The Jordan-Schonflies Theorem
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INTRODUCTION. The Jordan curve theorem says that a simple closed curve in
the Euclidean plane partitions the plane into precisely two parts: the interior and
the exterior of the curve. Although this fundamental result seems intuitively
obvious it is fascinatingly difficult to prove. There are several proofs in the
literature. For example, Tverberg [12] gave a proof involving only approximation
with polygons. Here, we give a short proof based only on a trivial part of
Kuratowski’s theorem on graph planarity (see Lemma 2.5, below), namely, that
K, ; is not planar.

Then we turn to another fundamental topological result: the classification of
(compact) surfaces. A surface is a connected compact topological space which is
locally homeomorphic to a disc (that is, the interior of a circle in the plane). The
classification of surfaces says that every surface is homeomorphic to a space
obtained from a sphere by adding handles or crosscaps. One of the first complete
proofs was given by Kerékjarto [4] and there are several short proofs based on the
assumption that every surface can be triangulated (see e.g. [1, 2]). Tutte [11] gave a
proof in a purely combinatorial framework. In this paper we present a self-con-
tained proof. The proof consists of two parts: a “topological” part and a “combina-
torial” part. The combinatorial part (Section 5) is very short. It differs from other
proofs in that it uses no topological results, not even the Jordan curve theorem. In
particular, it does not use Euler’s formula (which includes the Jordan curve
theorem). Thus, the combinatorial part can be read independently of the previous
results and it is of interest to those applications (for example to the Heawood
problem mentioned below) where the surfaces under consideration are already
triangulated.

The topological part is a proof of the fact that every surface S can be
triangulated, i.e., S is homeomorphic to a topological space obtained by pasting
triangles together. The idea behind this is simple: First we consider, for each point
p in S, a small disc D, around p. As S is compact, S is covered by a finite
collection of the discs D,. If § minus the boundaries of those discs consists of a
finite number of connected components, then each of these is homeomorphic to a
disc and it is then easy to triangulate S. However, the discs D, may overlap in
a complicated way. The previous proofs in the literature of the fact that every
surface can be triangulated are complicated and appeal to geometric intuition. In
Section 4 we present a short proof, which is perhaps not easy to follow, but which
is simple in the sense that it merely consists of repeated use of the following
extension of the Jordan curve theorem: If C,; and C, are simple closed Jordan
curves in the plane and f is a homeomorphism between them, then f can be
extended to a homeomorphism of the whole plane. This extension, which is called
the Jordan-Schonflies theorem is a classical result, which is of interest in its own
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right. In the present paper it forms a bridge between the Jordan curve theorem
and the classification theorem. Although the Jordan-Schonflies theorem may also
seem intuitively clear, it does not generalize to sets homeomorphic to a sphere in
R3?, as shown by the so-called Alexander’s Horned Sphere, see [5]. (The Jordan
curve theorem does generalize to spheres in R3.) We present a new (graph-theo-
retic) proof of the Jordan-Schonflies theorem in Section 3. No previous knowledge
of graph theory and only basic topological concepts will be assumed in the paper.
In order to emphasize that the proofs are rigorous, no figures (which could be an
excuse for lack of details) are included. Instead there are, inevitably, quite a
number of technical details in the topological part (Sections 3 and 4). The difficulty
in the topological part lies precisely in the details.

The classification of surfaces is not only a beautiful result of considerable
independent interest. It has turned out to be a valuable tool in combinatorial
analysis. Heawood [3] introduced the problem of determining the smallest number
h(S) such that every map on the surface S can be coloured in /(S) colours in such
a way that no two neighbouring countries receive the same colour. Heawood
established an upper bound for A(S). He claimed that his upper bound in fact
equals A(S) (except for the sphere) and that this follows by drawing a certain
complete graph on S such that no two edges cross. While this claim, which became
known as the Heawood conjecture, turned out to be correct, it took almost 80
years before Ringel and Youngs (see [6]) completed the proof. One of the main
ideas behind the proof is the following: Instead of starting out with S and drawing
the complete graph on S, we start out with the complete graph and ‘“paste” discs
on it such that we obtain a surface. By the classification theorem and Euler’s
formula, we know exactly which surface we get, and if we are clever enough,
we get S.

