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Abstract

It is shown that over an arbitrary countable field, there exists a

finitely generated algebra that is nil, infinite dimensional, and has

Gelfand-Kirillov dimension at most three.
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Introduction

In 1902 William Burnside asked the following question which later became

known as the Burnside Problem: does a finitely generated group whose el-

ements all have finite order need to be finite? An analogous problem for

algebras is the Kurosh Problem: if A is a finitely generated algebra over a

field K, and every element of A is algebraic over K, does it follow that A is

finite dimensional over K? A special case of the Kurosh Problem, sometimes

known as Levitski’s Problem, concerns nil algebras: if A is a finitely gener-

ated algebra over a field K and every element of A is nilpotent, is A finite

dimensional over K?
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The seminal work of Golod and Shafarevich, [1, 2], in 1964, showed that

the answer to these famous problems was negative. Their method entailed

the construction of a finitely generated nil algebra A which was infinite di-

mensional and then from this algebra the counterexample to the Burnside

Problem arises by considering a group whose elements are of the form 1 + n,

for a particular nil algebra A and some n ∈ A.

The groups and the algebras constructed by the Golod-Shafarevich method

have exponential growth. Much later, Gromov [3] proved that under the as-

sumption that the group has polynomial growth, the answer to the Burnside

Problem is positive. In fact, he proved that a finitely generated group with

polynomial growth has a nilpotent normal subgroup of finite index. As a

consequence, if a finitely-generated group has polynomial growth and each

element has finite order then the group is finite.

Golod and Shafarevich’s work together with Gromov’s result naturally

raises the question as to whether a finitely generated nil algebra with poly-

nomial growth is of necessity finite dimensional, [6, 10]. Suprisingly, this

is not the case: in [5] Lenagan and Smoktunowicz constructed, over any

countable field, an infinite dimensional finitely generated nil algebra with

Gelfand-Kirillov dimension at most 20. This result raises the following ques-

tion: what is the minimal rate of growth for a finitely generated infinite

dimensional nil algebra? In this paper, we make progress on this latter ques-

tion: by refining the methods of [5], we construct, over any countable field,

an infinite dimensional finitely generated nil algebra with Gelfand-Kirillov

dimension at most 3. (In fact, our algebra requires only two generators.)

1 Notation

In what follows, K will be a countable field and A will be the free K-algebra

in two non-commuting indeterminates x and y. The set of monomials in x,

y is denoted by M , and M(n) denotes the set of monomials of degree n, for

each n ≥ 0. Thus, M(0) = {1} and for n ≥ 1 the elements in M(n) are of
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the form x1...xn, where xi ∈ {x, y}. The K-subspace of A spanned by M(n)

will be denoted by H(n) and elements of H(n) will be called homogenous

polynomials of degree n. The degree, deg f , of any f ∈ A, is the least d ≥ 0

such that f ∈ H(0) + ... + H(d). Any f ∈ A can be uniquely presented

in the form f = f0 + f1 + ... + fd, where each fi ∈ H(i). The elements fi

are the homogeneous components of f . A right ideal I of A is homogeneous

if for every f ∈ I all homogeneous components of f are in I. If V is a

linear space over K, then dimK V denotes the dimension of V over K. The

Gelfand-Kirillov dimension of an algebra R is denoted by GKdim(R). For

elementary properties of Gelfand-Kirillov dimension we refer to [4].

For any real number k, define bkc to be the largest integer not exceeding

k.

Throughout the paper, Ā will denote the subalgebra of A consisting of

polynomials with constant term equal to zero.

Assume that all logarithms in this paper are of base 2.

The aim of this paper is to present an algebra with the desired properties

in the form Ā/E for a suitable ideal E. First, we will construct a sequence of

linear spaces U(2n), and then set E to be the largest subset that for all n ≥ 0,

AEA ∩ H(2n) ⊆ U(2n). As the sets U(2n) will be very large in dimension

(dimK U(2n) + 2 = dimK H(2n) for most n) and behave like an ideal (that

is, H(2n)U(2n) + U(2n)H(2n) ⊆ U(2n+1)), the ideal E will be very large and

hence GKdim Ā/E will be small. To guarantee that the algebra Ā/E is nil

we allow the sets U(2n) to have a bigger co-dimension at some sparse places.

2 Enumerating elements

We start with the following Lemma.

