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A topological manifold is, by definition, a Hausdorff topological space where each
point has a neighborhood homeomorphic to Euclidean space. The geometrical
topology of manifolds is a beautiful chapter in mathematics, and a great deal is
now known about both the internal structure of manifolds (transversality, isotopy
theorems, local contractibility of homeomorphism groups, etc.) and their classifi-
cation (cobordism theory, surgery theory, etc.). The subject that T would like to
explore is the extension of this picture to a larger class of intrinsically interest-
ing spaces (finite-dimensional ANR, homology manifolds). Part of our exploration
is motivated by an analogy between homology manifolds and orbifolds, that is,
spaces that are modeled not on Euclidean space, but rather on the quotients of
representation spaces by their finite linear actions.

1 The Topological Characterization of Manifolds

There are several different ways that one can be lead to the nexus of problems
considered here. One useful way is to ask: How can one tell whether or not a space
that arises in some natural fashion is a manifold?

In low dimensions, there are some classical criteria. A connected space is a
circle if no point separates it, but each pair of points separates it. There is a similar
characterization of the 2-sphere in terms of nonseparating points and separating
circles, due to R. L. Moore. However, in dimension 3 and higher this is not possible
because of the existence of homology manifolds: A homology manifold will be,
until the very last section, a finite-dimensional ANR X with H,(X, X - z) =
H.(R™ R™ - 0) for every point z in X. Such spaces have many of the properties
of manifolds. They satisfy Poincaré duality, and therefore will be separated by
exactly the same spaces that would separate a manifold.

The simplest example of a homology manifold that is not a manifold is the
cone on a nonsimply connected (manifold) homology sphere. All deleted neighbor-
hoods of the cone point are nonsimply connected, so this space is not a manifold,
but it is a trivial calculation to see that the local homology is as required.

Another way to obtain many more and much wilder examples is that of
decomposition spaces, pioneered by Bing.? One starts with a manifold M and

1) Partially supported by the NSF.

2) The earliest striking application was the construction of a nonmanifold whose product with
R is a manifold.

Proceedings of the International Congress
of Mathematicians, Ziirich, Switzerland 1994
© Birkhduser Verlag, Basel, Switzerland 1995




638 Shmuel Weinberger

describes a (suitably semicontinuous) collection of subsets that are in some weak
sense contractible (technically, cell-like), and identifies each of these subsets to a
point. This identification space X is the image of a natural CE map® M — X.

Because every homology sphere bounds a contractible manifold (sce [K] for
high dimensions and [Fr] for dimension 3) the first example is a special case of the
second. In fact. for quite some time it seemed as if every homology manifold could
be obtained in this fashion:

RESOLUTION CONJECTURE (Cannon): Every homology manifold (of dimension at
least five) is the decomposition space of some cellular decomposition of a manifold.

This conjecture was attractive in light of an amazing theorem of Edwards
(see [Dav, E]).

THEOREM (Edwards). A CE map f : M — X" n > 5, can be approzimated by
homeomorphisms iff X satisfies the disjoint disks property (DDP), that is iff any
pair of continuous maps D? — X can be g-approrimated by maps with disjoint
mages.

COROLLARY: A resolvable homology manifold is a manifold iff it has the DDP.4
COROLLARY: A resolvable homology manifold xR? is a manifold.

With some diffidence, I would like to suggest calling homology manifolds
with the DDP nonlocally linear manifolds. The conjectures made in [BFMW]]
suggest that these will be locally modeled on some new (topologically homogenous)
spaces and that they will share many of the geometric properties of manifolds. For
instance, in [BFMW?2] the resolution conjecture is verified with nonlocally linear
manifolds replacing manifolds. However, alone, this conjecture does not give us
any insight into what the local geometry of such spaces can be.

An important rigidification of the situation was made by Quinn [Q1]. He
showed:

THEOREM (Quinn). There is a locally defined i(X) € H°(X:Z) valued invariant
of homology manifolds. Thought of as a function on components, it assumes values
in 1+ 8Z, and equals 1 (on every component) iff X is resolvable.

This integer is a signature, and it would be appropriate to think of it as the
Oth Pontryagin class of (the “tangent bundle” of) X. We call it the local indez
of X.

Its definition is about the same level of depth as the topological invariance
of Pontryagin classes (Novikov’s theorem) as it requires defining L-classes in a
topological fashion for ANR homology manifolds (and in particular for topological
manifolds). L-classes for homology manifolds are constructed in [FP] and [CSW]
and we will return to this in Section 3.

3) A map is CE if, when restricted to the preimage of any open subset of the range, the map
is a homotopy equivalence.

