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Abstract. We consider quantum Schubert cells in the quantum grassmannian
and give a cell decomposition of the prime spectrum via the Schubert cells. As
a consequence, we show that all primes are completely prime in the generic
case where the deformation parameter q is not a root of unity. There is a natu-
ral torus action of H = (k∗)n on the quantum grassmannian Oq(Gm,n(k)) and
the cell decomposition of the set of H-primes leads to a parameterisation of
the H-spectrum via certain diagrams on partitions associated to the Schubert
cells. Interestingly, the same parameterisation occurs for the non-negative cells
in recent studies concerning the totally non-negative grassmannian. Finally,
we use the cell decomposition to establish that the quantum grassmannian
satisfies normal separation and catenarity.
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Introduction

Let m ≤ n be positive integers and let Oq(Mm,n(k)) denote the quantum defor-
mation of the affine coordinate ring on m×n matrices, with nonzero deformation
parameter q in the base field. The quantum deformation of the homogeneous coor-
dinate ring of the grassmannian, denoted Oq(Gm,n(k)), is defined as the subalgebra
of Oq(Mm,n(k)) generated by the maximal quantum minors of the generic matrix
of Oq(Mm,n(k)). To simplify, these algebras will be referred to in the sequel as the
algebra of quantum matrices and the quantum grassmannian, respectively.
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The main goal of this work is the study of the prime spectrum of the quantum
grassmannian. As this algebra is naturally endowed with the action of a torus H,
it is natural to expect that the stratification theory as developed by Goodearl and
Letzter (see [1]) will apply to this algebra. Recall that if A is an algebra and H
a torus which acts on A by algebra automorphisms then the stratification theory
predicts a partition of the prime spectrum of A into strata, each stratum being
indexed by an H-prime ideal (equivalently, a prime ideal invariant under the action
of H in the cases that we will consider). When there are infinitely many H-prime
ideals, this partition turns out to be of limited use. However when there are only
finitely many H-prime ideals, then the geometric nature of the prime spectrum
of A is fully understood; there are only finitely many strata and each stratum is
homeomorphic to the scheme of irreducible subvarieties of a torus. Moreover, still
in the case where there are only finitely many H-prime ideals, the primitive ideals
of A turn out to be those prime ideals that are maximal within their H-strata, and
the Dixmier-Moeglin equivalence is known to be satisfied (under some mild extra
assumptions). Thus the finiteness of the set of H-prime ideals is a crucial result in
the study of the whole prime spectrum of an algebra supporting a torus action.

For many algebras arising from the theory of quantum groups, general results
have been proved about the finiteness of this set. For example, when such an alge-
bra is a certain kind of iterated skew polynomial extension, general results show
that it has only finitely many H-primes. However, the algebra which interests us
here is far from being such an extension and none of the existing general results can
be applied to prove that Oq(Gm,n(k)) has only finitely many H-primes. For this
reason, we are led to use a very different approach which has a geometric flavour.
Recall that a classical approach to the study of the grassmanian variety Gm,n(k)
is to use its partition into Schubert cells and their closures which are the so-called
Schubert subvarieties of the grassmannian. Notice that, in this decomposition,
Schubert cells are indexed by Young diagrams fitting in a rectangular Young dia-
gram of sizem×(n−m). Our method is inspired by this classical geometric setting.
Indeed, we exhibit a partition of the prime spectrum of Oq(Gm,n(k)) where each
component plays the rôle the Schubert cells play in the classical geometric context.
Further, the H-stratification turns out to be a refinement of this partition. In this
sense, our approach might be taken to be reminiscent of the approach discussed in
[5] for the classical case. However, the results we obtain are more closely related
to the non-negative geometry investigated in [17], see our comment in Section 6.

Quantum analogues of Schubert varieties (or rather of their coordinate rings)
were studied in [15] in order to show that the quantum grassmannian has a certain
combinatorial structure, namely the stucture of a quantum graded algebra with a
straightening law. Subsequently, some of their properties have been established in
[16]. In this paper, we define quantum Schubert cells as noncommutative deho-
mogenisations of quantum Schubert varieties. Using the structure of a quantum
graded algebra with a straightening law enjoyed by the quantum grassmannian, we
are then in position to define a partition of its H-prime spectrum. This partition
is called a cell decomposition since it turns out that the set of H-primes of a given
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component is in natural one-to-one correspondence with the set of H-primes of an
associated quantum Schubert cell. Hence, the description of the H-primes of the
quantum grassmannian reduces to that of the H-primes of each of its associated
quantum Schubert cells. (Here, the actions of H on the quantum Schubert varieties
and cells are naturally induced by its action on the quantum grassmannian.)