Lemma 2.1. Let K be a countable field, and let Ā be as above. Then there

exists a subset Z ⊆ N, with all i ∈ Z being greater than or equal to 5, and

an enumeration {fi}i∈Z of Ā such that blog ic > 66 deg fi. Moreover, the set

Z has the following property: if i > j and i, j ∈ Z then i > 2222j

.
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Proof. As Ā is a finitely-generated algebra over a countable field, it is it-

self countable. Let Ā = {g1, g2, ...} be an arbitrary enumeration. We now

inductively define an increasing function θ : N → N as follows: first set

θ(1) := min{i ∈ N|i > 4, blog ic > 66 deg g1}.
As an inductive hypothesis, suppose that θ is defined over {1, ..., n} such

that blog(θ(i))c > 66 deg gi for each i ≤ n. Then set θ(n + 1) = min{s ∈
N|blog sc > 66 deg gn+1 , s > 2222θ(n)

}. If we now rename the elements of Ā by

setting fθ(s) = gs then we have a listing of the elements of Ā with the required

properties.

Theorem 2.2. Let Z and {fi}i∈Z be as in Lemma 2.1. Let i ∈ Z, and let

I be the two-sided ideal generated by f 10wi
i where wi = 4 · 22i−blog ic. There is

a linear K-space Fi ⊆ H(22i−blog ic) such that I ⊆
∑∞

k=0 H(k(22i−blog ic))FiA

and dimK(Fi) < 22i − 2.

Proof. Note that 66 deg(fi) < blog ic by Lemma 2.1. Apply [8, Theorem 2]

with f = fi, r = 22i−blog ic, w = wi = 4 · 22i−blog ic, and put Fi = spanKF ,

where F is the corresponding set F of the conclusion of Lemma 2.1. Note

that these choices of f, r, w satisfy the hypotheses of [8, Theorem 2]. Al-

though the algebra A in [8, Theorem 2] is generated by three elements not

by two, this does not influence the proof.

3 Definition of U(2n) and V (2n)

In this section we will define a set U with the properties mentioned in the

introduction. In order to construct U we will first construct the sets U(2n) =

H(2n) ∩ U , for n = 1, 2, . . . . In the next section we will construct the ideal

E by requiring that r ∈ E if prq ∈ U for all p, q ∈ A.

For each i ∈ Z, set Si = [2i − i − blog ic, 2i − blog ic − 1], and set S =⋃
i∈Z Si. Note that the Si are pairwise disjoint.

Theorem 3.1. Let Z, Fi be as in Theorem 2.2. There are K-linear subspaces

U(2n) and V (2n) of H(2n) such that for all n > 0:
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1. dimK V (2n) = 2 if n /∈ S;

2. dimK V (22i−i−blog(i)c+j) = 22j
, for all 1 < i ∈ Z and all 0 ≤ j ≤ i− 1;

3. V (2n) is spanned by monomials;

4. Fi ⊆ U(22i−blog(i)c) for every i ∈ Z;

5. V (2n)⊕ U(2n) = H(2n);

6. H(2n)U(2n) + U(2n)H(2n) ⊆ U(2n+1);

7. V (2n+1) ⊆ V (2n)V (2n);

8. if n /∈ S then there are monomials m1, m2 ∈ V (2n) such that V (2n) =

Km1 + Km2 and m2H(2n) ⊆ U(2n+1).

Proof. The proof of properties (1) to (7) is very similar to the proof of

[5, Theorem 3] and the proof of property (8) is similar to the proof of [9,

Theorem 10(8)]. We construct the sets U(2n) and V (2n) inductively. Set

V (20) = Kx + Ky and U(20) = 0. Assume that we have defined V (2m) and

U(2m) for m ≤ n in such a way that conditions 1-5 hold for all m ≤ n and

conditions 6,7 and 8 hold for all m < n. Then we define V (2n+1) and U(2n+1)

inductively, in the following way. Consider the three cases

1. n ∈ S and n + 1 ∈ S.

2. n /∈ S.

3. n ∈ S and n + 1 /∈ S.

Case 1. If n ∈ S and n + 1 ∈ S, define U(2n+1) = H(2n)U(2n) +

U(2n)H(2n) and V (2n+1) = V (2n)V (2n). Conditions 6, 7 certainly hold.

