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This volume is the proceedings of the Mini-Workshop Exotic Homology mani-
folds held at Oberwolfach 29th June - 5th July, 2003.

Homology manifolds were developed in the flrst half of the 20th century to give
a precise setting for Poincar¶e’s ideas on duality. Major results in the second
half of the century came from two difierent areas. Methods from the point-set
tradition were used to study homology manifolds obtained by dividing genuine
manifolds by families of contractible subsets. \Exotic" homology manifolds are
ones that cannot be obtained in this way, and these have been investigated
using algebraic and geometric methods.

The Mini-Workshop brought together experts from the point-set and algebraic
traditions, along with new Ph.D.s and people in related areas. There were 17
participants, 14 formal lectures and a problem session. There was a particular
focus on the proof of the existence of exotic homology manifolds. This gave
experts in each area an the opportunity to learn more about details coming from
other areas. There had also been concerns about the stability (\shrinking")
theorem that in retrospect is a crucial step in the proof but had not been
worked out when the theorem was originally announced. This was discussed in
detail. One of the high points of the conference was the discovery of a short and
very general new proof of this result by Pedersen and Yamasaki (published in
these proceedings), so there are now three independent treatments. Extensive
discussions of examples and problems clarifled the current state of the fleld and
mapped out objectives for the next decade.

A Mini-Workshop on history entitled \Henri Poincar¶e and topology" was held
during the same week. There was joint discussion of the early history of mani-
folds, and each group ofiered evening lectures on topics of interest to the other.
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Several of the daytime history lectures also drew large numbers of homology
manifold participants. The interaction between the two groups was very bene-
flcial and should serve as a model for future such synergies.

We are grateful to the Oberwolfach Mathematics Institute for hosting the meet-
ing, and to the participants, authors and the referees for their contributions.

F.Q., A.R.

August, 2005
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Homologically arc-homogeneous ENR’s

J. L. Bryant

Abstract

In this note we prove that an arc-homogeneous ENR is a homology manifold.

AMS Classiflcation 57P05 ; 55T05

Keywords homology manifolds, homogeneity

1 Introduction

The so-called Modifled Bing-Borsuk Conjecture, which grew out of a question
in [1], asserts that a homogeneous euclidean neighborhood retract is a homology
manifold. At this miniworkshop on exotic homology manifolds, Frank Quinn
asked whether a space that satisfles a similar property, which he calls homolog-
ical arc-homogeneity, is a homology manifold. The purpose of this note is to
show that the answer to this question is yes.

2 Statement and Proof of the Main Result

Theorem 2.1 Suppose X is an n-dimensional homologically arc-homogeneous
ENR. Then X is a homology n-manifold.

Deflnitions. A homology n-manifold is a space X having the property that
for each x 2 X ,

Hk(X; X ¡ x;Z) »=
(
Z k = n

0 k 6= n:

A euclidean neighborhood retract (ENR) is a space homeomorphic to a closed
subset of euclidean space that is a retract of some neighborhood of itself.
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2 J. L. Bryant

A space X is homologically arc-homogeneous provided that for every path
fi : [0; 1] ! X , the inclusion induced map

H⁄(X £ 0; X £ 0 ¡ (fi(0); 0)) ! H⁄(X £ I; X £ I ¡ ¡(fi))

is an isomorphism, where ¡(fi) denotes the graph of fi. The local homology
sheaf in dimension k , Hk , on a space X is the sheaf with stalks Hk(X; X ¡x),
x 2 X .

By Theorem 15.2 of Bredon [2], if an n-dimensional space X is cohomologi-
cally locally connected (over Z), has flnitely generated local homology groups,
Hk(X; X ¡ x), for each k , and if each Hk is locally constant, then X is a
homology manifold. We shall show that an n-dimensional, homologically arc-
connected ENR satisfles the hypotheses of Bredon’s theorem.

Assume from now on that X represents an n-dimensional, homologically arc-
homogeneous ENR. Unless otherwise specifled, all homology groups are as-
sumed to have integer coe–cients. The following lemma is a straightforward
application of the deflnition and the Meyer-Vietoris theorem.

Lemma 2.2 Given a path fi : [0; 1] ! X and t 2 [0; 1], the inclusion induced
map

H⁄(X £ t; X £ t ¡ (fi(t); t)) ! H⁄(X £ I; X £ I ¡ ¡(fi))

is an isomorphism.

Given points x; y 2 X , an arc fi : I ! X from x to y , and an integer k ‚ 0,
let fi⁄ : Hk(X; X ¡ x) ! Hk(X; X ¡ y) be deflned by the composition

Hk(X; X ¡ x)
£0 // H⁄(X £ I; X £ I ¡ ¡(fi)) Hk(X; X ¡ y):

£1oo

Clearly (fi¡1)⁄ = fi¡1⁄ and (fifl)⁄ = fl⁄fi⁄ , whenever fifl is deflned.

Lemma 2.3 Given x 2 X and · 2 Hk(X; X ¡ x), there is a neighborhood
U of x in X such that if fi and fl are paths in U from x to y , then fi⁄(·) =
fl⁄(·) 2 Hk(X; X ¡ y).

Proof We will prove the equivalent statement: for each x 2 X and · 2
Hk(X; X ¡ x), there is a neighborhood U of x such that if fi is a loop in U

based at x, then fi⁄(·) = · .

Suppose x 2 X and · 2 Hk(X; X ¡ x). Since Hk(X; X ¡ x) is the direct limit
of the groups Hk(X; X ¡ W ), where W ranges over the (open) neighborhoods
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Homologically arc-homogeneous ENR’s 3

of x in X , there is a neighborhood U of x and an ·U 2 Hk(X; X ¡ U) that
goes to · under the inclusion Hk(X; X ¡ U) ! Hk(X; X ¡ x).

Suppose fi is a loop in U based at x. Let ·fi 2 Hk(X £ I; X £ I ¡ ¡(fi)) corre-

spond to · under the isomorphism Hk(X; X ¡ x)
£0 // Hk(X £ I; X £ I ¡ ¡(fi))

guaranteed by homological arc-homogeneity.

Let ·U£I = ·U £ 0 2 Hk(X £ I; X £ I ¡ U £ I). Then the image of ·U£I in
Hk(X £ I; X £ I ¡¡(fi)) is ·fi , as can be seen by chasing the following diagram
around the lower square.

Hk(X; X ¡ U) //

»= £1
²²

Hk(X; X ¡ x)

£1»=
²²

Hk(X £ I; X £ I ¡ U £ I) // Hk(X £ I; X £ I ¡ ¡(fi))

Hk(X; X ¡ U) //

»= £0

OO

Hk(X; X ¡ x)

£0»=
OO

But from the upper square we see that ·fi must also come from · after including
into X £ 1. That is, fi⁄(·) = · .

Corollary Suppose the neighborhood U above is path connected and F is the
cyclic subgroup of Hk(X; X ¡ U) generated by ·U . Then, for every y 2 U , the
inclusion Hk(X; X ¡U) ! Hk(X; X ¡y) takes F one-to-one onto the subgroup
Fy generated by fi⁄(·), where fi is any path in U from x to y .

Lemma 2.4 Suppose x; y 2 X and fi and fl are path-homotopic paths in X

from x to y . Then fi⁄ = fl⁄ : Hk(X; X ¡ x) ! Hk(X; X ¡ y).

Proof By a standard compactness argument it su–ces to show that, for a
given path fi from x to y and element · 2 Hk(X; X ¡ x), there is an † > 0
such that fi⁄(·) = fl⁄(·) for any path fl from x to y †-homotopic (rel fx; yg)
to fi.

Given a path fi from x to y , · 2 Hk(X; X ¡ x), and t 2 I , let Ut be a path-
connected neighborhood of fi(t) associated with (fit)⁄(·) 2 Hk(X; X ¡ fi(t))
given by Lemma 2.3, where fit is the path fij[0; t]. There is a subdivision f0 =
t0 < t1 < ¢ ¢ ¢ < tm = 1g of I such that for each i = 1; :::; m, fi([ti¡1; ti]) µ Ui

where Ui = Ut for some t. There is an † > 0 so that if H : I £ I ! X is an
†-path-homotopy from fi to a path fl , then H([ti¡1; ti] £ I) µ Ui .

Geometry & Topology Monographs, Volume X (20XX)



4 J. L. Bryant

For each i = 1; :::; m, let fii = fij[ti¡1; ti] and fli = flj[ti¡1; ti], and for i =
0; :::; m, let °i = Hjti £ I and ·i = (fiti)⁄(·). By Corollary 2

(fii)⁄(·i¡1) = (°i¡1fli°
¡1
i )⁄(·i¡1) = ·i

(where ·0 = ·). Since °0 and °n are the constant paths, it follows easily that

fi⁄(·) = (fin)⁄ ¢ ¢ ¢ (fi1)⁄(·) = (fln)⁄ ¢ ¢ ¢ (fl1)⁄(·) = fl⁄(·):

Proof of Theorem 2.1 As indicated at the beginning of this note, we need
only show that the hypotheses of Theorem 15.2 of [2] are satisfled.

Since X is an ENR, X is locally contractible, hence, cohomologically locally
connected over Z.

Given x 2 X , let W be a path-connected neighborhood of x such that W is
contractible in X . If fi and fl are two paths in W from x to a point y 2 W , then
fi and fl are path-homotopic in X . Hence, by Lemma 2.4, fi⁄ : Hk(X; X ¡x) !
Hk(X; X ¡ y) is a well-deflned isomorphism that is independent of fi for every
k ‚ 0. Hence, HkjW is the constant sheaf, and so Hk is locally constant.

Finally, we need to show that the local homology groups of X are flnitely
generated. This can be seen by working with a mapping cylinder neighborhood
of X . Assume X is nicely embedded in Rn+m , for some m ‚ 3, so that X has a
mapping cylinder neighborhood N = C` of a map ` : @N ! X , with mapping
cylinder projection … : N ! X [3]. Given a subset A µ X , let A⁄ = …¡1(A)
and _A = `¡1(A).

Lemma 2.5 If A is a closed subset of X , then Hk(X; X¡A) »= •Hn+m¡k
c (A⁄; _A):

Proof Suppose A is closed in X . Since … : N ! X is a proper homotopy
equivalence,

Hk(X; X ¡ A) »= Hk(N; N ¡ A⁄):

Since @N is collared in N ,

Hk(N; N ¡ A⁄) »= Hk(intN; intN ¡ A⁄);

and by Alexander duality,

Hk(intN; intN ¡ A⁄) »= •Hn+m¡k
c (A⁄ ¡ _A)

»= •Hn+m¡k
c (A⁄; _A)

(since _A is also collared in A⁄ ).
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Homologically arc-homogeneous ENR’s 5

Since X is n-dimensional, we get the following

Corollary If A is a closed subset of X , then •Hq
c (A⁄; _A) = 0, if q < m or

q > n + m:

Thus, the local homology sheaf Hk of X is isomorphic to the Leray sheaf
Hn+m¡k of the map … : N ! X whose stalks are •Hn+m¡k(x⁄; _x). For each k ‚
0, this sheaf is also locally constant, so there is a path-connected neighborhood
U of x such that HqjU is constant for all q ‚ 0. Given such a U , there is
a path-connected neighborhood V of x lying in U such that the inclusion of
V into U is null-homotopic. Thus, for any coe–cient group G, the inclusion
H

p
c (U; G) ! H

p
c (V; G) is zero if p 6= 0 and is an isomorphism for p = 0.

The Leray spectral sequences of …j…¡1(U) and …j…¡1(V ) have E2 terms

E
p;q
2 (U) »= Hp

c (U ; Hq); E
p;q
2 (V ) »= Hp

c (V ; Hq)

and converge to

Ep;q
1 (U) »= Hp+q

c (U⁄; _U ;Z); Ep;q
1 (V ) »= Hp+q

c (V ⁄; _V ;Z);

respectively (Theorem 6.1 of [2]). Since the sheaf Hq is constant on U and V ,
H

p
c (U ; Hq) and H

p
c (V ; Hq) represent ordinary cohomology groups with coe–-

cients in Gq
»= •Hq(x⁄; _x):

By naturality, we have the commutative diagram

E
0;q
2 (U) //

»=
²²

E
2;q¡1
2 (U)

0
²²

E
0;q
2 (V ) // E2;q¡1

2 (V )

which implies that the difierential d2 : E
0;q
2 (V ) ! E

2;q¡1
2 (V ) is the zero map.

Hence,

E
0;q
3 (V ) = ker(E0;q

2 (V ) ! E
2;q¡1
2 (V ))=im(E¡2;q+1

2 (V ) ! E
0;q
2 (V )) = E

0;q
2 (V );

and, similarly, E
0;q
3 (V ) = E

0;q
4 (V ) = ¢ ¢ ¢ = E

0;q1 (V ): Thus,

E0;q
1 (V ) »= Hq

c (V ⁄; _V ;Z) »= E
0;q
2 (V ) »= H0

c (V ; Hq) »= H0
c (V ; Gq) »= Gq:

Applying the same argument to the inclusion (x⁄; _x) µ (V ⁄; _V ) yields the com-
mutative diagram

E
0;q
2 (V ) //

»=
²²

E
2;q¡1
2 (V )

0
²²

E
0;q
2 (x) // E2;q¡1

2 (x)
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6 J. L. Bryant

which, in turn, gives

Gq
»= H0

c (V ; Gq)
»= //

»=
²²

H
q
c (V ⁄; _V ;Z)

²²
Gq

»= H0(x; Gq)
»= // Hq(x⁄; _x;Z) »= Gq

from which it follows that the inclusion Hq(V ⁄; _V ;Z) ! Hq(x⁄; _x;Z) »= Gq is
an isomorphism. Since (x⁄; _x) is a compact pair in the manifold pair (V ⁄; _V ),
it has a compact manifold pair neighborhood (W; @W ). Since the inclusion
Hq(V ⁄; _V ) ! •Hq(x⁄; _x) factors through Hq(W; @W ), its image is flnitely gen-
erated for each q . Hence, Hk(X; X ¡ x) »= •Hn+m¡k(x⁄; _x) is flnitely generated
for each k .

The following theorem, which may be of independent interest, emerges from
the proof of Theorem 2.1.

Theorem 2.6 Suppose X is an n-dimensional ENR whose local homology
sheaf Hk is locally constant for each k ‚ 0. Then X is a homology n-manifold.

References

[1] R.H. Bing and K. Borsuk, Some remarks concerning topologically homoge-
neous spaces, Ann. of Math. 81 (2) (1965), 100 - 111.

[2] G. Bredon, Sheaf Theory, McGraw-Hill, New York, 1967.

[3] R. Miller, Mapping cylinder neighborhoods of some ANR’s, Ann. of Math. (2)
103(1976), 417{427.

3005 Brandemere Drive
Tallahassee, FL 32312

Email: bryant@math.fsu.edu

Geometry & Topology Monographs, Volume X (20XX)



ISSN numbers are printed here 7

Geometry & Topology Monographs
Volume X: Volume name goes here

Pages 7{15

Path concordances as detectors of codimension one
manifold factors

Robert J. Daverman
Denise Halverson

Abstract We present a new property, the Disjoint Path Concordances
Property, of an ENR homology manifold X which precisely characterizes
when X £R has the Disjoint Disks Property. As a consequence, X £R is
a manifold if and only if X is resolvable and it possesses this Disjoint Path
Concordances Property.

AMS Classiflcation 57N15; 57P05; 54B15; 57N70; 57N75

Keywords Disjoint Disks Property; Disjoint Homotopies Property; Con-
cordance; Manifold factor; Homology manifold; Resolvable; Disjoint Arcs
Property

1 Introduction

Back in the 1950s R. H. Bing showed that his nonmanifold "dogbone space" [1]
is a Cartesian factor of Euclidean 4-space [2]. Since then topologists have sought
to understand which spaces are factors of manifolds. It is now known that the
manifold factors coincide with those ENR homology manifolds which admit a
cell-like resolution by a manifold; equivalently, they are the ENR homology
manifolds of trivial Quinn index [10] [13]. In particular, if X has trivial Quinn
index then X £Rk is a manifold for k ‚ 2. Whether X £R itself is necessarily
a manifold stands as a fundamental unsettled question.

Several properties of a manifold factor X of dimension n assure that its product
with R is a manifold. Among them are: (1) the singular (or nonmanifold) subset
S(X) of X { namely, the complement of the maximal n-manifold contained in
X { has dimension at most n-2, n ‚ 4 [4, Theorem 10.1]; (2) there exists a cell-
like map f : M ! X deflned on an n-manifold such that dimfx 2 Xjf¡1(x) 6=
pointg • n ¡ 3 [7, Theorem 3.3]; (3) there exists a topologically embedded
(n-1)-complex or ENR homology (n-1)-manifold K with S(X) ‰ K ‰ X

[8, Corollaries 26.12A-12B]; (4) X arises from a nested deflning sequence, as

Copyright declaration is printed here



8 Robert J. Daverman and Denise Halverson

deflned by Cannon and Daverman [5] [8, Chapter 34], for the decomposition
into point inverses induced by a cell-like map f : M ! X , and (5) X has the
Disjoint Arc-Disk Property of [8, p. 193]. Condition (5) is implied by either
(1) or (2) but not by (3) or (4).

More pertinent to issues addressed in this manuscript, Halverson [11, Theorem
3.4] proved that if an ENR homology n-manifold X , n ‚ 4, has a certain
Disjoint Homotopies Property, deflned in the next section and abbreviated as
DHP, then X £ R has the more familiar Disjoint Disks Property, henceforth
abbreviated as DDP. Because the DDP characterizes resolvable ENR homology
manifolds of dimension n ‚ 5 as manifolds [10] [8, Theorem 24.3], it follows that
X £R is a genuine manifold if X is resolvable and has this DHP. Still unknown
are both whether all such ENR homology manifolds have DHP and whether X

having said DHP is a necessary condition for X £ R to be a manifold.

Since an ENR homology n-manifold X; n ‚ 4; has DHP if it satisfles any of the
properties mentioned in the second paragraph except (3), the sort of homology
manifolds that might fail to have it are the ghastly examples of [9]. Halverson
[12] has constructed some related ghastly examples that do have DHP.

In hopes of better understanding the special codimension one manifold factors,
this paper builds on Halverson’s earlier work to present a necessary and su–-
cient condition, the Disjoint Path Concordances Property deflned at the outset
of Section 2, for X £ R to be a manifold (again provided dim X ‚ 4).

2 Preliminaries

Throughout what follows both D and I stand for the unit interval, [0,1]. A
metric space X is said to have the Disjoint Homotopies Property if any pair of
path homotopies fi : D £ I ! X (i = 1; 2) can be approximated, arbitrarily
closely, by homotopies gi : D £ I ! X such that

g1(D £ t) \ g2(D £ t) = ;, for all t 2 I .

Deflnition A path concordance in a space X is a map F : D £ I ! X £ I

such that F (D £ e) ‰ X £ e; e 2 f0; 1g:

Let projX : X £ I ! X denote projection.

Deflnition A metric space (X; ‰) satisfles the Disjoint Path Concordances
Property (DCP) if, for any two path homotopies fi : D £ I ! X (i = 1; 2) and
any † > 0, there exist path concordances Fi : D £ I ! X £ I such that

Geometry & Topology Monographs, Volume X (20XX)



Path concordances as detectors of codimension one manifold factors 9

F1(D £ I) \ F2(D £ I) = ;
and ‰(fi; projXFi) < †.

A homology n-manifold X is a locally compact metric space such that H⁄(X; X¡
fxg;Z) »= H⁄(Rn;Rn ¡ foriging;Z) for all x 2 X . An ENR homology n-
manifold X is an homology n-manifold which is homeomorphic to a retract of
an open subset of some Euclidean space (ENR is the abbreviation for "Euclid-
ean neighborhood retract"); equivalently, X is a homology n-manifold which
is both flnite dimensional and locally contractible.

A homology n-manifold X is resolvable provided there exists a surjective, cell-
like mapping f : M ! X deflned on an n-manifold M . Quinn [13] has shown
that (connected) ENR homology n-manifolds X , n ‚ 4, are resolvable if and
only if a certain index i(X) 2 1 + 8Z equals 1.

A metric space X has the Disjoint Arcs Property (DAP) if every pair of maps
fi : D ! X (i = 1; 2) can be approximated, arbitrarily closely, by maps
gi : D ! X for which g1(D) \ g2(D) = ;. All ENR homology n-manifolds,
n ‚ 3, have the DAP.

The following Homotopy Extension Theorem is fairly standard. We state it
here because it will be applied several times in our arguments.

Theorem 2.1 (Controlled Homotopy Extension Theorem(CHET)) Suppose
X is a metric ANR, C is a compact subset of X , j : C ! X is the inclusion
map, and † > 0. Then there exists – > 0 such that for each map f : Y ! C

deflned on a normal space Y , each closed subset Z of Y , and each map gZ :
Z ! X which is – -close to jf jZ , gZ extends to a map g : Y ! X which is
†-homotopic to jf . In particular, for any open set U for which Z ‰ U ‰ Y ,
there is a homotopy H : Y £ I ! X such that

(1) H0 = jf and H1 = g

(2) gjZ = gZ

(3) HtjY ¡U = jf jY ¡U for all t 2 I

(4) diam(H(y £ I)) < † for all y 2 Y .

3 Main Results

In this section we will demonstrate that DCP characterizes codimension one
manifold factors among ENR homology n-manifolds, n ‚ 4, of trivial Quinn
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10 Robert J. Daverman and Denise Halverson

index. Essentially the DCP condition requires that any pair of level preserving
path homotopies into X £ I can be \approximated" by disjoint path concor-
dances, where the approximation is measured in the X factor. The following
crucial proposition demonstrates that the DCP condition implies that any pair
of level preserving path homotopies can be approximated, as measured in X£I ,
by disjoint path concordances.

Proposition 3.1 Suppose that (X; ‰) is a metric ANR with DAP. Then X

has DCP if and only if given any pair of level preserving maps fi : D£I ! X£I

(i = 1; 2) and † > 0 there are maps gi : D £ I ! X £ I such that

(1) fi and gi are †-close in X £ I ,

(2) gijD£@I is level preserving, and

(3) g1(D £ I) \ g2(D £ I) = ;.

Moreover, if f1(D £ @I) \ f2(D £ @I) = ;, then we also may require that
gijD£@I = fijD£@I .

Proof Assume X has DCP. Use e‰ to denote the obvious sum metric on X £I .
Let fi : D £ I ! X £ I (i = 1; 2) be level preserving maps and let † > 0.
Choose 0 = t0 < t1 < : : : < tm = 1 such that tk ¡ tk¡1 < †=2 for k = 1 : : : m.
Deflne Jk = [tk; tk¡1] and fi[k] = fijD£Jk

. Since X has DAP then applying
Theorem 2.1 (CHET) (near projX(f1(D £I)[f2(D £I))) we may assume that
f1(D £ tk) \ f2(D £ tk) = ;. Choose · > 0 so that e‰(f1(D £ tk); f2(D £ tk)) >

· for k = 1; :::; n. Let – > 0 satisfy CHET for X £ I , a small compact
neighborhood C of f1(D £ I) [ f2(D £ I) and minf·=2; †=2g, (i = 1; 2). Then
by DCP, applied to the intervals Jk , there are maps gi[k] : D £ Jk ! X £ Jk

satisfying

(1) gi[k](D £ Jk) ‰ C ,

(2) ‰(projXfi[k]; projXgi[k]) < – ,

(3) gi[k]jD£@Jk
is level preserving, and

(4) g1[k](D £ Jk) \ g2[k](D £ Jk) = ;.

By CHET and the choice of – there are maps Gi[k] : D£Jk ! X £Jk satisfying

(1) ‰(projXfi[k]; projXGi[k]) < †=2,

(2) Gi[k]jD£@Jk
= fi[k]jD£@Jk

, and

(3) G1[k](D £ Jk) \ G2[k](D £ Jk) = ;.

Geometry & Topology Monographs, Volume X (20XX)



Path concordances as detectors of codimension one manifold factors 11

Set Gi =
S

k Gi[k]. Conflrming that G1 and G2 are the desired maps is straight-
forward.

The reverse direction is trivial. It merely requires treating any pair of path
homotopies D £ I ! X as level preserving maps D £ I ! X £ I:

Deflnition A metric space (X; ‰) satisfles the Disjoint 1-Complex Concor-
dances Property (DCP*) if, for any two homotopies fi : Ki £ I ! X (i = 1; 2),
where Ki is a flnite 1-complex, and any † > 0 there exist concordances Fi :
Ki £ I ! X £ I such that

F1(K1 £ I) \ F2(K2 £ I) = ;;

Fi(Ki £ e) ‰ X £ e for e 2 @I , and ‰(fi; projXFi) < †.

Proposition 3.2 Suppose X is a locally compact, metrizeable ANR with
DAP. Then X has DCP if and only if X has DCP*.

Proof This argument is similar to the one showing the equivalence of the DDP
with approximability of maps deflned on flnite 2-complexes by embeddings [8,
Theorem 24.1], and also to another one showing the equivalence of DHP (for
paths) and a Disjoint Homotopies Property for 1-complexes [11, Theorem 2.9].
We supply the short proof for completeness.

To show the forward direction, endow X with a complete metric ‰. Let Ki

(i = 1; 2) be a flnite 1-simplicial complex, and deflne

H = f(f1; f2) 2
Map(K1 £ I; X £ I) £ Map(K2 £ I; X £ I) j fijD£@I is level preservingg

with the uniform metric. Note that H is a complete metric space and, therefore,
a Baire space. For ¾i 2 Ki , let

O(¾1; ¾2) = f(f1; f2) 2 H j f1(¾1 £ I) \ f2(¾2 £ I) = ;g.

Clearly O(¾1; ¾2) is open in H. To see that O(¾1; ¾2) is dense in H, let † > 0.
Choose – > 0 to satisfy CHET for X£I , a small compact neighborhood there of
[ifi(¾i £ I) and †. Then choose · > 0 to satisfy CHET for X; projX([ifi(¾i £
I)) and – . By Proposition 3.1 there are · -approximations gi to fij¾i£I that
are disjoint path concordances. First apply CHET to extend gi over (¾i £ I) [
(Ki £ @I) so that the new gi is level preserving on Ki £ @I and – -close to
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12 Robert J. Daverman and Denise Halverson

fij(¾i£I)[(Ki£@I) . Then apply CHET again to extend gi over Ki £ I so that gi

is now †-close to fi . Thus, O(¾1; ¾2) is dense in H. Since H is a Baire space,

O =
\

(¾1;¾2)2K1£K2

O(¾1; ¾2)

is dense in H. Note that if (f1; f2) 2 O then f1(K1 £ I) \ f2(K2 £ I) = ;.
Hence, X has DCP*.

The other direction is trivial.

Deflnition A topography on D £ I , ¤, consists of the following elements:

(1) A set, fJ1; : : : ; Jmg, of consecutive intervals in R such that Jj = [tj¡1; tj ]
where t0 < t1 < : : : < tm .

(2) A flnite set of complexes fL0; : : : ; Lmg embedded in D £ I of dimension
at most one. These complexes are called the transition levels.

(3) A flnite set of 1-complexes fK1; : : : ; Kmg. These complexes are called
the level factors.

(4) A set of maps, f`j : Kj £Jj ! D£Igj=1;:::;m , which satisfy the following
conditions:

(a) L0 = `1(K1 £ ft0g)

Lm = `m(Km £ ftmg)

Lj = `j(Kj £ ftjg) [ `j+1(Kj+1 £ ftjg) for j = 1; : : : ; m ¡ 1

(b) `j jKj£int Jj
is an embedding for each j = 1; : : : ; m

(c)
Sm

j=1 im (`j) = D £ I

It is shown in [11] that a p.l. general position approximation of the projection
of a map f : D £ I ! X £R to the R factor induces a topographical structure
on the domain D £ I of f .

Deflnition A map f : D £ I ! X £ R is a topographical map if there is a
topography, ¤, on D £ I which is level preserving in the sense that for each
map `j : Kj £ Jj ! D £ I of the topography, f – `j(Kj £ t) ‰ X £ t for all
t 2 Jj .

Note that a topographical structure on D£I is in no way related to the product
structure of D£I . The proof of the following lemma is provided in [11, Theorem
3.3]:
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Lemma 3.3 Every map f : D £ I ! X £ R can be approximated by a
topographical map g : D £ I ! X £ R.

Theorem 3.4 (Disjoint Concordances Theorem) Suppose X is a locally com-
pact, metric ANR with DAP. Then X has DCP if and only if X £R has DDP.

Proof (() Given two path homotopies fi : D £ I ! X (i = 1; 2), treat them
as level preserving maps fi : D£I ! X£I . Applying DAP, and using CHET as
before, we may assume without loss of generality that f1(D£@I)\f2(D£@I) =
;. Since X £ (0; 1) has DDP, fi can be approximated, flxing the actions on
D £ f0; 1g, by †-close maps gi (i = 1; 2) for which the images of g1; g2 are
disjoint. The DCP follows.

()) Given maps fi : I2 = D £ I ! X £R for i = 1; 2, by Lemma 3.3 we may
assume that fi is a topographical map with topography ¤[i]. An object O in
the deflnition of ¤[i] will be denoted as O[i]. Note that we also may assume
the following:

(1) The set of intervals fJj [i]g are the same for i = 1; 2. This follows from
subdividing the intervals appropriately as outlined in [11, Theorem 3.4].

(2) f1(
S

Lj [1]) \ f2(
S

Lj [2]) = ;. This follows from DAP and CHET.

By DCP* there are maps ˆj [i] : Kj [i] £ Jj approximating `jfi such that
imˆj [1]\imˆj [2] = ;. Applying Theorem 2.1, we may assume that ˆj [i]jKj [i]£@Jj

=
`jfijKj [i]£@Jj

. (Recall that `jfi(Kj [i] £ @Jj) ‰ (Lj [ Lj¡1).) Set gi =
S
j

ˆj [i]).

Then g1 and g2 are the desired disjoint approximations of f1 and f2 .

Corollary 3.5 An ENR homology n-manifold X; n ‚ 4, has DCP if and only
if X £ R has DDP.

When n=3 Corollary 3.5 is formally but vacuously true: since no ENR homol-
ogy 4-manifold has DDP, no such homology 3-manifold can have DCP.

Corollary 3.6 Let X be an ENR homology n-manifold, n ‚ 4. Then X £R
is a manifold if and only if X has trivial Quinn index and satisfles DCP.

Theorem 3.4 demonstrates the equivalence in X £ R of DCP and DDP. By
the standard combination of work Edwards [10] and of Quinn [13], X £ R is a
manifold if and only if it has both this latter property and trivial Quinn index.
Furthermore, by [13], i(X £R) = i(X), without regard to any of these general
position properties.
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14 Robert J. Daverman and Denise Halverson

4 Questions

1. Is every flnite-dimensional Busemann space (see [14]) X necessarily a mani-
fold? Actually, there are two unsettled questions here: is i(X), the Quinn index,
trivial? When dimX > 4, must X have DDP? It may be of interest to add
that X is known to be a manifold if dimX • 4 [14].

The same pair of concerns crops up in the following setting.

2. Suppose for any two points p; q of the compact, flnite-dimensional metric
space X , there is a homeomorphism from the suspension of a space Y onto X

that carries the suspension points onto p; q . Is X a manifold?

3. Given an ENR homology n-manifold X; n ‚ 4; can maps f; g : I2 ! X be
approximated by F; G : I2 ! X for which there exists a 0-dimensional F¾ set
T ‰ I2 such that

F (I2 ¡ T ) \ G(I2 ¡ T ) = ;?

If so, X £R will satisfy DDP. Recall that X £R satisfles the DDP when S(X),
the singular set of X , is at most (n-2)-dimensional. A key to the argument is
that then one can obtain F; G : I2 ! X and a compact, 0-dimensional T with
F (I2¡T )\G(I2¡T ) = ;. Similar reasoning applies with F¾ -subsets T in place
of compact subsets. It may be worth noting that, because X does satisfy the
DAP, one can easily obtain (maps F; G and) such a T which is a 0-dimensional,
G– -subset of I2; but the argument requires a 0-dimensional F¾ -subset, which
is more "meager".
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The Bryant{Ferry{Mio{Weinberger construction of
generalized manifolds

Friedrich Hegenbarth and Du•san Repov•s

Abstract

Following Bryant, Ferry, Mio and Weinberger we construct generalized man-

ifolds as limits of controlled sequences fXi
pi! Xi¡1 j i = 1; 2;. . . g of con-

trolled Poincar¶e spaces. The basic ingredient is the "-–{surgery sequence
recently proved by Pedersen, Quinn and Ranicki. Since one has to apply it
not only in cases when the target is a manifold, but a controlled Poincar¶e
complex, we explain this issue very roughly (Theorem 3.5). Speciflcally, it is
applied in the inductive step to construct the desired controlled homotopy
equivalence pi+1 : Xi+1 ! Xi . Theorem 3.5 requires a su–ciently con-
trolled Poincar¶e structure on Xi (over Xi¡1 ). Our construction shows that
this can be achieved. In fact, the Poincar¶e structure of Xi depends upon a
homotopy equivalence used to glue two manifold pieces together (the rest
is surgery theory leaving unaltered the Poincar¶e structure). It follows from
the "-–{surgery sequence (more precisely from the Wall realization part)
that this homotopy equivalence is su–ciently well controlled. In x4 we give
additional explanation why the limit space of the Xi ’s has no resolution.

AMS Classiflcation Primary 57PXX; Secondary 55RXX

Keywords Generalized manifold, ANR, Poincar¶e duality, "-–{surgery,
controlled, Poincar¶e complex, Quinn index, cell{like resolution

1 Preliminaries

A generalized n{dimensional manifold X is characterized by the following two
properties:

(i) X is a Euclidean neighborhood retract (ENR); and

(ii) X has the local homology (with integer coe–cients) of the Euclidean
n{space Rn , i.e.

H⁄(X; X n fxg) »= H⁄(Rn;Rn n f0g):

Copyright declaration is printed here



The Bryant{Ferry{Mio{Weinberger construction of generalized manifolds 17

Since we deal here with locally compact separable metric spaces of flnite (cov-
ering) dimension, ENR’s are the same as ANR’s.

Generalized manifolds are Poincar¶e spaces, in particular they have the Spivak
normal flbrations ”X . The total space of ”X is the boundary of a regular
neighborhood N(X) ‰ RL of an embedding X ‰ RL , for some large L. One
can assume that N(X) is a mapping cylinder neighborhood (see [5, Corollary
11.2]).

The global Poincar¶e duality of Poincar¶e spaces does not imply the local homol-
ogy condition (ii) above. The local homology condition can be understood as
the controlled global Poincar¶e duality (see [9, p. 270], and [1, Proposition
4.5] ). More precisely, one has the following:

Theorem 1.1 Let X be a compact ANR Poincar¶e duality space of flnite
(covering) dimension. Then X is a generalized manifold if and only if for every
– > 0, X is a –{Poincar¶e space (over X ).

The deflnition of the –{Poincar¶e property is given below. The following ba-
sic fact about homology manifolds was proved by Ferry and Pedersen (see [4,
Theorem 16.6]):

Theorem 1.2 Let X be an ANR homology manifold. Then ”X has a canon-
ical TOP reduction.

This statement is equivalent to existence of degree one normal maps
f : Mn ! X , where Mn is a (closed) topological n{manifold, hence the
structure set ST OP (X) can be identifled with [X; G=T OP ].

Let us denote the 4{periodic simply connected surgery spectrum by L and let
bL be the connected covering of L. There is a (canonical) map of spectra bL ! L
given by the action of bL on L. Note that bL0 is G=T OP .

If Mn is a topological manifold there exists a fundamental class [M ]L 2 Hn(M ;L†),
where L† is the symmetric surgery spectrum (see [11, Chapters 13 and 16]).

Theorem 1.3 If Mn is a closed oriented topological n{manifold, then the cap
product with [M ]L deflnes a Poincar¶e duality of L{(co{)homology

Hp(M ;L)
»=¡! Hn¡p(M ;L)

and bL (co{)homology

Hp(M ; bL)
»=!¡! Hn¡p(M ; bL):
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18 Friedrich Hegenbarth and Du•san Repov•s

Since H0(M ;L) = [M;Z £ G=TOP ] and H0(M ; bL) = [M; G=T OP ], one has
Hn(M ;L) = Z £ Hn(M ; bL) and the map bL ! L has the property that the
image of Hn(M ; bL) ! Hn(M ;L) = Z£ Hn(M ; bL) is f1g £ Hn(M ; bL) (see [11,
Appendix C]). Moreover, the action of H0(M ; bL) on H0(M ;L) = Z£H0(M ; bL),
induced by the action of bL on L, preserves the Z{sectors.

If X is a generalized n{manifold we get similar results by using the fundamental
class f⁄([M ]L) = [X]L 2 Hn(X;L†), where f : M ! X is the canonical degree
one normal map. So the composition map

£ : [X; G=T OP ] ! Hn(X; bL) ! Hn(X;L) = Z£ Hn(X; bL)

has the property that Im £ belongs to a single Z{sector, denoted by I(X) 2 Z.

The following is the fundamental result of Quinn on resolutions of generalized
manifolds (see [10]):

Theorem 1.4 Let X be a generalized n{manifold, n ‚ 5. Then X has a
resolution if and only if I(X) = 1.

Remark The integer I(X) is called the Quinn index of the generalized man-
ifold X . Since the action of bL on L preserves the Z{sectors, arbitrary degree
one normal maps g : N ! X can be used to calculate I(X). Alternatively,
we can deflne I(X) using the flbration bL ! L ! K(Z; 0), where K(Z;: ) is
the Eilenberg{MacLane spectrum, and deflne I(X) as the image of (see [11,
Chapter 25]):

ff : M ! Xg 2 Hn(X;L) ! Hn(X;K(Z; 0)) = Hn(X;Z) = Z:

We assume that X is oriented. Therefore I(X) is also deflned for Poincar¶e
complexes, as long as we have a degree one normal map f : M ! X , deter-
mining an element in Hn(X;L). In this case I(X) is not a local index. In fact,
for generalized manifolds one has local L{Poincar¶e duality using locally flnite
chains, hence we can deflne I(U) for any open set U ‰ X . It is also easy to see
that I(U) = I(X). On the algebraic side I(X) is an invariant of the controlled
Poincar¶e duality type (see [11, p. 283]).

2 Constructing generalized manifolds from controlled

sequences of Poincar¶e complexes

Beginning with a closed topological n{manifold Mn , n ‚ 5, and ¾ 2 Hn(M ;L),
we shall construct a sequence of closed Poincar¶e duality spaces X0 , X1 , X2 ,
: : : and maps pi : Xi ! Xi¡1 , p0 : X0 ! M .

Geometry & Topology Monographs, Volume X (20XX)
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We assume that M is a PL manifold, or that M has a cell structure. The Xi ’s
are built by gluing manifolds along boundaries with homotopy equivalences,
and by doing some surgeries outside the singular sets. Hence all Xi ’s have cell
decompositions.

We can assume that the Xi ’s lie in a (large enough) Euclidean space RL which
induces the metric on Xi . So the cell chain complex C#(Xi) can be considered
as a geometric chain complex over Xi¡1 with respect to pi : Xi ! Xi¡1 , i.e.
the distance between two cells of Xi over Xi¡1 is the distance between the
images of the centers of these two cells in Xi¡1 . Let us denote the distance
function by d.

We now list flve properties of the sequence f(Xi; pi)gi , including some deflni-
tions and comments. For each i ‚ 0 we choose positive real numbers »i and
·i .

(i) pi : Xi ! Xi¡1 and p0 : X0 ! M are UV 1{maps. This means that for
every " > 0 and for all diagrams

................................................................
.......
.
.......
.......
.

................................................................................................................................. ...............

................................................................................................................................. ...............

.............
.............

.............
.............

.............
................
.............

pi

fi

fi

fi0

\

Xi¡1K

XiK0

K a 2{complex, K0 ‰ K a subcomplex and maps fi0 , fi, there is a map

fi such that fi
flflfl
K0

= fi0 and d(pi – fi; fi) < ". (This is also called UV 1(")

property.)

(ii) Xi is an ·i{Poincar¶e complex over Xi¡1 , i.e.

(a) all cells of Xi¡1 have diameter < ·i over Xi¡1 ; and

(b) there is an n{cycle c 2 Cn(Xi) inducing an ·i{chain equivalence
\c : C#(Xi) ! Cn¡#(Xi).