On the other hand, we can show that a quantum Schubert cell can be iden-
tified as a subalgebra of a quantum matrix algebra, with the variables that are
included sitting naturally in the Young diagram associated to that cell: we call
these subalgebras partition subalgebras. As a consequence, we can establish prop-
erties for quantum Schubert cells akin to known properties of quantum matrix
algebras. For example, we are able to parameterise the H-prime ideals of a quan-
tum Schubert cell by Cauchon diagrams on the corresponding Young diagram, in
the same way that Cauchon was able to parameterise the H-prime ideals in quan-
tum matrices, see [3]. This is achieved by using the theory of deleting derivations
as developed by Cauchon in [2]. Recently, Cauchon diagrams on Young diagrams
have appeared elsewhere in the literature under the name Le-diagrams, see, for
example, [17] and [19].

By using this approach, we are able to show that there are only finitely many
H-prime ideals in Oq(Gm,n(k)). More precisely, we show that such H-primes are
in natural one-to-one correspondence with Cauchon diagrams defined on Young
diagrams fitting into a rectangular m × (n − m) Young diagram. Following on
from this description, we are able to calculate the number of H-prime ideals in the
quantum grassmannian.

In addition, we are able to show that prime ideals in the quantum grass-
mannian are completely prime, and that this algebra satisfies normal separation
and, hence, is catenary. Again, the method is to establish these properties for each
quantum Schubert cell and then transfer them to the quantum grassmannian.

The paper is organised as follows. In Section 1 basic definitions and properties
of the objects that interest us in this paper are introduced. These objects include
the quantum grassmannian, quantum Schubert varieties and the notion of a quan-
tum graded algebra with a straightening law. In Section 2 an explicit description
of the set of H-prime ideals is worked out in Oq(G2,4(k)) the first non-trivial case
of a quantum grassmannian. This calculation, which illustrates the strategy un-
derlying our approach to the general problem, can be done by hand; and so one
is able to see the outline strategy without getting distracted by the technicalities
of the general case. As mentioned above, quantum Schubert cells are crucial to
our approach and turn out to be isomorphic to certain partition subalgebras of
the algebra of quantum matrices. Section 3 is devoted to the study of these par-
tition subalgebras. Notably, their spectrum is investigated and in particular their
H-prime ideals. Hence, to a large extent, this section is of preparatory nature.
In Section 4 quantum Schubert cells are introduced. Their basic properties are
studied and they are shown to be isomorphic to partition subalgebras. Section 5 is
at the heart of the present work. Here, it is shown that the H-prime spectrum of
Oq(Gm,n(k)) can be partitioned into cells in such a way that the set of H-primes in
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a given cell is in bijection with the set of H-primes in an associated Schubert cell.
Hence, by using the results of the two preceding sections, we can establish proper-
ties of the spectrum of Oq(Gm,n(k)) and, in particular, we can study its H-prime
spectrum. Section 6 concludes the paper by stressing a very interesting connection
between our results in the present paper and recent results in the theory of total
positivity.

1. Basic definitions

Throughout the paper, k is a field and q is a nonzero element of k that is not
a root of unity. Occasionally, we will remind the reader of this restriction in the
statement of results.

In this section, we collect some basic definitions and properties about the
objects we intend to study. Most proofs will be omitted since these results already
appear in [12, 15, 16]. Appropriate references will be given in the text.

To start with, recall the following basic definitions. Let R be a ring. A proper
ideal P of R is said to be prime whenever, for all ideals I, J of R, if IJ ⊆ P , then
I ⊆ P or J ⊆ P . In addition, an ideal P of R is said to be completely prime if
R/P is an integral domain. As is well known, a completely prime ideal is prime
but, in general, the converse does not hold. One simplifying factor in the context
of this paper is that prime ideals are completely prime in the algebras that we
discuss. An element a of R is said to be normal if the right ideal and the left ideal
it generates in R coincide; that is, if aR = Ra.

Let m,n be positive integers. The quantisation of the coordinate ring of the
affine varietyMm,n(k) of m×n matrices with entries in k is denoted Oq(Mm,n(k)).
It is the k-algebra generated by mn indeterminates xij , with 1 ≤ i ≤ m and
1 ≤ j ≤ n, subject to the relations:

xijxil = qxilxij , for 1 ≤ i ≤ m, and 1 ≤ j < l ≤ n ;
xijxkj = qxkjxij , for 1 ≤ i < k ≤ m, and 1 ≤ j ≤ n ;
xijxkl = xklxij , for 1 ≤ k < i ≤ m, and 1 ≤ j < l ≤ n ;
xijxkl − xklxij = (q − q−1)xilxkj , for 1 ≤ i < k ≤ m, and 1 ≤ j < l ≤ n.

To simplify, we write Mn(k) for Mn,n(k) and Oq(Mn(k)) for Oq(Mn,n(k)). The
m×n matrix X = (xij) is called the generic matrix associated with Oq(Mm,n(k)).

As is well known, there exists a k-algebra transpose isomorphism between
Oq(Mm,n(k)) and Oq(Mn,m(k)), see [15, Remark 3.1.3]. Hence, from now on, we
assume that m ≤ n, without loss of generality.

