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Background in Automorphic Functions

Poincaré in 1889

Poincaré’s work on automorphic
functions in the early 1880s involved
several ingredients that would prove
useful for his later work in topology.

In particular:

groups defined by generators and
relations,

the associated tessellations of the
(hyperbolic) plane and space, and

quotient spaces of the plane or
space by discrete groups.
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Linear Groups

The groups encountered by Poincaré in hyperbolic geometry
consisted of linear fractional transformations

z 7→ az + b

cz + d
.

So he and Klein were led to a geometric classification of such
transformations. (Elliptic, parabolic, hyperbolic.)

This classification was crucial to Poincaré’s first breakthrough in
the theory of 3-manifolds.
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Topology before Poincaré

Enrico Betti

Before 1892, the main tools for
distinguishing manifolds were the Betti
numbers, which count the number of
“cuts” (by curves, surfaces, etc) needed
to reduce a manifold to a simply
connected region. This is now part of
what is called homology theory.

For example, the Betti number of the torus is 2, because two cuts
(along the curves a, b shown in the picture) reduce it to a square.

a
b

−→ a a

b

b
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The fundamental group, π1 (1892)

In 1892, Poincaré introduced the fundamental group, which refines
the idea from homology theory—that a manifold can be cut down
to a simply connected region—by describing how the manifold may
be reassembled from a “fundamental region” by identifying parts
of its boundary.

For example, a torus may be constructed from a square by
identifying the left side with the right by a horizontal translation,
and the bottom side with the top by a vertical translation.

a

a

a

b b b

a

a

a

a

a

a

a

a

a

b b b

b b b

b b b These two translations generate
a group (of transformations of
the plane) called the fundamental
group of the torus. Moreover,
the translates of the original
square make a tessellation of the
plane that serves as a picture of
π1(torus).
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The 3-torus

The 3D analogue
of the torus is
obtained from a
cube by pasting
left side to right,
front to back,
and top to bottom.

From inside, the
view is like a
periodic R3.
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(With apologies to René Magritte)
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Poincaré’s first family of 3-manifolds

His 1892 example is a family of manifolds indexed by quadruples of
integers (α, β, γ, δ) with αδ − βγ = 1. Each is formed from the
unit cube in R3 by

Pasting the left face to the right by the map
(x , y , z) 7→ (x + 1, y , z)

Pasting the front face to the back by the map
(x , y , z) 7→ (x , y + 1, z)

Pasting the bottom face to the top by the map
(x , y , z) 7→ (αx + βy , γx + δy , z + 1)

These maps are the generators of π1.

Notice that each horizontal section of this manifold is a torus;
namely, a square with opposite sides identified.

The identification of the top face with the bottom is an essentially
arbitrary map of the torus onto itself.
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The fundamental group trumps the Betti numbers

Poincaré is able to compute the Betti numbers of his manifolds,
and finds that there are only three possible sets of values.
(Corresponding to the, at most, three generators, arising from the
three perpendicular edges of the cube.)

However, his manifolds have infinitely many non-isomorphic
fundamental groups, corresponding to the conjugacy classes of the

matrix

(
α β
γ δ

)
.

To prove this, Poincaré draws on his knowledge of linear fractional
transformations. The details are provided in Poincaré (1895).

Thus there are 3-manifolds with the same Betti numbers but
different π1.
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Simpler examples with same Betti numbers but different π1

Poincaré (1895) also noticed examples of orientable 3-manifolds
with different finite π1, but necessarily with the same Betti
numbers (zero).

For example

1 The 3-sphere has π1 = trivial group.

2 The real projective space has π1 = cyclic group of order 2.
(Poincaré arrived at RP3 by identifying antipodal points of
an octahedron. He didn’t call it projective space.)

Thus, in contrast with the case of orientable 2-manifolds, Betti
numbers are not adequate to distinguish 3-manifolds, so that
stronger invariants (such as π1) are required.

Moreover, π1 is “strictly greater” than Betti numbers for
3-manifolds, since the Betti numbers may be extracted from π1 by
“abelianizing” its defining relations.
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Nevertheless, Poincaré is not done with homology theory

Betti numbers do not quite suffice to distinguish 2-manifolds—one
also needs to know whether the manifold is orientable or not.