The solution of the Heawood problem is an example where the classification
theorem plays a role in reducing a problem with a topological content into a purely
combinatorial one.

Recently, surfaces have also played a crucial role in a purely combinatorial
result with far-reaching consequences in discrete mathematics and theoretical
computer science. Let p be a graph property satisfying the following: If G is a
graph with property p, then every graph obtained from G by deleting or contract-
ing edges also has property p. The Robertson-Seymour theory [7] implies an
efficient method (more precisely, a polynomially bounded algorithm) for testing if
an arbitrary graph has property p. In particular, for any fixed surface S, there is an
efficient algorithm for testing if an arbitrary graph G can be embedded into S, that
is, drawn on S such that no two edges cross. In contrast to this, the problem of
determining the smallest number of handles that must be added to the sphere in
order to get a surface on which G can be embedded is a very difficult one. More
precisely, it is NP-complete as shown by the author [9].

2. PLANAR GRAPHS AND THE JORDAN CURVE THEOREM. A simple arc in
a topological space X is the image of a continuous 1 — 1 map f from the real
interval [0, 1] into X. We say that f(0) and f(1) are the ends of the arc and that
the arc joins f(0) and f(1). A simple closed curve is defined analogously except
that now f(0) = f(1). We say that X is connected (more precisely, arcwise
connected) if any two elements of X are joined by a simple arc. A simple polygonal
arc or closed curve in the plane is a simple arc or closed curve which is the union
of a finite number of straight line segments.
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Lemma 2.1. If Q is an open connected set in the plane, then any two points in ) are
Jjoined by a simple polygonal arc in Q.

Proof: Let p and g be any two points in  and let f be a continuous map from
[0,1] to Q such that f(0) = p and f(1) = g. Let A consist of those numbers ¢ in
[0, 1] such that © contains a simple polygonal arc from p to f(¢). Put ¢, = sup A.
We must have ¢, = 1 since otherwise it is easy to find a ¢, in A4 such that ¢, > ¢,, a
contradiction. O

A region of an open set in the plane is a maximal connected subset. A graph G
is the union of two finite disjoint sets V(G) and E(G) (called the vertices and
edges, respectively) such that, with every edge, there are associated two distinct
vertices x and y, called the ends of the edge. We denote such an edge by xy and
say that it joins x and y or that it is incident with x and y. If more than one edge
joins x and y we speak of a multiple edge. An isomorphism between two graphs is
defined in the obvious way. A path is a graph with distinct vertices v, v,,...,0,
and edges vv,, Uy03,...,0,_U,. If n > 2 and we add an edge v,v, to this path we
obtain a cycle. We denote both the above path and cycle by v, ...v,. (It will
always be clear from the context if we are talking about a path or a cycle.) If G is a
graph and 4 € V(G) U E(G), then G — A is the graph obtained from G by
deleting all vertices of 4 and all those edges which are in A or are incident with a
vertex in A. We say that G is connected if every pair of vertices in G are joined by
a path, and G is 2-connected if it is connected and, for every vertex v, G — {v}
(which we also denote by G — v) is connected. The graph G can be embedded in
the topological space X if the vertices of G can be represented by distinct
elements in X and each edge of G can be represented by a simple arc which joins
its two ends in such a way that two edges have at most an end in common. If X is
the Euclidean plane R?, then a graph represented in X is a plane graph, and an
abstract graph which can be represented in X is a planar graph.

Lemma 2.2. If G is a planar graph, then G can be drawn (embedded) in the plane
such that all edges are simple polygonal arcs.