An index pair is a pair (I, J) such that I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n}
are subsets with the same cardinality. Hence, an index pair is given by an integer
t such that 1 ≤ t ≤ m and ordered sets I = {i1 < · · · < it} ⊆ {1, . . . ,m} and
J = {j1 < · · · < jt} ⊆ {1, . . . , n}. To any such index pair we associate the quantum
minor

[I |J ] =
∑

σ∈St

(−q)`(σ)xiσ(1)j1 · · ·xiσ(t)jt
.
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Definition 1.1. The quantisation of the coordinate ring of the grassmannian of m-
dimensional subspaces of kn, denoted by Oq(Gm,n(k)) and informally referred to
as the (m×n) quantum grassmannian, is the subalgebra of Oq(Mm,n(k)) generated
by the m×m quantum minors.

A maximal quantum minor corresponds to an index pair [{1, . . . ,m}|J ] with
J = {j1 < · · · < jm} ⊆ {1, . . . , n}. We call such J index sets and denote the
corresponding minor by [J ] in what follows. Thus, such a [J ] is an element of
Oq(Gm,n(k)). The set of all index sets is denoted by Πm,n, or sometimes Π when
m and n are understood. Since Πm,n is in one-to-one correspondence with the set
of all maximal quantum minors of Oq(Mm,n(k)), we will often identify these two
sets. We equip Πm,n with a partial order ≤st defined in the following way. Let
I = {i1 < · · · < im} and J = {j1 < · · · < jm} be two index sets, then

I ≤st J ⇐⇒ is ≤ js for 1 ≤ s ≤ m.

For example, Figure 1 shows the partial ordering on generators of Oq(G3,6(k)).
Let A be a noetherian k-algebra, and assume that the torus H := (k∗)r

acts rationally on A by k-algebra automorphisms. (For details concerning rational
actions of tori, see [1, Chapter II.2]. In particular, note that the action of H is
semisimple and all H-eigenvalues are rational.) A two-sided ideal I of A is said
H-invariant if h ·I = I for all h ∈ H. An H-prime ideal of A is a proper H-invariant
ideal J of A such that whenever J contains the product of two H-invariant ideals of
A then J contains at least one of them. We denote by H-Spec(A) the H-spectrum
of A; that is, the set of all H-prime ideals of A. It follows from [1, Proposition
II.2.9] that every H-prime ideal is prime when q is not a root of unity; so that in
this case H-Spec(A) coincides with the set of all H-invariant prime ideals of A.

There are natural torus actions on the classes of algebras that we study
here, including quantum matrices, partition subalgebras of quantum matrices and
quantum grassmannians. These actions are rational; and so the remarks above
apply.

First, there is an action of a torus H := (k∗)m+n on Oq(Mm,n(k)) given by

(α1, . . . , αm, β1, . . . , βn) ◦ xij := αiβjxij .

In other words, one is able to multiply through rows and columns by nonzero
scalars.

Next, there is an action of the torus H := (k∗)n on Oq(Gm,n(k)) which comes
from the column action on quantum matrices. Thus, (α1, . . . , αn) ◦ [i1, . . . , im] :=
αi1 · · ·αim

[i1, . . . , im]. We shall be interested in prime ideals left invariant under the
action of this torus. The set of such prime ideals is the H-spectrum of Oq(Gm,n(k)).

We recall the definition of quantum Schubert varieties given in [16].

Definition 1.2. Let γ be an element of Πm,n and put Πγ
m,n = {α ∈ Πm,n |α 6≥st γ}.

The quantum Schubert variety S(γ) associated to γ is

S(γ) := Oq(Gm,n(k))/〈Πγ
m,n〉.

(Note that S(γ) was denoted by Oq(Gm,n(k))γ in [16].)
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Figure 1. The partial ordering ≤st on Oq(G3,6(k)).

This definition is inspired by the classical description of the coordinate rings
of Schubert varieties in the grassmannian. For more details about this matter, see
[8, Section 6.3.4].

Note that each of the maximal quantum minors that generate Oq(Gm,n(k))
is an H-eigenvector. Thus, the H-action on Oq(Gm,n(k)) transfers to the quantum
Schubert varieties S(γ).

In order to study properties of the quantum grassmannian, the notion of a
quantum graded algebra with a straightening law (on a partially ordered set Π)
was introduced in [15]. We now recall the definition of these algebras and mention
various properties that we will use later.

Let A be an algebra and Π a finite subset of elements of A with a partial
order <st. A standard monomial on Π is an element of A which is either 1 or of
the form α1 · · ·αs, for some s ≥ 1, where α1, . . . , αs ∈ Π and α1 ≤st · · · ≤st αs.

