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HOMOLOGY MANIFOLD BORDISM

HEATHER JOHNSTON AND ANDREW RANICKI

Abstract. The Bryant-Ferry-Mio-Weinberger surgery exact sequence for
compact ANR homology manifolds of dimension≥ 6 is used to obtain transver-
sality, splitting and bordism results for homology manifolds, generalizing pre-
vious work of Johnston.

First, we establish homology manifold transversality for submanifolds of
dimension ≥ 7: if f : M → P is a map from an m-dimensional homology
manifold M to a space P , and Q ⊂ P is a subspace with a topological q-block
bundle neighborhood, and m−q ≥ 7, then f is homology manifold s-cobordant
to a map which is transverse to Q, with f−1(Q) ⊂M an (m− q)-dimensional
homology submanifold.

Second, we obtain a codimension q splitting obstruction sQ(f) ∈ LSm−q(Φ)
in the Wall LS-group for a simple homotopy equivalence f : M → P from an
m-dimensional homology manifold M to an m-dimensional Poincaré space P
with a codimension q Poincaré subspace Q ⊂ P with a topological normal
bundle, such that sQ(f) = 0 if (and for m− q ≥ 7 only if) f splits at Q up to
homology manifold s-cobordism.

Third, we obtain the multiplicative structure of the homology manifold
bordism groups ΩH∗ ∼= ΩTOP∗ [L0(Z)].

Introduction

Homology manifolds are spaces with the local homology properties of topological
manifolds, but not necessarily their geometric properties such as transversality.
The results of Johnston [6] on the bordism and transversality properties of high-
dimensional homology manifolds are extended here using the methods of surgery
theory. The extent to which transversality holds in a homology manifold is a
measure of how close it is to being a topological manifold. It is not possible to
investigate transversality in homology manifolds by direct geometric methods, so
as in [6] we employ bordism and surgery instead.

We start with a brief recollection of transversality for differentiable manifolds.
Suppose that Pn is an n-dimensional differentiable manifold and Qn−q ⊂ Pn is a
codimension q submanifold with a q-plane normal bundle

νQ⊂P : Q→ BO(q) .

Received by the editors March 25, 1998.
2000 Mathematics Subject Classification. Primary 57P05, Secondary 19J25.
Key words and phrases. Homology manifolds, bordism, transversality, surgery.
This work was carried out in connection with the first named author’s EPSRC Visiting Fel-

lowship in Edinburgh in August, 1997.

c©2000 American Mathematical Society

5093



5094 HEATHER JOHNSTON AND ANDREW RANICKI

A smooth map f : M → P from an m-dimensional differentiable manifold Mm is
transverse to Q ⊂ P if the inverse image of Q is a codimension q submanifold

Nm−q = f−1(Q) ⊂Mm

with normal q-plane bundle the pullback of νQ⊂P along g = f | : N → Q

νN⊂M = g∗νQ⊂P : N → BO(q) .

The classical result of Thom is that every map f : Mm → Pn is homotopic (by a
small homotopy) to a smooth map which is transverse to Q ⊂ P . This result was
proved by direct analytic methods.

Topological manifolds also have transversality, but the proof is very indirect,
relying heavily on surgery theory – see Kirby and Siebenmann [8] (III,§1), Marin
[10] and Quinn [13]. Instead of vector bundles it is necessary to work with normal
microbundles, although we shall use the formulation in terms of the topological
block bundles of Rourke and Sanderson [17].

The essential aspect of transversality is that a submanifold has a nice normal
(vector or block) bundle, as formalized in the following definition.

Definition. A codimension q bundle subspace (Q,R, ξ) (q ≥ 1) of a space P is a
subspace Q ⊂ P together with a topological q-block bundle

(Dq, Sq−1)→ (E(ξ), S(ξ))→ Q

such that

P = E(ξ) ∪S(ξ) R,

where R = P\E(ξ). When R and ξ are clear we say that Q is a codimension q
bundle subspace of P .

Topological q-block bundles over a space Q are classified by the homotopy classes
of maps from Q to a classifying space BT̃OP (q), so we write such a bundle ξ as a
map

ξ : Q→ BT̃OP (q) .

If P is an n-dimensional topological manifold and Q ⊂ P is a triangulable locally
flat codimension q submanifold with n− q ≥ 5 or q ≤ 2, then Q is a codimension q
bundle subspace of P with

ξ = νQ⊂P : Q→ BT̃OP (q)

a normal topological q-block bundle, by Theorem 4.9 of Rourke and Sanderson
[17]. (Hughes, Taylor and Williams [5] obtained a topological regular neighborhood
theorem for arbitrary locally flat submanifolds in a manifold of dimension ≥ 5,
in which the neighborhood is the mapping cylinder of a manifold approximate
fibration).

In the applications of codimension q bundle subspaces (Q,R, ξ) ⊂ P we shall
only be concerned with the case when P is a finite CW complex and Q,R ⊂ P are
subcomplexes.

Definition (Submanifold transversality). Let P be a space with a codimension q
bundle subspace (Q,R, ξ).

(i) A map f : M → P from an m-dimensional manifold M is transverse to Q ⊂ P
if the inverse image of Q

Nm−q = f−1(Q) ⊂Mm
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is a locally flat codimension q submanifold with the pullback normal bundle.
(ii) A map f : M → P is s-transverse to Q ⊂ P if it is s-cobordant to a transverse

map.
Of course, the submanifolds of the manifold M and bundles in the above defi-

nitions are understood to be in the same category as M itself. For simplicity, we
shall only be considering compact oriented manifolds.

An m-dimensional homology manifold M is a finite-dimensional ANR such that
for each x ∈M

Hr(M,M\{x}) =

{
Z if r = m,
0 if r 6= m .

We shall say that an m-dimensional homology manifold M has codimension q
s-transversality if every map f : M → P is s-transverse to every codimension
q bundle subspace Q ⊂ P . (It is unknown if the analogue of the topological s-
cobordism theorem holds for homology manifolds).

An m-dimensional homology manifold M is resolvable if there exists a CE map
h : MTOP → M from an m-dimensional topological manifold MTOP . (Roughly
speaking, a CE map is a map with contractible point inverses). Resolvable homol-
ogy manifolds have codimension q s-transversality for all q ≥ 1 : if f : M → P is
a map from a resolvable m-dimensional homology manifold and Q ⊂ P is a codi-
mension q bundle subspace, then the mapping cylinder of h is a homology manifold
s-cobordism

(g; f, fTOP ) : (W ;M,MTOP )→ P

from f to a map fTOP : MTOP → P which can be made (topologically) transverse
to Q ⊂ P .

Quinn [11] used controlled surgery to prove that for m ≥ 6 an m-dimensional
homology manifold M with codimension m s-transversality is resolvable. The res-
olution obstruction of Quinn [12]

i(M) ∈ Hm(M ;L0(Z))

is such that i(M) = 0 if (and for m ≥ 6 only if) M is resolvable; for connected
M the obstruction takes values in Hm(M ;L0(Z)) = Z. The invariant i(M) is the
obstruction to a degree 1 map f : Mm → Sm being s-transverse to some point
∗ ∈ Sm. Bryant, Ferry, Mio and Weinberger [1] constructed exotic homology man-
ifolds Mm in dimensions m ≥ 6 which are not resolvable, and initiated the surgery
classification theory for high-dimensional homology manifolds up to s-cobordism.
In Section 1 we shall modify the construction of [1] to obtain a connected homol-
ogy manifold M = NI with prescribed resolution obstruction I ∈ L0(Z), starting
with any connected m-dimensional topological manifold N (m ≥ 6). This homol-
ogy manifold is not homotopy equivalent to N , but it is in a prescribed homology
manifold normal bordism class of N .

The first-named author used the theory of [1] to prove that m-dimensional ho-
mology manifolds have codimension q s-transversality and splitting in the following
cases.

Theorem (Homology manifold π-π s-transversality, Johnston [6]). Let f : M →
P be a map from an m-dimensional homology manifold M to a space P with a
codimension q bundle subspace (Q,R, ξ), with m− q ≥ 6.
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(i) If q = 1, ξ is trivial, and R = R1 tR2 is disconnected with π1(Q) ∼= π1(R1),
then f is s-transverse to Q ⊂ P .

(ii) If q ≥ 3, then f is s-transverse to Q ⊂ P .

Definition. (i) A codimension q Poincaré bundle subspace (Q,R, ξ) of anm-dimen-
sional Poincaré space P is a codimension q bundle subspace such that Q is an
(m − q)-dimensional Poincaré space and (R,S(ξ)) is an m-dimensional Poincaré
pair, where S(ξ) is the total space of the Sq−1-bundle of ξ over P .

(ii) Let P,Q,R, ξ be as in (i). A simple homotopy equivalence f : M → P from
an m-dimensional homology manifold M splits at Q ⊂ P if f is s-cobordant to a
simple homotopy equivalence (also denoted by f) which is transverse to Q ⊂ P
and such that the restrictions f | : f−1(Q) → Q, f | : f−1(R) → R are also simple
homotopy equivalences.

Theorem (Homology manifold splitting, Johnston [6]). Let f : M → P be a sim-
ple homotopy equivalence from an m-dimensional homology manifold M to an
m-dimensional Poincaré space P with a codimension q Poincaré bundle subspace
(Q,R, ξ), with m− q ≥ 6.

(i) (Codimension 1 π-π splitting) If q = 1, ξ is trivial, and R = R1 t R2 is
disconnected with π1(Q) ∼= π1(R1), then f splits at Q ⊂ P .

(ii) (Browder splitting) If q ≥ 3, then f splits at Q ⊂ P if and only if the restric-
tion g = f | : f−1(Q)→ Q has surgery obstruction σ∗(g) = 0 ∈ Lm−q(Z[π1(Q)]).

In Sections 2, 3, and 4 we shall use the theory of [1] to obtain even stronger results
on homology manifold transversality and codimension q splitting. The results of
this paper require the slightly higher dimension hypothesis m − q ≥ 7. The extra
dimension is needed to apply codimension 1 π-π splitting, (i) above, to a homology
manifold of dimension m− q. Thus we require m− q − 1 ≥ 6, or m− q ≥ 7.

Wall [18] (Chapter 11) obtained a codimension q splitting obstruction sQ(f) ∈
LSm−q(Φ) for a simple homotopy equivalence f : M → P from an m-dimensional
topological manifold M to an m-dimensional Poincaré space P with a codimension
q ≥ 1 Poincaré bundle subspace (Q,R, ξ), such that sQ(f) = 0 if (and for m−q ≥ 5
only if) f splits at Q ⊂ P . Our first main result obtains the analogous obstruction
for the codimension q splitting of homology manifolds. (The full statement will be
given in Theorem 3.2.)

Theorem 0.1. A simple homotopy equivalence f : M → P = E(ξ)∪S(ξ)R from an
m-dimensional homology manifold M to an m-dimensional Poincaré space P with
a codimension q Poincaré bundle subspace (Q,R, ξ) has a codimension q splitting
obstruction

sQ(f) ∈ LSm−q(Φ)

such that sQ(f) = 0 if (and for m− q ≥ 7 only if ) f splits at Q ⊂ P .

Our second main result establishes homology manifold s-transversality in the
case m − q ≥ 7, generalizing the homology manifold π-π s-transversality theorem
of [6]. This result appears as Theorem 4.1 below.

Theorem 0.2. Let f : M → P = E(ξ) ∪S(ξ) R be a map from an m-dimensional
homology manifold M to a space P with a codimension q bundle subspace (Q,R, ξ).
If m− q ≥ 7, then f is s-transverse to Q ⊂ P .



HOMOLOGY MANIFOLD BORDISM 5097

In Sections 5 and 6 we consider s-transversality for a map f : M → P from a
homology manifold M to the polyhedron P = |K| of a (finite) simplicial complex
K. Instead of seeking s-transversality to just one codimension q bundle subspace
Q ⊂ P , we consider s-transversality to all the dual cells |D(σ,K)| ⊂ P (σ ∈ K) at
once, following the work of Cohen [3] on PL manifold transversality.

The dual cells of a simplicial complex K are the subcomplexes of K ′,

D(σ,K) = {σ̂0σ̂1 · · · σ̂p ∈ K ′ |σ ≤ σ0 < σ1 < · · · < σp} (σ ∈ K) .

The boundary of a dual cell is the subcomplex

∂D(σ,K) =
⋃
τ>σ

D(τ,K)

= {σ̂0σ̂1 · · · σ̂p ∈ K ′ |σ < σ0 < σ1 < · · · < σp} ⊂ D(σ,K) .

Definition (Dual transversality). (i) A map f : M → |K| from an m-dimensional
manifold M (in some manifold category) is dual transverse if the inverse images of
the dual cells are codimension |σ| submanifolds

M(σ)m−|σ| = f−1(D(σ,K)) ⊆Mm

with boundary

∂M(σ) = f−1(∂D(σ,K)) =
⋃
τ>σ

M(τ) .

(ii) An m-dimensional manifold M has dual s-transversality if every map f :
M → |K| is s-cobordant to a dual transverse map.

Dual transversality implies submanifold transversality : if the map

f : Mm → P = |K| = E(ξ) ∪S(ξ) R

is dual transverse, then f is transverse to every polyhedral codimension q bundle
subspace Q ⊂ P . PL manifolds and PL homology manifolds M have dual transver-
sality, with every simplicial map f : M → K ′ dual transverse – in this case each
inverse image f−1(D(σ,K)) ⊂ M (σ ∈ K) is automatically a PL submanifold of
codimension |σ| (Cohen [3]), so there is no need to use s-cobordisms. Topological
manifolds M have dual transversality by the work of Kirby and Siebenmann [8]
and Quinn [13], with every map f : M → |K| homotopic to a dual transverse map.

The s-transversality result of Theorem 0.2 can be applied inductively to obtain
dual s-transversality for a map f : Mm → |K| in the case when the inverse images
f−1(D(σ,K)) (σ ∈ K) are required to be homology manifolds of dimensions m −
|σ| ≥ 7.

Corollary 0.3. If f : M → |K| is a map from an m-dimensional homology mani-
fold M to the polyhedron of a k-dimensional simplicial complex K with m− k ≥ 7,
then f is dual s-transverse.

On the other hand, if m−k < 7, dual transversality may be obstructed. Consider
for example the case of f : M → |K| for m = k, with M connected. In this case the
resolution obstruction is easily shown to be an obstruction to dual transversality. If
f : M → |K| is dual transverse, then for some m-simplex σm ∈ K and a sequence
of faces σ0 < σ1 < · · · < σm the inverse images M(σj)m−j = f−1(D(σj ,K)) are
non-empty codimension j homology submanifolds of M with

M(σm)0 ⊂ ∂M(σm−1) ⊂M(σm−1)1 ⊂ · · · ⊂M(σ0)m ⊂M .

