)")) = [Z1(s) N {1}

= dimg/(ker(l, — A(s)?)) = |Za(s)N{1}] .
Since 31 (s), X2(s) vary continuously with s the function
h @ I —2miZ C C; s+ tr(log(A(s)A(s)")) — tr(log(A(s)?))

is continuous, and hence constant with

tr(log(AA")) — tr(log(A?)) = h(1) = h(0) = 0 € 2miZ .

Definition 6.14. (i) The n-invariant function is
n:Umn —R; A—
1
n(A) = —Z_(tr(log(—A_Q))) — dimg(ker(Z, — A*: C" — C")) .
7r

If e e2 . e are eigenvalues of A then
n(A) = Y n(b;) = Y (=26;/m+[0;/x] — [-0;/7]) €R.
j=1

J=1

(ii) The n-invariant function is

—_~—

n:Umn) —7Z; (A6 —

~ 1 ,
n(A,0) 777 = —i(tr(log(—A_Q))) — dimg (ker(I,, — A% : C* — C")) (det(A) = )
T
If ¢t ¢t . e are cigenvalues of A and
0 =0eR
j=1
then
(A, 0) = 2 E(0;/m) = > (16;/7] — [-0;/7]) € Z
j=1 j=1



80 ANDREW RANICKI

Example 6.15. For any # € R the 1-dimensional lagrangian
L(#) = R(cos(#),sin(h)) € A(1)
is such that L(0) = A(R®{0}) with A = (%) € U(1). The n-invariant

n(L(#) = n(A)
B %(log(—e_m)) —1-2{0/7) if O/r € R\Z
0 it 0/ e Z
= —2((0/m)) = n(d) eR

4

Remark 6.16. (Atiyah, Patodi and Singer [@, p. 411])
The p-invariant of S* with respect to the 1-dimensional unitary repre-
sentation

a:m(SY) = Z-Ul) = S'; 1 e
1s
1—2{0/27} if0/2r € R\Z

eR.
0 if0/2r € Z

pa(SY) = 1(0/2) = {

Let Vg (0 < 6 < 27) be an analytic family of flat connections on the
trivial line bundle over S!, such that the induced family of monodromy
representations is given by «. The n-invariant of the corresponding
operator of [d]

—i*%xVy : C° = (C*
is also given by
n(—ixVe) = n(f/2) eR.

(See also Farber and Levine [18, §8]).
U

Proposition 6.17. (i) If A € U(n) has eigenvalues ' e ... ¢l
St then
dimg (ker(I,, — A* : C" — C"))

= no. of eigenvalues with €% = +1 |

n(4) = (b)) R

J
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Define
Gj if 0 < Qj <7
0, = qm+6; if —wm<6;<0
/2 if 6; =0or 7,

so that 0 < 9;- <7 and

. 26"
we) = 1-2(2y = ne) = 1-2
W) = ) = 0= er.

(ii) The eigenvalues €% = +£1,+i contribute n(6;) = 0 to n(A).
(iii) A complex conjugate pair {e?, e~} of eigenvalues contributes
n(0) +n(—=0) =0 € R ton(A). Thusn(A) =0 for A€ O(n) C U(n).

(iv) The inverse A=t = A* € U(n) has eigenvalues e~ so
n(AT) = n(A) =D n(=0;) = Y -n;) = —n(A) eR.
j=1 j=1

(v) The n-invariant of A € U(n) depends only on the lagrangian L =
A(R" @ {0}) € A(n), allowing the definition

0 Um)/Om) = Aln) =R ; L=AR"&{0}) = n(L) = n(A) .

(vi) The n-invariant is such that

ML) = n(4) = —(tr(log(~(A'A)™)) — dima(L N (R" & {0}))

iy’

for any L € A(n), A€ U(n) with L =A(R" & 0).
(vii) For any Ay, Ay € U(n)

n(Ar) +n(Az2) —=n(A142) = o(Lo, L1, Ly) €ZCR
15 the triple signature of the lagrangians
LO = R"EBO s L1 == Al(Rn@O) s L2 = AlAQ(Rn@O) GA(’I’L) .
(viii) For any A € U(n)
2n(A) —n(A%) = Zsign(sin 20;) e ZCR
j=1

with e 2 . e the eigenvalues of A.
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Remark 6.18. (i) The expression of 7(A) as an integral goes back to
the construction due to Souriau [54, p.126] and Lion-Vergne [28, p.96]

of the Maslov index of (L, ) € A(n) with LN (R” & {0}) = {0} as
Mas(L,0) = QL(Q + itr(log(—AA"Y))) € {m/2|m € Z} C R
m

for A € U(n) such that L = A(R" @ {0}).

(ii) The definition of n : A(n) — R is motivated by the n-invariant of
Atiyah-Patodi-Singer [@, p.411]. See Neumann [38, p.150], Atiyah [3,
5.12], Turaev [66, Thm. 5], Cappell-Lee-Miller [0, p.152], Bunke [&,
p.420], Lesch and Wojciechowski [26, Theorem 2.1], Kirk and Lesch
[23, Theorem 4.4] and Miiller [36, Theorem 2.21] etc.

(iii) ([@], [0, pp. 134-135, 151-154]) For any lagrangians Ly, Ly €
A(n) there is defined a first-order real self-adjoint elliptic operator
D(Ly, Ly) = —J % on the Sobolev completion of the smooth func-

tions f : [0,1] — R?" satisfying the boundary conditions f(0) € L,
f(1) € Ly with

J:R”"™ = R"@R" - R"@R"; (z,y) = (—y,2)

the standard complex structure. Without loss of generality can take
Ly = R"@{0}, Ly = Y Re" € A(n)
j=1

for some 6,0, ...,0, € [0,7). The eigenvectors of D(Ly, Ls) are
Fim, () = it Q. 0,2;,0,...,0) (1< j<n,mj€Z, x;#0€R)

with eigenvalues A;,,, = mm; + 60;. The generalized (-function ((s, )
is defined for z € (0, 1] by

e}

((s,2) = > (w+k)"

k=0
with a unique meromorphic extension to s = 0 with

~((x)) re(1)

(0x) = 1/2-o = {—1/2 if 2 =1



THE ALGEBRAIC THEORY OF THE MASLOV INDEX 83

In terms of ((s, ) the n-invariant of D(Lq, Ls) is determined by

sgn(Ajm;)
nD(L1,L2)<S) = Z ‘)\—J|sj
Aj,m ;70 Jym;
1 1

- Y - %

mys0 (mmy +05)* 2o (mmy + 0;)

= S 0/) — sy 03/)

(0<9j<71’)

and
n(D(Ly, L2)) = Np(11,L2)(0)
0.
= -9 A
()
20,
= T (-2 = g4)eR.
0;7#0 T
More generally, for any lagrangians L, Ly in a symplectic form (K, ¢)
over R a choice of complex structure J on (K, ¢) determines a unitary

matrix A € U(n) (n = dimg(K)/2) such that A(L,) = Lo, and if A

has eigenvalues e, 4¢'2 ... +e¥ then
2,
n(D(L1, Le)) = n(0) = > (1——F)
0,70 ™
1
= —Z.(tr(lOg(—A_2))) — dimc(ker(In — A2 - Cr = (Cn))
m
= n(A) eR.

(iv) For any A € U(n) there is also defined a complex self-adjoint
operator Df(AA") = —z'% on the complex vector space of functions
Y :[0,1] — C" satisfying

U(1) = AA(0) eC",
with the same n-invariant as in A

n(—i%) %(tr(log(—(AAt)_l)) — dimc (ker(Z, — AA* : C* — C™))

= n(4) eR.
U

The n-invariant 7(N) € R was defined by Atiyah, Patodi and Singer
[@] for a 3-dimensional Riemannian manifold N. If N = JP is the
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boundary of a 4-dimensional Riemanninan manifold P with a product
metric near 0P then
1
o) = 5 [ o).
N

Example 6.19. (Atiyah, Patodi, Singer [4], Morifuji [35]) The 7-
invariant of the 3-dimensional lens space L(p,q) with respect to the
standard metric is

p—1

n(L(p,q)) = —%Zcot(%f)cot( )
k=1

7T—qk‘) = —4s(¢,p) €R

with s(z,y) the Dedekind sum defined for coprime integers x,y by

Yy .

) = (D)

=1

J
=))eR.
)

0
Example 6.20. (Atiyah (3, p.172]) Let 3, be a closed surface of genus
n, with symplectic intersection pairing (H'(3,; R), ¢). The total space
of a fibre bundle

Y, - T3 — St
is the mapping torus of the monodromy automorphism A : ¥, — ¥,
T =T(A) = {Z xI|(z,0) = (A(z), 1)} .
The n-invariant of T'(A) is
n(T(A) = n(A": (H'(ZsR),¢) = (H'(S,;R), ¢)) € R
with
A HY (S R) = HY(Z,;R) .