Equivalently, the diagonal ¢#(c) =
P

c0 › c00 2 C#(X) › C#(X) has the
property that d(c0; c00) < ·i for all tensor products appearing in ¢#(c).

(iii) pi : Xi ! Xi¡1 is an »i{homotopy equivalence over Xi¡2 , i ‚ 2. In
other words, there exist an inverse p0

i : Xi¡1 ! Xi and homotopies
hi : p0

i – pi ’ IdXi
, h0

i : pi – p0
i ’ IdXi¡1 such that the tracks f(pi¡1 – pi –

hi)(x; t)j t 2 [0; 1]g and f(pi¡1 – h0
i)(x

0; t)j t 2 [0; 1]g have diameter < »i ,
for each x 2 Xi (resp. x0 2 Xi¡1 ). Note that p0 need not be a homotopy
equivalence.
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(iv) There is a regular neighborhood W0 ‰ RL of X0 such that Xi ‰ W0 ,
i = 0; 1; : : : and retractions ri : W0 ! Xi , satisfying d(ri; ri¡1) < »i in
RL .

(v) There are thin regular neighborhoods Wi ‰ RL , …i : Wi ! Xi , with

Wi ‰ o
W i¡1 such that Wi¡1 n o

W i is an »i{thin h{cobordism with respect
to ri : W0 ! Xi .

Let W = Wi¡1 n o
W i . Then there exist deformation retractions r0

t : W !
@0W and r1

t : W ! @1W with tracks of size < »i over Xi¡1 , i.e. the
diameters of f(ri – r0

t )(w)j t 2 [0; 1]g and f(ri – r1
t )(w)j t 2 [0; 1]g are

smaller than »i . Moreover, we can choose ·i and »i such that:

(a)
P

·i < 1; and

(b) Wi¡1 n o
W i has a –i{product structure with

P
–i < 1, i.e. there

is a homeomorphism W = Wi¡1 n o
W i

Hˆ @0W £ I satisfying
diamf(ri – H)(w; t)j t 2 Ig < –i , for every w 2 @0W .

The property (v)(b) above follows from the thin $h$--cobordism theorem
(see [8]). One can assume that

P
»i < 1. Let X = \

i
Wi . We are going to

show that X is a generalized manifold:

(1) The map r = lim¡! ri : W0 ! X is well{deflned and is a retraction, hence
X is an ANR.

(2) To show that X is a generalized manifold we shall apply the next two
theorems. They also imply Theorem 1.1 above. The flrst one is due to
Daverman and Husch [2], but it is already indicated in [8] (see the remark
after Theorem 3.3.2):

Theorem 2.1 Suppose that Mn is a closed topological n{manifold, B is an
ANR, and p : M ! B is proper and onto. Then B is a generalized manifold,
provided that p is an approximate flbration.

Approximate flbrations are characterized by the property that for every " > 0
and every diagram

................................................................
.......
.
.......
.......
.

..................................................................................................... ...............

..................................................................................................... ...............

.............
.............

.............
.............

.............
................
.............

p

h

H

H0

\

BK £ I

MK £ f0g
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where K is a polyhedron, there exists a lifting H of h such that d(p–H; h) < ".
Here d is a metric on B . In other words, p : M ! B has the "{ homotopy
lifting property for all " > 0.

We apply Theorem 2.1 to the map ‰ : @W0 ! X deflned as follows: Let
‰ : W0 ! X be the map which associates to w 2 W0 the endpoint ‰(x) 2 X

following the tracks deflned by the thin product structures of the h{cobordism
when decomposing

W0 = (W0 n o
W 1) [ (W1 n o

W 2) [ : : :

The restriction to @W0 will also be denoted by ‰. By (v)(b) above the map
‰ is well{deflned and continuous. We will show that it is an "{approximate
flbration for all " > 0.

The map ‰ : W0 ! X is the limit of maps ‰i : W0 ! Xi , where ‰i is the

composition given by the tracks (W0 n o
W 1) [ (W1 n o

W 2) [ ¢ ¢ ¢ [ (Wi¡1 n o
W i)

followed by …i : Wi ! Xi . The second theorem is Proposition 4.5 of [1]:

Theorem 2.2 Given n and B , there exist "0 > 0 and T > 0 such that for

every 0 < " < "0 the following holds: If X
p! B is an "{Poincar¶e complex with

respect to the UV 1{map p and W ‰ RL is a regular neighborhood of X ‰ RL ,

i.e. … : W ! X is a neighborhood retraction, then …
flflfl
@W

: @W ! X has the

T"{lifting property, provided that the codimension of X in RL is ‚ 3.

This is applied as follows: Let B ‰ RL be a (small) regular neighborhood
of X ‰ RL . Hence Xk ‰ Wk ‰ B for su–ciently large k . It follows by

property (ii) that Xi is an ·i{Poincar¶e complex over Xi
pi! Xi¡1 ‰ B , hence

(for i su–ciently large) we get the following:

Corollary 2.3 ‰i : @W0 ! Xi is a T ·i{approximate flbration over B .

Proof By the theorem above, …i : @Wi ! Xi is a T·i{approximate flbration
over B , hence so is ‰i : @W0

»= @Wi ! Xi .

It follows by construction that lim¡̂pi
Xi = X ‰ B; hence we have in the limit an

approximate flbration ‰ : @W0 ! X over Id : X ! X , i.e. X is a generalized
manifold. We will show in x4 that I(X) is determined by the Z{sector of
¾ 2 Hn(M ;L).
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3 Construction of the sequence of controlled Poincar¶e

complexes

Before we begin with the construction we need more fundamental results about
controlled surgery and approximations.

3.1 " ¡ – surgery theory

We recall the main theorem of [6]. Let B be a flnite{dimensional compact ANR,
and Nn a compact n{manifold (possibly with nonempty boundary @N ), n ‚ 4.
Then there exists an "0 > 0 such that for every 0 < " < "0 there exist – > 0
with the following property:

If p : N ! B is a UV 1(–) map, then there exists a controlled exact surgery
sequence:

3.1
Hn+1(B;L) ! S";–(N; p) ! [N; @N ; G=T OP; ⁄]

£! Hn(B;L):

The controlled structure set S";–(N; p) is deflned as follows: Elements of S";–(N; g)
are (equivalence) classes of (M; g), where M is an n{manifold, g : M ! N is

a –{homotopy equivalence over B and g
flflfl
@M

: @M ! @N is a homeomorphism.

The pair (M; g) is related to (M 0; g0) if there is a homeomorphism h : M ! M 0 ,
such that the diagram

.......................................................................
.......
.

........
.......

........................................................................
.......
.......
.......
.

................................................................................................................................. ...............

g0g

h

@N

@M 0@M

commutes, and g0 –h is "{homotopic to g over B . Since " is flxed, this relation
is not transitive. It is part of the assertion that it is actually an equivalence
relation. Then S";–(N; p) is the set of equivalence classes of pairs (M; g).

As in the classical surgery theory, the map

3.2
Hn+1(B;L) ! S";–(N; p)

is the controlled realization of surgery obstructions, and
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3.3
S";–(N; p) ! [N; @N ; G=TOP; ⁄]

£! Hn(B;L)

is the actual (controlled) surgery part. The following discussion will show that
(3.3) also holds for controlled Poincar¶e spaces (see Theorem 3.5 below). More-
over, – is also of (arbitrary) small size, provided that such is also ".

To see this we will go through some of the main points of the proof of The-
orem 1 from [6]. For ·; ·0 > 0 we denote by Ln(B;Z; ·; ·0) the set of highly
·{connected n{dimensional quadratic Poincar¶e complexes modulo highly ·0{
connected algebraic cobordisms. Then there is a well{deflned obstruction map

£· : [N; G=T OP ] ! Ln(B;Z; ·; ·0)

(for simplicity we shall assume that @N = ;). If (f; b) : Mn ! Nn is a degree
one normal map one can do controlled surgery to obtain a highly ·{connected
normal map (f 0; b0) : M 0n ! Nn over B . If Nn is a manifold this can be done
for every · > 0. If Nn is a Poincar¶e complex, it has to be ·{controlled over
B . By Theorem 1.1 above this holds in particular for generalized manifolds.

Given · > 0 there is an ·0 > 0 such that: if (f 0; b0) and (f 00; b00) are normally
bordant highly ·{connected degree one normal maps, there is then a highly
·0{connected normal bordism between them. (Again this is true if N is an
·{Poincar¶e complex over B .) This deflnes £· .

To eventually complete surgeries in the middle dimension we assume that the
map p : N ! B is UV 1 . Then one has the following (see [6, p.3, line 28f1]):
Given – > 0 there exists · > 0 such that if £·([f 0; b0]) = 0, then (f 0; b0) is nor-
mally cobordant to a –{homotopy equivalence. Moreover, if (f 00; b00) and (f 0; b0)
are highly ·{connected degree one normal maps being normally cobordant, then
there is a highly connected ·0{bordism between them (i.e. for given · there
is such an ·0 ). Then controlled surgery produces a controlled h{cobordism
which gives an "{homotopy by the thin h{cobordism theorem. This deflnes an
element of S";–(N; p), and shows the semi{exactness of the sequence

3.4

S";–(N; p) ! [N; G=T OP ]
£·! Ln(B;Z; ·; ·0);

i.e. that S";–(N; p) maps onto the kernel of £· . We note that semi{exactness
also holds for ·{controlled Poincar¶e complexes over B .

One cannot expect the sequence (3.4) to be exact, i.e. that the composition
map is zero, since passing from topology to algebra one loses control. As it
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was noted in [6, p. 3], " and – are determined by the controlled Hurewicz and
Whitehead theorems. Exactness of (3.4) will follow by the Squeezing Lemma
(Lemma 4 of [7]).

The proof of (3.3) will be completed by showing that the assembly map

A : Hn(B;L) ! Ln(B;Z; ·; ·0)

is bijective for su–ciently small · . This follows by splitting the controlled
quadratic Poincar¶e complexes (i.e. the elements of Ln(B0;Z; ·; ·0)) into small
pieces over small simplices of B (we assume for simplicity that B is triangu-
lated). If – is given, and if we want a splitting where each piece is –{controlled,
we must start the subdivision with a su–ciently small ·{controlled quadratic
Poincar¶e complex (see Remark below). This can be done by Lemma 6 of [6]
(see also [13, Lemma 2.5]). Since A – £ = £· , we get (3.3) from (3.4). The
stability constant "0 is determined by the largest · for which A is bijective.

Remark Yamasaki has estimated the size of · in the Splitting Lemma. If one
performs a splitting so that the two summands are –{controlled, then one needs
an ·{controlled algebraic quadratic Poincar¶e complex with · of size –=(ank+b) ,
where a, b, k depend on X (k is conjectured to be 1), and n is the length of the
complex. Of course, squeezing also follows from the bijectivity of A for small
· , but Lemma 3 of [7] is somehow a clean statement to apply (see Theorem
3.5 below). We also note that the bijectivity of A is of course, independent of
whether N is a manifold or a Poincar¶e complex.

Theorem 3.5 Suppose that N
p! B is a UV 1 map. Let – > 0 be given

(su–ciently small, i.e. – < –0 for some –0 ). Then there is · > 0 (small
with respect to –), such that if N is an ·{Poincar¶e complex over B , and
(f; b) : M ! N is a degree one normal map, then £(f; b) = 0 2 Hn(B;L) if
(and only if) (f; b) is normally bordant to a –{equivalence.

The only if part is more delicate and it follows by Lemma 3 of [7]: So let
f : Mn ! Nn be a –{equivalence which deflnes a quadratic ·1{Poincar¶e com-
plex C in Ln(B;Z; ·1; ·0

1) which is ·1{cobordant to zero via [N; G=T OP ] !
Ln(B;Z; ·1; ·0

1).

Then C is •·1{cobordant to an arbitrary small quadratic Poincar¶e complex (i.e.
to a quadratic ·{complex) which is •·0

1{cobordant to zero, with ·1 su–ciently
small (i.e. · su–ciently small). In this case we can also assume that A is
bijective. This proves the only if part.

Theorem 3.5 can also be stated as follows:
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Theorem 3.5’ Let N be a su–ciently flne ·{Poincar¶e complex over a UV 1{
map p : N ! B . Then there exist " > 0 and – > 0, both su–ciently small,
such that the sequence

S";–(N; p) ! [N; G=T OP ] ! Hn(B;L)

is exact. In particular, it holds for generalized manifolds.

3.2 UV 1 approximation

Here we recall Proposition 4.3 and Theorem 4.4. of [1]:

Theorem 3.6 Suppose that f : (Mn; @M) ! B is a continuous map from
a compact n{manifold with boundary such that the homotopy flber of f is
simply connected. If n ‚ 5 then f is homotopic to a UV 1{map. In case that

f
flflfl
@M

is already UV 1 , the homotopy is relative @M .

We state the second theorem in the form which we will need. We take it from
Theorem 10.1 of [3]:

Theorem 3.7 (Ferry) Let p : Nn ! B be a map from a compact n{manifold
into a polyhedron, n ‚ 5.

(i) Given " > 0, there is a – > 0, such that if p is a UV 1(–){map then p is
"{homotopic to a UV 1{map.

(ii) Suppose that p : N ! B is a UV 1 map. Then for each " > 0 there
is a – > 0 (depending on p and ") such that if f : M ! N is a –{
1{connected map (over B ) from a compact manifold M of dim M ‚ 5,
then f is "{close over B to a UV 1{map g : M ! N .

3.3 Controlled gluing

The following is Proposition 4.6 of [1]:

Theorem 3.8 Let (M1; @M1) and (M2; @M2) be (orientable) manifolds and
pi : Mi ! B UV 1{maps. Then there exist "0 > 0 and T > 0 such that for "

with 0 < " • "0 and h : @M1 ! @M2 an (orientation preserving) "{equivalence,
M1 [

h
M2 is a T"{Poincar¶e complex over B .
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3.4 Approximation of retractions

The following is Proposition 4.10 of [1]:

Theorem 3.9 Let X and Y be flnite polyhedra. Suppose that V is a regular
neighborhood of X with dim V ‚ 2 dim Y + 1 and r : V ! X is the retraction.
If f : Y ! X is an "{equivalence with respect to p : X ! B , then there exists
an embedding i : Y ! V and a retraction s : V ! i(Y ) with d(p–r; p–s) < 2".

We now begin with the construction. Let Mn be a closed oriented (topological)
manifold of dimension n ‚ 6. Let ¾ 2 Hn(M ;L) be flxed. Moreover, we assume
that M is equipped with a simplicial structure. Then let M = B [D C be such
that B is a regular neighborhood of the 2{skeleton, D = @B is its boundary
and C is the closure of the complement of B . So D = @C = B \ C is of
dimension ‚ 5.

By Part II above we can replace (B; D) ‰ M and (C; D) ‰ M , by UV 1{maps
j : (B; D) ! M and j : (C; D) ! M , and we can realize ¾ according to
Hn(M ;L) ! S";–(D; j) by a degree one normal map F¾ : V ! D £ I with

@0V = D , @1V = D0 , F¾

flflfl
@0V

= Id and f¾=F¾

flflfl
@1V

: D0 ! D a –{equivalence

over M .

We then deflne X0 = B [f¾ ¡V [Id C , where ¡V is the cobordism V turned
upside down. We use the map ¡F¾ [ Id : ¡V [Id C ! D £ I [C »= C to extend
j to a map p0 : X0 ! M .

The Wall realization V ! D £ I is such that V is a cobordism built from D

by adding high{dimensional handles (similarly beginning with D0 ). Therefore
p0 is a UV 1 map: If (K; L) is a simplicial pair with K a 2{complex, and if
there is given a diagram

...........................................................
.......
.
.......
.......
.

..................

................................................................................................................................. ...............

................................................................................................................................. ...............

................................................................
.......
.
.......
.......
.

L X0

K M

fi0

fi

p0

then we flrst move (by an arbitrary small approximation) fi and fi0 into B by
general position arguments. Then one uses the UV 1{property of j : B ! M .
By 3.8, X0 is a T–{Poincar¶e complex over M . Note that we can choose – as
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small as we want, hence we get an ·0{Poincar¶e complex for a prescribed ·0 .
This completes the flrst step.

To continue we deflne a manifold Mn
0 and a degree one normal map g0 : Mn

0 !
X0 as follows:

M0 = B [
Id

V [
Id

¡V [
Id

C ! B [
Id

D £ I [
f¾

¡V [
Id

C »= X0

using F¾ [ Id : V [
Id

¡V ! D £ I [
f¾

¡V . By construction it has a controlled

surgery obstruction ¾ 2 Hn(M ;L).

Moreover, there is ¾ 2 Hn(X0;L) with p0⁄(¾) = ¾ . This can be seen from the
diagram:

.......

.......

.......

.......

.......

.......

.......

.......

................

...............

........................................................................ ............... ........................................................................ ...............

....................................................................................... .......................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

................

...............

Hn(M0;L) Hn(X0;L) Hn(M ;L)

H0(M0;L) H0(X0;L) H0(M ;L)

g0⁄ p0⁄

g⁄
0 p⁄

0

»= »=

The vertical isomorphisms are Poincar¶e dualities. Since p0 is a UV 1 map, ¾

belongs to the same Z{sector as ¾ . We will again denote ¾ by ¾ .

We construct p1 : X1 ! X0 as above: Let M0 = B1 [
D1

C1 , B1 a regular

neighborhood of the 2{skeleton (as flne as we want), C1 the closure of the
complement and D1 = C1 \ B1 = @C1 = @B1 , g0 : D1 ! X0 a UV 1 map.
Then we realize ¾ 2 Hn(X0;L) ! S"1;–1(D1; g0) by F1;¾ : V1 ! D1 £ I with

@0V1 = D1 , @1V1 = D0
1 , F1;¾

flflfl
@0V1

= Id and f1;¾ = F1;¾

flflfl
@1V1

: D0
1 ! D1 a

–1{equivalence over X0 .

We deflne p0
1 : X 0

1 ! X0 as follows:

X 0
1 = B1 [

f1;¾

¡V1 [
Id

C1

f 0
1! M0

»= B1 [
Id

D1 £ I [
Id

C1;

using ¡F1;¾ : ¡V1 ! D1 £ I , and then p0
1 = g0 – f 0

1 : X 0
1 ! M0 ! X0 .

We now observe that:

(i) by 3.8 X 0
1 is a T1–1{Poincar¶e complex over X0 ; and

(ii) p0
1 is a degree one normal map with controlled surgery obstruction

¡p0⁄(¾) + ¾ = 0 2 Hn(M ;L):
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Let »1 > 0 be given. We now apply Theorem 3.5 to produce a »1{homotopy
equivalence by surgeries outside the singular set (note that the surgeries which
have to be done are in the manifold part of X 0

1 ). For this we need a su–ciently
small ·0{Poincar¶e structure on X0 . However, this can be achieved as noted
above. This flnishes the second step.

We now proceed by induction: What we need for the third step in order to
produce p2 : X2 ! X1 is the following:

(i) a degree one normal map g1 : M1 ! X1 with controlled surgery obstruc-
tion ¾ 2 Hn(X0;L); and

(ii) ¾ 2 Hn(X1;L) with p1⁄(¾) = ¾ , being in the same Z{sector as ¾ 2
Hn(X0;L).

One can get g1 : M1 ! X1 as follows: Consider g0
1 : M 0

1 ! X 0
1 , where

M 0
1 = B1 [

Id
V1 [

Id
¡V1 [

Id
C1 ! B1 [

Id
D1 £ I [

f1;¾

¡V1 [
Id

C1
»= X 0

1

is induced by F1;¾ : V1 ! D1 £ I and the identity. The map g0
1 is a degree one

normal map. Then one performs the same surgeries on g0
1 as one has performed

on p0
1 : X 0

1 ! X0 to obtain X1 . This produces the desired g1 . For (ii) we note
that p1⁄ is a bijective map preserving the Z{sectors (since p1 is UV 1 ).

So we have obtained the sequence of controlled Poincar¶e spaces pi : Xi ! Xi¡1

and p0 : X0 ! M with degree one normal maps gi : Mi ! Xi and controlled
surgery obstructions ¾ 2 Hn(Xi¡1;L). The properties (iv) and (v) of x2 now
follow by the thin h{cobordism theorem and approximation of retraction.

4 Nonresolvability, the DDP property and existence

of generalized manifolds

4.1 Nonresolvability

At the beginning of the construction we have ¾ 2 Hn(M ;L), where M is a
closed (oriented) n{manifold with n ‚ 6. For each m we constructed degree
one normal maps gm : Mm ! Xm over pm : Xm ! Xm¡1 , with controlled
surgery obstructions ¾m 2 Hn(Xm¡1;L), p0⁄(¾1) = ¾ , pm⁄(¾m+1) = ¾m , and
all ¾m belong to the same Z{sector as ¾ . So we will call all of them ¾ .

We consider the normal map gm : Mm ! Xm as a controlled normal map over

Id : Xm ! Xm , and over qm : Xm ‰ Wm
‰! X (see x2). Since ‰

flflfl
@Wm

is an
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approximate flbration and d(ri; ri¡1) < »i ,
P1

i=m+1 »i < ", for large m, we
can assume that qm is UV 1(–) for large m, so (qm)⁄ : Hn(Xm;L) ! Hn(X;L)
maps ¾ to (qm)⁄(¾) = ¾0 , being in the same Z{sector as ¾ . The map (qm)⁄ is
a bijective, and we denote ¾0 by ¾ . In other words, we have a surgery problem
over X :

................................................................................................................................. ...............

................................................................
.......
.
.......
.......
.

Mm Xm

X

gm

qm

with controlled surgery obstruction ¾ 2 Hn(X;L). Our goal is to consider the
surgery problem:

................................................................................................................................. ...............

................................................................
.......
.
.......
.......
.

Mm Xm

X

qm – gm

Id

over Id : X ! X , and prove that ¾ 2 Hn(X;L) is its controlled surgery
obstruction.

Observe that qm is a –{homotopy equivalence over Id : X ! X if m is su–-
ciently large (for a given –).

Let N (X) »= [X; G=T OP ] be the normal cobordism classes of degree one normal
maps of X , and let HE–(X) be the set of –{homotopy equivalences of X over
Id : X ! X . Our claim will follow from the following:

Lemma 4.1 Let HE–0(X)£N (X)
„! N (X) be the action map, i.e. „(h; f) =

h – f . Then for su–ciently small –0 > 0, the diagram

................................................................
.......
.
.......
.......
.

................................................................................................................................. ...............

................................................................................................................................. ...............

................................................................
.......
.
.......
.......
.

HE–0 £ N (X) N (X)

N (X) Hn(X;L)

„

£

£pr

commutes.
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Proof This follows from (3.5’) since HE–0(X) £ S"00;–00(X; Id) ! S";–(X; Id)
for su–ciently small –0 and –00 .

We apply this lemma to the map HE–(Xm; X)£N (Xm) ! N (X), which sends
(h; g) to h – g , where HE–(Xm; X) are the –{homotopy equivalences Xm ! X

over IdX :

Let ˆm : X ! Xm be a controlled inverse of qm . Then ˆm induces ˆm⁄ :
HE"(Xm; X) ! HE–(X), where – is some multiple of ".

One can then write the following commutative diagram (for su–ciently small
–).

.................................................................................................................................................................................................................................................................................................................. ...............

............
............

............
............

............
............

............
............

......................
...............

..................................................................................................... ...............

............
............

............
............

............
............

............
............

......................
...............

..................................................................................................... ...............

..................................................................................................... ...............

................................................................
.......
.
.......
.......
.

.......

.......

.......

.......

.......

.......

.......

.......

................

...............

pr

£„

£

(ˆm)⁄ £ (qm)⁄

Id £ £

Hn(X;L)

N (X)HE–(X) £ N (X)

HE"(Xm; X) £ Hn(Xm;L)

HE"(Xm; X) £ N (Xm) N (X)

with HE"(X) £ Hn(Xm;L) ! Hn(X;L) given by (h; ¿) ! h⁄(¿).

It follows from this that for large enough m, qm – gm : Mm ! X has controlled
surgery obstruction ¾ 2 Hn(X;L). Hence we get non{resolvable generalized
manifolds if the Z{sector of ¾ is 6= 1.

4.2 The DDP Property

The construction allows one to get the DDP property for X (see [1, section 8]).
Roughly speaking, this can be seen as follows: The flrst step in the construction
is to glue a highly connected cobordism V into a manifold M of dimension
n ‚ 6, in between the regular neighborhood of the 2{skeleton.

The result is a space which has the DDP. The other constructions are surgery on
middle{dimensional spheres, which also preserves the DDP. But since we have
to take the limit of the Xm ’s, one must do it more carefully (see Deflnition 8.1
in [1]):

Deflnition 4.2 Given " > 0 and – > 0, we say that a space Y has the ("; –){
DDP if for each pair of maps f; g : D2 ! Y there exist maps f; g : D2 ! Y

such that d(f(D2); g(D2)) > – , d(f; f) < " and d(g; g) < ".
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Lemma 4.3 fXmg have the ("; –){DDP for some " > – > 0.

Proof The manifolds Mn
m , n ‚ 6, have the ("; –){DDP for all " and – . In

fact, one can choose a su–ciently flne triangulation, such that any f : D2 ! M

can be placed by arbitrary small moves into the 2{skeleton or into the dual
(n ¡ 3){skeleton. Then – is the distance between these skeleta. The remarks
above show that the Xm ’s have the ("; –){DDP for some " and – .

It can then be shown that X = lim¡̂ Xi has the (2"; –=2){DDP (see Proposition
8.4 in [1]).

4.3 Special cases

(i) Let Mn and ¾ 2 Hn(M ;L) be given as above. The flrst case which can
occur is that ¾ goes to zero under the assembly map A : Hn(M ;L) !
Ln(…1M). Then we can do surgery on the normal maps F¾ : V ! D £ I ,
F1;¾ : V1 ! D1 £ I and so on, to replace them by products. In this case
the generalized manifold X is homotopy equivalent to M .

(ii) Suppose that A is injective (or is an isomorphism). Then X cannot
be homotopy equivalent to any manifold, if the Z{sector of ¾ is 6= 1.
Suppose that Nn ! X were a homotopy equivalence. It determines an
element in [X; G=T OP ] which must map to (1; 0) 2 Hn(X;L), because
its surgery obstruction in Ln(…1X) is zero and A is injective. This con-
tradicts our assumption that the index of X 6= 1. Examples of this type
are given by the n{torus Mn = T n .
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manifolds
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Abstract An explicit (¡1)n -quadratic form over Z[Z2n] representing the
surgery problem E8 £ T 2n is obtained, for use in the Bryant-Ferry-Mio-
Weinberger construction of 2n-dimensional exotic homology manifolds.
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Dedicated to John Bryant on his 60th birthday

1 Introduction

Exotic ENR homology n-manifolds, n > 6, were discovered in the early 1990s
by Bryant, Ferry, Mio and Weinberger [2, 3]. In the 1970s, the existence of such
spaces had become a widely debated problem among geometric topologists in
connection with the works of Cannon and Edwards on the characterization of
topological manifolds [5, 10, 9]. The Resolution Conjecture, formulated by Can-
non in [4], implied the non-existence of exotic homology manifolds { compelling
evidence supporting the conjecture was ofiered by the solution of the Dou-
ble Suspension Problem. Quinn introduced methods of controlled K -theory
and controlled surgery into the area. He associated with an ENR homology
n-manifold X , n > 5, a local index {(X) 2 8Z + 1 with the property that
{(X) = 1 if and only if X is resolvable. A resolution of X is a proper surjec-
tion f : M ! X from a topological manifold M such that, for each x 2 X ,
f¡1(x) is contractible in any of its neighborhoods in M . This led to the cele-
brated Edwards-Quinn characterization of topological n-manifolds, n > 5, as
index-1 ENR homology manifolds satisfying the disjoint disks property (DDP)
[19, 20, 9]. More details and historical remarks on these developments can be
found in the survey articles [4, 10, 28, 15] and in [9].

Copyright declaration is printed here
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In [2, 3], ENR homology manifolds with non-trivial local indexes are constructed
as inverse limits of ever flner Poincar¶e duality spaces, which are obtained from
topological manifolds using controlled cut-paste constructions. In the simply-
connected case, for example, topological manifolds are cut along the boundaries
of regular neighborhoods of very flne 2-skeleta and pasted back together using
†-homotopy equivalences that \carry non-trivial local indexes" in the form of
obstructions to deform them to homeomorphisms in a controlled manner. The
construction of these †-equivalences requires controlled surgery theory, the cal-
culation of controlled surgery groups with trivial local fundamental group, and
\Wall realization" of controlled surgery obstructions. The stability of controlled
surgery groups is a key fact, whose proof was completed more recently by Ped-
ersen, Quinn and Ranicki [16]; an elegant proof along similar lines was given by
Pedersen and Yamasaki [17] at the 2003 Workshop on Exotic Homology Man-
ifolds in Oberwolfach, employing methods of [29]. An alternative proof based
on the fi-Approximation Theorem is due to Ferry [11].

The construction of exotic homology manifolds presented in [3] is somewhat
indirect. Along the years, many colleagues (notably Bob Edwards) voiced the
desire to see { at least in one speciflc example { an explicit realization of the con-
trolled quadratic form employed in the Wall realization of the local index. This
became even clearer at the workshop in Oberwolfach. A detailed inspection of
the construction of [3] reveals that it su–ces to give this explicit description at
the flrst (controlled) stage of the construction of the inverse limit, since fairly
general arguments show that subsequent stages can be designed to inherit the
local index. The main goal of this paper is to provide explicit realizations of
controlled quadratic forms that lead to the construction of compact exotic ho-
mology manifolds with fundamental group Z2n , n > 3, which are not homotopy
equivalent to any closed topological manifold. This construction was suggested
in Section 7 of [3], but details were not provided. Starting with the rank 8
quadratic form E8 of signature 8, which generates the Wall group L0(Z) »= Z,
we explicitly realize its image in L2n(Z[Z2n]) under the canonical embedding
L0(Z) ! L2n(Z[Z2n]).
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Let

ˆ0 =

0
BBBBBBBBBB@

1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

1
CCCCCCCCCCA

be the 8 £ 8 matrix over Z with symmetrization the unimodular 8 £ 8 matrix
of the E8 -form

ˆ0 + ˆ⁄
0 = E8 =

0
BBBBBBBBBB@

2 0 0 1 0 0 0 0
0 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
1 0 1 2 1 0 0 0
0 0 0 1 2 1 0 0
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 1
0 0 0 0 0 0 1 2

1
CCCCCCCCCCA

:

Write
Z[Z2n] = Z[z1; z¡1

1 ; : : : ; z2n; z¡1
2n ]

= Z[z1; z¡1
1 ] › Z[z2; z¡1

2 ] › ¢ ¢ ¢ › Z[z2n; z¡1
2n ] :

For i = 1; 2; : : : ; n deflne the 2 £ 2 matrix over Z[z2i¡1; z¡1
2i¡1; z2i; z¡1

2i ]

fii =

µ
1 ¡ z2i¡1 z2i¡1z2i ¡ z2i¡1 ¡ z2i

1 1 ¡ z2i

¶
;

so that fi1 › fi2 › ¢ ¢ ¢ › fin is a 2n £ 2n matrix over Z[Z2n]. (See x6 for the
geometric provenance of the matrices fii ).

Theorem 8.1 The surgery obstruction E8 £ T 2n 2 L2n(⁄) (⁄ = Z[Z2n]) is
represented by the nonsingular (¡1)n -quadratic form (K; ‚; „) over ⁄, with

K = Z8 › ⁄2n

= ⁄2n+3

the f.g. free ⁄-module of rank 8:2n = 2n+3 and

‚ = ˆ + (¡1)nˆ⁄ : K ! K⁄ = Hom⁄(K; ⁄) ;

„(x) = ˆ(x)(x) 2 Q(¡1)n(⁄) = ⁄=fg + (¡1)n+1g¡1 j g 2 Z2ng (x 2 K)
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with
ˆ = ˆ0 › fi1 › fi2 › ¢ ¢ ¢ › fin : K ! K⁄ :

Sections 2{8 contain background material on surgery theory and the arguments
that lead to a proof of Theorem 8.1. Invariance of E8 £ T 2n under transfers
to flnite covers is proven in x9. In x10, using a large flnite cover T 2n ! T 2n ,
we describe how to pass from the non-simply-connected surgery obstruction
E8 £ T 2n to a controlled quadratic Z-form over T 2n . Finally, in x11 we explain
how the controlled version of E8 £ T 2n is used in the construction of exotic
homology 2n-manifolds X with Quinn index {(X) = 9.

2 The Wall groups

We begin with some recollections of surgery obstruction theory { we only need
the details in the even-dimensional oriented case.

Let ⁄ be a ring with an involution, that is a function

: ⁄ ! ⁄ ; a 7! a

satisfying

a + b = a + b ; ab = b:a ; a = a ; 1 = 1 2 ⁄ :

Example In the applications to topology ⁄ = Z[…] is a group ring, with the
involution

: Z[…] ! Z[…] ;
X
g2…

agg 7!
X
g2…

agg¡1 (ag 2 Z) :

The involution is used to deflne a left ⁄-module structure on the dual of a left
⁄-module K

K⁄ := Hom⁄(K; ⁄) ;

with
⁄ £ K⁄ ! K⁄ ; (a; f) 7! (x 7! f(x):a) :

The 2n-dimensional surgery obstruction group L2n(⁄) is deflned by Wall [27,
x5] to be the Witt group of nonsingular (¡1)n -quadratic forms (K; ‚; „) over
⁄, with K a flnitely generated free (left) ⁄-module together with
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(i) a pairing
‚ : K £ K ! ⁄

such that

‚(x; ay) = a‚(x; y) ; ‚(x; y+z) = ‚(x; y)+‚(x; z) ; ‚(y; x) = (¡1)n‚(x; y)

and the adjoint ⁄-module morphism

‚ : K ! K⁄ ; x 7! (y 7! ‚(x; y))

is an isomorphism,

(ii) a (¡1)n -quadratic function

„ : K ! Q(¡1)n(⁄) = ⁄=fa + (¡1)n+1a j a 2 ⁄g
with

‚(x; x) = „(x)+(¡1)n„(x) ; „(x+y) = „(x)+„(y)+‚(x; y) ; „(ax) = a„(x)a :

For a f.g. free ⁄-module K = ⁄r with basis fe1; e2; : : : ; erg the pair (‚; „) can
be regarded as an equivalence class of r £ r matrices over ⁄

ˆ = (ˆij)16i;j6r (ˆij 2 ⁄)

such that ˆ + (¡1)nˆ⁄ is invertible, with ˆ⁄ = (ˆji), and

ˆ » ˆ0 if ˆ0 ¡ ˆ = ´ + (¡1)n+1´⁄ for some r £ r matrix ´ = (´ij) :

The relationship between (‚; „) and ˆ is given by

‚(ei; ej) = ˆij + (¡1)nˆji 2 ⁄ ;

„(ei) = ˆii 2 Q(¡1)n(⁄) ;

and we shall write
(‚; „) = (ˆ + (¡)nˆ⁄; ˆ) :

The detailed deflnitions of the odd-dimensional L-groups L2n+1(⁄) are rather
more complicated, and are not required here. The quadratic L-groups are
4-periodic

Lm(⁄) = Lm+4(⁄) :

The simply-connected quadratic L-groups are given by

Lm(Z) = Pm =

8
>>>><
>>>>:

Z if m · 0(mod 4)

0 if m · 1(mod 4)

Z2 if m · 2(mod 4)

0 if m · 3(mod 4)
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(Kervaire-Milnor). In particular, for m · 0(mod 4) there is deflned an isomor-
phism

L0(Z)
»= // Z ; (K; ‚; „) 7! 1

8
signature(K; ‚) :

The kernel form of an n-connected normal map (f; b) : M2n ! X from a
2n-dimensional manifold M to an oriented 2n-dimensional geometric Poincar¶e
complex X is the nonsingular (¡1)n -quadratic form over Z[…1(X)] deflned in
[27, x5]

(Kn(M); ‚; „)

with
Kn(M) = ker( ef⁄ : Hn(fM) ! Hn( eX))

the kernel (stably) f.g. free Z[…1(X)]-module, eX the universal cover of X ,
fM = f⁄ eX the pullback cover of M and (‚; „) given by geometric (intersection,
self-intersection) numbers. The surgery obstruction of [27]

¾⁄(f; b) = (Kn(M); ‚; „) 2 L2n(Z[…1(X)])

is such that ¾⁄(f; b) = 0 if (and for n > 3 only if) (f; b) is bordant to a
homotopy equivalence.

The Realization Theorem of [27, x5] states that for a flnitely presented group …

and n > 3 every nonsingular (¡1)n -quadratic form (K; ‚; „) over Z[…] is the
kernel form of an n-connected 2n-dimensional normal map f : M ! X with
…1(X) = … .

3 The instant surgery obstruction

Let (f; b) : Mm ! X be an m-dimensional normal map with f⁄ : …1(M) !
…1(X) an isomorphism, and let ef : fM ! eX be a …1(X)-equivariant lift of f to

the universal covers of M; X . The Z[…1(X)]-module morphisms ef⁄ : Hr(fM) !
Hr( eX) are split surjections, with the Umkehr maps

f ! : Hr( eX) »= Hm¡r( eX)
ef⁄

// Hm¡r(fM) »= Hr(fM) ;

such that
ef⁄f ! = 1 : Hr( eX) ! Hr( eX) :

The kernel Z[…1(X)]-modules

Kr(M) = ker( ef⁄ : Hr(fM) ! Hr( eX))
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are such that

Hr(fM) = Kr(M) ' Hr( eX) ; Kr(M) = Hr+1( ef) :

By the Hurewicz theorem, (f; b) is k -connected if and only if

Kr(M) = 0 for r < k ;

in which case Kk(M) = …k+1(f). If m = 2n or 2n+1 then by Poincar¶e duality
(f; b) is (n + 1)-connected if and only if it is a homotopy equivalence. In the
even-dimensional case m = 2n the surgery obstruction of (f; b) is deflned to be

¾⁄(f; b) = ¾⁄(f 0; b0) = (Kn(M 0); ‚0; „0) 2 L2n(Z[…1(X)])

with (f 0; b0) : M 0 ! X any bordant n-connected normal map obtained from
(f; b) by surgery below the middle dimension. The instant surgery obstruction
of Ranicki [21] is an expression for such a form (Kn(M 0); ‚0; „0) in terms of the
kernel 2n-dimensional quadratic Poincar¶e complex (C; ˆ) such that H⁄(C) =
K⁄(M). In x8 we below we shall use a variant of the instant surgery obstruction
to obtain an explicit (¡1)n -quadratic form over Z[Z2n] representing E8 £T 2n 2
L2n(Z[Z2n]).