Proof: Let T' be a plane graph isomorphic to G. Let p be some vertex of I', and
let D, be a closed disc with p as center such that D, intersects only those edges
that are incident with p. Furthermore, assume that D, N D, = & for every pair of
distinct vertices p, q of I'. For each edge pg of I' let C,, be an arc contained in
pq such that C,,, joins D, with D, and has only its ends in common with D, U D,.
We can now redraw G such that all arcs C,,, are in the new drawing and such that

the parts of the edges in the discs D, are straight line segments. Using Lemma 2.1

it is now easy to replace each C,, by a simple polygonal arc. O

A subdivision of a graph G is a graph obtained from G by “inserting vertices on
edges.” More precisely, some (or all) edges of G are replaced by paths with the
same ends. Kuratowski’s theorem says that a graph is nonplanar if and only if it
contains a subdivision of one of the Kuratowski graph K ; or Ks. K5 is the graph
on five vertices such that every pair of vertices are joined by exactly one edge. K ;

is the graph with six vertices v, v,, v3, U, U, v; and all nine edges v;u;, 1 <i <3,
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1 <j < 3. A discussion of this fundamental result (including a short proof) can be
found in [8]. We shall use here only the simple fact that K 3,3 is nonplanar. For this
we need the following special case of the Jordan curve theorem.

Lemma 2.3. If C is a simple closed polygonal curve in the plane, then R?\ C has
precisely two regions each of which has C as boundary.

Proof: We first prove that R?\ C has at most two regions. So suppose (reductio
ad absurdum) that q,, q,, q; belong to distinct regions of R?\ C. Select a disc D
such that D N C is a straight line segment. For each i = 1,2,3 we can walk along
a simple polygonal arc (close to C but not intersecting C) from g, into D. Hence
some two of gq,, g,, g5 are connected by a simple polygonal arc, a contradiction.

Next we prove that R?\ C is not connected. For each point g in R*\ C we
consider a straight half line L starting at g. The intersection L N C is a finite
number of intervals some of which may be points. Consider such an interval Q. If
C enters and leaves Q on the same side of L we will say that C touches L at Q.
Otherwise C crosses L at Q. It is easy to see that the number of times that C
crosses L (reduced modulo 2) does not change when the direction of L is changed.
So that number depends only on g (and C) and is called the parity of q. Now, the
parity is the same for all points on a simple polygonal arc in R?\ C and hence it is
the same for all points in a region of R?\ C. By considering a half line that
intersects C precisely once we get points of different parity and hence in different
regions. 0O

The unbounded region of a closed curve C is called the exterior of C and is
denoted ext(C). The union of all other regions is the interior and is denoted
int(C). Furthermore, we write

int(C) = CuUint(C) and ext(C) = C U ext(C).
We shall extend Lemma 2.3.

Lemma 2.4. Let C be a simple closed polygonal curve and P a simple polygonal arc
in int(C) such that P joins p and q on C and has no other point in common with C.
Let P, and P, be the two arcs on C from p to q. Then R*\ (C U P) has precisely
three regions whose boundaries are C, P, U P, P, U P, respectively.

Proof: Clearly, ext(C) is a region of R?>\ (C U P). As in the proof of Lemma 2.3
we conclude that the addition of P to C partitions int(C) into at most two regions.
So, we only need to prove that P partitions int(C) into (at least) two regions. Let
L,, L, be crossing line segments such that L, is a segment of P, and L, has
precisely the point in L, N L, in common with C U P. By the proof of Lemma 2.3,
the ends of L, are in int(C) and in distinct regions of R?*\ (P U P)), hence also in
distinct regions of R\ (P U C). O

Lemma 2.4 implies that, if » and s are points on P; \ {p, ¢} and P,\ {p, g},
respectively, then it is not possible to join » and s by a simple polygonal arc in
int(C) without intersecting P. These remarks also hold when ext and int are
interchanged. Hence we get:

Lemma 2.5. K; ; is nonplanar.
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Proof: K, ; may be thought of as a cycle C: x;x,x3x,xsx, with three chords
X1Xg, X3Xs, X3%6. Now if K5 ; were planar we would have a plane drawing such
that all edges are simple polygonal arcs, by Lemma 2.2. Then C would be a simple
closed polygonal curve and two of the chords x,x,, x,xs, x3x, would either be in
int(C) or ext(C). But this would contradict the remark after Lemma 2.4. O

Everything so far is standard and trivial. Now we are ready for the Jordan curve
theorem. We remark again that the proof uses only the nonplanarity of K, ;.

Proposition 2.6. If C is a simple closed curve in the plane, then R*\ C is discon-
nected.