If, by induction, conditions 5 and 3 hold for U(2n) and V (2n), they hold

for U(2n+1) and V (2n+1) as well. Moreover, dimK V (2n) = (dimK V (2n))2,

inductively satisfying condition 2.
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Case 2. Suppose that n /∈ S. Then dimK V (2n) = 2, as is generated by

monomials, by the inductive hypothesis. Let m1, m2 be the distinct monomi-

als that generate V (2n). Then V (2n)V (2n) = Km1m1 +Km1m2 +Km2m1 +

Km2m2. Set V (2n+1) = Km1m1 + Km1m2, so that conditions 1, 3, 7 and 8

hold.

Set U(2n+1) = H(2n)U(2n) + U(2n)H(2n) + m2V (2n). Using this defini-

tion, condition 6 holds and

H(2n+1) = H(2n)H(2n)

= U(2n)U(2n)⊕ U(2n)V (2n)⊕ V (2n)U(2n)⊕m1V (2n)⊕m2V (2n)

= U(2n+1)⊕ V (2n+1)

Thus condition 5 holds.

Case 3. Suppose that n ∈ S while n + 1 /∈ S. Then n = 2i −
blog(i)c − 1 for some i ∈ Z. By induction on condition 2, dimK V (2n) =

dimK V (22i−i−blog(i)c+i−1) = 22i−1
, and dimK V (2n)V (2n) = 22i−1

22i−1
= 22i

.

By induction on condition 5,

H(2n+1) = U(2n)U(2n)⊕ U(2n)V (2n)⊕ V (2n)U(2n)⊕ V (2n)V (2n).

We know that Fi has a basis {f1, . . . , fs} for some f1, . . . , fs ∈ H(22i −
blog(i)c) and s < 22i − 2. Each fj can be uniquely decomposed into f̄j + gj

with f̄j ∈ V (2n)V (2n) and gj ∈ V (2n)U(2n)+U(2n)U(2n)+U(2n)V (2n). Let

P the subspace spanned by f̄1, ..., f̄s.

Since dimK P ≤ s = dim Fi < 22i − 2 < dimK V (2n)V (2n) − 2, there

must exist at least two monomials m1, m2 ∈ V (2n)V (2n) such that the space

Km1 + Km2 is disjoint from P . Define V (2n+1) as this space; This satisfies

conditions 1, 3 and 7.

As P is disjoint from Km1 + Km2, there must exist a space Q ⊇ P such

that V (2n)V (2n) = Q⊕ (Km1, Km2). Set:

U(2n+1) = U(2n)U(2n) + U(2n)V (2n) + V (2n)U(2n) + Q

This immediately satisfies conditions 5 and 6. Since each polynomial fi =

gi + f̄i ∈ U(2n+1), it satisfies condition 4 as well.
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Before continuing, a helpful lemma concerning of U(2n) should be men-

tioned.

Lemma 3.2. For any m ≥ n, and any 0 ≤ k < 2m−n,

H(k2n)U(2n)H((2m−n − k − 1)2n) ⊆ U(2m).

Proof. If m = n, then k = 0 and the equation is trivially true. Using

induction, assume the theorem holds true for some m ≥ n. When 0 ≤ k <

2m−n

H(k2n)U(2n)H((2m+1−n − k − 1)2n) =

H(k2n)U(2n)H((2m−n − k − 1)2n)H(2m) ⊆ U(2m)H(2m) ⊆ U(2m+1),

and when 2m−n ≤ k < 2m+1−n

H(k2n)U(2n)H((2m+1−n − k − 1)2n) =

H(2m)H((k − 2m−n)2n)U(2n)H((2m+1−n − k − 1)2n)

⊆ H(2m)U(2m) ⊆ U(2m+1),

as required.

Another way of stating Lemma 3.2 is that, given any product of the form

H(i2n)U(2n)H(j2n), if the sum of the three arguments i2n + 2n + j2n is a

power of 2 then H(i2n)U(2n)H(j2n) ⊆ U(i2n + 2n + j2n).

4 A finitely generated infinite dimensional nil

algebra

A graded subspace E ⊆ Ā is formed by defining its homogeneous subspace

E(n) to be the set of elements r ∈ H(n) such that if 2m ≤ n < 2m+1 then

for all 0 ≤ j ≤ 2m+2 − n,

H(j)rH(2m+2 − j − n) ⊆ U(2m+1)H(2m+1) + H(2m+1)U(2m+1)

Now, define E := E(1) + E(2) + ....
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Theorem 4.1. The subset E is an ideal in Ā. Moreover Ā/E is a nil algebra

and is infinite dimensional over K.