Definition 1.3. Let A be an N-graded k-algebra and Π a finite subset of A equipped
with a partial order <st. We say that A is a quantum graded algebra with a straight-
ening law (quantum graded A.S.L. for short) on the poset (Π, <st) if the following
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conditions are satisfied.
(1) The elements of Π are homogeneous with positive degree.
(2) The elements of Π generate A as a k-algebra.
(3) The set of standard monomials on Π is a linearly independent set.
(4) If α, β ∈ Π are not comparable for <st, then αβ is a linear combination of
terms λ or λµ, where λ, µ ∈ Π, λ ≤st µ and λ <st α, β.
(5) For all α, β ∈ Π, there exists cαβ ∈ k∗ such that αβ − cαββα is a linear
combination of terms λ or λµ, where λ, µ ∈ Π, λ ≤st µ and λ <st α, β.

By [15, Proposition 1.1.4], if A is a quantum graded A.S.L. on the partially
ordered set (Π, <st), then the set of standard monomials on Π forms a k-basis of A.
Hence, in the presence of a standard monomial basis, the structure of a quantum
graded A.S.L. may be seen as providing more detailed information on the way
standard monomials multiply and commute.

Example. It is shown, in [15, Theorem 3.4.4], that Oq(Gm,n(k)) is a quantum
graded algebra with a straightening law on (Πm,n,≤st).

From our point of view, one important feature of quantum graded A.S.L. is
the following. Let A be a k-algebra which is a quantum graded A.S.L. on the set
(Π,≤st). A subset Ω of Π will be called a Π-ideal if it is an ideal of the partially
ordered set (Π,≤st) in the sense of lattice theory; that is, if it satisfies the following
property: if α ∈ Ω and if β ∈ Π, with β ≤st α, then β ∈ Ω. We can consider the
quotient A/〈Ω〉 of A by the ideal generated by Ω. Clearly, it is still a graded
algebra and it is generated by the images in A/〈Ω〉 of the elements of Π \ Ω. The
important point here is that A/〈Ω〉 inherits from A a natural quantum graded
A.S.L. structure on Π \ Ω (or, more precisely, on the canonical image of Π \ Ω in
A/〈Ω〉). In particular, the set of homomorphic images in A/〈Ω〉 of the standard
monomials of A which either equal 1 or are of the form α1 · · ·αt (t ∈ N∗) and
α1 /∈ Ω form a k-basis for A/〈Ω〉. The reader will find all the necessary details in
§1.2 of [15].

Example. Let γ be an element of Πm,n. It is clear that the set Πγ
m,n introduced in

Definition 1.2 is a Πm,n-ideal. Hence, the discussion above shows that the quantum
Schubert variety S(γ) is a quantum graded A.S.L. on the canonical image in S(γ) of
Πm,n\Πγ

m,n. In particular, the canonical images in S(γ) of the standard monomials
of Oq(Gm,n(k)) which either equal to 1 or are of the form [I1] · · · [It], for some t ≥ 1
and with γ ≤st [I1], form a k-basis of S(γ).

Remark 1.4. Let γ be an element of Πm,n. As mentioned in Example 1, the quan-
tum Schubert variety S(γ) is a quantum graded A.S.L. on the canonical image in
S(γ) of Πm,n \ Πγ

m,n. At this point, it is worth noting that the set Πm,n \ Πγ
m,n

has a single minimal element, namely γ, and that the image of γ is a normal
non-zerodivisor in S(γ), by [15, Lemma 1.2.1].
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2. An example: the H-prime spectrum of Oq(G2,4(k))

In this section, we illustrate the stategy for the paper by computing the H-prime
spectrum of Oq(G2,4(k)). Full details are not given, since the justification for most
of our claims follows from the results proved in the rest of the paper. The compu-
tation of the H-prime spectrum of Oq(G2,4(k)) was first obtained by Ewan Russell,
and full details will appear in his PhD thesis, [18].
The quantum grassmannian Oq(G2,4(k)) is the k-subalgebra generated by the 2×2
quantum minors of the 2 × 4 generic matrix of Oq(M2,4(k)); that is, the subal-
gebra generated by the quantum minors [12] , [13] , [14] , [23] , [24] and [34] . The
following commutation relations can be checked by using the defining relations of
Oq(M2,4(k)):

[ij][ik] = q[ik][ij], [ik][jk] = q[jk][ik], for i < j < k

and

[14] [23] = [23] [14] , [12][34] = q2[34][12], [13] [24] = [24] [13] +
(
q − q−1

)
[14] [23] .

There is also a Quantum Plücker relation

[12] [34]− q [13] [24] + q2 [14] [23] = 0.

The Quantum Plücker relation may be rewritten as

[34] [12]− q−1 [24] [13] + q−2 [23] [14] = 0

and one can also check that

[13] [24] = q2 [24] [13] +
(
q−1 − q

)
[12] [34] .

One can check directly from these relations that Oq(G2,4(k)) is a quantum
graded algebra with a straightening law on the poset Π in Figure 2, see Defini-
tion 1.3.