Quinn ([12], 1.1) proved that the resolution obstruction i(X) is such that :
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(i) i(U) = i(X) for any open subset U ⊂ X of a homology manifold X , and
(ii) i(X) = i(∂X) for any connected homology manifold X with non-empty

boundary ∂X .
It follows that

i(M(σm)0) = i(M(σm−1)1) = · · · = i(M(σ0)m) = i(M) .

Now M(σm) is a 0-dimensional homology manifold, which is a (finite) union of
points, so that i(M) = i(M(σm)) = 0 and M is resolvable. In Section 6 we use
the algebraic topology of homology manifold bordism to prove a strong general-
ization of this result. Although the resolution obstruction continues to play a key
role, the general form of the dual transversality obstruction is more complicated
algebraically.

For any space X let ΩHm(X) be the bordism group of maps M → X from m-
dimensional homology manifolds. An m-dimensional topological manifold is an
m-dimensional homology manifold, so there are evident forgetful maps

ΩTOPm (X)→ ΩHm(X) .

For any simplicial complex K, let ΩH,tm (K) be the bordism group of dual trans-
verse maps M → |K| from m-dimensional homology manifolds. Forgetting dual
transversality gives maps

AH : ΩH,t∗ (K)→ ΩH∗ (K) .

The extent to which dual transversality holds for homology manifolds up to bordism
is measured by the extent to which the maps AH are isomorphisms.

Our third main result relates the obstruction to homology manifold dual s-
transversality to the resolution obstruction, and identifies the fibre of AH with
a generalized homology theory. The full statement will be given in Theorem 6.6,
including the following result :

Theorem 0.4. For m ≥ 6 the K-transverse homology manifold bordism groups
ΩH,tm (K) are related to the homology manifold bordism groups ΩHm(K) by an exact
sequence

· · · → ΩH,tm (K) A
H

→ ΩHm(K)→ Hm(K;L•)→ ΩH,tm−1(K)→ . . .

with L• a spectrum such that π0(L•) = Z[L0(Z)\{0}] and πm(L•) = 0 for m ≥ 6.

Ferry and Pedersen [4] showed that the Spivak normal fibration νM of an m-
dimensional homology manifold M admits a canonical TOP reduction ν̃M , so that
there is a canonical bordism class of normal maps MTOP → M from topological
manifolds. The surgery obstruction σ∗(MTOP → M) ∈ Lm(Z[π1(M)]) is deter-
mined by the resolution obstruction i(M) ∈ Hm(M ;L0(Z)).

For any abelian group A let A[L0(Z)] be the abelian group of finite linear com-
binations ∑

i∈L0(Z)

ai[i] (ai ∈ A) ,

which is the direct sum of L0(Z) copies of A:

A[L0(Z)] = Z[L0(Z)]⊗Z A =
⊕
L0(Z)

A .
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Theorem (The additive structure of homology manifold bordism, Johnston [6]). For
any simplicial complex K the map of bordism groups

ΩHm(K)→ ΩTOPm (K)[L0(Z)] , (M, f) 7→ (MTOP , fTOP )[i(M)],

is an isomorphism for m ≥ 6, with

fTOP : MTOP →M
f→ |K| .

In Section 7 we shall analyze the multiplicative structure on ΩTOPm (K)[L0(Z)]
which corresponds to the cartesian product of homology manifolds under the iso-
morphism ΩHm(K) ∼= ΩTOPm (K)[L0(Z)].

We should like to thank the referee and Bruce Hughes for helpful comments on
the manuscript.

1. Homology manifold surgery and bordism

We review and extend the surgery theory of ANR homology manifolds.
An (oriented) simple m-dimensional Poincaré space X is a compact ANR with

a fundamental class [X ] ∈ Hm(X) such that the chain map

[X ] ∩ − : C(X̃)m−∗ = HomZ[π1(X)](C(X̃),Z[π1(X)])m−∗ → C(X̃)

is a simple Z[π1(X)]-module chain equivalence inducing isomorphisms

[X ] ∩ − : Hm−∗(X̃) ∼= H∗(X̃) ,

with X̃ the universal cover of X and H∗(X̃) ≡ H−∗(C(X̃)−∗). (A compact ANR
has a preferred simple homotopy type by the work of Chapman [2].) In particular,
an m-dimensional homology manifold is an m-dimensional Poincaré space.

The manifold structure set S(X) of a simple m-dimensional Poincaré space X is
the set of equivalence classes of pairs (M,h) with M an m-dimensional topological
manifold and h : M → X a simple homotopy equivalence, with (M1, h1) ' (M2, h2)
if there exists an s-cobordism (W ;M1,M2) with a simple homotopy equivalence of
the type

(g;h1, h2) : (W ;M1,M2)→ X × ([0, 1]; {0}, {1}) .
The normal invariant set T (X) is the bordism set of degree 1 normal maps (f, b) :
M → X from topological manifolds, with b : νM → ν̃X a bundle map from the
normal bundle of M to a TOP reduction of the Spivak normal fibration of X . For
m ≥ 5 the Browder-Novikov-Sullivan-Wall surgery theory for topological manifolds
gives the surgery exact sequence

· · · → Lm+1(Z[π1(X)]) ∂→ S(X)
η→ T (X) θ→ Lm(Z[π1(X)])

(Wall [18], Chapter 10). In general, it is possible for T (X) and S(X) to be empty:
the theory involves a primary topologicalK-theory obstruction for deciding if T (X)
is non-empty and a secondary algebraic L-theory obstruction for deciding if S(X)
is non-empty. More precisely, T (X) is non-empty if and only if the Spivak normal
fibration νX : X → BG(k) (k large) admits a TOP reduction ν̃X : X → BT̃OP (k),
corresponding by the Browder-Novikov transversality construction on a degree 1
map ρ : Sm+k → T (ν̃X) to a normal map

(f, b) = ρ| : M = ρ−1(X)→ X
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from a topological manifold. A choice of ν̃X determines a bijection

T (X) ∼= [X,G/TOP ] .

The algebraic surgery exact sequence of Ranicki [16]

· · · → Lm+1(Z[π1(X)])→ Sm+1(X)→ Hm(X ;L•)
A→ Lm(Z[π1(X)])→ . . .

is defined for any space X , with A the assembly map on the generalized homology
group of the 1-connective quadratic L-theory spectrum L• = L•〈1〉(Z) of Z, with
0th space

L0 ' G/TOP

and homotopy groups the simply-connected surgery obstruction groups

πm(L•) = Lm(Z) =


Z if m ≡ 0 (mod 4),
0 if m ≡ 1 (mod 4),
Z2 if m ≡ 2 (mod 4),
0 if m ≡ 3 (mod 4) .

The total surgery obstruction s(X) ∈ Sm(X) of a simple m-dimensional geomet-
ric Poincaré complex is such that s(X) = 0 if (and for m ≥ 5 only if) X is simple
homotopy equivalent to an m-dimensional topological manifold. The surgery exact
sequence of an m-dimensional topological manifold M is isomorphic to the corre-
sponding portion of the algebraic surgery exact sequence, with

S(M) = Sm+1(M), T (M) = [M,G/TOP ] = Hm(M ;L•) .
The surgery theory of topological manifolds was extended to homology manifolds
in Quinn [11],[12] and Bryant, Ferry, Mio and Weinberger [1], using the 4-periodic
algebraic surgery exact sequence of Ranicki [16] (Chapter 25)

· · · → Lm+1(Z[π1(X)])→ Sm+1(X)→ Hm(X ;L•)
A→ Lm(Z[π1(X)])→ . . . .

This sequence is defined for any space X , with A the assembly map on the gen-
eralized homology group of the 0-connective quadratic L-theory spectrum L• =
L•〈0〉(Z) of Z, with 0th space

L0 ' G/TOP × L0(Z) .

The 4-periodic total surgery obstruction s(X) ∈ Sm(X) of a simple m-dimensional
geometric Poincaré complex X is such that s(X) = 0 if (and for m ≥ 6 only if)
X is simple homotopy equivalent to an m-dimensional homology manifold, by [1].
The homology manifold structure set SH(X) of a simple m-dimensional Poincaré
space X is defined in the same way as S(X), but using homology manifolds. The
surgery exact sequence of an m-dimensional homology manifold M is isomorphic to
the corresponding portion of the 4-periodic algebraic surgery exact sequence, with

SH(M) = Sm+1(M) .

The essential difference between surgery on homology manifolds and topological
manifolds is that there is no Browder-Novikov transversality allowing the construc-
tion of normal maps from homology manifolds. Thus, the surgery exact sequence of
[1] does not follow Wall [18] in relating homology manifold structures and normal
invariants. Rather, the homology manifold surgery exact sequence of [1] follows the
stratified surgery exact sequence of Weinberger [20] in that it relates two purely
algebraically defined groups with the geometrically defined structure set. Despite
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the fact that [1] does not define homology manifold normal invariants, one can
define homology manifold normal invariants T (X) similar to normal invariants of
topological manifolds.

The homology normal invariant set T H(X) is the bordism set of degree 1 normal
maps (f, b) : M → X from connected homology manifolds, with b : ν̃M → ν̃X a
map from the canonical TOP reduction ([4]) of the Spivak normal fibration of M
to a TOP reduction of the Spivak normal fibration of X . It is still the case that
T H(X) is non-empty if and only if νX is TOP reducible, but now it is necessary
to also keep track of the resolution obstruction, and the homology manifolds have
to be constructed using controlled topology. The following theorem allows us to
use the geometric interpretation T H(X) in the homology manifold surgery exact
sequence of [1].

Theorem 1.1 (Johnston [6]). Let m ≥ 6. For a connected simple m-dimensional
Poincaré space X the function

T H(X)→ T (X)× L0(Z),

((f, b) : M → X) 7→ ((fTOP , bTOP ) : MTOP →M
(f,b)→ X, i(M)),

is a natural bijection, with MTOP →M the topological degree 1 normal map deter-
mined by the canonical TOP reduction. A choice of ν̃X determines a bijection

T H(X) ∼= [X,G/TOP × L0(Z)] .

Actually [6] (5.2) is for m ≥ 7, but we can improve to m ≥ 6 by a slight variation
of the proof as described below.

Given the above theorem, the homology manifold surgery exact sequence of [1]

· · · → Lm+1(Z[π1(X)]) ∂→ SH(X)
η→ [X,G/TOP × L0(Z)] θ→ Lm(Z[π1(X)])

becomes:

Theorem 1.2 (Bryant, Mio, Ferry and Weinberger [1]). The homology manifold
structure set SH(X) fits into the exact sequence

· · · → Lm+1(Z[π1(X)]) ∂→ SH(X)
η→ T H(X) θ→ Lm(Z[π1(X)]) .

In particular, SH(X) is non-empty if and only if there exists a degree 1 normal
map (f, b) : M → X from a homology manifold M with surgery obstruction 0 ∈
Lm(Z[π1(X)]).

If M is an m-dimensional homology manifold, then the canonical bordism class of
topological normal maps MTOP →M determined by the canonical TOP reduction
ν̃M ([4]) of the Spivak normal fibration has surgery obstruction

σ∗(MTOP →M) = A(−i(M)) ∈ Lm(Z[π1(M)]),

the image (up to sign) of the resolution obstruction i(M) ∈ Hm(M ;L0(Z)) under
the composite

Hm(M ;L0(Z)) ⊆ Hm(M ;L•)
A→ Lm(Z[π1(M)]) .

Remark 1.3. The algebraic surgery exact sequence has a geometric interpreta-
tion: the map η : SH(X) → T H(X) is given by the forgetful map and the map
∂ : Lm+1(Z[π1(X)]) → SH(X) is given by “Wall realization”, i.e. the homology
manifold analogue of the constructions of Chapters 5 and 6 of [18] realizing the
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elements of the L-groups as the surgery obstructions of normal maps obtained by
non-simply-connected plumbing.

To see that η is the forgetful map, take f : Y → X and compare η(f) with
(f : Y → X) ∈ T H(X). By 1.1 above we may consider instead their images in
T (X)×L0(Z). By definition of the canonical TOP -reduction of the Spivak normal
fibration νY (Ferry and Pedersen [4]), η(f) is given by (fTOP : YTOP → X, I(Y )),
i.e. it agrees with the image of f : Y → X under the forgetful map.

“Wall realization” does not (yet) have an obvious geometric interpretation for
homology manifolds. There are no homology manifold “handles” with nice attach-
ing maps. Nevertheless, one can obtain the following theorem.

Theorem 1.4 (Johnston [6]). Let m ≥ 6. For an m-dimensional Poincaré space P
with a specified homotopy equivalence h : X → P , with X a homology manifold, and
for any element σ ∈ Lm+1(Z[π1(P )]), the image ∂(σ) ∈ SH(P ) under the map ∂ :
Lm+1(Z[π1(P )])→ SH(P ) in the surgery exact sequence of [1] has a representative
g : Y → P such that there exists a homology manifold bordism r : W → P × [0, 1]
with r|∂W = g q h.

This theorem follows from 1.1 and the surgery exact sequence of [1] for
SH(P × [0, 1], P × {0, 1}) relative to the given structures (g, h) ∈ SH(P × {0, 1}).

Theorem 1.1 is a corollary of the construction below. This construction is almost
identical to that in [6], except that we have removed the use of codimension 1 π-π
splitting to gain an extra dimension m ≥ 6. Nonetheless, we describe the proof in
detail here, because we shall need to refer to the details later as we prove a transverse
variation. A transverse variation of Theorem 1.1 follows from a transverse variation
of 1.5.

Proposition 1.5. Let m ≥ 6. Given a connected m-dimensional topological man-
ifold N and an element I ∈ L0(Z), there exists a degree 1 normal map (fI , bI) :
NI → N from a connected homology manifold NI such that :

(i) The resolution obstruction of NI in L0(Z) is

i(NI) = I ∈ L0(Z) .

(ii) The composite

(NI)TOP
(fTOP ,bTOP ) // NI

(fI ,bI) // N

is normally bordant to the identity map.
(iii) If M is a connected m-dimensional homology manifold with resolution ob-

struction i(M) = I ∈ L0(Z), then the composite

(MTOP )I
(fI ,bI ) // MTOP

(fTOP ,bTOP ) // M

is normally bordant to the identity map M →M .

Proof of Theorem 1.1. Denote the given function by Φ : T H(X)→ T (X)×L0(Z).
Define a function

Ψ : T (X)× L0(Z)→ T H(X),

((f, b) : N → X, I) 7→ ((fI , bI) : NI → N
(f,b) // X),

where (fI , bI) : NI → N is the result of applying Proposition 1.5 to the pair N, I.
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g0B C-K D   IK
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Figure 1. The construction of the spaces N0 and X0 and the
maps g0 and p0.