Proof: Let L, (respectively, L,) be a vertical straight line intersecting C such that
C is entirely in the closed right (respectively, left) half plane of L, (respectively,
L,). Let p; be the top point on L; N C for i = 1,2, and let P, and P, be the two
curves on C from p, to p,. Let L, be a vertical straight line between L, and L,.
Since P, N L; and P, N L, are compact and disjoint, L; contains an interval L,
joining P; with P, and having only its ends in common with C. Let Ls be a
polygonal arc from p,; to p, in ext(C) consisting of segments of L,, L, and a
horizontal straight line segment above C. If L, is in ext(C), then there is a simple
polygonal arc L in ext(C) from L, to L. But then C U L, U Ly U L, is a plane
graph isomorphic to Kj ;, contradicting Lemma 2.5. Hence, the midpoint of L,
does not lie in ext(C), so int(C) is nonempty. O

We shall also use the nonplanarity of K, ; to show that int(C) has only one
region. For this we need some graph theoretic facts. First a result on abstract
graphs.

Lemma 2.7. If G is a 2-connected graph and H is a 2-connected subgraph of G, then
G can be obtained from H by successively adding paths such that each of these paths
Joins two distinct vertices in the current graph and has all other vertices outside the
current graph.

Proof: The proof is by induction on the number of edges in E(G) \ E(H). If that
number is zero, that is, G = H, then there is nothing to prove. So assume that
G # H. By the induction hypothesis, Lemma 2.7 holds when the pair G, H is
replaced by another pair G’, H' such that E(G’)\ E(H') has fewer edges than
E(G)\ E(H). Now let H' be a maximal 2-connected proper subgraph of G
containing H. If H' + H we apply the induction hypothesis to H', H and then to
G, H'. So assume that H' = H. Since G is connected, there is an edge x,x, in
E(G)\ E(H) such that x, is in H. Since G — x, is connected, it has a path
P: x,x5 -+ x, such that x, isin H and all x;, 2 <i <k, are not in H. Possibly
k = 2. Since HU P U {x,x,} is 2-connected, we have H U P U {x,x,} = G and
the proof is complete. 0O

If S is a set, then |S| will denote its cardinality.
Lemma 2.8. If T is a plane 2-connected graph with at least three vertices, all of

whose edges are simple polygonal arcs, then R*\ T has |E(I)| — |V(I')| + 2 regions
each of which has a cycle of T as boundary.

120 CARSTEN THOMASSEN [February



Proof: Let C be a cycle in I By Lemma 2.3, Lemma 2.8 holds if ' = C.
Otherwise, I' can be obtained from C by successively adding paths as in Lemma
2.7. Each such path is added in a region. That region is bounded by a cycle and
now we apply Lemma 2.4 to complete the proof. (Lemma 2.4 says that the number
of regions is increased by 1 when a region is subdivided). 0O

For a plane graph T, the regions of R?\ I' will also be called faces of T'. The
unbounded face is the outer face and, if ' is 2-connected, then the boundary of
the outer face is the outer cycle.

The union of two abstract graphs is defined in the obvious way. For plane
graphs we shall make use of a different type of union.

Lemma 2.9. If T, and T, are two plane graphs such that each edge is a simple
polygonal arc, then the union of I'; and T, is a graph T.

Proof: First, let I7 denote the plane graph such that I} is a subdivision of I; and
each edge of I7 is a straight line segment for i = 1,2. Secondly, let I} be the
subdivision of I} such that a point p on an edge a of I7 is a vertex of I'” if either
p is a vertex of I;_, or p is on an edge of I_; that crosses a. Then the usual

union of the graphs I'{ and I’; can play the role of I';. O

If both T'; and I', in Lemma 2.9 are 2-connected and have at least two points in
common, then also I'; is 2-connected.

Lemma 2.10. Let I'},T,, ..., I, be plane 2-connected graphs all of whose edges are
simple polygonal arcs such that T; has at least two points in common with each of
I,_, and T, , and no point in common with any other T; (i =2,3,...,k — 1).

Assume also that '), N\ T, = &. Then any point which is in the outer face of each of
Lul, ILuly --- Iy _; UL, is also in the outer face of T, UT, U --- UT,.