O

PROBLEM: Suppose given a 3-dimensional Riemannian manifold N
with a decomposition N = N; Uy Ny for a separating hypersurface
M C N, such that the metric on N is a product in a neighbourhood of
M. Given a complex structure J on the intersection form (H*(M), @)
over R have lagrangians

L; = im(H\(N) - H'(M)) (j = 1.2) .

Explain the Lesch and Wojciechowski [26, Theorem 2.1], Bunke [§]
Bunke [8, p.420] glueing formula

n(N) = n(Ni, M) +n(No, M) +n(H' (M), ¢, J; L1, Ly) € R 77
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IfN=T(A:¥%, =3, take
M = X, UX,, Ny = X, xI, Ny = Y, xI

A point L = (L,z) € A(n) of the universal cover of the space A(n)
consists of a lagrangian L € A(n) and a real number z € R such that

det A> = ** ¢ §!
for any A € U(n) with L = A(R" @ {0}).

Remark 6.21. Souriau [54], Leray [25], Arnold [2], Turaev [b6] and de
Gosson [[I4, 5] proved that there is a unique locally constant function

m : An) x A(n) = Z
such that
m(Ly, Ly) +m(Ly, Ly) +m(Ls, L) = o(Ly, Ly, L3) € Z .
In the terminology of Remark 61T

m((Ll,I1)7(L2,Z‘2)) = (I)(A272((L’1—.I‘2))
_ 4£;E(29j)

= 4(0;/m—((6;/m))) €eZCR

n
J=1

with e € St the eigenvalues of A € U(n) such that A(L,) = L, and
¢; chosen so that

n
X1 — Ty = Z@»ER.
j=1

Forn =1
m((L(z), ), (L(z'),a")) = @(e*), 2 —2')
= E(r—2a)
= ((z —2)/m = (((x = 2')/m)))
= [(x—2) /7] €Z.
Valalalals

[z]+1/2 ifz e R\Z
x ifx e Z
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Definition 6.22. The lagrangians L, L, € A(n) are transverse if
LinL, = {0} cCR"®R",

i.e. if Ly, Ly are direct complements in R"™ & R™.
O

For transverse L, Ly € A(n) there is defined a nonsingular symmet-
ric form (L4, ¢1) over R such that

o(R"® {0}, L1,Ly) = o(L1,¢1) €Z .
and for Ly = (Ly, 1), Ly = (La, 22) € A(n)
m(Ly, Ly) = o(Ly, 1) + (21 — x2)/21m € Z+1/2
such that for any Ly, Ly, Ly € A(n)

7. COMPLEX STRUCTURES

Definition 7.1. A complex structure on a real vector space K is
an automorphism J : K — K such that

J? = -1 : K> K.

Let (K, J) denote the corresponding complex vector space, with un-
derlying real vector space K and 1= J: K — K.

O
Proposition 7.2. The functor
{real vector spaces with a complex structure}
— {complex vector spaces} ; (K,J) — (K, J)
is an equivalence of categories, with dime (K, J) = dimg(K)/2.
O

Definition 7.3. A compatible complex structure on a nonsingular
symplectic form (K, @) over R is a complex structure J : K — K such
that

Q) J'oJ = ¢: K — K*,
(ii) ¢J = (¢pJ)* : K — K* is a positive definite symmetric form
over R, with ¢(z, Jz) > 0 for all z 40 € K.
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A compatible complex structure on (K, ¢) is a positive definite sym-
metric form (K, ¢) such that J = ¢ '¢ : K — K is a complex structure
on K.

Proposition 7.4. The functor

{nonsingular symplectic forms over R

with a compatible complex structure}
— {positive definite hermitian forms over C} ;
(K, 0,J) = ((K,J),(0,])) , (¢, ])(z,y) = o(z, Jy) +ip(z,y)

1 an equivalence of categories.

Example 7.5. (i) The standard complex structure

Jo = (g’ _01) K =R'@R"-> K = R'@R"

is compatible with the standard symplectic form
(K0 = HE) = @ or (] )

corresponding to the positive definite hermitian form (C", ( , )).

(ii) If J: K — K is a complex structure compatible with (K, ¢) then
—JoJ : K — K is an automorphism with a symmetric positive definite
symplectic matrix.

O

Proposition 7.6. (McDuff and Salamon [31, Prop. 2.48])
For a fized nonsingular symplectic form (K, ¢) the space of compatible
complex structures J is contractible, and is homeomorphic to the space
of symmetric positive definite symplectic 2n X 2n matrices.

O

Proposition 7.7. If J is a compatible complex structure on a nonsin-
gular symplectic form (K,¢) over R and L is a lagrangian of (K, @)
then JL is a lagrangian complement of L, with an isomorphism of real
vector spaces

¢ JL— L Jr— (y— oz, Jy))
and a positive definite symmetric form

A= ¢JlL : L= L5z (y— oz, Jy))
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such that

1
J = <¢,91A A0¢> . K = LeJL—-K = LeJL,

0 ¢/ * * *
6 = K = LoJL— K = '@ JL*,

—(¢)" 0
A 0 o v I
¢J = (0 (¢,)*A1¢,) K = Le&JL— K" = L*®& JL* .

The isomorphism of real vector spaces
ap - LeL*—>K = L®JL; (z,y) — (a:,gb'il(y))

defines an isomorphism of nonsingular symplectic forms over R with
compatible complex structure

o s 0 (] Ty ) (o)

such that

ar(L) = L, ag(L*) = JL.
A X-orthonormal basis {by, b, ..., b,} for L extends to a ¢pJ-orthonormal
basis {b1,ba, ... by, by, by, ..., Jb,} for K, corresponding to an iso-
morphism of positive definite symmetric forms over R

g (R (L)) = (LA)

and an extension of B to an isomorphism of positive definite hermitian
forms over C

)
et = @orn (O ) (1 ) o w0
such that
ans(R"®0) = L, aps(0eR") = JLCK .

(iii) Let (K, @) be a nonsingular symplectic form over R, and let L be
a lagrangian in (K, ¢). The compatible complex structures J on (K, @)
are 1n one-one correspondence with positive definite symmetric forms
(L', N) over R on lagrangians L' complementary to L. Given J let

(L,7 /\/) = (JL7 (¢‘])‘JL) .
Conversely, given (L', X') note that the restriction of ¢ is an isomor-
phism
¢ = ¢ : L' > L
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such that
O gb/ * / * * 1%
o = _¢ 0 K" = Lol K" = Lo L™,
and
_ A =1/\/\—1
J = (XZ,* (=9 )()()\) ) K =Ll K = Lol

defines a compatible complex structure on (K, ¢) such that
/ N—1 /%
oJ = <¢(/\2) ¢ /(\),> K = Lol - K* = L*oL"™.

In particular, (K, ¢) admits a compatible complex structure J.

8. SYMPLECTIC AND HERMITIAN AUTOMORPHISMS

Definition 8.1. (i) A symplectic automorphism (K, ¢, A) is an
automorphism A : (K,¢) — (K, ¢) of a nonsingular symplectic form
over R, with

A9A = ¢ : K - K*

or equivalently

¢(Ar, Ay) = ¢(x,y) €R (v,y € K) .

(ii) A hermitian automorphism (K, ¢, J, A) is a symplectic auto-
morphism (K, ¢, A) with a compatible complex structure J : K — K
such that AJ =JA: K — K.

]

Remark 8.2. (i) The symplectic group
Sp(2n) = {A € GLy,(R)| A'pA = ¢}

is the group of symplectic automorphisms (H_(R™), A).

(ii) Given a nonsingular symplectic form (K, ¢) over R choose comple-
mentary lagrangians L, L* for (K, ¢). Extend a basis {b1,bs,...,b,}
for L to a basis {b, b, ..., b, } for K with b,,; = bf and

1 ifj=i+n 0 I

0 otherwise ,

so that (K, ¢) = H_(R"™) (up to isomorphism). The matrix of a sym-
plectic automorphism (K, ¢, A) with respect to such a basis {by, by, . .., b, }
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for K is a symplectic matrix A € Sp(2n).
(iii) The unitary group U(n) for n > 1 is the group of hermitian auto-
morphisms (C*, (, ), A), that is

Umn) = {AeGL,(C)|A"A=1} .
(iv) For any A € Sp(2n) there is defined a symplectic formation
(H-(R");R" ® {0}, A(R" ® {0})) .