Proof. The set E is shown to be an ideal in [5, Theorem 5], and [5, Theorems

14,15] prove that Ā/E is both nil and infinite dimensional over K. No changes

to these proofs need to be made to apply to our example, and so the proofs

are not repeated here.

5 The subspaces R, S, Q, W

The key to computing the Gelfand-Kirillov dimension of the algebra Ā/E is

to use a collection of subspaces R,S, Q, W with the following properties: if

n > 0, 2m ≤ n < 2m+1 then

R(n)H(2m+1 − n) ⊆ U(2m+1) H(2m+1 − n)S(n) ⊆ U(2m+1)

H(n) = R(n)⊕Q(n) H(n) = S(n)⊕W (n)

It then follows from Theorem 3.2 that for any k > n, R(n)H(2k−n) ⊆ U(2k)

and H(2k − n)S(n) ⊆ U(2k).

The existence of suitable such subspaces is established in the next sec-

tion. Once this has been acheived, the following theorem is available to help

calculate the Gelfand-Kirillov dimension of Ā/E. (In this theorem we take

R(0) = S(0) = U(0) = 0 and V (0) = Q(0) = W (0) = K.)

Theorem 5.1. For every n ∈ N,

n⋂
k=0

S(n− k)H(k) + H(n− k)R(k) ⊆ E(n)

Moreover,

dim(H(n)/E(n)) ≤
n∑

k=0

dim(W (n− k)) dim(Q(k))
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Proof. The proof of the first claim is very similar to the proof of [5, Theo-

rem 9] and so is omitted. Notice that,

H(n) = (S(n− k)⊕W (n− k))(R(k)⊕Q(k))

= (S(n− k)H(k) + H(n− k)R(k))⊕W (n− k)Q(k).

Therefore,

dim E(n) ≥ dim

(
n⋂

k=0

(S(n− k)H(k) + H(n− k)R(k))

)

≥ dim(H(n))−
n∑

k=0

dim(W (n− k)Q(k))

and so

dim(H(n)/E(n)) ≤
n∑

k=0

dim(W (n− k))Q(k)),

as required.

6 A sufficiently small Q and W

In order to define R, S, Q and W , begin with R(1) = S(1) = U(1), Q(1) =

W (1) = V (1). Given any natural number j with 2m ≤ j < 2m+1, define

R(j) = {r ∈ H(j) : rH(2m+1 − j) ⊆ U(2m+1)}

and

S(j) = {r ∈ H(j) : H(2m+1 − j)r ⊆ U(2m+1)}.

Theorem 6.1. Let j be a natural number. Write j in binary form as

j = 2p0 + 2p1 + ... + 2pn

with 0 ≤ p0 < p1 < ... < pn. Then there is a K-linear space W (j) ⊆ H(j)

such that W (j)⊕ S(j) = H(j) and

W (j) ⊆ V (2p0)...V (2pn) =
n∏

i=0

V (2pi)



Nil algebras with restricted growth 10

Proof. By Theorem 3.1(5), H(2pi) = U(2pi)⊕V (2pi) for i = 1, 2, ..., n. Hence,

H(j) =
∏n

i=0(U(2pi)⊕ V (2pi)), and

H(j) =

(
n∑

i=0

H(2p0 + ... + 2pi−1)U(2pi)H(2pi+1 + ... + 2pn)

)
⊕

n∏
i=0

V (2pi)

Define Tpi
(j) as H(2p0 + ... + 2pi−1)U(2pi)H(2pi+1 + ... + 2pn), so that H(j) =

(
∑n

i=0 Tpi
(j))⊕

∏n
i=0 V (2pi).

Now, from the definition of Tpi
(j), we obtain

H(2pn+1 − j)Tpi
(j) = H(2pn+1 − (2pi + ... + 2pn))U(2pi)H(2pi+1 + ... + 2pn) =

H
(
(2pn+1−pi − (20 + ... + 2pn−pi))2pi

)
U(2pi)H

(
(2pi+1−pi + ... + 2pn−pi)2pi

)
It follows from Lemma 3.2 that H(2pn+1 − j)Tpi

(j) ⊆ U(2pn+1); so that each

Tpi
(j) ⊆ S(j). Thus, there must exist some W (j) ⊆

∏n
i=0 V (2pi) such that

S(j)⊕W (j) = H(j). To see this more clearly, choose a basis of (
∏n

i=0 V (2pi)+

S(j))/S(j), pull this basis back to elements in
∏n

i=0 V (2pi), and let W (j) be

the subspace generated by that basis.