The composition Φ ◦ Ψ is the identity by 1.5 (ii), and the composition Ψ ◦ Φ is
the identity by 1.5 (iii).

Proof of Proposition 1.5. The construction of (fI , bI) : NI → N .

The construction of NI is a variation on a construction found in [1] (Section 7)
which is in turn a variation on the main construction of that paper. In [1] (Section
7) the construction is performed on a torus, resulting in a homology manifold not
homotopy equivalent to any manifold. We perform the construction on an arbitrary
topological manifold with (i), (ii) and (iii) above as the result.

Let σ denote the element of Hm(N ;L•) which corresponds to the canonical TOP
reduction of the Spivak normal fibration of N , with the desired index I. Suppose
we are given a sequence ηk > 0 so that limk→∞ ηk = 0.
Step I: Construct a Poincaré space X0 with a map p0 : X0 → N so that

(i) X0 is η0-Poincaré over N ,
(ii) p0 is UV 1, and
(iii) p0 has controlled surgery obstruction σ ∈ Hm(N ;L•).

Slice N open along the boundary of a manifold two skeleton D. So N = B∪DC.
We first apply Lemma 4.4 from [1]. This will allow us to perform a small homotopy
on idN : N → N to get a new map q0 : N → N which restricts to a UV 1 map on
B, C and D. Because q0|D is a UV 1 map, the controlled surgery obstruction group

of D × [0, 1]
q0proj.→ N is

Lc
(
D×[0,1]
↓
N

)
∼= Hm(N ;L•) ∼= Hm(N ;L•)⊕Hm(N ;L0(Z)) .

Now by Wall realization we construct a normal invariant σ : K → D × [0, 1]
with controlled surgery obstruction σ, which is given by a controlled homotopy
equivalence k : D′ −→ D on one end and by the identity on the other.

Construct a Poincaré complex X0 = B ∪idD K ∪K C by gluing B and C onto K.
We define a map p0 : X0 → N by p0|B∪C = id and p0|K = σ. By applying [1] (4.4)
we may assume p0 is UV 1. By taking sufficiently fine control we may assume that
X0 is an η1-Poincaré space over N .

The Poincaré space X0 has 4-periodic total surgery obstruction

s(X0) = 0 ∈ Sm(X0) ,

so that X0 is homotopy equivalent to the desired homology manifold NI as given
by [1] (6.1). In this variation of the main construction of [1] the next steps use the
Poincaré space X0 and the degree 1 normal map g0 : N0 → X0 representing the
controlled surgery obstruction −σ as described below.
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B1
f1B1 C1K1

N0 X0

q0D1      I C1

X'1

Figure 2. By construction one can surger the composition of
maps X ′1

f1→ N0
q0→ X0 to a homotopy equivalence p1 : X1 → X0.

Below is a brief summary of the rest of the construction in this case. It is
a limiting process in which the cut and paste type construction from Step I is
performed on finer and finer manifold two skeleta of manifolds Nk.
Step II: Construct a Poincaré space X1 and a map p1 : X1 → X0 so that the
following conditions are satisfied:

(i) The map p1 is UV 1.
(ii) X1 is an η1-Poincaré space over X0.
(iii) The map p1 : X1 → X0 is an ε1-homotopy equivalence over N .
(iv) For W0 a regular neighborhood of X0, there exist an embedding X1 → W0

and a retraction r1 : W0 → X1 so that d(r0, r1) < ε1.
Let N0 be given by B ∪D K ∪D′ −K ∪D C. Define a map

g0 : N0 → X0 = B ∪D K ∪D D × [0, 1] ∪D C

by the identity on B, K and C and by −σ on −K. By [1] (4.4) we may assume that
g0 is UV 1. Let N0 = B1 ∪D1 C1 be a decomposition of N0 by a finer manifold two
skeleton than that of N . Let q0 denote the map homotopic to g0 which restricts to
a map UV 1 on B1, C1 and D1.

Since the map p0 is UV 1, it induces an isomorphism

(p0)∗ : Hm(X0;L•) ∼= Hm(N ;L•) .

Let σ1 : K1 → D1 × [0, 1] denote a Wall realization of the element of Hm(X0;L•)
which corresponds to σ. Define X ′1 = B1 ∪ K1 ∪ C1 with a map f1 : X ′1 → N0

defined as for p0. Consider the composition of maps X ′1 → N0 → X0 and notice
that it has vanishing surgery obstruction and can therefore be surgered to a small
homotopy equivalence over N . (This type of surgery on a Poincaré space is in the
tradition of Lowell Jones [7].) Denote the result of this surgery by p1 : X1 → X0.
We may assume that p1 is UV 1.

By choosing a sufficiently well-controlled surgery obstruction, we may assume
that X1 is η1-Poincaré over X0. By choosing η0 sufficiently small we may verify
conditions (iii) and (iv).
Step III: Construct a Poincaré space Xi+1 and a map pi+1 : Xi+1 → Xi so that

(i) pi+1 is UV1,
(ii) Xi+1 is ηi-Poincaré over Xi,
(iii) pi+1 is an εi equivalence over Xi−1, and
(iv) there exist an embedding Xi+1 →Wi ⊂W0 and a retraction ri : W0 → Xi+1

so that d(ri, ri+1) < εi.
Let gi : Ni → Xi be a degree 1 normal map with surgery obstruction −σ ∈

Hm(Xi−1;L•) ∼= Hm(N ;L•). By [1] (4.4) we may assume that fi is UV 1. Let
Ni = Bi ∪Di Ci be a decomposition of Ni by a finer manifold two skeleton than
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Figure 3. By construction one can surger the composition of

maps X ′i+1

fi+1→ Ni
qi→ Xi to a homotopy equivalence pi+1 : Xi+1 →

Xi.

that of Ni−1. Let qi denote the map homotopic to gi which restricts to a map UV 1

on Bi, Ci and Di.
Since the map pi is UV 1, it induces an isomorphism

Hm(Xi;L•) ∼= Hm(Xi−1;L•) ∼= Hm(N ;L•) .

Let σi : Ni → Di × [0, 1] denote a Wall realization of the element of Hm(Xi;L•)
which corresponds to σ. Define X ′i+1 = Bi ∪Ki ∪ Ci, with a map fi+1 : X ′i+1 →
Ni defined as for p0. Consider the composition of maps X ′i+1 → Ni → Xi and
notice that it has vanishing surgery obstruction and can therefore be surgered to
a small homotopy equivalence over Xi−1. Denote the result of this surgery by
pi+1 : Xi+1 → Xi. We may assume that pi+1 is UV 1.

By choosing a sufficiently well-controlled surgery obstruction, we may assume
that Xi+1 is ηi+1-Poincaré over Xi. By choosing ηi−1 sufficiently small we may
verify conditions (iii) and (iv).
Step IV: Let NI =

⋂∞
i+1Wi. This is the desired homology manifold. Let the map

NI → N be defined by NI
rk|NI→ X0

p0→ N .
NI is an ANR, because the limit of the retractions ri defines a retraction r :

W0 → NI . To see that NI is a homology manifold, we first use condition (iv)
to improve the retractions ri. Then this, together with the fact that each Xi is
an ηi-Poincaré space over Xi−1, can be used to show that there is a retraction
ρ : W0 → NI so that ρ| : ∂W0 → NI is an approximate fibration, which shows that
NI is a homology manifold.

This concludes the construction of (fI , bI) : NI → N . It remains to show that
the construction has produced the desired result.

Proof of (i). Consider the controlled surgery obstruction of Nk → Xk → NI con-
trolled over NI by the identity map NI → NI . Since the map ρ : Xk → NI can
be assumed to be UV 1, this is the same as the controlled surgery obstruction of
gk : Nk → Xk, where Xk has control map ρ : Xk → NI . By the argument given in
[1] the control maps ρ : Xk → NI and

Xk
pk→ Xk−1

ρ→ NI

are homotopic by a small homotopy. Thus the controlled surgery obstruction of gk
with one control map ρ is the same as that with control map pk, but by construction
this surgery obstruction was −σ, i.e., the resolution obstruction of NI is I.

Proof of (ii). Let fTOP : (NI)TOP → NI denote the degree 1 normal map induced
by the TOP reduction of NI given by the map

NI
fI→ N

νN→ BTOP .
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By construction this map is normally bordant to idN : N → N .

Proof of (iii). The proof is the same as injectivity of Φ in Theorem 5.2 of [6], except
that we now restrict our attention to showing that the composition (fTOP )I ◦fTOP :
(MTOP )I →MTOP →M is homology manifold normal bordant to the identity map
idM : M → M . Since any map fI : NI → N is an isomorphism on fundamental
groups, we can avoid Lemma 5.4 of [6] and its requirement that m ≥ 7. The
map fI is an isomorphism on fundamental groups, because it splits as a homotopy
equivalence h : NI → X0 and the original map p0 : X0 → N . The fact that p0

is an isomorphism on fundamental groups follows from the fact that the normal
invariant σ : K → D × [0, 1] is a Wall realization and therefore an isomorphism on
fundamental groups.

A homology manifold normal bordism between (fTOP )I ◦ fTOP : (MTOP )I →
MTOP →M and idM : M →M is constructed as follows. First, a Poincaré bordism
k : W →M is constructed between the two maps. Then, using the fact that we may
assume that (W, (MTOP )I) is a (π, π) pair, we put a homology manifold structure
on W relative to M . See [6] (5.2) for details.

This completes the proof of Proposition 1.5.

For any topological block bundle ν : X → BT̃OP (k), define the homology mani-
fold bordism groups ΩHm(X, ν) of normal maps (f, b) : M → X from m-dimensional
homology manifolds, with b : νM → ν.

Corollary 1.6. For m ≥ 6 the m-dimensional homology manifold bordism groups
of (X, ν) are such that

ΩHm(X, ν) ∼= ΩTOPm (X, ν)[L0(Z)] .

Proof. Use the construction of Proposition 1.5 to define inverse isomorphisms

ψ : ΩHm(X, ν)→ ΩTOPm (X, ν)[L0(Z)] ;

((f, b) : M → X) 7→ (MTOP →M
(f,b)→ X)[i(M)] ,

ψ−1 : ΩTOPm (X, ν)[L0(Z)]→ ΩHm(X, ν) ;

((g, c) : N → X)[I] 7→ (NI → N
(g,c)→ X) .

Thus

ΩHm(X, ν) = ΩTOPm (X, ν)[L0(Z)] = πm+k(T (ν))[L0(Z)] ,

with T (ν) the Thom space. In particular, for any space K and

ν = proj. : X = K ×BTOP → BTOP

we have

ΩHm(K) = ΩTOPm (K)[L0(Z)] = Hm(K; ΩTOP ({pt.}))[L0(Z)] .

If X is an m-dimensional Poincaré space with TOP reducible Spivak normal fibra-
tion, then for each topological block bundle ν : X → BT̃OP (k)

ΩHm(X, ν) = πm+k(T (ν))[L0(Z)] = [X,G][L0(Z)] .
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For connected X this is another way to see that

T H(X) = T TOP (X)× L0(Z) = [X,G/TOP ]× L0(Z),

as in Theorem 1.2.

2. Homology submanifold transversality up to bordism

Fix a space P with a codimension q bundle subspace (Q,R, ξ) as in the Intro-
duction.

We now investigate the transversality to Q ⊂ P of a map f : Mm → P from an
m-dimensional homology manifold. In the first instance, we show that if m− q ≥ 7
then f is bordant to a transverse map.

Definition 2.1. The Q-transverse homology manifold bordism group ΩH,Q−tm (P )
is the abelian group of bordism classes of maps Mm → P from m-dimensional
homology manifolds which are transverse to Q ⊂ P .

There are evident forgetful maps ΩH,Q−tm (P )→ ΩHm(P ).

Theorem 2.2. (i) The Q-transverse homology manifold bordism groups fit into an
exact sequence

· · · → ΩHm(R)→ ΩH,Q−tm (P )→ ΩHm−q(Q)→ ΩHm−1(R)→ . . .

with

ΩHm(R)→ ΩH,Q−tm (P ) ; (M, f : M → R) 7→ (M,M
f→ R→ P ) ,

ΩH,Q−tm (P )→ ΩHm−q(Q) ; (M, g : M → P ) 7→ (g−1(Q), g| : g−1(Q)→ Q) ,

ΩHm−q(Q)→ ΩHm−1(R) ; (N, h : N → Q) 7→ (S(h∗ξ), S(h∗ξ)→ S(ξ)→ R) .

(ii) For m− q ≥ 6

ΩH,Q−tm (P ) = ΩHm(P ) = ΩTOPm (P )[L0(Z)] .

In particular, the forgetful maps ΩH,Q−tm (P ) → ΩHm(P ) are isomorphisms, and
every map Mm → P is bordant to a Q-transverse map.

Proof. (i) This is a formality.
(ii) Define theQ-transverse topological bordism groups ΩTOP,Q−tm (P ) by analogy

with ΩH,Q−tm (P ), for which there is an exact sequence

· · · → ΩTOPm (R)→ ΩTOP,Q−tm (P )→ ΩTOPm−q (Q)→ ΩTOPm−1 (R)→ . . . .

The forgetful maps ΩTOP,Q−tm (P ) → ΩTOPm (P ) are isomorphisms, by topological
transversality. Applying the 5-lemma to the map of exact sequences

. . . // ΩHm(R)

∼=
��

// ΩH,Q−tm (P )

��

// ΩHm−q(Q) //

∼=
��

. . .

. . . // ΩTOPm (R)[L0(Z)] // ΩTOP,Q−tm (P )[L0(Z)] // ΩTOPm−q (Q)[L0(Z)] // . . .

we see that the morphisms

ΩH,Q−tm (P )→ ΩTOP,Q−tm (P )[L0(Z)] ; (M, f : M → P ) 7→ (MTOP , fTOP )[i(M)]

are isomorphisms for m− q ≥ 6, exactly as in the case Q = ∅.
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We wish to improve this homology manifold transversality result from “up to
bordism” to “up to normal cobordism”, using surgery theory.

We shall need the following variation of 1.5 :

Proposition 2.3. Let m − q ≥ 7. Given a connected m-dimensional topological
manifold N , a Q-transverse map g : N → P , and an element I ∈ L0(Z), there exists
a degree 1 normal map (fI , bI) : NI → N from a connected homology manifold NI
such that :

(i) The resolution obstruction of NI in L0(Z) is

i(NI) = I ∈ L0(Z) .

(ii) The composite

(NI)TOP
(fTOP ,bTOP ) // NI

(fI ,bI) // N

is normally bordant to the identity map by a normal bordism. (By a Q-
transverse normal bordism, since we are in the topological category.)