4) For an example of how dramatically the DDP can fail, see DW].
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The locality of Quinn's obstruction implies that for connected X if some open
subset of X is resolvable, then X is. In particular. any “manifold with singularities”
is resolvable by a manifold. Thus, constructing nonresolvable homology manifolds
involves building the whole space simultaneousty.

THEOREM ([BFMW]). For every number i € 1 + 8Z there is a homotopy sphere®
that is a DDP homology manifold with local index i.

We conjecture these spaces to be uniquely determined by ¢ and dimension,
at least if the dimension is > 4.

2 Lacunae in the Theory of Topological Manifolds

In this section, I would like to show how the theory of manifolds itself cries out for
some missing spaces. The spaces turn out to be supplied by the nonlocally linear
manifolds (DDP homology manifolds).

DEFINITION: For M a manifold of dimension > 5, let S(M) denote the set of
homotopy equivalences modulo homeomorphisms. That is,

S(M)={h: M' — M a simple homotopy equivalence
with h : M’ — OM a homeomorphism}
/homeomorphism (rel 8).

THEOREM (Siebenmann, as corrected by Nicas, [KS, Ni]). Let M be a manifold
of dimension > 5. If 9M is nonempty, one has

S(M) = S(M x D*).
In general, there is an eract sequence
0— S(M)— S(M x D*) — Z.

This means that S(M x D?%) can be as much as a Z larger than S(M).
The simplest manifold, the sphere, gives an example of this. S(S™) = 0, but
S(S™ x D*) = Z. From the point of view of periodicity there should be a Zs
worth of homotopy spheres. These are filled in by the homology manifolds. (For
manifolds with boundary, the boundary condition forces the domain homology
manifold mapping to M to be a homology manifold — essentially because of
locality, so that using homology manifolds would not increase the size of S )

THEOREM ([BFMW1]). Let X be a homology manifold of dimension > 5, and let
SH(X) denote {h: X' — X a simple homotopy equivalence with h : 0X' — 0X a
homeomorphism} /s-cobordism (reld). Then if OM is nonempty, one has

ST(X) = SH(X x D) (= 5(X x D*), if X is a manifold).

5) In fact every simply connected manifold has an “evil twin” with given local index, but
typically aspherical manifolds do not.
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Thus, periodicity is true in the category of homology manifolds. The pe-
riodicity map interchanges manifolds and homology manifolds. We have to use
s-cobordism rather than homeomorphism as our equivalence relation because we
cannot yet prove an s-cobordism theorem for DDP ANR homology manifolds.
Nonetheless. this enables us to ignore any DDP conditions in the definitions of
our structure sets. {There can be no s-cobordism theorem without assuming DDP
because a CE map has as mapping cylinder an s-cobordism. which cannot be a
product unless the quotient space is a manifold!)

THEOREM ((BFMW1]). SH(X) can be computed as the fiber of the assembly map
(see [R]).5 Consequently it is an abelian group, which is functorial for orientation
true’ maps between manifolds of dimension that differ by multiples of 4.8

Using S(M ) one loses functoriality for maps where the dimension of the target
is smaller than that of the domain. So the theory of homology manifolds has better
formal properties than the theory of manifolds. In particular, pushing manifolds
forward leads to (nonresolvable) homology manifolds.

These theorems imply that the rigidity theory of high-dimensional topology
adapts gracefully to include homology manifolds. For instance any DDP homology
manifold homotopy equivalent to a nonpositively curved manifold is homeomorphic
to it (see [FJ}).° Moreover, existence theorems in our larger category work out a
little more nicely:

THEOREM ([BFMW]). Any Poincaré space Z homology equivalent to a nonposi-
tively curved manifold. is homotopy equivalent to a closed DDP homology manifold,
which is unique up to s-cobordism.

However, such a Poincaré space is not necessarily homotopy equivalent to
a closed manifold.’® Another example where such spaces occur naturally is the
following result of Smith theory:

THEOREM ([CW]). Tame semifree circle actions on a manifold have ANR homol-
ogy manifolds as fized sets. If the fized set has codimension 2 mod 4,'* any equiv-
ariant homotopy equivalent free circle action on (a manifold homotopy equivalent
to) the complement of the fized set of this action extends to a unique concordance
class of circle actions.

6) This is a more modern formulation of surgery theory in the topological category than one
finds in Wall’s book.

That is, a map that preserves the orientation character of curves.

~1
—

8) There are reindexing tricks that allow one to define functoriality for a related theory for
all orientation true maps.