Next, sets N(2i) are defined in a similar way to the procedure used in [9].

Let i /∈ S. Then, by Theorem 3.1(8), each V (2i) is generated by two

monomials m1,i and m2,i, with m2,iH(2i) ⊆ U(2i+1). Define N(2i) = Km1,i,

and M(2i) = U(2i) + Km2,i. In the case where i ∈ S, simply set N(2i) =

V (2i), M(2i) = U(2i). Observe that for every i, N(2i) ⊕ M(2i) = H(2i).

These sets will be used to construct Q(n).

Lemma 6.2. For any integer 0 ≤ m < 2k−1,

H(m2n+1)M(2n)H((2k − 2m− 1)2n) ⊆ U(2n+k).

Proof. By definition, M(2n)H(2n) ⊆ U(2n+1). Using this fact and Lemma 3.2,

H(m2n+1)M(2n)H((2k − 2m− 1)2n) ⊆

⊆ H(m2n+1)U(2n+1)H((2k−1 −m− 1)2n+1) ⊆ U(2n+k),

as required.
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Theorem 6.3. Let j ∈ N. Write j in binary form as

j = 2p0 + 2p1 + ... + 2pn

with 0 ≤ p0 < p1 < ... < pn, and suppose n 6= 0 (that is, j is not a power of

2). Then there is linear space Q(j) ⊆ H(j) such that Q(j) ⊕ R(j) = H(j)

and

Q(j) ⊆ N(2pn)N(2pn−1)...N(2p0) =
n∏

i=0

N(2pn−i) ⊆
n∏

i=0

V (2pn−i)

Proof. This proof is very similar to the one for Theorem 6.1. By definition,

H(2pi) = N(2pi) ⊕ M(2pi) for i = 1, 2, ..., n. Hence, H(j) ⊆
∏n

i=0(N(2pi) ⊕
M(2pi)), and

H(j) =

(
n∑

i=0

H(2pn + ... + 2pi+1)M(2pi)H(2pi−1 + ... + 2p0)

)
⊕

n∏
i=0

N(2pi)

Set Bpi
(j) := H(2pn + ... + 2pi+1)M(2pi)H(2pi−1 + ... + 2p0), so that H(j) =∑n

i=0 Bpi
(j)⊕

∏n
i=0 N(2pi).

Multiplying on the right by H(2pn+1 − j) we obtain

Bpi
(j)H(2pn+1 − j) = H(2pn + ... + 2pi+1)M(2pi)H(2pn+1 − (2pn + ... + 2pi))

= H
(
(2pn−pi−1 + ... + 2pi+1−pi−1)2pi+1

)
M(2pi)H(2pi)×

H
(
(2pn−pi − (2pn−pi−1 + ... + 2pi+1−pi−1 − 1))2pi+1

)
⊆ H

(
(2pn−pi−1 + ... + 2pi+1−pi−1)2pi+1

)
U(2pi+1)×

H
(
(2pn−pi − (2pn−pi−1 + ... + 2pi+1−pi−1 − 1))2pi+1

)
It follows from Lemma 3.2 that Bpi

(j)H(2pn+1− j) ⊆ U(2pn+1); so that each

Bpi
(j) ⊆ R(j). By exactly the same reasoning as in Theorem 6.1, there must

exist some Q(j) ⊆
∏n

i=0 N(2pn−i) such that R(j)⊕Q(j) = H(j).

One last theorem about the size of Q and W must be obtained before

continuing.
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Theorem 6.4. Suppose that j, k ∈ N have binary forms

k = 2p0 + ... + 2pi−1 j = 2pi + ... + 2pn .

with p0 < ... < pn. Then dim Q(j + k) ≤ dim Q(j) dim Q(k) and dim W (j +

k) ≤ dim W (j) dim W (k).