(iii) If M is a connected m-dimensional homology manifold with resolution ob-
struction i(M) = I ∈ L0(Z), then the composite

(MTOP )I
(fI ,bI ) // MTOP

(fTOP ,bTOP ) // M

is normally bordant to the identity map M →M .
(iv) The map (fI , bI) is Q-transverse.

Proof. This result follows from the following two lemmas.

Lemma 2.4. Let there be given an m-dimensional topological manifold M for m ≥
7, such that M is the union of two manifolds along a boundary component, M =
M+ ∪M0 M−. Then we may perform the construction of 1.5 so that the result is a
homology manifold MI = (M+)I∪(M0)I (M−)I so that MI and (Mi)I for i = 0,+,−
all satisfy the conclusion of 1.5.

Lemma 2.5. Given an (m− q)-dimensional manifold X for m− q ≥ 7 and a Dq-
bundle ξ over X, whose total space is E(ξ), we may construct a homology manifold
EI with a map

fI : EI → E(ξ)

which satisfies the properties of 2.3. In particular f−1
I (X) = XI is a homology

manifold such that EI is the total space of the bundle f∗I ξ and

fI | : XI → X

also satisfies the properties of 1.5.

Denote g−1(Q) by NQ and g−1(R) by NR, so that (NQ, NR, g∗ξ) is a codimension
q bundle subspace of N with

N = E(g∗ξ) ∪NR.
By applying Lemma 2.5 to E(g∗ξ), we get

(fI)E : EI → E(g∗ξ)

satisfying the above conditions. Applying 1.5 to NR results in

(fI)R : RI → NR.
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K+ D+     I(K+)0

Figure 4. The Wall realization K+.

By Lemma 2.4 we may apply the construction to NR and E(g∗ξ) simultaneously
so that the resulting homology manifolds RI and EI and maps agree on their
boundaries. This proves Proposition 2.3.

Proof of Lemma 2.4. Take a manifold two-skeleton of M which is the union of
manifold two skeletons for M+ and M− along a manifold two skeleton for M0.
Denote this two skeleton and its boundary by

B = B+ ∪B0 B− and D = D+ ∪D0 D−.

We shall perform the construction of 1.5 simultaneously on M+ and M−. What
was one controlled surgery obstruction in the original construction

σ = (0, I) ∈ Hm(M ;L•)

is now two controlled surgery obstructions

σ+ = (0, I) ∈ Hm(M+;L•), σ− = (0, I) ∈ Hm(M−;L•) .

In Step I, we apply [1] (4.4) to get a map q0 : M → M which restricts to
UV 1 maps Di → Mi, i = 0,+,−, and is itself UV 1. Thus the controlled surgery
obstruction groups are given by

Lc
(
Di×[0,1]
↓
M±

)
∼= Hm(M±;L•) ∼= Hm(M±;L•)⊕Hm(M±;L0(Z)) .

Since M± are manifolds with boundary, m ≥ 7 is required. Take a Wall realization
K± of (0, I). Glue this intoM± to create the first Poincaré space of the construction,
which comes with a map p0 : X0 → M and a Poincaré decomposition X0 =
(X0)+ ∪ (X0)− which is respected by p0.

We must exercise some care to get the Wall realizations to agree on their bound-
aries.

Denote ∂K± = (K±)0. The images of (K±)0 → D0 × [0, 1] agree in

Lc
(
D0×[0,1]
↓
M0

)
∼= Hm−1(M0;L•) .

Each is again (0, I), the image of (0, I) under the boundary maps

Hm(M±;L•)→ Hm−1(M0;L•) .

Since the surgery obstructions of ∂K+ = (K+)0 and ∂K− = (K−)0 agree, we may
glue them together along their common boundary D0 to get a normal invariant
with vanishing controlled surgery obstruction, i.e., we may surger the map

∂K+ ∪ ∂K− → D0 × [0, 1]



5110 HEATHER JOHNSTON AND ANDREW RANICKI

D0     I(K+)0 (K-)0

W

Figure 5. The trace of surgery on (K+)0 ∪ (K−)0 → D0 × [0, 1]
can be used to “match up” the boundaries of the Wall realizations.

to a controlled homotopy equivalence. Let W denote the trace of this surgery.
Denote K ′− = K− ∪(K−)0 W , and extend the map K− → D−× [0, 1] in the obvious
way. It is a Wall realization of (0, I), which agrees with K+ on its boundary.

If we perform the construction with two Wall realizations which agree on their
boundaries, then we may glue them together to get X0 = (X0)+ ∪ (X0)−. Further-
more, since the boundary of the Wall realizations is itself a Wall realization, the
intersection

(X0)+ ∩ (X0)−

is itself the first stage of the given construction on M0. Similarly the union X0,
which is the result of gluing in the union of the Wall realizations, is the first stage
of the construction on M .

To preserve this decomposition throughout the construction requires only that
we repeat the above type of construction in later steps.

Proof of Lemma 2.5. Let BX denote a manifold two skeleton of X . Since E(ξ)
and X are of the same homotopy type, we could easily construct a manifold two
skeleton of E(ξ) by thickening a manifold two skeleton of X , i.e., E(c∗ξ), where
c : BX → X . Recall that the construction requires a fine manifold two skeleton.
Let EX denote the manifold two skeleton of an ε-neighborhood of X in E(ξ). We
may extend this to a fine manifold two skeleton of E(ξ) by

B = EX ∪BS ,
where BS is a manifold two skeleton of the complement of the given ε-neighborhood
of X .

Here EX ∩BS is the manifold two skeleton of S(ξ) for the given ε-sphere bundle.
We shall now perform the construction of 2.4 on this decomposition of E(ξ), but
with the added requirement that the result of the construction on the small neigh-
borhood of X is itself a bundle over the desired XI . This is done by preserving the
bundle throughout the construction. Take a Wall realization of

(0, I) ∈ Hm−q(X ;L•)

denoted by

σX : NX → DX × [0, 1] .

Let σE denote the bundle map on the pullback

NE = σ∗Xξ
′,

where ξ′ is the bundle induced on DX × [0, 1] by ξ. The result is

σE : NE → E(ξ|DX × [0, 1]) ,
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the image of σX under the transfer map. The corresponding surgery obstruction is
thus the image of (0, I) under the transfer map

Hm−q(X ;L•)→ Hm(E(ξ);L•) .
One need only check that this map takes (0, I) to (0, I) to see that we may preserve
the bundle throughout the construction.

Given a simple m-dimensional Poincaré space X with a map g : X → P to a
space P with a codimension q bundle subspace Q ⊂ P , let T H,Q−t(X) be the set
of bordism classes of normal maps (f, b) : M → X from m-dimensional homology
manifolds such that gf : M → P is transverse to Q ⊂ P .

Theorem 2.6. Given X, g : X → P and Q ⊂ P as above such that m− q ≥ 7.
(i) The forgetful function T H,Q−t(X)→ T H(X) is a bijection.
(ii) Every map f : M → P from an m-dimensional homology manifold is bordant

to a map transverse to Q ⊂ P .

Proof. (i) The functions

T H(X)→ T TOP (X)× L0(Z) ; ((f, b) : M → X) 7→ ((fTOP , bTOP ), i(M)) ,

T H,Q−t(X)→ T TOP,Q−t(X)× L0(Z) ; ((f, b) : M → X) 7→ ((fTOP , bTOP ), i(M))

are bijections by Theorem 1.1 and its Q-transverse variation 2.3. The forgetful
function

T TOP,Q−t(X)→ T TOP (X)

is a bijection by topological transversality, so that

T H,Q−t(X) = T TOP,Q−t(X)× L0(Z) = T TOP (X)× L0(Z) = T H(X) .

(ii) Unfortunately (i) does not apply to an arbitrary map. We may get around
this by factoring any map f : M → P through a homotopy equivalence f̂ : M → P .
Any map f is homotopic to f̂ ◦ f such that f̂ : P → P is a Serre fibration and f is
a homotopy equivalence. Now by (i), f is normally cobordant to a transverse map,
and hence f is bordant to a transverse map.

Given a simple m-dimensional Poincaré duality space X with a map g : X → P ,
as above, we may also study the Q-transverse homology manifold structure set.
Denoted by SH,Q−t(X), this is the set of equivalence classes of pairs (M,h) with
M an m-dimensional homology manifold and h : M → X a simple homotopy
equivalence such that gh : M → P is transverse to Q ⊂ P , with (M1, h1) ' (M2, h2)
if there exists an s-cobordism (W ;M1,M2) with a simple homotopy equivalence of
the type

(f ;h1, h2) : (W ;M1,M2)→ X × ([0, 1]; {0}, {1})
such that the composite

W
f→ X × [0, 1]

proj.→ X
g→ P

is transverse to Q ⊂ P .

Remark 2.7. The isomorphism

SH,Q−t(X) ∼= SH(X)

will follow from s-transversality for homology submanifolds, Theorem 4.1, just as
Theorem 2.6 followed from 2.3.
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Before dealing with transversality up to s-cobordism, we turn our attention to
some splitting theorems. These theorems follow directly from transversality up to
normal bordism and are useful in the proof of transversality up to s-cobordism.

3. Codimension q splitting of homology manifolds

Fix a space P with a codimension q bundle subspace (Q,R, ξ), as in Section 2.
Wall [18] (Chapter 11) defined the codimension q splitting obstruction groups

LS∗(Φ) to fit into an exact sequence

. . .→ Lm+1(Z[π1(R)]→ Z[π1(P )])→ LSm−q(Φ)

→ Lm−q(Z[π1(Q)])
ξ!

→ Lm(Z[π1(R)]→ Z[π1(P )])→ . . .

with ξ! the transfer maps induced by ξ.
From now on, we assume that P is an m-dimensional Poincaré space and that

Q ⊂ P is an (m − q)-dimensional Poincaré subspace, with (R,S(ξ)) an m-dimen-
sional Poincaré pair.

Definition 3.1. (i) A simple homotopy equivalence f : M → P from an m-
dimensional homology manifold splits along Q ⊂ P if f is s-cobordant to a simple
homotopy equivalence (also denoted by f) which is transverse to Q ⊂ P ,

f = E(g) ∪S(g) h : M = E(g∗ξ) ∪S(g∗ξ) Z → P = E(ξ) ∪S(ξ) R,

and such that the restrictions

g = f | : N = f−1(Q)→ Q , h = f | : Z = f−1(R)→ R

are simple homotopy equivalences.
(ii) The split structure set SH(P,Q, ξ) is the set of homology manifold structures

on P which split along Q ⊂ P .

For any simple homotopy equivalence f : M → P from an m-dimensional topo-
logical manifold M there is defined a codimension q splitting obstruction

sQ(f) ∈ LSm−q(Φ)

such that sQ(f) = 0 if (and for m−q ≥ 5 only if) f splits in the topological manifold
category. The image of sQ(f) in Lm−q(Z[π1(Q)]) is the surgery obstruction σ∗(g) of
the normal map g = f | : N = f−1(Q)→ Q obtained by topological transversality.
See Wall [18] (Chapter 11) and Ranicki [15] (pp. 572–577) for details.

Theorem 3.2. Let m− q ≥ 7.
(i) A simple homotopy equivalence f : M → P from an m-dimensional homology

manifold with a codimension q bundle subspace (Q,R, ξ) splits along Q ⊂ P if and
only if an obstruction sQ(f) ∈ LSm−q(Φ) vanishes.

(ii) The split homology manifold structure set SH(P,Q, ξ) fits into an exact se-
quence

· · · → LSm−q+1(Φ)→ SH(P,Q, ξ)→ SH(P )→ LSm−q(Φ) .

Proof. Define LSHm−q(Φ) to be the group of obstructions in the exact sequence

SH(P,Q, ξ)→ NIH,Q−t(X)→ LSHm−q(Φ) .

Consider the homology manifold normal invariant given by f : M → P ; by 2.6
f is normally bordant, say via W → P × I, to a map g : M ′ → P such that g is
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Figure 6. A homology manifold normal invariant of (P ×
[0, 1], R× 0).

transverse to Q. In particular, g−1(Q) = Y is a homology manifold with a normal
neighborhood N(Y ) = g∗(ξ).

Thus, this transverse normal invariant defines a splitting obstruction which lives
in LSHm−q(Φ). Since we do not a priori have an understanding of LSHm−q(Φ), we
must study it by comparing to the obstruction groups Lm+1(π1(R) → π1(P )),
Lm−q(Q) and the surgery exact sequences for SH(P × [0, 1], R× 0) and SH(Q).

There is clearly a commutative diagram with vertical maps given by restriction
as follows:

SH(P × I, R× 0) −−−−→ NIH(P × I, R× 0) −−−−→ Lm+1(R→ P )y y y
SH(P,Q, ξ) −−−−→ NIH,Q−t(P ) −−−−→ LSHm−q(Φ)y y y
SH(Q) −−−−→ NIH(Q) −−−−→ Lm−q(Q)

The splitting obstruction σ(f) ∈ LSHm−q(Φ) can be understood as a two stage
obstruction as follows. First the normal invariant g| : Y → Q defines an obstruction
σQ(f) ∈ Lm−q(Q). If this obstruction vanishes, then, by the surgery exact sequence
of [1], g| : Y → Q is normally cobordant to a simple homotopy equivalence. Let
V → Q × [0, 1] denote this normal cobordism, and let N(V ) → E(ξ) × [0, 1] de-
note the corresponding pullback of ξ. We can define a homology manifold normal
invariant of P × [0, 1] relP × 0, E(ξ) × 1 by gluing N(V ) to W . There is now de-
fined an obstruction σR(f) ∈ Lm+1(π1(R)→ π1(P )) to this normal invariant being
equivalent to a simple homotopy equivalence of P × [0, 1], i.e. an s-cobordism from
f : M → P to some map h : N → P .

If σ(f) ∈ LSm−q(Φ) vanishes, then both σQ(f) and σR(f) are defined and vanish,
so that f is s-cobordant to a split map. Conversely, if f is s-cobordant to a split
map, then both σQ(f) and σR(f) are defined and vanish.

Example 3.3. (i) If q = 1, ξ is trivial, and R = R1 t R2 is disconnected with
π1(Q) ∼= π1(R1), then LS∗(Φ) = 0, there is no obstruction in Theorem 3.2, and

SH(P ) = SH(P,Q, ξ) .

This is the homology manifold π-π codimension 1 splitting theorem already ob-
tained by Johnston [6].

(ii) If q ≥ 3, the codimension q splitting obstruction is just the ordinary surgery
obstruction

sQ(f) = σ∗(g) ∈ LSm−q(Φ) = Lm−q(Z[π1(Q)])
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of the restriction g = f | : f−1(Q)→ Q, with an exact sequence

· · · → Lm−q+1(Z[π1(Q)])→ SH(P,Q, ξ)→ SH(P )→ Lm−q(Z[π1(Q)]) .