There is a natural way to associate a partition to any quantum minor and thus
a Young diagram, see Theorem 4.8 for the general case. In the case of Oq(G2,4(k))
this association is illustrated in Figure 2.

Before starting, let us recall briefly the work of Cauchon on the H-prime
spectrum of quantum matrices in the generic case where q is not a root of unity.
In [3], Cauchon proves that the H-prime ideals of Oq(Mm,n(k)) are in bijection
with the so-called Cauchon diagrams on the Young diagram with m rows and n
columns. A Cauchon diagram on a Young diagram is a colouring of each square
either black or white in such a way that if a square is coloured black then either
each square to the left in the same row is black or each square above in the same
column is black. It is easy to see that only two of the 16 possible black-white

colourings of the Young diagram fail this test and so there are 14 Cauchon

Diagrams on . Hence, there are 14 H-primes in Oq(M2(k)) in the generic case
where q is not a root of unity.

The major goal of this paper is to show that Cauchon’s work can be extended
to describe the H-prime spectrum of the quantum grassmannian.
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Figure 2. Oq(G2,4(k))

In Section 5, we will prove that each H-prime ideal P of Oq(Gm,n(k)) is
naturally associated to a (unique) quantum minor γ such that γ 6∈ P , but α ∈ P
for any quantum minor α 6≥st γ. We use this to partition the H-prime spectrum
of Oq(Gm,n(k)).

We start by considering H-prime ideals P of Oq(G2,4(k)) that do not contain
the quantum minor [12]. Note that [12] is a normal element of Oq(G2,4(k)) and
so we can consider the localisation Oq(G2,4(k))[[12]−1] obtained by inverting [12].
The dehomogenisation homomorphism introduced in [12, Corollary 4.1] shows that

Oq(G2,4(k))[[12]−1] ∼= Oq(M2(k))[y, y−1;σ],

where σ is an automorphism of Oq(M2(k)) that arises from the commutation
rules for the quantum minor [12] in Oq(G2,4(k)). There are H-actions on all the
algebras involved and this isomorphism is H-equivariant. Thus, the H-prime ideals
P of Oq(G2,4(k)) that do not contain the quantum minor [12] are in natural
bijection with the H-prime ideals of Oq(M2(k))[y, y−1;σ] and these, in turn, are in
natural bijection with the H-prime ideals of Oq(M2(k)), by [14, Theorem 2.3]. As
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indicated above, there are 14 H-prime ideals in Oq(M2(k)), and this produces 14
H-prime ideals of Oq(G2,4(k)) that do not contain [12]. Explicit generators of these
primes can be calculated by using the known generators of the H-prime ideals in
Oq(M2(k)) and the isomorphism above. Note that we can consider the generators

of Oq(M2(k)) as sitting naturally in the partition that is associated with the
quantum minor [12].

Next, we consider H-prime ideals P of Oq(G2,4(k)) that contain the quantum
minor [12] but do not contain [13]. Note that the relations above for Oq(G2,4(k))
show that [13] is normal modulo the ideal generated by [12]. We start by factoring
out this ideal and then proceed as above. Thus, we obtain a dehomogenisation
isomorphism

Oq(G2,4(k)) [ [13]
−1

] ∼= T [y, y−1;σ],

where Oq(G2,4(k)) is the factor ring Oq(G2,4(k))/ 〈[12]〉, the automorphism σ arises

from the commutation rules for [13] in Oq(G2,4(k)) and T is the dehomogenisation

of Oq(G2,4(k)) at [13]. Once again, there is a natural bijection between the H-prime
ideals of Oq(G2,4(k)) that contain the quantum minor [12] but do not contain [13]
and the H-prime ideals of T . It only remains to identify T . The dehomogenisation
map shows that T is generated by the following elements:

[14] [13]
−1
, [23] [13]

−1
, [24] [13]

−1
, [34] [13]

−1
.

The second version of the quantum Plücker relation shows that

[24] [13] = q−1[23] [14]

and from this one can see that T is in fact generated by

[̃14] := [14] [13]
−1
, [̃23] := [23] [13]

−1
, [̃34] := [34] [13]

−1
.

By examining the commutation relations between these three generators, we
see that T can be considered to be a subalgebra of Oq(M2(k)) with the generators
sitting naturally in the positions determined by the partition corresponding to

[13]; that is, . Such an algebra is a quantum affine 3-space, and so has 8 H-

prime ideals each of these being generated by a subset of {[̃14], [̃23], [̃34]}. Each
of these 8 H-prime ideals in T will produce a H-prime ideal of Oq(G2,4(k)) that
contains [12] but does not contain [13]. Explicit generators can be found by using
the dehomogenisation isomorphism: as an example, it is instructive to consider

the one coming from the subset {[̃14], [̃23]}. Let P be the corresponding H-prime

ideal of Oq(G2,4(k)). Then P [13]
−1

contains [14] and [23]; and so P contains [14]
and [23]. Since P also contains [12] and does not contain [13], by definition, the
quantum Plücker relation forces [24] ∈ P . It is then easy to check that P is the
ideal generated by [12], [14], [23], [24]. Similar calculations produce all of the 8 H-

primes explicitly. Note again that each black-white colouring of is a Cauchon
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Diagram, and there is a natural bijection between these Cauchon Diagrams and
the 8 H-primes being discussed.

