Applications of algebra to a problem in topology
Joint work with

Mike Hill

and

Doug Ravenel
Pontryagin (1930’s)
Pontryagin (1930’s)

cobordism group of stably framed k-manifolds

\[\pi_{n+k} S^n, n \gg 0 \]
Pontryagin (1930’s)

\[\pi_0 S^0 = \mathbb{Z} \]

\[\pi_1 S^0 = \mathbb{Z}/2 \]
Pontryagin (1930s) \(k=2 \)
Pontryagin (1930s) $k=2$
Pontryagin (1930s) \(k = 2 \)
Pontryagin (1930s) This defines a function

\[\varphi : H_1(M; \mathbb{Z}/2) \rightarrow \mathbb{Z}/2 \]

If genus \(M > 0 \), dimension \(\dim H_1(M) > 1 \) and so

\[\ker \varphi \neq 0 \]

You can always lower the genus with surgery
Pontryagin (?)

φ is not linear

it's quadratic and refines the intersection pairing
Pontryagin (?)

\[\Phi(\Sigma) = Ar f(\varphi) \]

\[\pi_2 S^0 = \mathbb{Z}/2 \]
Kervaire (1960)

\[M = M^{4k+2} \] (framed)

defined \(\varphi : H^{2k+1}(M; \mathbb{Z}/2) \to \mathbb{Z}/2 \)

quadratic refinement of the intersection pairing

\[\Phi(M) = Arf(\varphi) \]

showed \(\Phi(M^{10}) = 0 \)
Kervaire (1960)

produced a piecewise linear N^{10}

with $\Phi(N^{10}) \neq 0$

hence N^{10} has no smooth structure
Browder (1969)

\[n \neq 2^j - 1 \quad \Phi(M^{2n}) = 0 \]

\[n = 2^j - 1 \quad \Phi(M^{2n}) \neq 0 \]

\[\iff \quad \text{there exists} \quad \theta_j \in \pi_{2^j+2-2}S^0 \]

\[\text{represented by} \quad h_j^2 \in \text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \]
The elements θ_j exist for $j = 1, 2, 3, 4, 5$ dimensions $2, 6, 14, 30, 62$.

so the first open dimension is 126
The Kervaire invariant problem

In which dimensions can \(\Phi(M) \) be non-zero?
Doomsday Theorem (Hill, H., Ravenel)

If $\Phi(M^n) \neq 0$ then $n = 2, 6, 14, 30, 62$ or 126

In other words θ_j does not exist for $j \geq 7$
Adams Spectral Sequence

Adams-Novikov Spectral Sequence

h^2_j

θ_j

Something easier to compute

K-theory

Tuesday, April 21, 2009
Adams Spectral Sequence

Adams-Novikov Spectral Sequence

Something easier to compute

K-theory
\[H^s(\mathbb{Z}/2; K_t) \implies KO_{t-s} \]
for $j \geq 2$, θ_j supports a non-zero differential
Adams Spectral Sequence

Adams-Novikov Spectral Sequence

$c + \theta_j$

h^2_j

Something easier to compute

Tuesday, April 21, 2009
periodicity Theorem

Rochlin’s Theorem
K-theory and reality (Atiyah, 1966)

\[X \] space with a \(\mathbb{Z}/2 \) action

\[KR(X) \] vector bundles with compatible conjugate-linear action

\[KR(X) \cong KR(X \wedge S^{n,n}) \]

\[S^{n,n} = \mathbb{C}^n \]
Assemble K-theory
from the equivariant
chains on $S^{n,n}$
slice filtration
periodicity

$\theta_1 \quad \theta_2 \quad \theta_3$
level 5 topological modular forms

Like KR with $\mathbb{Z}/4$ instead of $\mathbb{Z}/2$
$j \geq 4$

2 below the period

θ_{j}

the period
Assemble tmf(5) from the equivariant chains on \(S^m \rho_4 \)

\(\rho_4 \) the 4 dimensional real regular representation of \(\mathbb{Z}/4 \)
2 below the period

the period
gap + periodicity

differentials on the θ_j
The actual proof

Step 1: Use $\mathbb{Z}/8$ and an appropriate cohomology theory

Step 2: Show that all the choices of θ_j are distinguished

Step 3: Prove a gap theorem (easy)

Step 4: Prove a periodicity theorem (of period 256)
Relation to Geometry/Physics?

4 dimensional field theory?

generalization of Clifford algebras with periodicity of $2^8 \cdot 3^3 \cdot 5 = 34,560$

(maybe twice that)
Given a real manifold M^{2d} whose fixed point space N bounds an unoriented manifold, find a cobordism invariant of M which, when $N = \emptyset$ is

$$\int_{M/(\mathbb{Z}/2)} \omega_1^{2d}$$