As in Proposition B8 let ESp(2n) C Sp(2n) be the subgroup of the
symplectic 2n x 2n matrices A such that A(R" @ {0}) = R" @ {0}.The
forgetful map

Y X
(XY =Y'X, X'X + Y'Y =1)

induces a homeomorphism
U(n)/O(n) — Sp(2n)/ESp(2n) ; U — A,
namely the composite of the homeomorphism
U(n)/O(n) = A(n) ; U— UR"a {0})
and the inverse of the homeomorphism
Sp(2n)/ESp(2n) — A(n) ; A— AR" @ {0}) .

Un) = Sp(2n) : U =X +iY — A= [ —Y>

O

Proposition 8.3. (i) For any symplectic automorphism (K, ¢, A) there
1s defined a symplectic formation over R

(ii) If L is any lagrangian of (K, ¢) there is defined a symplectic for-
mation (K, ¢; L, A(L)).

(iii) For any two lagrangians Ly, Ly of a nonsingular symplectic form
(K, ¢) over R and any complez structure J : K — K compatible with

(K, ) there exists a hermitian automorphism (K, ¢, J, A) such that
A(Ll) - L2.

Proof. (i)+(ii) Standard.
(iii) As in Proposition [ (ii) choose ¢J-orthonormal bases

{bl""’b”’Jbl""7‘]bn}7 {b/1a7b;n‘]b/17;n]b;1}
for K such that
Rby@ - - ®Rb, = L, RV, @ ---®RY, = L.
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The isomorphisms of 72 (ii)
ALB) » XL - (Cnv< ) >) - (K7 b, J)
are such that
awpR"®0) = L, appR"@®0) = L'CK .

The coefficients x5, y;x € R in the linear combinations

Vo= > b+ Y ypJbs € K
k=1 k=1
are the real and complex parts of a unitary matrix
U = (.Tjk +zy]k) € U(TL) ,
namely the matrix of
U = a(*Ll,ﬂ,)oz(Lﬂ) C(Ch (L)) = (Ch (L)
with respect to the C-basis {b1,ba, ..., b,}. O

Proposition 8.4. Let (K, ¢, A) be a symplectic automorphism.
(i) The characteristic polynomial

cha(z) = det(zI — A: K[z] = K[2]) € R[Z]
1s a monic polynomial such that
degree(chs(z)) = dimg(K) = 2n,
cha(0) = det(—A: K - K) = det(A: K - K)#0€R,
chy(z) = 22"det(A)chy(z71) € Rz, 271

with roots A € C\{0} the eigenvalues of A.
(i) If z,y € K are eigenvectors of A with eigenvalues \, u € R then

¢(Az, Ay) = Iug(z,y) = ¢(z,y) €R,
so if M # 1 then ¢(x,y) =0 € R.
(iii) If A € C is an eigenvalue of A then A\ # 0 and A\, \~' € C\{0} are

also eigenvalues. The characteristic polynomial of A factors as

ch(2)
= (2= 1)%(z + 1)%( ﬁ1(22 +ajz+ 1)) ( ,ﬁ(ZQ bz + 1)) € R[]

(p,g =0, |a;| <2, |bk| >2, 5,5, >1)

with distinct a; € (—2,2), by € (—o0,—2) U (2,00). There are three
types of eigenvalue :

(a) the 2(p + ¢q) parabolic eigenvalues in {1,—1},
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(b) the 2 r; elliptic eigenvalues

7j=1
—a; +i4A—(g)* . —ay—i/4—(g)?
Ay o= 5 , A = 5 e SN{-1,+1}
with X = (A7) =X, #A;.
(c) the 23" s hyperbolic eigenvalues
k=1
b+ Or)? — 4 by — /bR — 4
ut = b 2( St = e ey
with = ()™ # 1y
Proof. (i) It follows from
2l —A = —2A¢ (27 - A : K — K*

that
chy(z) = det(—zA)det(z711 — AY)
= 2?det(A)cha(z7!) € Rlz, 271 .
(ii) Standard.

(iii) Immediate from (i). O

Definition 8.5. Let (K, ¢, A) be a symplectic automorphism.
(i) (K, ¢, A) is parabolic if K = K, i.e. if every eigenvalue of A is
parabolic, so that

cha(z) = (z=1*(z+1)* (p.q>0) .

(iii) (K, ¢, A) is elliptic if K = Ky, i.e. if every eigenvalue of A is
elliptic, so that

=

cha(z) = [[(*+ a2+ 17 (0 € R, Ja <2, 7, > 1)

1

<.
Il

ii , 0, A) is hyperbolic i = Ky, i.e. if every eigenvalue o
(ii) (K, ¢, A) is hyperbolic if K = K}, i.e. if y eig 1 fA
is hyperbolic, so that

(22 + bz + 1>Sk (bk € R, |bk‘ > 2, Sp = 1) .

s

ChA(Z) =

T
I
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Proposition 8.6. Every symplectic automorphism (K, ¢, A) has a canon-
ical splitting as a sum of a parabolic, a hyperbolic and an elliptic auto-
morphism
(K7 ¢7 A) = (Kpm‘y (bpara Apar) EB (Kelh ¢ell7 Aell) EB (Khyzn ¢hyp; Ahyp)
with
chy,,, (2) = (z=1D*(z+1)* (p,¢>0),

cha,, () = H(Z +ajz+1)7 (a; €R, |aj| <2, 75 > 1),
J

=1
cha,, (2) = TI(Z®+bpz+ 1) (b €R, |bp| > 2, s, > 1) .

=1

bl

The subspaces
Lt = Y ker((uil — A)* : K - K)
k=1
L= = > ker((p, L —A)* : K - K) C Kpy,
k=1

are complementary lagrangians in (Kpnyp, Gnyp)-

Proof. Factorize the characteristic polynomial of (K, ¢, A) as
cha(z) = cha,,, (2)cha,,, (2)cha,,(2)
and let
Ky = ker(cha,(A): K — K) (# = par,ell, hyp) .
0

Definition 8.7. Let (K, ¢, A) be symplectic automorphism.
(i) For w € S* define the w-signature of (K, ¢, A) to be the signature

0u(K,0,A) = o(C®g K, (¢, A,w))
of the hermitian form over C given by
(0, A,w) = (1—w)(I—-A")p+(1-w)p*"(I—A) : CRrK - CRr K" .

If w=1 then o0,(K,¢,A) =
(ii) The signature of (K, ¢, A) is the signature

o(K,p,A) = 0_1(K,9,A) = o(K,(¢,A,-1)/2) € Z
of the symmetric form over R given by

(6,A,—1)/2 = (I —A)p+¢*(I—A) = ¢g(A-A"") : K= K*.
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(iii) The L®)-signature of (K, ¢, A) is

p(K, 6, A) = /waw(K, 6, A) € R
(iv) The g-invariant of (K, ¢, A) is
n(K,s,A) = zn:U(Kja ¢;(A; — A;))n(0;) e R
with B
ch,(Aa) = j]i[l(z — 2cos(;)z + 1) (0; € (0,7)) ,
(K5, ¢5,45) = ({o € K|(A* = 2Acos(0;) + 1) (z) = 0}, ¢, A]) -

O

Remark 8.8. (i) The parabolic and hyperbolic components of (K, ¢, A)
make zero contribution to the signature, L®)-signature and 7-invariant:

o(K,9,A) = (K, ¢, Aett) €R
p(K, ¢, A) = p(Kai, beit, Aett) € R,
(K, ¢,A) = n(Keu, peu, Aeut) € R .
(ii) The n-invariant is a function
n : An) = U(n)/O(n) = Sp(2n)/ESp(2n) — R .
0

Proposition 8.9. (i) If (K, ¢, A) is a symplectic automorphism such
that A(L) = L for a lagrangian L of (K, ¢) then

n(K,6,A) = 0€R .
(ii) The triple signature of lagrangians Ly, Lo, Ly of (K, ¢) is
o(K,¢; L1, Lo, Ls) = n(K, ¢, Ar2)+n(K, ¢, Ass)+n(K, ¢, As1) € ZC R

for any symplectic automorphisms Ais, Ass, Az1 = (K, ¢) — (K, ¢) such
that

A1a(L1) = Lo, Ax(Le) = Lz, As(Ls) = Ly
with As1Ay3Ap =1: Ly — L.
(iv) For any symplectic automorphisms A, B : (K, ¢) — (K, ¢)
(K, =6, A) = n(K,$,A),
N(K, ¢, A7) = —n(K, 6, A),
NKoK¢dp,ADB) = n(K,¢,A)+n(K,¢, B) €R
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and
= (K, ¢, A) + (K, ¢, B) +n(K,¢,(AB)™")
]

Definition 8.10. An automorphism A : K — K of a finite-dimensional
real vector space is fibred if it satisfies any one of the following equiv-
alent conditions:

(i) A— A7': K — K is an automorphism,
(i) 1 - A, 1+ A: K — K are automorphisms,
(iii) the characteristic polynomial

cha(z) = det(z — A: K[z] — K[z]) € R[Z]

takes non-zero values for z = £1.