Given a ring with involution ⁄ and an m-dimensional f.g. free ⁄-module chain
complex

C : Cm
d // Cm¡1 ! ¢ ¢ ¢ ! C1

d // C0

let Cm¡⁄ be the dual m-dimensional f.g. free ⁄-module chain complex, with

dCm¡⁄ = (¡1)rd⁄ :

(Cm¡⁄)r = Cm¡r = (Cm¡r)⁄ = Hom⁄(Cm¡r; ⁄) ! Cm¡r+1 :

Deflne a duality involution on Hom⁄(Cm¡⁄; C) by

T : Hom⁄(Cp; Cq) ! Hom⁄(Cq; Cp) ; ` 7! (¡1)pq`⁄ :

An m-dimensional quadratic Poincar¶e complex (C; ˆ) over ⁄ is an m-dimensional
f.g. free ⁄-module chain complex C together with ⁄-module morphisms

ˆs : Cr ! Cm¡r¡s (s > 0)

such that

dˆs+(¡1)rˆsd⁄+(¡1)m¡s¡1(ˆs+1+(¡1)s+1Tˆs+1) = 0 : Cm¡r¡s¡1 ! Cr (s > 0)

and such that (1 + T )ˆ0 : Cm¡⁄ ! C is a chain equivalence. The cobordism
group of m-dimensional quadratic Poincar¶e complexes over ⁄ was identifled
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in Ranicki [21] with the Wall surgery obstruction Lm(⁄), and the surgery ob-
struction of an m-dimensional normal map (f; b) : M ! X was identifled with
the cobordism class

¾⁄(f; b) = (C(f !); ˆb) 2 Lm(Z[…1(X)])

of the kernel quadratic Poincar¶e complex (C(f !); ˆb), with C(f !) the algebraic
mapping cone of the Umkehr Z[…1(X)]-module chain map

f ! : C( eX) ’ C( eX)m¡⁄ ef⁄
// C(fM)m¡⁄ ’ C(fM) :

The homology Z[…1(X)]-modules of C(f !) are the kernel Z[…1(X)]-modules of
f

H⁄(C(f !)) = K⁄(M) = ker( ef⁄ : H⁄(fM) ! H⁄( eX)) :

Deflnition 3.1 The instant form of a 2n-dimensional quadratic Poincar¶e com-
plex (C; ˆ) over ⁄ is the nonsingular (¡1)n -quadratic form over ⁄

(K; ‚; „) =

µ
coker(

µ
d⁄ 0

(¡1)n+1(1 + T )ˆ0 d

¶
: Cn¡1 ' Cn+2 ! Cn ' Cn+1) ;

•
ˆ0 + (¡1)nˆ⁄

0 d

(¡1)nd⁄ 0

‚
;

•
ˆ0 d

0 0

‚¶
:

If Cr is f.g. free with rank⁄Cr = cr then K is (stably) f.g. free with

rank⁄K =
nX

r=0

(¡1)r(cn¡r + cn+r+1) 2 Z :

If (1 + T )ˆ0 : C2n¡⁄ ! C is an isomorphism then

cn+r+1 = cn¡r¡1 ; rank⁄K = cn ;

with

(K; ‚; „) = (Cn; ˆ0 + (¡1)nˆ⁄
0; ˆ0) :

Proposition 3.2 (Instant surgery obstruction [21, Proposition I.4.3])

(i) The cobordism class of a 2n-dimensional quadratic Poincar¶e complex (C; ˆ)
over ⁄ is the Witt class

(C; ˆ) = (K; ‚; „) 2 L2n(⁄)

of the instant nonsingular (¡1)n -quadratic form (K; ‚; „) over ⁄.
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(ii) The surgery obstruction of a 2n-dimensional normal map (f; b) : M ! X

is represented by the instant form (K; ‚; „) of any quadratic Poincar¶e com-
plex (C; ˆ) chain equivalent to the kernel 2n-dimensional quadratic Poincar¶e
complex (C(f !); ˆb)

¾⁄(f; b) = (K; ‚; „) 2 L2n(Z[…1(X)]) :

Remark (i) If (f; b) is n-connected then C is chain equivalent to the chain
complex concentrated in dimension n

C : 0 ! ¢ ¢ ¢ ! 0 ! Kn(M) ! 0 ! ¢ ¢ ¢ ! 0

and the instant form is just the kernel form (Kn(M); ‚; „) of Wall [27].

(ii) More generally, if (f; b) is k -connected for some k 6 n then C is chain
equivalent to a chain complex concentrated in dimensions k; k + 1; : : : ; 2n ¡ k

C : 0 ! ¢ ¢ ¢ ! 0 ! C2n¡k ! ¢ ¢ ¢ ! Cn ! ¢ ¢ ¢ ! Ck ! 0 ! ¢ ¢ ¢ ! 0 :

For n > 3 the efiect of surgeries killing the c2n¡k generators of H2n¡k(C) =
Kk(M) represented by a basis of C2n¡k is a bordant (k + 1)-connected normal

map (f 0; b0) : M 0 ! X with C(f 0! : C( eX) ! C(fM 0)) chain equivalent to a chain
complex of the type

C 0 : 0 ! ¢ ¢ ¢ ! 0 ! C 0
2n¡k¡1 ! ¢ ¢ ¢ ! C 0

n ! ¢ ¢ ¢ ! C 0
k+1 ! 0 ! ¢ ¢ ¢ ! 0

with

C 0
r =

8
<
:

ker((d (1 + T )ˆ0) : Ck+1 ' C2n¡k ! Ck) if r = k + 1

Cr if k + 2 6 r 6 2n ¡ k ¡ 1 :

Proceeding in this way, there is obtained a sequence of bordant j -connected
normal maps

(fj ; bj) : Mj ! X (j = k; k + 1; : : : ; n)

with
(fk; bk) = (f; b) ; (fj+1; bj+1) = (fj ; bj)0 :

The instant form of (C; ˆ) is precisely the kernel (¡1)n -quadratic form (Kn(Mn); ‚n; „n)
of the n-connected normal map (fn; bn) : Mn ! X , so that the surgery ob-
struction of (f; b) is given by

¾⁄(f; b) = ¾⁄(fk; bk) = : : : = ¾⁄(fn; bn)

= (Kn(Mn); ‚n; „n) 2 L2n(Z[…1(X)]) :
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4 The quadratic form E8

For m > 2 let M4m
0 be the (2m ¡ 1)-connected 4m-dimensional P L manifold

obtained from the Milnor E8 -plumbing of 8 copies of ¿S2m by coning ofi the
(exotic) (4m ¡ 1)-sphere boundary, with intersection form E8 of signature 8.
(For m = 1 we can take M0 to be the simply-connected 4-dimensional Freedman
topological manifold with intersection form E8 ). The surgery obstruction of the
corresponding 2m-connected normal map (f0; b0) : M4m

0 ! S4m represents the
generator

¾⁄(f0; b0) = (K2m(M0); ‚; „) = (Z8; E8) = 1 2 L4m(Z) = L0(Z) = Z

with
K2m(M0) = H2m(M0) = Z8 ;

‚ = E8 =

0
BBBBBBBBBB@

2 0 0 1 0 0 0 0
0 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
1 0 1 2 1 0 0 0
0 0 0 1 2 1 0 0
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 1
0 0 0 0 0 0 1 2

1
CCCCCCCCCCA

;

„(0; : : : ; 1; : : : ; 0) = 1 :

5 The surgery product formula

Surgery product formulae were originally obtained in the simply-connected case,
notably by Sullivan. We now recall the non-simply-connected surgery product
formula of Ranicki [21] involving the Mishchenko symmetric L-groups. In x6
we shall recall the variant of the surgery product formula involving almost
symmetric L-groups of Clauwens, which will be used in Theorem 8.1 below to
write down an explicit nonsingular (¡1)n -quadratic form over Z[Z2n] (n > 1)
representing the image of the generator

1 = E8 2 L4m(Z) »= Z (m > 0)

under the canonical embedding

¡ £ T 2n : L4m(Z) ! L4m+2n(Z[Z2n]) ;

¾⁄((f0; b0) : M0 ! S4m) = E8 7! ¾⁄((f0; b0) £ 1 : M0 £ T 2n ! S4m £ T 2n) :
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An n-dimensional symmetric Poincar¶e complex (C; `) over a ring with involu-
tion ⁄ is an n-dimensional f.g. free ⁄-module chain complex

C : Cn
d // Cn¡1

// : : : // C1
d // C0

together with ⁄-module morphisms

`s : Cr = Hom⁄(Cr; ⁄) ! Cn¡r+s (s > 0)

such that

d`s + (¡1)r`sd⁄ + (¡1)n+s¡1(`s¡1 + (¡1)sT`s¡1) = 0 :

Cn¡r+s¡1 ! Cr (s > 0; `¡1 = 0)

and `0 : Cn¡⁄ ! C is a chain equivalence. The cobordism group of n-
dimensional symmetric Poincar¶e complexes over ⁄ is denoted by Ln(⁄) { see
[21] for a detailed exposition of symmetric L-theory. Note that the symmetric
L-groups L⁄(⁄) are not 4-periodic in general

Ln(⁄) 6= Ln+4(⁄) :

The symmetric L-groups of Z are given by

Ln(Z) =

8
>>>><
>>>>:

Z if n · 0(mod 4)

Z2 if n · 1(mod 4)

0 if n · 2(mod 4)

0 if n · 3(mod 4) :

For m · 0(mod 4) there is deflned an isomorphism

L4k(Z)
»= // Z ; (C; `) 7! signature(H2k(C); `0) :

A CW structure on an oriented n-dimensional manifold with …1(N) = ‰ and
universal cover eN and the Alexander-Whitney-Steenrod diagonal construction
on the cellular complex C( eN) determine an n-dimensional symmetric Poincar¶e
complex (C( eN); `) over Z[‰] with

`0 = [N ] \ ¡ : C( eN)n¡⁄ ! C( eN) :

The Mishchenko symmetric signature of N is the cobordism class

¾⁄(N) = (C; `) 2 Ln(Z[‰]) :

For n = 4k the image of ¾⁄(N) in L4k(Z) = Z is just the usual signature of
N .
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For any rings with involution ⁄; ⁄0 there are deflned products

Ln(⁄) › Ln0
(⁄0) ! Ln+n0

(⁄ › ⁄0) ; (C; `) › (C 0; `0) 7! (C › C 0; ` › `0) ;

Ln(⁄) › Ln0
(⁄0) ! Ln+n0(⁄ › ⁄0) ; (C; ˆ) › (C 0; `0) 7! (C › C 0; ˆ › `0)

as in [23]. The tensor product of group rings is given by

Z[…] › Z[…0] = Z[… £ …0] :

Theorem 5.1 (Symmetric L-theory surgery product formula [21])

(i) The symmetric signature of a product N £ N 0 of an n-dimensional man-
ifold N and an n0 -dimensional manifold N 0 is the product of the symmetric
signatures

¾⁄(N £ N 0) = ¾⁄(N) › ¾⁄(N 0) 2 Ln+n0
(Z[…1(N) £ …1(N 0)]) :

(ii) The product of an m-dimensional normal map (f; b) : M ! X and an
n-dimensional manifold N is an (m + n)-dimensional normal map

(g; c) = (f; b) £ 1 : M £ N ! X £ N

with surgery obstruction

¾⁄(g; c) = ¾⁄(f; b) › ¾⁄(N) 2 Lm+n(Z[…1(X) £ …1(N)]) :

Proof These formulae already hold on the chain homotopy level, and chain
equivalent symmetric/quadratic Poincar¶e complexes are cobordant. In some-
what greater detail:

(i) The symmetric Poincar¶e complex of a product N 00 = N £ N 0 is the product
of the symmetric Poincar¶e complexes of N and N 0

(C( eN 00); `00) = (C( eN) › C( eN 0); ` › `0) :

(ii) The kernel quadratic Poincar¶e complex (C(g!); ˆc) of the product normal
map (g; c) = (f; b)£1 : M £N ! X £N is the product of the kernel quadratic
Poincar¶e complex (C(f !); ˆb) of (f; b) and the symmetric Poincar¶e complex
(C( eN); `) of N

(C(g!); ˆc) = (C(f !) › C( eN); ˆb › `) :

Theorem 5.2 (i) (Shaneson [26], Wall [27]) The quadratic L-groups of Z[Zn]
are given by

Lm(Z[Zn]) =

nX

r=0

µ
n

r

¶
Lm¡r(Z) (m > 0) ;
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interpreting Lm¡r(Z) for m ¡ r < 0 as Lm¡r+4⁄(Z).

(ii) (Milgram and Ranicki [14], Ranicki [22, x19]) The symmetric L-groups of
Z[Zn] are given by

Lm(Z[Zn]) =
nX

r=0

µ
n

r

¶
Lm¡r(Z) (m > 0)

interpreting Lm¡r(Z) for m < r as

Lm¡r(Z) =

8
<
:

0 if m = r ¡ 1; r ¡ 2

Lm¡r(Z) if m < r ¡ 2 :

The symmetric signature of T n

¾⁄(T n) = (C( eT n); `) = (0; : : : ; 0; 1) 2 Ln(Z[Zn]) =

nX

r=0

µ
n

r

¶
Ln¡r(Z) ;

is the cobordism class of the n-dimensional symmetric Poincar¶e complex (C( eT n); `)
over Z[Zn] with

C( eT n) =
O

n

C( eS1) ; rankZ[Zn]Cr( eT n) =

µ
n

r

¶
:

The surgery obstruction

E8 £ T n = (0; : : : ; 0; 1) 2 Ln(Z[Zn]) =
nX

r=0

µ
n

r

¶
Ln¡r(Z)

is the cobordism class of the n-dimensional quadratic Poincar¶e complex over
Z[Zn]

(C; ˆ) = (Z8; E8) › (C( eT n); `)

with

rankZ[Zn]Cr = 8

µ
n

r

¶
:

6 Almost (¡1)n-symmetric forms

The surgery obstruction of the (4m + 2n)-dimensional normal map

(f; b) = (f0; b0) £ 1 : M4m
0 £ T 2n ! S4m £ T 2n
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is given by the instant surgery obstruction of x3 and the surgery product formula
of x5 to be the Witt class

¾⁄(f; b) = (K; ‚; „) 2 L4m+2n(Z[Z2n])

of the instant form (K; ‚; „) of the 2n-dimensional quadratic Poincar¶e complex

(C; ˆ) = (Z8; E8) › (C( eT 2n); `) ;

with

rankZ[Z2n]K = 8 rankZ[Z2n]Cn( eT 2n) = 8

µ
2n

n

¶
:

In principle, it is possible to compute (‚; „) directly from the (4m + 2n)-
dimensional symmetric Poincar¶e complex E8 ›(C( eT n); `). In practice, we shall
use the almost symmetric form surgery product formula of Clauwens [6],[7],[8],
which is the analogue for symmetric Poincar¶e complexes of the instant surgery
obstruction of x3. We establish a product formula for almost symmetric forms
which will be used in x7 to obtain an almost (¡1)n -symmetric form for T 2n of
rank 2n 6

¡
2n
n

¢
, and hence a representative (¡1)n -quadratic form for ¾⁄(f; b) 2

L4m+2n(Z[Z2n]) of rank 2n+3 6 8
¡

2n
n

¢
.

Deflnition 6.1 Let R be a ring with involution.

(i) An almost (¡1)n -symmetric form (A; fi) over R is a f.g. free R-module A

together with a nonsingular pairing fi : A ! A⁄ such that the endomorphism

fl = 1 + (¡1)n+1fi¡1fi⁄ : A ! A

is nilpotent, i.e. flN = 0 for some N > 1.

(ii) A sublagrangian of an almost (¡1)n -symmetric form (A; fi) is a direct sum-
mand L ‰ A such that L µ L? , where

L? := fb 2 A j fi(b)(A) = fi(A)(b) = f0gg :

A lagrangian is a sublagrangian L such that

L = L? :

(iii) The almost (¡1)n -symmetric Witt group AL2n(R) is the abelian group
of isomorphism classes of almost (¡1)n -symmetric forms (A; fi) over R with
relations

(A; fi) = 0 if (A; fi) admits a lagrangian

and addition by

(A; fi) + (A0; fi0) = (A ' A0; fi ' fi0) :
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Example A nonsingular (¡1)n -symmetric form (A; fi) is an almost (¡1)n -
symmetric form such that

fi = (¡1)nfi⁄ : A ! A⁄

so that 1 + (¡1)n+1fi¡1fi⁄ = 0 : A ! A.

An almost (¡1)n -symmetric form (Rq; fi) on a f.g. free R-module of rank q is
represented by an invertible q £ q matrix fi = (firs) such that the q £ q matrix
1 + (¡1)n+1fi¡1fi⁄ is nilpotent.

Deflnition 6.2 The instant form of a 2n-dimensional symmetric Poincar¶e
complex (C; `) over R is the almost (¡1)n -symmetric form over R

(A; fi) =

µ
coker(

µ
d⁄ 0

¡`⁄
0 d

¶
: Cn¡1 ' Cn+2 ! Cn ' Cn+1) ;

•
`0 + d`1 d

(¡1)nd⁄ 0

‚¶
:

Example If `0 : C2n¡⁄ ! C is an isomorphism the instant almost (¡1)n -
symmetric form is

(A; fi) = (Cn; `0 + d`1) :

Every 2n-dimensional symmetric Poincar¶e complex (C; `) over a ring with
involution R is chain equivalent to a complex (C 0; `0) such that `0

0 : C 02n¡⁄ !
C 0 is an isomorphism, with

C 0 : C0 ! C1 ! ¢ ¢ ¢ ! Cn¡1 ! A⁄ ! Cn¡1 ! ¢ ¢ ¢ ! C1 ! C0

and
`0

0 + d0`0
1 = fi : C 0n = A ! C 0

n = A⁄ :

(We shall not actually need this chain equivalence, since `0 : C2n¡⁄ ! C is
an isomorphism for C = C( eT 2n), so Example 6 will apply). The instant form
deflnes a forgetful map

L2n(R) ! AL2n(R) ; (C; `) 7! (A; fi) :

Proposition 6.3 (Ranicki [24, 36.3]) The almost (¡1)n -symmetric Witt
group of Z is given by

AL2n(Z) =

(
Z if n · 0(mod 2)

0 if n · 1(mod 2)
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with L4k(Z) ! AL4k(Z) an isomorphism. The Witt class of an almost sym-
metric form (A; fi) over Z is

(A; fi) = signature(Q› A; (fi + fi⁄)=2) 2 AL4k(Z) = L4k(Z) = Z :

The almost (¡1)n -symmetric L-group AL2n(R) was denoted LAsy0
h;S(¡1)n

(R)

in [24].

Deflnition 6.4 The almost symmetric signature of a 2n-dimensional manifold
N2n with …1(N) = ‰ is the Witt class

¾⁄(N) = (A; fi) 2 AL2n(Z[‰])

of the instant almost (¡1)n -symmetric form (A; fi) over Z[‰] of the 2n-dimensional
symmetric Poincar¶e complex (C( eN); `) over Z[‰].

The forgetful map L2n(Z[‰]) ! AL2n(Z[‰]) sends the symmetric signature
¾⁄(N) 2 L2n(Z[‰]) to the almost symmetric signature ¾⁄(N) 2 AL2n(Z[‰]).

For any rings with involution R1; R2 there is deflned a product

AL2n1(R1) › AL2n2(R2) ! AL2n1+2n2(R1 › R2) ;

(A1; fi1) › (A2; fi2) 7! (A1 › A2; fi1 › fi2) :

Proposition 6.5 The almost symmetric signature of a product N = N1 £
N2 of 2ni -dimensional manifolds Ni with …1(Ni) = ‰i and almost (¡1)ni -
symmetric forms (Z[‰i]

qi ; fii) (i = 1; 2) is the product

¾⁄(N1 £ N2) = ¾⁄(N1) › ¾⁄(N2)

2 im(AL2n1(Z[‰1]) › AL2n2(Z[‰2]) ! AL2n1+2n2(Z[‰1 £ ‰2])) :

Proof The almost (¡1)n1+n2 -symmetric form (A; fi) of N1 £N2 is deflned on

A = Cn1+n2( eN1 £ eN2) =
M

(p1;p2)2S

Cp1( eN1) › Cp2( eN2)

with

S = f(p1; p2) j p1 + p2 = n1 + n2g :

Deflne an involution

T : S ! S ; (p1; p2) 7! (2n1 ¡ p1; 2n2 ¡ p2) ;
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and let U ‰ Snf(n1; n2)g be any subset such that S decomposes as a disjoint
union

S = f(n1; n2)g [ U [ T (U) :

The submodule

L =
M

(p1;p2)2U

Cp1( eN1) › Cp2( eN2) µ A

is a sublagrangian of (A; fi) such that

(L?=L; [fi]) = (Cn1( eN1); fi1) › (Cn2( eN2); fi2) :

The submodule

¢L? = f(b; [b]) j b 2 L?g ‰ A ' (L?=L)

is a lagrangian of (A; fi) ' (L?=L; ¡[fi]), and

(A; fi) = (L?=L; [fi]) = (Cn1( eN1); fi1) › (Cn2( eN2); fi2)

2 im(AL2n1(Z[‰1]) › AL2n2(Z[‰2]) ! AL2(n1+n2)(Z[‰1 £ ‰2])) :

The product of a nonsingular (¡1)m -quadratic form (K; ‚; „) over ⁄ and a
2n-dimensional symmetric Poincar¶e complex (C; `) over R is a 2(m + n)-
dimensional quadratic Poincar¶e complex (K⁄¡m›C; (‚; „)›`) over ⁄0 = ⁄›R,
as in [21], with K⁄¡m the 2m-dimensional f.g. free ⁄-module chain complex
concentrated in degree m

K⁄¡m : 0 ! ¢ ¢ ¢ ! 0 ! K ! 0 ! ¢ ¢ ¢ ! 0 :

The pairing

L2m(⁄)›L2n(R) ! L2m+2n(⁄›R) ; (K; ‚; „)›(C; `) 7! (K⁄¡m›C; (‚; „)›`)

has the following generalization.

Deflnition 6.6 The product of a nonsingular (¡1)m -quadratic form (K; ‚; „)
over ⁄ and an almost (¡1)n -symmetric form (A; fi) over R is the nonsingular
(¡1)m+n -quadratic form over ⁄0 = ⁄ › R

(K 0; ‚0; „0) = (K; ‚; „) › (A; fi)

with

K 0 = K › A ; (‚0; „0) = (‚; „) › fi = (ˆ0 + (¡1)m+nˆ0⁄; ˆ0)
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determined by the ⁄0 -module morphism

ˆ0 = ˆ › fi : K 0 = K › A ! K 0⁄ = K⁄ › A⁄

with ˆ : K ! K⁄ a ⁄-module morphism such that

(‚; „) = (ˆ + (¡1)mˆ⁄; ˆ) :

In particular, if K = ⁄p then ˆ is given by a p £ p matrix ˆ = fˆijg over ⁄,
and if A = Rq then fi = ffirsg is given by a q £ q matrix over R, so that

ˆ0 = ˆ › fi

is the pq £ pq matrix over ⁄0 with

ˆ0
tu = ˆij › firs if t = (i ¡ 1)p + r ; u = (j ¡ 1)p + s :

If (A; fi) is an almost (¡1)n -symmetric form over R with a sublagrangian
L ‰ A the induced almost (¡1)n -symmetric form (L?=L; [fi]) over R is such
that

¢L? = f(b; [b]) j b 2 L?g ‰ A ' (L?=L)

is a lagrangian of (A; fi) ' (L?=L; ¡[fi]), and

(K; ‚; „) › (A; fi) = (K; ‚; „) › (L?=L; [fi]) 2 L2m+2n(⁄0) :

In particular, if L is a lagrangian of (A; fi) then

(K; ‚; „) › (A; fi) = 0 2 L2m+2n(⁄0) ;

so that the product

L2m(⁄) › AL2n(R) ! L2m+2n(⁄0) ; (K; ‚; „) › (A; fi) 7! (K › A; (‚; „) › fi)

is well-deflned.

Theorem 6.7 (Almost symmetric L-theory surgery product formula,
Clauwens [6])

(i) The product

L2m(⁄)›L2n(R) ! L2m+2n(⁄›R) ; (K; ‚; „)›(C; `) 7! (K⁄¡m›C; (‚; „)›`)

factors through the product

L2m(⁄)›AL2n(R) ! L2m+2n(⁄›R) ; (K; ‚; „)›(A; fi) 7! (K ›A; (‚; „)›fi) :
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(ii) Let (f; b) : M ! X be a 2m-dimensional normal map with surgery ob-
struction

¾⁄(f; b) = (Z[…]p; ‚; „) 2 L2m(Z[…]) (… = …1(X)) ;

and let N be a 2n-dimensional manifold with almost (¡1)n -symmetric signa-
ture

¾⁄(N) = (Z[‰]q; fi) 2 AL2n(Z[‰]) (‰ = …1(N)) :

The surgery obstruction of the (2m + 2n)-dimensional normal map

(g; c) = (f; b) £ 1 : M £ N ! X £ N

is given by

¾⁄(g; c) = (Z[… £ ‰]pq; (‚; „) › fi)

2 im(L2m(Z[…]) › AL2n(Z[‰]) ! L2m+2n(Z[… £ ‰])) :

(iii) The surgery obstruction of the product 2(m+n1 +n2)-dimensional normal
map

(g; c) = (f; b) £ 1 : M £ N1 £ N2 ! X £ N1 £ N2

is given by

¾⁄(g; c) = (Z[… £‰1 £‰2]pq1q2 ; (‚; „)›fi1 ›fi2) 2 L2(m+n1+n2)(Z[… £‰1 £‰2]) :

Proof (i) By construction.

(ii) It may be assumed that (f; b) : M ! X is an m-connected 2m-dimensional
normal map, with kernel (¡1)m -quadratic form over Z[…]

(Km(M); ‚; „) = (Z[…]p; ‚; „) :

The product (g; c) = (f; b) £ 1 : M £ N ! X £ N is m-connected, with
quadratic Poincar¶e complex

(C; ˆ) = (Km(M); ‚; „) › (C( eN); `)

and kernel Z[… £ ‰]-modules

K⁄(M £ N) = Km(M) › H⁄¡m( eN) :

Let (f 0; b0) : M 0 ! X £ N be the bordant (m + n)-connected normal map
obtained from (g; c) by surgery below the middle dimension, using (C; ˆ) as in
Remark 3 (ii). The kernel (¡1)m+n -quadratic form over Z[… £ ‰] of (f 0; b0) is
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the instant form of (C; ˆ), which is just the product of (Km(M); ‚; „) and the
almost (¡1)n -symmetric form (Z[‰]q; fi)

(Km+n(M 0); ‚0; „0) =
µ

coker(

µ
d⁄ 0

(¡1)m+n+1(1 + T )ˆ0 d

¶
: Cm+n¡1 ' Cm+n+2 ! Cm+n ' Cm+n+1);

•
ˆ0 + (¡1)m+nˆ⁄

0 d

(¡1)m+nd⁄ 0

‚
;

•
ˆ0 d

0 0

‚¶

= (Z[… £ ‰]pq; (‚; „) › fi) :

The surgery obstruction of (g; c) is thus given by

¾⁄(g; c) = ¾⁄(f 0; b0) = (Km+n(M 0); ‚0; „0)

= (Z[… £ ‰]pq; (‚; „) › fi) 2 L2m+2n(Z[… £ ‰]) :

(iii) Combine (i) and (ii) with Proposition 6.5.

7 The almost (¡1)n-symmetric form of T 2n

Geometrically, ¡£T 2n sends the surgery obstruction ¾⁄(f0; b0) = E8 2 L4m(Z)
to the surgery obstruction

E8 £ T 2n = ¾⁄(fn; bn) 2 L4m+2n(Z[Z2n])

of the (4m + 2n)-dimensional normal map

(fn; bn) = (f0; b0) £ 1 : M4m
0 £ T 2n ! S4m £ T 2n

given by product with the almost symmetric signature of

T 2n = S1 £ S1 £ ¢ ¢ ¢ £ S1 (2n factors)

= T 2 £ T 2 £ ¢ ¢ ¢ £ T 2 (n factors) :

In order to apply the almost symmetric surgery product formula 6.7 for N2n =
T 2n it therefore su–ces to work out the almost (¡1)-symmetric form (C1( eT 2); fi)
of T 2 .

The symmetric Poincar¶e structure ` = f`sjs > 0g of the universal cover eS1 = R
of S1 is given by

d = 1 ¡ z : C1(R) = Z[z; z¡1] ! C0(R) = Z[z; z¡1] ;

`0 =

(
1 : C0(R) = Z[z; z¡1] ! C1(R) = Z[z; z¡1]

z : C1(R) = Z[z; z¡1] ! C0(R) = Z[z; z¡1] ;

`1 = ¡ 1 : C1(R) = Z[z; z¡1] ! C1(R) = Z[z; z¡1] :
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Write

⁄ = Z[…1(T 2)] = Z[z1; z¡1
1 ; z2; z¡1

2 ] :

The Poincar¶e duality of eT 2 = R2 is the ⁄-module chain isomorphism given by
the chain-level Kũnneth formula to be

C( eT 2)2¡⁄ : C0 = ⁄

`0

²²

d⁄ =

µ
z2 ¡ 1

1 ¡ z¡1
1

¶

//

1

²²

C1 = ⁄ ' ⁄
d⁄ = (1 ¡ z¡1

1 1 ¡ z2)
//

µ
0 ¡z1

z¡1
2 0

¶

²²

C2 = ⁄

¡z1z¡1
2

²²
C( eT 2) : C2 = ⁄

d =

µ
1 ¡ z1

1 ¡ z¡1
2

¶

// C1 = ⁄ ' ⁄
d = (z¡1

2 ¡ 1 1 ¡ z1)
// C0 = ⁄ :

The chain homotopy

`1 : `0 ’ T `0 : C( eT 2)2¡⁄ ! C( eT 2)

is given by

`1 =

8
>><
>>:

‡
1 ¡z2

·
: C1 = ⁄ ' ⁄ ! C2 = ⁄

ˆ
¡z1

1

!
: C2 = ⁄ ! C1 = ⁄ ' ⁄ :

Proposition 7.1 The almost (¡1)-symmetric form of T 2 is given by (C1; fi)
with

fi = `0 ¡`1d⁄ =

µ
1 ¡ z1 z1z2 ¡ z1 ¡ z2

1 1 ¡ z2

¶
: C1 = ⁄'⁄ ! C1 = ⁄'⁄ :

Proof By construction, noting that

1 + fi¡1fi⁄ =

ˆ
¡(1 ¡ z1)(1 ¡ z¡1

2 ) z1(1 ¡ z2)(1 ¡ z¡1
2 )

¡z¡1
2 (1 ¡ z1)(1 ¡ z¡1

1 ) (1 ¡ z1)(1 ¡ z¡1
2 )

!
:

C1 = ⁄ ' ⁄ ! C1 = ⁄ ' ⁄

is nilpotent, with

(1 + fi¡1fi⁄)2 = 0 : C1 = ⁄ ' ⁄ ! C1 = ⁄ ' ⁄ :
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Remark An almost (¡1)n -symmetric form (Rq; fi) over R determines a non-
singular (¡1)n -quadratic form (R[1=2]q; ‚; „) over R[1=2], with

‚(x; y) = (fi(x; y) + (¡1)nfi(y; x))=2 ; „(x) = fi(x)(x)=2 :

In particular, the almost (¡1)-symmetric form (⁄ ' ⁄; fi) of T 2 determines
the nonsingular (¡1)-quadratic form (⁄[1=2] ' ⁄[1=2]; ‚; „) over ⁄[1=2] =
Z[Z2][1=2], with

‚ = (fi ¡ fi⁄)=2

=

ˆ
((z1)¡1 ¡ z1)=2 (1 ¡ z1z2 ¡ z1 ¡ z2)=2

(¡1 + (z1)¡1(z2)¡1 + (z1)¡1 + (z2)¡1)=2 ((z2)¡1 ¡ z2)=2

!

the invertible skew-symmetric 2 £ 2 matrix exhibited in [12][Example, p.120].

8 An explicit form representing E8 £ T 2n 2 L4⁄+2n(Z[Z2n])

Write the generators of the free abelian group …1(T 2n) = Z2n as z1; z2; : : : ;

z2n¡1; z2n , so that

Z[Z2n] = Z[z1; z¡1
1 ; z2; z¡1

2 ; : : : ; z2n; z¡1
2n ] :

The expression of T 2n as an n-fold cartesian product of T 2 ’s

T 2n = T 2 £ T 2 £ ¢ ¢ ¢ £ T 2

gives

Z[Z2n] = Z[z1; z¡1
1 ; z2; z¡1

2 ]›Z[z3; z¡1
3 ; z4; z¡1

4 ]›¢ ¢ ¢›Z[z2n¡1; z¡1
2n¡1; z2n; z¡1

2n ] :

For i = 1; 2; : : : ; n deflne the invertible 2£2 matrix over Z[z2i¡1; z¡1
2i¡1; z2i; z¡1

2i ]

fii =

µ
1 ¡ z2i¡1 z2i¡1z2i ¡ z2i¡1 ¡ z2i

1 1 ¡ z2i

¶
:

The generator 1 = E8 2 L0(Z) = Z is represented by the nonsingular quadratic
form (Z8; ˆ0) over Z with

ˆ0 =

0
BBBBBBBBBB@

1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

1
CCCCCCCCCCA

:
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Theorem 8.1 The 2n+3 £ 2n+3 matrix over Z[Z2n]

ˆn = ˆ0 › fi1 › fi2 ¢ ¢ ¢ › fin

is such that

E8 £ T 2n = (Z[Z2n]2
n+3

; ˆn) 2 L2n(Z[Z2n]) :

Proof A direct application of the almost symmetric surgery product formula
6.7, noting that fi1 , fi2 , : : : , fin are copies of the almost (¡1)-symmetric form
of T 2 obtained in 7.1.

9 Transfer invariance

A covering map p : T n ! T n induces an injection of the fundamental group in
itself

p⁄ : …1(T n) = Zn ! …1(T n) = Zn

as a subgroup of flnite index, say q = [Zn : p⁄(Zn)]. Given a Z[Zn]-module K

let p!K be the Z[Zn]-module deflned by the additive group of K with

Z[Zn] £ p!K ! p!K ; (a; b) 7! p⁄(a)b :

In particular

p!Z[Zn] = Z[Zn]q :

The restriction functor

p! : fZ[Zn]-modulesg ! fZ[Zn]-modulesg ; K 7! p!K

induces transfer maps in the quadratic L-groups

p! : Lm(Z[Zn]) ! Lm(Z[Zn]) ; (C; ˆ) 7! p!(C; ˆ) :

Proposition 9.1 The image of the (split) injection

L0(Z) ! Ln(Z[Zn]) =
nX

r=0

µ
n

r

¶
Ln¡r(Z) ; E8 7! E8 £ T n

is the subgroup of the transfer-invariant elements

Ln(Z[Zn])INV = fx 2 Ln(Z[Zn]) j p!x = x for all p : T n ! T ng :

Proof See Chapter 18 of Ranicki [22].
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Example (i) Write

⁄ = Z[Z2] = Z[z1; z¡1
1 ; z2; z¡1

2 ] :

Here is an explicit veriflcation that

p!(E8 £ T 2) = E8 £ T 2 2 L2(⁄)

for the double cover

p : T 2 = S1 £ S1 ! T 2 ; (w1; w2) 7! ((w1)2; w2)

with
p⁄ : …1(T 2) = Z2 ! Z2 ; z1 7! (z1)2 ; z2 7! z2

the inclusion of a subgroup of index 2. For any j1; j2 2 Z the transfer of the
⁄-module morphism z

j1
1 z

j2
2 : ⁄ ! ⁄ is given by the ⁄-module morphism

p!(zj1
1 z

j2
2 ) =

8
>>>>>>>>>><
>>>>>>>>>>:

ˆ
(z1)j1=2z

j2
2 0

0 (z1)j1=2z
j2
2

!
:

p!⁄ = ⁄ ' ⁄ ! p!⁄ = ⁄ ' ⁄ if j1 is even

ˆ
0 (z1)(j1+1)=2z

j2
2

(z1)(j1¡1)=2z
j2
2 0

!
:

p!⁄ = ⁄ ' ⁄ ! p!⁄ = ⁄ ' ⁄ if j1 is odd :

The transfer of the almost (¡1)-symmetric form of T 2 over ⁄

(C1( eT 2); fi) = (⁄ ' ⁄;

µ
1 ¡ z1 z1z2 ¡ z1 ¡ z2

1 1 ¡ z2

¶
)

is the almost (¡1)-symmetric form over ⁄

p!(C1( eT 2); fi) = (⁄ ' ⁄ ' ⁄ ' ⁄;

0
BB@

1 ¡z1 ¡z2 z1z2 ¡ z1

¡1 1 z2 ¡ 1 ¡z2

1 0 1 ¡ z2 0
0 1 0 1 ¡ z2

1
CCA)

The ⁄-module morphisms

i =

0
BB@

z1 ¡ z1z2

0
¡z1

1

1
CCA : ⁄ ! ⁄ ' ⁄ ' ⁄ ' ⁄ ;

j =

0
BB@

1 0 z1 ¡ z1z2

z¡1
1 0 0
0 1 ¡z1

0 0 1

1
CCA : ⁄ ' ⁄ ' ⁄ ! ⁄ ' ⁄ ' ⁄ ' ⁄
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are such that i = jj0'0'⁄ and there is deflned a (split) exact sequence

0 // ⁄ ' ⁄ ' ⁄
j // ⁄ ' ⁄ ' ⁄ ' ⁄

i⁄p!fi // ⁄ // 0

with

j⁄(p!fi)j =

0
@

1 ¡ z1 z1z2 ¡ z1 ¡ z2 0
1 1 ¡ z2 0
0 0 0

1
A : ⁄ ' ⁄ ' ⁄ ! ⁄ ' ⁄ ' ⁄ :

The submodule

L = i(⁄) ‰ p!(⁄ ' ⁄) = ⁄ ' ⁄ ' ⁄ ' ⁄

is thus a sublagrangian of the almost (¡1)-symmetric form p!(C1( eT 2); fi) over
Z[Z2] such that

(L?=L; [p!fi]) = (C1( eT 2); fi)

and
p!(E8 £ T 2) = E8 › p!(C1( eT 2); fi)

= E8 › (L?=L; [p!fi])

= E8 › (C1( eT 2); fi) = E8 £ T 2 2 L2(⁄) :

(ii) For any n > 1 replace p by

pn = p £ 1 : T 2n = T 2 £ T 2n¡2 ! T 2n = T 2 £ T 2n¡2

to likewise obtain an explicit veriflcation that

p!
n(E8 £ T 2n) = E8 £ T 2n 2 L2n(Z[Z2n]) :

10 Controlled surgery groups

A geometric Z[…]-module over a metric space B is a pair (K; ’), where K =
Z[…]r is a free Z[…]-module with basis S = fe1; : : : ; erg and ’ : S ! B is
a map. The (†; –)-controlled surgery group Ln(B;Z; †; –) (with trivial local
fundamental group) is deflned as the group of n-dimensional quadratic Z-
Poincar¶e complexes (see [21]) over B of radius < – , modulo (n+1)-dimensional
quadratic Z-Poincar¶e bordisms of radius < †. Elements of L2n(B;Z; †; –) are
represented by non-singular (¡1)n -quadratic forms (K; ‚; „), where K = Zr

is a geometric Z-module over B , and ‚ has radius < – , i.e., ‚(ei; ej) = 0
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if d(’(ei); ’(ej)) > – . In matrix representation (K; ˆ), this is equivalent to
ˆij = 0 if d(’(ei); ’(ej)) > – . The radius of a bordism is deflned similarly.

In efiect, Yamasaki [29] deflned an assembly map Hn(B;L) ! Ln(B;Z; †; –),
where H⁄(B;L) denotes homology with coe–cients in the 4-periodic simply-
connected surgery spectrum L of Chapter 25 of Ranicki [23].

The following Stability Theorem is a key ingredient in the construction of exotic
ENR homology manifolds.

Theorem 10.1 (Stability) (Pedersen, Quinn and Ranicki [16], Ferry [11],
Pedersen and Yamasaki [17])

Let n > 0 and suppose B is a compact metric ENR. Then there exist constants
†0 > 0 and • > 1, which depend on n and B , such that the assembly map
Hn(B;L) ! Ln(B;Z; †; –) is an isomorphism if †0 > † > •– , so that

lim¡̂
†

lim¡̂
–

Ln(B;Z; †; –) = Hn(B;L) :

We are interested in controlled surgery over the torus T 2n = R2n=Z2n equipped
with the usual geodesic metric. Let (K; ˆ) represent an element of L2n(Z[Z2n]),
where K = Z[Z2n]r . Our next goal is to show that passing to a su–ciently large
covering space p : T 2n ! T 2n , (K; ˆ) deflnes an element of L2n(T 2n;Z; †; –).
For simplicity, we assume that

p⁄ : …1(T 2n) »= Z2n ! …1(T 2n) »= Z2n

is given by multiplication by k > 0, so that p is a k2n -sheeted covering space.

Let ( „K; „̂) = Z[Z2n
k ] ›Z[Z2n] (K; ˆ), where the (right) Z[Z2n]-module structure

on Z[Z2n
k ] is induced by reduction modulo k . The Z-module ~K underlying „K

has basis Z2n
k £ S ; if g 2 Z2n

k and ei 2 S , we write (g; ei) = g ei . Pick a point
x0 in the covering torus T 2n viewed as a Z2n

k -space under the action of the
group of deck transformations. Let ’(ei) = x0 , for every ei 2 S , and extend
it Z2n

k -equivariantly to obtain ’ : Z2n
k £ S ! T 2n . Then, the pair ( ~K; ’) is a

geometric Z-module over T 2n of dimension rk2n .

