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Ford circles

Here is a picture, generated from two equal tangential circles and a
tangent line, by repeatedly inserting a maximal circle in the space
between two tangential circles and the line.
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The Ford circles and fractions

Thus the Ford circles, when generated in order of size, generate all
reduced fractions, in order of their denominators.

The first n stages of the Ford circle construction give the so-called
Farey sequence of order n—all reduced fractions between 0 and 1
with denominator ≤ n.

The Farey sequence has a long history, going
back to a question in the Ladies Diary of 1747.

How did Ford come to discover its geometric
interpretation?
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Henri Poincaré (1854–1912)

Poincaré in 1889

Poincaré made contributions to many
fields of mathematics, from algebraic
topology to celestial mechanics.

He made his name in the early 1880s,
with the theory of automorphic
functions—the theory of meromorphic
functions on the sphere, plane or disk,
that are periodic with respect to a
discrete group of motions.

In particular, in the case of the disk (or
half-plane) he discovered the role of
non-Euclidean geometry in the study of
periodicity.
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Escher’s
Circle limit I
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Non-Euclidean View of the Half-Plane

Half-plane version of Escher’s Circle Limit I, showing fish that are
congruent according to the non-Euclidean metric.
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Non-Euclidean Periodicity before Poincaré

From Patrick du Val: Elliptic

Functions and Elliptic Curves

Before 1820, Gauss was aware of
modular functions and their
periodicity.

Dedekind 1877 described the
periodicity of the modular
function j by this tessellation.

The values of j repeat in each
region consisting of a black and
white triangle.

More precisely,

j

(
az + b

cz + d

)
= j(z)

for a, b, c , d ∈ Z with
ad − bc = 1.
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Classical picture of the modular tessellation

From Klein and Fricke Theorie der Elliptischen Modulfunction
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The Modular Group

The tessellation above is generated from a single tile, consisting of
any adjacent black and white region, by repeatedly applying the
transformations

z 7→ z + 1 and z 7→ −1/z .

These two generate all the transformations

z 7→ az + b

cz + d
for a, b, c , d ∈ Z with ad − bc = 1,

which constitute the modular group.

All members of the modular group are isometries of the half-plane
under the metric given by

ds =
|dz |
y

where z = x + iy ,

which makes the half-plane a model of the non-Euclidean plane of
Bolyai and Lobachevsky.
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Uniformization

A major goal of Poincaré was uniformization (i.e., parametrization)
of algebraic curves. The two classical examples of uniformization
are those for genus 0 and genus 1:

Genus 0. The circle x2 + y2 = 1 is parametrized by the
rational functions

x =
1− t2

1 + t2
, y =

2t

1 + t2
.

Genus 1. The nonsingular cubic y2 = x3 + ax + b is
parametrized by the elliptic functions

x = ℘(t), y = ℘′(t).

Poincaré believed that any algebraic curve of higher genus could be
parametrized by automorphic functions, but he was unable to
prove this until 1907.
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Edmund Whittaker (1873–1956)

Whittaker in 1933

Edmund Taylor Whittaker was born in
Southport, Lancashire, and educated at
Manchester Grammar and Cambridge
(2nd Wrangler, 1895; Smith’s Prize and
Fellow of Trinity, 1896.)

Professor in Edinburgh in 1912.

He is best known for his contributions to
analysis, mathematical physics, and the
history of physics. (He controversially
claimed that Poincaré was the true
discoverer of relativity theory.)

With G.N. Watson he wrote the classic
Modern Analysis in 1927 (updating his
own Modern Analysis of 1902).
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Wranglers

Here are the top wranglers of 1895.
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Letters home

From the letter of 24 January 1896

While studying at
Cambridge in 1896,
Whittaker wrote to
his mother with
some observations
of Cambridge life.

E. W. Hobson
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The Smith’s Prize Essay

In 1897 Whittaker won the Smith’s Prize and a fellowship at Trinity
College, Cambridge, for an essay on automorphic functions.

He solved the uniformization problem for the curve y2 = x5 + 1
of genus 2, using a function with the periodicity of the “Whittaker
group,” which he pictured as follows.

This function is mentioned in Whittaker and Watson, p. 455.
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Lester R. Ford (1886–1967)

Ford in the 1940s

Lester Randolph Ford was born in
Missouri and studied at the University
of Missouri and Harvard. He received
an M.A. from Harvard in 1913 and won
a fellowship to study overseas.

He chose Edinburgh, where he lectured
from 1914 to 1917 and did research on
automorphic functions (presumably
under the influence of Whittaker).

His research included the discovery of Ford circles and their
connection with the modular group and continued fractions.
Part of his research (on continued fractions for complex numbers)
earned him a Harvard Ph.D. when he returned to the US in 1917.

Ford circles became well-known when Ford wrote them up in an
article Fractions in the American Mathematical Monthly of 1938.
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Ford in Scotland

This photo was taken on a later
visit to Scotland in 1926.

(Courtesy of Ford’s grandaughter
Ilisa Kim, obtained by Andrew
Ranicki.)
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Ford’s example of spherical periodicity

Ford begins with automorphic functions on the sphere C ∪ {∞},
and the underlying symmetric tessellations. The following pictures
are from pp. 60-61 of Ford’s 1915 book on automorphic functions.