U

Proposition 8.11. (i) A symplectic automorphism (K, ¢, A) is fibred
if and only if A only has hyperbolic and elliptic eigenvalues, so that
Kpar =0, K = Khyp ® Key.

(ii) A symplectic automorphism (K, ¢, A) is such that there exists com-
plex structure J : K — K compatible with (K, ¢) and AJ = JA if and
only if (K,¢,A) is fibred and the minimal polynomial of A is of the
form

[[Z+az+1) (g €R, |ay| < 2)

j=1
for distinct a;’s. Such (K, ¢, A) is elliptic and
n(A) = n(Ua) €R

with Ua a unitary matriz of the hermitian automorphism (K, ¢, A, J)

for any such J.
O

Definition 8.12. For any symplectic formation (K, ¢; L1, Ly) the in-
tersection L; N Ly is a sublagrangian of (K, ¢), with

LiNLy C(LiNLy)*t.
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The symplectic reduction of (K, ¢; Ly, Ly) is the symplectic forma-
tion ([KT], [¢]; [L1], [Lo]) with

(L1 N Ly)* B _

L, 0 B = A Wlelk] = K],
(K,¢: Ly, Ls) = ([K),[@]; [L1], [La]) @ (H_(Ly N Ly); Ly N Ly, Ly O Ly) .
]

L;

(K] =

Proposition 8.13. For any symplectic automorphism (K, ¢, A) and
lagrangian L of (K, ¢) the symplectic reduction of (K, ¢; L, A(L)) is
a symplectic formation ([K],|[¢];[L],[A(L)]). The induced symplectic
automorphism ([K], [¢], [A]) is fibred and elliptic, with

[AJ[L] = [A(L)], [L]@[AL)] = [K],

n(K, ¢, A) = n((K],[9],[A]) eR .

O

Proposition 8.14. Let (K, ¢, A) be a fibred symplectic automorphism

over R.
(i) The direct sum splitting

(K,0,A) = (K, bers Aectt) ® (Knyp, Ohyp, Anyp)

determines a factorization of the characteristic polynomial

cha(z) = cha(2)cha,,, (2)

with
cha, (2) = [1(z*+a;2+1)7 (la] <2)

j=1

cha,,, (2) = 24P det(Ap,)p(2)p(z7")
(p(2) € R[z] with p(1), p(—1) # 0)

for distinct ay, as, ..., a, € (—2,2).

(ii) The elliptic component splits as

n

(Kelb (bell’ Aell) = Z(Kj7 ¢j7 AJ)

j=1
with
(K. 65, 4) = ({z € K|(A*+a;A+1)"(x) =0}, 6], Al) .
The symmetric forms (K, ¢;(A; — Aj_l)) over R are nonsingular and

n

o(K, 0, A) = Y o(K;¢;(A;— A;) €L

j=1
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(iii) (Levine [27], Matumoto [30]) Let {e*, %2, ... e} C SN\{—1,1}
be the eigenvalues of A. The function

S' %7 we ou(K, ¢, A)
is locally constant on each component of SY\{e®", ... e®} with jumps
hﬂe(aei(%ﬁ-e) (K, 925, A) — Uei(ﬂj—e) (K, gb, A))
= 2U(Kj7¢j<Aj — A;l)) for j = ]., 2, e,
(iv) Suppose that the minimal polynomial of A; is 22 —2zcos (0;)+1, so
that (K;, ¢;, A;) is a sum of 2-dimensional symplectic automorphisms,

with signature £2. Without loss of generality it may be assumed that
dimg (K;) = 2 for each j. Choose 8; such that

sgu(sing;) = o(Kj,¢;(A; — A7) /2 € {~1,1} .
The canonical complex structure on K.y
—~ (4, —(4)) -
J = ZW D Kep = ZKj — Koy

Jj= Jj=1

is compatible with (Ko, ¢en), with ¢eyd © Koy — K, a positive definite
symmetric form over R, and Ay = JAwg : Ky — Koy For any

Aar(w) = cos(0;)(x) + ((4; — A7) /2)(x)
= cos(#;)(x) +sin(d;)(Jx)
= cos(6;)(x) +sin(d;)(Jx) € K;
and the unitary matriz of Aqy is diagonal

Us, = D, e ... ") eUn).

ell

The n-invariant 1s
H(Ka ¢7A) = n(UAell) = er](ej> €R,
j=1

O

Proposition 8.15. (i) The hermitian automorphism defined for any
0 € R\7Z by

0 1 0 —1 cosf —sinf
(K7¢7J7A) = (R@R’ (_1 O)’(l O)’(sin9 COS@))
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s such that

IO 2sinfd 0
«

= o(K,p(A— A71))/2 = sgn(sinf) ,
;oo A-AT (o —1)
2sinf 1 0 ’
n(K, ¢, A) = n(d) eR .

(ii) For any hermitian automorphism (K, ¢, J, A) there exists a (¢, J)-
orthonormal basis for K consisting of eigenvectors of A. Any such
basis determines an isomorphism

- 0 1 0 -1 cost; —sinb;
(K, 0,J,A) Z(R@R’ <_1 0)’(1 0>’(sin9j cosHj))

i=1

1%

with
cha(z) = H(22 —2cosbjz+1) e Rz .
j=1
The matriz of A with respect to such a basis is a diagonal unitary matriz
Uy = D(, e ) e U(n)

and
n

U(K@,A) = ZU(HJ) eR.

Jj=1

Remark 8.16. (i) Let
_ o _ (DT
S =5 = (r q) € GLy(R)

be an invertible symmetric 2 x 2 matrix. The signature of the nonsin-
gular symmetric form (R @ R, S) over R is

2 if —7r?
sRGR,S) = sgn(p) %p#Oanc}pq r? >0
0 ifp=0orifpg—r*<0.
(ii) Let
S = 5 — (pfﬁ f_) € GLy(C)
r q=4q
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be an invertible hermitian 2 x 2 matrix. The signature of the nonsin-
gular hermitian form (C & C, S) over C is

HCoC,9) = 2sgn(p) if p# 0 and pg—r7 >0
’ o ifp=0orifpg—rr<0.
O

Example 8.17. Let (K, ¢) = H_(R).
(i) The symplectic automorphisms (K, ¢, A) are in one-one correspon-
dence with 2 x 2 matrices

a b
A = (C d) € GLy(R)
such that
ad—bc = 1€R,
i.e. A€ Sp(2) = SLy(R). The trace of A is

tr(A) = a+d.
The characteristic polynomial is
z—a —b
cha(z) = e .o d‘ = 2 —tr(A)z + 1 € R[¢]

with roots the eigenvalues

tr(A) £ \/tr(A4)?2 — 4

)\17 )\2 = 2
parabolic [tr(A)| =2
Alis hy.per‘bohc if and only if [tr(A)] > 2
elliptic tr(A)] < 2
fibred [tr(A)| # 2.

(ii) Suppose that A is elliptic, so that
la+d| <2, c#0.
Let 0 # 7 € (0,27) be such that

d
cosf = at

, sgn(sinf) = sgn(c)

so that
{\, A2} = {ew,e_w} C Sl\{—l, 1},

chy(z) = 2% —2zcos0+ 1€ R[] .
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The signature of (K, ¢, A) is the signature of the symmetric form
(K,p(A— A1) over R

o(K,p,A) = o(K,p(A—A™") e {-2,0,2} .
The symmetric form has determinant

2¢c d—a

_ o4 2
dea —o| =4 (a+d)*>0,

det(o(A — A7) = |

By Remark B8 (i)

2 d—
U<K7 ¢7A> = O(R@R’ d_ca _2ba )

= 2sgn(c) = 2sgn(sinf) € {—2,2} .
The canonical complex structure

a A— A1 B 1 a—d 2b
© 2sinf  2sinf \ 2¢ d—a
is compatible with (K, ¢), and such that AJ = JA. For any x € K

(A2 —2Acosf +1)(z) = 0€ K ,

):K—>K

so that
A(x) = cos(6)(x) + ((A—-A71/2)(x)
= cos (0)(x) + sin (9)(J93)
( )+Sln()( r) € K .
(K,¢,J) = (K, ¢,J) has the unitary

= cos (0)(x

The hermitian automorphism A :
matrix

Us = (P)eU(1),
so that the n-invariant is
n(K,0,A) = n(0) = 1-2{0/r} eR.