This is the homology manifold Browder splitting theorem already obtained by John-
ston [6].

4. Homology submanifold transversality up to s-cobordism

We proceed to prove homology manifold transversality up to s-cobordism, using
the above results.

Theorem 4.1. Let f : M → P = E(ξ) ∪S(ξ) R be a map from an m-dimensional
homology manifold M to a space P with a codimension q bundle subspace (Q,R, ξ).
If m− q ≥ 7, then f is s-transverse to Q ⊂ P .

Proof. For Q ⊂ P of codimension q ≥ 3 this was proved in [6].
We prove the theorem here for codimension q = 1, 2. First we may assume that

the map f : M → P is a homotopy equivalence by factoring the original map
through a Serre fibration. This results in

M
f̂−→ P

f−→ P ,

homotopic to the original f , so that f̂ is a homotopy equivalence, f is a Serre
fibration, and P has a codimension q subset Q so that the normal bundle of Q in
P is the pullback of the normal bundle of Q in P . To achieve Q-transversality for
f , clearly it would suffice to achieve Q transversality for f̂ . Thus we may assume
that f : M → P is a homotopy equivalence. By Theorem 2.6 (ii) we have that f is
bordant to a Q-transverse map. From here the proof proceeds in two steps, given
by the following lemma.

Lemma 4.2. If f : M → P is a homotopy equivalence as above and

F : W → P × [0, 1]

is a homology manifold bordism from f to g : M ′ → P , then:
(i) The map f is homotopy equivalent to a map g : M → P , which factors through

a homotopy equivalence to a Poincaré space X, h : M → X with g′′ : X → P such
that g = g′′ ◦ h, and g′′ is Poincaré transverse to Q, i.e. the inverse image of Q is
a Poincaré space with normal bundle the pullback of the normal bundle of Q.

(ii) The map g is s-cobordant to a Q-transverse map.

Proof of Lemma 4.2. (i) The key idea of this proof is to use a patch space structure
on W to achieve the desired result. Because W is a homology manifold, it has a
patch space structure with only two patches. Let

H : W ′ →W

be such a structure, where

W ′ = W+ ∪W0 W−

gives W as a union of manifolds glued along a homotopy equivalence

hW : W0 →W0 .
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Furthermore, we may assume that

∂W ′ = X qX ′

is such that

H | : ∂W ′ →M qM ′

restricts to two patch space structures

X = X+ ∪X−
and

X ′ = X ′+ ∪X ′−
with gluing maps

hX : X0 → X0

and

hX′ : X ′0 → X ′0

on each of M and M ′.
We construct a patch space structure for M ′ as follows: First construct a patch

space structure

H | : Q′′ → Q′

for the homology manifold Q′ = g−1(Q). Thicken this patch space structure to
a patch space structure for ν(Q′), the pullback of the normal bundle of Q. Then
construct a patch space structure for

M ′ \ ν(Q′)

relative to the structure for ∂ν(Q′). Finally construct a patch space structure for
W relative to this structure for M ′. In this manner a patch space structure for W
is constructed so that the map

g ◦H | : X ′ → P × {1}
is Poincaré transverse to Q.

Consider the map

G = F ◦H : W ′ → W → P × [0, 1] .

We shall show that G is homotopic rel X ′ to a map which is Poincaré transverse
to Q. First consider G|W+. We may use manifold transversality to make this map
transverse to

Q× [0, 1] ⊂ P × [0, 1] ,

which inherits a codimension-q structure from Q ⊂ P . If the homotopy equivalence

hW : W0 → W0

splits along

Q0 = (G|W+)−1(Q× [0, 1]) ∩W0 ,

then G|W− is Q× [0, 1]-transverse along its boundary W0, and we may use manifold
transversality to homotope G|W− rel W0 to a Q-transverse map. Unfortunately
there is no guarantee that the homotopy equivalence hW splits along Q0. There
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X' Q'

X
W' P IQ  I

Figure 7. We would like to extend Poincaré transversality for the
map G from X ′ to all of W ′.

is a priori a splitting obstruction σ ∈ LSm−q(Φ), where Φ is defined by the pair
Q0 ⊂W0.

We shall show that by changing to a different patch space structure H : W →
W , we may assume that this obstruction vanishes. First we need to change the
patch space structure slightly so that LSm−q(Φ) acts on the set of possible patch
space structures. Our action will be by LSm−q(Ψ), where Ψ is defined by the pair
Q′′ ⊂ X ′.

The first step is to show that we may assume

LSm−q(Φ) ∼= LSm−q(Ψ) .

This is achieved by performing Poincaré surgery to fix the fundamental groups of
Q0 and W0; but these are the boundaries of the manifold two skeletons of

Q′ = (G|W+)−1(Q× [0, 1])

and W ′. Therefore the fundamental groups of Q′ ⊂W ′ agree with Φ, and we may
view the problem of changing Φ to agree with Ψ as a problem about Q′ ⊂W ′. This
is just fundamental group Poincaré surgery on

G : W ′ → P × [0, 1] ,

or rather manifold surgery on the manifold two skeleton of W ′,

G| : W+ →W+ .

Now we can assume that both Q′′ ⊂ X ′ and Q0 ⊂ W0 define the same group
LSm−q(Φ). This group acts on the patch space structures of X ′ by acting on hX′

as follows: Lm−q(Q′′) acts on the patch space structures

h| : Q′′ → Q′

for Q′′ = Q′′+ ∪Q′′− by acting on the gluing homotopy equivalence

hQ′′ : Q′′0 → Q′′0 .

Given an element σ ∈ Lm−q(Q′′), denote its Wall realization by σ : K → Q′′0× [0, 1],
where ∂K = Q′′0 q Q̂0. The new patch space structure is given by Q̂′′ = Q̂′′+ ∪Q′′−,
where Q̂′′+ = Q′′+ ∪idQ′′0 K. The new gluing map is now h

Q̂′′
= σ|Q̂′′. A Poincaré

bordism from Q′′ to Q̂′′ is given by Q̂′′+ × [0, 1] ∪σ Q′′− × [0, 1]. where σ is viewed
as a map σ : K × 0 → Q′′0 × [0, 1]. The group Lm(X ′ \ Q′′) acts similarly on the
structure

hX | : X ′0 \Q′′0 → X ′0 \Q′′0 .
The fact that we really had an element of LSm−q(Φ) insures that the Wall realiza-
tions will glue together to a composite which we denote by Kσ, and that the patch
spaces will glue together to give a new patch space structure, X ′′.
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X'

-Kσ

Kσ

Figure 8. The action of σ on X ′ by Kσ produces a new space X ′′

and adds the above to W ′. In particular, it adds −Kσ to W0.

Claim. The action of

σ ∈ LSm−q(Ψ)

results in a new patch space structure whose transversality obstruction differs by
−σ from the previous one, i.e., with the correct choice of σ the transversality
obstruction vanishes.

Proof of claim. If we consider the addition of Kσ × [0, 1] as in the diagram, it
becomes clear that we have changed W0 by −Kσ, as asserted.

The map G is now homotopic to a Poincaré transverse map, and G|X is the
desired map g′′ Poincaré transverse to Q. The original map f is homotopic to
g′′ ◦ h where h : M → X is the homotopy inverse of H | : X → M . This completes
the proof of Lemma 4.2 (i).

(ii) Suppose we are given

g = g′′ ◦ h : M → P ,

for the homotopy equivalence h : M → X and the Poincaré transverse map g′′ :
X → P . Let Q′ denote (g′′)−1(Q), so that by assumption Q′ is a Poincaré space.
If h is s-cobordant to a homotopy equivalence ĥ : M̂ → X which is split over Q′,
then g′′ ◦ ĥ is homology manifold transverse to Q. There is an obstruction σ to
splitting h which lives in LSm−q(Φ), where Φ is defined by the pair Q′ ⊂ X . Let σ
denote this obstruction.

Because Q′ was constructed by the method of 4.2 (i), it has a two-patch structure

Q′ = Q′+ ∪Q′− and Q′0 = Q′+ ∩Q′−
which agrees with the two-patch space structure of X , i.e. Q′+ ⊂ X+, Q′− ⊂ X−
and Q′0 ⊂ X0. If Ψ is defined by the pair Q′0 ⊂ X0, there is a natural isomorphism

LSm−q(Ψ) ∼= LSm−q(Φ) .

LSm−q(Ψ) acts on the possible patch space structures h : M → X on M as follows.
Recall that, by construction, the gluing map

hX : X0 → X0

splits along Q′0 ⊂ X0. We can change the patch space structure on X , if we make
sure that it has a map to the original X which is Poincaré transverse to Q′. In
particular, the new map

hY : Y0 → Y0

must split along the inverse image of Q′. Take hX and act on it by LSm−q(Φ), by
acting on

hQ′ | : Q′0 → Q′0
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by Lm−q(Q′0) and by acting on

hX | : X0 \Q′0 → X0 \Q′0
by Lm(X0 \Q′0). The result fits together along ∂ν(Q′) by definition of LSm−q(Ψ).
By construction, there is a map k : Y → X which is a homotopy equivalence, and
which is Poincaré transverse to Q′.

We claim that, if k : X → Y is the homotopy inverse of k, then the new splitting
obstruction of

k ◦ h : M → X → Y

vanishes. Clearly the splitting obstruction of k ◦ k ◦ h is the same as that of h, but
by construction this splitting obstruction differs from that of k◦h by the σ splitting
obstruction of k.

Thus our new map k ◦ h is s-cobordant to a homology manifold split map.
Composing this homology manifold split map with the Poincaré transverse map
g′′ ◦ k we see that our original f is in fact s-cobordant to a homology manifold
transverse map. The proof of Lemma 4.2 is thus complete.

This also concludes the proof of Theorem 4.1.

5. Dual transversality for homology manifolds

We now extend the results of Section 4 on transversality to a codimension q
bundle subspace Q ⊂ P for a map f : Mm → P from an m-dimensional homology
manifold with m− q ≥ 7, and obtain dual transversality for a map f : Mm → |K|
to the polyhedron of a k-dimensional simplicial complex K with m − k ≥ 7. In
Section 6 we shall formulate an obstruction for a map f : Mm → |K| to be bordant
to a dual transverse map – the obstruction is 0 for m− k ≥ 7.

Let X be a simple m-dimensional Poincaré duality space with a map g : X → |K|
to the polyhedron of a k-dimensional simplicial complex K.

The dual transverse homology manifold structure set SH,K−t(X) is the set of
equivalence classes of pairs (M,h) with M an m-dimensional homology manifold
and h : M → X a simple homotopy equivalence such that gh : M → |K| is dual
transverse, with (M1, h1) ' (M2, h2) if there exists an s-cobordism (W ;M+,M2)
with a simple homotopy equivalence of the type

(f ;h1, h2) : (W ;M1,M2)→ X × ([0, 1]; {0}, {1})
such that the composite

W
f→ X × [0, 1]

proj.→ X
g→ |K|

is dual transverse.
Let T H,K−t(X) be the set of bordism classes of normal maps (f, b) : M → X

from m-dimensional homology manifolds such that gf : X → |K| is dual transverse.

Theorem 5.1. Let m− k ≥ 7.
(i) The dual transverse homology manifold structure set fits into the surgery exact

sequence

· · · → Lm+1(Z[π1(X)]) ∂→ SK,Q−t(X)
η→ T K,Q−t(X) θ→ Lm(Z[π1(X)]) .

(ii) The forgetful function T K,Q−t(X)→ T K(X) is a bijection.
(iii) The forgetful function SK,Q−t(X) → SK(X) is a bijection. In particular,

SK,Q−t(X) is non-empty if and only if SK(X) is non-empty.
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(iv) Every map f : M → |K| from an m-dimensional homology manifold is dual
s-transverse.

Proof. Exactly as above.

6. The dual transversality obstruction

For any simplicial complex K let ΩHm(K) (resp. ΩH,tm (K)) be the bordism group
of maps f : M → |K| from m-dimensional homology manifolds (resp. dual trans-
verse maps f). We now formulate the bordism obstruction to dual transversality
for homology manifolds, as the failure of the forgetful map ΩH,tm (K)→ ΩHm(K) to
be an isomorphism.

We refer to Chapters 11,12 of Ranicki [16] for an exposition of ∆-sets, generalized
homology theories, bordism spectra and assembly maps. The topological manifold
bordism groups and the ΩTOP• ({∗})-coefficient generalized homology groups are the
homotopy groups of spectra of Kan ∆-sets ΩTOP• (K) and H•(K; ΩTOP• ({∗})):

ΩTOP∗ (K) = π∗(ΩTOP• (K)) ,

H∗(K; ΩTOP• ({∗})) = π∗(H•(K; ΩTOP• ({∗}))) .

Moreover, there is defined a topological assembly map

ATOP : H•(K; ΩTOP• ({∗}))→ ΩTOP• (K)

which is a homotopy equivalence by topological manifold transversality, inducing
the Pontrjagin-Thom isomorphisms

ATOP : H∗(K; ΩTOP• ({∗})) ∼= ΩTOP∗ (K)

The combinatorial construction of ΩTOP• (K) and ATOP will now be extended to
the homology manifold bordism spectra ΩH• (K), ΩH,t• (K) with an assembly map

AH : ΩH,t• (K) = H•(K; ΩH• ({∗}))→ ΩH• (K) .

The homology assembly map AH is only a homotopy equivalence to the extent
to which homology manifolds have transversality.

The homology manifold bordism spectrum of a simplicial complex K

ΩH• (K) = {ΩH• (K)m |m ≥ 0}

is the Ω-spectrum with ΩH• (K)m the Kan ∆-set defined by

ΩH• (K)(n)
m = {(m+ n)-dimensional homology manifold n-ads

(M ; ∂0M,∂1M, . . . , ∂nM) such that

∂0M ∩ ∂1M ∩ · · · ∩ ∂nM = ∅, with a map f : M → |K| }

with base simplex the empty manifold n-ad ∅. The homotopy groups

πm(ΩH• (K)) = πm−k(ΩH• (K)k) = ΩHm(K) (m ≥ k ≥ 0)

are the bordism groups of maps f : M → |K| from closed m-dimensional homology
manifolds. Similarly for the dual transverse bordism spectrum ΩH,t• (K), with the
additional requirement that f : M → |K| be dual transverse.
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Proposition 6.1. The dual transverse bordism spectrum ΩH,t∗ (K) coincides with
the generalized ΩH• ({∗})-homology spectrum of K,

ΩH,t• (K) = H(K; ΩH• ({∗})) ,
so that, on the level of homotopy groups,

ΩH,tm (K) = Hm(K; ΩH• ({∗})) (m ≥ 0) .