9) A simpler approach would be to show that the local index is necessarily 1, which is of the
depth of the Novikov conjecture: it is a kind of tangentiality statement (see [FW] for this
point of view, taken in a different direction). Then resolution implies it is a manifold, and
the usual rigidity takes over.

10) There is a nonresolvable homology manifold proper homotopy equivalent to a symmetric
space of noncompact type iff it has g-rank greater than 2. ([BW])

11)  There is a rather different analysis for the case of codimension 0 mod 4.
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If one doesn’t allow homology manifolds to arise there is a Z obstruction to
the existence of a semifree manifold completion for the free action.

3 Properties of Homology Manifolds

In the previous section we described some systematic features of the class of homol-
ogy manifolds. In particular, we described the result of surgical classification for
these spaces. Next, we describe the cobordism classification (suggested by David
Segal).

THEOREM ([BFMWY]). Forn > 6, the formula Qx = Qx™P[14+-8Z] (monoid ring)
is correct additively. At least rationally, this formula gives the correct maultiplicative
structure.

Note that unlike the classical manifold case, not all bordism classes are repre-
sented by connected spaces. Locality implies that there is no analogue of connected
sum. I conjecture that the bordism calculation is multiplicatively correct even in-
tegrally.

Unlike the usual proofs of bordism results, this is not achieved by direct
analyses of transversality, but rather by using the fact that all topological bor-
dism classes have simply connected representatives, and applying the “evil twin”
theorem of Section 1.

There are obstructions to transversality, as one can see by the following rea-
soning. Consider a homotopy equivalence (say) from a manifold to a homology
manifold, and assume that it could be made transverse to a point; then the “funny
local type” would be present in a manifold giving a contradiction. One can cross
this example with a manifold to see that this is not an oddity because of low-
dimensional preimages.

Similarly, if one embeds a nonresolvable homology manifold in high-dimen-
sional Euclidean space, one cannot stably hope for any “normal bundle” structure
because of multiplicativity properties of the local index.!2

The following calculation demonstrates the systematic failure of transversal-
ity:

THEOREM (Stabilized structure calculation). One has an isomorphism:
lim ST(M x K | K) = im ST (M x R™ | R")g).

Here the | denotes controlled structures, and the K's run over the DDP
ANR homology manifolds proper homotopy equivalent to Euclidean spaces (“fake
Euclidean spaces”). The right-hand side is a convenient stabilization of S. and only
differs from the usual S when there is some algebraic K-theory present (see e.g.
[R], [We]) — in particular, for M simply connected it is the structure set S (M).

12)  There is another kind of structure present: a teardrop neighborhood (see [ HTWW]). It is
to a bundle what a CE map is to a homeomorphism in the sense that the same homotopical
data as is present for the classical notion arises here but with respect to open subsets of
the range.
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If there were transversality, then the part of S(M) caught by characteris-
tic classes could not die on crossing with any manifold: by projecting down to
that manifold. the transverse inverse image of any point would recover this data.
However, the theorem asserts that all odd torsion is lost.

Another version of this theorem describes when a map between manifolds is
stably homotopic to an s-cobordism: iff it is stably tangential at 2 (it is a classical
theorem of Mazur that one has the same condition for stable homeomorphism if
stabilization is with Euclidean spaces, except that one does not localize.)

A good analvsis of transversality obstructions could lead to the calculation
of the multiplicative structure of bordism suggested above. A final ramification
of transversality, classically, is Sullivan’s K O[1/2] orientation for manifolds (see
[Su]). Here we have a variant:

THEOREM (See [CSW)). For every homology manifold X there is a canonical
KOI[1/2] class, the signature class, that is an orientation iff X is resolvable.

Thus, the orientability is closely related to transversality, but independently
of transversality, homology characteristic classes can in any case be defined, and
used. Sullivan’s formulation of surgery in terms of these classes is implicit in the
theory adumbrated in Section 2. Away from 2 the homology normal invariant is
Just the difference of these signature classes.

REMARK: There is a refinement at 2 related to the Morgan-Sullivan class [MS].
The method of proof is to understand the chain complex of X as a self-dual sheaf
and recognize the Witt group of such (away from 2) as KO-homology. (This is
dependent on the work of Quinn and Yamasaki - or alternatively, Ferry and
Pederson — for nonconstructible sheaves, as arise here.) A little thought checks
that the local calculation one would do of this invariant agrees with the local index
(up to powers of 2).

REMARK: The assignment of characteristic classes to self-dual sheaves has a num-
ber of other applications. For instance, one has a close parallel to classical surgery
theory for spaces with even codimensional strata and simply connected links by
making use of the intersection sheaves (see [GM 1)), see [CSW], and also [Sh1] for
other applications of cobordism of self-dual sheaves.