Let w = ¢e" € S"\{1}. The w-signature of (K, ¢, A) is the signature
of the hermitian form (C ®g K, (¢, A,w)) over C with

(6, A,w) = (1—w)(I—A)p+(1-w)p*(I—A) : CopK — CRpK*,
so that
0u(K, 0, A) = o(Cor K, (¢, A,w))

— o(CaC,(1-w) (dfl 1__1)&)”1—@) <1fa d__bl))e{—zo,z}.
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The hermitian form has determinant
det(¢, A,w) = det((1 —w)p(I — A1) (I —wA))

_ oy ¢ l—a|l-Wa —wb
= 0= || —me 1-wd

= 1-w?2—(a+d)@* - (a+dw+1)
= 1-w(l-w)2—-(a+d)((a+d) — (w+w)) €R

with
sgn(det(¢, A,w)) = sgn(a+d— (w+w)) € {-1,0,1}.
By Remark B8 (ii)

2sgn(c) fa+d>w+w
ou(K,¢,A) =
0 fat+td<w+w
{2 sgn(sinf) if cosf > cos

0 if cos < cos) .

The L®)-signature is
1

p(K,¢,A> = 2 emw(K,fb? )
B ZSgn(sm 0)(2m — 20) /27 ifo<f<mw
| 2sgn(sin6)(2r — 2(27 — 0))/27 if w1 <6 < 27
= 2(1 - 2{0/2n})
= 2n(0/2) eR .
Thus

= sgn(sinf)
= o(K,p,A)/2e{-1,1} CR.
U

Proposition 8.18. The signature, p- and n-invariants of a fibred sym-
plectic automorphism (K, ¢, A) are invariants of the Witt group of fi-
bred symplectic automorphisms, which are related by

p(K, 0, A) = (K, 0, A) = o(K,$,A))2€ ZCR.
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Proof. There is no loss of generality in assuming that

n

(K, 0, A) = > (Kj, 65, 4))

j=1
0 1 cosajfl; —sina;0;
ROR, (—1 O) ’ (sin a;0;  cos ;b )

Il
=1

=
with
aj = o(Kj,¢;(A;— A7) /2€ {~1,1} , 0; € (0,7) .

By Example BT17 applied to each component (K, ¢;, A;)

U(Ka ¢7A) zn:lo-(Kja(ijAj) = Qil:laj )

j= j=

n n 0.
p(K, 9, A) = ; p(Kj, 05, Aj) = 2;%‘( )
77(K7¢’A) Z ( Ja¢]7 ) = Zaj( - 71) :

7=1 7=1

O

Proposition 8.19. Let (K, ¢, A) be a symplectic automorphism, with
dimp K = 2n.

(i) If there ezists a complex structure J : K — K which is compatible
with (K, ¢) and such that AJ = JA: K — K then

(K; 9257 A) - (Kpam qbpa'ra Apar) ¥ (Kelb ¢ell7 Aell)

1s a sum of a parabolic and an elliptic symplectic automorphism. The
eigenvalues of A are all of the form e*% € S* forj =1,2,...,n (mean-
ing a complex conjugate pair {e¥% e~} if e € Sl\{l 1} and €%
with multiplicity 2 if €% € {1,—1}). A has a unitary matriz Uy € U(n)
with respect to any ¢J-orthonormal basis for (K, J), (¢, J)). There ex-
ists such a basis consisting of eigenvectors of A, in which case

Uy = D( e . ) e U(n)

1s a diagonal matriz, and

n

U(Kv ¢a A) = n(UA) = Zn(ej) eR (9] S [0’ 27T)) :

=1

(ii) There ezists a complex structure J as in (i) if and only if the fol-
lowing conditions are satisfied:
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(a) A has no hyperbolic eigenvalues, i.e.

cha(z) = H(z2 —2cos0; z+ 1)
j=1
+i

for some 0; € [0,7], so that the eigenvalues e=% are either

parabolic (0; =0 or m) or elliptic (0 < 0; < ),

(b) the minimal polynomial of A is [](2* — 2cosb; z + 1),
=1

(0) ker(A—T: K — K) = ker(A— 12 : K — K),
(d) ker(A+T:K - K)=ker(A+1)?*: K — K).

Proof. (i) By construction.

(ii) If J : K — K is a complex structure which is compatible with
(K,¢) and such that AJ = JA : K — K then A is an automor-
phism of the positive definition hermitian form ((K,J), (¢, J)). Such
automorphisms can be diagonalized so that

n

(K’ ¢7 A? J) = Z(Kj> ¢j>Aj’ J])
j=1
with dimg(K;) = 2, and the minimal polynomial is ] (z* —2cos6; z +
j=1
1). There is no loss of generality in only considering the 2-dimensional
case, with

(K,0,7) = (C.{, ), A = () €U

for some 6 € [0,27). The characteristic polynomial of

cosf —sinf
4= (sin@ COSQ) € U(l) c SLa(R)

is
chy(2) = (z—e)(z—e) = 22 —2cos0z+1

with roots e € S, so (a) and (b) are satisfied. It is immediate from
the identities

A—1 = €% —1 = 2ie?sin6/2
A+T = e +1 = 2e%%cos0/2
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that
0
ker(A—1) = ker(A—1)* = € g 0
{0} otherwise ,
C itb=m

ker(A+ 1) = ker(A+1)? =
er(A+1) er(A+1) {0} otherwise

so (¢) and (d) are satisfied.
Conversely, suppose (a) and (b) is satisfied, so that by Proposition
B4

(K7 Qb, A) = (Kpar> ¢par7 Apar) % (Kella gbellv Aell)
with
chy,,, (2)

= (z=1)*(z+1)* (p.q=0),
cha,,(2) = TI(Z* +a;z+1) (a5 €R, |a;] <2).
j=1

with (K, Ger, Aey) a sum of n 2-dimensional symplectic automor-
phisms. If (¢) and (d) are satisfied then (Kpur, @par, Apar) is also a sum
of 2-dimensional automorphisms. Again, there is no loss in assuming
dimg(K) = 2, with (K,¢) = H_(R). If A is parabolic then either

A=1or A= —1I, and the standard complex structure J = ((1) _01)
will do. If A is elliptic then
cha(z) = 2% —2cosf z + 1 € R[¢]
with 6 € (0,7), and by the Cayley-Hamilton theorem
A% —2c0s0A+1 = 0 : K - K .
The complex structure
(A-A"
2sin 6
is such that AJ = JA, and

J = sgn(o(K,9J))J : K—> K

J = : K — K

is a complex structure which is compatible with (K, ¢) and such that
AJ = JA. O

Example 8.20. Given

A = (i Z) € Sp(21) = SLy(R) (ad — be = 1)

let
L1 = ]R(].,O), L2 = A(R(LO)) = R(G,C> GA(]_) .
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Let 6 € [0, 7] be such that

0 a in o ¢
cos) = —— , sinfl = ——
Va2 + c? Va2 + c?

Then

i cosf —sinf
Uy = () = (Sin9 cos@) e U(1) C Sp(21)

is such that Us(L;) = Lo and

1—% fo<fO<m

n(H-(R),J; L1, Ly) = n(#) = m eR
0 ifd=0
with J = (1) _01 the standard complex structure on H_(R). If A is

parabolic (Ja 4+ d| = 2) or elliptic (|a + d| < 2) let 8 € [0, 7] be such
that
cosf = (a+d)/2,
so that
B(H_(R),A) = n(¢') €R .
If A is hyperbolic (|a 4 d| > 2) then
n(H_(R),A) = 0€eR .

If AJ = JA then A = Uy, is parabolic or elliptic, § = ¢’, and

WH_(R), J; Ly, L) = n(H_(R),A) €R .
However, in general AJ # JA and

n(H-(R),J; L1, Ly) # n(H-(R),A)eR.

For example

J(H_(R), J;R(LO)R(L1)) = 1/2 £ n(H_(R); (} §)> — 0.
O

Remark 8.21. The n-invariant n(K, ¢, J; L1, Ly) € R depends on the
compatible complex structure J. For example, let

(K,¢) = H.(R), Ly = R(1,0), Ly = R(cosb,sinf) (0<6<m).