Proof. Define the generalized homology spectrum H•(K; ΩH• ({∗})) as in [16] (12.3),
with an m-dimensional ΩH• ({∗})-coefficient cycle ([16], 12.17)

x = {M(σ)m−|σ| |σ ∈ K}
essentially the same as a dual transverse map

f(x) : Mm =
⋃
σ∈K

M(σ)→ |K|

from a closed m-dimensional homology manifold, with inverse images the (m−|σ|)-
dimensional homology manifolds with

f(x)−1(D(σ,K), ∂D(σ,K)) = (M(σ), ∂M(σ)) (σ ∈ K) .

The homotopy group

πm(H•(K; ΩH• ({∗}))) = Hm(K; ΩH• ({∗}))
is the cobordism group of such cycles, and is the bordism group of dual transverse
maps f : M → |K| from m-dimensional homology manifolds.

The homology assembly map of spectra

AH : ΩH,t• (K) = H•(K; ΩH• ({∗}))→ ΩH• (K)

is defined as in [16] (12.18), inducing on the level of homotopy groups the assembly
maps of bordism groups

AH : ΩH,t∗ (K) = H∗(K; ΩH• ({∗}))→ ΩH∗ (K)

which forget dual transversality.

Definition 6.2. Given an m-dimensional homology manifold

M =
⋃
α

Mα

with Mα the components of M , set

I(M) =
∑
α

[Mα]i(Mα) ∈ Hm(M)[L0(Z)] ,

with [Mα] ∈ Hm(M) the image of the fundamental class [Mα] ∈ Hm(Mα).

The augmentation map

Hm(M)[L0(Z)]→ Hm(M ;L0(Z)) = Hm(M)⊗Z L0(Z) ; x[y]→ x⊗ y
sends I(M) to the resolution obstruction of M ,

i(M) =
∑
α

i(Mα) ∈ Hm(M ;L0(Z)) =
∑
α

L0(Z) .

We shall now verify that I(M, f) and Ĩ(M, f) are bordism invariants :
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Proposition 6.3. Let f : M → |K| be a map from an m-dimensional homology
manifold M to a polyhedron, and let M =

⋃
αMα be the decomposition of M into

components with fα = f | : Mα → |K|.
(i) The element

I(M, f) =
∑
α

(fα)∗[Mα][i(Mα)] ∈ Hm(K)[L0(Z)]

is a homology manifold bordism invariant.
(ii) If f is a dual transverse map, then

I(M, f) = 0 ∈ Hm(K)[L0(Z)] .

(iii) If f∗ : Hm(M) → Hm(K) is an isomorphism and f is homology manifold
bordant to a dual transverse map, then

i(M) = 0 ∈ Hm(M ;L0(Z)) .

Proof. (i) Given a bordism

(g; f, f ′) : (W ;M,M ′)→ |K| ,
denote the connected components by

(gα; fα, f ′α) : (Wα;Mα,M
′
α)→ |K|.

We have

(fα)∗[Mα] = (f ′α)∗[M ′α] ∈ Hm(K),

as usual. Furthermore,

i(Mα) = i(Wα) = i(M ′α),

because i(X) = i(∂X) for any connected homology manifold with non-empty
boundary (Quinn [12], 1.1). Thus we have

I(M, f) =
∑
α

(fα)∗[Mα][i(Mα)]

=
∑
α′

(f ′α′)∗[i(Mα′)] = I(M ′, f ′) ∈ Hm(K)[L0(Z)] .

(ii) The augmentation map

Hm(K)[L0(Z)]→ Hm(K;L0(Z)) = Hm(K)⊗Z L0(Z) ; x[y]→ x⊗ y
sends I(M, f) to f∗i(M) ∈ Hm(K;L0(Z)), for any map f : M → |K|. If M is
connected, then i(M) ∈ L0(Z) and

I(M, f) = f∗[M ][i(M)] ∈ Hm(K)[i(M)] ⊂ Hm(K)[L0(Z)] ,

so that f∗i(M) = 0 implies I(M, f) = 0. If f : M → |K| is dual transverse, then

f∗i(M) =
∑

σ∈K(m)

i(f−1D(σ,K))σ ∈ Hm(K;L0(Z)) .

Each f−1D(σ,K) is a 0-dimensional homology manifold, which is a disjoint union of
points, with resolution obstruction i(f−1D(σ,K)) = 0, so that f∗i(M) = 0. Thus,
if M is connected and f : M → |K| is dual transverse, then f∗i(M) = 0, and hence
I(M, f) = 0. Apply this to each component of M .

(iii) Combine (i) and (ii).
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Definition 6.4. (i) For any space X define a morphism

I : ΩHm(X)→ Hm(X)[L0(Z)] ; (M, f) 7→ I(M, f) = f∗I(M)

such that

i : ΩHm(X) I→ Hm(X)[L0(Z)]→ Hm(X ;L0(Z)) ; (M, f) 7→ f∗i(M)

and

ΩHm(X) I→ Hm(X)[L0(Z)]
proj.−→ Hm(X) ; (M, f) 7→ f∗[M ] .

(ii) Let

L̃0(Z) = L0(Z)\{0} ,
and let

Ĩ : ΩHm(X) I→ Hm(X)[L0(Z)]→ Hm(X)[L̃0(Z)] .

For any Ω-spectrum X• = {Xn |n ≥ 0} of ∆-sets there is defined an Ω-spectrum
of ∆-sets

X•[L0(Z)] = {Xn[L0(Z)] |n ≥ 0}
with

πm(X [L0(Z)]) = πm(X)[L0(Z)] (m ≥ 0) .

Similarly for L̃0(Z).

Proposition 6.5. Let K be a k-dimensional simplicial complex.
(i) The map of Ω-spectra

ΩH• (K)→ ΩTOP• (K)[L0(Z)] ; M 7→MTOP [i(M)]

induces maps

πm(ΩH• (K)) = ΩHm(K)→ πm(ΩTOP• (K)[L0(Z)]) = ΩTOPm (K)[L0(Z)]

which are isomorphisms for m ≥ 6.
(ii) The composite

ΩH,tm (K) A
H

→ ΩHm(K) Ĩ→ Hm(K)[L̃0(Z)]

is 0.
(iii) The homology assembly map

AH : ΩH,tm (K) = Hm(K; ΩH• ({∗}))→ ΩHm(K)

is an isomorphism for m− k ≥ 6.

Proof. (i) See Johnston [6] (cf. Corollary 1.6).
(ii) By Proposition 6.3

im(IAH : ΩH,tm (K)→ Hm(K)[L0(Z)]) ⊆ Hm(K)[0] ⊆ Hm(K)[L0(Z)] ,

so that ĨAH = 0.
(iii) By (i) we know that the maps of Kan ∆-sets

ΩH• ({∗})n → ΩTOP• ({∗})n[L0(Z)] ; M 7→MTOP [i(M)],

are homotopy equivalences for n ≥ 6. It follows that for m ≥ k + 6

H(K; ΩH• ({∗}))m ' H(K; ΩTOP• ({∗}))m[L0(Z)]
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and hence that
Hm(K; ΩH• ({∗})) = π0(H(K; ΩH• ({∗}))m)

= π0(H(K; ΩTOP• ({∗}))m[L0(Z)])
= Hm(K; ΩTOP• ({∗}))[L0(Z)]
= ΩTOPm (K)[L0(Z)] = ΩHm(K) .

Theorem 6.6. (i) The composite

ΩH,tm (K)→ ΩHm(K) Ĩ→ Hm(K)[L̃0(Z)]

is 0. Thus if f : M → |K| is homology manifold bordant to a dual transverse map
then

I(M, f) ∈ Hm(K)[0] ⊂ Hm(K)[L0(Z)],

and either f∗[M ] = 0 ∈ Hm(K) or i(M) = 0 ∈ Hm(M ;L0(Z)), but in any case

f∗i(M) = 0 ∈ Hm(K;L0(Z)) .

(ii) There exists a spectrum L• whose homotopy groups fit into an exact sequence

· · · → ΩHm({∗})→ ΩTOPm ({∗})[L0(Z)]→ πm(L•)→ ΩHm−1({∗})→ . . . ,

with

πm(L•) =

{
Z[L̃0(Z)] if m = 0,
0 if m ≥ 1 and m 6= 4, 5

and

ΩHm(K)→ ΩTOPm (K)[L0(Z)] Ĩ→ Hm(K;L•)
→ Hm(K;π0(L•)) = Hm(K)[L̃0(Z)] ;

(M, f : M → |K|) 7→ f∗[M ][̃i(M)] .

(iii) For m ≥ 6 there is defined an exact sequence

· · · → ΩH,tm (K) A
H

→ ΩHm(K) Ĩ→ Hm(K;L•)→ ΩH,tm−1(K)→ . . . .

The proof of 6.6 (i) is given by Proposition 6.3. We now give the proofs of 6.6
(ii) and (iii). The spectrum L• in (ii) is given by

Definition 6.7. Let

L• = cofibre(ΩH• ({∗})→ ΩTOP• ({∗})[L0(Z)]) ,

an Ω-spectrum whose homotopy groups fit into an exact sequence

· · · → ΩHm({∗})→ ΩTOPm ({∗})[L0(Z)]→ πm(L•)→ ΩHm−1({∗})→ . . . .

It is now immediate from the identities

ΩHm({∗}) =


Z if m = 0,
0 if m = 1, 2,
ΩTOPm ({∗})[L0(Z)] if m ≥ 6 ,

ΩTOPm ({∗}) =

{
Z if m = 0,
0 if m = 1, 2, 3,
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that

πm(L•) =

{
Z[L̃0(Z)] if m = 0,
0 if m ≥ 1 and m 6= 4, 5,

as claimed in Theorem 6.6 (ii).
The exact sequence in the statement of Theorem 6.6 (iii) is given by

Proposition 6.8. For m ≥ 6 there is defined an exact sequence

· · · → ΩH,tm (K) A
H

→ ΩHm(K) Ĩ→ Hm(K;L•)→ ΩH,tm−1(K)→ . . . .

Proof. This is just the exact sequence

· · · → Hm(K; ΩH• ({∗}))→ Hm(K; ΩTOP• ({∗})[L0(Z)])

→ Hm(K;L•)→ Hm−1(K; ΩH• ({∗}))→ . . .

induced by the cofibration sequence of spectra

ΩH• ({∗})→ ΩTOP• ({∗})[L0(Z)]→ L• ,
using 1.6 and 6.1 to identify

ΩH,tm (K) = Hm(K; ΩH• ({∗})) ,
ΩHm(K) = Hm(K; ΩTOP• ({∗}))[L0(Z)] .

This also completes the proof of Theorem 6.6.
In the special case K = Sm we have

Corollary 6.9. (i) A map f : Mm → Sm from an m-dimensional homology man-
ifold M determines the element

Ĩ(M, f) = degree(f)[i(M)] ∈ Z[L̃0(Z)] ,

which vanishes if (and for m ≥ 6 only if) f is bordant to a dual transverse map.
(ii) For connected M , Ĩ(M, f) = 0 if and only if either degree(f) = 0 ∈ Z or

i(M) = 0 ∈ Hm(M ;L0(Z)) = L0(Z).

Proof. This follows from the sequence of 6.6 (i),

Hm(Sm; ΩH• ({∗})) AH−→ ΩHm(Sm) Ĩ−→ Z[L̃0(Z)],

whose composite is 0, and which is exact for m ≥ 6. By a simple calculation,

Hm(Sm; ΩH• ({∗})) = ΩH0 ({∗})⊕ ΩHm({∗}) .
Since any zero-dimensional homology manifold is a disjoint union of points,

ΩH0 ({∗}) = ΩTOP0 ({∗}) = Z .
By 1.6

ΩHm({∗}) = ΩTOPm ({∗})[L0(Z)] (m ≥ 6) ,

so that

Hm(Sm; ΩH• ({∗})) = ΩTOP0 ({∗})⊕ ΩTOPm ({∗})[L0(Z)] .

Also

ΩHm(Sm) = ΩTOPm (Sm)[L0(Z)] (m ≥ 6) ,
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and by topological transversality

ΩTOPm (Sm) = Hm(Sm; ΩTOP• ({∗})) = ΩTOP0 ({∗})⊕ ΩTOPm ({∗}) ,
so that

ΩHm(Sm) = ΩTOP0 ({∗})[L0(Z)] ⊕ ΩTOPm ({∗})[L0(Z)] (m ≥ 6) .

The components of the assembly map

AH = AH0 ⊕AHm :

ΩH0 ({∗})⊕ ΩHm({∗})→ ΩTOP0 ({∗})[L0(Z)]⊕ ΩTOPm ({∗})[L0(Z)]

are given by the inclusion

AH0 : ΩH0 ({∗}) = Z→ ΩTOP0 ({∗})[L0(Z)] = Z[L0(Z)] ; t 7→ t[0]

and the isomorphism

AHm : ΩHm({∗}) ∼= ΩTOPm ({∗})[L0(Z)] .

The cokernel of AH is thus given by the cokernel of AH0 as Z[L̃0(Z)]. In particular,
if m ≥ 6 and Σm is one of the m-dimensional homology spheres with

i(Σm) 6= 0 ∈ Hm(Σm;L0(Z)) = L0(Z)

constructed in [1], then there exists a homotopy equivalence f : Σm → Sm with

Ĩ(Σm, f) = i(Σm) 6= 0 ∈ Z[L̃0(Z)] ,

so that f is not bordant to a dual transverse map.

Every compact ANR X is simple homotopy equivalent to a polyhedron |K|, by
the result of West [21]. However, if X is an m-dimensional homology manifold then
|K| need not be a homology manifold.

Theorem (Levitt and Ranicki [9], Ranicki [16] (19.6)). Let X be a compact ANR
which is a simple m-dimensional Poincaré space, and let f : X → |K| be a simple
homotopy equivalence to a polyhedron. The map f is simple Poincaré bordant to a
dual Poincaré transverse map f ′ : X ′ → |K| if (and for m ≥ 6 only if ) X is simple
homotopy equivalent to a topological manifold.

Theorem 6.6 will now be used to obtain an analogous characterization of resolv-
able homology manifolds.

Proposition 6.10. Let M be an m-dimensional homology manifold, and let f :
M → |K| be a simple homotopy equivalence to a polyhedron. The map f is s-
cobordant to a dual transverse homotopy equivalence f ′ : M ′ → |K| if (and for
m ≥ 6 only if ) M is resolvable.

Proof. If M is resolvable, then the mapping cylinder of a resolution MTOP → M
is an s-cobordism (W ;M,MTOP ) with a bordism

(g; f, fTOP ) : (W ;M,MTOP )→ |K|
to a homotopy equivalence fTOP : MTOP → |K| which is topologically dual trans-
verse.