4 Conjectured Properties of Homology Manifolds

We have already alluded several times to a conjectured view of homology manifolds.

VAGUE CONJECTURE: High-dimensional homology manifolds with the disjoint disk

property (nonlocally linear manifolds) share all the geometrical properties of man-
ifolds.

Obviously one cannot include transversality among the geometrical properties
we have in mind! On the other hand, general position holds. We will be guided
somewhat by the analogy presented in the next section. Until then. let us be more
precise and list the following package of conjectures [BFMW]:

CONJECTURE (Homogeneity): Nonlocally linear manifolds are homogenous.
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For manifolds this is a triviality. If the signature class is an orientation then, of
course, it is true because of the work of Edwards and Quinn cited above: the space
is a manifold. Because the deviation from “manifoldness” is entirely measured by a
conventional top locally finite homology class (or 0-dimensional cohomology class),
an algebraic sort of homogeneity is guaranteed. Still, the conjecture has eluded us.
The next conjectures are somewhat stronger, and we will discuss some progress by
analogy in the next section:

CONJECTURE (S-bordism): For nonlocally linear manifolds of dimension > 6, the
s-cobordism theorem holds.

In the smooth category this is Smale’s theorem (or rather its generaliza-
tion by Barden—Mazur-Stallings) and is true in the topological category by Kirby-
Siebenmann’s reinstitution of handlebody theory.

CONJECTURE (CE-approximation): If dim > 5, any CE map from a nonlocally
linear manifold to another is approximable by homeomorphisms.

If one assumes the domain and range are conventional manifolds, then this
is a theorem of Siebenmann, if Jjust the domain is, then it is Edwards’ result, and
if just the range is, then one obtains this as a consequence of the work of Edwards
and Quinn.

CoNJECTURE (Local contractibility of homeomorphism groups): Every homeomor-
phism sufficiently close to the identity can be canonically isotoped to the identity.

For manifolds, this is due to Cernavski. and Edwards-Kirby.

5 The Analogy to Orbifolds

It is somewhat reassuring that there are other settings in which one can both define
objects in terms of explicit models, or alternatively in terms of local homotopy
properties, and the latter not only fill in lacunae in the theory of the former.
but they themselves possess many nice geometric properties, and homogeneity, in
particular.

One such setting is that of orbifolds (although much of what follows is a
special case of a general theory of stratified spaces).

DEFINITION: A locally linear orbifold is space that is locally modeled on the
orbit space of an orthogonal representation of a finite group.

DEFINITION: A nonlocally linear orbifold is a space that is locally the quotient
of a disjoint disk homology manifold under a finite group, where the fixed sets
of all subgroups are (not necessarily locally linear) homology manifolds that are
embedded in one another in a “locally homotopically trivial fashion”. This local
condition (aside from codimension 2) asserts that in the local chart, small 2-disks
in one fixed set can be homotoped (in an arbitrarily small way) disjoint from a
smaller fixed point set. (See [Q2], [We].)

REMARK: In the second definition. if one is trying to imagine phenomena not
stemming directly from the existence of nonresolvable homology manifolds, not
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much is lost in assuming that one is locally the quotient of an action on a manifold
where all of the fixed point sets are submanifolds. The local homotopy condition
(by work of Bryant, Chapman, and Quinn) boils down to the assertion that these
fixed sets are locally flat.

Now for the analogous theorems to what we discussed above.

(CE APPROXIMATION) There is an equivariant CE approximation theorem!? (see
[StW] for the locally linear case, and [Hu], [We] in general). The analogue of the
resolution conjecture would be the coincidence of the two definitions of orbifolds.
However, it is quite simple to see that the cone on a fake real projective space
(which are produced in profusion by surgery theory, but are not hard to come
by explicitly. using linear involutions on Brieskorn spheres. for instance) is never
resolvable by a linear orbifold!

(SURGERY) The analogue of the surgery exact sequence was established for odd
order locally linear group actions by [MR] by a complex induction depending
on transversality methods. Simultaneously with establishing transversality, they
proved that there is an equivariant Sullivan orientation € KO%[1/2] for the actions
they considered. Unfortunately for nonlocally linear actions. and for even order
groups. equivariant transversality fails, and although subsequently [RtW] (see also
[RsW]) a signature class' was constructed for more general actions, it was not an
orientation. This necessitates a deviation from the Sullivan-Wall exact sequence
of classical surgery theory, and is given in [We].