Heegaard in 1894

In his 1898 thesis, Heegaard discovered
that there is a similar extra ingredient in
3-dimensional homology theory, and
Poincaré called it torsion.

Heegaard’s example was the 3-dimensional projective space, RP3,
obtained by identifying antipodal points on the ball.

Like S3, RP3 has Betti number 0, but π1(RP3) = cyclic order 2,
so RP3 has torsion number 2.

Poincaré (1900) reworked his homology theory so as to extract
“torsion numbers” as well as Betti numbers.
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Nevertheless, Poincaré is not done with homology theory

Betti numbers do not quite suffice to distinguish 2-manifolds—one
also needs to know whether the manifold is orientable or not.

Heegaard in 1894

In his 1898 thesis, Heegaard discovered
that there is a similar extra ingredient in
3-dimensional homology theory, and
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π1 ≥ homology for 3-manifolds

Tietze (1908) observed that the 1-dimensional Betti and torsion
numbers can be extracted from the abelianization of π1.
(Now called H1, the first homology group. Neither Poincaré nor
Tietze seemed to view H1 as a group, per se.)

For 3-manifolds,

2-dimensional Betti number = 1-dimensional Betti number

by Poincaré duality (which comes from dual polyhedra).
So all homological invariants can be extracted from π1.

Thus π1 ≥ homology for 3-manifolds.
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The Poincaré conjecture

When the homology concept is expanded to include torsion, the
real projective space RP3 becomes distinguished from the 3-sphere
S3, because RP3 has torsion and S3 does not.

In his 1900 paper, Poincaré conjectured that any 3-manifold with
trivial homology is homeomorphic to the 3-sphere, S3. This was
the first version of the Poincaré conjecture.

In 1904 he found a counterexample to this conjecture, the
so-called Poincaré homology sphere, which has trivial H1

(hence trivial homology) but nontrivial (yet finite) π1.

He then stated his amended version of the Poincaré conjecture:
any 3-manifold with trivial π1 is homeomorphic to S3.
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The Poincaré homology sphere

By a strange, asymmetric, unmotivated
construction, Poincaré arrives at the π1
with defining relations

a4ba−1b = b−2a−1ba−1 = 1

On the one hand, this group is nontrivial
because setting (a−1b)2 = 1 gives the
icosahedral group

a5 = b3 = (a−1b)2 = 1.

Indeed, π1(Poincaré homology sphere) has 120 elements.

On the other hand, abelianizing gives a = b = 1, so H1 = {1}.
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If we lived in a Poincaré homology sphere ...

Space would seem
to be periodic, with
everything seen 120
times.

In a 3-sphere
divided into
dodecahedral cells.

Something like this:

Image thanks to
Jenn3D.
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Poul Heegard (1871 – 1948)

Heegard’s 1898 thesis not only raised the issue of torsion;
it introduced some new constructions of 3-manifolds, via
branched coverings and Heegaard diagrams.

Orientable 2-manifolds (Riemann surfaces) can
be obtained by covering S2 by copies of itself
(“sheets”) that meet at branch points. This
example, from Neumann (1865), shows a
branch point of a 2-sheeted covering.

Just as S2 has coverings with branch points,
S3 has coverings with branch curves (and
“sheets” which are copies of S3). If the branch
curve is a circle, then the covering is again S3.

But if the branch curve is knotted the covering
can be a 3-manifold 6= S3.
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The first theorem of knot theory

Heegaard discovered that if the branch curve is a
trefoil knot, then the double cover of S3 over this
curve is not S3. (Thus he inadvertently proved that
the trefoil knot really is knotted.)

The double cover is also obtained by pasting
two solid tori together. This Heegaard diagram
shows where the meridian curve on one solid
torus must be pasted on the other.

The double cover has torsion number 3. That
is, it contains a curve which becomes a
boundary when taken 3 times.
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Max Dehn (1878 – 1952) and Heegaard

Dehn entered topology while still under the influence
of Hilbert’s Grundlagen. In 1899 he gave a proof of
the polygonal Jordan curve theorem from Hilbert’s
axioms of incidence and order.

With Heegaard he set up combinatorial foundations for topology in
their Encyclopädie article “Analysis situs” of 1907.

In particular, they give combinatorial definitions of homology,
homeomorphism, homotopy, and isotopy.