We now describe the quadratic Z-module ( ~K; ~̂) induced by (K; ˆ) and the
covering p. Write

„̂ =
X

g2Z2n
k

g „̂
g ;

where each „̂
g is a matrix with integer entries. For basis elements gei; fej 2

Z2n
k £ S , let ~̂(gei; fej) = „̂

g¡1f (ei; ej); this deflnes a bilinear Z-form on the
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geometric Z-module ~K . For a given quadratic Z[Z2n]-module (K; ˆ), we show
that ( ~K; ~̂) has diameter < – over the (covering) torus T 2n , if k is su–ciently
large.

Elements of Z2n can be expressed uniquely as monomials

zi = zi1
1 : : : zi2n

2n

where i = (i1; : : : ; i2n) 2 Z2n is a multi-index. We use the notation

jij = max fji1j; : : : ; ji2njg :

Any z 2 Z[Z2n] can be expressed uniquely as

z =
X

i2Z2n

fii zi ;

where fii 2 Z is zero for all but flnitely many values of i. We deflne the order
of z to be

o(z) = max fjij : fii 6= 0g
and let

jˆj = max fo(ˆij); 1 6 i; j 6 rg :

Then, ( ~K; ~̂) is a quadratic Z-module over T 2n of radius < – , provided that
k > 2jˆj=– . Similarly, quadratic Z[Z2n]-Poincar¶e bordisms induce quadratic
Z-Poincar¶e †-bordisms for k large.

10.1 The forgetful map

We give an algebraic description of the forget-control map

F : L2n(T 2n;Z; †; –) ! L2n(Z[Z2n]);

for † and – small. Let ¾ 2 L(T 2n;Z; †; –) be represented by the (¡1)n -quadratic
Z-module (K; ˆ) over T 2n of radius < – , where K has basis S = fe1; : : : ; erg
and projection ’ : S ! T 2n . Consider the free Z[Z2n]-module ~K of rank
r generated by ~S = f~e1; : : : ; ~erg and let ~’ : ~S ! R2n be a map satisfying
q – ~’(~ei) = ’(ei), 1 6 i 6 r , where q : R2n ! T 2n = R2n=Z2n is the universal
cover. If ˆij 6= 0 and – is small, there is a unique element gij of Z2n such that

d ( ~’(~ej) + gij ; ~’(~ei)) < – , where d denotes Euclidean distance. Let ~̂ =
‡

~̂
ij

·
,

1 6 i; j 6 r be the matrix whose entries in Z[Z2n] are

~̂
ij =

(
0; if ˆij = 0 ;

ˆij gij ; if ˆij 6= 0 .
(1)
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The quadratic Z[Z2n]-module ( ~K; ~̂) represents F(¾) 2 L2n(Z[Z2n). Likewise,
quadratic Z-Poincar¶e †-bordisms over T 2n induce quadratic Z[Z2n]-Poincar¶e
bordisms.

10.2 Controlled E8 over T 2n

Starting with the (¡1)n -quadratic Z[Z2n]-module E8 £ T 2n , pass to a large
covering space p : T 2n ! T 2n to obtain a – -controlled quadratic Z-module ~E8

over T 2n representing an element of L2n(T 2n;Z; †; –). It is simple to verify
that F( ~E8) = p! (E8 £ T 2n), where p! is the L-theory transfer. The transfer
invariance results discussed in Section 9 imply that F( ~E8) = E8 £ T 2n . Thus,
~E8 gives a – -controlled realization of the form E8 over T 2n .

10.3 Controlled surgery obstructions

Deflnition 10.2 Let p : X ! B be a map to a metric space B and † > 0.
A map f : Y ! X is an †-homotopy equivalence over B , if there exist a map
g : X ! Y and homotopies Ht from g – f to 1Y and Kt from f – g to 1X such
that diam (p – f – Ht(y)) < † for every y 2 Y , and diam (p – Kt(x)) < †, for
every x 2 X . This means that the tracks of H and K are †-small as viewed
from B .

Controlled surgery theory addresses the question of the existence and unique-
ness of controlled manifold structures on a space. Polyhedra homotopy equiva-
lent to compact topological manifolds satisfy the Poincar¶e duality isomorphism.
Likewise, there is a notion of †-Poincare duality satisfled by polyhedra flnely
equivalent to a manifold. Poincar¶e duality can be estimated by the diameter of
cap product with a fundamental class as a chain homotopy equivalence.

Deflnition 10.3 Let p : X ! B be a map, where X is a polyhedron and B is
a metric space. X is an †-Poincar¶e complex of formal dimension n over B if
there exist a subdivision of X such that simplices have diameter ¿ † in B and
an n-cycle y in the simplicial chains of X so that \y : C](X) ! Cn¡](X) is an
†-chain homotopy equivalence in the sense that \y and the chain homotopies
have the property that the image of each generator ¾ only involves generators
whose images under p are within an †-neighborhood of p(¾) in B .

To formulate simply-connected controlled surgery problems, the notion of lo-
cally trivial fundamental group from the viewpoint of the control space is
needed. This can be formalized using the notion of UV 1 maps as follows.
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Deflnition 10.4 Given – > 0, a map p : X ! B is called – -UV 1 if for
any polyhedral pair (P; Q), with dim (P ) 6 2, and maps fi0 : Q ! X and
fl : P ! B such that p – fi0 = fljQ ,

Q
fi0 //

i

²²

X

p

²²
P

fi
??

fl
// B

there is a map fi : P ! X extending fi0 so that p – fi is – -homotopic to fl over
B . The map p is UV 1 if it is – -UV 1 , for every – > 0.

Let B be a compact metric ENR and n > 5. Given † > 0, there is a – > 0 such
that if p : X ! B is a – -Poincar¶e duality space over B of formal dimension
n, (f; b) : Mn ! X is a surgery problem, and p is – -UV 1 . By the Stability
Theorem 10.1 there is a well-deflned surgery obstruction

¾⁄(f; b) 2 lim¡̂
†

lim¡̂
–

Ln(B;Z; †; –) = Hn(B;L)

such that (f; b) is normally cobordant to an †-homotopy equivalence for any
† > 0 if and only if ¾⁄(f; b) = 0. See Ranicki and Yamasaki [25] for an exposition
of controlled L-theory.

The main theorem of [16] is the following controlled surgery exact sequence (see
also [11], [25]).

Theorem 10.5 Suppose B is a compact metric ENR and n > 4. There is a
stability threshold †0 > 0 such that for any 0 < † < †0 , there is – > 0 with the
property that if p : N ! B is a – -UV 1 map, with N is a compact n-manifold,
there is an exact sequence

Hn+1(B;L) ! S†;–(N; f) ! [N; @N ; G=TOP; ⁄] ! Hn(B;L):

Here, S†;– is the controlled structure set deflned as the set of equivalence classes
of pairs (M; g), where M is a topological manifold and g : (M; @M) ! (N; @N)
restricts to a homeomorphism on @N and is a – -homotopy equivalence relative
to the boundary. The pairs (M1; g1) and (M2; g2) are equivalent if there is a
homeomorphism h : M1 ! M2 such that g1 and h – g2 are †-homotopic rel
boundary. As in classical surgery, the map Hn+1(B;L) ! S†;–(N; f) is deflned
using controlled Wall realization.
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11 Exotic homology manifolds

In [2], exotic ENR homology manifolds of dimensions greater than 5 are con-
structed as limits of sequences of controlled Poincar¶e complexes fXi; i > 0g.
These complexes are related by maps pi : Xi+1 ! Xi such that Xi+1 is †i+1 -
Poincar¶e over Xi , i > 0, and pi is an †i -homotopy equivalence over Xi¡1 ,
i > 1, where

P
†i < 1. Beginning, say, with a closed manifold X0 , the se-

quence fXig is constructed iteratively using cut-paste constructions on closed
manifolds. The gluing maps are obtained using the Wall realization of con-
trolled surgery obstructions, which emerge as a non-trivial local index in the
limiting ENR homology manifold. As pointed out in the Introduction, our main
goal is to give an explicit construction of the flrst controlled stage X1 of this
construction using the quadratic form E8 , beginning with the 2n-dimensional
torus X0 = T 2n , n > 3. The construction of subsequent stages follows from
fairly general arguments presented in [2] and leads to an index-9 ENR homology
manifold not homotopy equivalent to any closed topological manifold. Since an
explicit algebraic description of the controlled quadratic module ~E8 over T 2n

has already been given in Section 10.2, we conclude the paper with a review of
how this quadratic module can be used to construct X1 .

Let P be the 2-skeleton of a flne triangulation of T 2n , and C a regular neigh-
borhood of P in T 2n . The closure of the complement of C in T 2n will be
denoted D , and the common boundary N = @C = @D (see Figure 1). Given
– > 0, we may assume that the inclusions of C; D and N into T 2n are all
– -UV 1 by taking a flne enough triangulation.

ND

C

Figure 1:

Let (K; ’) be a geometric Z-module over T 2n representing the controlled
quadratic form ~E8 , where K »= Zr is a free Z-module with basis S = fe1; : : : ; erg
and ’ : S ! T 2n is a map. If Q ‰ T 2n is the dual complex of P , after a small
perturbation, we can assume that ’(S) \ (P [ Q) = ;. Composing this defor-
mation with a retraction T 2n n (P [ Q) ! N , we can assume that ’ factors
through N , that is, the geometric module is actually realized over N .

Using a controlled analogue of the Wall Realization Theorem (Theorem 5.8
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of [27]) applied to the identity map of N , realize this quadratic module over
N ‰ T 2n to obtain a degree-one normal map F : (V; N; N 0) ! (N £ I; N £
f0g; N £ f1g) satisfying:

(a) F jN = 1N .

(b) f = F jN 0 : N 0 ! N is a flne homotopy equivalence over T 2n .

(c) The controlled surgery obstruction of F rel @ over T 2n is ~E8 2H2n(T 2n;L).

The map F can be assumed to be – -UV 1 using controlled analogues of UV 1

deformation results of Bestvina and Walsh [13].

Let Cf be the mapping cylinder of f . Form a Poincar¶e complex X1 by pasting
Cf [N 0 (¡V ) into T 2n along N , that is,

X1 = C [N Cf [N 0 (¡V ) [N D;

as shown in Figure 2. Our next goal is to deflne the map p1 : X1 ! X0 = T 2n .

C C
f

D−V

Figure 2: The Poincar¶e complex X1 .

Let g : N ! N 0 be a controlled homotopy inverse of f . Composing f and g ,
and using an estimated version of the Homotopy Extension Theorem (see e.g.
[2]) and the controlled Bestvina-Walsh Theorem, one can modify F to a – -UV 1

map G : V ! Cg , so that GjN 0 = 1N 0 and GjN = 1N .

Let X 0
1 = C [N Cf [N 0 Cg [N D and p⁄

1 : X1 ! X 0
1 be as indicated in Figure 3.

Crushing Cf [N 0 Cg to N = @C , we obtain the desired map p1 : X1 ! T 2n =

C −VC f D

id idid G

g

C −VC f D

C C f DC

Figure 3: The map p⁄
1 : X1 ! X 0

1 .

C [N D .
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C N’x IV

idπid idF

−V

C
f

D−VC V

D

Figure 4: The map ` : M ! X1 .

To conclude, as in [3], we argue that X1 is not homotopy equivalent to any
closed topological manifold. To see this, consider the closed manifold

M = C [N V [N 0 N 0 £ I [N 0 (¡V ) [N D

and the degree-one normal map ` : M ! X1 depicted in Figure 4, where
… : N 0 £ I ! Cf is induced by f : N 0 ! N . The controlled surgery obstruction
of ` over T 2n is the generator

¾⁄(`) = E8 £ T 2n = (0; : : : ; 0; 1)

2 L0(Z) = L2n(Z[Z2n])INV ‰ H2n

¡
T 2n;L

¢
= L2n(Z[Z2n]) =

2nP
r=0

µ
2n

r

¶
L2n¡r(Z)

of the subgroup of the transfer invariant elements (9.1). Let Lh1i be the 1-
connective cover of L, the simply-connected surgery spectrum with 0th space
(homotopy equivalent to) G=TOP . Now

L2n(Z[Z2n]) = H2n(T 2n;L) = H2n(T 2n;Lh1i) ' L0(Z)

with

H2n(T 2n;Lh1i) = [T 2n; G=T OP ] =
2nX

r=1

µ
2n

r

¶
L2n¡r(Z) ‰ L2n(Z[Z2n])

the subgroup of the surgery obstructions of normal maps M1 ! T 2n . The
surgery obstruction of any normal map `1 : M1 ! X1 is of the type

¾⁄(`1) = (¿; 1) 6= 0 2 L2n(Z[Z2n]) = [T 2n; G=T OP ] ' L0(Z)

for some ¿ 2 [T 2n; G=T OP ], since the variation of normal invariant only
changes the component of the surgery obstruction in [T 2n; G=T OP ] ‰ L2n(Z[Z2n]).

Geometry & Topology Monographs, Volume X (20XX)



The quadratic form E8 and exotic homology manifolds 65

Thus, X1 is not homotopy equivalent to any topological manifold. In the ter-
minology of Chapter 17 of [23] the total surgery obstruction s(X1) 2 S2n(X1)
has image

(p1)⁄s(X1) = 1 2 S2n(T 2n) = L0(Z) :

The Bryant-Ferry-Mio-Weinberger procedure for constructing an ENR homol-
ogy manifold starting with p1 : X1 ! T 2n leads to a homology manifold ho-
motopy equivalent to X1 . Thus, from the quadratic form E8 , we obtained a
compact index-9 ENR homology 2n-manifold X8 which is not homotopy equiv-
alent to any closed topological manifold.
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0071693.
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Stability in controlled L-Theory

Erik Kj‰r Pedersen
Masayuki Yamasaki

Abstract We prove a squeezing/stability theorem for delta-epsilon con-
trolled L-groups when the control map is a polyhedral stratifled system
of flbrations on a flnite polyhedron. A relation with boundedly-controlled
L-groups is also discussed.

AMS Classiflcation 18F25; 57R67

Keywords Controlled L-groups.

1 Introduction

Let us flx an integer n ‚ 0, a continuous map pX : M ! X to a metric space X ,
and a ring R with involution. For each pair of positive numbers † • – , the delta-
epsilon controlled L-group L

–;†
n (X; pX ; R) is deflned to be the set of equivalence

classes of n-dimensional quadratic Poincar¶e R-module complexes on pX of
radius † (= n-dimensional † Poincar¶e † quadratic R-module complexes on
pX ), where the equivalence relation is generated by Poincar¶e cobordisms of
radius – (= – Poincar¶e – cobordisms) [9] [10] [12]. If – • –0 and † • †0 , there
is a natural homomorphism

L–;†
n (X; pX ; R) ! L–0;†0

n (X; pX ; R)

deflned by relaxation of control. In general, this map is neither surjective nor
injective. None the less, if X is a flnite polyhedron and pX is a polyhedral
stratifled system of flbrations in the sense of [5], the map above turns out to be
an isomorphism for certain values of – , –0 , †, †0 :

Theorem 1 (Stability in Controlled L-groups) For each integer n ‚ 0 and
a flnite polyhedron X , there exist constants –0 > 0 and • > 1 such that the
following hold : If

(1) •† • – • –0 , •†0 • –0 • –0
0 , – • –0 , † • †0 ,

(2) pX : M ! X is a polyhedral stratifled system of flbrations, and
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(3) R is a ring with involution,

then the relax-control map L
–;†
n (X; pX ; R) ! L

–0;†0
n (X; pX ; R) is an isomor-

phism.

It follows that all the groups L
–;†
n (X; pX ; R) with •† • – • –0 are isomorphic

and are equal to the controlled L-group Lc
n(X; pX ; R) of pX with coe–cient

ring R.

Stability is a consequence of squeezing; squeezing/stability for controlled K0

and K1 -groups were known [3]. ‘Splitting’ was the key idea there. In section
2, we discuss splitting in the controlled L-theory. An element of a controlled
L-group is represented by a quadratic Poincar¶e complex on a space. If it splits
into small pieces lying over cone-shaped sets (e.g. simplices), then we can
shrink all the pieces at the same time to obtain a squeezed complex. But
splitting in L-theory requires a change of K -theoretic decoration; if you split a
free quadratic Poincar¶e complex, then you get a projective one in the middle.
Since the controlled reduced projective class group is known to vanish when
the coe–cient ring is Z and the control map is UV 1 , we do not need to worry
about the controlled K -theory and squeezing holds in this case [4].

Several years ago the flrst named author proposed an approach to squeez-
ing/stability in controlled L-groups imitating the method of [3]. The idea was
to use projective complexes to split and to eventually eliminate the projective
pieces using the Eilenberg swindle :

[P ] = [P ] + (¡[P ] + [P ]) + (¡[P ] + [P ]) + (¡[P ] + [P ]) + ¢ ¢ ¢
= ([P ] ¡ [P ]) + ([P ] ¡ [P ]) + ([P ] ¡ [P ]) + ([P ] ¡ [P ]) + ¢ ¢ ¢ = 0 :

This approach works for any R if X is a circle; we will brie°y discuss the proof
in section 3.

The method used in section 3 does not generalize to higher dimensions, because
it requires repeated application of splitting but that is not easy to do with
projective complexes. This means that we should not try to shrink the complex
globally, but should try to shrink a small part of the complex lying over a cone
neighborhood of some point at a time. Such a local shrinking construction is
possible when the control map is a polyhedral stratifled system of flbrations,
and is called an Alexander trick. We study its efiect in section 4, and use it
repeatedly to prove Theorem 1 in section 5. Note that we do one splitting of the
whole complex for each application of an Alexander trick; we are not splitting
the split pieces.

In section 6, we discuss several variations of Theorem 1.
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Finally, in section 7, we relate the delta-epsilon controlled L-groups to the
bounded L-groups in a special case.

The authors would like to thank Frank Connolly, Jim Davis, Frank Quinn and
Andrew Ranicki for invaluable suggestions.

2 Glueing and Splitting

In this section we review techniques called glueing and splitting. If pX : M ! X

is a control map and Y is a subset of X , then we denote the restriction pX jY
of pX by pY . A closed † neighborhood of Y in X is denoted by Y † . We refer
the reader to [9] [10] for terms and notations in controlled L-theory.

We flrst discuss the glueing operation; it is to take the union of two objects with
common pieces of boundary. Suppose there are consecutive Poincar¶e cobor-
disms of radius – , one from (C; ˆ) to (C 0; ˆ0) and the other from (C 0; ˆ0) to
(C 00; ˆ00). Then their union is a Poincar¶e cobordism of radius 100– from (C; ˆ)
to (C 00; ˆ00) (Proposition 2.8 of [10]). We will encounter this factor \100" many
times in this article, and will denote it by „ at several places of section 5. For
example, we will need the following, which is a special case of Proposition 3.7
of [10].

Proposition 2 If [C; ˆ] = 0 in L
–;†
n (X; pX ; R), then there is a Poincar¶e cobor-

dism of radius 100– from (C; ˆ) to 0.

Proof By deflnition, there is a sequence of consecutive Poincar¶e cobordisms
starting from (C; ˆ) and ending at 0. Their union can be regarded as the
union of the even-numbered ones and the odd-numbered ones, so it is 100–

Poincar¶e.

Next we discuss splitting. Before stating the splitting lemma, let us recall
a minor technicality from x6 of [8] : Suppose X is the union of two closed
subsets A and B with intersection Y = A \ B . If a path ° : [0; s] ! M with
pX°(0) 2 A is contained in p¡1

X (f°(0)g†), then it lies in p¡1
X (A[Y 2†). Of course

it is contained also in p¡1
X (A†), but this is slightly less useful.

Lemma 3 (Splitting Lemma) For any integer n ‚ 2, there exists a positive
number ‚ ‚ 1 such that the following holds: If pX : M ! X is a map to a met-
ric space X , X is the union of two closed subsets A and B with intersection Y ,
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and R is a ring with involution, then for any n-dimensional quadratic Poincar¶e
R-module complex c = (C; ˆ) on pX of radius †, there exist a Poincar¶e cobor-
dism of radius ‚† from c to the union c0 [ c00 of an n-dimensional quadratic
Poincar¶e pair c0 = (f 0 : P ! C 0; (– „̂0; ¡ „̂)) on pA[Y ‚† of radius ‚† and an n-
dimensional quadratic Poincar¶e pair c00 = (f 00 : P ! C 00; (– „̂00; „̂)) on pB[Y ‚†

of radius ‚†, where (P; „̂) is an (n ¡ 1)-dimensional quadratic Poincar¶e pro-
jective R-module complex on pY ‚† and P is ‚† chain equivalent to an (n ¡ 1)-
dimensional free chain complex on pA[Y ‚† and also to an (n ¡ 1)-dimensional
free chain complex on pB[Y ‚† .

Proof This is an epsilon-control version of Ranicki’s argument for the bounded
control case [7]. For a given (C; ˆ) of radius †, pick up a subcomplex C 0 ‰ C

such that C 0 is identical with C over A and C 0 lies over some neighborhood
of A. Let p : C ! C=C 0 be the quotient map and deflne C 00 by the n-dual
(C=C 0)n¡⁄ . Deflne a complex E by the desuspension ›C(pDˆp⁄) of the alge-
braic mapping cone of the following map:

C 00 = (C=C 0)n¡⁄ p⁄
//Cn¡⁄ Dˆ

//C
p

//C=C 0 ;

where Dˆ is the duality map (1+T )ˆ0 for ˆ . There are natural maps g0 : E !
C 0 , g00 : E ! C 00 and adjoining quadratic Poincar¶e structures on them such that
the union along the common boundary is homotopy equivalent to the original
complex c. We should note that E is non-trivial in degrees ¡1 and n and that
it lies over B .

Since Dˆ is a small chain equivalence, its mapping cone is contractible. There-
fore, E is contractible away from the union of A and a small neighborhood of
Y , and it is chain equivalent to a projective chain complex P lying over a small
neighborhood of Y by 5.1 and 5.2 of [8]. Note that Z is used as the coe–cient
ring in [8], but the same argument works when the coe–cient ring is replaced
by R. Since n ‚ 2, we can assume that P is strictly (n ¡ 1)-dimensional (i.e.
Ci = 0 for i < 0 and i > n ¡ 1 ) by the standard folding argument, and the
chain equivalence induces a desired cobordism.

There is a quadratic Poincar¶e structure on a chain map f 0 : P ! C 0 ; therefore,
the duality map gives a chain equivalence C 0n¡⁄ ¡! C(f 0), were C(f 0) denotes
the algebraic mapping cone of f 0 : P ! C 0 . Therefore

[P ] = ¡([C 0] ¡ [P ]) = ¡[C(f 0)] = ¡[C 0n¡⁄] = 0

in the epsilon controlled reduced projective class group of the union of A and a
small neighborhood of Y with coe–cient in R, and hence P is chain equivalent
to a free (n ¡ 1)-dimensional complex F 0 lying over the union of A and a small
neighborhood of Y .
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Remarks. (1) Suppose that X is a flnite polyhedron or a flnite cell complex
in the sense of [11] more generally. Then there exist positive numbers †X > 0,
„X ‚ 1 and a homotopy fftg : X ! X such that

† f0 = 1X ,

† ft(¢) ‰ ¢ for each cell ¢ and for each t 2 [0; 1],

† ft is Lipschitz with Lipschitz constant „X for each t 2 [0; 1], and

† f1((X(i))†X ) ‰ X(i) for every i, where X(i) is the i-skeleton of X .

Suppose fftg is covered by a homotopy fFt : M ! Mg and set –X = †X‚.
If † • –X and A and B are subcomplexes of X , then by applying F1 to the
splitting given in the above lemma, we may assume that the pieces lie over A,
B and A \ B respectively, instead of their neighborhoods, since the homotopy
gives small isomorphisms between the corresponding pieces. But ‚ is now
replaced by „X‚ and it depends not only on n but also on X . We call such a
deformation fftg a rectiflcation for X .

(2) The splitting formula for pairs given in [12] can be combined with 5.1 and 5.2
of [8] to prove a similar splitting lemma for pairs of dimension ‚ 3: a su–ciently
small Poincar¶e pair splits into two adjoining quadratic Poincar¶e triads whose
common boundary piece is possibly a projective pair.

3 Squeezing over a Circle

We discuss squeezing over the unit circle. We use the maximum metric of R2 ,
so the unit circle looks like a square:

Consider a quadratic Poincar¶e R-module complex on the unit circle. We assume
that its radius is su–ciently small so that it splits into four free pieces E , F ,
G, H with projective boundary pieces P , Q, S , T as shown in the picture
below. The shadowed region is a cobordism between the original complex and
the union of E , F , G, H . Although we actually measure the radius using the
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radial projection to the unit circle (i.e. the square), we pretend that complexes
and cobordisms are over the plane.

�
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We extend this cobordism in the following way. On the right vertical edge, we
have a quadratic pair P ' Q ! F . (We are omitting the quadratic structure
from notation.) Take the tensor product of this with the symmetric complex of
the unit interval [0; 1]. Make many copies of such a product and consecutively
glue them one after the other to the cobordism. Do the same thing with the
other three edges. Then flll in the four quadrants by copies of P , Q, S , T

multiplied by the symmetric complex of [0; 1]2 so that the whole picture looks
like a huge square with a square hole at the center.

Although this cobordism is made up of free complexes and projective com-
plexes, the projective complexes sitting on the white edges are shifted up 1
dimension, and the projective complexes sitting at the lattice points are shifted
up 2 dimension in the union.
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We can make pairs of these (as shown in the picture above for P ’s) so that each
pair contributes the trivial element in the controlled reduced projective class
group. Replace each pair by a free complex.

Unlike the real Eilenberg swindle, there are four projective complexes left which
do not make pairs. We may assume that they are the boundary pieces of F and
H on the outer end. Since the two pairs P 'Q ! F , S 'T ! H are Poincar¶e,
the unions P ' Q and S ' T are locally chain equivalent to free complexes.
Thus we can replace them by free complexes, and now everything is free.

Now recall that we actually measure things by a radial projection to the square.
Thus we have a cobordism from the original complex to another complex of very
small radius. If we increase the number of layers in the construction, the radius
of the outer end becomes arbitrarily small. This is the squeezing in the case of
S1 .

4 Alexander Trick

The method in the previous section does not work for higher dimensional com-
plexes, because we cannot inductively split the projective pieces. But the proof
suggests an alternative way toward squeezing/stability. This is the topic of
this section. Although we used a radial projection to measure the size in the
previous section, we draw pictures of things in their real sizes in this section.

Let us flx an integer n ‚ 2 and a flnite polyhedron X . All the complexes below
are R-module complexes, where R is a ring with involution. We assume that
the control map pX : M ! X is a polyhedral stratifled system of flbrations [5];
pX is flber homotopy equivalent to a map qX : N ! X which has an iterated
mapping cylinder decomposition in the sense of Hatcher [2] : there is a partial
order on the set of the vertices of X such that, for each simplex ¢ of X ,

(1) the partial order restricts to a total order of the vertices of ¢

v0 < v1 < ¢ ¢ ¢ < vk ;

(2) q¡1
X (¢) is the iterated mapping cylinder of a sequence of maps

Fv0 ¡! Fv1 ¡! : : : ¡! Fvk
;

(3) the restriction qX jq¡1
X (¢) is the natural map induced from the iterated

mapping cylinder structure of q¡1
X (¢) above and the iterated mapping

cylinder structure of ¢ coming from the sequence

fv0g ¡! fv1g ¡! : : : ¡! fvkg :
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An order on the set of the vertices of X is said to be compatible with pX

if it is compatible with this partial order. Let us flx an order compatible with
pX .

Pick a vertex v of X , and let A be the star neighborhood of v , B be the
closure of the complement of A in X , and S be the union of the simplices in A

whose vertices are all ‚ v with respect to the chosen order. This will be called
the stable set at v . Let s : A ! S be the simplicial retraction deflned by

s(v0) =

(
v if v0 < v,

v0 if v0 ‚ v,

for vertices v0 of A. A strong deformation retraction st : A ! A is deflned
by st(a) = (1 ¡ t)a + t s(a) for a 2 A and t 2 [0; 1]. Note that this strong
deformation retraction st is covered by a deformation ~st on M , since pX is a
polyhedral stratifled system of flbrations.
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Given a su–ciently small n-dimensional quadratic Poincar¶e complex c = (C; ˆ)
on pX , one can split it according to the splitting of X into A and B : c

is cobordant (actually homotopy equivalent) to the union c0 of a projective
quadratic Poincar¶e pair a = (f : P ! F; (–ˆ0; ˆ0)) on pA and a projective
quadratic Poincar¶e pair b = (g : P ! G; (–ˆ00; ¡ˆ0)) on pB , where F is an
n-dimensional chain complex on pA , G is an n-dimensional chain complex on
pB , and P is an (n ¡ 1)-dimensional projective chain complex on pA\B . Here
we again used the assumption on pX . See the remark after the splitting lemma.

Make many copies of the product cobordism from the pair a to itself, and
successively glue them to the cobordism between c and c0 . This gives us a
cobordism from c to a (possibly) projective complex as in the left picture below.
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We will remedy the situation by replacing the projective end by a free complex
as follows. The copies of P connecting the layers are actually shifted up 1
dimension in the union, so the marked pairs of P ’s contribute the trivial element
of the controlled eK0 group of A \ B , and we can replace each pair with a free
module by adding chain complexes of the form

0 //Qi
1 //Qi

//0

lying over A \ B , where Qi is a projective module such that Pi ' Qi is free.
Therefore, these pairs are all chain equivalent to some free chain complex F 0 .
The last P remaining at the top of the picture can be replaced by some free
complex F 00 lying over A as stated in the splitting lemma.

We deform the tower, which is now free, toward S using ~st as in the picture
above so that the top of the tower is completely deformed to S .

Summary There exist constants – > 0 and ‚ ‚ 1 which depend on n and
X such that any n-dimensional quadratic Poincar¶e complex of radius † • – on
pX is ‚† Poincar¶e cobordant to another complex which is small in the track
direction of st . The more layers we use, the smaller the result becomes in the
track direction.

Remarks. (1) We cannot take ‚ = 1 in general, since the radius of the
complexes gets bigger during the splitting/glueing processes.

(2) This construction will be referred to as the Alexander trick at v .
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(3) There is also an Alexander trick for pairs. If we use the splitting lemma for
pairs, then instead of a pair we get a Poincar¶e triad

P //

²² ÁÁ
Á^

Á^
Á^

Á^
Q

²²

E //F

over A, where P , Q are projective and E , F are free. Since both P and Q are
free over A, we can carry out the construction exactly in the same manner as
above. The efiect on the boundary is exactly the same as the absolute Alexander
trick.

(4) Take a simplex ¢ of X with ordered vertices v0 < v1 < ¢ ¢ ¢ < vn . Let
(‚0; : : : ; ‚n) be the barycentric coordinates of a point x 2 ¢, i.e. x =

P
‚ivi .

Then we deflne the pseudo-coordinates (x1; : : : ; xn) of x by xi = ‚i=(‚0 + ¢ ¢ ¢ +
‚i). Actually xi is indeterminate if ‚0 = ¢ ¢ ¢ = ‚i . Let si;t : ¢ ! ¢ be the
restriction to ¢ of the deformation retraction used for an Alexander trick at
vi ; then s0;t = 1¢ for every t 2 [0; 1], and si;t preserves the pseudo-coordinate
xj for j not equal to i. This means that, roughly speaking, an Alexander trick
at vi improves the radius control in the xi direction and changes the radius
control in the xj direction (j 6= i) only up to multiplications by the constant
‚ given in the Splitting Lemma and by the Lipschitz constant of si;t which
is uniform with respect to t. Thus, if we can perform appropriate Alexander
tricks at all the vertices of ¢, then we can obtain an arbitrarily flne control
over ¢. A more detailed discussion will be given in the next section.

Let us state a lemma on Lipschitz properties related to the homotopy st above,
for future use.

Lemma 4 Let X be a subset of RN with diameter d and s : X ! X be a
Lipschitz map with Lipschitz constant K ‚ 1. Suppose X contains the line
segment xs(x) for every x 2 X and let st(x) = ts(x) + (1 ¡ t)x for t 2 [0; a].
Then st : X ! X has Lipschitz constant K , and the map

H : X £ [0; a] ! X £ [0; a] ; H(x; t) = (st=a(x); t)

has Lipschitz constant maxfd=a; 1g + K with respect to the maximum metric
on X £ [0; a].
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Proof Let x, y be points in X . Then

d(st(x); st(y)) = kt(s(x) ¡ s(y)) + (1 ¡ t)(x ¡ y)k
• td(s(x); s(y)) + (1 ¡ t)d(x; y)

• tKd(x; y) + (1 ¡ t)Kd(x; y) = Kd(x; y) :

Next, take two points p = (x; t), q = (y; u) of X £ [0; a], and let p0 = (x; u).
Then we have

d(H(p); H(q)) • d(H(p); H(p0)) + d(H(p0); H(q))

= maxfd(st=a(x); su=a(x)); jt ¡ ujg + d(su=a(x); su=a(y))

• maxfjt ¡ ujd(s(x); x)=a; jt ¡ ujg + Kd(x; y)

• jt ¡ uj maxfd=a; 1g + Kd(x; y)

• (maxfd=a; 1g + K) maxfd(x; y); jt ¡ ujg
= (maxfd=a; 1g + K)d(p; q) :

5 Proof of Theorem 1

The algebraic theory of surgery on quadratic Poincar¶e complexes in an additive
category [6] carries over nicely to the controlled setting, and can be used to
prove a stable periodicity of the controlled L-groups. Therefore, we give a
proof of the stability in the case n ‚ 2. The stability for n = 0; 1 follows from
the stability for n = 4; 5.

We flrst state the squeezing lemma for quadratic Poincar¶e complexes:

Lemma 5 (Squeezing of Quadratic Poincar¶e Complexes) Let n ‚ 2 be an
integer and X be a flnite polyhedron. There exist constants –0 > 0 and • > 1
such that the following hold: If † < †0 • –0 , then any n-dimensional quadratic
Poincar¶e R-module complex of radius †0 on a polyhedral stratifled system of
flbrations over X is •†0 Poincar¶e cobordant to a quadratic Poincar¶e complex
of radius †.

Proof Let X be a polyhedron in RN , and pX : M ! X be a polyhedral
stratifled system of flbrations. Order the vertices of X compatibly with pX :

v0 < v1 < ¢ ¢ ¢ < vm :
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The basic idea is to apply the Alexander trick at each vi . This should make the
complex arbitrarily small in X as noted in the previous section. The problem is
that an Alexander trick is made up of two steps: the flrst step is to make a tower
using splitting, and the second step is to squeeze the tower, and estimating the
efiect of the splitting used in the flrst step is very di–cult especially near the
vertex when the object is getting smaller in a non-uniform way. To avoid this
di–culty, we blow up the metric around each vertex so that the ordinary control
on the new metric space insures us that the result has a desired small control
measured on the original metric space X . Note that we are implicitly using
this approach in the circle case.

Let us start from a complex c of radius †0 > 0 on X . Since X is a flnite
polyhedron, there exist – > 0 and ‚ ‚ 1 such that if †0 • – then c is ‚†0

cobordant to the union of two pieces according to the splitting of X into two
subpolyhedra as in the remark after Lemma 3. Recall that – and ‚ depends
on X . Set „ = 100, and set –0 = –=(„‚2)m¡1 . The factor 100 comes from
2.8 of [10] as was mentioned in x2. We claim that if †0 • –0 , then a successive
application of Alexander tricks produces a cobordism from c to a complex of
radius †.

Let us flx some more notation. V1 , . . . , Vm are the star neighborhoods of v1 ,
. . . , vm , and L1 , . . . , Lm are the links of v1 , . . . , vm ; Vi is the cone over Li

with vertex vi for each i. S1 , . . . , Sm are the stable sets at v1 , . . . , vm . K ‚ 1
is the Lipschitz constant which works for every retraction si : Vi ! Si used
for the Alexander trick at vi . Let d denote the diameter of X , and let ](X)
denote the number of simplices of X . Now flx a number H ‚ 1 such that

H > d and 4„](X)(K + 1)m(„‚2)m†0 ¢ d

H
< † :

We inductively deflne metric spaces and subsets

Xi;j
⁄ ¾ Xi;j ¾ V

i;j
k ¾ L

i;j
k (1 • i • j < k • m)

together with control maps p
i;j
⁄ : M

i;j
⁄ ! X

i;j
⁄ as follows.

Identify RN with the subset RN £ f0g of RN+1 = RN £R with the maximum
product metric. For each i = 1; : : : ; m, deflne X

i;i
⁄ and its subsets Xi;i , V

i;i
k ,
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L
i;i
k (k = i + 1; ¢ ¢ ¢ ; m) by

Xi;i
⁄ = X [ (Vi £ [0; H]) ;

Xi;i = (X ¡ Vi) [ (Li £ [0; H]) [ (Vi £ fHg) ;

V
i;i

k = (Vk ¡ Vi) [ (Vk \ Li £ [0; H]) [ (Vk \ Vi £ fHg) ;

L
i;i
k = (Lk ¡ Vi) [ (Lk \ Li £ [0; H]) [ (Lk \ Vi £ fHg) :

The projection RN £ R ! RN restricts to a retraction ri;i : X
i;i
⁄ ! X . We

deflne the control map p
i;i
⁄ : M

i;i
⁄ ! X

i;i
⁄ to be the pullback of pX : M ! X via

ri;i , and deflne the control map pi;i : M i;i ! Xi;i to be the restriction of p
i;i
⁄ to

M i;i . Note that the stereographic projection from (vi; ¡H) 2 RN £ R deflnes
a homeomorphism X ! Xi;i sending Vk and Lk to V

i;i
k and L

i;i
k respectively,

since Vi is the cone on Li with center vi .

Next, for each i = 1; : : : ; m ¡ 1, deflne X
i;i+1
⁄ ‰ RN £ R £ R and its subsets

Xi;i+1 , V
i;i+1

k , L
i;i+1
k (k = i + 2; ¢ ¢ ¢ ; m) by

Xi;i+1
⁄ = Xi;i [ (V i;i

i+1 £ [0; H]) ;

Xi;i+1 = (Xi;i ¡ V
i;i

i+1) [ (Li;i
i+1 £ [0; H]) [ (V i;i

i+1 £ fHg) ‰ Xi;i £ R ;

V
i;i+1

k = (V i;i
k ¡ V

i;i
i ) [ (V i;i

k \ L
i;i
i £ [0; H]) [ (V i;i

k \ V
i;i

i £ fHg) ;

L
i;i+1
k = (Li;i

k ¡ V
i;i

i ) [ (Li;i
k \ L

i;i
i £ [0; H]) [ (Li;i

k \ V
i;i

i £ fHg) :

Again we use the product metric of RN £R and R. The projection RN £R£R !
RN £ R restricts to a retraction ri;i+1 : X

i;i+1
⁄ ! Xi;i . The control maps

p
i;i+1
⁄ : M

i;i+1
⁄ ! X

i;i+1
⁄ and pi;i+1 : M i;i+1 ! Xi;i+1 are deflned to be the

pullbacks of p
i;i
⁄ via ri;i+1 and ri;i+1jXi;i+1 , respectively. Although V

i;i
i+1 is not

a cone, it is homeomorphic to Vi+1 and has a topological cone structure. So
one can construct a homeomorphism from Xi;i+1 to Xi;i sending V

i;i+1
k and

L
i;i+1
k to V i;i and Li;i respectively, and hence a homeomorphism to X .

We can continue this to inductively obtain the metric space

Xi;j
⁄ = Xi;j¡1 [ (V i;j¡1

j £ [0; H])

as a subset of RN £ Rj¡i+1 , and its subsets Xi;j ¾ V
i;j

k ¾ L
i;j
k (k = j +

1; ¢ ¢ ¢ ; m), together with control maps p
i;j
⁄ : M

i;j
⁄ ! X

i;j
⁄ , and pi;j : M i;j !

Xi;j . Topologically all the spaces Xi;j ’s are equal to X , and all the sets V
i;j

k ’s
are equal to Vk . We are only changing the metric, the cell structure of X , and
the control map.
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Our next task is to do Alexander tricks at v1 , . . . , vm on these spaces instead
of X . Since †0 • –0 • – , we can split the original complex c into two pieces on
V1 and the closure of its complements by a ‚†0 cobordism. Now we construct
a tower: we make copies of the trivial cobordism from the pair on (V1; L1) to
itself and successively attach them to the cobordism along V1 £ [0; H]. This is
actually done on M

1;1
⁄ .