The new sequence boils down to an equivariant extension of the homological
form of surgery theory due classically to Quinn and Ranicki (see [R]}. Indeed,
that theory naturally has Siebenmann’s periodicity built into it, and is the one
alluded to in Section 2. Moreover, in this formulation, all the theories (including
the topological theory for all statified spaces) take a beautiful “local-global” form:

= L(X x I) = S(X) = Hy(X; L(loc)) — L(X) —

where L denotes a surgery spectrum (a generalization of the notion of surgery
groups, and adapted to stratified spaces), which when applied to open subsets
gives a cosheaf of spectra. The difference between the L-cosheaf homology and a
global L-spectrum gives rise to the spaces stratified homotopy equivalent but not
homeomorphic to X .15

As for the conjectures.

(HOMOGENEITY) The version of homogeneity is due to Quinn [Q2]. It asserts that
generally a “manifold stratified space” will have all of its connected strata homoge-
nous. Quinn has also established an h-cobordism theorem for these. (Steinberger
had independently done the locally linear case.)

13)  And even an a-approximation theorem [CF].

14)  The original method for doing this was analytic, but the paper [CSW] referred to above
sketches a topological approach.

15)  There is a deviation at the prime 2 that we are ignoring here.
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(LocAL CONTRACTIBILITY OF THE HOMEOMORPHISM GROUP) Local contractibil-
ity is also true, according to [Si2] for locally lincar orbifolds, and [Hu| for general
ones.

To sum up, the definitions of orbifolds suggested parallel the possibilities of
definitions of manifold and DDP homology manifold in the unequivariant setting.
(With a little twist: even order locally lincar orbifolds are not oriented by their
signature classes, and correspond to a “manifold type category in which transver-
sality fails”.!%.) In both settings the analogues of simple homotopy theory and
surgery are understood.

Regarding the local structure, one is in much better shape in the orbifold
setting, assuming the strata are manifolds, ultimately because inductive arguments
are possible. Interestingly enough, it is the same basic ideas that are responsible
for our advances in both of these directions: the methods of controlled topology.
However, as of yet, it does not seem natural to combine the detailed arguments of
these two situations. It seems to me that the explicit nature of the stratification
in the orbifold setting suggests methods for exploring the problems of homology
manifolds at least at the level of conjecture.

On the other hand, in the case of homology manifolds, we have a very good
feel of what the aggregate of local struetures should be: there are a Z's worth bf
them. For the orbifold case, the algebraic problems are much more subtle: see [tD]
for the underlying local homotopy theory, and, e.g. [Sh2] for some of the geometry:
the part of identifying what role the linear examples play. The signature class can
fail, even rationally, to be an orientation, which should mean that the failure
of transversality is more striking in the orbifold setting than in the homology
manifold case. Consequently, problems in group actions should be addressable by
finding their concomitants in the theory of homology manifolds, and working out
the easier algebra there. For instance, the stable structure calculation above, in
contrast to Mazur’s theorem, should lead, by analogy, to interesting phenomena
in the cancellation problem for nonlinear similarity.

Finally, and most speculatively, the first method for obtaining signature
classes for orbifold was by doing Lipschitz or quasiconformal analysis of signature
operators. One would hope that homology manifolds, which have more algebraic
signature classes, also support a suitable type of analysis: one that must be based
on something other than calculus and linear approximation.

6 Some Remarks on Infinite Dimensions

One can also inquire regarding the nature of infinite-dimensional homology mani-
folds. These are d-dimensional homology manifolds by the homological definition,
but which have infinite covering dimension.

They exist as a consequence of work of Edwards (see [W1]) and the construc-
tion of an infinite-dimensional space of finite homological dimension by Dranish-
nikov [Dr]. The following begins a study of their geometrical topology

16) In the orbifold case, there isn’t the same close connection between the signature class
being an orientation and local linearity. However, in light of homogeneity, there are locally
defined obstructions that tell you when you're locally linear: examine the local structures
at a few strategic points!
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THEOREM ([DF)). There are infinite dimensional homology manifolds that do not
have any finite-dimensional resolution. When a resolution exists, it need not be
unique. However, according to a theorem of Ferry, the number of s-cobordism
classes of resolutions is finite.

This has had applications [DF] to constructing pairs of manifolds that con-
verge to each other in Gromov-Hausdorff space, through metrics with some fixed
local contractibility function.

It has also been applied to large-scale geometry in the construction of a
uniformly contractible manifold with no degree one Lipschitz map to Euclidean
space [DFW] and the failure of a bounded analogue of the rigidity conjecture for
aspherical manifolds. Their further study promises to contain many more surprises.
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