At the next stage, we consider H-prime ideals P of Oq(G2,4(k)) that contain
the quantum minors [12] and [13] but do not contain [14]. However, note that such
a prime ideal is then forced by the quantum Plücker relation to contain [23]. This
can be better stated by saying that P contains each quantum minor that is not
greater than or equal to [14] (this is what happens in general, as we have stated
above). We follow the procedure as above and produce 4 more H-prime ideals of
Oq(G2,4(k)).

In the same way, [23] produces 4 H-primes, [24] produces 2 H-primes, [34]
produces 1 H-prime and finally there is the irrelevant ideal generated by all of the
quantum minors. Thus, we obtain 14 + 8 + 4 + 4 + 2 + 1 + 1 = 34 H-prime ideals
in Oq(G2,4(k)).

Figure 3 shows a diagram of the H-prime ideals of Oq(G2,4(k)) and the cor-
responding poset of Cauchon diagrams. In each case the H-prime ideal is gener-
ated by the quantum minors indicated. We conjecture that each H-prime ideal in
Oq(Gm,n(k)) is generated by the m×m quantum minors that it contains.

We have considered the example of Oq(G2,4(k)) in some detail because it
illustrates most of the ideas that we develop in the rest of the paper. The outline
strategy is as follows. Each H-prime ideal P of H-Spec(Oq(Gm,n(k))) is asso-
ciated with a (unique) quantum minor (or index set) γ such that γ 6∈ P , but
α ∈ P for any quantum minor α 6≥st γ, see Theorem 5.1. This gives a partition
of H-Spec(Oq(Gm,n(k))). In order to study the H-prime ideals P that are asso-
ciated with γ we pass first to the quantum Schubert variety S(γ). This is the
factor algebra of Oq(Gm,n(k)) by the ideal generated by those minors α 6≥st γ.
Quantum Schubert varieties inherit from Oq(Gm,n(k)) the structure of a quantum
graded algebra with a straightening law. Next, we consider the noncommutative
dehomogenisation of the Schubert variety at the image of the minor γ: this is the
quantum Schubert cell So(γ). Each of the H-primes associated with γ “survives”
in this quantum Schubert cell. Thus, the problem is to describe H-Spec(So(γ)). In
order to do this, we show that a natural set of generators for So(γ) can be placed
in the boxes of the Young diagram associated with γ in such a way that the com-
mutation relations of these generators are the same of those of a corresponding
subalgebra of quantum matrices. We call such subalgebras partition subalgebras
of quantum matrices. It turns out that Cauchon’s methods for quantum matrices
work for partition subalgebras, and this enables us to describe H-Spec(So(γ)).

In the following sections of the paper, we reverse the order in the strategy that
we have just outlined. We start by studying properties of partition subalgebras
(and hence quantum Schubert cells), then use these results to study quantum
Schubert varieties, and finally deduce the results we are aiming for in the quantum
grassmannian.
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Figure 3. The complete H-prime spectrum of the quantum
grassmannian Oq(G2,4(k)).
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3. Partition subalgebras of quantum matrices

Let λ = (λ1, λ2, . . . , λm) be a partition with n ≥ λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0.
The partition subalgebra Aλ of Oq(Mm,n(k)) is defined to be the subalgebra of
Oq(Mm,n(k)) generated by the variables xij with j ≤ λi. By looking at the defining
relations for quantum matrices, it is easy to see that Aλ can be presented as an
iterated Ore extension with the variables xij added in lexicographic order. As a
consequence, partition subalgebras are noetherian domains. Recall that there is
an action of a torus H := (k∗)m+n on Oq(Mm,n(k)) given by

(α1, . . . , αm, β1, . . . , βn) ◦ xij := αiβjxij .

This action induces an action on Aλ, by restriction. Our main aim in this section is
to observe that the Goodearl-Letzter stratification theory and the Cauchon theory
of deleting derivations apply to partition subalgebras of quantum matrices. As a
consequence, we can then exploit these theories to obtain information about the
prime and H-prime spectra of partition subalgebras.

The conditions needed to use the theories have been brought together in the
notion of a (torsion-free) CGL extension introduced in [14, Definition 3.1]; the
definition is given below, for convenience.