A compatible complex structure on H_(R)

J = (_” _“) " ReR—>R&R
A v

is defined by A, i, v € R satisfying
vV = Ap—1land A\, >0,
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0 1 A v
o= (Go) - ()
Note that J is conjugate to the standard compatible complex structure

Jo = ((1) _01> with

A= (1 ””) € GLy(R)

and

0 At
such that
J - A_lng .
As in Proposition [C8 (i) the 2 x 2 matrix

I = ()\ V)
vop

is positive definite symmetric and symplectic. The bases {b;, Jb},
{b}, Jb}} for (K, ¢) given by

(170) (_V7>\)
by = —= €L, Jh = e JL,
BRAY R
b= (cosB,sinf) el
VA cos? 0 + psin 6 + 2v sin fcos 6
b, = (—(vcos@ + pusin®), Acosf + vsinf) c JI

V/Acos? 0 + pisin® 6 + 2u sin fcos 0

are such that
(@ +igJ)(b1)(b1) = (¢ +1i9J)(by)(b)) = i€C,
by = cos® by +sinb Jb € K

with p
tan
tanf = ——M—
at A+ vtanf ’
so that in this case
. 20’
A = (610)€U<1),?7(K,¢,J;L1,L2) = 1-—€eR.
T

]
Proposition 8.22. (i) If Ly, Lo, L3 are three lagrangians in (K, ¢) then
T](Ka ¢7 J7 L17 LQ) + n(K7 ¢7 ’]7 L27 L3) + 77(K7 (b? J7 L37 Ll)
= O'(Ll,LQ,Lg) eZCR
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is the triple signature (which is independent of J ).
(i) Let (K,¢) = H_(R™) with the standard compatible complex struc-
ture J = (0 -1 . The n-invariant of a lagrangian L € A(n) is such

1 0
that
n(L) = n(H-(R"),;R"®0,L) eR .

Example 8.23. Let

n 0 —1
(K,¢) = H.(R"), J = .
1 0
A lagrangian L C H_(R™) is the image

Y
with X, Y € M,(R) such that

L = im((X) :R" - R"@R")

XY = Y'X € M,(R) , rank (i/() =n.

Since the symmetric form (R™, X*X + YY) is positive definite there
exists an orthonormal basis; the matrix U € GL,(R) with columns
such a basis is such that

U{X'X +Y'Y)U = 1€ M,(R)
and the unitary matrix
A = (X+Y)U €U(n)
is such that A(R" & 0) = L, and
n(K,¢, J;R"®0,L) = n(A) eR .

Example 8.24. For any 6 € R the lagrangian in H_(R)

. cosf
L(#) = lm((sine) R—->R&R)CR&R
has

X =cosf,Y =sinf, U =1, A = (") ecU(1)

so the n-invariant is

n(H_(R), ;R®0,L(6) = n(®) €R.
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Example 8.25. The boundary of a symmetric form (R")Y = Y?)
over R is the lagrangian in H_(R"™)

1
Y

The eigenvalues of Y are the roots tanf; e R (1< j <n,0<6; <)
of the characteristic polynomial

AR",Y) = im(( ):R”ﬁR”@R").

ch,(Y) = det(z =Y : K[z] = K[z]) = H(z —tanf;) € R[z] .
=1
The signature of Y is

ocR"Y) = ngn(tanej) €Z.
=1

The symmetric form (R, 14 YY) is positive definite (with 1+ Y'Y =
1+ Y?), so there exists U € GL,(R) with
U1+ Y'Y)U = 1€ GLy(R) .
(If (R™Y) is nonsingular let V' € O,(R) be such that VY'YV = 1,
and set U = V//2.) The unitary matrix A = (1 +4Y)U € U(n) is
such that A(R" @ 0) = 0(R™,Y’), with characteristic polynomial
cha(z) = det(zl, — A: C"[z] - C"[z]) = [](z—¢™) eC[e].

Jj=1

Thus A has eigenvalues €% and the n-invariant is

n(H_(R"), J;R"@0,0(R",Y)) = n(A) = > n(0;) €R.

Definition 8.26. (i) The w-signature of 6 € R is defined for w € S*
to be ' '
0.,0) = o(C,(1 —w)e’ + (1 —w)e ™) c Z .
(ii) The signature of § € R is
o(f) = 0_1(0) = o(C,e” +e ) = sgn(cos) € {~1,0,1} .
U
Proposition 8.27. The w-signature function o, : R — {—1,0, 1} has

the following properties:
(i) For w =€ € S it follows from

l—w = 1—cosy —isiny = QSin(@Z)/Q)ei(‘b_”)/QeC
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that .
0,(0) = sgn(Re((1 —w)e”))
= sgn( int/2sin (¢ 4 26)/2)
= o(L(0), L(y/2), L(m = 0)) € {~1,0,1} .
(ii) 0, (0 +7/2) = sgn(sin (¢ + 26))0,,(0)

o0 +m) = —0,0), 0,(—0) = o5(0) eR.
(iti) f0< @ <mand 0 <Y < 27w
+1 if0<p <2m—26 -1 if0<y <20
0,(0) = <=1 if2r—20<v¢ <21 , o,(—0) = <1 if20 <y <27
0 ife=0,21—20 0 ifv=0,20.

(iv) The function
St —{-1,0,1} ; wrs 0,(0)
18 locally constant, with jumps

2sgn cos 6 ifw=1

i (0geie (0) = Oue-ie(0)) = { —2sgncost ifw= e(2m—20)i
¢ 0 ifw 1,201
0
Definition 8.28. The L(®-signature of § € R is defined by
1 2m
o) = [ o) = 5 [ owlopive -1
wes! ™ Jy=0
normalized so that ¢ (0) = 1.
U

Proposition 8.29. The L®-signature function c® : R — [~1,1] has
the following properties:

(i) e@(0) = % ST sen(sine/2sin (/2 + 0))d) (w = ¢™)
— (=) ua)x) = {(—l)kn(ﬁ) if mk < 6 < w(k+ 1)'

(—1)* if 0 =7k .
(ii) For 6 ¢ nZ
(P (6) = () = po/7) = 1-2(0/x} €R
(iii) The L®-signature function c® : R — R is such that
DO +7) = —o?(0), 0P (=0) = a?P(0), p(0) = 1.
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U

Proposition 8.30. (Bunke [8, Prop. 1.7]) Let (K, ¢) be a nonsingular
symplectic form over R, with a compatible complex structure J : K —

K, and let G be the mazimal compact subgroup of the automorphism
group (K, ¢) fixing J. 1If Ly, Ly are lagrangians of (K,¢) and A :
(K, ¢,J) = (K, ¢,J) is an automorphism such that A(Ly) = Lo then

n(A) = /GU(QL7L1,L2)dg

where L C (K, ¢) is an arbitrary lagrangian. The function
m : (L1, Lo) = n(L1,La) = n(A) €R

1s the unique function on pairs of lagrangians, which is invariant under
G with respect to the diagonal action

9(L1Ly) = (gL1,9L2) (9 € G)
and such that
m(Ll, Lg) —|— m(Lg, L3) —|— m(Lg, Ll) = O'(Ll, LQ, Lg) - Z C R .
O

Let K be a real vector space with a complex structure J : K — K.
The induced complex linear map 1 ® J : C ®g K — C ®g K has
eigenvalues +¢, and the eigenspaces

(CRrK)y; = ker(l1@JFi®1:Cor K —» Cg K)
= {z@Jrtizr|re K,zeC} CCog K
are such that
CeorK = (CerK);® (Cor K)_;
with isomorphisms
K- (CerK);rz—ie+1®Jx,
K- CeK);;z——-iQzrx+1Jx
and projections
Cer K — (C®r K); ; 1®x|—>%(z’®x+1®J9&),

1
Cer K — (CRr K)_; ; 1®xr—>?(i®x—1®hj).
i
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For a nonsingular symmetric form (K, ¢) over R the nonsingular her-
mitian form (C®g K,i® ¢) over C splits as a sum of a positive definite
and a negative definite form

CorK,i®¢) = (CorK)i,d)®(CorK)_, o)
> (K, $J) & (K, —J) .

Given a compatible complex structure J for (K, ¢) and a lagrangian L
the complex linear maps

CerL—K; (ut+iw)@x—ur+v(Jzr) (u,veR, ze€ L),
1

OH(L) : Cep L > CRr K — (C®g K); ; z®x>—>§(z®x—iz®J:v),
1

O (L) : CepL—-Cor K — (C®g K)_; ; z®xr—>§(z®x+iz®Jx)

are isomorphisms, with C ®g L,C ®r JL C C ®r K complementary
lagrangians in (C ®g K,i® ¢). The composite

O(L) = & (L)PT (L) : (CepK); = (Cor K)_;
is a complex linear isomorphism such that
Cer L = {(z,2(L)(z)) |z € (Cer K);} CCRg K ,

as in Kirk and Lesch [23, Definition 8.14]. The isomorphism of nonsin-
gular hermitian forms over C

Ay H(CexL) - (Copk,i00); (1) = & (L)(x)+3~ (JL)(1961) (1))
77
As in Bunke [R, p.403] define the automorphism
op : K = La&JL—-K = L& JL; (z,y) — (—z,y)
with eigenvalues —1,+1, such that

(O'L)2 = 1,0'L(L) = L, O'L(JL) = JL7
oL = —Jop, 1—op)(K) = L, 1+0.)(K) = JL.