We use enough layers so that the result is a projective cobordism of radius „‚†0

measured on X
1;1
⁄ from c = „c0 to a complex c0

1 on p1;1 . Recall „ = 100 and
it comes from taking a union of Poincar¶e cobordisms. As described in previous
sections, we can replace this by a free cobordism of radius „‚2†0 from c to a
free complex „c1 on p1;1 .

We postpone the squeezing to a later stage and go ahead to perform Alexander
trick over V

1;1
2 ‰ X1;1 on „c1 . Although X1;1 has a difierent metric from X ,

the difierence lies along the cylinder L1 £ [0; H]. If H is su–ciently large,
then a rectiflcation for X1;1 can be easily constructed from those for X and
[0; H], and the – and ‚ for X works also for X1;1 . Since „‚2†0 • – , we can
do splitting and cut out the portion on V

1;1
2 by a „‚3†0 cobordism. Again use

enough copies of this to get a „2‚3†0 cobordism on p
1;2
⁄ to a complex „c0

2 on p1;2

and then replace this by free „2‚4†0 cobordism to a free complex „c2 on p1;2 .
Since †0 • –0 , we can continue this process to obtain a consecutive sequence of
free cobordisms:

c = „c0
„‚2†0

X
1;1
⁄

„c1
(„‚2)2†0

X
1;2
⁄

„c2 : : : „cm¡2
(„‚2)m¡1†0

X
1;m¡1
⁄

„cm¡1
(„‚2)m†0

X
1;m
⁄

„cm

Now we construct a map S1;m : X1;m ! X and a map eS1;m : M1;m ! M which
covers S1;m so that the functorial image of „cm has the desired property. This
is done by inductively constructing maps S

i;j
⁄ : X

i;j
⁄ ! X and its restriction
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Si;j : Xi;j ! X covered by maps eSi;j
⁄ : M

i;j
⁄ ! M and eSi;j : M i;j ! M ,

respectively, for certain pairs j ‚ i.

First we deflne S
i;i
⁄ : X

i;i
⁄ ! X . Let us recall that Si ‰ Vi denotes the stable

set at vi . Using the strong deformation retraction si;t : Vi ! Vi , deflne a map

S0
i : X

i;i
⁄ ! X

i;i
⁄ by:

(x; h) 7!
(

(x; 0) if x 2 X and h = 0,

(si;h=H(x); h) if x 2 Vi and h > 0 .

This map is covered by a map eS0
i : M

i;i
⁄ ! M

i;i
⁄ .

Lemma 6 S0
i has Lipschitz constant K + 1.

Proof This is obtained by applying Lemma 4 to the sets of the form fxg [ Vi

for x 2 X ¡ Vi , extending the map si on x by si(x) = x.

S
i;i
⁄ : X

i;i
⁄ ! X is deflned by composing S0

i with the projection ri;i : X
i;i
⁄ ! X .

It has Lipschitz constant K+1. Since ri;i is obviously covered by a map M
i;i
⁄ !

M , the map S
i;i
⁄ is covered by a map eSi;i

⁄ : M
i;i
⁄ ! M . Deflne Si;i : Xi;i ! X

to be the restriction of S
i;i
⁄ .

Now recall that X
1;2
⁄ and X

2;2
⁄ are obtained by attaching V

1;1
2 £ [0; H] and

V2 £ [0; H] to X1;1 and X , respectively. Since S1;1 : X1;1 ! X maps V
1;1

2

to V2 , the product map S1;1 £ 1[0;H] : X1;1 £ [0; H] ! X £ [0; H] restricts

to a map S1;1 £ 1j : X
1;2
⁄ ! X

2;2
⁄ . Compose this with S

2;2
⁄ : X

2;2
⁄ ! X to

deflne S
1;2
⁄ : X1;2 ! X which is covered by a map eS1;2

⁄ : M
1;2
⁄ ! M . Continue

this process as in the following diagram to eventually get the desired map
S1;m : X1;m ! X .

X1;j¡1 S1;j¡1
//

Ä _

²²

XÄ _

²²

X
1;j
⁄

S1;j¡1£1j
//

S
1;j
⁄

55X
j;j
⁄

S
j;j
⁄ // X

X1;j
Â ?

OO

S1;j
// X

Recall that there is a topological identiflcation of X1;m with X . So we can think
of S1;m to be a map from X to X equipped with difierent metrics. Although

Geometry & Topology Monographs, Volume X (20XX)



82 Erik Kj‰r Pedersen and Masayuki Yamasaki

it is not a homeomorphism, it preserves all the simplices, i.e. S1;m(¢) = ¢
for every simplex ¢ of X . When restricted to a simplex, S1;m has Lipschitz
constant (K + 1)md=H .

�
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	����
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The three pictures above illustrate the application of S1;1 to X1;1 . The thin
solid lines in the rightmost picture indicate the direction in which controls are
obtained.

The three pictures below illustrate the application of S1;2 to X1;2 . The leftmost
picture shows the image (S1;1 £ 1)(X1;2) = X2;2 . Again the thin solid lines on
the faces indicate the directions in which controls are obtained.
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Let us consider the functorial image cm of „cm by the map eS1;m : M1;m ! M .
Recall that „cm has radius †00 = („‚2)m†0 . Take a ball B of radius †00 with in
X1;m . B is the union of subsets B \ ¢ each having diameter 2†00 , where ¢ are
the simplices of X1;m . The images of B \ ¢ in X by S1;m all have diameter
2(K + 1)m†00d=H and their union S1;m(B) is connected. Therefore S1;m(B)
has diameter 2](X)(K + 1)m†00d=H . Thus cm has radius

4](X)(K + 1)m(„‚2)m†0d=H ;

and this is smaller than † by the choice of H .

It remains to flnd a constant • such that c and cm are •†0 cobordant. Deflne a
complex ci on pX to be the functorial image of „ci by the map eS1;i : M1;i ! M .
The functorial image of the („‚2)i†0 cobordism between „ci¡1 and „ci by the map
eS1;i

⁄ gives a 4](X)(K + 1)i(„‚2)i†0 cobordism between ci¡1 and ci . Composing
these we get a 4„](X)(K + 1)m(„‚2)m†0 cobordism between c and cm . Thus
• = 4„](X)(K + 1)m(„‚2)m works. This completes the proof.

Note that Lemma 5 implies that the relax-control map in Theorem 1 is surjec-

tive: Take an element [c0] 2 L
–0;†0
n (X; pX ; R) with –0 • –0 . Then the inequality

†0 • –0 holds and therefore there is a Poincar¶e cobordism of radius •†0 (• –0 )
from c0 to a quadratic Poincar¶e complex c of radius †, determining an element
[c] 2 L

–;†
n (X; pX ; R) whose image under the relax-control map is [c0].

Squeezing for complexes can be generalized to squeezing for pairs.

Lemma 7 (Squeezing of Quadratic Poincar¶e Pairs) Let n ‚ 2 be an integer
and X be a flnite polyhedron. There exist constants –0 > 0 and • > 1 such
that the following hold: If – < †0 • –0 • –0 , then any (n + 1)-dimensional
quadratic Poincar¶e R-module pair of radius –0 on a polyhedral stratifled system
of flbrations over X with †0 Poincar¶e boundary is •–0 Poincar¶e cobordant to a
quadratic Poincar¶e pair of radius †. The cobordism between the boundary is
•†0 Poincar¶e.

Proof Same as the proof of Lemma 5. Use the Alexander trick for pairs.

Corollary 8 (Relative Squeezing of Quadratic Poincar¶e Pairs) Let n ‚ 2 be
an integer and X be a flnite polyhedron. There exist constants –0 > 0 and
• > 1 such that the following hold: If •† < –0 • –0 , then any (n+1)-dimensional
quadratic Poincar¶e R-module pair of radius –0 on a polyhedral stratifled system
of flbrations over X with an † Poincar¶e boundary is •–0 Poincar¶e cobordant
flxing the boundary to a quadratic Poincar¶e pair of radius •†.
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Proof Temporarily choose –0 and • as in Lemma 7. Suppose •† < –0 • –0 ,
and let d = (f : C ! D; (–ˆ; ˆ)) be an (n+1)-dimensional quadratic Poincar¶e
pair of radius –0 , and assume that (C; ˆ) is † Poincar¶e. Choose a positive
number †0 < †. By Lemma 7, d is •–0 cobordant to a quadratic Poincar¶e pair
d0 = (f 0 : C 0 ! D0; (–ˆ0; ˆ0)) of radius †. Glue d0 to the •† Poincar¶e cobordism
between (C; ˆ) and (C 0; ˆ0) to get a quadratic Poincar¶e pair d00 = (f 00 : C !
D00; (–ˆ00; ˆ)) of radius 100•†. By construction, d [ ¡d00 is 100•–0 Poincar¶e
null-cobordant. Thus 100• works as the • in the statement of the lemma.

The injectivity of the relax-control map follows from this: Temporarily let –0

and • be as in Corollary 8, and suppose – • –0 , † • †0 , •† • – . Take an
element [c] in the kernel of the relax control map

L–;†
n (X; pX ; R) ! L–0;†0

n (X; pX ; R) :

By Proposition 2, the quadratic complex c = (C; ˆ) of radius †0 is the boundary
of an (n+1)-dimensional quadratic Poincar¶e pair (f : C ! D; (–ˆ; ˆ)) of radius
100–0 . If –0 • –0=100, then •† • 100–0 • –0 , and by Corollary 8 the element

[c] is 0 in L
•†;†
n (X; pX ; R), and hence also in L

–;†
n (X; pX ; R). So, by replacing

–0 with –0=100, we established the desired injectivity. This flnishes the proof
of Theorem 1.

6 Variations

6.1 Projective L-groups

There is a controlled analogue of projective Lp -groups. L
p;–;†
n (X; pX ; R) is de-

flned using † Poincar¶e † quadratic projective R-module complexes on pX and
– Poincar¶e – projective cobordisms. Similar stability results hold for these.

To get a squeezing result in the Lp -group case, we flrst take the tensor product of
the given projective quadratic Poincar¶e complex c with the symmetric complex
¾(S1) of the circle S1 . By replacing it with a flnite cover if necessary, we may
assume that the radius of ¾(S1) is su–ciently small. If the radius of c is also
su–ciently small, we can construct a cobordism to a squeezed complex. Split
the cobordism along X £ ftwo pointsg ‰ X £ S1 to get a projective cobordism
from the original complex to a squeezed projective complex.
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6.2 UV 1 control maps

When the control map is UV 1 , there is no need to use paths to deflne morphisms
between geometric modules [4]. This simplifles the situation quite a lot, and
we have:

Proposition 9 Let pX : M ! X be a UV 1 map to a flnite polyhedron. Then
for any pair of positive numbers – ‚ †, there is an isomorphism

L–;†
n (X; pX ; R) »= L–;†

n (X; 1X ; R)

for any ring with involution R and any integer n ‚ 0.

By Theorem 1, the stability holds for L
–;†
n (X; 1X ; R) and hence the stability

holds also for L
–;†
n (X; pX ; R).

6.3 Compact metric ANR’s

Squeezing and stability also hold when X is a compact metric ANR, and the
control map is a flbration. To see this, embed X in the Hilbert cube I1 .
There is a closed neighborhood U of X of the form P £ I1¡N , where P is a
polyhedron in IN . Use the fact that the retraction from U to X is uniformly
continuous to deduce the desired stability from the stability on P and U .

7 Relations to Bounded L-Theory

In this section we shall identify the controlled L-theory groups with a bounded
L-theory group, at least in the case of constant coe–cients. The main advantage
to having a bounded controlled description, is that it facilitates computations.

Deflnition 10 Let X be a flnite polyhedron and R a ring with involution.
Let pX : X £ K ! X be a trivial flbration. We denote the common value
of L

–;†
n (X; pX ; R) for small values of – and †, which exists by Theorem 1, by

L
h;c
n (X; pX ; R). Here the h signifles that we have no simpleness condition and

the c stands for controlled.

We may embed the flnite polyhedron X in a large dimensional sphere Sn and
consider the open cone O(X) = ft ¢ x 2 Rn+1jt 2 [0; 1); x 2 Xg. We denote
X with a disjoint basepoint added by X+ .
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Theorem 11 Let pX : X £ K ! X be as above, … = …1(K), R a ring with
involution. Then

Lc;h
n (X; pX ; R) »= Ls

n+1(CO(X+)(R[…]))

where CO(X+)(R[…]) denotes the category of free R[…] modules parameterized
by O(X+) and bounded morphisms.

Proof Given an element in L
c;h
n (X; pX ; R), we can choose a stable (–; †) rep-

resentative. Crossing with the symmetric chain complex of (¡1; 0] produces a
bounded quadratic chain complex when we parameterize it by O(+), which is
obviously a half line, with + being the extra basepoint. According to Theorem
1, we may produce a sequence of bordisms to increasingly smaller representa-
tives of the given element in L

c;h
n (X; pX ; R). These bordisms may be parame-

terized by ft ¢ xjx 2 X; ai < t < ai+1g where the sequence of ai ’s is chosen such
that when these bordisms are glued together, we obtain a bounded quadratic
complex parameterized by O(X+). We get an s-decoration because obviously
we can split the bounded quadratic complex. The map in the opposite direction
is given by a splitting obtained the same way as in Lemma 3.

One advantage of a categorical description is computational. We have as close
an analogue to excision as is possible in the following: Let Y be a subcomplex
of X , and S a ring with involution. We then get a sequence of categories

CO(Y+)(S) ! CO(X+)(S) ! CO(X=Y )(S)

which leads to a long exact sequence

: : : ! La
n(CO(Y+)(S)) ! Lb

n(CO(X+)(S)) ! Lc
n(CO(X=Y )(S)) ! : : :

where the rule to determine the decorations is that b can be chosen to be any
involution preserving subgroup of Ki(CO(X+)(S)), i • 2, but then c has to be
the image in Ki(CO(Xi=Y )(S)), and a has to be the preimage in Ki(CO(Y+)(S)).
See [1] for a derivation of these exact sequences. This makes it possible to do
extensive calculations with controlled L-groups.
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In these notes \homology manifold" means ENR (Euclidean neighborhood re-
tract) Z -coe–cient homology manifold, unless otherwise specifled, and \exotic"
means not a manifold factor (i.e. local or \Quinn" index 6= 1. We use the multi-
plicative version of the local index, taking values in 1 + 8Z ). In the last decade
exotic homology manifolds have been shown to exist and quite a bit of structure
theory has been developed. However they have not yet appeared in other areas
of mathematics. The flrst groups of questions suggest ways this might happen.
Later questions are more internal to the subject.

Sections 1, 2, and 3 concern possible \natural" appearances of homology man-
ifolds: as aspherical geometric objects; as Gromov-Hausdorfi limits; and as
boundaries of compactiflcations. Section 4 discusses group actions, where the
use of homology manifold flxed sets may give simpler classiflcation results. Sec-
tions 5 and 6 consider possible generalizations to non-ANR and \approximate"
homology manifolds. Section 7 concerns spaces with special metric structures.
Section 8 describes still-open low dimensional cases of the current theory. The
flnal section, 9, collects problems related to homeomorphisms and the \disjoint
disk property" for exotic homology manifolds.

1 Aspherical homology manifolds

Geometric structures on aspherical spaces seem to be rigid. The \Borel conjec-
ture" is that closed aspherical manifolds are determined up to homeomorphism
by their fundamental groups, and this has been verifled in many cases, see Far-
rell [23] for a survey. More generally it is expected that aspherical homology
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Problems on homology manifolds 89

manifolds should be determined up to s-cobordism by their fundamental groups,
so in particular the fundamental group should determine the local index. So
far, however, there are no exotic examples.

Problem 1.1 Is there a closed aspherical homology manifold with local index
6= 1?

If so then exotic homology manifolds would be required for a full analysis of
the aspherical question. See x6 for a \approximate" version of the problem.

2 Gromov-Hausdorfi Limits

Difierential geometers have investigated limits of Riemannian manifolds with
various curvature and other constraints. As constraints are weakened one sees:

1) flrst, smooth manifold limits difieomorphic to nearby manifolds (Anderson-
Cheeger [2], Petersen [42]);

2) next, topological manifold limits homeomorphic to nearby manifolds (Grove-
Peterson-Wu [30]);

3) then topologically stratifled limits (Perel’man [39], [40], Perel’man-Petrunin
[41]); and flnally

4) more-singular limits currently not good for much.

Limits in the homeomorphism case (2) were flrst only known to be homology
manifolds, and nearby manifolds were analyzed using controlled topology. How-
ever Perel’man [39] later used the Alexandrofi curvature structure to show the
limits in (2) are in fact manifolds, and extended this to stratiflcations with man-
ifold strata in some singular cases (3). This considerably simplifled the analysis
and removed the need for homology manifolds. An approach to singular cases
using Ricci curvature is given by Cheeger-Colding [11], see also Zhu [57]. We
might still hope for a role for the more sophisticated topology:

Problem 2.1 Are there difierential-geometric conditions or processes that give
exotic homology manifold limits?

Such conditions must involve something other than diameter, volume, and sec-
tional curvature bounds. Exotic ENR homology manifolds cannot arise this way
so the most interesting outcome would be to get inflnite-dimensional limits. An
analysis of manifolds near such limits has been announced by Dranishnikov and
Ferry and apparently these can vary quite a lot, see also x5.
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2.1 Stratifled Gromov-Hausdorfi limits

The most immediately promising problems about limits concern stratiflcations.

Problem 2.2 Are there difierential-geometric conditions on smooth strati-
fled sets that imply Gromov-Hausdorfi limits are homotopy stratifled sets with
homology-manifold strata? What is the structure of the nearby smooth strati-
fled sets?

There are two phenomena here: \collapse" in which new strata are generated,
and convergence that is in some sense stratum-wise. The flrst case is typifled by
\volume collapse" of manifolds to stratifled sets. The Cheeger-Fukaya-Gromov
structure theory of collapsed manifolds suggests the nearby manifolds should
be total spaces of stratifled systems of flbrations with nilmanifold flbers. Note
however this structure should only be topological: smooth structures on the
limit and bundles are unlikely in general. In cases where curvature is bounded
below Perel’man’s analysis of the Alexandrofi structure of the limit gives a
topologically stratifled space, solving the flrst part of the problem.

In the second case (stratum-wise convergence) the given smooth stratiflcations
need not converge, but some sort of \homotopy intrinsic" stratiflcations should
converge. More detail and an elaborate proposal for the topological part of this
question is given in Quinn [46]. In this case if strata in the limits are ENR
homology manifolds then one expects nearby stratifled sets to be stratifled
s-cobordant. Again cases where Perel’man’s Alexandrofi-space results apply
should be much more accessible.

The motivation for this question is to study compactiflcations of collections of
algebraic varieties or of stratiflcations arising in singularity theory. Therefore
to be useful the \difierential-geometric" hypotheses should have reasonable in-
terpretations in these contexts. Other possibilities are to relate this to limits of
special processes, e.g_the Ricci °ow (Glickenstein [29]) or special limits deflned
by logical constraints (van den Dries [54]).

3 Compactiflcations

Negatively curved spaces and groups (in the sense of Gromov) have compactifl-
cations with \boundaries" deflned by equivalence classes of geodesics. \Hyper-
bolization" procedures that mass-produce examples are described by Davis-
Januszkiewicz [18], Davis-Januszkiewicz-Weinberger [19] and Charney-Davis
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[12]. \Visible boundaries" can be deflned for nonpositively curved spaces using
additional geometric information. Bestvina [4] has given axioms for compacti-
flcations and shown compactiflcations of Poincar¶e duality groups satisfying his
axioms give homology manifolds.

In classical cases the space on which the group acts is homeomorphic to Euclid-
ean space, the boundary is a sphere compactifying the space to a disk. Behavior
of limits in the sphere are more interesting than the sphere itself. More interest-
ing examples arise with \Davis" manifolds: contractible nonpositively curved
manifolds not simply connected at inflnity. Fischer [26] shows that a class of
these have boundaries that are

1) flnite dimensional cohomology manifolds with the (•Cech) homology of a
sphere;

2) not locally 1-connected (so not ENR);

3) homogeneous, and

4) the double of the compactiflcation along the boundary is a genuine sphere.

This connects nicely with the non-ENR questions raised in x5. However it seems
unlikely that interesting ENR examples will arise this way: boundaries can be
exotic only if the input space is exotic, for example the universal cover of an
exotic closed aspherical manifold as in x1, and this is probably not compatible
with nonpositive curvature assumptions, see x7.

To get more exotic behavior probably will require going outside the nonpositive
curvature realm:

Problem 3.1 Find non-curvature constructions for limits at inflnity of Poincar¶e
duality groups, and flnd (or verify) criteria for these to be homology manifolds.

See Davis [17] for a survey of Poincar¶e duality groups. This question may pro-
vide an approach to closed aspherical exotic homology manifolds: flrst construct
the \sphere at inflnity" of the universal cover, then somehow flll in.

A variation on this idea is suggested by a proof of cases of the Novikov conjecture
by Farrell-Hsiang [24] and many others since. They use a compactiflcation of the
universal cover to construct a flberwise compactiflcation of the tangent bundle.
This suggests directly constructing completions of a bundle rather than a single
flber. The bundle might include parameters, for instance to resolve ambiguities
arising in constructing limits without negative curvature. The context for this
is discussed in section 6.

Problem 3.2 Construct \approximate" limits of duality groups, as \flbers"
of the total space of an approximate flbration over a parameter space.
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4 Group actions and non-Z coe–cients

This topic probably has the greatest potential for profound applications, but
also has severe technical di–culty. Smith theory shows flxed sets of actions of
p-groups on homology manifolds must be Z=pZ homology manifolds. In the PL
case there is a remarkable near converse: Jones [34] shows PL Z=pZ homology
submanifolds satisfying the Smith conditions are frequently flxed sets of a Z=pZ

action. Better results are likely for topological actions.

Problem 4.1 Extend the Jones analysis to determine when 1-LC embedded
Z=pZ homology submanifolds are flxed sets of Z=pZ actions.

If the submanifold is an ENR then there are tools available (e.g. mapping cylin-
der neighborhoods) that should bring this within reach. Unfortunately the non-
ENR case is likely to be the one with powerful applications. As a test case we
formulate a stable version of 4.1 in which some di–culties should be avoided:

Problem 4.2 Suppose X ‰ Rn is an even-codimension properly embedded
possibly non-ENR Z=pZ homology manifold and is Z=pZ acyclic. Is there a
Z=pZ action on Rn+2k for some k with flxed set X £ f0g?

Extending 4.1 to a systematic classiflcation theory for topological group actions
will require a good understanding of the corresponding homology manifolds:

Problem 4.3 Are there \surgery theories" for Z=nZ and rational homology
manifolds?

Surgery for PL manifolds up to Z=pZ homology equivalence was developed in
the 70s Quinn [47], Anderson [3], Taylor-Williams [52] and a speculative sketch
for PL Z=pZ homology manifolds is given in Quinn [47]. There are two serious
di–culties for a topological version. The flrst problem is that the local and
\normal" structures do not decouple. The boundary of a regular neighborhood
in Euclidean space is the appropriate model for the Spanier-Whitehead dual of
a space. Z -Poincar¶e spaces are characterized by this neighborhood being equiv-
alent to a spherical flbration over the space. When manipulating a Poincar¶e
space within its homotopy type (e.g. while constructing homology manifolds)
the bundle gives easy and controlled access to the Spanier-Whitehead dual.
Z=pZ Poincar¶e spaces have regular neighborhoods that are Z=nZ spherical fl-
brations, but this only specifles the Z=pZ homotopy type. Local structure at

Geometry & Topology Monographs, Volume X (20XX)



Problems on homology manifolds 93

other primes can vary from place to place, and the normal structure must con-
form to this. Some additional structure is probably needed, but this is unclear.

The second problem is that constructions of Z=pZ homology manifolds are un-
likely to give ENRs. In the Z case ENRs are obtained as limits of sequences
of controlled homotopy equivalences. Homotopy equivalences are obtained be-
cause obstructions to constructing these can be identifled with global data (es-
sentially the topological structure on the normal bundle). In the Z=pZ case
there will probably only be enough data to get controlled Z=pZ homology
equivalences. It seems likely that n-dimensional homology manifolds can be
arranged to have covering dimension n and have nice [n¡1

2 ] skeleta, but above
the middle dimension inflnitely generated homology prime to p is likely to be
common.

Z=pZ homology manifolds might geometrically implement some of the remark-
able but formal \p-complete" manifold theory proposed in Sullivan [51].

Dranishnikov [21] gives constructions of rational homology 5-manifolds with
large but still flnite covering and cohomological dimension. If this complicates
the development it may be appropriate to consider only homology manifolds
with covering dimension equal to the duality dimension.

4.1 Circle actions

A group action is \semifree" if points are either flxed by the whole group or
moved freely. In this case the flxed set is also the flxed set of the Z=pZ sub-
groups, all p, so it follows from Smith theory that it is a Z homology manifold.
Problems 4.1 and 4.2 therefore have analogs for semifree S1 actions and Z -
coe–cient homology manifolds:

Problem 4.4 Determine when Z coe–cient homology submanifolds satisfying
Smith conditions are flxed sets of semifree S1 actions.

This setting has the advantages that there are fewer obstructions, and in the
ENR case the analog of 4.3 is already available. Again the signiflcance of non-
ENR case depends on how many non-ENR homology manifolds there are (see
x5). If they all occur as boundaries with ENR interior then it seems likely
a general action will be concordant to one with ENR flxed set. At the other
extreme if there are flxed sets with non-integer local index then a full treatment
of group actions will probably need non-ENRs.
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5 Non-ENR homology manifolds

It is a folk theorem that a homology manifold that is flnite dimensional and lo-
cally 1-connected is an ENR. The proof goes as follows: duality shows homology
manifolds are homologically locally n-connected, all n, and a local Whitehead
theorem shows local 1-connected and homological local n-connected implies lo-
cal n-connected in the usual homotopic sense. Finally flnite-dimensional and
locally n-connected for large n implies ENR. The point here is that the ENR
condition can fail in two ways: failure of flnite dimensionality or failure of local
1-connectedness. These are discussed separately.

5.1 Inflnite dimensional homology manifolds

Here we consider locally compact metric spaces that are locally contractible
(or at least locally 1-connected) and homology manifolds in the usual flnite-
dimensional sense, but with inflnite covering dimension. This is not related to
manifolds modeled on inflnite dimensional spaces.

Problem 5.1 Is there a \surgery theory" of inflnite dimensional homology
manifolds?

These were shown to arise as cell-like images of manifolds by Dranishnikov
[20], following a proposal of Edwards. Recently Dranishnikov and Ferry have
announced that there are examples with arbitrarily close (in the Gromov-
Hausdorfi sense) topological manifolds with difierent homotopy types. This
contrasts with the ENR case where su–ciently close manifolds are all home-
omorphic, and suggests this is a way to loosen the strait-jacket constraints of
homotopy type in standard surgery. In particular the \surgery theory" should
not follow the usual pattern of flxing a homotopy type, and \structures" should
include manifolds of difierent homotopy type. This might be done by follow-
ing Dranishnikov-Ferry in assuming existence of metrics that are su–ciently
Gromov-Hausdorfi close. See 3.1.

The source dimension for inflnite-dimensionality is not quite settled:

Problem 5.2 Are there inflnite-dimensional Z -homology 4-manifolds? Are
there inflnite-dimensional homology 4- or 5-manifolds with nearby manifolds of
difierent homotopy type?
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Walsh [55] has shown homology manifolds of homological dimension • 3 are
flnite dimensional. Dydak-Walsh [15] produced inflnite-dimensional examples
of homology 5-manifolds but these do not connect with the Dranishnikov-Ferry
analysis. It may be that an interesting \surgery theory" does not start until
dimension 6.

5.2 Non locally-1-connected homology manifolds

Now consider flnite dimensional metric homology manifolds that may fail to be
locally 1-connected. These arise as \spheres at inflnity" for certain groups, see
x3. The flrst question seeks to locate these spaces relative to ENR and \virtual"
homology manifolds. This is important for applications to group actions, see
4.4.

Problem 5.3 Extend the deflnition of local index to flnite dimensional non-
ENR homology manifolds

If the extended deflnition still takes values in 1 + 8Z then the next question
(motivated by x3) would be:

Problem 5.4 Does every flnite dimensional homology manifold arise as the
\weakly tame" boundary of one with ENR interior? Is the union of two such
extensions along their boundary an ENR?

Here \weakly tame" should be as close to \locally 1-connected complement"
as possible. An a–rmative answer to this question would suggest thinking of
non-ENR homology manifolds as \pufied up" versions not much difierent from
ENRs.

At another extreme \approximate" homology manifolds are deflned in section
6 in terms of approximate flbrations with homology manifold base and total
space. These behave as though they have \flbers" that are homology manifolds
with local indices in 1 + 8Z(2) . If an extension of the local index to non ENRs
can take non-integer values then the ENR boundary question above is wrong
and we should ask:

Problem 5.5 Does every flnite dimensional homology manifold occur as a
flber of an approximate flbration with ENR homology manifold base and total
space? Conversely is any such approximate flbration concordant to one with
such a flber?

An appropriate relative version of this would show approximate homology man-
ifolds are equivalent to flnite dimensional non-ENR homology manifolds.
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6 Approximate homology manifolds

The intent is that approximate homology manifolds should be flbers of approx-
imate flbrations with base and total space ENR homology manifolds. Actual
point-inverses are not topologically well-deflned and do not encode the interest-
ing information, so we use a germ approach. For simplicity we restrict to the
compact case (flbers of proper maps).

A compact approximate homology manifold is a pair (f : E ! B; b) where f is
a proper approximate flbration with homology manifold base and total space,
and b is a point in B . \Concordance" is the equivalence relation generated by

1) changing the basepoint by an arc in the base;

2) restricting to a neighborhood of the basepoint; and

3) product with identity maps of homology manifolds.

6.1 Basic structure

Suppose F is a compact virtual homology manifold deflned by an proper ap-
proximate flbration f : E ! B with E; B connected homology manifolds, and
b 2 B .

1 F has a well-deflned homotopy type (the homotopy flber of the map)
that is a Poincar¶e space (with universal coe–cients);

2) this Poincar¶e space has a canonical topological reduction of the normal
flbration, given by restriction of the difierence of the canonical reductions
of E and B ; and

3) there is a local index deflned by i(F ) = i(E)=i(B).

If f is a locally trivial bundle then the flber is a ENR homology manifold.
Multiplicativity of the local index shows the formula in (3) does give the local
index of the flber in this case. In general the quotients in (3) lie in 1 + 8Z(2) ,
where Z(2) is the rationals with odd denominator.

6.2 Example

Suppose X is a homology manifold, and choose a 1-LC embedding in a man-
ifold of dimension at least 5. This has a mapping cylinder neighborhood; let
f : @N ! X be the map. Duality shows this is an approximate flbration with
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flber the homotopy type of a sphere. As an approximate homology manifold
the index is 1=i(X), which is not an integer unless i(X) = 1.

Products of these examples with genuine homology manifolds show that all
elements of 1+8Z(2) are realized as indices of approximate homology manifolds.

6.3 Example

A tame end of a manifold has an \approximate collar" in the sense of a neigh-
borhood of the end that approximately flbers over R. In the controlled case
the local fundamental group is required to be stratifled; see Hughes [32] for a
special case and Quinn [48] in general.

There is a flniteness obstruction to flnding a genuine collar. In some cases it
follows that the approximate homology manifold appearing as the \flber" of the
approximate collar does not have the homotopy type of a flnite complex.

Problem 6.1 Show that the exotic behavior of the examples are the only
difierences: if an approximate homology manifold has integral local index and
is homotopy equivalent to a flnite complex then it is concordant to an ENR
homology manifold.

Problem 6.2 Deflne \approximate transversality" of homology manifolds, and
determine when a map from one homology manifold to another can be made
approximate transverse to a submanifold.

The examples give maps approximately transverse to a point, but for which
more geometric forms of transversality are obstructed. Transversality theories
restricted to situations where indices must be integers have been developed
by Johnston [34], Johnston-Ranicki [35] and Bryant-Mio [9], and a flniteness-
obstruction case has been investigated by Bryant-Kirby [8]. The hope is that a
more complete approximate transversality theory is possible. There still will be
restrictions however: a degree-1 map of homology manifolds of difierent index
cannot be made geometrically transverse to a point in any useful sense.

Problem 6.3 Develop a surgery theory for approximate homology manifolds.

The obstructions should lie in the L¡1 groups introduced by Yamasaki [56].
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7 Special metric spaces

Several special classes of metric spaces have been developed, particularly by
the Russian school, as general settings for some of the results of difierential
geometry. It is natural to ask how these hypotheses relate to manifolds and
homology manifolds, but for the question to have much real signiflcance it is
necessary to have sources of examples not a priori known to be manifolds.
Gromov-Hausdorfi convergence gives Alexandrofi spaces, see x1.

A Busemann space is a metric space in which geodesic (locally length-minimizing)
segments can be extended, and small metric balls are cones parameterized by
geodesics starting at the center point. The standard question is:

Problem 7.1 Must a Busemann space be a manifold?

This is true in dimensions • 4; the 4-dimensional case was done by Thurston
[53] and is not elementary.

An Alexandrofi space is a metric space in which geodesics and curvature con-
straints make sense, but with less structure than Busemann spaces. These need
not be homology manifolds, so the appropriate question seems to be:

Problem 7.2 Is an Alexandrofi space that is a homology manifold in fact a
manifold in the complement of a discrete set?

The problematic discrete set should be detectable by local fundamental groups
of complements, as with the cone on a non-simply-connected homology sphere.
The answer is \yes" when there is a lower curvature bound, because the analysis
in Perel’man [39], [40] and Perel’man-Petrunin [41] shows it is a topological
stratifled set and topological stratifled sets have this property (Quinn [49]).

8 Low dimensions

1- and 2-dimensional ENR homology manifolds are manifolds. In dimensions
‚ 5 exotic homology manifolds of arbitrary local index exist, and there are
\many" of them in the senses that

† there is a \full surgery theory" given by Bryant-Ferry-Mio-Weinberger [7]
for dimensions ‚ 6 and announced by Ferry-Johnston for dimension 5;
and
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† in dimensions ‚ 6 Bryant-Ferry-Mio-Weinberger have announced a proof
that an arbitrary homology manifold is the cell-like image of one with the
DDP.

The 5-dimensional case of (2) is still open:

Problem 8.1 Can 5-dimensional exotic homology manifolds be resolved by
ones with the DDP?

In dimension 4:

Problem 8.2 Are there exotic 4-dimensional homology manifolds?

The expected answer is \yes." In a little more detail the possibilities seem to
be:

1) exotic homology manifolds don’t exist; or

2) sporadic examples exist; or

3) there is a \full surgery theory".

Even in higher dimensions there are currently no methods for getting isolated
examples: to get anything one essentially has to go through the full surgery
theory. More-direct examples in higher dimensions would be useful in ap-
proaching (2) as well as interesting in their own right. In (3) note there is
currently a fundamental group restriction in the manifold case Freedman-Quinn
[27], Freedman-Teichner [28], Krushkal-Quinn [37]. Homology-manifold surgery
would imply manifold surgery so \full surgery theory" should be interpreted to
mean \as full as the manifold case."

Finally in dimension 3:

Problem 8.3 Are there exotic 3-dimensional homology manifolds?

The expected answer is \no". See Repov•s [50] for special conclusions in the
resolvable case.

9 Homeomorphisms and the DDP

The basic question is: do the key homeomorphism theorems for manifolds ex-
tend to homology manifolds? The question should include a nondegeneracy
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condition that gives manifolds in the index = 1 case. Here we use the DDP
(Disjoint Disk Property): any two maps i; j : D2 ! X can be arbitrarily closely
approximated by maps with disjoint images. However see 9.6.

There is a feeling that the flrst three problems should be roughly equivalent in
the sense that one good idea could resolve them all.

Problem 9.1 Is the \fi approximation theorem" of Chapman-Ferry [10] true
for DDP homology manifolds?

This expected answer is \yes", and current techniques suggest a proof might
break into two sub-problems:

† A compact metric homology manifold X has † > 0 so if X 0 is † homotopy
equivalent to X then there is a DDP Y with cell-like maps onto both X

and X 0 ; and

† if X , X 0 , or both, have the DDP then the corresponding cell-like maps
can be chosen to be homeomorphisms.

As a testbed for technique for the second part it would be valuable to have a
surgery-type proof of Edwards’ theorem: a cell-like map from a (genuine) man-
ifold to a homology manifold with DDP can be arbitrarily closely approximated
by homeomorphisms.

Problem 9.2 Is the h-cobordism theorem true for DDP homology manifolds?

h-cobordisms appear in a natural way in the deflnition of \homology manifold
structure sets", among other places, and can be produced by surgery.

Problem 9.3 Is a homology manifold with the DDP arc-homogeneous?

\Arc-homogeneous" means if x; y are in the same component of M then there
is a homeomorphism M £I ! M £I that is the identity on one end and on the
other takes x to y . \Isotopy-homogeneous" is the sharper version in which the
homeomorphism is required to preserve the I coordinate, so gives an ambient
isotopy taking x to y . The \arc" in the terminology refers to the track of the
point under the homeomorphism or isotopy.

An a–rmative answer to 9.3 would show DDP homology manifolds have co-
ordinate charts homeomorphic to subsets of standard models in the same way
manifolds have Euclidean charts. Note this is consistent with a number of difier-
ent models in each index: only one model could occur in a connected homology
manifold but difierent components might have difierent models.
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The \Bing-Borsuk conjecture" is that a homogeneous ENR is a manifold, where
\homogeneous" is used in the traditional sense that any two points have home-
omorphic neighborhoods. A version more in line with current expectations,
and avoiding low dimensional problems, is that the homogeneous ENRs of di-
mension at least 5 are exactly the DDP homology manifolds. For applications
and philosophical reasons we prefer arc versions of homogeneity, and split the
question into 9.3 and a homological question:

Problem 9.4 Is a locally 1-connected homologically arc-homogeneous space
a homology manifold (possibly inflnite-dimensional)?

A space is homologically arc-homogeneous if for any arc f : I ! X the induced
maps

Hi(X £ f0g; X £ f0g ¡ (f(0); 0); Z) ! Hi(X £ I; X £ I ¡ graph(f); Z)

is an isomorphism. This is clearly an analog of \arc-homogeneous" as deflned
above. A homology manifold satisfles this by Alexander duality. In fact it holds
for (I; 0) replaced by a n-disk and a point in the boundary.

It was shown by Bredon that homogeneous (in the traditional point sense)
ENRs are homology manifolds provided the local homology groups are flnitely
generated, see Bryant [5], Dydak-Walsh [15]. The problem is to show the lo-
cal homology groups form a locally constant sheaf. The arc version of homo-
geneity gives local isomorphisms so the problem becomes showing these are
locally well-deflned. This would follow immediately from a \homologically 2-
disk-homogeneous" hypothesis, so is equivalent to this condition. The question
is whether this follows from arc-homogeneity and local 1-connectedness. Bryant
[6] has recently proved 9.4 under the assumption that the space is an ENR. Note
that a flnite dimensional locally 1-connected homology manifold is an ENR, so
the question remaining is whether \ENR" can be shifted from hypothesis to
conclusion.

In a somewhat difierent direction the following is still unknown even in the
manifold case:

Problem 9.5 Is the product of a homology manifold and R homogeneous?

This can be disengaged from the homogeneity questions by asking \does X £R

have DDP?", but see the discussion of the DDP in 9.6. X £R2 does have DDP
(Daverman [14] and there are quite a number of properties of X that imply
X £ R has DDP, see Halverson [32], Daverman-Halverson [16]. However there
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are ghastly (in the technical sense) examples of homology manifolds that show
none of these properties holds in general, see Daverman-Walsh [15], Halverson
[32].

The flnal question is vague but potentially important:

Problem 9.6 Is there a weaker condition than DDP that implies index = 1
homology manifolds are manifolds?