Proof: Suppose p is a point in a bounded face of I U --- UT,. Since
Ihu--- Ul}, is 2-connected, it follows from 2.8 that there is a cycle C in
I U .-+ UTYy such that p € int(C). Choose C suchthat Cisin LU, , U -+ U
[ and such that j — i is minimum. We shall show that j — i < 1. So assume that
J —i>2. Among all cycles in [; U --- U T; having p in the interior we assume
that C is chosen such that the number of edges in C and not in I;_, is minimum.
Since C intersects both I and I;_,, C has at least two disjoint maximal segments
in I;_;; let P be one of these; let P’ be a shortest path in I;_; from P to
C — V(P); the ends of P’ divide C into arcs P, and P,, each of which contains
segments not in I;_,. One of the cycles P’ U P, and P’ U P, contains p in its
interior; it has fewer edges not in I;_, than C has. This contradicts the minimality
of C, so a minimal C does not lie in a minimal union I; UT;,, U -+ U I} with
i<j—-2 O

Proposition 2.11. If P is a simple arc in the plane, then R*\ P is connected.
Proof: Let p, q be two points in R*>\ P and let d be a positive number such that
each of p, g has distance > 3d from P. We shall join p, g by a simple polygonal

arc in R?\ P. Since P is the image of a continuous (and hence uniformly
continuous) map we can partition P into segments P,, P,,..., P, such that P,
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joins p; and p,;,, for i = 1,2,..., k and such that each point on P, has distance
less than d from p; (i = 1,2,...,k — 1). Let d’ be the minimum distance between
P,and P,1<i<j—2 < k — 2. Note that d’ < d. For each i = 1,2,...,k, we
partition P; into segments P, ;, P, 5,..., P, ;. such that P, ; joins p; ; with p; ;,
for j =1, 2 ,k; — 1 and such that each p01nt on P, ; has distance less than
d/4to p; and let I; be the graph which is the union of the boundaries of the
squares that consist of horizontal and vertical line segments of length d’/2 and
have a point p; ; as midpoint. Then the graphs I';, I, ..., I, satisfy the assump-
tion of Lemma 2.10. Hence both of p and g are in the outer face of I'; U --- U T,
(because they are outside the disc of radius 3d and with center p; while I; U I} ;
is inside that disc) and P does not intersect that face. Therefore, p and g can be
joined by a simple polygonal arc disjoint from P. O

If C is a closed subset of the plane and Q is a region of R?\ C, then a point p
in C is accessible from Q if for some (and hence each) point g in (), there is a
simple polygonal arc from g to p having only p in common with C. If C is a
simple closed curve, then p need not be accessible from Q. However, if P is any
arc of C containing p, then Proposition 2.11 implies that R*\ (C \ P) is con-
nected and therefore contains a simple polygonal arc P’ from g to a region of
R?\ C distinct from Q. Then P’ intersects C in a point on P. Since P can be
chosen to be arbitrarily small we conclude that the points on C accessible from
are dense on C. We also get

Theorem 2.12 (The Jordan Curve Theorem). If C is a simple closed curve in the
plane, then R*\ C has precisely two regions, each of which has C as boundary.

Proof: Assume (reductio ad absurdum) that q,, q,, g5 are points in distinct regions
Q,,Q,,Q, of R*\ C. Let Q,, Q,,Q; be pairwise disjoint segments of C. By the
remark following Proposition 2.11, ; has a simple polygonal arc P, ; from g, to
Q; for i,j = 1,2,3. We can assume that P, ;NP ={q;} for j#j. (If we walk
along P, , from Q, towards g; and we hit P 1 in ql # q,, then we can modify P,
such that its last segment is close to the segment of P, from g; to g; and such
that the new P, , has only g; in common with P, ;. P, ; can be modified similarly, if
necessary.) Clearly, P, ;N P, = when i # i We can now extend (by adding a
segment in each of Ql, Q,, Q3) the union of the arcs P, ; (i,j = 1,2,3) to a plane
graph isomorphic to K, ;. This contradicts Lemma 2.5. Thus R?\ C has precisely
two regions ext(C) and int(C). As above, Proposition 2.11 implies that every point
of C is a boundary point of ext(C) and int(C). O

The Jordan Curve Theorem is a special case of the Jordan-Schonflies theorem
which we prove in the next section. For this we shall generalize some of the
previous results. First, Lemma 2.4 generalizes as follows.

