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CONTROLLED SURGERY WITH TRIVIAL

LOCAL FUNDAMENTAL GROUPS

Erik Pedersen, Frank Quinn and Andrew Ranicki

Abstract. We provide a proof of the controlled surgery sequence, including stabil-
ity, in the special case that the local fundamental groups are trivial. Stability is a
key ingredient in the construction of exotic homology manifolds by Bryant, Ferry,

Mio and Weinberger, but no proof has been available. The development given here
is based on work of M. Yamasaki.

In this note we provide a proof of the controlled surgery exact sequence used
in the construction of exotic homology manifolds by Bryant, Ferry, Mio and Wein-
berger, [BFMW]. A primitive version of controlled surgery was developed by the
second author in his definition of the invariant that identifies exotic homology man-
ifolds, [Q3,Q4]. Surgery with bounded control, including exact sequences, was de-
veloped in [FP]. The remarkable limit construction of [BFMW] uses a refinement
of the sequences of [FP]. Roughly speaking [FP] describes a limit as ε → 0 while
[BFMW] depends crucially on a stability property of the limiting process. The
proof of the refinement was postponed to a planned project that was never com-
pleted. The intent was to deduce stability in general from a special case with an
independent solution known to be stable, the “α approximation theorem” of [CF].
This is reasonable in principle and may be possible, but it has become clear that
the authors of [BFMW] have not addressed serious technical issues needed to actu-
ally carry it out. As noted in the review [R3] Until [the planned project] or some
appropriate substitute becomes available the surgery classification must be regarded
as somewhat provisional – although there is little doubt among the experts that it is
correct . The purpose of this paper is to provide the “appropriate substitute”. Our
proof is direct, and is based on work of Yamasaki [Y].

The following is Theorem 2.4 of [BFMW] with minor inaccuracies corrected.

1. Theorem. Suppose B is a finite dimensional compact metric ANR and a
dimension n ≥ 4 is given. There is a stability threshold ε0 > 0 so that for any
ε0 > ε > 0 there is δ > 0 with the following property: If f : N → B is (δ, 1)-
connected and N is a compact n-manifold then there is a controlled surgery exact
sequence

Hn+1(B,L) −→ Sε,δ(N, f) −→ [N,∂N ;G/TOP, ∗] −→ Hn(B;L).
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2. Definitions.

(1) Sε,δ(N, f) is the controlled structure set and is the object of interest. It
is defined as the set of equivalence classes of (M,g), where M is a topo-
logical manifold and g : M → N is a homeomorphism on boundaries and
a δ homotopy equivalence rel boundary. The equivalence relation is given
by: (M,g) ∼ (M ′, g′) if there is a homeomorphism h : M → M ′ whose re-
striction to the boundary commutes with g and g′, and which ε homotopy
commutes on all of M . It is part of the assertion that this does actually
give an equivalence relation.

(2) Sizes refer to measurements in B. For instance an ε homotopy between maps
M → N is G : M × I → N so that for any x ∈ M , the arc fG({x}× I) lies
in the ball of radius ε about fG(x, 0). For basic definitions see Quinn [Q1].

(3) [N,∂N ;G/TOP ] is the set of homotopy classes of maps of N , rel boundary,
to the classifying space G/TOP . This is the same term as appears in the
uncontrolled surgery sequence.

(4) H∗(B;L) is homology with coefficients in the 4-periodic simply-connected
surgery spectrum L, with π∗(L) = L∗(Z) for ∗ ≥ 0. The spectrum can
be constructed algebraically using (uncontrolled) quadratic Poincaré chain
complexes over the ring Z ([R2]).

3. Outline.

The proof divides into two parts. First there is a sequence with more primitive
obstruction terms:

Ln+1(B;Z, ε, δ) −→ Sε,δ(N, f) −→ [N,∂N ;G/TOP, ∗] −→ Ln(B;Z, ε, δ).

This is “well known” and quickly assembled from pieces in the literature, though
not entirely straightforward. The second part shows that an assembly map defined
by Yamasaki,

Hn(B;L) −→ Ln(B;Z, ε, δ)

is an isomorphism for suitable ε, δ. Theorem 1 follows by using this to replace the
obstruction term in the primitive sequence. The proof of assembly isomorphism
follows that of Yamasaki for the L−∞ case, with the substitution of a K-theory
splitting argument for stabilization by ×S1.