If so then this condition should be substituted for the DDP in the other problems
in this section. This could make some of them signiflcantly easier, and may also
help with understanding dimension 4. A good way to approach this would be to
flnd a surgery-based proof of Edwards’ approximation theorem (see 9.1), then
inspect it closely to flnd the minimum needed to make it work. Edwards’ proof
(see Daverman [13]) uses unobstructed cases of engulflng and approximation
theorems. Surgery by contrast proceeds by showing an obstruction vanishes.
Potentially-obstructed proofs (when they work) are often more °exible and have
led to sharper results.
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Abstract We develop an epsilon-controlled algebraic L-theory, extending
our earlier work on epsilon-controlled algebraic K -theory. The controlled
L-theory is very close to being a generalized homology theory; we study
analogues of the homology exact sequence of a pair, excision properties,
and the Mayer-Vietoris exact sequence. As an application we give a con-
trolled L-theory proof of the classic theorem of Novikov on the topological
invariance of the rational Pontrjagin classes.
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Keywords Controlled algebraic L-theory, homology theory.

1 Introduction.

The purpose of this article is to develop a controlled algebraic L-theory, of the
type flrst proposed by Quinn [8] in connection with the resolution of homology
manifolds by topological manifolds.

We deflne and study the epsilon-controlled L-groups L
–;†
n (X; pX ; R), extending

to L-theory the controlled K -theory of Ranicki and Yamasaki [14]. When the
control map pX is a flbration and X is a compact ANR, these groups are stable
in the sense that L

–;†
n (X; pX ; R) depends only on pX and R and not on – or †

as long as – is su–ciently small and † ¿ – [5].

These are the candidates of the controlled surgery obstruction groups; in fact,
such a controlled surgery theory has been established when the control map pX

is UV 1 ([4], [2]).

Although epsilon controlled L-groups do not produce a homology theory in
general, they have the features of a generalized homology modulo controlled
K -theory problems. In this article we study the controlled L-theory analogues
of the homology exact sequence of a pair (5.2), excision properties (x6), and the
Mayer-Vietoris sequence (7.3).

Copyright declaration is printed here



Controlled L-Theory 107

In certain cases when there are no controlled K -theoretic di–culties, we can
actually show that controlled L-groups are generalized homology groups. This
is discussed in x8.

In the last two sections, we study locally-flnite analogues and as an application
give a controlled L-theory proof of the classic theorem of Novikov [3] on the
topological invariance of the rational Pontrjagin classes.

2 Epsilon-controlled quadratic structures.

In this section we study several operations concerning quadratic Poincar¶e com-
plexes with geometric control. These will be used to deflne epsilon controlled
L-groups in the next section.

In [14] we discussed various aspects of geometric modules and morphisms and
geometric control on them, and studied K -theoretic properties of geometric
(=free) and projective module chain complexes with geometric control. There
we considered only Z-coe–cient geometric modules, but the material in xx1{7
remains valid if we use any ring R with unity as the coe–cient. To incorporate
the coe–cient ring into the notation, the group eK0(X; pX ; n; †) deflned using
the coe–cient ring R will be denoted eKn;†

0 (X; pX ; R) in this article.

To deal with L-theory, we need to use duals. Fix the control map pX : M ! X

from a space M to a metric space X and let R be a ring with involution [10].
The dual G⁄ of a geometric R-module G is G itself. Recall that a geometric
morphism is a linear combination of paths in M with coe–cient in R. The
dual f⁄ of a geometric morphism f =

P
‚ a‚‰‚ is deflned by f⁄ =

P
‚ „a‚ „‰‚ ,

where „a‚ 2 R is the image of a by the involution of R and „‰‚ is the path
obtained from ‰‚ by reversing the orientation. Note that if f has radius † then
so does its dual f⁄ and that f »† g implies f⁄ »† g⁄ , by our convention. For
a geometric R-module chain complex C , its n-dual Cn¡⁄ is deflned using the
formula in [9].

For a subset S of a metric space X , S† will denote the closed † neighborhood
of S in X when † ‚ 0. When † < 0, S† will denote the set X ¡ (X ¡ S)¡† .

Let C be a free R-module chain complex on pX : M ! X . An n-dimensional †

quadratic structure ˆ on C is a collection fˆsjs ‚ 0g of geometric morphisms

ˆs : Cn¡r¡s = (Cn¡r¡s)⁄ ! Cr (r 2 Z)

of radius † such that

(⁄) dˆs + (¡)rˆsd⁄ + (¡)n¡s¡1(ˆs+1 + (¡)s+1T ˆs+1) »3† 0 : Cn¡r¡s¡1 ! Cr;
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108 Andrew Ranicki and Masayuki Yamasaki

for s ‚ 0. An n-dimensional free † chain complex C on pX equipped with
an n-dimensional † quadratic structure is called an n-dimensional † quadratic
R-module complex on pX .

Let f : C ! D be a chain map between free chain complexes on pX . An (n+1)-
dimensional † quadratic structure (–ˆ; ˆ) on f is a collection f–ˆs; ˆsjs ‚ 0g
of geometric morphisms –ˆs : Dn+1¡r¡s ! Dr , ˆs : Cn¡r¡s ! Cr (r 2 Z) of
radius † such that the following holds in addition to (⁄):

d(–ˆs) + (¡)r(–ˆs)d⁄ + (¡)n¡s(–ˆs+1 + (¡)s+1T–ˆs+1) + (¡)nfˆsf⁄ »3† 0

: Dn¡r¡s ! Dr;

for s ‚ 0. An † chain map f : C ! D between an n-dimensional free † chain
complex C on pX and an (n + 1)-dimensional free † chain complex D on pX

equipped with an (n+1)-dimensional † quadratic structure is called an (n+1)-
dimensional † quadratic R-module pair on pX . Obviously its boundary (C; ˆ)
is an n-dimensional † quadratic R-module complex on pX . We will suppress
references to the coe–cient ring R unless we need to emphasize the coe–cient
ring.

An † cobordism of n-dimensional † quadratic structures ˆ on C and ˆ0 on C 0

is an (n + 1)-dimensional † quadratic structure (–ˆ; ˆ ' ¡ˆ0) on some chain
map C ' C 0 ! D . An † cobordism of n-dimensional † quadratic complexes
(C; ˆ), (C 0; ˆ0) on pX is an (n + 1)-dimensional † quadratic pair on pX

(
¡
f f 0¢ : C ' C 0 ! D; (–ˆ; ˆ ' ¡ˆ0))

with boundary (C 'C 0; ˆ '¡ˆ0). The union of adjoining cobordisms is deflned
using the formula in [9]. The union of adjoining † cobordisms is a 2† cobordism.

§C and ›C will denote the suspension and the desuspension of C respectively,
and C(f) will denote the algebraic mapping cone of a chain map f .

Deflnition 2.1 Let W be a subset of X . An n-dimensional † quadratic
structure ˆ on C is † Poincar¶e (over W ) if the algebraic mapping cone of the
duality 3† chain map

Dˆ = (1 + T )ˆ0 : Cn¡⁄¡¡¡¡!C

is 4† contractible (over W ). A quadratic complex (C; ˆ) is † Poincar¶e (over
W ) if ˆ is † Poincar¶e (over W ). Similarly, an (n + 1)-dimensional † quadratic
structure (–ˆ; ˆ) on f : C ! D is † Poincar¶e (over W ) if the algebraic mapping
cone of the duality 4† chain map

D(–ˆ;ˆ) =

µ
(1 + T )–ˆ0

(¡)n+1¡r(1 + T )ˆ0f⁄

¶
: Dn+1¡r ! C(f)r = Dr ' Cr¡1
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is 4† contractible (over W ) (or equivalently the algebraic mapping cone of the
4† chain map

„D(–ˆ;ˆ) = ((1 + T )–ˆ0 f(1 + T )ˆ0) : C(f)n+1¡⁄¡¡¡¡!D

is 4† contractible (over W )) and ˆ is † Poincar¶e (over W ). A quadratic pair
(f; (–ˆ; ˆ)) is † Poincar¶e (over W ) if (–ˆ; ˆ) is † Poincar¶e (over W ). We will
also use the notation D–ˆ = (1 + T )–ˆ0 , although it does not deflne a chain
map from Dn+1¡⁄ to D in general.

This deflnition is slightly difierent from the one given in [16] (especially when
W is a proper subset of X ). There a quadratic complex/pair was deflned to
be † Poincar¶e over W if the duality map is an † chain equivalence over W . If
C(Dˆ) (resp. C(D(–ˆ;ˆ))) is 4† contractible (over W ), then Dˆ (resp. D(–ˆ;ˆ)

) is only a \weak" 8† chain equivalence over W .

Deflnition 2.2 A chain map f : C ! D is a weak † chain equivalence over
W if

(1) f is an † chain map,

(2) there exists a family g = fgr : Dr ! Crg of geometric morphisms of
radius † such that the following holds for all r :

† dgr and grd have radius †, and

† dgr »† gr¡1d over W

(3) there exist two families h = fhr : Cr ! Cr+1g and k = fkr : Dr ! Dr+1g
of † morphisms such that the following holds for all r :

† dhr + hr¡1d »2† 1 ¡ grfr over W , and

† dkr + kr¡1d »2† 1 ¡ frgr over W .

In other words a weak chain equivalence satisfles all the properties of a chain
equivalence except that its inverse may not be a chain map outside of W .

Weak chain equivalences behave quite similarly to chain equivalences. For ex-
ample, 2.3(3) and 2.4 of [14] can be easily generalized as follows:

Proposition 2.3 If f : C ! D is a weak – chain equivalence over V and
f 0 : D ! E is a weak † chain equivalence over W , then f 0f is a weak – + †

chain equivalence over V ¡–¡† \ W ¡– . If we further assume that f is a – chain
equivalence, then f 0f is a weak – + † chain equivalence over V ¡† \ W ¡– .
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110 Andrew Ranicki and Masayuki Yamasaki

Proposition 2.4 Let f : C ! D be an † chain map. If the algebraic mapping
cone C(f) is † contractible over W , then f is a weak 2† chain equivalence over
W . If f is a weak † chain equivalence over W , then C(f) is 3† contractible
over W ¡2† .

We have employed the deflnition of Poincar¶e complexes/pairs using local con-
tractibility of the algebraic mapping cone of the duality map, because algebraic
mapping cones are easier to handle than chain equivalences. For example, con-
sider a triad ¡ :

C

g

²²

f
//

h

ÃÃ
Ã`

Ã`
Ã`

Ã`
Ã`

D

g0

²²

dh + hd » f 0g ¡ g0f

C 0
f 0

// D0

and assume

(1) f (resp. f 0 ) is a – (resp. –0 ) chain map,

(2) g (resp. g0 ) is an † (resp. †0 ) chain map,

(3) h : g0f ’ f 0g is a ° chain homotopy.

Then there are induced a maxf–; –0; 2°g chain map

F =

µ
f 0 (¡)rh

0 ¡f

¶
: C(¡g)r = C 0

r ' Cr¡1 ! C(g0)r = D0
r ' Dr¡1

and a maxf†; †0; 2°g chain map

G =

µ
g0 (¡)rh

0 g

¶
: C(f)r = Dr ' Cr¡1 ! C(f 0)r = D0

r ' C 0
r¡1:

It is easily seen that C(F ) = C(G).

Proposition 2.5 If C(g : C ! C 0) is † contractible over W , then C(¡g) is †

contractible over W .

Proof Supposeµ
a b

c d

¶
: C(g)r = Cr ' C 0

r¡1 ¡¡! C(g)r+1 = Cr+1 ' C 0
r

is an † chain contraction over W of C(g), then
µ

a ¡b

¡c d

¶

is an † chain contraction over W of C(¡g).
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Proposition 2.6 Let ¡ be as above, and further assume that C(g) is † con-
tractible over W and C(g0) is †0 contractible over W , then C(G) is 3 maxf†; †0; –; –0; 2°g
contractible over W ¡2 maxf†;†0;–;–0;2°g .

Proof By 2.5, C(¡g) is † contractible over W . Therefore F : C(¡g) ! C(g0)
is a maxf†; †0; –; –0; 2°g chain equivalence over W , and the proposition is proved
by applying 2.4 to F .

Corollary 2.7 Let C and D be free † chain complexes, and let (–ˆ; ˆ) be
an † quadratic structure on an † chain map f : C ! D . If C(D(–ˆ;ˆ)) is 4†

contractible over W , then C(Dˆ) is 100† contractible over W ¡100† .

Proof Consider the triad ¡:

›C(f)n+1¡⁄

D(–ˆ;ˆ)

²²

fi=(1 0)
//

h

&&
&f&f&f&f&f&f&f&f&f&f&f&f

›D(n+1¡⁄)

„D(–ˆ;ˆ)

²²

h =

µ
0 0
0 (¡)r+1(1 + T )ˆ0

¶

›D
fl=t(1 0)

// ›C(f)

and consider the chain map G : C(fi) ! C(fl) induced from ¡ as above. Then
C(G) is 12† contractible over W ¡8† by the previous proposition. Therefore G

is a weak 24† chain equivalence over W ¡8† . (1 + T )ˆ0 is equal to the following
composite of G with two † chain equivalences:

Cn¡⁄ t(0 0 1)¡¡¡¡!’†

C(fi)
G¡¡¡¡! C(fl)

(0 1 0)¡¡¡¡!’†

C ;

and the claim follows from 2.3.

Next we describe various constructions on quadratic complexes with some size
estimates. Firstly a direct calculation shows the following. (See the non-
controlled case [9].)

Proposition 2.8 If adjoining † cobordisms c and c0 are † Poincar¶e over W ,
then c [ c0 is 100† Poincar¶e over W ¡100† .

The following proposition gives us a method to construct quadratic structures
and cobordisms.
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Proposition 2.9 Suppose g : C ! C 0 is a – chain map of – chain complexes
and ˆ is an n-dimensional † quadratic structure on C .

(1) g%ˆ = f(g%ˆ)s = gˆsg⁄g is a 2– + † quadratic structure on C 0 , and
(0; ˆ ' ¡g%ˆ) is a 2– + † quadratic structure on the – chain map (g 1) :
C ' C 0¡¡!C 0 .

(2) If ˆ is † Poincar¶e over W and g is a weak – chain equivalence over W ,
then g%ˆ and (0; ˆ ' ¡g%ˆ) are 2– + 6† Poincar¶e over W ¡(6–+24†) .

(3) If ˆ is † Poincar¶e, g is a – chain equivalence, “0 = (–ˆ; ˆ0 = g%ˆ) is an
†0 Poincar¶e –0 quadratic structure on a –0 chain map f 0 : C 0 ! D , and D is
a ° chain complex, then “ = (–ˆ; ˆ) is an †0 + 3 maxf9–; 6–0; 4†; 3°g Poincar¶e
maxf–; †g quadratic structure on the –0 + † chain map f = f 0 – g : C ! D .

Proof (1) This can be checked easily.

(2) This holds because the duality maps for (C 0; g%ˆ) and c split as follows:

(C 0)n¡⁄ g⁄
¡¡¡¡! Cn¡⁄ (1+T )ˆ0¡¡¡¡¡! C

g¡¡¡! C 0 ;

C((g 1))n+1¡⁄ (0 1 ¡g⁄)¡¡¡¡¡¡!’–

Cn¡⁄ (1+T )ˆ0¡¡¡¡¡! C
g¡¡¡! C 0 :

(3) We study the duality map for “0 . Since g is a – chain equivalence and
C(1 : D ! D) is ° contractible, the algebraic mapping cone of the maxf°; –g
chain map

~g =

µ
1 0
0 g

¶
: C(f)r = Dr ' Cr¡1¡¡¡¡!C(f 0) = Dr ' C 0

r¡1

is 3 maxf3–; – + –0; °g contractible, and so is C(~g⁄ : C(f 0)n+1¡⁄ ! C(f)n+1¡⁄).
Therefore, the chain map C(D“0) ! C(D“) deflned by

µ
1 0
0 ~g⁄

¶
: C(D“0) = Dr ' C(f 0)n+2¡r¡¡¡¡!C(D“) = Dr ' C(f)n+2¡r

is a 6 maxf9–; 6–0; 4†; 3°g chain equivalence. The claim now follows from the
next lemma.

Lemma 2.10 If a chain complex A is † chain equivalent to a chain complex
B which is – contractible over X ¡ Y , then A is (2† + –) contractible over
X ¡ Y † .

Geometry & Topology Monographs, Volume X (20XX)



Controlled L-Theory 113

Proof Let f : A ! B be an † chain equivalence, g an † chain homotopy
inverse, h : gf ’† 1 an † chain homotopy, and ¡ a – chain contraction of
B over X ¡ Y . Then g¡f + h gives a(2† + –) chain contraction of A over
X ¡ Y † .

Remarks (1) An † chain equivalence f : C¡¡!C 0 such that f%ˆ = ˆ0 will
be called an † homotopy equivalence from (C; ˆ) to (C 0; ˆ0). By 2.9, a ho-
motopy equivalence between quadratic Poincar¶e complexes induces a Poincar¶e
cobordism between them.

(2) The estimates given in 2.9 and 2.10 are, of course, not acute in general. For
example, consider an † quadratic complex (C; ˆ) which is † Poincar¶e over W .
Then a direct calculation shows that the cobordism between (C; ˆ) and itself
induced by the identity map of C is an † quadratic pair and is † Poincar¶e over
W . This cobordism will be called the trivial cobordism from (C; ˆ) to itself.

3 Epsilon-controlled L-groups.

In this section we review the boundary construction of the flrst-named author
and then introduce epsilon-controlled L-groups

L–;†
n (X; pX ; R) and L–;†

n (X; Y ; pX ; R)

for pX : M ! X , Y ‰ X , n ‚ 0, – ‚ † ‚ 0, and a ring R with involution.
These are deflned using geometric R-module chain complexes with quadratic
Poincar¶e structures discussed in the previous section.

Let (C; ˆ) be an n-dimensional † quadratic R-module complex on pX , where
n ‚ 1. Deflne a (possibly non-positive) 2† chain complex @C by ›C(Dˆ).
Then an (n ¡ 1)-dimensional 2† Poincar¶e 2† quadratic structure @ˆ on @C is
deflned by:

@ˆ0 =

µ
0 0
1 0

¶
: @Cn¡r¡1 = Cn¡r ' Cr+1¡¡!@Cr = Cr+1 ' Cn¡r

@ˆs =

µ
(¡)n¡r¡s¡1Tˆs¡1 0

0 0

¶
:

@Cn¡r¡s¡1 = Cn¡r¡s ' Cr+s+1¡¡!@Cr = Cr+1 ' Cn¡r (s ‚ 1) :
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This is the boundary construction of Ranicki [9]. The structure “1 = (0; @ˆ)
is an n-dimensional 2† Poincar¶e 2† quadratic structure on the † chain map

iC = projection : @C¡¡!Cn¡⁄

of 2† chain complexes. This is called the algebraic Poincar¶e thickening [9].

Example 3.1 Consider an n-dimensional † chain complex F , and give §F

the trivial (n + 1)-dimensional quadratic structure µs = 0 ( s ‚ 0 ). Its
algebraic Poincar¶e thickening

(i§F : @§F = F ' F n¡⁄¡¡!(§F )n+1¡⁄ = F n¡⁄; (0; @µ))

is an (n + 1)-dimensional † Poincar¶e † null-cobordism of (@§F; @µ).

There is an inverse operation up to homotopy equivalence. Given an n-dimension-
al † Poincar¶e † quadratic pair c = (f : C ! D; (–ˆ; ˆ)), take the union ( ~C; ~̂)
of c with the † quadratic pair (C ! 0; (0; ¡ˆ)). ~C is equal to C(f). ( ~C; ~̂)
is an n-dimensional 2† quadratic complex and is called the algebraic Thom
complex of c. The algebraic Poincar¶e thickening of ( ~C; ~̂) is \homotopy equiv-
alent" to the original pair c (as pairs). Since we will not use this full statement,
we do not deflne homotopy equivalences of pairs here and only mention that
the chain map

g =
¡
0 1 0 ¡ˆ0

¢
: @ ~Cr = Dr+1 ' Cr ' Dn¡r ' Cn¡r¡1¡¡!Cr

gives an 11† chain equivalence such that g%(@ ~̂) = ˆ . If we start with an n-
dimensional † quadratic complex (C; ˆ) on pX , then the algebraic Thom com-
plex of the algebraic Poincar¶e thickening (iC : @C¡¡!Cn¡⁄; (0; @ˆ)) of (C; ˆ)
is 3† homotopy equivalent to (C; ˆ); 3† homotopy equivalences are given by

f =
¡¡Dˆ 1 0

¢
: C(iC)r = Cn¡r ' Cr ' Cn¡r+1¡¡!Cr;

f%(“1 [@ˆ ¡“2) = ˆ;

f 0 = t
¡
0 1 0

¢
: Cr¡¡!C(iC)r = Cn¡r ' Cr ' Cn¡r+1;

f 0
%ˆ = “1 [@ˆ ¡“2;

where “2 = (0; @ˆ) is the n-dimensional † quadratic structure on the trivial
chain map 0 : @C¡¡!0.

The boundary construction described above generalizes to quadratic pairs. For
an (n + 1)-dimensional † quadratic pair (f : C ! D; (–ˆ; ˆ)) on pX , deflne
a (possibly non-positive) 2† chain complex @D by ›C(D(–ˆ;ˆ)) and deflne an
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n-dimensional 3† Poincar¶e 2† quadratic structure “3 = (@–ˆ; @ˆ) on the 2†

chain map of 2† chain complexes

@f =

0
@

f 0
0 0
0 1

1
A : @Cr = Cr+1 ' Cn¡r¡¡¡¡!@Dr = Dr+1 ' Dn¡r+1 ' Cn¡r

by

@–ˆ0 =

0
@

0 0 0
¡1 0 0
0 0 0

1
A : @Dn¡r = Dn¡r+1 ' Dr+1 ' Cr

¡¡¡¡!@Dr = Dr+1 ' Dn¡r+1 ' Cn¡r

@–ˆs =

0
@

(¡)n¡r¡s¡1T–ˆs¡1 0 0
0 0 0
0 0 0

1
A : @Dn¡r¡s = Dn¡r¡s+1 ' Dr+s+1 ' Cr+s

¡¡¡¡!@Dr = Dr+1 ' Dn¡r+1 ' Cn¡r (s ‚ 1):

@ˆ is the same as above. Then (0; “1 [@ˆ (¡“3)) gives an (n + 1)-dimensional
300† Poincar¶e 4† quadratic structure on the † chain map

¡
i 0 iD

¢
: (Cn¡⁄ [@C @D)r = Cn¡r ' @Cr¡1 ' @Dr

¡¡¡¡!(C(f)n+1¡⁄)r = C(f)n+1¡r

of 2† chain complexes, where i : Cn¡⁄ ! C(f)n+1¡⁄ is the inclusion map and
iD : @D ! C(f)n+1¡⁄ is the projection map.

If (C; ˆ) (resp. (f : C ! D; (–ˆ; ˆ))) is † Poincar¶e, then @C is (resp. @C

and @D are) 4† contractible, and hence chain homotopic to a positive chain
complex (resp. positive chain complexes). But in general @C (and @D) may not
be chain homotopic to a positive chain complex. This leads us to the following
deflnition. The non-controlled version is described in [9].

Deflnition 3.2 (1) A positive geometric chain complex C (Ci = 0 for i < 0)
is † connected if there exists a 4† morphism h : C0 ! C1 such that dh »8† 1C0 .

(2) A chain map f : C ! D of positive chain complexes is † connected if C(f)
is † connected.

(3) A quadratic complex (C; ˆ) is † connected if Dˆ is † connected.

(4) A quadratic pair (f : C ! D; (–ˆ; ˆ)) is † connected if Dˆ and D(–ˆ;ˆ) are
† connected.
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Lemma 3.3 (1) The composition of a – connected chain map and an † con-
nected chain map is – + † connected.

(2) Quadratic complexes and pairs that are † Poincar¶e are † connected.

(3) If ˆ is an † connected quadratic structure on C and g : C ! C 0 is a –

connected chain map, then D(0;ˆ'¡g%ˆ) is † + 2– connected.

Proof (1) is similar to 2.3. (2) is immediate from deflnition. (3) is similar to
2.9 (2).

Remark In general the † connectivity of g does not imply the † connectivity
of g⁄ (or – connectivity for any –). Therefore we do not have any estimate
on the connectivity of g%ˆ in (3) above. It should be checked by an ad hoc
method in each case. For example, see section 6.

If the desuspension ›C of a positive complex C on pX is † chain equivalent to
a positive complex, then C is †=4 connected. On the other hand, we have:

Proposition 3.4 Let n ‚ 1.

(1) Suppose an n-dimensional † quadratic complex (C; ˆ) on pX is † con-
nected. Then @C is 12† chain equivalent to an (n ¡ 1)-dimensional (resp. a
1-dimensional) 4† chain complex @̂C if n > 1 (resp. if n = 1).

(2) Suppose an (n + 1)-dimensional † quadratic pair (f : C ! D; (–ˆ; ˆ)) is
† connected. Then @D is 24† chain equivalent to an n-dimensional 5† chain
complex @̂D .

(3) When n = 1, the free 1-dimensional chain complex (@̂C; 1) given in (1)
and (2), viewed as a projective chain complex, is 32† chain equivalent to a
0-dimensional 32† projective chain complex (~@C; p) and there is a 32† isomor-
phism

(@̂C1; 1) ' (~@C0; p)¡¡¡¡!(@̂C0; 1);

and hence the controlled reduced projective class [ ~@C; p] vanishes in eK0;32†
0 (X; pX ; R).

Proof (1) There exists a 4† morphism h : @C¡1 ! @C0 such that dh »8† 1.
Deflne a 4† morphism h0 : @Cn¡1 ! @Cn by the composite:

h0 : @Cn¡1 = Cn ' C1

�
0 (¡)n

(¡)n 0

�

¡¡¡¡¡¡¡¡¡! C1 ' Cn
h⁄¡¡¡¡! C0 = @Cn ;
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then h0d »8† 1. Now one can use the folding argument from the bottom [16]
using h and, if n > 1, from the top [14] using h0 to construct a desired chain
equivalence.

(2) There exists a 4† morphism h : @D¡1 ! @D0 such that dh »8† 1. Deflne a
5† morphism h0 : @Dn ! @Dn+1 by the composite of
µ

0 (¡)n+1 0

(¡)n+1 0 0
0 0 (1+T )ˆ0

¶
: @Dn = Dn+1 ' D1 ' C0 ! @D0 = D1 ' Dn+1 ' Cn

and h⁄ : @D0 ! @D¡1 = @Dn+1 , then h0d »8† 1. Use the folding argument
again.

(3) The boundary map @̂C1 = @C1 '@C¡1 ! @̂C0 = @C0 is given by the matrix
(d@C h). Therefore

s =

µ
h0 ¡ h0hd@C

d@C

¶
: @C0¡¡¡¡!@C1 ' @C¡1

deflnes a 12† morphism s : @̂C0 ! @̂C1 such that sd
@̂C

»16† 1. Deflne ~@C0 to

be @̂C0 and deflne a 16† morphism p : ~@C0 ! ~@C0 by 1 ¡ d
@̂C

, then p2 »32† p

and p : ( ~@C0; 1) ! (~@C0; p) deflnes the desired 32† chain equivalence. The
isomorphism can be obtained by combining the following isomorphisms:

(@̂C1; 1)
d //

(@̂C0; 1 ¡ p)
s

oo

(@̂C0; 1 ¡ p) ' (@̂C0; p)
(q p)

//

(@̂C0; 1)
t(q p)
oo

Controlled connectivity is preserved under union operation in the following
manner.

Proposition 3.5 If adjoining † cobordisms c and c0 are † connected, then
c [ c0 is 100† connected.

Proof Similar to 2.8.

Now we deflne the epsilon-controlled L-groups. Let Y be a subset of X .
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Deflnition 3.6 For an integer n ‚ 0, pair of non-negative numbers – ‚ † ‚ 0,
and a ring with involution R, L

–;†
n (X; Y ; pX ; R) is deflned to be the equivalence

classes of flnitely generated n-dimensional † connected † quadratic complexes
on pX that are † Poincar¶e over X ¡Y . The equivalence relation is generated by
flnitely generated – connected – cobordisms that are – Poincar¶e over X ¡ Y .

Remark We use the following abbreviations for simplicity:

† L
–;†
n (X; pX ; R) = L

–;†
n (X; ;; pX ; R)

† L†
n(X; Y ; pX ; R) = L

†;†
n (X; Y ; pX ; R)

† L†
n(X; pX ; R) = L

†;†
n (X; pX ; R)

Proposition 3.7 Direct sum (C; ˆ) ' (C 0; ˆ0) = (C ' C 0; ˆ ' ˆ0) induces an

abelian group structure on L
–;†
n (X; Y ; pX ; R). Furthermore if [C; ˆ] = [C 0; ˆ0] 2

L
–;†
n (X; Y ; pX ; R), then there is a flnitely generated 100– connected 2– cobor-

dism between (C; ˆ) and (C 0; ˆ0) that is 100– Poincar¶e over X ¡ Y 100– .

Proof The inverse of an element [C; ˆ] is given by [C; ¡ˆ]. In fact, as in 2.9
and 3.3 (with g = 1),

((1 1) : C ' C¡¡!C; (0; ˆ ' ¡ˆ))

gives an † connected † null-cobordism of (C; ˆ) ' (C; ¡ˆ) that is † Poincar¶e
over X ¡ Y . The second claim follows from 2.8 and 3.5, because we can glue a
sequence of cobordisms at once.

If –0 ‚ – and †0 ‚ †, then there is a homomorphism

L–;†
n (X; Y ; pX ; R)¡¡¡¡!L–0;†0

n (X; Y ; pX ; R)

which sends [C; ˆ] to [C; ˆ]. This is called the relax-control map.

In the study of controlled L-groups, we need an analogue of 2.9 for pairs:

Proposition 3.8 Suppose there is a triad of † chain complexes on pX

C

g

²²

f
//

g

ÃÃ
Ã`

Ã`
Ã`

Ã`
Ã`

D

h

²²

dk + kd » f 0g ¡ hf

C 0
f 0

// D0
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where f , f 0 , g , h are † chain maps and k is an † chain homotopy, and suppose
(–ˆ; ˆ) is an (n + 1)-dimensional † quadratic structure on f .

(1) There is induced a 4† quadratic structure on f 0 :

(g; h; k)%(–ˆ; ˆ) = (h–ˆsh⁄ + (¡)n+1kˆsf⁄h⁄ + (¡)n¡r+1f 0gˆsk⁄

+(¡)r+1kT ˆs+1k⁄ : (D0n+1¡r¡s; q0⁄) ! (D0
r; q0

r); gˆsg⁄)s‚0:

(2) Suppose g and h are † chain equivalences.

(a) If (–ˆ; ˆ) is † Poincar¶e over X ¡Y , then (g; h; k)%(–ˆ; ˆ) is 30† Poincar¶e
over X ¡ Y 81† .

(b) If (f; (–ˆ; ˆ)) is † connected, then (f 0; (g; h; k)%(–ˆ; ˆ)) is 30† connected.

Proof (1) is easy to check. (2) can be checked by showing that

((¡)n+1¡rkˆ0k⁄ k(1 + T )ˆ0g⁄) : C(f 0)n+1¡r = D0n+1¡r ' C 0n¡r

¡¡¡¡!D0
r+1

is a 3† chain homotopy between the duality map for (g; h; k)%(–ˆ; ˆ) and the
following chain map:

h((1 + T )–ˆ0 f(1 + T )ˆ0)

µ
h⁄ 0

(¡)n+1¡rk⁄ g⁄

¶
: C(f 0)n+1¡r¡¡¡¡!(D0

r; q0
r) ;

which is a weak 27† chain equivalence over X ¡ Y 18† in case (2a), and 16†

connected in case (2b).

Corollary 3.9 Suppose f : C ! D is an † chain map, (–ˆ; ˆ) is an (n + 1)-
dimensional † quadratic structure on f , g : C ! C 0 is a ° chain equivalence,
and h : D ! D0 is a – chain equivalence. Let †0 = ° + – + † and g¡1 be a °

chain homotopy inverse of g .

(1) There is an (n + 1)-dimensional 4†0 quadratic structure (–ˆ0; ˆ0 = g%ˆ) on
the †0 chain map f 0 = hfg¡1 : (C 0; p0) ! (D0; q0).

(2) If (–ˆ; ˆ) is † Poincar¶e over X ¡ Y , then (–ˆ0; ˆ0) is 30†0 Poincar¶e over
X ¡ Y 81†0

.

(3) If (–ˆ; ˆ) is † connected, then (–ˆ0; ˆ0) is 30†0 connected.

Proof Let ¡ : g¡1g ’ 1 be a ° chain homotopy. Deflne an †0 chain homotopy
k : hf ’ f 0g by k = ¡hf¡, and apply 3.8
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The last topic of this section is the functoriality. A map between control maps
pX : M ! X and pY : N ! Y means a pair of continuous maps (f : M !
N; „f : X ! Y ) which makes the following diagram commute:

M
f

//

pX

²²

N

pY

²²

X „f
// Y:

For example, given a control map pY : N ! Y and a subset X ‰ Y , let us
denote the control map pY jp¡1

Y (X) : p¡1
Y (X) ! X by pX : M ! X . Then the

inclusion maps j : M ! N , „| : X ! Y form a map form pX to pY .

Epsilon controlled L-groups are functorial with respect to maps and relaxation
of control in the following sense.

Proposition 3.10 Let F = (f; „f) be a map from pX : M ! X to pY : N !
Y , and suppose that „f is Lipschitz continuous with Lipschitz constant ‚, i.e.,
there exists a constant ‚ > 0 such that

d( „f(x1); „f(x2)) • ‚d(x1; x2) (x1; x2 2 X):

Then F induces a homomorphism

F⁄ : L–;†
n (X; X 0; pX ; R) ¡¡¡¡! L–0;†0

n (Y; Y 0; pY ; R)

if –0 ‚ ‚– , †0 ‚ ‚† and „f(X 0) ‰ Y 0 . If two maps F = (f; „f) and G = (g; „g) are
homotopic through maps Ht = (ht; „ht) such that each „ht is Lipschitz continuous
with Lipschitz constant ‚, –0 > ‚– , †0 ‚ ‚†, and „ht(X

0) ‰ Y 0 , then F and G

induce the same homomorphism :

F⁄ = G⁄ : L–;†
n (X; X 0; pX ; R) ¡¡¡¡! L–0;†0

n (Y; Y 0; pY ; R) :

Proof The direct image construction for geometric modules and morphisms
[14] (p.7) can be used to deflne the direct images f#(C; ˆ) of quadratic com-
plexes and the direct images of cobordisms. And this induces the desired F⁄ .

For the second part, split the homotopy into thin layers to construct small
cobordisms. The size of the cobordism may be slightly bigger than the size of
the object itself.

Remark The above is stated for Lipschitz continuous maps to simplify the
statement. For speciflc – ‚ † and –0 ‚ †0 , the following condition, instead of
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the Lipschitz condition above, is su–cient for the existence of F⁄ :

d( „f(x1); „f(x2)) • k†0 whenever d(x1; x2) • k†; and

d( „f(x1); „f(x2)) • k–0 whenever d(x1; x2) • k–;

for k = 1, 3, 4, 8. The second part of the proposition also holds under this
condition. When X is compact and –0 ‚ †0 are given, the uniform continuity
of „f implies that this condition is satisfled for su–ciently small pairs – ‚ †.

4 Epsilon-controlled projective L-groups.

Fix a subset Y of X , and let F be a family of subsets of X such that Z ¾ Y

for each Z 2 F . In this section we introduce intermediate epsilon-controlled
L-groups L

F ;–;†
n (Y ; pX ; R), which will appear in the stable-exact sequence of a

pair (x5) and also in the Mayer-Vietoris sequence (x7). Roughly speaking, these
are deflned using \controlled projective quadratic chain complexes" ((C; p); ˆ)
with vanishing †-controlled reduced projective class [C; p] = 0 2 eKn;†

0 (Z; pZ ; R)
for each Z 2 F .

eKn;†
0 (Z; pZ ; R) is an abelian group deflned as the set of equivalence classes [C; p]

of flnitely generated † projective chain complexes on pZ . See [14] for the details.
The following is known (3.1 and 3.5 of [14]) :

Proposition 4.1 If [C; p] = 0 2 eKn;†
0 (Z; pZ ; R), then there is an n-dimensional

free † chain complex (E; 1) such that (C; p)'(E; 1) is 3† chain equivalent to an
n-dimensional free † chain complex on pZ . If we further assume that n ‚ 1,
then (C; p) itself is 60† chain equivalent to an n-dimensional free 30† chain
complex on pZ .

All the materials in the previous two sections (except for 3.4(3)) have obvious
analogues in the category of projective chain complexes with the identity maps
in the formulae replaced by appropriate projections. So we shall only describe
the basic deflnitions and omit stating the obvious analogues of 2.3, 2.4, 2.5, 2.6,
2.7, 2.8, 2.9, 2.10, 3.3, 3.5, 3.8, 3.9, and we refer them by 2.3 0 , 2.4 0 , . . . . An
analogue of 3.7 will be explicitly stated in 4.4 below.

For a projective module (A; p) on pX , its dual (A; p)⁄ is the projective module
(A⁄; p⁄) on pX . If f : (A; p) ! (B; q) is an † morphism [14], then f⁄ : (B; q)⁄ !
(A; p)⁄ is also an † morphism. For an † projective chain complex on pX

(C; p) : : : : ¡¡!(Cr; pr)
dr¡¡! (Cr¡1; pr¡1)

dr¡1¡¡¡! : : :
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in the sense of [14], (C; p)n¡⁄ will denote the † projective chain complex on pX

deflned by:

: : : ¡¡!(Cn¡r; p⁄
n¡r)

(¡)rd⁄
r¡¡¡¡! (Cn¡r+1; p⁄

n¡r+1)¡¡! : : : :

Before we go on to deflne † projective quadratic complexes, we need to deflne
basic notions for projective chain complexes. For Y = X or for free chain
complexes, these are already deflned in [14].

Suppose f : (A; p) ! (B; q) is a morphism between projective modules on
pX , and let Y be a subset of X . The restriction f jY of f to Y will mean
the restriction of f in the sense of [14](p.21) with f viewed as a geometric
morphism from A to B ; i.e., f jY is the sum of the paths (with coe–cients)
that start from points in p¡1

X (Y ). f jY can be viewed as a geometric morphism
from A to B and also as a geometric morphism from A(Y ) to B(Y ), where
A(Y ) denotes the restriction of A to Y in the sense of [14], i.e. the geometric
submodule of A generated by the basis elements of A that are in p¡1

X (Y ). But,
in general, it does not give a morphism from (A; p) to (B; q). Also note that
there is no obvious way to \restrict" a projection p : A ! A to a projection on
A(Y ).

The following four paragraphs are almost verbatim copies of the deflnitions for
free chain complexes [14](p.22).

Let f , g : (A; p) ! (B; q) be morphisms; f is said to be equal to g over Y (
f = g over Y ) if f jY = gjY , and f is said to be † homotopic to g over Y (
f »† g over Y ) if f jY »† gjY .

Let f , g : (C; p) ! (D; q) be chain maps between projective chain complexes
on pX . A collection fhr : (Cr; pr) ! (Dr+1; qr+1)g of † morphisms is said to
be an † chain homotopy over Y between f and g if dh + hd »2† g ¡ f over Y .

An † chain map f : (C; p) ! (D; q) is said to be an † chain equivalence over Y

if there exist an † chain map g : (D; q) ! (C; p) and † chain homotopies over
Y between gf and p and between fg and q .

A chain complex (C; p) is said to be † contractible over Y if there is an † chain
homotopy over Y between 0 : (C; p) ! (C; p) and p : (C; p) ! (C; p); such a
chain homotopy over Y is called an † chain contraction of (C; p) over Y .

The deflnition 2.2 of weak † chain equivalences over Y (for chain maps between
free chain complexes) can be rewritten for maps between projective chain com-
plexes in the obvious manner.

Geometry & Topology Monographs, Volume X (20XX)



Controlled L-Theory 123

The following is the most important technical proposition in the theory of con-
trolled projective chain complexes.

Proposition 4.2 (5.1 and 5.2 of [14]) If an n-dimensional free † chain com-
plex C on pX is † contractible over X¡Y , then (C; 1) is (6n+15)† chain equiv-
alent to an n-dimensional (3n + 12)† projective chain complex on pY (4n+14)† .
Conversely, if an n-dimensional free chain complex (C; 1) on pX is † chain
equivalent to a projective chain complex (D; r) on pY , then C is † contractible
over X ¡ Y † .