Proof. Use the definition of Q to see that:

H(j +k) = (R(j)⊕Q(j))(R(k)⊕Q(k)) = R(j)H(k)⊕Q(j)R(k)⊕Q(j)Q(k)

If it can be shown that R(j)H(k) + Q(j)R(k) ⊆ R(j + k), then

dim Q(j + k) = dim H(j + k)− dim R(j + k) ≤

dim H(j) dim H(k)− dim R(j) dim H(k)− dim Q(j) dim R(k)

= dim Q(j) dim H(k)− dim Q(j) dim R(k) = dim Q(j) dim Q(k),

which establishes the Q inequality.

In order to show that R(j)H(k) ⊆ R(j+k), note that 2pn < j+k < 2pn+1,

and recall from the definition of R(j) that

R(j)H(k) ·H(2pn+1 − j − k) = R(j)H(2pn+1 − j) ⊆ U(2pn+1)

so that R(j)H(k) ⊆ R(j + k) by the definition of R(j + k).

Finally, to show that Q(j)R(k) ⊆ R(j + k), note that 2pi−1 ≤ k < 2pi−1+1

and

Q(j)R(k)H(2pn+1 − j − k) = Q(j)
(
R(k)H(2pi−1+1 − k)

)
H(2pn+1 − 2pi−1+1 − j)

⊆ H(j)U(2pi−1+1)H(2pn+1 − 2pi−1+1 − j).

As each of j and 2pn+1−2pi−1+1−j is divisible by 2pi−1+1, Theorem 3.2 reveals

that Q(j)R(k)H(2pn+1 − j − k) ⊆ H(2pn+1) and so Q(j)R(k) ⊆ R(j + k).

An analogous argument is used to prove the inequality for W .
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7 Inequalities

In this section we will prove, using induction, that for all n > 1,

dim Q(n), dim W (n) ≤ 8
√

n(log n)3

This result is obtained by combining the following theorems.

Theorem 7.1. If 2m < n < 2m+1, then

dim W (n) ≤ dim Q(2m+1 − n) dim V (2m+1)

and

dim Q(n) ≤ dim W (2m+1 − n) dim V (2m+1)

Proof. By the definition, R(2m+1 − n)H(n) ⊆ U(2m+1). Therefore, if c ∈
H(n) and Q(2m+1 − n)c ⊆ U(2m+1), then H(2m+1 − n)c ⊆ U(2m+1) and

c ∈ S(n).

Let v1, ..., vd ∈ Q(2m+1 − n) be a basis of Q(2m+1 − n) over K and let

c1, ..., cp ∈ W (n) be a basis of W (n). Suppose that p = dim(W (n)) >

dim Q(2m+1 − n) dim V (2m+1) = d dim V (2m+1).

Define a K-linear function f : W (n) → (H(2m+1)/U(2m+1))d ∼= V (2m+1)d

by setting

f(c) :=
(
(v1c + U(2m+1)), (v2c + U(2m+1), ..., (vdc + U(2m+1))

)
for each c ∈ W (n).

Observe that dim(Imf) ≤ dim(H(2m+1)/U(2m+1))d = d dim V (2m+1),

and that since dim W (n) = p > d dim V (2m+1), there must exist some non-

zero c ∈ ker f . However, if (vic + U(2m+1)) = 0 for each vi, then Q(2m+1 −
n)c ∈ U(2m+1) and c ∈ S(n). Hence, c ∈ S(n)∩W (n) = {0}, a contradiction.

Thus, dim W (n) = p ≤ dim Q(2m+1 − n) dim V (2m+1), as required.

The second inequality can be proven by a similar argument.

Theorem 7.2. Let j be a natural number. Write j in binary form as

j = 2p0 + 2p1 + . . . + 2pn
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with 0 ≤ p0 < p1 < ... < pn. Recalling the sets {Si}i∈Z from Section 3,

suppose that there is an m ∈ Z with p0, ..., pn ∈ Sm. Then dim Q(j) ≤
2
√

jblog jc and dim W (j) ≤ 2
√

jblog jc.

Proof. This proof will be divided into three cases:

1. j < 22m−blog mc−1

2. j = 22m−blog mc−1

3. j > 22m−blog mc−1

Case 1. Suppose that j < 22m−blog mc−1. Then pn < 2m − blog(m)c − 1.

Notice that j ≥ 22m−blog mc−m and√
jblog jc ≥ 22m−1−blog mc/2−m/2(2m − blog mc −m)

> 22m−1−blog mc/2−m/22m−1 > 22m−1

Hence, by using Theorem 6.3, we obtain

dim Q(j) ≤ dim
n∏

i=0

V (2pi) ≤
m−2∏
i=0

22i

< 22m−1

<
√

jblog jc,

as required.