Lemma 2.13. Let C be a simple closed curve and P a simple polygonal arc in int(C)
such that P joins p and q on C and has no other point in common with C. Let P, and
P, be the two arcs on C from p to q. Then R*\ (C U P) has precisely three regions
whose boundaries are C, P, U P, and P, U P, respectively.

Proof: As in the proof of Lemma 2.4 the only nontrivial part is to prove that int(C)

is partitioned into (at least) two regions. If the ends of L, (defined as in the proof
of Lemma 2.4) are in the same region of R\ (P U C), then that region contains
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a polygonal arc P; such that P, U L, is a simple closed polygonal curve. By the
proof of Lemma 2.3, the ends of L, are in distinct regions of R?\ (P; U L,). But
they are also in the same region of R?\ (P; U L,) since they are joined by a
simple arc (in P U C) not intersecting P; U L,. This contradiction proves Lemma
213. O

We also generalize Lemma 2.8.

Lemma 2.14. If T is a plane 2-connected graph containing a cycle C (which is a
simple closed curve) such that all edges in T \ C are simple polygonal arcs in int(C),
then R*\T has |E(T)| — [V(I)| + 2 regions each of which has a cycle of T as
boundary.

Proof: The proof is as that of Lemma 2.8 except that we now use Lemma 2.13
instead of Lemma 2.4. O

Finally, we shall use the fact that Lemma 2.9 remains valid if I’} and I, are
plane graphs whose intersection contains a cycle C such that all edges in I'; or I,
(not in C) are simple polygonal arcs in int(C).

3. THE JORDAN-SCHONFLIES THEOREM. If C and C’ are simple closed
curves and T and I" are 2-connected graphs consisting of C (respectively, C') and
simple polygonal arcs in int(C) (respectively, int(C")), then T' and I" are said to be
plane-isomorphic if there is an isomorphism of I' to I" such that a cycle in T is a
face boundary of T iff the image of the cycle is a face boundary of I and such
that the outer cycle of I" is mapped onto the outer cycle of I".

Theorem 3.1. If f is a homeomorphism of a simple closed curve C onto a simple
closed curve C', then f can be extended into a homeomorphism of the whole plane.

Proof: Without loss of generality we can assume that C’ is a convex polygon. We
shall first extend f to a homeomorphism of int(C) to int(C’). Let B denote a
countable dense set in int(C) (for example the points with rational coordinates).
Since the points on C accessible from int(C) are dense on C, there exists a
countable dense set 4 in C consisting of points accessible from int(C). Let
Py, P2, .. be asequence of points in 4 U B such that each point in 4 U B occurs
infinitely often in that sequence. Let I', denote any 2-connected graph consisting
of C and some simple polygonal arcs in int(C). Let T}, be a graph consisting of C’
and simple polygonal arcs in int(C’) such that T, and T} are plane-isomorphic
(with isomorphism g) such that g, and f coincide on C N V(I}). We now extend
f to C U V(T,) such that g, and f coincide on V(T)). We shall define a sequence
of 2-connected graphs I),I',, [, ... and I}, ... such that, foreach n > 1, T}, is
an extension of a subdivision of T, _,, I, is an extension of a subdivision of I _,,
there is a plane isomorphism g, of I, onto I, coinciding with g,_, on V(I _)),
and T, (respectively I) consists of C (respectively C') and simple polygonal arcs
in int(C) (respectively int(C")). Also, we shall assume that I\ C’ is connected for
each n. We then extend f to C U V(T,) such that f and g, coincide on V(T),).
Suppose we have already defined T, T,...,0T,_,, Iy I, ..., 1,_,, and
80> 815+ &n_y- We shall define T}, I, and g, as follows. We consider the point
p,- If p, € A, then we let P be a simple polygonal arc from p, to a point g, of
[,_,\C suchthat I,_, nP={p,,q,). Welet I, denote the graph [,,_, UP. P
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