Now we introduce quadratic structures on projective chain complexes and pairs.
An n-dimensional † quadratic structure on a projective chain complex (C; p)
on pX is an n-dimensional † quadratic structure ˆ on C (in the sense of
x2) such that ˆs : (Cn¡r¡s; p⁄) ! (Cr; p) is an † morphism for every s ‚ 0
and r 2 Z. Similarly, an (n + 1)-dimensional † quadratic structure on a
chain map f : (C; p) ! (D; q) is an (n + 1)-dimensional † quadratic struc-
ture (–ˆ; ˆ) on f : C ! D such that –ˆs : (Dn+1¡r¡s; q⁄) ! (Dr; q) and
ˆs : (Cn¡r¡s; p⁄) ! (Cr; p) are † morphisms for every s ‚ 0 and r 2 Z.
An n-dimensional † projective chain complex (C; p) on pX equipped with an
n-dimensional † quadratic structure is called an n-dimensional † projective
quadratic complex on pX , and an † chain map f : (C; p) ! (D; q) between
an n-dimensional † projective chain complex (C; p) on pX and an (n + 1)-
dimensional † projective chain complex (D; q) on pX equipped with an (n+1)-
dimensional † quadratic structure is called an (n + 1)-dimensional † projective
quadratic pair on pX .

An † cobordism of n-dimensional † projective quadratic complexes ((C; p); ˆ),
((C 0; p0); ˆ0) on pX is an (n+1)-dimensional † projective quadratic pair on pX

((f f 0) : (C; p) ' (C 0; p0)¡¡!(D; q); (–ˆ; ˆ ' ¡ˆ0))

with boundary ((C; p) ' (C 0; p0); ˆ ' ¡ˆ0).

Boundary constructions, algebraic Poincar¶e thickenings, algebraic Thom com-
plexes, † connectedness are deflned as in the previous section.

An n-dimensional † quadratic structure ˆ on (C; p) is † Poincar¶e (over Y ) if

@(C; p) = ›C((1 + T )ˆ0 : (Cn¡⁄; p⁄)¡¡!(C; p))

is 4† contractible (over Y ). ((C; p); ˆ) is † Poincar¶e (over Y ) if ˆ is † Poincar¶e
(over Y ). Similarly, an (n + 1)-dimensional † quadratic structure (–ˆ; ˆ) on
f : (C; p) ! (D; q) is † Poincar¶e (over Y ) if @(C; p) and

@(D; q) = ›C(((1 + T )–ˆ0 f(1 + T )ˆ0) : C(f)n+1¡⁄¡¡!(D; q))
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are both 4† contractible (over Y ). A pair (f; (–ˆ; ˆ)) is † Poincar¶e (over Y )
if (–ˆ; ˆ) is † Poincar¶e (over Y ).

Let Y and be a subset of X and F be a family of subsets of X such that
Z ¾ Y for every Z 2 F .

Deflnition 4.3 Let n ‚ 0 and – ‚ † ‚ 0. L
F ;–;†
n (Y ; pX ; R) is the equivalence

classes of flnitely generated n-dimensional † Poincar¶e † projective quadratic
complexes ((C; p); ˆ) on pY such that [C; p] = 0 in eKn;†

0 (Z; pZ ; R) for each
Z 2 F . The equivalence relation is generated by flnitely generated – Poincar¶e
– cobordisms ((f f 0) : (C; p) ' (C 0; p0) ! (D; q); (–ˆ; ˆ ' ¡ˆ0)) on pY such

that [D; q] = 0 in eKn+1;–
0 (Z; pZ ; R) for each Z 2 F .

Remark We use the following abbreviation: L
F ;†
n (Y ; pX ; R) = L

F ;†;†
n (Y ; pX ; R).

Proposition 4.4 Direct sum induces an abelian group structure on L
F ;–;†
n (Y ; pX ; R).

Furthermore if [(C; p); ˆ] = [(C 0; p0); ˆ0] 2 L
F ;–;†
n (Y ; pX ; R), then there is a fl-

nitely generated 100– Poincar¶e 2– cobordism on pY

((f f 0) : (C; p) ' (C 0; p0) ! (D; q); (–ˆ; ˆ ' ¡ˆ0))

such that [D; q] = 0 in eKn+1;9–
0 (Z; pZ ; R) for each Z 2 F .

Proof The flrst part is similar to the proof of 3.7. [D; q] = 0 in eKn+1;9–
0 (Z; pZ ; R),

because [C(g : (E; r) ! (F; s))] = [F; s] ¡ [E; r] 2 eKn+1;9–
0 (Z; pZ ; R) for any

– chain map g between – projective chain complexes (E; r) (of dimension n)
and (F; s) (of dimension n + 1) on pZ . See p.18 of [14].

A functoriality with respect to maps and relaxation of control similar to 3.10
holds for epsilon-controlled projective L-groups.

Proposition 4.5 Let F = (f; „f) be a map from pX : M ! X to pY : N ! Y ,
and suppose that „f is Lipschitz continuous with Lipschitz constant ‚, i.e., there
exists a constant ‚ > 0 such that

d( „f(x1); „f(x2)) • ‚d(x1; x2) (x1; x2 2 X):

If –0 ‚ ‚– , †0 ‚ ‚†, „f(A) ‰ B , and there exists a Z 2 F satisfying „f(Z) ‰ Z 0

for each Z 0 2 F 0 , then F induces a homomorphism

F⁄ : LF ;–;†
n (A; pX ; R) ¡¡¡¡! LF 0;–0;†0

n (B; pY ; R) :

It is ‚-Lipschitz-homotopy invariant if –0 > ‚– in addition.

Remark As in the remark to 3.10, for a speciflc – and †, we do not need the
full Lipschitz condition to guarantee the existence of F⁄ .
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There is an obvious homomorphism from free L-groups to projective L-groups:

¶ : L–;†
n (Y ; pY ; R) ¡¡¡¡! LF ;–;†

n (Y ; pX ; R); [C; ˆ] 7! [(C; 1); ˆ] :

On the other hand, the controlled K -theoretic condition posed in the deflnition
can be used to construct homomorphisms from projective L-groups to free L-
groups :

Proposition 4.6 There exist a constant fi > 1 such that the following holds
true: for any control map pX : M ! X , any subset Y ‰ X , any family of
subsets F of X containing Y , any element Z of F , any number n ‚ 0, and
any pair of positive numbers – ‚ † and – ‚ † with –0 ‚ fi– , †0 ‚ fi†, there is a
well-deflned homomorphism functorial with respect to relaxation of control:

¶Z : LF ;–;†
n (Y ; pX ; R) ¡¡¡¡! L–0;†0

n (Z; pZ ; R)

such that the following composite maps are equal to the ones induced from
inclusion maps:

LF ;–;†
n (Y ; pX ; R)

¶Z¡! L–0;†0
n (Z; pZ ; R)

¶¡! Lp;–0;†0
n (Z; pZ ; R) ;

L–;†
n (Y ; pY ; R)

¶¡! LF ;–;†
n (Y ; pX ; R)

¶Z¡! L–0;†0
n (Z; pZ ; R) :

Remark Actually fi = 20000 works. In the rest of the paper, we always
assume that fi = 20000.

Proof Let [(C; p); ˆ] be an element of L
F ;–;†
n (Y ; pX ; R), and flx Z 2 F . Recall

that [C; p] = 0 2 eKn;†
0 (Z; pZ ; R). By 4.1, there exists an n-dimensional free †

chain complex (E; 1) on pZ such that (C; p) ' (E; 1) is 3† chain equivalent to
some n-dimensional free † chain complex ( „F ; 1) on pZ . Add 1 : (En¡⁄; 1) !
(En¡⁄; 1) to this chain equivalence to get a 3† chain equivalence

g : (C; p) ' (@§E; 1) ¡¡¡¡! ( „F; 1) ' (En¡⁄; 1) = (F; 1)

of projective chain complexes on pZ , where §E is deflned using the trivial
(n + 1)-dimensional quadratic structure µ = 0 on §E . See 3.1. We set

¶Z [(C; p); ˆ] = [F; g%(ˆ ' @µ)] :

Let us show that this deflnes a well-deflned map. Suppose [(C; p); ˆ] = [(C 0; p0); ˆ0]
in L

F ;–;†
n (Y ; pX ; R), and let E and E0 be n-dimensional free † chain complexes

on pZ together with 3† chain equivalences

g : ( „C; „p) = (C; p) ' (@§E; 1) ! (F; 1)

g0 : ( „C 0; „p0) = (C 0; p0) ' (@§E0; 1) ! (F 0; 1)
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to free † chain complexes F and F 0 on pZ . By 4.4 above and 4.1, there is a
100– Poincar¶e 2– null-cobordism

(f : (C; p) ' (C 0; p0) ¡¡! (D; q); (–ˆ; ˆ ' ¡ˆ0) )

such that (D; q) is 540– chain equivalent to an (n + 1)-dimensional free 270–

chain complex (G; 1) (as a projective chain complex on pZ ). Take the direct
sum with the null-cobordisms

(i§E : (@§E; 1) ¡¡! (En¡⁄; 1); (0; @µ) ) ;

(i§E0 : (@§E0; 1) ¡¡! (E0n¡⁄; 1); (0; ¡@µ0) ) :

Now the claim follows from 3.9 0 .

( „C; „p) ' ( „C 0; „p0) 100– Poincar¶e //

g'g0 ’3†

²²

(D; q) ' (En¡⁄; 1) ' (E0n¡⁄; 1)

’540–

²²

(F; 1) ' (F 0; 1)
20000– Poincar¶e

// (G; 1) ' (En¡⁄; 1) ' (E0n¡⁄; 1)

5 Stably-exact sequence of a pair.

Let Y be a subset of X . We discuss relations between the various controlled
L-groups of X , Y , and (X; Y ) by fltting them into a stably-exact sequence.
Two of the three kinds of maps forming the sequence have already appeared.
The flrst is the map

i⁄ = ¶X : LfXg;–;†
n (Y ; pX ; R)¡¡¡¡!L–0;†0

n (X; pX ; R)

deflned when –0 ‚ fi– and †0 ‚ fi†. The second is the homomorphism induced
by the inclusion map j : (X; ;) ! (X; Y ) :

j⁄ : L–;†
n (X; pX ; R) ! L–0;†0

n (X; Y ; pX ; R):

deflned for positive numbers –0 ‚ – and †0 ‚ †. The third map @ is described
in the next proposition.

Proposition 5.1 For n ‚ 1, there exists a constant •n > 1 such that the
following holds true: If Y 0 ¾ Y •n– , –0 ‚ •n– , and †0 ‚ •n†, @([C; ˆ]) =
[(E; q); fl%@ˆ] deflnes a well-deflned homomorphism :

@ : L–;†
n (X; Y ; pX ; R) ! L

fXg;–0;†0
n¡1 (Y 0; pX ; R) ;
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where
fl : (@C; 1)¡¡¡¡!(E; q)

is any (200n+300)† chain equivalence from (@C; 1) to some (n¡1)-dimensional
(100n + 300)† projective chain complex on pY 0 .

Remark Actually •n = 150000(n + 2) works. In the rest of the paper, we
always assume that •n ‚ 150000(n + 2).

Proof We flrst show the existence of such fl . Take [C; ˆ] 2 L
–;†
n (X; Y ; pX ; R).

Suppose n > 1. By 3.4(1), there is a 12† chain equivalence between @C and an
(n ¡ 1)-dimensional 4† chain complex @̂C on pX . Since @C is 4† contractible
over X ¡Y , @̂C is 28† contractible over X ¡Y 12† by 2.10. Now by 4.2, (@̂C; 1)
is (168n + 252)† (= (6(n ¡ 1) + 15) £ 28†) chain equivalent to an (n ¡ 1)-
dimensional (84n + 252)† projective chain complex on pY (112n+292)† .

Next suppose n = 1. By 3.4(1) and (3), there is a 44† chain equivalence
between (@C; 1) and a 0-dimensional 32† chain complex (~@C; p). Since @C is
4† contractible over X ¡ Y , ( ~@C; p) is 92† contractible over X ¡ Y 44† , i.e.,
p »184† 0 over X ¡ Y 44† . Let E = ~@CjY 76† and q = pjY 44† , then p ¡ q =
pj(X ¡ Y 44†) »184† 0. Therefore

q »184† p »32† p2 »216† pq »216† q2;

and (E; q) is a 0-dimensional 216† projective chain complex on pY 292† . The
32† morphism q deflnes a 216† isomorphism between (~@C; p) and (E; q) in
each direction. Therefore (@C; 1) is 260† chain equivalent to (E; q). This
completes the proof of the existence of fl .

Suppose [C; ˆ] = [C 0ˆ0] 2 L
–;†
n (X; Y ; pX ; R) and suppose fl : (@C; 1) ! (E; q)

and fl0 : (@C 0; 1) ! (E0; q0) are chain equivalences satisfying the condition, and
suppose Y 0 , –0 , and †0 satisfy the hypothesis. We show that ((E; q); fl%@ˆ) and

((E0; q0); fl0
%@ˆ0) represent the same element in L

fXg;–0;†0
n¡1 (Y 0; pX ; R). Without

loss of generality, we may assume that there is an † connected † cobordism

((f f 0) : C ' C 0¡¡!D; (@ˆ; ˆ ' ¡ˆ0))

which is † Poincar¶e over X ¡ Y . Apply the boundary construction (x3)to
this pair to get a 3† Poincar¶e 2† quadratic structure (@–ˆ; @ˆ ' ¡@ˆ0) on the
2† chain map (@C; 1) ' (@C 0; 1)¡¡!(@D; 1) of 2† chain complexes. By 2.10 0 ,
3.4 and 4.2, (@D; 1) is (312n + 904)† chain equivalent to an n-dimensional
(156n + 624)† projective chain complex (F; r) on pY (208n+752)† . Now, by 3.9 0 ,
we can obtain a (15360n + 36210)† Poincar¶e cobordism

(E; q) ' (E0; q0) ¡¡¡¡! (F; r); (´; fl%@ˆ ' (¡fl0
%@ˆ0)) :
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Since such a structure involves 8(15360n + 36210)† homotopies, this cobor-
dism can be viewed to be on pY (123088n+290432)† . Also [F; r] = [@̂D; 1] = 0

in eKn;†0
0 (X; pX ; R), and similarly [E; q] = [E0; q0] = 0 in eKn¡1;†0

0 (X; pX ; R).

Therefore [(E; q); fl%@ˆ] = [(E0; q0); fl0
%@ˆ0] in L

fXg;–0;†0
n¡1 (Y 0; pX ; R).

Theorem 5.2 For any integer n ‚ 0, there exists a constant ‚n > 1 which
depends only on n such that the following holds true for any control map pX

and a subset Y of X :

(1) Suppose –0 ‚ fi– , †0 ‚ fi†, –00 ‚ –0 , and †00 ‚ †0 so that the following two
maps are deflned:

LfXg;–;†
n (Y ; pX ; R)

i⁄¡¡! L–0;†0
n (X; pX ; R)

j⁄¡¡! L–00;†00
n (X; W ; pX ; R) :

If W ¾ Y fi† , then j⁄i⁄ is zero.

(2) Suppose –00 ‚ –0 , †00 ‚ †0 so that j⁄ : L
–0;†0
n (X; pX ; R) ! L

–00;†00
n (X; W ; pX ; R)

is deflned. If – ‚ ‚n–00 and Y ¾ W ‚n–00
, then the relax-control image of the

kernel of j⁄ in Lfi–
n (X; pX ; R) is contained in the image of i⁄ below:

L
–0;†0
n (X; pX ; R)

j⁄
//

²²

L
–00;†00
n (X; W ; pX ; R)

L
fXg;–
n (Y ; pX ; R)

i⁄ // Lfi–
n (X; pX ; R)

(3) Suppose n ‚ 1, –0 ‚ – , †0 ‚ †, W ¾ Y •n–0
, –00 ‚ •n–0 , and †00 ‚ •n†0 so

that the following two maps are deflned :

L–;†
n (X; pX ; R)

j⁄¡! L–0;†0
n (X; Y ; pX ; R)

@¡¡! L
fXg;–00;†00
n¡1 (W ; pX ; R):

Then @j⁄ is zero.

(4) Suppose n ‚ 1, W ¾ Y •n–0
, –00 ‚ •n–0 , and †00 ‚ •n†0 so that the map

@ : L
–0;†0
n (X; Y ; pX ; R) ! L

fXg;–00;†00
n¡1 (W ; pX ; R) is deflned. If – ‚ ‚n–00 and

Y 0 ¾ W ‚n–00
, then the relax-control image of the kernel of @ in L–

n(X; Y 0; pX ; R)
is contained in the image of j⁄ below :

L
–0;†0
n (X; Y ; pX ; R)

@ //

²²

L
fXg;–00;†00
n¡1 (W ; pX ; R)

L–
n(X; pX ; R)

j⁄
// L–

n(X; Y 0; pX ; R)
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(5) Suppose n ‚ 1, Y 0 ¾ Y •n– , –0 ‚ •n– , †0 ‚ •n†, –00 ‚ fi–0 , and †00 ‚ fi†0 so
that the following two maps are deflned :

L–;†
n (X; Y ; pX ; R)

@¡¡! L
fXg;–0;†0
n¡1 (Y 0; pX ; R)

i⁄¡! L
–00;†00
n¡1 (X; pX ; R):

Then i⁄@ is zero.

(6) Suppose n ‚ 1, –00 ‚ fi–0 , and †00 ‚ fi†0 so that i⁄ : L
fXg;–0;†0
n¡1 (Y ; pX ; R) !

L
–00;†00
n¡1 (X; pX ; R) is deflned. If – ‚ ‚n–00 and W ¾ Y ‚n–00

, then the relax-control

image of the kernel of i⁄ in L
fXg;•n–
n¡1 (W •n–; pX ; R) is contained in the image of

@ below :

L
fXg;–0;†0
n¡1 (Y ; pX ; R)

i⁄ //

²²

L
–00;†00
n¡1 (X; pX ; R)

L–
n(X; W ; pX ; R)

@ // L
fXg;•n–
n¡1 (W •n–; pX ; R)

Proof (1) Let [(C; p); ˆ] 2 L
fXg;–;†
n (Y ; pX ; R). There is a 3† chain equivalence

g : (C; p) ' (@§E) ! (F; 1) for some n-dimensional free † chain complexes

E and F on pX , and j⁄i⁄[(C; p); ˆ] 2 L
–00;†00
n (X; W ; pX ; R) is represented by

(F; g%(ˆ ' @µ)), where µ is the trivial quadratic structure on §E . Take the
sum of

( 0 : (C; p) ! 0; (0; ˆ) ); and ( i§E : (@§E; 1) ! (En¡⁄; 1); (0; @µ) ) :

(0; ˆ ' @µ) is a 2† connected 2† quadratic structure, and it is 2† Poincar¶e over
X ¡ Y . Use the chain equivalence g and 3.9 0 to get a 180† connected 24†

null-cobordism
(F¡¡¡¡!En¡⁄; (´; g%(ˆ ' @µ)))

that is 180† Poincar¶e over X ¡ Y 486† .

(2) Let [C; ˆ] 2 L
–0;†0
n (X; pX ; R) and assume j⁄[C; ˆ] = 0 2 L

–00;†00
n (X; W ; pX ; R).

By 3.7, there is a 100–00 connected 2–00 null-cobordism

(f : C ! D; (–ˆ; ˆ))

that is 100–00 Poincar¶e over X ¡ W 100–00
. Apply the boundary construction to

this null-cobordism to get a 4–00 chain map @f of 4–00 chain complexes and an
n-dimensional 6–00 Poincar¶e 6–00 quadratic structure on it:

@f : @C ! @D; “3 = (@–ˆ; @ˆ):

(@C; @ˆ) also appears as the boundaries of
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† an n-dimensional 2†0 Poincar¶e 2†0 quadratic structure “1 = (0; @ˆ) on
the †0 chain map iC : @C ! Cn¡⁄ , and

† an n-dimensional †0 quadratic structure “2 = (0; @ˆ) on the 0 chain
map 0 : @C ! 0, which is †0 Poincar¶e because @C is 4†0 contractible.

The union “2 [@C ¡“3 is a 600–00 Poincar¶e 7–00 quadratic structure on 0 [@C

@D = C(@f). By 3.4(2), there is a 2400–00 chain equivalence between @D and
an n-dimensional 500–00 chain complex @̂D . This chain equivalence, together
with the 4†0 chain contraction of @C , induces a 43200–00 chain equivalence
g : 0 [@C @D ! @̂D . Deflne a 43200–00 Poincar¶e 3 ¢ 43200–00 quadratic structure
^̂ on @̂D by g%(“2 [@ˆ ¡“3). By 2.9, there is a 43200–00 Poincar¶e 3 ¢ 43200–00

quadratic structure on a 43200–00 chain map

(0 [@C @D) ' @̂D¡¡¡¡!@̂D ;

and, therefore, the right square in the picture below is fllled with a cobordism.

p p p p p p p p p p p p p p

t

ppp
ppp
ppp
ppp
pp

ppp
ppp
ppp
ppp
pp

ppp
ppp
ppp
ppp
pp

C; ˆ @̂D; ^̂

C 0 “2 @̂D

Cn¡⁄ @C @D

“1 @ˆ “3

The left square can also be fllled in with a cobordism. There is a 3†0 homotopy
equivalence:

(Cn¡⁄ [@C 0 = C(iC); “1 [@ˆ ¡“2)¡¡¡¡!(C; ˆ);

and again by 2.9, this induces a 30†0 Poincar¶e 9†0 quadratic structure on a 3†0

chain map
(Cn¡⁄ [@C 0) ' C¡¡¡¡!C:

Glue these along the pair (@C ! 0; “2), and we get a chain map

(Cn¡⁄ [@C @D) ' C ' @̂D¡¡¡¡!C ' @̂D

and a 43200000–00 Poincar¶e 6 ¢ 43200–00 quadratic structure on it. Since @C is
4†0 contractible and @D is 2400–00 chain equivalent to @̂D , there is a 43200–00

chain equivalence

G : Cn¡⁄ [@C @D¡¡¡¡!E = Cn¡⁄ ' @̂D;
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and hence, by 3.9, there is a 30 ¢ 43300000–00 Poincar¶e 4 ¢ 43300000–00 null-
cobordism of (E; G%(“1 [@ˆ ¡“3)) ' (C; ¡ˆ) ' (@̂D; ¡ ^̂). Therefore

[C; ˆ] + [@̂D; ^̂] = [E; G%(“1 [@ˆ ¡“3)]

in L13¢108–00
n (X; pX ; R).

On the other hand, there is a 600–00 Poincar¶e null-cobordism of “1 [@ˆ ¡“3

on the chain map

Cn¡⁄ [@C @D¡¡¡¡!C(f)n+1¡⁄:

Using G and 3.9, we obtain a 30(600 + 43200 + 4)–00 Poincar¶e null-cobordism

(E ! C(f)n+1¡⁄; (´; G%(“1 [@ˆ ¡“3));

and this implies

[E; G%(“1 [@ˆ ¡“3)] = 0 2 L13¢108–00
n (X; pX ; R)

and hence

[C; ˆ] = ¡[@̂D; ^̂] 2 L13¢108–00
n (X; pX ; R):

Since @D is 400†00 contractible over X ¡W 100†00
and @̂D is 2400–00 chain equiv-

alent to @D , @̂D is 5200–00 contractible over X ¡W 2500– , by 2.10. By 4.2, there
is a (6n + 15) ¢ 5200–00 chain equivalence h from (@̂D; 1) to an n-dimensional
(3n + 12) ¢ 5200–00 projective chain complex (F; p) on pW (20800n+75300)–00 . Sup-

pose ‚n ‚ 105(4n + 50). If – ‚ ‚n–00 and Y ¾ W ‚n–00
, then ((F; p); h%( ^̂))

represents an element of L
fXg;–
n (Y ; pY ; R) by 2.9, and its image

i⁄([(F; p); h%( ^̂)]) 2 Lfi–
n (X; pX ; R)

is represented by (@̂D; (h¡1)%(h%( ^̂)) = (h¡1h)%( ^̂)). Since h¡1h is 2– chain
homotopic to the identity map,

[@̂D; ^̂] = [@̂D; (h¡1h)%( ^̂)] 2 Lfi–
n (X; pX ; R):

Since fi– ‚ 13 ¢ 108–00 , we have

i⁄(¡[(F; p); g%( ^̂)]) = [C; ˆ] 2 Lfi–
n (X; pX ; R):

(3) Let [C; ˆ] 2 L
–;†
n (X; pX ; R), then @C is 4† contractible. Thus (@C; 1) is 4†

chain equivalent to (E = 0; q = 0).
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(4) Let [C; ˆ] 2 L
–0;†0
n (X; Y ; pX ; R) and suppose @[C; ˆ] = 0 in L

fXg;–00;†00
n¡1 (W ; pX ; R).

Let fl : (@C; 1) ! (E; q) be a (200n + 300)†0 chain equivalence to an (n ¡ 1)-
dimensional (100n + 300)†0 projective chain complex on pW posited in the

deflnition of @ . By assumption, [(E; q); fl%@ˆ] = 0 in L
fXg;–00;†00
n¡1 (W ; pX ; R).

By 4.4, there is an (n ¡ 1)-dimensional 100–00 Poincar¶e 2–00 null-cobordism on
pW

(f 0 : (E; q)¡¡¡¡!(D; p); (–ˆ0; fl%@ˆ))

such that [D; p] = 0 in eKn;9–00
0 (X; pX ; R). By 2.10 0 , (–ˆ0; @ˆ) is a 125–00

Poincar¶e 2–00 quadratic structure on the 3–00 chain map

f = f 0 – fl : (@C; 1)¡¡¡¡!(D; p):

On the other hand, (0; @ˆ) is a 2†0 Poincar¶e 2†0 quadratic structure on the †0

chain map

iC : (@C; 1)¡¡¡¡!(Cn¡⁄; 1):

Gluing these together, we obtain a 12500–00 Poincar¶e 4–00 quadratic structure

ˆ0 = (0; @ˆ) [@ˆ ¡(–ˆ0; @ˆ)

on (C 0; p0) = (Cn¡⁄; 1) [(@C;1) (D; p). Since n ‚ 1, (D; p) is 540–00 chain
equivalent to an n-dimensional free 270–00 chain complex (F; 1) on pX by 4.1.

Assume n ‚ 2. In this case @C is 12†0 chain equivalent to an (n ¡ 1)-
dimensional 4†0 chain complex @̂C , by 3.4. Using these chain equivalences
and 2.6, we can construct a 6528–00 chain equivalence

° : (C 0; p0)¡¡¡¡!(C 00 = Cn¡⁄ [
@̂C

F; 1):

If – ‚ 9 ¢ 105–00 , then (C 00; ˆ00 = °%ˆ0) determines an element of L–
n(X; pX ; R).

Suppose – ‚ 4 ¢ 106–00 and Y 0 ¾ W 12¢106–00
. We shall show that its image by j⁄

is equal to the relax-control image of [C; ˆ] in L–
n(X; Y 0; pX ; R).

Since (D; p) lies over W , it is 0 contractible over X ¡ W . Therefore, by 2.6,
the chain map G : (C 0; p0) ! (Cn¡⁄ [@C 0; 1) deflned by

G =

µ
1 0 0
0 1 0

¶
: (Cn¡r; 1) ' (@Cr¡1; 1) ' (Dr; p)¡¡¡¡!(Cn¡r; 1) ' (@Cr¡1; 1)

is a 18–00 chain equivalence over X ¡ W 6–00
. Furthermore one can easily check

that G is 0 connected and that G%(ˆ0) = (0; @ˆ) [@ˆ ¡(0; @ˆ). Compose G

with a 3†0 homotopy equivalence

((Cn¡⁄ [@C 0; 1); (0; @ˆ) [@ˆ ¡(0; @ˆ))¡¡¡¡!((C; 1); ˆ)
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to get a 3†0 connected 19–00 chain equivalence over X ¡ W 7–00
:

H : (C 0; p0)¡¡¡¡!(C; 1); H%(ˆ0) = ˆ:

By 2.9, there is a 3 ¢12500–00 connected 3 ¢19–00 quadratic structure (0; ˆ0 '¡ˆ)
on a chain map (C 0; p0) ' (C; 1) ! (C; 1) that is 125000–00 Poincar¶e over X ¡
W 375007–00

. Now use the 6528–00 chain equivalence ° : (C 0; p0) ! (C 00; 1) and
3.9 0 to this cobordism to obtain an (n + 1)-dimensional – cobordism between
(C 00; ˆ00) and (C; ˆ) that is – connected and – Poincar¶e over X ¡ Y 0 .

In the n = 1 case, use the non-positive chain complex obtained from @C by
applying the folding argument from top instead of @̂C . See the proof of 3.4(1).

(5) Let [C; ˆ] 2 L
–;†
n (X; Y ; pX ; R) and let fl : (@C; 1) ! (E; q) be as in the defl-

nition of @ ; @[C; ˆ] is given by [(E; q); fl%@ˆ]. There exist (n ¡ 1)-dimensional
free †0 chain complexes E0 , F on pX and a 3†0 chain equivalence

g : (E; q) ' (@§E0; 1)¡¡¡¡!(F; 1)

with §E0 given the trivial quadratic structure µ , and i⁄[(E; q); fl%@ˆ] is rep-
resented by (F; g%((fl%@ˆ) ' @µ)). We construct a –00 Poincar¶e null-cobordism
of this.

Take the direct sum of the algebraic Poincar¶e thickenings of (C; ˆ) and (§E0; µ)
to get an †0 Poincar¶e pair

(@C ' @§E0¡¡¡¡!Cn¡⁄ ' E0n¡1¡⁄; (0 ' 0; @ˆ ' @µ)):

Apply the 4†0 chain equivalence

@C ' @§E0 = (@C; 1) ' (@§E0; 1)
fl'1¡¡! (E; q) ' (@§E0; 1)

g¡¡! (F; 1) = F;

to this pair, to obtain an †00 Poincar¶e null-cobordism of (F; g%((fl%@ˆ) ' @µ))).
(If n ‚ 2, then we may assume E0 = 0, and the proof can be much simplifled.)

(6) Take an element [(C; p); ˆ] 2 L
fXg;–0;†0
n¡1 (Y ; pX ; R) and assume i⁄[(C; p); ˆ] =

0 in L
–00;†00
n¡1 (X; pX ; R). By deflnition of i⁄ , there exist (n¡1)-dimensional free †0

chain complexes E , F on pX and a 3†0 chain equivalence g : (C; p)'(@§E; 1) !
(F; 1) such that i⁄[(C; p); ˆ] = [F; g%(ˆ ' @µ)]. Here µ is the trivial quadratic
structure on §E . By 3.7, there is an n-dimensional 100–00 Poincar¶e 2–00 null-
cobordism on pX of (F; g%(ˆ ' @µ)):

(f : F¡¡¡¡!D; (–ˆ; g%(ˆ ' @µ))):

By 2.10 0 , we obtain a 127–00 Poincar¶e 3–00 null-cobordism:

(f – g : (C; p) ' (@§E; 1)¡¡¡¡!(D; 1); (–ˆ; ˆ ' @µ)):
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Take the union of this with the 0 connected †0 projective quadratic pair

((C; p)¡¡¡¡!0; (0; ¡ˆ));

which is 0 Poincar¶e over X ¡ Y , and the 3†0 Poincar¶e 3†0 quadratic pair

(i§E : (@§E; 1)¡¡¡¡!(En¡⁄; 1); (0; ¡@µ))

to get a 6–00 projective quadratic complex ((Ĉ; r̂); ^̂) which is 12700–00 Poincar¶e
over X ¡ Y 12700–00

and is 12700–00 connected.

The 3†0 chain equivalence g induces a 48–00 chain equivalence ~g : (Ĉ; r̂) ! ( ~C; 1)
to an n-dimensional free chain complex ( ~C; 1) = (D; 1) [(F;1) (En¡⁄; 1), and

the 18–00 quadratic structure ~̂ = ~g%( ^̂) is 2 ¢ 105–00 Poincar¶e over X ¡ Y 4¢105–00

and is 2 ¢ 105–00 connected. Suppose W ¾ Y 106–00
and – ‚ 106–00 . Then ( ~C; ~̂)

deflnes an element in L–
n(X; W ; pX ; R).

We shall show that @[ ~C; ~̂] = [(C; p); ˆ] in L
fXg;•n–
n¡1 (W •n–; pX ; R). By the def-

inition of @ , there is a (200n + 300)– chain equivalence fl : (@ ~C; 1) ! ( ~E; ~q) to
an (n¡1)-dimensional (100n+300)– projective chain complex on pW (150n+300)– ,
and @[ ~C; ~̂] is represented by (( ~E; ~q); fl%@ ~̂). We construct a cobordism be-
tween ((C; p); ˆ) and (( ~E; ~q); fl%@ ~̂).

By 2.9 0 , ~g induces an (n + 1)-dimensional 3 ¢ 48–00 cobordism:

(
¡
~g 1

¢
: (Ĉ; r̂) ' ( ~C; 1)¡¡¡¡!( ~C; 1); ~“ = (0; ^̂ ' ¡ ~̂)):

Let us apply the boundary construction to this to get a 6 ¢ 48–00 chain map

@
¡
~g 1

¢
: @(Ĉ; r̂) ' @( ~C; 1)¡¡¡¡!(G; q)

and a 9 ¢ 48–00 Poincar¶e 6 ¢ 48–00 quadratic structure (´; @ ^̂ ' ¡@ ~̂) on it. We
modify this to get the desired cobordism.

Firstly, note that ((Ĉ; r̂); ^̂) is the algebraic Thom complex of a 12700–00

Poincar¶e 6–00 quadratic pair with boundary equal to ((C; p); ˆ). Therefore there
is a 11 ¢ 12700–00 chain equivalence ° : @(Ĉ; r̂) ! (C; p) such that °%(@ ^̂) = ˆ .

Secondly, there is a chain equivalence fl : (@ ~C; 1) ! ( ~E; ~q) as noted above.

Thirdly, recall that (G; q) is equal ›C(D~“) and @( ~C; 1) is equal to ›C(D ~̂),

and note that there is a 96–00 chain equivalence

C(
¡
~g 1

¢
)n+1¡⁄ (0 1 ¡~g⁄)¡¡¡¡¡¡¡! (Ĉ; r̂)

(~g¡1)⁄
¡¡¡¡! ( ~C; 1)

and that it induces a 6– chain equivalence from (G; q) to @( ~C; 1). Compose
this with fl to get a (200n + 306)– chain equivalence fl0 : (G; q) ! ( ~E; ~q).

Geometry & Topology Monographs, Volume X (20XX)



Controlled L-Theory 135

Now, by 3.9 0 , one can conclude that the chain equivalences ° , fl , fl0 induce an
n-dimensional •n– Poincar¶e cobordism on pW •n– :

((C; p) ' ( ~E; ~q)¡¡¡¡!( ~E; ~q); (´; ˆ ' ¡fl%(@ ~̂))):

Since [C; p] = 0 in eKn;†0
0 (X; pX ; R) and [ ~E; ~q] = [@ ~C; 1] = 0 in eKn;•n–

0 (X; pX ; R),

this implies that [(C; p); ˆ] = @[ ~C; ~̂] in L
fXg;•n–
n¡1 (W •n–; pX ; R).

6 Excision.

In this section we study the excision property of epsilon-controlled L-theory.
Suppose that X is the union of two closed subsets A and B with intersection
M = A \ B . There is an inclusion-induced homomorphism

i⁄ : L–;†
n (A; M ; pA; R) ! L–;†

n (X; B; pX ; R):

For n ‚ 1, we construct its stable inverse

exc : L–;†
n (X; B; pX ; R) ! L–;†

n (A; A \ M (n+5)4–; pA; R):

First we deflne geometric subcomplexes and quotient complexes of free chain
complexes. Let C be a free chain complex on pX . When each Cr is the direct
sum Cr = C 0

r ' C 00
r of two geometric submodules and dC is of the form
µ

dC0 ⁄
0 dC00

¶
: C 0

r ' C 00
r ¡¡¡¡!C 0

r¡1 ' C 00
r¡1;

C 0 is said to be a geometric subcomplex of C , and C 00 (together with dC00 )
is said to be the quotient of C by C 0 and is denoted C=C 0 . If C is a free †

chain complex, then any geometric subcomplex C 0 and the quotient C=C 0 are
both free † chain complexes. The obvious projection map p : C ! C=C 0 is 0
connected.

Next suppose we are given an n-dimensional † quadratic complex (C; ˆ) on
pX and C 0 is a geometric subcomplex of C . The projection p : C ! C=C 0

induces an n-dimensional † quadratic complex (C=C 0; p%ˆ) and there is an
† cobordism between (C; ˆ) and (C=C 0; p%ˆ). For a morphism g : G ! H

between geometric modules and geometric submodules G0 ‰ G and H 0 ‰ H ,
we write g(G0) ‰ H 0 when every path with non-zero coe–cient in g starting
from a generator of G0 ends at a generator of H 0 .
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Proposition 6.1 Let (C; ˆ), C 0 , and p be as above, and suppose (C; ˆ) is
† connected. If Dˆ(C 0n) ‰ C 0

0 , then (C=C 0; p%ˆ) and the cobordism between
(C; ˆ) and (C=C 0; p%ˆ) induced by p are both † connected.

Proof Let us write C 00 = C=C 0 . By assumption, the morphism dC(Dˆ) :
C(Dˆ)1 ! C(Dˆ)0 can be expressed by a matrix of the form

µ
dC0 ⁄ ⁄ ⁄
0 dC00 0 Dp%ˆ

¶
: C 0

1 ' C 00
1 ' C 0n ' C 00n ! C 0

0 ' C 00
0 :

Let h : C0 = C(Dˆ)0 ! C(Dˆ)1 be a 4† morphism such that dC(Dˆ)h »8† 1C0 ,
and deflne 4† morphisms h1 : C 00

0 ! C 00
1 and h2 : C 00

0 ! C 00n by

h =

0
BB@

⁄ ⁄
⁄ h1

⁄ ⁄
⁄ h2

1
CCA : C 0

0 ' C 00
0 ! C 0

1 ' C 00
1 ' C 0n ' C 00n:

Then we get a homotopy

dC00h1 + Dp%ˆh2 »8† 1C00
0
:

Therefore µ
h1

h2

¶
: C 00

0 ¡¡!C 00
1 ' C 00n

gives a desired splitting of the boundary morphism C(Dp%ˆ)1 ! C(Dp%ˆ)0 .
Therefore (C 00; p%ˆ) is † connected. Now the † connectivity of cobordism
induced by p follows from 3.3.

Example 6.2 Let (C; ˆ) be an n-dimensional † quadratic complex on pX

and Y be a subset of X . Fix –(> 0) and l(‚ 0), and deflne a geometric
submodule C 0

r of Cr to be the restriction Cr(Y (n+l¡r)–) of Cr to Y (n+l¡r)– .
If – ‚ †, fC 0

rg is a geometric subcomplex of C , and we can form the quotient
C=C 0 of C by C 0 and the natural projection p : C ! C=C 0 . (C=C 0)r is equal
to Cr(X ¡ Y (n+l¡r)–). Suppose further that (C; ˆ) is † connected, – ‚ 4†, and
n ‚ 1; then Dˆ(C 0n) ‰ C 0

0 holds, and (C=C 0; p%ˆ) and the cobordism between
(C; ˆ) and (C=C 0; p%ˆ) induced by p are both † connected.

Next we consider pairs. Suppose (f : C ! D; (–ˆ; ˆ)) is an (n+1)-dimensional
† quadratic pair on pX and C 0 , D0 are geometric subcomplexes of C , D ,
respectively such that f(C 0

r) ‰ (D0
r) for every r . Deflne an † chain map

„f : C=C 0 ! D=D0 by

f =

µ⁄ ⁄
0 „f

¶
: C 0

r ' (C=C 0)r¡¡!D0
r ' (D=D0)r;

Geometry & Topology Monographs, Volume X (20XX)



Controlled L-Theory 137

then the diagram

C

p

²²

f
// D

q

²²

C=C 0
„f

// D=D0

commutes strictly, where p and q are the natural projections, and

( „f : C=C 0 ! D=D0; (q%–ˆ; p%ˆ))

is an (n + 1)-dimensional † quadratic pair.

Proposition 6.3 If (f; (–ˆ; ˆ)) is † connected, Dˆ(C 0n) ‰ C 0
0 , and D–ˆ(D0n+1) ‰

D0
0 , then ( „f; (q%–ˆ; p%ˆ)) is † connected.