A similar argument, using Theorem 6.1, gives dim W (j) ≤
√

jblog jc.
Case 2. Suppose that j = 22m−blog mc−1. Then, by definition, U(j) ⊆

R(j) ∩ S(j), and so dim Q(j), dim W (j) ≤ dim V (22m−blog mc−1) = 22m−1
, by

Theorem 3.1(2). Consequently, dim Q(j), dim W (j) ≤
√

jblog jc.
Case 3. Suppose that j > 22m−blog mc−1. Then pn = 2m − blog mc − 1

and 2pn+1 − j < 22m−blog mc−1. Set k := 2pn+1 − j, and note that k <

j and that Case 1 applies to k. Thus, an application of Case 1 gives

dim Q(k), dim W (k) ≤
√

kblog kc <
√

jblog jc.
Now, apply Theorem 7.1 to see that

dim Q(j) ≤ dim W (2pn+1 − j) dim V (2pn+1) =

dim W (k) · 2 ≤ 2
√

kblog kc < 2
√

jblog jc,
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as required.

A similar argument shows that dim W (j) ≤ 2
√

jblog jc in this case.

This finishes the three cases and thus also the proof.

Now, for each m ∈ Z, define Tm ⊂ N to be the set bounded above by

Sm and below by Sm′ , where m′ is the next lowest value in Z (or by 0, if

m is the lowest value of Z). More formally, if m′, m ∈ Z with m′ < m and

(m′, m) ∩ Z = ∅, then set Tm = [2m′ − blog m′c, 2m − m − blog mc − 1]. If

m is the minimal value of Z, then set Tm = [1, 2m −m − blog mc − 1]. The

subsets {Sm, Tm}m∈Z provide a partition of N.

Theorem 7.3. Let j be a natural number. Write j in binary form as

j = 2p0 + 2p1 + ... + 2pn

with 0 ≤ p0 < p1 < ... < pn. If there exists an m ∈ Z such that p0, ..., pn ∈
Tm, then dim Q(j), dim W (j) ≤ 2.

Proof. Note that dim Q(j) ≤ dim (
∏n

i=0 N(2pi)) = 1, by Theorem 6.3, be-

cause p0, ..., pn /∈ S.

For the W (j) case, note that 2pn ≤ j < 2pn+1, and let 2q0 + ... + 2qn be

the binary form of 2pn+1 − j. As p0 = q0 < ... < qn < pn, it follows that

q0, ..., qn ∈ Tm and so q0, ..., qn /∈ S. Applying Theorem 6.3 in this case gives

dim Q(2pn+1 − j) ≤ 1, and then applying Theorem 7.1 gives

W (j) ≤ Q(2pn+1 − j)V (2pn+1) ≤ 2,

as required.

We can now establish the main estimate of this section.

Theorem 7.4. For each n > 1,

dim Q(n), dim W (n) ≤ 8
√

n(log n)3.
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Proof. Let n = 2p0 + 2p1 + ... be the binary decomposition of n. For each

m ∈ Z, let jm be the sum of each 2pi that occurs in the binary form of n

with pi ∈ Sm, and let km be the sum of each 2pi with pi ∈ Tm. Then

n =
∑
m∈Z
jm 6=0

jm +
∑
m∈Z
km 6=0

km,

as {Sm, Tm}m∈Z forms a partition of N.

Therefore,

dim Q(n) ≤
∏
m∈Z
jm 6=0

dim Q(jm)
∏
m∈Z
km 6=0

dim Q(km),

by Theorem 6.4.

We estimate the two terms on the right hand side separately.

First, suppose that m < r are consecutive members of Z with kr 6= 0.

Then 22m−blog mc ≤ kr ≤ n, as Tr = [2m − blog mc, 2r − r − blog rc − 1]. It

follows that m ≤ log log(n)+1 in this case. Therefore, the number of m ∈ Z

with km 6= 0 is ≤ log log(n) + 2. Note that dim Q(km) ≤ 2, for each such km,

by Theorem 7.3, so that

∏
m∈Z
km 6=0

dim Q(km) ≤
blog log(n)+2c∏

i=1

2 ≤ 2log log(n)+2 ≤ 4 log n.