If L’ is another lagrangian of (K, ¢) then
B = —opoy, (K7 (¢7 ‘])) - (Ka (¢7 J))

is the square B = A? of an automorphism such that A; = L'.



112 ANDREW RANICKI

9. ASYMMETRIC FORMS

Definition 9.1. (i) An asymmetric form (K, \) is a bilinear pairing
A KxK—R; (z,y) — ANz, y)

on a finite-dimensional real vector space K. The adjoint of \ is the
linear map

A K=K o0 (y— AMz,y)) -
There is virtually no difference between the pairing and the adjoint.
(ii) The dual of an asymmetric form (K, \) is the asymmetric form
(K, \*) with
A KX K= R; (x,y) = XN(z,y) = My, x) .

The adjoint A\* : K — K™ is the dual of the adjoint A : K — K*.

(iii) An asymmetric form (K, A) is nonsingular if A : K — K* is an
isomorphism, or equivalently if \* : K — K* is an isomorphism.

(iv) The monodromy of a nonsingular asymmetric form (K, \) is the
automorphism

A=)\ : K> K
such that for e = £1
T+eA = XA +eXN) : K= K.

(v) A nonsingular asymmetric form (K, ) is fibred if A is fibred, i.e.
if Il — AT+ A: K — K are isomorphisms, or equivalently if the
symmetric form (K, X + A*) and the symplectic form (K, \ — \*) are
nonsingular.

O

Proposition 9.2. The monodromy defines a one-one correspondence
of isomorphism classes

{fibred nonsingular asymmetric forms}
— {fibred symplectic automorphisms} ;
(K, ) = (KA =X A) ) A = A
with tnverse
{fibred symplectic automorphisms}

— {fibred nonsingular asymmetric forms} ;
(K7¢7A) = (Kv)‘) ’ A= gb(I_A)il :
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For any such (K, ¢, A), (K, \) there is defined an isomorphism of non-
singular symmetric forms

T—A ¢ (K,¢(A— A1) = (K, A+ A7) .
0

Definition 9.3. Let (K, \) and (K, ¢, A) be related as in Proposition
a2

A= X6 =XA=\, A =o(1-A)".

(i) The Alexander polynomial of (K, \) is the Alexander polynomial
of the monodromy A = A1\ : K — K

A(K’,\)(Z) = AA(Z)
= det((A = X)"HzA =\ : K[2] = K|z])
(2% — 2zcos6; + 1)
= U =57
J=1 sin®6;/2
with 0 < 6; < by <--- <0, <m. Set
bp = 0, Oy = 27,
0, = 2n —0gp_jy1 € (m,27) (j=n+1n+2,...,2n).

€ R[z]

The eigenspaces of the monodromy A
K; = {x € K|(A*>—2Acos0; + 1)(z) = 0}

give decompositions

n n

(K7¢>A) = Z(Kj>¢j>Aj)> (KaA) = Z(Kja)‘j)
Jj=1 J=1
with
U(Kj7¢j<Aj —A;l)) = U(KJ,/\J—.—)\;) c 27 .
Let

a; = 0 (K, ¢5(A; — A71)/2 fl<jsn c7
—0on—j+1 if n +1 < ] < 2n
(ii) The w-signature of (K, \) is given for w = ¢® € St by

0u(K,\) = 0,(K,6,A) = o(C@r K, (1 —w)A+ (1 —@)A\)

2206]' if9m<w<6m+1
_ J=1
- —1

Q(mZ: )+ oy, ify=460,

=1
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for m = 0,1,2,...,2n — 1. The L?-signature, the n-invariant and
the signature of (K, \) are given by

p(K,A) = p(K7¢aA) = wa'w(K,)\)

= > 00;40,40)2(K, N (051 — 0;) /7 = 2 Zlaﬂi(ej/2) 7
=

Jj=1

(KN = n(K.6 A) = Z am(6;)

o(K,N) = o(K, ¢, A) = o1(K,\) = 2% a, € 7.

j=1
U

Example 9.4. The fibred symplectic automorphism defined for o €
{=1,1} and 0 € (0,7) by

(K.6.4) = (ROR a(_ol (1)) 7 (cose —sin9>)

sinf cos6

corresponds to the fibred nonsingular asymmetric form

(K,\) = (ROR, g(cow/z 1 >)

2 -1 cotf/2

with

(2% — 2zcos6 + 1)
A = R

(x.(2) mntoz S RE

200 it <Y <2m—40
ou(K,\) =

0 if0<yv<for2r—0<vy <2m,

o(K,\) = 20€2Z, p(K,\) = 2an(0/2) , n(K,\) = an(d) e R,
p(K,\) —n(K,\) = a = o(K,\)/2€ZCR.

4

Proposition 9.5. The L%-signature, the n-invariant and the signa-
ture are Witt group invariants of a fibred nonsingular asymmetric form
(K, \) over R, and are related by

p(K,N) —n(K,\) = o(K,\)/2€ZCR.
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10. KNOTS

KEY RESULT: if k : S* C S is a knot with Seifert surface F' C S*
and Seifert form (H;(F), \) the relative cobordism

(D Xp; FxI;FUy F)

is a fundamental domain for the infinite cyclic cover (Y, X) of the 4-
manifold with boundary

(Y, X) = (cL.(D"\(F x D?)),cL(S*\(k(S") x D?))) .
The fundamental domain has real signature
or(DY Xp F x I;F Uy F) = o(D*) +n(A) = n(A)eR.

The double cover of (D* S3®) branched over (F,k(S')) is a relative
cobordism

(DY Xp; FxI; FUsF)U(D* FxI, Xp; FUgF)) = (D*Upyx DY Xp, Xp; FURF)
with intersection form (Hi(F), A + A*), and real signature
UR(D4 Upxr DY Xp, Xp; F Uy F)
= or(DH X FX [F Ug F) +or(DY, F x I, Xp; F Uy F)
= o(Hi(F),A+ X)) +n(A?) = 2n(4) eR
so that the signature of k is
o(k) = o(H\(F),A+X") = 2n(A) —n(A%) .

The exterior of a knot & : St C S3
X = SN\Kk(Sh
is a homology circle, with
H.(X) = H.(SY, H(X) = H*(S").
The generator 1 € HY(X) = Z is represented by a map p : X — S!

such that making p transverse regular at * € S! gives a Seifert surface
for k, a codimension 1 submanifold

F=plxcs
with

OF = k(S")c S?,
and with a neighbourhood F' x I C S3. The 3-dimensional relative
cobordism

(XFp; Fo, F1;0F) = (cl(X\F x I); F x {0}, F x {1}; 0F x {1/2})
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is a fundamental domain for the canonical infinite cyclic cover
X =pR = |J *(Xp; Ry, Fi;0F)
k=—oc0
with ¢ : X — X a generating covering translation.

Proposition 10.1. (Milnor [33]) The R-coefficient cohomology of X
s such that

dimg Hy(X;R) = 1, dimgH'(X;R) < 0o .
The characteristic polynomial of the monodromy automorphism
A= :K=H(X;R) =K
is the Alexander polynomial of k
A(z) = det(z — A: K[z,27Y = K[z, 27']) € Rlz, 27 ]

with A(1) = 1 € R. The monodromy is an elliptic automorphism of
the nonsingular symplectic form over R

¢+ KxK =R (2,y) = ((Alx) Uy) + (z U A(y), [X]) -

so that (K, ¢, A) is an elliptic symplectic automorphism, with eigenval-
ues the roots of A(z). The linear isomorphism

A=9¢1-A)"": K- K
1s such that
A=X""=¢: K—>K".
O

Proposition 10.2. For any Seifert surface F' C S® the linear isomor-
phism

A H(F;R) — H(S\F;R) = H'(F;R) = H(F;R)*

defines a Seifert (asymmetric) form for k, with
A=\ Hi(F;R) — Hi(F;R)”

the nonsingular symplectic form over R, and

K = coker(A —2X\*: Hi(F;R)[z, 27 — Hi(F;R)*[z,271]) ,

o KxK—=R;

(z,y) — (coefficient of 27 in (A — 2X*) "} (z)(y) € R(z))

A= XM= =2: K=K
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Definition 10.3. (i) The w-signature of a knot & : S* C S is defined
for any w € St by

ou(k) = 0,(K,\) = o(K,(1—wA+ (1 —-w)\")) €Z.
(ii) The signature of k is
o(k) = o4(k) = o(K,A N+ X)) €eZ.
U

The O-framed surgery on k : S' C S® is the closed 3-dimensional
manifold
Afk = )(LJ51X51192 X Sd
cobordant to S%, with Hy(M},) = Z.
Definition 10.4. The p-invariant or reduced o?-signature of k is
p(k) = dPW)—-a(W)eR

for any 4-dimensional manifold W with OW = M, and an extension of
H,(M) = 7 to a morphism Hy(W) — Z, where ¢ (W) € R is the
L®_signature and o(W) € Z is the ordinary signature.