This led to more rigorous proofs of
known results—for example, the
classification of 2-manifolds—
but not to any striking new results.
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For example, they discuss knots, but only descriptively.

Apparently, Heegaard did not realize the importance of knots,
despite having used them to construct 3-manifolds.

In particular, the fundamental group is barely mentioned. And
there is a faulty attempt to prove that the Poincaré homology
sphere 6= S3 without using its fundamental group.
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Dehn’s first homology sphere

In 1907, after learning of his mistake in the Encyclopädie article,
Dehn gave a new homology sphere construction, pasting two
copies of a knot complement together in such a way as to “kill”
homology.

The argument again avoids group theory.

The proof that the resulting manifold 6= S3 relies on the claim
(proved only in 1924 by Alexander) that any torus in S3 bounds
a solid torus on at least one side.
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Dehn gave a new homology sphere construction, pasting two
copies of a knot complement together in such a way as to “kill”
homology.

The argument again avoids group theory.

The proof that the resulting manifold 6= S3 relies on the claim
(proved only in 1924 by Alexander) that any torus in S3 bounds
a solid torus on at least one side.

22 / 37



Dehn and the Poincaré conjecture

Another way to fill the gap in this proof is by the so-called Dehn’s
lemma, which Dehn introduced (though also with a faulty proof)
in 1910.

In 1908, Dehn believed that he had proved the Poincaré
conjecture, and submitted the proposed proof to Hilbert. However,
Tietze found a mistake in it, and the paper was withdrawn.

It seems that, at this stage, Tietze had a better grasp of topology
than Dehn.

Where did Tietze gain his expertise?
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Wilhelm Wirtinger (1865-1945)

Wilhelm Wirtinger

Wirtinger discovered,
apparently in the 1890s,
that knots occur in the
singularities of algebraic
curves.

For example, the
intersection of the curve
y2 = x3 with a small
3-sphere centered on its
singularity at x = y = 0 is
a trefoil knot.

The results were not published by Wirtinger, but they gradually
became known through his students and colleagues, among them
Tietze, Reidemeister, and Schreier. Wirtinger’s results were still
coming to light as late as Brauner (1928).
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The Wirtinger presentation

At some stage, apparently after seeing
Heegaard’s thesis, Wirtinger gave a
method for finding generators and
relations for π1 of a knot
complement—the so-called Wirtinger
presentation.

He uses Heegard’s semicylinder to study
loops around the knot and to find
relations between them.

The method (and the diagram) did not
come to light until Artin published it in
his Theorie der Zöpfe in 1925.
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From Wirtinger to Tietze (1880 – 1964)

The first major paper to combine ideas of Poincaré and Wirtinger
was the Vienna Habilitationschrifft of Tietze (1908).

Tietze gives several examples involving
knots, including wild knots (left).

Also the first published proof that the
trefoil knot is knotted, by showing that
π1 of the trefoil knot complement is not
abelian.

However, Tietze is unable to prove that
the two trefoil knots are different, even
though he thinks it “completely out of
the question” for them to be the same.
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Lens spaces

Tiezte introduced a family of new 3-manifolds with finite π1
—the (m, n) lens spaces—members of which had been obtained
by Heegaard and Wirtinger as branched coverings.

Here is the “lens” for m = 3 n = 1.

Start with a “lens” with top and bottom faces
divided into m equal sectors.
Paste the top face to the bottom with a twist
of 2nπ/m.

One of Poincaré’s examples, obtained by pasting diametrically
opposite faces of an octahedron, is the (4,2) lens space, which
equals the (2,1) lens space, which also equals RP3.

π1 of the (m, n) lens space = cyclic order m.

Each lens is a union of solid tori, i.e. it has Heegaard genus 1.
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Decomposing a (3,1) lens space into solid tori

Start with a “lens” with top and bottom faces
divided into 3 equal sectors.
Paste the top face to the bottom with a twist
of 2π/3.

The “core” of the lens becomes a solid torus.
Mark the curve p on it.

The curve p meets the “rim” pieces along the
dark curve shown.

When the “rim” pieces are assembled, they
too form a solid torus, and the dark curve p
winds around it three times.
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The 100th birthday party for lens spaces, 2008

A cake was baked for the occasion . . .
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Tietze’s critique of Poincaré

Tietze gave a very astute analysis of Poincaré’s topology papers,
clarifying Poincaré’s results and pointing out loose ends.
He thoroughly assimilates the group-theoretic viewpoint.