Definition 3.1. An iterated skew polynomial extension

A = k[x1][x2;σ2, δ2] . . . [xn;σn, δn]

is said to be a CGL extension (after Cauchon, Goodearl and Letzter) provided
that the following list of conditions is satisfied:

• With Aj := k[x1][x2;σ2, δ2] . . . [xj ;σj , δj ] for each 1 ≤ j ≤ n, each σj is a
k-algebra automorphism of Aj−1, each δj is a locally nilpotent k-linear
σj-derivation of Aj−1, and there exist non-roots of unity qj ∈ k∗ such that
σjδj = qjδjσj ;

• For each i < j there exists a λji ∈ k∗ such that σj(xi) = λjixi;
• There is a torus H = (k∗)r acting rationally on A by k-algebra automor-

phisms;
• The xi for 1 ≤ i ≤ n are H-eigenvectors;
• There exist elements h1, . . . , hn ∈ H such that hj(xi) = σj(xi) for j > i and

such that the hj-eigenvalue of xj is not a root of unity.

If, in addition, the subgroup of k∗ generated by the λji is torsion-free then
we will say that A is a torsion-free CGL extension.

For a discussion of rational actions of tori, see [1, Chapter II.2].

It is easy to check that all of these conditions are satisfied for partition subal-
gebras (for exactly the same reasons that quantum matrices are CGL extensions).

Proposition 3.2. Partition subalgebras of quantum matrix algebras are torsion-free
CGL extensions when the parameter q is not a root of unity.
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Proof. It is only necessary to show that we can introduce the variables xij that
define the partition subalgebra in such a way that the resulting iterated skew
polynomial extension satisfies the list of conditions above. Lexicographic ordering
is suitable. �

Corollary 3.3. Let Aλ be a partition subalgebra of quantum matrices and suppose
that Aλ is equipped with the induced action of H. Suppose that the parameter q is
not a root of unity. Then Aλ has only finitely many H-prime ideals and all prime
ideals of Aλ are completely prime.

Proof. This follows immediately from the previous result and [1, Theorem II.5.12
and Theorem II.6.9]. �

In fact, we can be much more precise about the number of H-primes. We will
prove below that there exists a natural bijection between the H-prime spectrum
of Aλ and Cauchon diagrams defined on the Young diagram corresponding to the
partition λ.

Suppose that Yλ is the Young diagram corresponding to the partition λ. Then
a Cauchon diagram on Yλ is an assignment of a colour, either white or black, to
each square of the diagram Yλ in such a way that if a square is coloured black then
either each square above is coloured black, or each square to the left is coloured
black. These diagrams were first introduced by Cauchon, [3], in his study of the
H-prime spectrum of quantum matrices. Recently, they have occurred with the
name Le-diagrams in work of Postnikov, [17], and Williams, [19].

Lemma 3.4. Let λ = (λ1, λ2, . . . , λm) be a partition with n ≥ λ1 ≥ λ2 ≥ · · · ≥
λm > 0. The number of H-prime ideals in Aλ is equal to the number of Cauchon
diagrams defined on the Young diagram corresponding to the partition λ.

Proof. Let nλ denote the number of H-prime ideals in Aλ. First, we obtain a
recurrence relation for nλ.

The H-prime spectrum of Aλ can be written as a disjoint union:

H-Spec(Aλ) = {J ∈ H-Spec(Aλ)|xm,λm
∈ J} t {J ∈ H-Spec(Aλ)|xm,λm

/∈ J}.

It follows from the complete primeness of every H-prime ideal of Aλ that
an H-prime ideal J of Aλ that contains xm,λm

must also contain either xi,λm

for each i ∈ {1, . . . ,m} or xm,α for each α ∈ {1, . . . , λm}. Let I1 be the ideal
generated by xi,λm

for i ∈ {1, . . . ,m}, and let I2 be the ideal generated by xm,α

for α ∈ {1, . . . , λm}. Set I3 := I1 + I2. As

Aλ

I1
' A(λ1−1,λ2−1,...,λm−1),

Aλ

I2
' A(λ1,λ2,...,λm−1)

and
Aλ

I3
' A(λ1−1,λ2−1,...,λm−1−1),

we obtain
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nλ = n(λ1−1,λ2−1,...,λm−1) + n(λ1,λ2,...,λm−1) − n(λ1−1,λ2−1,...,λm−1−1)

+ |{J ∈ H-Spec(Aλ)|xm,λm
/∈ J}|.

(Even though the above isomorphisms are not always H-equivariant, they preserve
the property of being an H-prime.)

As Aλ is a CGL extension, one can apply the theory of deleting derivations
to this algebra. In particular, it follows from [2, Théorème 3.2.1] that the multi-
plicative system of Aλ generated by xm,λm

is an Ore set in Aλ, and

Aλ[x−1
m,λm

] ' A(λ1,λ2,...,λm−1,λm−1)[y
±1;σ],

where σ is the automorphism of A(λ1,λ2,...,λm−1,λm−1) defined by σ(xiα) = q−1xiα

if i = m or α = λm, and σ(xiα) = xiα otherwise. Denote this isomorphism by ψ,
and note that ψ(xm,λm

) = y. As xm,λm
is an H-eigenvector, the action of H on Aλ

extends to an action of H on Aλ[x−1
m,λm

], and so on A(λ1,λ2,...,λm−1,λm−1)[y
±1;σ].