We remark that the key feature needed in constructing homology manifolds is
“stability”: the sequence in Theorem 1 holds for particular ε and δ rather than just
for the ε → 0 limit, even though the homotopy and obstruction terms are explicitly
independent of ε and δ. Stability in the sequence comes from stability in the assem-
bly isomorphism. Yamasaki’s arguments are stable for relatively straightforward
reasons, so the basic source traces back through the K-theory splitting argument to
stability of vanishing of controlled Whitehead groups in [Q1, §8]. Finally we note
that for stability the use of ε control, rather than bounded or continuous control,
is essential. Bounded versions can be used to identify the inverse limit as ε → 0,
but do not give information on how the limit is approached.

4. Surgery.

We describe how the “primitive” surgery sequence of §3 is a straightforward
controlled version of the standard sequence. The only awkward point is that the
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surgery obstruction [N,∂N ;G/TOP ] → Ln(B;Z, ε, δ) still must be defined using
surgery rather than by a direct chain-level construction.

Ln(B;Z, ε, δ) is defined to be the group of n-dimensional quadratic Poincaré com-
plexes (Z coefficients, [R1]), over B and with radius < δ, modulo bordism through
(n + 1)-dimensional quadratic Poincaré pairs with radius < ε. Here we use the
routine version of controlled algebra [Q1] that locates bases for modules at points
in B, and measures radii of ordinary homomorphisms in terms of distance between
involved basis points. Yamasaki goes further in using “geometric” morphisms that
incorporate paths in a space. This refinement is unnecessary here because the local
fundamental groups are constant (in fact trivial).

Suppose M → N is a normal map representing an element in [N,∂N ;G/TOP ].
For any δ > 0 we can do surgery below the middle dimension [Q3] to make M → N
(δ, j)-connected over B, where n = 2j or 2j + 1. In this case we can give the
relative chains a δ controlled quadratic Poincaré structure: nondegenerate forms
with a symmetry condition in even dimensions, and “short odd complexes” [R4,§6]
in odd dimensions. We define the surgery obstruction function by taking a normal
map to the quadratic Poincaré structure on a highly-connected normal map in the
bordism class.

The verification that this function is well-defined uses a relative construction. If
there is a normal bordism between highly-connected normal maps then do surgery
to make the bordism also δ-connected below the middle dimension. The relative
chains of the bordism can then be given the structure of a δ quadratic Poincaré
chain bordism between the chains of the two maps.

The basis for exactness of the sequence is: if the quadratic structure on the
chains of a highly connected normal map is null-bordant through a highly-connected
quadratic chain bordism, then we get the usual algebraic data for doing middle-
dimensional surgery to get an equivalence. More specifically if ε > 0 then there
is δ > 0 so that if the quadratic chains of a highly δ-connected normal map is
highly δ-connected algebraically nullbordant, then the normal map is bordant (by
surgery) to an ε equivalence. The ε and δ here come from the controlled Hurewicz
and Whitehead theorems [Q1, §5] rather than subtle stability issues.

This is the point at which dimension issues arise. Standard surgery requires
dimension ≥ 5, and gives surgery sequences for smooth and PL manifolds when
the structure set and homotopy terms are changed appropriately. The topological
version holds in dimension 4: since the local fundamental groups are trivial [Q2]
gives the controlled embeddings of 2-spheres in 4-manifolds needed for the surgery.
In fact there is a weak 3-dimensional version in which objects in the structure set
are δ homology equivalences and equivalences are ε homology s-cobordisms, but we
have not tried to include this in the main statement.

The algebra and topology are brought together by algebraic surgery on controlled
quadratic complexes. The results needed are exactly analogous to the topological
case, and easily obtained by adding control to the arguments of [R1]: given n
and ε > 0 there is δ so that an n-dimensional δ quadratic Poincaré complex over
B is ε bordant to one that is connected up to the middle dimension. Similarly
if two highly-connected quadratic complexes are δ-bordant then there is a highly
connected ε-bordism.

5. Assembly.

The assembly map Hn(B;L) −→ Ln(B;Z, ε, δ) is defined by Yamasaki [Y, §3]
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using “cycles”. The characterization of assembly maps in Weiss and Williams [WW]
shows this agrees with other definitions. We review [Y] to explain how it reduces
our case to a K-theory splitting problem.