O

Proposition 10.5. The reduced o -signature of a knot k : S* C S®
18

olk) = / ou(HL(F),\) € R
weSst

for any Seifert surface F* C S®, with Seifert form (H(F),\).

Proof. The 4-dimensional manifold with boundary
(W*,0W) = (cl.(D"\F x D?), X UF x S")

is such that 7y (W) = Z and the intersection form on the infinite cyclic
cover (W,0W) is

(Hy(W;R(2)), intersection form) = (K(z),(1 —2)A+ (1 —2z"HA%)
so that
(W) = o(K,0) = 0€Z, d@(W) = / ou(K,\) € R
weSt

The reduced o®-signature of k is thus

(k) = @) — (W) = @) = / oK\ ER .

west
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O

Definition 10.6. The Alexander polynomial of & : S' C S? is the
Alexander polynomial of A

m 22— 92zc0s0; + 1
Bi(z) = Balz) = H 4sin2<9j/]2
j=1

€ R[z]

with roots e (6; € (0,)).

The eigenspaces of A
K; = {r € K|(A%>—2Acos0; + 1)(z) = 0}

give decompositions

n n

(K,0,4) = > (Kj,05,4;) , (K, 0) = Y (K, )) .

=1 =1
As before, let
90 =0, ‘92n+1 = 27, Qj = 271'—82”_]‘4_1 S (7T, 27'(') (] =n+1,n+2,... ,27’L)

and

o = {U(ijﬁf’j(Aj—A}l))/? if1<j<n c7

—Qon—j+1 if n +1 < j < 2n
The signatures
20éj = U(Kj,¢j(Aj—A;1)) = U(Kj,/\J—F)\;) € 27 (1 Sjgn)

are the knot signatures of Milnor [34]. The w-signature of k (Levine
[27], Tristram [65]) is given for w = e € S! by

0u(k) = 0u(K, 6 A) = 2 ﬁi(wjaw<——ej/2>

= 23" a(sgn(sin(v/2)sin(6 ~ ,)/2)
pa
23 if 6 < ¥ < By
.
Q(Zlaj)+am if p =10, .
j=1

Definition 10.7. The n-invariant of a knot k : S C S? is
nk) = n(Mg, FUg F,J) € R
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with
FUsF C My =(FxIUD?>x 8" Npu,r (FxTUX).
O

Proposition 10.8. The p-invariant, n-invariant and signature of k
are given by

pk) = (K. = 23 ayn(6,/2) €R
n(k) = n(K.N) = S am(ey) €R.
olk) = o(K,A) = 25 a;€Z

Il
—

J

are related by
pk) —nk) = o(k)/2€ZCR .

Let F? C S® be a Seifert surface for k, with OF = k(S®), and let
A (K,¢) = (Hi(F;R),intersection form) — (K, ¢)

be the monodromy automorphism, which is elliptic, corresponding to
the Seifert form

A= o(1-A)": K—K*.
The 4-dimensional manifold with boundary
(W1,0W) = (cl.(D'\F x D*),T(AUl: FUy F — FUy F))

is such that n(k) = n(dW) € R. The infinite cyclic cover (W, W) clas-
sified by a map (W, 0W) — S representing a generator 1 € H*(W,0W) =
Z is such that

(Hy(M;R(2)), intersection form) = (K(z),(1—2)A+ (1 —2"HA%) .
The isomorphism
LAsy’(R) = LY(R(2)) ; (K, \) = o*(W) = (K(2), (1—2)A+(1—2z"")A")
sends the Witt class of the Seifert form to the multisignature
(W) = (K(2),(1=2)A+ (1 —2z"HA")
— (0, a8) € LMR() = Z& Y Z
j=1 0<o<m

The L%-signature map of Cochran, Orr and Teichner [I1, §5]
c? . LYR(2)) = L*UZ) = R
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sends o*(W) to
(W) = [ ou(k)

west
= 2 ;am(ej/Q) = ;%77(9) + ;%‘
= (k) +o(k)/2€R .

Let O be the boundary map in the localization exact sequence
0 —> LY(R[z, 27 !]) —= LY(R(2)) —2> LAut?(R) — 0 .
The isomorphism

c®0 : LYR(2)) » L'R[z,27"]) © LAw’(R) = Z® > Z

sends the symmetric signature to

(c(W),00"(W)) = (0,(K, ¢, A) & (K, —¢,1))

= (O,iaﬂj) €L4(R(Z>> = Z@ Z 7z

o<o<m

Example 10.9. The right-handed trefoil knot % : S C S® has Seifert
form

-1 1
wn = ®er (1))
and elliptic monodromy

A=y = (_01 D (K¢ =A-X\") = (R&R, (_01 é)) (K, )

The Alexander polynomial, symmetric form, p-invariant, n-invariant
and signature of k are

Ap(z) = 22— 241 = (z—e"B)z—e™3), 0, = 7/3,

(o4 -4 = ®or (7 L)) e = -1,
(k) = 20m(01/2) = —4/3.

Wk = aun(y) = —1/3,

o(k) = 20, = —2€7.
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Example 10.10. (Kervaire [21, I111.12], Milnor [84]) For m # 0 € Z
let K,, be the m-twist knot, with Seifert matrix

(K,\) = R&R, (Tl g))

The Alexander polynomial is

Ag, (2) = % = mz> — (2m — 1)z +m € R[z]
with roots
2m — 1)+ /1 -4
21,29 — ( m ) m € C
2m
such that z;2o = 1. The monodromy is
1 1
A=A = | s )= ()
m

with
6= r—x = (" Y. kog
- —\-1 0/~ '
For m < —1 the roots of A are real and K, is algebraically slice,
with

0u(Kpn) = 0 (wGSl) , 0(Km) = p(Kp) = n(Kn) = 0.

K, is slice if and only if —m = n(n+ 1) for some n > 1 by Casson and
Gordon [4].
For m > 1 Ais elliptic, with {z;, 2o} = {e", e=®n} for 0,, € (0,7/2)

such that
2m — 1 . vam —1
cosb,, = , sinf,, = —— |
2m 2m
with

0 1 cosf,, —sind,,
o = won (9 1) ( ).

sinf,, cos0,,

The p-invariant, n-invariant and signature of K,

20,,
pKn) = 2(0n/2) = 2- " €R,

20,,
n(Km) = n(€m> = 1_T€Ra

o(Ky) = 2€Z
are related by
p(Kn) = 1(Kon) = o(K)/2 = 1€LCR.
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(The computation of p(Ks,,) first appeared in Cochran, Orr and Te-
ichner [12, 5.7]). O

Example 10.11. Let T(p,q) be the (p, ¢)-torus knot, with p,q > 2
coprime integers. Let n = (p—1)(¢—1)/2,and let 1 =7 <1y <--- <
r, be such that

{r|1<r<pq/2, pfr, qfr} = {ri,re,..., 0},
with
r; = ajq+bp (a; #0, 1 <b; <q) .
The Alexander polynomial of T'(p, q) is

(=1 (2 1)
Arpg(2) = (2P —1)(22—1)

with roots {e* |1 < j < n} given by

€ R[z]

Dy b
0; = ULV 27r(a—j+—j) .
pq p q
The elliptic symplectic automorphism (K, ¢, A) over R is given by
(K7¢7A) = 2:1( J7¢J7 )
j:
& 0 1 cost; —sinb;
- JE(R@R’ J (—1 0) ' (sinﬁj cos b, >)

with
a; = sgn(a;) € {—1,1}.
The p-invariant, n-invariant and signature of T'(p, q)

n . n .
My ‘ 2r;

pTw.0) = 23 am6,/2) = 25 am(®2) = 23 0,1~ € R,
n n 271'7”] n ‘ B 4&

n(T(p,q)) = ];n&m(@) = ]Zzilam( - ) = ]Z:IIO@( pq) R,

o(T(p,q)) = 2;04] e

are related by

p(T(p,q)) —=n(T(p,q) = o(T(p,q)/2€ ZCR.
Kirby and Melvin [22, 3.8], Borodzik [6] and Collins [I3] have obtained
a formula for the p-invariant
P-D+1@-D@+1)
3pq

p(T(p,q)) = — €ER
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Borodzik and Oleszkiewicz [[] have recently obtained a formula for the
signature for coprime p, ¢ odd

pq  2p  2q 1

o(T(p,q) = — 5 + 5+ 5+ —4(s(2p,q) +5(2¢,p)) —1€Z.

1]

2]

2 3q 3p ©6pg
O
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