Secondly, observe that if jm 6= 0 then 22m−m−blog mc ≤ jm ≤ n and jm <

22m
, because Sm = [2m −m− blog mc, 2m − blog mc − 1]. Also, observe that

dim Q(jm) ≤ 2
√

jmblog jmc ≤ jm, by Theorem 7.2.

Suppose that t < r are consecutive members of Z such that r is the

largest member of Z such that jr 6= 0. Note that 2222t

< r, by Lemma 2.1;

so that 222t
< log r ≤ log n.

Consider any m ∈ Z with m ≤ t and jm 6= 0. Any pi involved in the sum

jm satisfies

pi ≤ 2m − blog mc − 1 ≤ 2m ≤ 2t.
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As each pi can be involved in at most one such sum jm, the number of m ∈ Z

with jm 6= 0 is ≤ 2t. For any such m,

dim Q(jm) ≤ jm ≤ 22m ≤ 22t

Thus, ∏
m∈Z
km 6=0
m<r

dim Q(km) ≤ (22t

)2t

= 222t ≤ log r ≤ log n

Hence, ∏
m∈Z
km 6=0

dim Q(km) ≤ (log n) · (2
√

jr log jr) ≤ 2
√

n(log n)2

and so

dim Q(n) ≤
∏
m∈Z
jm 6=0

dim Q(jm)
∏
m∈Z
km 6=0

dim Q(km)

≤ (4 log n) · (2
√

n(log n)2) = 8
√

n(log n)3,

as required.

To show that W (n) ≤ 8
√

n(log n)3 we use an analogous argument.

Now we are ready to obtain the main result of the paper.

Theorem 7.5. The algebra Ē/A is a finitely generated infinite dimensional

nil algebra with Gelfand-Kirillov dimension at most 3.

Proof. The algebra Ē/A is a finitely generated infinite dimensional nil alge-

bra, by Theorem 4.1.

By combining the previous theorem with Theorem 5.1, we obtain

dim H(n)/E(n) ≤
n∑

k=0

dim(W (n− k)) dim(Q(k))

≤
n∑

k=0

64
√

(n− k)k (log(n− k) log k)3 < 64n2(log n)6
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Hence,
n∑

i=1

dim H(i)/E(i) ≤ 64n3(log n)6.

Therefore,

GKdim(Ā/E) = lim
n→∞

(
log(

∑n
i=1 dim H(i)/E(i))

log n

)
≤ lim

n→∞

(
6 + 3(log n) + 6(log log n)

log n

)
= 3,

as required.

Concluding remarks and some questions

We have constructed a finitely generated infinite dimensional nil algebra with

Gelfand-Kirillov dimension at most three. Equivalently, we have a finitely

generated infinite dimensional nil but not nilpotent algebra with Gelfand-

Kirillov dimension at most three.

In contrast, nil does imply nilpotent for algebras of Gelfand-Kirillov di-

mension at most one, by [7]. Combining this with Bergman’s Gap Theorem,

[4, Theorem 2.5], we see that a nil but not nilpotent example must have

Gelfand-Kirillov dimension at least two. It would be very interesting to find

the precise dividing line in terms of growth. A starting point might be to con-

sider nil algebras with quadratically bounded growth and attempt to show

that these algebras must be finite dimensional. Given a positive result in this

direction, one might then speculate whether there exists a finitely generated

nil but not nilpotent algebra with Gelfand-Kirillov dimension two (but, of

course, not having quadratic growth).

Many of the constructions of weird algebras that we know involve start-

ing with a free algebra and introducing infinitely many relations; so the

corresponding questions for finitely presented algebras remain unresolved.

In particular, we ask: is every finitely presented nil algebra nilpotent?

It seems unlikely that by using the methods employed in this work we

can hope to construct a nil but not nilpotent algebra with Gelfand-Kirillov
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dimension two. Our algebras are graded, and this raises the question of

whether a finitely generated nil algebra that is graded and has Gelfand-

Kirillov dimension at most two (or quadratic growth) must in fact be finite

dimensional.

The methods employed here depend crucially on the countability hypoth-

esis. It would be interesting to see if it is possible to construct a finitely gen-

erated infinite dimensional nil algebra with finite Gelfand-Kirillov dimension

over an uncountable field.

There are many problems of a similar type in Zelmanov’s paper [11].
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