Spherical frame Its stereographic projection
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Origin of the spherical model

Alexander Crum Brown

Ford credits the spherical model
in the photograph to Professor
Crum Brown, who was professor
of chemistry at Edinburgh.

(Also known for pioneering
contributions to knot theory,
working with his brother-in-law
Peter Guthrie Tait.)
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Same object with modern technology (POV-ray)
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How to make the stereographic projection

1. First cut out
every other triangle
in the tessellation of
the sphere.

2. Light the sphere
from inside at the
north pole.

3. Project onto a
plane parallel to the
tangent plane at
the north pole.
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The first Ford circles

In a paper of 1917,
Ford introduced his
circles for the first
time.

He arrives at them
as images of the
horizontal line
y = h under
modular
transformations.

He finds that the circle S(pq ) touching the x-axis at p/q has radius

1/2hq2.

Today we take h = 1, so that the circles do not overlap.

24 / 34



Ford circles and the modular tessellation

In a second paper of 1917, Ford related his circles to the modular
tessellation, in order to prove a theorem of Hurwitz on continued
fractions.
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Why the connection between fractions and circles?

The key is the fact that a transformation

z 7→ az + b

cz + d
, for a, b, c , d ∈ R and ad − bc = 1,

maps circles to circles, R to itself, and preserves tangency.

So, if we have some circles that are tangent to each other and the
real axis R, the same is true of their images under z 7→ az+b

cz+d .
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Example: the modular transformation z 7→ z/(z + 1)

This is an example of a limit rotation of the hyperbolic plane.
It fixes 0 and maps the circles touching 0 into themselves.
Notice also that it sends 1/n to 1/(n + 1).

0 11
2
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Basic properties of the Ford circles

So the circles obtained from unit diameter circles at 0 and 1, by
repeatedly filling the gap on the left by a tangential circle, touch at

1

2
,

1

3
,

1

4
,

1

5
,

1

6
, . . . .

The rational positions of the other Ford circles may be explained
similarly, by appealing to properties of modular transformations.

The tangential Ford circles are
images of the initial tangential
circles.

We include the line Im(z) = 1
as an “honorary” circle, touching
the real axis at ∞.
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Computing with circles in the complex plane

To obtain several properties of Ford circles at once, we apply the
following description of circles in terms of a complex coordinate.

z0

z
r

If z lies on a circle
with center z0
and radius r ,

then

|z − z0|2 = r2, that is, (z − z0)(z − z0) = (z − z0)(z − z0) = r2

which gives the equation

zz − z0z − z0z + |z0|2 − r2 = 0.

Conversely, from such an equation we can read off the center z0,
and then compute the radius r .
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Generation of the Ford Circles

All Ford circles are images of the line Im(z) = 1, that is
z − z = 2i , under transformations in the modular group:

z 7→ w =
az + b

cz + d
, where a, b, c , d ∈ Z and ad − bc = 1.

Why? Since z = −dw+b
cw−a , the image points w satisfy(
−dw + b

cw − a

)
−
(
−dw + b

cw − a

)
= 2i .

This equation simplifies (using ad − bc = 1) to

ww −
(
a

c
+

i

2c2

)
w −

(
a

c
− i

2c2

)
w +

a2

c2
= 0,

which we recognise as the equation of the circle with
center z0 = a

c + i
2c2

and for which we easily find radius r = 1
2c2

.
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Basic properties of the Ford circles

These follow immediately from properties of modular
transformations.

1 The circle touching the real axis at the reduced fraction a/c
has radius 1/2c2.
Such a circle is the image of the line Im(z) = 1 under
z 7→ az+b

cz+d . This also explains why the circles for reduced
fractions a/c and a′/c have the same radius.

2 The circles touching z = a/c and z = b/d > a/c are
tangential to each other ⇔ ad − bc = 1.
Because such circles are the images of tangential circles,
touching z = 0 and z =∞, under the map z 7→ az+b

cz+d .

3 The circle between these tangential circles touches at a+b
c+d .

Because the latter circle is the image of the circle between the
circles touching z = 0 and z =∞, namely the circle touching
z = 1, under z 7→ az+b

cz+d .
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The mediant property

The last property implies that in any Farey series, such as

0
1

1
1

1
2

1
3

2
3

1
4

3
4

1
5

2
5

3
5

4
5

the term between a
c and the next term but one, b

d , equals a+b
c+d .
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Back to Farey

This property was discovered by Farey in 1816 (without proof),
and published in Philosophical Magazine 47 (1816) pp. 385–386.

Farey did not know that
this had already been
proved by Haros in 1802.

Nor did Cauchy, who saw
Farey’s question reprinted
in a French journal,
supplied a proof, and
attributed the discovery
to Farey.
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More on the modular tessellation and Ford circles

For more on the history of the Farey series, see Scott B. Guthery
A Motif of Mathematics, Docent Press 2011

The following picture, from Francis Bonahon’s web site

http://www-bcf.usc.edu/˜fbonahon/STML49/FareyFord.html

shows blue Ford circles on a multicolored modular tessellation.
Also see his book Low-Dimensional Geometry, AMS 2009.
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