Proof We check the † connectivity of the duality map D(q%–ˆ;p%ˆ) . Let us
use the notation C 00 = C=C 0 and D00 = D=D0 . The boundary morphism
dC(D(–ˆ;ˆ)) : C(D(–ˆ;ˆ))1 ! C(D(–ˆ;ˆ))0 can be expressed by a matrix of the
form µ⁄ ⁄ ⁄ ⁄ ⁄ ⁄

0 dD00 0 Dq%–ˆ 0 „fDp%ˆ

¶
:

D0
1 ' D00

1 ' D0n+1 ' D00n+1'C 0n ' C 00n¡¡! D0
0 ' D00

0 :

The desired † connectivity follows from this as in 6.1

Proposition 6.4 Let Y be a subset of X , and let [(C; d); ˆ] and [(Ĉ; d̂); ^̂]

be elements of L
–;†
n (X; Y ; pX ; R) (n ‚ 1). If

(1) Cr(X ¡ Y ) = Ĉr(X ¡ Y ),

(2) drjX ¡ Y 4† = d̂rjX ¡ Y 4† , and

(3) ˆsjX ¡ Y 4† = ^̂
sjX ¡ Y 4†

for every r and s (‚ 0), then [(C; d); ˆ] = [(Ĉ; d̂); ^̂] in L
–;†
n (X; Y (n+3)4†; pX ; R).

Proof Deflne a geometric subcomplex C 0 of C by C 0
r = Cr(Y (n+1¡r)4†), and

let p : C ! C=C 0 be the projection. Then (C=C 0; p%ˆ) is an † connected †

quadratic complex by 6.1. The boundary maps for C(Dˆ) have radius 4† and
are of the form0

BB@

dC0 ⁄ ⁄ ⁄
0 dC00 ⁄ (¡)r¡1Dp%ˆ

0 0 ⁄ ⁄
0 0 ⁄ (¡)r¡1d⁄

C00

1
CCA : C 0

r ' C 00
r ' C 0n+1¡r ' C 00n+1¡r

¡¡! C 0
r¡1 ' C 00

r¡1 ' C 0n+2¡r ' C 00n+2¡r:
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Therefore C(Dp%ˆ) and C(Dˆ) are exactly the same over X ¡ Y (n+2)4† , and

C(Dp%ˆ) is 4† contractible over X ¡ Y (n+3)4† , i.e., p%ˆ is † Poincar¶e over

X ¡Y (n+3)4† . In fact, if ¡ is a 4† chain contraction over X ¡Y of C(Dˆ), then
¡jX ¡ Y (n+2)4† gives a 4† chain contraction over X ¡ Y (n+3)4† of C(Dp%ˆ).

Thus (C=C 0; p%ˆ) determines an element of L
–;†
n (X; Y (n+3)4†; pX ; R).

By 3.3, the cobordism between (C; ˆ) and (C=C 0; p%ˆ) induced by p is an
† connected † quadratic pair. Since this cobordism is exactly the same over
X ¡Y (n+2)4† as the trivial cobordism from (C; ˆ) to itself, it is † Poincar¶e over
X ¡ Y (n+3)4† . Therefore,

[C; ˆ] = [C=C 0; p%ˆ] 2 L–;†
n (X; Y (n+3)4†; pX ; R):

The same construction for (Ĉ; ^̂) yields the same element as this, and we can
conclude that

[C; ˆ] = [Ĉ; ^̂] 2 L–;†
n (X; Y (n+3)4†; pX ; R):

Now suppose X is the union of two closed subsets A, B with intersection
N = A \ B .

Lemma 6.5 Let G, H be geometric modules on pX , and f : G ! H be a
morphism of radius – . Then, for any ° ‚ 0,

f(G(B [ N°)) ‰ H(B [ Nmaxf°+–;2–g):

Proof This can be deduced from the following two claims:

(1) f(G(N°)) ‰ H(N°+–),

(2) f(G(B)) ‰ H(B [ N2–).

The flrst claim is obvious. To prove the second claim, take a generator of G(B)
and a path c starting from a with non-zero coe–cient in f . By its continuity,
the path pX – c in X either stays inside of B or passes through a point in N ,
and hence its image is contained in B [ N2– . This proves the second claim.

Now let us deflne the excision map:

exc : L–;†
n (X; B; pX ; R) ! L–;†

n (A; A \ N (n+5)4–; pA; R);

Take an element [C; ˆ] 2 L
–;†
n (X; B; pX ; R). Deflne a geometric subcomplex C 0

of C by
C 0

r = Cr(B [ N (n+2¡r)4†);
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and let p : C ! C=C 0 denote the projection. Then, by 6.5 and 6.1, (C=C 0; p%ˆ)
is an † connected † quadratic complex on pA and is † Poincar¶e over A ¡
N (n+4)4† . We deflne exc([C; ˆ]) to be the element

[C=C 0; p%ˆ] 2 L–;†
n (A; A \ N (n+5)4†; pA; R):

The excision map is well-deflned. Suppose

[C; ˆ] = [Ĉ; ^̂] 2 L–;†
n (X; B; pX ; R):

Without loss of generality we may assume that there is a – connected – cobor-
dism

( f : C ' Ĉ ! D; (–ˆ; ˆ ' ¡ ^̂) )

between (C; ˆ) and (Ĉ; ^̂) that is – Poincar¶e over X ¡ B . Let us construct
(C=C 0; p%ˆ) and (Ĉ=Ĉ 0; p̂%

^̂) as above, deflne a geometric subcomplex D0 of
D by

D0
r = Dr(B [ N (n+3¡r)4–);

and let q : D ! D=D0 denote the projection. By 6.5 and 6.3, we obtain an –

connected – cobordism

( „f : C=C 0 ' Ĉ=Ĉ 0 ! D=D0; (q%–ˆ; p%ˆ ' ¡p̂%
^̂))

which is – Poincar¶e over A ¡ B [ N (n+5)4– . Therefore exc is well-deflned.

By using 6.4, we can check that the homomorphisms i⁄ and exc are stable
inverses; i.e., the following diagram commutes:

L
–;†
n (A; N ; pA; R)

²²

i⁄ // L
–;†
n (X; B; pX ; R)

L
–;†
n (A; A \ N (n+5)4–; pA; R) L

–;†
n (X; B; pX ; R)

excoo

²²

L
–;†
n (A; A \ N (n+5)4–; pA; R)

i⁄
// L

–;†
n (X; B [ N (n+5)4–; pX ; R)

where the vertical maps are the homomorphisms induced by inclusion maps.

7 Mayer-Vietoris type sequence

We continue to assume that X is the union of two closed subsets A, B with
intersection N = A \ B , and will present a Mayer-Vietoris type stably exact
sequence.
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Replace •n by •n + 4(n + 5), and suppose – ‚ † > 0. Let W be a subset of X

containing N•n– and assume –0 ‚ •n– , †0 ‚ •n†. Then a homomorphism

„@ : L–;†
n (X; pX ; R)¡¡!L

fA[W g;–0;†0
n¡1 (W ; pA[W ; R)

is obtained by composing the following maps:

L–;†
n (X; pX ; R) ¡¡! L–;†

n (X; B; pX ; R)
exc¡¡! L–;†

n (A; A \ N (n+5)4–; pA; R)

@¡¡! L
fAg;–0;†0
n¡1 (A \ W ; pA; R) ¡¡! L

fA[W g;–0;†0
n¡1 (W ; pA[W ; R):

If [C; ˆ] 2 L
–;†
n (X; pX ; R), then its image „@[C; ˆ] is represented by ((E; q); ˆ0)

which is homotopy equivalent to the boundary @̂(C=C 0; p%ˆ), where C 0 ‰ C

and p : C ! C=C 0 are as in the deflnition of exc. This is exactly the projective
quadratic Poincar¶e complex (Q; „̂) which appears in the Splitting Lemma:

Lemma 7.1 ([5]) For any integer n ‚ 2, there exists a positive number
•n ‚ 1 such that the following holds: Suppose pX : M ! X is a map to a
metric space X , X is the union of two closed subsets A and B with intersection
N = A \ B , and R is a ring with involution. Let † be any positive number,
and set †0 = •n†, N 0 = N †0

, A0 = A [ N 0 , and B0 = B [ N 0 . Then for any n-
dimensional quadratic Poincar¶e R-module complex c = (C; ˆ) on pX of radius
†, there exist a Poincar¶e cobordism of radius †0 from c to the union c0 [ c00

of an n-dimensional quadratic Poincar¶e pair c0 = (f 0 : Q ! C 0; (– „̂0; ¡ „̂))
on pA0 of radius †0 and an n-dimensional quadratic Poincar¶e pair c00 = (f 00 :
Q ! C 00; (– „̂00; „̂)) on pB0 of radius †0 along an (n ¡ 1)-dimensional quadratic
Poincar¶e projective R-module complex (Q; „̂) on pN 0 , where Q is †0 chain
equivalent to an (n ¡ 1)-dimensional free chain complex on pA0 and also to an
(n ¡ 1)-dimensional free chain complex on pB0 .

From this and its relative version, we obtain the following:

Proposition 7.2 If n ‚ 2, the map „@ factors through a homomorphism

@ : L–;†
n (X; pX ; R)¡¡!L

F ;–0;†0
n¡1 (W ; pX ; R);

where F = fA [ W; A [ Wg. Moreover the image @[C; ˆ] is given by [Q; „̂]
which appears in any splitting (up to cobordism) of (C; ˆ) according to the
closed subsets A, B .

Now we present the Mayer-Vietoris type stably-exact sequence. It is made up
of three kinds of maps. The flrst is the map

i⁄ : LfA;Bg;–;†
n (N ; pX ; R) ! L–0;†0

n (A; pA; R) ' L–0;†0
n (B; pB; R)
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deflned by i⁄(x) = (¶A(x); ¡¶B(x)) when –0 ‚ fi– and †0 ‚ fi†. The second is
the map

j⁄ : L–;†
n (A; pA; R) ' L–;†

n (B; pB; R) ! L–0;†0
n (X; pX ; R)

deflned by j⁄(x; y) = jA⁄(x)+jB⁄(y) when –0 ‚ – and †0 ‚ †. Here jA : A ! X

and jB : B ! X are inclusion maps. The third is the map @ given in 7.2:

@ : L–;†
n (X; pX ; R)¡¡!L

fA[W;B[W g;–0;†0
n¡1 (W ; pX ; R);

where W ¾ N•n– , –0 ‚ •n– , and †0 ‚ •n†.

In the rest of this section, we omit the control map and the coe–cient ring from
notation.

Theorem 7.3 For any integer n ‚ 2, there exists a constant ‚n > 1 which
depends only on n such that the following holds true for any control map pX

and two closed subsets A, B of X satisfying X = A [ B :

(1) Suppose –0 ‚ fi– , †0 ‚ fi†, –00 ‚ –0 , and †00 ‚ †0 so that the following two
maps are deflned:

LfA;Bg;–;†
n (N)

i⁄¡¡! L–0;†0
n (A) ' L–0;†0

n (B)
j⁄¡¡! L–00;†00

n (X) :

Then j⁄i⁄ is zero.

(2) Suppose –00 ‚ –0 , †00 ‚ †0 so that j⁄ : L
–0;†0
n (A) ' L

–0;†0
n (B) ! L

–00;†00
n (X)

is deflned. If – ‚ ‚n–00 and W ¾ N‚n–00
, then the relax-control image of the

kernel of j⁄ in Lfi–
n (A[W )'Lfi–

n (B [W ) is contained in the image of i⁄ below:

L
–0;†0
n (A) ' L

–0;†0
n (B)

j⁄
//

²²

L
–00;†00
n (X)

L
fA[W;B[W g;–
n (W )

i⁄ // Lfi–
n (A [ W ) ' Lfi–

n (B [ W )

(3) Suppose –0 ‚ – , †0 ‚ †, W ¾ N•n–0
, –00 ‚ •n–0 , and †00 ‚ •n†0 so that the

following two maps are deflned :

L–;†
n (A) ' L–;†

n (B)
j⁄¡! L–0;†0

n (X)
@¡¡! L

fA[W;B[W g;–00;†00
n¡1 (W ):

Then @j⁄ is zero.
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(4) Suppose W ¾ N•n–0
, –00 ‚ •n–0 , and †00 ‚ •n†0 so that the map @ :

L
–0;†0
n (X) ! L

fA[W;B[W g;–00;†00
n¡1 (W ) is deflned. If – ‚ ‚n–00 , then the relax-

control image of the kernel of @ in L–
n(X) is contained in the image of j⁄ below

:

L
–0;†0
n (X)

@ //

²²

L
fA[W;B[W g;–00;†00
n¡1 (W )

L–
n(A [ W ) ' L–

n(B [ W )
j⁄

// L–
n(X)

(5) Suppose W ¾ N•n– , –0 ‚ •n– , †0 ‚ •n†, –00 ‚ fi–0 , and †00 ‚ fi†0 so that
the following two maps are deflned :

L–;†
n (X)

@¡¡! L
fA[W;B[W g;–0;†0
n¡1 (W )

i⁄¡! L
–00;†00
n¡1 (A [ W ) ' L

–00;†00
n¡1 (B [ W ):

Then i⁄@ is zero.

(6) Suppose –00 ‚ fi–0 , and †00 ‚ fi†0 so that i⁄ : L
fA;Bg;–0;†0
n¡1 (N) ! L

–00;†00
n¡1 (A) '

L
–00;†00
n¡1 (B) is deflned. If – ‚ ‚n–00 , N 0 ¾ N‚n–00

, and W = (N 0)•n– , then the

relax-control image of the kernel of i⁄ in L
fA[W;B[W g;–
n¡1 (W ) is contained in the

image of @ associated with the two closed subsets A [ N 0 , B [ N 0 :

L
fA;Bg;–0;†0
n¡1 (N)

i⁄ //

²²

L
–00;†00
n¡1 (A) ' L

–00;†00
n¡1 (B)

L–
n(X)

@ // L
fA[W;B[W g;–
n¡1 (W )

Proof (1) Take an element x = [Q; ˆ] 2 L
fA;Bg;–;†
n (N). The image i⁄(x) is a

pair ([cA]; ¡[cB]) where cA and cB are free quadratic Poincar¶e complexes on
pA and pB that are both homotopy equivalent to (Q; ˆ), and hence [cA] =

[cB] 2 L
–00;†00
n (X). Therefore, j⁄i⁄(x) = [cA] ¡ [cB] = 0.

(2) First, temporarily use the constant ‚n posited in the splitting lemma. Take

an element x = ([CA; ˆA]; [CB; ˆB]) 2 L
–0;†0
n (A) ' L

–0;†0
n (B) and assume j⁄(x) =

0. There exists a null-cobordism (f : CA ' CB ! D; (–ˆ; ˆA ' ¡ˆB)). Its
boundary is already split according to A and B , so use the relative splitting to
this null-cobordism to get cobordisms of radius ‚n–00 :

(fA : (CA; 1) ' Q ! (DA; 1); (–ˆA; ˆA ' ¡ „̂)) on pA[W ;

(fB : (CB; 1) ' Q ! (DB; 1); (–ˆB; ˆB ' ¡ „̂)) on pB[W :
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By the Poincar¶e duality Dn+1¡⁄
A ’ C(fA), we have

[DA] ¡ [CA] ¡ [Q] = [C(fA)] = [Dn+1¡⁄
A ] = 0 2 eKn+1;4‚n–00

0 (A [ W ) ;

and, hence, we have [Q] = 0 in eKn;36‚n–00
0 (A [ W ). See x3 of [14]. Simi-

larly [Q] = 0 in eKn;36‚n–00
0 (B [ W ). Thus we obtain an element [Q; „̂] of

L
fA[W;B[W g;36‚n–00
n (W ). Replace ‚n by something bigger (at least 36‚n ) so

that its image via i⁄ in Lfi–
n (A[W )'Lfi–

n (B[W ) is equal to ([CA; ˆA]; [CB; ˆB])
whenever – ‚ ‚n–00 .

(3) If we start with an element x = ([CA; ˆA]; [CB; ˆB]), then j⁄(x) is repre-
sented by (CA; ˆA) ' (CB; ˆB) which is already split according to A and B .
Therefore @j⁄(x) = 0.

(4) Temporarily set the constant ‚n to be the one posited in the splitting

lemma. Take an element [C; ˆ] in L
–0;†0
n (X) such that @[C; ˆ] = 0. (C; ˆ)

splits into two adjacent pairs:

a = (fA : Q ! (CA; 1); (–ˆA; ¡ „̂)) and b = (fB : Q ! (CB; 1); (–ˆB; „̂))

such that [Q; „̂] = 0 in L
fA[W;B[W g;–00;†00
n¡1 (W ). Take a –00 null-cobordism on pW

p = (g : Q ! P; (– „̂; „̂)) such that the reduced projective class of P is zero on
pA[W and also on pB[W . CA [Q P is chain equivalent to an n-dimensional free
complex FA on pA , and CB [Q P is chain equivalent to an n-dimensional free
complex FB on pB . Use these to flll in the bottom squares with cobordisms:

p p p p p p p p p p p p

t

dppp
ppp
ppp
ppp
ppp
ppp
pp

ppp
ppp
ppp
ppp
ppp
ppp
pp

FA 0 FB

P

CA Q CB

C

Replacing ‚n with something larger if necessary, we obtain free quadratic
Poincar¶e complexes on pA[W and pB[W whose sum is ‚n–00 cobordant to
(C; ˆ).

(5) If we start with an element x = [C; ˆ] in L
–;†
n (X), then j⁄(x) is represented

by the projective piece (Q; „̂) obtained by splitting, and the null-cobordisms
required to show i⁄@(x) = 0 are easily constructed from the split pieces.
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(6) Take an element [Q; ˆ] of L
fA;Bg;–0;†0
n¡1 (N). Then (Q; ˆ) is homotopy equiva-

lent to a free quadratic Poincar¶e complex ((CA; 1); ˆA) on pA and also to a free
quadratic Poincar¶e complex ((CB; 1); ˆB) on pB . If i⁄[Q; ˆ] = 0, then these
are both null-cobordant; there are quadratic Poincar¶e pairs

(fA : CA ! DA; (–ˆA; ˆA)) on pA, and

(fB : CB ! DB; (–ˆB; ˆB)) on pB.

Use the homotopy equivalence (CA; ˆA) ’ (CB; ˆB) to replace the boundary
of the latter by (CA; ˆB), and glue them together to get an element [D; –ˆ] of
L–

n(X) for some – > 0. Note that (D; –ˆ) has a splitting into two pairs with
the common boundary piece equal to (Q; ˆ), so we have @[D; –ˆ] = [Q; ˆ] in

L
fA[W;B[W g;–
n¡1 (W ).

8 A special case

In this section we treat the case when there are no controlled K -theoretic
di–culties.

First assume that X is a flnite polyhedron. We flx its triangulation. Under
this assumption we can simplify the Mayer-Vietoris type sequence of the pre-
vious section at least for su–ciently small †’s and – ’s. X is equipped with a
deformation fft : X ! Xg called ‘rectiflcation’ ([5]) which deforms su–ciently
small neighborhoods of the i-skeleton X(i) into X(i) such that ft ’s are uni-
formly Lipschitz. This can be used to rectify the enlargement of the relevant
subsets at the expense of enlargement of †’s and – ’s. We thank Frank Quinn
for showing us his description of uniformly continuous CW complexes which are
designed for taking care of these situations in a more general setting.

Next let us assume that X is a flnite polyhedron and that the control map
pX : M ! X is a flbration with path-connected flber F such that

Wh(…1(F ) £ Zk) = 0

for every k ‚ 0. The condition on the fundamental group is satisfled if …1(F ) »=
Zl for some l ‚ 0. If we study the proofs of 8.1 and 8.2 of [14] carefully, we
obtain the following.

Proposition 8.1 Let pX be as above and n ‚ 0 be an integer. Then there
exist numbers †0 > 0 and 0 < „ • 1 which depend on X and n such that the
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relax-control maps

eKn;†
0 (S; pS ;Z)¡¡¡¡! eKn;†0

0 (S; pS ;Z)

W hn;†(S; pS ;Z)¡¡¡¡!W hn;†0
(S; pS ;Z)

are zero maps for any subpolyhedron S , any †0 • †0 and any † • „†0 .

This means that there is a homomorphism functorial with respect to relaxation
of control

LF ;–;†
n (S; pX ;Z)¡¡¡¡!LF[fSg;–0;†0

n (S; pX ;Z)

for any family F of subpolyhedra of X containing S , if –0 • †0 , – • „–0 , and
† • „†0 . Compose this with the homomorphism

¶S : LF[fSg;–0;†0
n (S; pX ;Z)¡¡¡¡!Lfi–0;fi†0

n (S; pX ;Z)

to get a homomorphism

¶ : LF ;–;†
n (S; pX ;Z)¡¡¡¡!Lfi–0;fi†0

n (S; pX ;Z) :

A stable inverse ¿ functorial with respect to relaxation of control can be deflned
by ¿([C; ˆ]) = [(C; 1); ˆ], and we have a commutative diagram:

L
–;†
n (S; pX ;Z)

²²

¿ // L
F ;–;†
n (S; pX ;Z)

L
fi–0;fi†0
n (S; pX ;Z) L

F ;–;†
n (S; pX ;Z)

¶oo

²²

L
fi–0;fi†0
n (S; pX ;Z) ¿

// L
F ;fi–0;fi†0
n (S; pX ;Z)

:

Thus the Mayer-Vietoris type sequence is stably exact when we replace the
controlled projective L-group terms with appropriate controlled L-groups.

Furthermore, since pX is a flbration, we have a stability for controlled L-groups:

Proposition 8.2 ([5], Theorem 1) Let n ‚ 0. Suppose Y is a flnite polyhe-
dron and pY : M ! Y is a flbration. Then there exist constants –0 > 0 and
K > 1, which depends on the integer n and Y , such that the relax-control

map L
–0;†0
n (Y ; pY ; R) ! L

–;†
n (Y ; pY ; R) is an isomorphism if –0 ‚ – ‚ K†,

–0 ‚ –0 ‚ K†0 , – ‚ –0 , and † ‚ †0 .

Now let us denote these isomorphic groups L
–;†
n (Y ; pY ; R) (–0 ‚ – , – ‚ •†)

by Ln(Y ; pY ; R). When the coe–cient ring R is Z, we omit Z and use the
notation Ln(Y ; pY ).
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Theorem 8.3 Let pX : M ! X be a flbration over a flnite polyhedron X .
Then Ln(X; pX ; R) is 4-periodic: Ln(X; pX ; R) »= Ln+4(X; pX ; R) (n ‚ 0).

Proof The proof of the 4-periodicity of Ln(A) of an additive category with
involution given in [10] adapts well to the controlled setting.

We have a Mayer-Vietoris exact sequence for Ln with coe–cient ring Z.

Theorem 8.4 Let X be a flnite polyhedron and suppose that pX : M ! X

is a flbration with path-connected flber F such that Wh(…1(F ) £ Zk) = 0 for
every k ‚ 0. If X is the union of two subpolyhedra A and B , then there is a
long exact sequence

: : :
@¡¡! Ln(A \ B; pA\B)

i⁄¡¡! Ln(A; pA) ' Ln(B; pB)
j⁄¡¡! Ln(X; pX)

@¡¡! Ln¡1(A \ B; pA\B)
i⁄¡¡! : : :

j⁄¡¡! L0(X; pX) :

Proof The exactness at the term L2(A; pA) ' L2(B; pB) and at the terms to
the left of it follows immediately from the stably-exact sequence. The exactness
at other terms follows from the 4-periodicity.

Recall that there is a functor L(¡) from spaces to ›-spectra such that …n(L(M)) =
Ln(Z[…1(M)]) constructed geometrically by Quinn [6], and algebraically by
Ranicki [11]. Blockwise application of L to pX produces a generalized homol-
ogy group Hn(X;L(pX)) [7]. There is a map A : Hn(X;L(pX)) ! Ln(X; pX)
called the assembly map. See [16] for the L¡1 -analogue, involving the lower
L-groups of [12].

Theorem 8.5 Let X be a flnite polyhedron and suppose that pX : M ! X

is a flbration with path-connected flber F such that Wh(…1(F ) £ Zk) = 0 for
every k ‚ 0. Then the assembly map A : Hn(X;L(pX)) ! Ln(X; pX) is an
isomorphism.

Proof We actually prove the isomorphism A : Hn(S;L(pS)) ! Ln(S; pS) for
all the subpolyhedra S of X by induction on the number of simplices.

When S consists of a single point v , then the both sides are Ln(Z[…1(p¡1
X (v))])

and A is the identity map.

Suppose S consists of k > 1 simplices and assume by induction that the as-
sembly map is an isomorphism for all subpolyhedra consisting of less number
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of simplices. Pick a simplex ¢ which is not a face of other simplices and let
A = ¢ and B = S¡interior(¢). Since A contracts to a point v , it can be easily
shown that Hn(A;L(pA)) and Ln(A; pA) are both Ln(Z[…1(p¡1

X (v))]), and the
assembly map A : Hn(A;L(pA)) ! Ln(A; pA) is an isomorphism. By induction
hypothesis the assembly maps for B and A \ B are both isomorphisms. We
can conclude that the assembly map for S is an isomorphism by an application
of 5-lemma to the ladder made up of the Mayer-Vietoris sequences for H⁄(¡)
and L⁄(¡).

Remark If F is simply-connected, then Wh(…1(F ) £ Zk) = Wh(Zk) = 0 for
every k ‚ 0 by the celebrated result of Bass, Heller and Swan. In this case
Hn(X;L(pX)) is isomorphic to the generalized homology group Hn(X;L) where
L is the 4-periodic simply-connected surgery spectrum with …n(L) = Ln(Z[f1g])
and we have an assembly isomorphism

A : Hn(X;L) »= Ln(X; pX) :

This is the controlled surgery obstruction group which appears in the controlled
surgery exact sequence of [4] (as required for the surgery classiflcation of exotic
homology manifolds in [1]). There the control map is not assumed to be a
flbration. We believe that most of the arguments in this paper work in a more
general situation.

As an application of 8.4, we consider the Z-coe–cient controlled L-group of
pX £ 1 : M £ S1 ! X £ S1 .

Corollary 8.6 Let n ‚ 0, and let X and pX : M ! X be as in 8.4. Then
there is a split short exact sequence :

0 ! Ln(X; pX)
i⁄¡! Ln(X £ S1; pX £ 1)

B¡! Ln¡1(X; pX) ! 0 :

Proof Split the circle S1 = @([¡1; 1] £ [¡1; 1]) ‰ R2 into two pieces

S1
+ = f(x; y) 2 S1jy ‚ 0g and S1

¡ = f(x; y) 2 S1jy • 0g ;

with intersection fp = (1; 0); q = (¡1; 0)g. Let @ be the connecting homomor-
phism in the Mayer-Vietoris sequence 8.4 corresponding to this splitting, and
consider the composite

B : Ln(X £ S1; pX £ 1)
@¡! Ln¡1(X £ fpg; pX £ 1) ' Ln¡1(X £ fqg; pX £ 1)

projection¡¡¡¡¡¡! Ln¡1(X £ fpg; pX £ 1) »= Ln¡1(X; pX) :
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Then @ can be identifled with

(B; ¡B) : Ln(X £ S1; pX £ 1)¡¡¡¡!Ln¡1(X; pX) ' Ln¡1(X; pX) :

The map i⁄ is the map induced by the inclusion map:

Ln(X; pX) »= Ln(X £ fpg; pX £ 1)
i⁄¡! Ln(X £ S1; pX £ 1) :

The exactness follows easily from the exactness of the Mayer-Vietoris sequence.
A splitting of B can be constructed by gluing two product cobordisms.

Corollary 8.7 Let T n be the n-dimensional torus S1 £ ¢ ¢ ¢ £ S1 . Then

Lm(T n; 1T n) »= Ln
r=0

µ
n

r

¶
Lm¡r(Z)

»= Lm(Z[…1(T n)]) (m ‚ n) :

Proof Use 8.6 repeatedly to obtain Lm(T n; 1T n) »= Ln
r=0

µ
n

r

¶
Lm¡r(Z). The

isomorphism
Ln

r=0

µ
n

r

¶
Lm¡r(Z) »= Lm(Z[…1(T n)]) is the well-known com-

putation obtained geometrically by Shaneson and Wall, and algebraically by
Novikov and Ranicki.

9 Locally Finite Analogues

Up to this point, we considered only flnitely generated modules and chain com-
plexes. In this section we deal with inflnitely generated objects; such objects
arise naturally when we take the pullback of a flnitely generated object via
an inflnite-sheeted covering map. We restrict ourselves to a very special case
necessary for our application.

Deflnition 9.1 (Ranicki and Yamasaki [4, p.14]) Consider the product M £N

of two spaces. A geometric module on M £ N is said to be M -flnite if, for any
y 2 N , there is a neighbourhood U of y in N such that M £ U contains only
flnitely many basis elements; a projective module (A; p) on M £ N is said to
be q -flnite if A is M -flnite; a projective chain complex (C; p) on M £ N is
M -flnite if each (Cr; pr) is M -flnite. [ In [14], we used the terminology \M -
locally flnite", but this does not sound right and we decided to use \M -flnite"
instead. ] When M is compact, M -flniteness is equivalent to the ordinary
locally-flniteness.
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Consider a control map pX : M ! X to a metric space X , and let N be
another metric space. Give the maximum metric to the product X £ N , and
let us use the map

pX £ 1N : M £ N¡¡!X £ N;

as the control map for M £ N .

Deflnition 9.2 For – ‚ † > 0, Y ‰ X , and a family F of subsets of X

containing Y , deflne M -flnite (–; †)-controlled L-groups L
M;–;†
n (X £ N; Y £

N ; pX £ 1; R), and M -flnite (–; †)-controlled projective L-groups L
M;F ;–;†
n (Y £

N ; pX £ 1; R) by requiring that every chain complexes concerned are M -flnite.

All the materials up to x7 are valid for M -flnite analogues. In the previous
section, there are several places where we assumed X to be a flnite polyhedron,
and they may not automatically generalize to the M -flnite case.

The most striking phenomenon about M -flnite objects is the following vanishing
result on the half line.

Proposition 9.3 Let pX : M ! X be a control map, N a metric space, and
give N £ [0; 1) the maximum metric. For any † > 0 and – ‚ †,

LM;–;†
n (X £ N £ [0; 1); pX £ 1; R) = 0 ;

eKM;n;†
0 (X £ N £ [0; 1); pX £ 1; R) = 0 :

Proof This is done using repeated shifts towards inflnity and the ‘Eilenberg
Swindle’. Let us consider the case of L

M;–;†
n (X £ N £ [0; 1); pX £ 1; R). Let

J = [0; 1) and deflne T : M £N £J ! M £N £J by T (x; x0; t) = (x; x0; t+†).

Take an element [c] 2 L
M;–;†
n (X £ N £ J; pX £ 1; R). It is zero, because there

exist M -flnite † Poincar¶e cobordisms:

c » c ' (T#(¡c) ' T 2
#(c)) ' (T 3

#(¡c) ' T 4
#(c)) ' : : :

= (c ' T#(¡c)) ' (T 2
#(c) ' T 3

#(¡c)) ' : : : » 0 :

The proof for controlled eK is similar. See the appendix to [14].

Thus, the analogue of Mayer-Vietoris type sequence (7.3) for the control map
pX £ 1 : M £ N £R ! X £ N £R with respect to the splitting X £ N £R =
X £ N £ (¡1; 0] [ X £ N £ [0; 1) reduces to:

0 ¡¡! LM;–;†
n (X £ N £R; pX £ 1; R)

@¡¡! L
M;p;–0;†0
n¡1 (X £ N £ I; pX £ 1; R) ¡¡! 0;
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where –0 = •n– , †0 = •n†, I = [¡•n–; •n–], and the right hand side is the

M -flnite projective L-group L
M;f g;–0;†0
n¡1 (X £ N £ I; pX £ 1; R) corresponding

to the empty family F = f g.

A diagram chase shows that there exists a well-deflned homomorphism:

fl : L
M;p;–0;†0
n¡1 (X £ N £ I; pX £ 1; R) ¡¡! LM;–00;†00

n (X £ N £ R; pX £ 1; R);

where °00 = ‚n•n‚n¡1fi°0 and †00 = ‚n•n‚n¡1fi†0 . The homomorphisms @ and
fl are stable inverses of each other; the compositions are both relax-control
maps.

Note that, for any – ‚ † > 0, the retraction induces an isomorphism:

L
M;p;–;†
n¡1 (X £ N £ I; pX £ 1; R) »= L

M;p;–;†
n¡1 (X £ N £ f0g; pX ; R):

Thus, we have obtained:

Theorem 9.4 Splitting along X £ N £ f0g induces a stable isomorphism:

@ : LM;–;†
n (X £ N £ R; pX £ 1; R) ¡¡¡¡! L

M;p;–0;†0
n¡1 (X £ N ; pX £ 1; R):

Now , as in the previous section, let us assume that X is a flnite polyhedron
and pX : M ! X is a flbration with a path-connected flber F such that
Wh(…1(F ) £ Zk) = 0 for every k ‚ 0.

The following is an M -flnite analogue of 8.1.

Proposition 9.5 Let pX be as above and n ‚ 0, k ‚ 0 be integers. Then
there exist numbers †0 > 0 and 0 < „ • 1 which depend on X , n, and k such
that the relax-control maps

eKM;n;†
0 (X £ Rk; pX £ 1;Z)¡¡¡¡! eKM;n;†0

0 (X £ Rk; pX £ 1;Z)

WhM;n;†(X £ Rk; pX £ 1;Z)¡¡¡¡!W hM;n;†0
(X £ Rk; pX £ 1;Z)

is the zero map for any †0 • †0 and any † • „†0 .

Proof First note that, since X £ Rk is not a flnite polyhedron unless k = 0,
the proof for 8.1 does not directly apply to the current situation.

Let us consider the Whitehead group case flrst. Since the k = 0 case was
already treated in 8.1, let us suppose k > 0. Let T k denote the k -torus (S1)k ,

and deflne p
(k)
X : M £ T k ! X to be the following composite map:

M £ T k projection¡¡¡¡¡¡¡! M
pX¡¡! X :
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By the Mayer-Vietoris type sequence for controlled K -theory, the group

W hM;n;†(X £ Rk; pX £ 1;Z)

is stably isomorphic to

eKM;n¡1;†
0 (X £ Rk¡1; pX £ 1;Z);

which is also stably isomorphic to

W hM£S1;n;†(X £ Rk¡1; p0
X £ 1;Z) :

The last statement is a locally-flnite analogue of 7.1 of [14]. The proof given
there works equally well here. Therefore WhM;n;†(X £Rk; pX £ 1;Z) is stably
isomorphic to

WhM£T k;n;†(X; p
(k)
X ;Z) ;

for which the stable vanishing is already known. This completes the Whitehead
group case.

The eK0 case follows from the stable vanishing of

W hM;n+1;†(X £ Rk+1; pX £ 1;Z) :

From this we get:

Proposition 9.6 Assume that X is a flnite polyhedron and pX : M ! X is
a flbration with a path-connected flber F such that Wh(…1(F ) £ Zk) = 0 for
every k ‚ 0. Splitting along X £ Rm¡1 £ f0g induces a stable isomorphism:

@ : LM;–;†
n (X £ Rm; pX £ 1;Z) ¡¡¡¡! L

M;–0;†0
n¡1 (X £ Rm¡1; pX £ 1;Z):

Corollary 9.7 Let X and pX be as above, then stability holds for L
M;–;†
n (X £

Rm; pX £ 1;Z); i.e. it is isomorphic to the limit

LM
n (X £ Rm; pX £ 1;Z) = lim

0<†¿–!0
LM;–;†

n (X £ Rm; pX £ 1;Z)

when 0 < † ¿ – and – is su–ciently small.

Proof By the 4-periodicity, we may assume that n > m. Then the proposition
above gives a stable isomorphism with L

–;†
n¡m(X; pX ;Z), and the result follows.

Corollary 9.8 Let X and pX be as above, then splitting along X£Rm¡1£f0g
induces an isomorphism

@ : LM
n (X £ Rm; pX £ 1;Z)¡¡¡¡!LM

n (X £ Rm¡1 £ f0g; pX £ 1;Z) :

Proof Immediate from 9.6 and 9.7.
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10 Controlled surgery obstructions

We discuss the controlled surgery obstructions and an application. We only
consider the identity control maps on polyhedra or on the products of polyhedra
and Rm . X -flniteness on X £ Rm is the same as the usual local flniteness, so
we use the following notation throughout this section :

Llf;–;†
n (X £ Rm) = LX;–;†

n (X £ Rm; 1X £ 1;Z) ;

Llf
n(X £ Rm) = LX

n (X £ Rm; 1X £ 1;Z) :

We omit the decoration ‘lf ’ when m = 0.

Let (f; b) : M ! N be a degree 1 normal map between connected oriented
closed PL manifolds of dimension n. Quadratic construction on this produces
an element ¾N (f; b) 2 L

–;†
n (N) for arbitrarily small – À † > 0 [13]. By 8.2, this

deflnes an element ¾N (f; b) 2 L
lf
n(N). This is the controlled surgery obstruction

of (f; b), and its image via the forget-control map

Ln(N) ! Ln(fpt.g; N ! fpt.g;Z) = Ln(Z[…1(N)])

is the ordinary surgery obstruction ¾(f; b) of (f; b). The controlled surgery
obstruction ¾N (f; b) vanishes, if (f; b) is normally bordant to a su–ciently
small homotopy equivalence measured on N .

Similarly, if (f; b) : V ! W is a degree 1 normal map between connected
open oriented PL manifolds of dimension n, we obtain its controlled surgery
obstruction ¾W (f; b) in L

lf
n(W ).

Theorem 10.1 Let X be a connected oriented closed PL manifold of dimen-
sion 4k , and f : V n ! W n = X £ Rn¡4k be a homeomorphism of open PL

manifolds. Homotope f to produce a map g : V ! W which is transverse
regular to X £ f0g ‰ X £Rn¡4k . Then the P L submanifold g¡1(X £ f0g) of
V and X have the same signature : ¾(g¡1(X £ f0g)) = ¾(X) .

Proof The homeomorphism f determines a degree 1 normal map F between
V and W , and hence determines an element ¾W (F ) 2 L

lf
n(X £ Rn¡4k). Re-

peated application of splitting 9.8 induces an isomorphism:

@n¡4k : Llf
n(X £ Rn¡4k) ! L4k(X) :

The image of ¾W (F ) by this map is the controlled surgery obstruction ¾X(gj; b)
of the degree 1 normal P L map (gj; b) : Y = g¡1(X £ f0g) ! X £ f0g =
X . Since f is a homeomorphism, F is normally bordant to arbitrarily small
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homotopy equivalences. Therefore, ¾W (F ) is zero and hence ¾X(gj; b) is zero.
This means that the ordinary surgery obstruction ¾(gj; b) is also zero. The
equality ¾(Y ) = ¾(X) follows from this.

Now we apply the above to prove the topological invariance of the rational
Pontrjagin classes [3].

Theorem 10.2 (S. P. Novikov) If h : Mn ! Nn is a homeomorphism be-
tween oriented closed PL manifolds, then h⁄pi(N) = pi(M), where pi are the
rational Pontrjagin classes.

Proof Recall that the rational Pontrjagin classes p⁄(N) 2 H4⁄(N ;Q) deter-
mine and are determined by the L-genus L⁄(N) 2 H4⁄(N ;Q), and that the
degree 4k component Lk(N) 2 H4k(N ;Q) of the L-genus is characterized by
the property hLk(N); xi = ¾(X) for x 2 im([N; Sn¡4k] ! H4k(N ;Q)), where
X4k ‰ N is the inverse image f¡1(p) of some regular value p 2 Sn¡4k of
a map f : N ! Sn¡4k which represents the Poincar¶e dual of x and is PL

transverse regular to p. Set x0 = (h¡1)⁄(x) 2 H4k(M ;Q) and let us show that
hLk(M); x0i = hLk(N); xi.

Since X is framed in N , it has an open P L neighborhood W = X £Rn¡4k in
N . Let V = h¡1(W ) ‰ M , then h restricts to a homeomorphism f : V ! W .
Homotope f to get a map g which is PL transverse regular to X = X £ f0g,
and set Y to be the preimage g¡1(X), then hLk(M); x0i = ¾(Y ) and this is
equal to ¾(X) = hLk(N); xi by 10.1.
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