Conversely, suppose that f : M → |K| is a dual transverse homotopy equivalence.
Without loss of generality, it may be assumed that M is connected, so that

I(M) = [i(M)] ∈ Z[i(M)] ⊆ Hm(M)[L0(Z)] = Z[L0(Z)] .
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The composite

ΩHm(K) Ĩ→ Hm(K;L•)→ Hm(K)[L̃0(Z)]

sends (M, f) to

Ĩ(M, f) =

{
[i(M)] ∈ Z[i(M)] ⊆ Z[L̃0(Z)] if i(M) 6= 0,
0 ∈ Z[L̃0(Z)] if i(M) = 0 .

Since f : M → |K| is dual transverse, i(M) = 0 ∈ L0(Z) by 6.6 (ii).

7. The multiplicative structure of homology manifold bordism

The product of an m-dimensional Poincaré space X and an n-dimensional
Poincaré space Y is an (m + n)-dimensional Poincaré space X × Y , with Spivak
normal fibration

νX×Y = νX × νY : X × Y → BG .

If X is an m-dimensional homology manifold and Y is an n-dimensional homology
manifold, then X × Y is an (m + n)-dimensional homology manifold, with the
resolution obstructions satisfying the index product formula of Quinn [12]

1 + 8 i(X × Y ) = (1 + 8 i(X))(1 + 8 i(Y )) ∈ 1 + 8Z .

In general, the canonical TOP reductions of the Spivak normal fibrations of X,Y,
X × Y are such that

ν̃X×Y 6= ν̃X × ν̃Y : X × Y → BTOP .

We shall now analyze the difference

ν̃X×Y − ν̃X × ν̃Y : X × Y → G/TOP

using the multiplicative properties of the algebraic L-spectra of [16]. This analysis
will be used to obtain the product structure on ΩTOP∗ (K)[L0(Z)] which corresponds
to the product structure on ΩH∗ ,

ΩHm(J)⊗ ΩHn (K)→ ΩHm+n(J ×K) ; X ⊗ Y 7→ X × Y,
under the isomorphism of abelian groups given by 1.6,

ΩH∗ (K)
∼=→ ΩTOP∗ (K)[L0(Z)] ; X 7→ XTOP [i(X)] .

The Spivak normal fibration νX : X → BG(k) (k large) of an m-dimensional
Poincaré space X is equipped with a degree 1 map ρ : Sm+k → T (νX). If νX is
TOP reducible then for any TOP reduction ν̃X : X → BTOP the Browder-Novikov
transversality construction gives a degree 1 normal map

f = ρ| : M = ρ−1(X)→ X

with M an m-dimensional topological manifold. If ν̃, ν̃′ : X → BTOP are two
TOP reductions of νX , then the difference is classified by an element

t(ν̃, ν̃′) ∈ Hm(X ;L•) = [X,G/TOP ]

and the corresponding degree 1 normal maps f : M → X , f ′ : M ′ → X can be
chosen so that f ′ = fg for a degree 1 normal map g : M ′ → M classified by an
element

[g]L ∈ Hm(M ;L•) = [M,G/TOP ]
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such that f∗[g]L = t(ν̃, ν̃′). The surgery obstruction of g is the assembly of [g]L,

σ∗(g) = A([g]L) ∈ Lm(Z[π1(M)]),

and the surgery obstructions of f and f ′ differ by

σ∗(f ′)− σ∗(f) = A(f∗[g]L) = A(t(ν̃, ν̃′)) ∈ Lm(Z[π1(X)]) .

See Chapter 16 of [16] for the L-theory orientation of topology.
Let L• be the 0-connective symmetric ring L-spectrum of Z, with homotopy

groups

πm(L•) = Lm(Z) =


Z if m ≡ 0 (mod 4),
Z2 if m ≡ 1 (mod 4),
0 if m ≡ 2 (mod 4),
0 if m ≡ 3 (mod 4) .

Theorem 7.1 (Ranicki [16], 25.7). An m-dimensional homology manifold X has
a canonical L•-orientation

[X ]L ∈ Hm(X ;L•)

with assembly the symmetric signature of X,

A([X ]L) = σ∗(X) ∈ Lm(Z[π1(X)]) ,

and such that there are L•-coefficient Poincaré duality isomorphisms

[X ]L ∩ − : H∗(X ;L•) ∼= Hm−∗(X ;L•) ,

as well as with coefficients in any L•-module spectrum (e.g. L•, L•).

Proof. See [16] (16.16) for the canonical L•-orientation of an m-dimensional topo-
logical manifold. Let f : M = XTOP → X be the normal map from a topological
manifold determined (up to normal bordism) by the canonical TOP reduction ν̃X
of νX , with surgery obstruction

σ∗(f) = A([f ]L) = A(−i(X)) ∈ Lm(Z[π1(X)])

the assembly of

[f ]L = (−i(X), 0) ∈ Hm(X ;L•) = Hm(X ;L0(Z)) ⊕Hm(X ;L•) .

The canonical L•-theory orientation of X is given by

[X ]L = f∗[M ]L − (1 + T )[f ]L = f∗[M ]L + (8 i(X), 0)

∈ Hm(X ;L•) = Hm(X ;L0(Z)) ⊕Hm(X ;L•〈1〉) .

Let L•〈1〉 be the 1-connective cover of L•, so that for any spaceX there is defined
an exact sequence

· · · → Hm(X ;L•〈1〉)→ Hm(X ;L•)→ Hm(X ;L0(Z))→ Hm−1(X ;L•〈1〉)→ . . . .

The 0th spaces of L• and L•〈1〉 are related by

L0 = L0(Z)× L0〈1〉 ,
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so that for an m-dimensional homology manifold X

Hm(X ;L•) ∼= H0(X ;L•)
∼= [X,L0] ∼= [X,L0(Z) × L0〈1〉]
∼= H0(X ;L0(Z)) ⊕H0(X ;L•〈1〉)
∼= Hm(X ;L0(Z)) ⊕Hm(X ;L•〈1〉) .

For a connected X we have

[X ]L = (1 + 8 i(X), [̃X ]L) ∈ Hm(X ;L•) = Hm(X ;L0(Z)) ⊕Hm(X ;L•〈1〉) ,

writing the ordinary fundamental class as [X ] = 1 ∈ Hm(X ;L0(Z)) = Z.

Corollary 7.2. Given an m-dimensional homology manifold X, let f : M = XTOP

→ X be a normal map from a topological manifold in the canonical class. The
canonical L•-orientation of M is such that

[M ]L = (1, [̃M ]L) ∈ Hm(M ;L•) = Hm(M ;L0(Z)) ⊕Hm(M ;L•〈1〉)

with

f∗[M ]L = −8 i(X) + [X ]L ∈ Hm(X ;L•) ,

f∗ [̃M ]L = [̃X ]L ∈ Hm(X ;L•〈1〉) .

Definition 7.3. Let X be an m-dimensional homology manifold, and let ν̃X : X →
BTOP be the canonical Ferry-Pedersen [4] TOP reduction of the Spivak normal
fibration νX : X → BG, with stable inverse −ν̃X : X → BTOP .

(i) The (rational) Pontrjagin classes of X are the Pontrjagin classes of −ν̃X ,

pk(X) = pk(−ν̃X) ∈ H4k(X ;Q) (k ≥ 0) .

(ii) The L-genus of X is the L-genus of −ν̃X ,

L(X) = L(−ν̃X) ∈ H4∗(X ;Q) .

(iii) The LH -genus of X is

LH(X) = 8 i(X) + L(X) ∈ H4∗(X ;Q) ,

with components

LHk (X) =

1 + 8 i(X) ∈ H0(X ;Q) if k = 0,

Lk(X) ∈ H4k(X ;Q) if k ≥ 1 .

The L-genus has the same expression in terms of the Pontrjagin classes of a
homology manifold X as for a topological manifold, with components

L0(X) = p0(X) = 1 ∈ H0(X ;Q) ,

L1(X) =
1
3
p1(X) ∈ H4(X ;Q) ,

L2(X) =
1
45

(7p2(X)− p1(X)2) ∈ H8(X ;Q) , etc.

The Hirzebruch signature theorem also applies to homology manifolds:
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Corollary 7.4. (i) If X is an m-dimensional homology manifold and f : M =
XTOP → X is the canonical normal map, then

L(M) = f∗L(X) ∈ H4∗(M ;Q) .

(ii) The canonical L•-orientation of an m-dimensional homology manifold X is
given rationally by (the Poincaré dual of ) the LH-genus

[X ]L ⊗ 1 = LH(X) ∈ Hm(X ;L•)⊗Q = Hm−4∗(X ;Q) = H4∗(X ;Q) .

(iii) The signature of a 4k-dimensional homology manifold X is given by

σ∗(X) = 〈Lk(X), [X ]〉 ∈ L4k(Z) = Z .

Proof. (i) is immediate from f∗(−ν̃X) = τM (stably).
(ii) The canonical L•-orientation of a topological manifold M is given rationally

by the ordinary L-genus

[M ]L ⊗ 1 = L(M) ∈ Hm(M ;L•)⊗Q = Hm−4∗(M ;Q) = H4∗(M ;Q) ,

with LH(M) = L(M), i(M) = 0. If f : M = XTOP → X is the canonical normal
map, then

[X ]L ⊗ 1= f∗[M ]L ⊗ 1 + 8 i(X)

= f∗L(M) + 8 i(X) = L(X) + 8 i(X) = LH(X) ∈ H4∗(M ;Q) .

(iii) is immediate from (ii), the identity σ∗(X) = A([X ]L) of Theorem 7.1, and
the fact that the simply-connected assembly map

A : H4k(X ;L•) = H4k(X ;L0(Z))⊕H4k(X ;L•〈1〉)

(0 p∗) // H4k({∗};L•〈1〉) = L4k(Z)

sends 8 i(X) ∈ H4k(X ;L0(Z)) to 0, with p : X → {∗} the unique map.

Corollary 7.5. Let X = Mi be the m-dimensional homology manifold with pre-
scribed resolution obstruction i(X) = i given by the construction of 1.5 applied to
an m-dimensional topological manifold M (m ≥ 6), with normal map f : X →M .

(i) The canonical L•-orientation [X ]L ∈ Hm(X ;L•) is such that

f∗[X ]L = 8 i+ [M ]L ∈ Hm(M ;L•) .

(ii) The LH -genus LH(X) ∈ H4∗(X ;Q) = Hm−4∗(X ;Q) is such that

f∗LH(X) = 8 i+ L(M) ∈ H4∗(M ;Q)

Proof. (i) For any normal map F : X → Y of m-dimensional homology manifolds
we have

F∗[X ]L = (1 + T )[F ]L + [Y ]L ∈ Hm(Y ;L•) .

For F = f : X → Y = M

[F ]L = i ∈ Hm(M ;L•)

and (1 + T )[F ]L = 8 i.
(ii) is immediate from (i) and 7.4.
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We shall now analyze the difference

ν̃X×Y − ν̃X × ν̃Y : X × Y → G/TOP

for homology manifolds X,Y using the canonical L•-orientation of homology man-
ifolds and the surgery composition and product formulae :

(i) (Ranicki [14] (4.3)) The composite of normal maps f : X → Y , g : Y → Z
of n-dimensional Poincaré spaces is a normal map gf : X → Z with surgery
obstruction

σ∗(gf) = σ∗(f) + σ∗(g) ∈ Ln(Z[π1(Z)]) .

(ii) ([14] (8.1)) The product of a normal map f : M → X of m-dimensional
Poincaré spaces and a normal map g : N → Y of n-dimensional Poincaré
spaces is a normal map f × g : M × N → X × Y of (m + n)-dimensional
geometric Poincaré spaces with surgery obstruction

σ∗(f × g) = σ∗(f)⊗ σ∗(g) + σ∗(X)⊗ σ∗(g) + σ∗(f)⊗ σ∗(Y )

= σ∗(M)⊗ σ∗(g) + σ∗(f)⊗ σ∗(Y ) ∈ Lm+n(Z[π1(X × Y )]) .

The formulae are proved on the chain level, using the Eilenberg-Zilber theorem.

Theorem 7.6. Let X be an m-dimensional homology manifold, and let Y be an
n-dimensional homology manifold.

(i) The product (m + n)-dimensional homology manifold X × Y has canonical
L•-orientation the product of the canonical L•-orientations of X and Y :

[X × Y ]L = [X ]L ⊗ [Y ]L ∈ Hm+n(X × Y ;L•) .

(ii) Let f : XTOP → X, g : YTOP → Y be normal maps from topological man-
ifolds in the normal bordism classes determined by the canonical TOP reductions
ν̃X , ν̃Y of νX , νY , and let

h : (X × Y )TOP → XTOP × YTOP
be the normal map of topological manifolds classified by

[h]L= i(X)⊗ ˜[YTOP ]L + ˜[XTOP ]L ⊗ i(Y )

∈ Hm+n(XTOP × YTOP ;L•) = [XTOP × YTOP , G/TOP ] .

The composite normal map

(X × Y )TOP
h−→ XTOP × YTOP

f×g−→ X × Y

is in the normal bordism class determined by the canonical TOP reduction ν̃X×Y
of νX×Y .

(iii) The canonical TOP reduction

ν̃X×Y : X × Y → BTOP

of the Spivak normal fibration of X × Y

νX×Y = νX × νY : X × Y → BG

differs from the product TOP reduction

ν̃X × ν̃Y : X × Y → BTOP
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by the element

t(ν̃X×Y , ν̃X × ν̃Y )= i(X)⊗ [̃Y ]L + [̃X ]L ⊗ i(Y )

∈ Hm+n(X × Y ;L•) = [X × Y,G/TOP ] .

Proof. (i) This is just the Eilenberg-Zilber theorem on the level of symmetric
Poincaré cycles.

(ii) By construction, f and g are classified by

[f ]L = −i(X) ∈ Hm(X ;L•) , [g]L = −i(Y ) ∈ Hn(Y ;L•) .
By the surgery product formula (on the level of quadratic Poincaré cycles) the

product normal map f × g : XTOP × YTOP → X × Y is classified by
[f × g]L= [X ]L ⊗ [g]L + [f ]L ⊗ g∗[YTOP ]L

= −[X ]L ⊗ i(Y )− i(X)⊗ (1 + [̃Y ]L) ∈ Hm+n(X × Y ;L•) .

