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returning step by step to M, we see that M itself can be colored with
five colors. This completes the proof. Note that this proof is con-
structive, in that it gives a perfectly practicable, although wearisome,
method of actually coloring any map with » regions in a finite number
of steps.

2. The Jordan Curve Theorem for Polygons

The Jordan curve theorem states that any simple closed curve C
divides the points of the plane not on C into two distinct domains (with
no points in common) of which C is the common boundary. We shall
give a proof of this theorem for the case where C is a closed polygon P.

We shall show that the points of the plane not on P fall into two
classes, A and B, such that any two points of the same class can be
joined by a polygonal path which does not cross P, while any path
joining a point of 4 to a point of B must cross P. The class 4 will
form the ‘“‘outside” of the polygon, while the class B will form the
“inside.”

We begin the proof by choosing a fixed direction in the plane, not
parallel to any of the sides of P. Since P has but a finite number of
sides, this is always possible. We now define the classes A and B as
follows:

The point p belongs to A if the ray through p in the fixed direction
intersects P in an even number, 0, 2, 4, 6, - -, of points. The point p
belongs to B if the ray through p in the fixed direction intersects P in
an odd number, 1, 3, 5, . .., of points.

With regard to rays that intersect P at vertices, we shall not count an
intersection at a vertex where both edges of P meeting at the vertex
are on the same side of the ray, but we shall count an intersection at
a vertex where the two edges are on opposite sides of the ray. We shall
say that two points p and ¢ have the same ‘“parity” if they belong to
the same class, A or B,
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Fig. 148. Counting intarvections.
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First we observe that all the points on any line segment not inter-
secting P have the same parity. For the parity of a point p moving
along such a segment can only change when the ray in the fixed direction
through p passes through a vertex of P, and in neither of the two
possible cases will the parity actually change, because of the agreement
made in the preceding paragraph. From this it follows that #f any
point py of A s joined to a point pa of B by a polygonal path, then this path
must intersect P, for otherwise the parity of alt the points of the path,
and in particular of p, and p;, would be the same. Moreover, we can
show that any two points of the same class, A or B, can be joined by a
polygonal path which does not intersect P. Call the two points p and q.
If the straight segment pg joining p to ¢ does not intersect P it is the
desired path. Otherwise, let p’ be the first point of intersection of this
segment with P, and let ¢’ be the last such point (Fig. 149). Construct
the path starting from p along the segment pp’, then turning off just
before p’ and following along P until P returns to pg at ¢’. If we can
prove that this path will intersect pg between ¢’ and ¢, rather than
between p’ and ¢’, then the path may be continued to ¢ along ¢’'q without
intersecting P. It is clear that any two points r and s near enough to
each other, but on opposite sides of some segment of P, must have
different parity, for the ray through r will intersect P in one more point
than will the ray through s. Thus we see that the parity changes as
we cross the point ¢’ along the segment pg. It follows that the dotted
path crosses pg between ¢’ and ¢, since p and ¢ (and hence every point
on the dotted path) have the same parity.
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Fig. 149.

This completes the proof of the Jordan curve theorem for the case
of a polygon P. The “outside” of P may now be identified as the
class A, since if we travel far enough along any ray in the fixed direction
we shall come to a point beyond which there will be no intersection
with P, so that all such points have parity 0, and hence belong to A.
This leaves the “inside’” of P identified with the class B. No matter
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how twisted the simple closed polygon P, we can always determine
whether a. given point p of the plane is inside or outside P by drawing a
ray and counting the number of intersections of the ray with P. If this
number is odd, then the point p is imprisoned within P, and cannot
escape without crossing P at some point. If the number is even, then
the point p is outside P. (Try this for Figure 128.)

*Onc may also prove the Jordan curve theorem for polygons in the following
way: Define the order of a point p, with respect to any closed curve C which does
not pass through p, as the net number of complete revolutions made by an arrow
joining po to a moving point p on the curve as p traverses the curve once. Let

A = all points po not on P and with even order with respect to P,

B = all points po not on P and with odd order with respect to P.
Then A and B, thus defined, form the outside and inside of P respectively. The
carrying out of the details of this proof is left as an exercise,

**3. The Fundamental Theorem of Algebra
The “fundamental theorem of algebra’” states that if
(1) f@) =2+ ansz" " + @uoz" " + ... + @z + &,

where n > 1, and @a-1, @p-2, --- , G are any complex numbers, then
there exists a complex number a such that f(a) = 0. In other words,
in the field of complex numbers every polynomial equation has a roof. (On
p. 102 we drew the conclusion that f(z) can be factored into n linear

factors:
f&) = (e — a)e — ar) - (2 — an),

where a; , @2, « - - , @n are the zeros of f(z).) It is remarkable that this
thcorem can be proved by considerations of a topological character,
related to those used in proving the Brouwer fixed point theorem.

The reader will recall that a complex number is a symbol =z + i,
where z and y are real numbers and i has the property that i = —1.
The complex number z 4+ yi may be represented by the point in the
plane whose codrdinates with respeet to a pair of perpendicular axes
are z, y. If we introduce polar coérdinates in this plane, taking the
origin and the positive direction of the z-axis as pole and prime direction
respectively, we may write

=z 4+ yi = r (cos 6 + ¢ sin ),
where r = /12 + 32 It follows from De Moivre’s formula that

2" = r" (cos nf + 7 sin nd).