He extracts the 1-dimensional Betti and torsion numbers from
π1 by abelianizing it.

Poincaré’s assumption, and attempted proof, of simplicial
decomposition is examined, and the question of its general
existence is raised.

He raises the question whether π1 is a strong enough invariant
to distinguish all 3-manifolds, and proposes a potential
counterexample—the (5,1) and (5,2) lens spaces.
(Found to be correct by Alexander in 1919).

He introduces the mapping class group as another kind of
group that is topologically invariant, and computes the
mapping class group of the torus.
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The isomorphism problem

The key difference between homology and π1 is a matter of
computability. The homology invariants, Betti and torsion
numbers, are integers that we can compute and compare.

On the other hand, only a presentation of π1 by generators and
relations is computable. It is not clear how to decide whether two
presentations represent the same group.

Tietze (1908) is the first to realize that groups presented by
generators and relations can be hard to analyse. He raises the
isomorphism problem: given finite presentations of groups G1

and G2, decide whether G1
∼= G2.

He solves this problem in one direction, using what we now call
Tietze transformations: if G1

∼= G2, then there is a finite sequence
of Tietze transformations that converts the presentation of G1 to
the presentation of G2.
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Not solvable?

Nevertheless , Tietze dares to state that the isomorphism problem
is in general “not solvable” (decades before a suitable definition of
“solvable” became available, via Turing machines).

From page 80 of Tietze’s Über die topologischen Invarianten
mehrdimensionaler Mannigfaltigkeiten:
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Dehn 1910, 1912

Dehn’s most creative period opens when he learns some group
theory, around 1910.

He introduces his “Gruppenbilder,” which allow groups to be
viewed as geometric objects, often in one of the familiar
geometries (spherical, euclidean or hyperbolic).

Gruppenbild for the
rotation group of the
dodecahedron
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Dehn’s view of group theory

Once he realizes the importance of groups, Dehn quickly develops
an original viewpoint.

He rediscovers (after Wirtinger) presentations of knot groups,
and finds the Gruppenbild for the trefoil knot group.

States the word, conjugacy, and isomorphism problems for
finitely presented groups.

Solves these problems for π1 of 2-manifolds, first using
hyperbolic geometry, and later by purely combinatorial
arguments (Dehn’s algorithm).

Also, he finally becomes the master of homology spheres:

He finds a new construction of 3-manifolds by
Dehn surgery, including an infinite class of
homology spheres, and proves they are 6= S3
by finding their fundamental groups.
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The two trefoil knots, 1914

Tietze (1908) remarked on the apparently obvious, but unproven,
fact that a trefoil knot is different from its mirror image.

Dehn (1914) proved this, using the most sophisticated study of π1
up to that time.

He showed that:
1 An isotopy from one trefoil knot to the other induces a certain

kind of automorphism of its group.
2 By finding all automorphisms of the trefoil knot group, he is

able to show that the required automorphism does not exist.
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James Alexander (1888 – 1971)

Alexander was a student of Veblen at Princeton,
but his research career began in Paris and Bologna
during World War I, and ended at the Institute
of Advanced Study.

L to R: Alexander, Morse, Einstein, Aydelotte, Weyl, Veblen
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Clearing up problems left by Poincaré, Tietze, and Dehn

Alexander climbing

Alexander proved the following:

1915 The invariance of the Betti and
torsion numbers under arbitrary
homeomorphisms.

1919 The (5,1) and (5,2) lens spaces
are not homeomorphic. Also, all
3-manifolds are branched
coverings over S3.

1920 The first computable knot
invariants—torsion numbers of
cyclic covers of S3 branched over
a knot.

1924 Any torus embedded in S3
bounds a solid torus on at least
one side.
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Alexander climbing

Alexander proved the following:

1915 The invariance of the Betti and
torsion numbers under arbitrary
homeomorphisms.

1919 The (5,1) and (5,2) lens spaces
are not homeomorphic. Also, all
3-manifolds are branched
coverings over S3.

1920 The first computable knot
invariants—torsion numbers of
cyclic covers of S3 branched over
a knot.

1924 Any torus embedded in S3
bounds a solid torus on at least
one side.

37 / 37



Clearing up problems left by Poincaré, Tietze, and Dehn
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