An element of Hn(B;L) is represented by (1) a triangulated codimension 0 sub-
manifold V of some sphere SN ; (2) a quadratic Poincaré pair over each simplex
of V so that the pairs over ∂σ fit together to give the boundary of the pair over
σ, and so that they all glue together to give a Poincaré complex of dimension n;
and (3) a map V → B. The complex obtained by glueing them all together is the
assembly. To get control on the assembled complex one subdivides V so finely that
images of simplices have diameter < δ in B. Define a function from the basis of the
assembled complex into B as follows: each basis element in the assembled complex
comes from one of the fragments, lying over some simplex. Take the basis element
to an arbitrary point in the image of the simplex. Since the structure maps in the
assembled complex keep this basis element inside its fragment, therefore over points
in a small image, the assembled complex has radius < δ.

This description of the assembly makes it clear that to show it is an isomorphism
we need to start with a controlled complex and split it up as a union of small pieces.
Full splitting follows inductively from being able to split once, so we are reduced
to the following analog of [Y, Lemma 2.5]:

6. Lemma: splitting Poincaré complexes. Suppose B is a metric space, W ⊂
B, ε > 0, and a dimension n are given. Then there is δ > 0 so that an n-
dimensional quadratic Poincaré complex D over B with radius < δ is ε equivalent
to a union of ε Poincaré pairs D′ ∪C D′′ with D′ located over B − W , D′′ located
over W ε, and the common boundary C located over W ε ∩ (B − W ).

Yamasaki comes close to producing such a decomposition. He produces pairs
C → D′, C → D′′ with D′, D′′ over B−W , W ε respectively, as desired, but C may
be nontrivial over all of B. In a nutshell, D′′ is the maximal based subcomplex of
D lying over B − W , D′ is the quotient D/D′′ with basis the complement of the
basis of D′′ in the basis of D. Since these are n-dimensional complexes of radius
< δ, D′ lies over Wnδ. Finally C is Ranicki’s “algebraic boundary” defined as
the mapping cone of a duality homomorphism. This homomorphism uses all of D
so has no restrictions on its location. However the duality homomorphism is a δ
chain equivalence outside Wnδ ∩ (W−nδ), so the mapping cone C is δ contractible
there. Over the region where it is contractible Yamasaki uses the usual folding
argument to get C concentrated in two adjacent degrees, in which case the boundary
homomorphism is an nδ isomorphism.

Recall that we would be finished if we could show that given ε there is δ >
0 so that C is ε equivalent to a complex located over W ε ∩ (B − W−ε). The
problem is therefore reduced to a problem about δ isomorphisms. Namely we have
a homomorphism d : Cj → Cj−1 that is a δ isomorphism off W δ ∩ (W−δ) and we
want to split off and discard a contractible summand containing the part outside
W ε ∩ (B − W−ε).

It is at this point that our argument diverges from Yamasaki’s. Splitting an
isomorphism is a controlled K-theory problem and generally not possible. Yamasaki
stabilizes by multiplying by S1. This canonically kills K-theory so splitting becomes
possible. However it also changes the surgery problem, so he defines L−∞ by
factoring out these changes and concludes that the assembly is an isomorphism in
this context. In our special case (Z coefficients) the controlled K-theory vanishes
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and splitting is possible without stabilization.

7. Lemma: splitting isomorphisms. Suppose B ⊃ V and ε > 0 are given.
Then there is δ > 0 so that if d : A → A′ is a δ homomorphism of Z-modules over
B and is a δ isomorphism over B−V then there are ε automorphisms H, H ′ of A,
A′ respectively so that (1) H, H ′ are the identity over V ε, and (2) H ′dH is induced
by a bijection of bases over B − V 2ε.

This follows easily from [Q1, Theorem 8.4].
We apply this to the homomorphism d : Cj → Cj−1 in the boundary complex

considered above. Conclusion (1) enables us to extend H, H ′ by the identity on
the rest of C to get an ε equivalence of quadratic Poincaré complexes. Conclu-
sion (2) shows that the new complex is the sum of a trivial complex (d = 1) and
one lying over B − V 2ε. Deleting the trivial summand gives a splitting satisfying
the conclusions of Lemma 6. This proves Lemma 6, which shows that the assem-
bly Hn(B;L) −→ Ln(B;Z, ε, δ) is an isomorphism and so completes the proof of
Theorem 1.
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