By the surgery composition formula (on the level of quadratic Poincaré cycles),

[(f × g)h]L= (f × g)∗[h]L + [f × g]L

= i(X)⊗ [̃Y ]L + [̃X ]L ⊗ i(Y )

− [X ]L ⊗ i(Y )− i(X)⊗ g∗[YTOP ]L
= −i(X) ∗ i(Y ) = −i(X × Y )

∈ Hm+n(X × Y ;L0(Z)) ⊆ Hm+n(X × Y ;L•) ,

so that (f × g)h is in the canonical normal bordism class.
(iii) is immediate from (ii), noting that

[h]L = (t(ν̃X×Y , ν̃X × ν̃Y ), 0)

∈ Hm+n(XTOP × YTOP ;L•) = Hm+n(X × Y ;L•)⊕Km+n

with Km+n the (m+ n)-dimensional homology kernel of f × g.

Definition 7.7. For any integers i, j ∈ Z let

i ∗ j = i+ j + 8 ij ∈ Z ,
so that

(1 + 8 i)(1 + 8j) = 1 + 8 i ∗ j ∈ Z .

Corollary 7.8. Let X,Y be homology manifolds.
(i) The LH -genus of X × Y is

LH(X × Y ) = LH(X)⊗ LH(Y ) ∈ H4∗(X × Y ;Q) ,

with
LHk (X × Y ) =

∑
i+j=k

(Li(X)⊗ Lj(Y )) + Lk(X)⊗ 8 i(Y ) + 8 i(X)⊗ Lk(Y )

∈ H4k(X × Y ;Q) (k ≥ 1) .

(ii) (Quinn [12]) The resolution obstruction of X × Y is

i(X × Y ) = i(X) ∗ i(Y ) ∈ Z .

Proof. (i) This is just the rationalization of the product formula of Theorem 7.6
(i).

(ii) This is just the 0-dimensional component of the identity of (i).
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As is well-known, the L-genus determines the Pontrjagin classes, so the formula
in Corollary 7.8 can be used to determine the Pontrjagin classes of a product ho-
mology manifold X × Y :

pk(X × Y ) ∈ H4k(X × Y ;Q) (k ≥ 1)

in terms of the Pontrjagin classes p∗(X), p∗(Y ) and the resolution obstructions
i(X), i(Y ).

Example 7.9. If X,Y are 4-dimensional homology manifolds, then the Pontrjagin
classes of the product 8-dimensional homology manifold X × Y are given by

p1(X × Y ) = p1(X)⊗ (1 + 8 i(Y )) + (1 + 8 i(X))⊗ p1(Y ) ∈ H4(X × Y ;Q) ,

p2(X × Y ) = (1 +
16
7
i(X) ∗ i(Y ))p1(X)⊗ p1(Y ) ∈ H8(X × Y ;Q) .

Corollary 7.10. The homology manifold bordism product for m ≥ 6, n ≥ 6

ΩHm(J)⊗ ΩHn (K)→ ΩHm+n(J ×K) ; X ⊗ Y 7→ X × Y

corresponds under the isomorphisms of 1.6 to the topological manifold bordism prod-
uct

ΩTOPm (J)[L0(Z)] ⊗ ΩTOPn (K)[L0(Z)]→ ΩTOPm+n(J ×K)[L0(Z)] ;

M [i]⊗N [j] 7→ (Mi ×Nj)TOP [i ∗ j] .

Here, i = I(X), j = I(Y ), and M = XTOP → X, N = YTOP → Y are the normal
maps from topological manifolds determined by the canonical TOP reductions of
νX , νY , and Mi → M , Nj → N are the normal maps from homology manifolds
with resolution obstructions I(Mi) = i, I(Nj) = j given by Proposition 1.5. The
normal map h : (X × Y )TOP →M ×N of Theorem 7.6 (ii) classified by

[h]L = i⊗ [̃N ]L + [̃M ]L ⊗ j ∈ Hm+n(M ×N ;L•)

is bordant to the composite normal map

F : (Mi ×Nj)TOP →Mi ×Nj →M ×N .

Proof. The normal maps Mi →M , Nj → N are classified by

[Mi →M ]L = i ∈ Hm(M ;L•) , [Nj → N ]L = j ∈ Hn(N ;L•) .

Apply the surgery composition and product formulae to compute the classifying
invariant of the composite (Mi ×Nj)TOP →Mi ×Nj →M ×N :

[(Mi ×Nj)TOP →M ×N ]L
= [(Mi ×Nj)TOP →Mi ×Nj ] + [Mi ×Nj →M ×N ]

= −i ∗ j + 8 ij + i⊗ [N ]L + [M ]L ⊗ j

= i⊗ [̃N ]L + [̃M ]L ⊗ j ∈ Hm+n(M ×N ;L•) ⊆ Hm+n(M ×N ;L•) ,

so that (Mi ×Nj)TOP →M ×N , (X × Y )TOP →M ×N are normal bordant.
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Remark 7.11. Given an m-dimensional topological manifold M , an n-dimensional
topological manifold N , and i, j ∈ Z, let

P = (Mi ×Nj)TOP
be the (m+ n)-dimensional topological manifold appearing in Corollary 7.10, and
let F : P →M×N be the degree 1 normal map. The L-genus of P has components

Lk(P ) = F ∗
(
(L(M)⊗ L(N))k + 8 i⊗ Lk(N) + Lk(M)⊗ 8j

)
∈ H4k(P ;Q) (k ≥ 1) .

Example 7.12. Take m = n = 4, J = K = {pt.} in 7.10. The signature defines
an isomorphism

ω4 : ΩTOP4 → Z ; M 7→ 1
3
〈p1(M), [M ]〉 = σ∗(M)

such that

ω4(CP2) = 1 .

Linear combinations of Pontrjagin numbers define an isomorphism

ω8 : ΩTOP8 ⊗Q→ Q⊕Q ;

P 7→ (
1
9
〈5p2(P )− 2p1(P )2, [P ]〉, 1

5
〈−2p2(P ) + p1(P )2, [P ]〉)

such that

ω8(CP2 × CP2) = (1, 0) , ω8(CP4) = (0, 1) ,

with the signature given by

σ∗ : ΩTOP8 ⊗Q ω8→ Q⊕Q (1 1)→ L8(Z)⊗Q = Q ;

P 7→ σ∗(P ) =
1
9
〈5p2(P )− 2p1(P )2, [P ]〉+

1
5
〈−2p2(P ) + p1(P )2, [P ]〉

=
1
45
〈7p2(P )− p1(P )2, [P ]〉 .

If M,N are 4-dimensional topological manifolds, then

ω8(M ×N) = (σ∗(M)σ∗(N), 0)

and if P = (Mi ×Nj)TOP for some i, j ∈ Z, then

〈p1(P )2, [P ]〉 = 2(1 + 8 i ∗ j)〈p1(M), [M ]〉〈p1(N), [N ]〉 ,

〈p2(P ), [P ]〉 = (1 +
16
7
i ∗ j)〈p1(M), [M ]〉〈p1(N), [N ]〉 ,

ω8(P ) = ((1− 144
7
i ∗ j)σ∗(M)σ∗(N), (

144
7
i ∗ j)σ∗(M)σ∗(N)) .

The product structure on homology manifold bordism

ΩHm ⊗ ΩHn → ΩHm+n ; X ⊗ Y 7→ X × Y
therefore does not correspond to the product structure

ΩTOPm [L0(Z)] ⊗ ΩTOPn [L0(Z)]→ ΩTOPm+n[L0(Z)] ; M [i]⊗N [j] 7→ (M ×N)[i ∗ j]
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under the abelian group isomorphism of 1.6

ΩH∗ ∼= ΩTOP∗ [L0(Z)] .

However, as stated in Weinberger [19], for m ≥ 6 there is an isomorphism of rings

φ : ΩH∗ ⊗Q ∼= (ΩTOP∗ ⊗Q)[L0(Z)] .

We shall now give an explicit description of the isomorphism φ, which is different
from the isomorphism ΩHm ∼= ΩTOPm [L0(Z)] given by 1.6.

Recall that the rational cobordism groups

ΩTOP∗ ⊗Q = ΩO∗ ⊗Q
are detected by Pontrjagin numbers in dimensions ∗ ≡ 0 (mod 4), and are 0 in
dimensions ∗ 6≡ 0 (mod 4). The Pontrjagin numbers of an m-dimensional topo-
logical manifold M with m ≡ 0 (mod 4) are rational linear combinations of the
characteristic L-numbers

LI(M) = 〈Li1 (M)Li2(M) · · · Lik(M), [M ]〉 ∈ Q ,

one for each k-tuple I = (i1, i2, . . . , ik) of integers ≥ 1 with 4(i1 + i2 + · · ·+ ik) = m.
Conversely, the characteristic L-numbers of M are rational linear combinations of
the Pontrjagin numbers. Thus the characteristic L-numbers also determine the
rational cobordism class, with isomorphisms

ΩTOPm ⊗Q→
∑
I

Q ; M 7→
∑
I

LI(M) .

Definition 7.13. (i) The L′-genus of an m-dimensional homology manifold X is

L′(X) =
1

1 + 8 i(X)
LH(X) ∈ H4∗(X ;Q) ,

with components

L′k(X) =

1 ∈ H0(X ;Q) if k = 0,
1

1 + 8 i(X)
Lk(X) ∈ H4k(X ;Q) if k ≥ 1 .

(ii) The L′-characteristic numbers of an m-dimensional homology manifold X
are

L′I(X) = 〈L′i1 (X)L′i2(X) . . .L′ik (X), [X ]〉 ∈ Q
(I = (i1, i2, . . . , ik),m = 4(i1 + i2 + · · ·+ ik))

with L′I(X) = 0 if m 6≡ 0 (mod 4).
(iii) Define a function

φ : ΩHm ⊗Q→ (ΩTOPm ⊗Q)[L0(Z)] ; X 7→ (M ⊗ a)[i(X)]

using any m-dimensional topological manifold M and a ∈ Q such that

L′I(X) = LI(M)⊗ a ∈ Q
for every I = (i1, i2, . . . , ik) with 4(i1 + i2 + · · ·+ ik) = m.

The morphism of 1.6

ψ : ΩHm → ΩTOPm [L0(Z)] ; X 7→ XTOP [i(X)]
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(which is an isomorphism for m ≥ 6) is such that the composite

ΩHm ⊗Q
ψ→ (ΩTOPm ⊗Q)[L0(Z)] ∼= (

∑
I

Q)[L0(Z)]

sends an m-dimensional homology manifold X to

(
∑
I

LI(X))[i(X)] ∈ (
∑
I

Q)[L0(Z)] .

The composite

ΩHm ⊗Q
φ→ (ΩTOPm ⊗Q)[L0(Z)] ∼= (

∑
I

Q)[L0(Z)]

sends an m-dimensional homology manifold X to

(
∑
I

LI(M)⊗ a)[i(X)] = (
∑
I

L′I(X))[i(X)] ∈ (
∑
I

Q)[L0(Z)] ,

so that φ 6= ψ. The inverse of ψ for m ≥ 6 is given by

ψ−1 : ΩTOPm [L0(Z)]→ ΩHm ; N [i] 7→ Ni

with Ni the homology manifold with resolution obstruction i obtained by the con-
struction of 1.5. The composite

(ΩTOPm ⊗Q)[L0(Z)]
ψ−1

→ ΩHm ⊗Q
φ→ (ΩTOPm ⊗Q)[L0(Z)] ∼= (

∑
I

Q)[L0(Z)]

is given by

N [i] 7→ (
∑
I

(
1

1 + 8 i
)kLI(Ni))[i] = (

∑
I

(
1

1 + 8 i
)kLI(N))[i]

with I = (i1, i2, . . . , ik), m = 4(i1 + i2 + · · ·+ ik).

Proposition 7.14. (i) The function φ : ΩHm ⊗ Q → (ΩTOPm ⊗ Q)[L0(Z)] is a ring
morphism which is an isomorphism for m ≥ 6.

(ii) The rational homology manifold bordism product

(ΩHm ⊗Q)⊗ (ΩHn ⊗Q)→ ΩHm+n ⊗Q ; (X ⊗ Y ) 7→ (X × Y )

corresponds under φ to the rational topological manifold bordism product

(ΩTOPm ⊗Q)[L0(Z)] ⊗ (ΩTOPn ⊗Q)[L0(Z)]→ (ΩTOPm+n ⊗ Q)[L0(Z)],
(M ⊗ a)[i]⊗ (N ⊗ b)[j] 7→ ((M ×N)⊗ ab)[i ∗ j] .

Here i = i(X), j = i(Y ), and M ⊗ a = φ(X), N ⊗ b = φ(Y ).

Proof. We know from 1.6 that the morphism of abelian groups

ψ : ΩHm ⊗Q→ (ΩTOPm ⊗Q)[L0(Z)] ∼= (
∑
I

Q)[L0(Z)] ; X 7→ (
∑
I

LI(X))[i(X)]

is an isomorphism for m ≥ 6. It follows that the morphism of abelian groups

φ : ΩHm ⊗Q→ (ΩTOPm ⊗Q)[L0(Z)] ∼= (
∑
I

Q)[L0(Z)] ; X 7→ (
∑
I

L′I(X))[i(X)]

is also an isomorphism for m ≥ 6. It remains to show that φ preserves the multi-
plicative structures. By 7.8 (ii),

φ(X × Y ) = (P ⊗ c)[i ∗ j]
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for some element P ⊗ c ∈ ΩTOPm+n ⊗Q. We need to show that

P ⊗ c = (M ×N)⊗ ab ∈ ΩTOPm+n ⊗Q .

From the above we see that M ⊗ a and N ⊗ b correspond to the L-numbers
LI(M ⊗ a) = L′I(X) and LI(N ⊗ b) = L′I(Y ) ∈ Q respectively. We compare
these L-numbers with those of P ⊗ c, which are given by

LI(P ⊗ c) = L′I(X × Y ) ∈ Q .

We observe that by 7.8 (i)

L′(X × Y ) =
1

1 + 8 i ∗ j L
H(X × Y )

=
1

1 + 8 i ∗ j L
H(X)⊗ LH(Y )

= L′(X)⊗ L′(Y ) ∈ H4∗(X × Y ;Q) ,

and that the L-numbers satisfy the following product formula:

LI((M ×N)⊗ ab) =
∑
J,K

LJ(M ⊗ a)LK(N ⊗ b) ∈ Q ,

with I = (i1, i2, . . . , il), and J = (j1, j2, . . . , jl), K = (k1, k2, . . . , kl) such that

j1 + k1 = i1 , j2 + k2 = i2 , . . . , jl + kl = il .

Conversely, ∑
J,K

LJ (M ⊗ a)LK(N ⊗ b)=
∑
J,K

L′J(X)L′K(Y )

=
∑
J,K

L′J (X)⊗ L′K(Y ) = (L′(X)⊗ L′(Y ))I

= L′I(X × Y ) = LI(P ⊗ c) ∈ Q .
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