It is easy to show that this action restricts to an action on A(λ1,λ2,...,λm−1,λm−1)

which coincides with the “natural” action of H on this algebra. Hence the iso-
morphism ψ induces a bijection from {J ∈ H-Spec(Aλ)|xm,λm

/∈ J} to the
set H-Spec(A(λ1,λ2,...,λm−1,λm−1)[y

±1;σ]); and so it follows from [14, Theorem
2.3] that there exists a bijection between {J ∈ H-Spec(Aλ)|xm,λm

/∈ J} and
H-Spec(A(λ1,λ2,...,λm−1,λm−1)). Hence

|{J ∈ H-Spec(Aλ)|xm,λm
/∈ J}| = n(λ1,λ2,...,λm−1,λm−1);

so that

nλ = n(λ1−1,λ2−1,...,λm−1) + n(λ1,λ2,...,λm−1) − n(λ1−1,λ2−1,...,λm−1−1)

+n(λ1,λ2,...,λm−1,λm−1).

On the other hand, it follows from [19, Remark 4.2] that the number of
Cauchon diagrams (equivalently, Le-diagrams) defined on the Young diagram cor-
responding to the partition λ satisfies the same recurrence. As the number of
H-prime ideals in A(1) is equal to 2 which is also the number of Cauchon diagrams
defined on the Young diagram corresponding to the partition λ = (1), the proof is
complete. �

Let λ = (λ1, λ2, . . . , λm) be a partition with n ≥ λ1 ≥ λ2 ≥ · · · ≥ λm > 0 and
let Aλ be the corresponding partition subalgebra of generic quantum matrices. Let
Cλ denote the set of Cauchon diagrams on the Young diagram Yλ corresponding
to the partition λ. We have just seen that the sets H-Spec(Aλ) and Cλ have the
same cardinality. In fact, there is a natural bijection between these two sets which
carries over important algebraic and geometric information. This natural bijection
arises by using Cauchon’s theory of deleting derivations developed in [2] and [3].

As Aλ is a CGL extension, the theory of deleting derivations can be applied
to the iterated Ore extension Aλ = k[x1,1] . . . [xm,λm

;σm,λm
, δm,λm

] (where the
indices are increasing for the lexicographic order). Before describing the deleting
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derivations algorithm, we introduce some notation. Denote by ≤lex the lexico-
graphic ordering on N2 and set

E :=

(
m⊔

i=1

{i} × {1, . . . , λi} ∪ {(m,λm + 1)}

)
\ {(1, 1)}.

If (j, β) ∈ E with (j, β) 6= (m,λm + 1), then (j, β)+ denotes the least element
(relative to ≤lex) of the set {(i, α) ∈ E |(j, β) < (i, α)}.

The deleting derivations algorithm constructs, for each r ∈ E, a family of

elements x
(r)
i,α for α ≤ λi of F := Frac(Aλ), defined as follows.

1. If r = (m,λm + 1), then x
(m,λm+1)
i,α = xi,α for all (i, α) with α ≤ λi.

2. Assume that r = (j, β) < (m,λm + 1), and that the x
(r+)
i,α are already con-

structed. Then, it follows from [2, Théorème 3.2.1] that x
(r+)
j,β 6= 0 and, for all

(i, α), we have:

x
(r)
i,α =





x
(r+)
i,α − x

(r+)
i,β

(
x

(r+)
j,β

)−1

x
(r+)
j,α if i < j and α < β

x
(r+)
i,α otherwise.

It is interesting to notice that the above changes of variables, on which
the theory of deleting derivations is based, can be reinterpreted using quasi-
determinants as defined in [6] and [7]. Although we do not use this reinterpre-
tation in the present paper, in the following example we illustrate it for the cases
of Oq(M2(k)) and Oq(M3(k)).

Example. In the case where λ = (n, n, . . . , n), (m times), one can express the

elements x
(1,2)
i,α obtained at the end of this algorithm as quasi-determinants of the

m × n matrix X = (xi,α) and its sub-matrices. The reader is referred to [7] for
the definition and the notation relative to quasi-determinants. In particular, when
λ = (2, 2), we are dealing with Oq(M2(k)). In this case, there is only one non-trivial
step in the deleting derivations process, and this involves replacing the entry x11

by x11 −x12x
−1
22 x21. Note that x11 −x12x

−1
22 x21 = (x11x22 −qx12x21)x

−1
22 , and that

the term in brackets is the 2× 2 quantum determinant. Hence, it is easy to check
that (

x
(1,2)
11 x

(1,2)
12

x
(1,2)
21 x

(1,2)
22

)
=

(
| X |11 x12

x21 x22

)
,

in the quasi-determinant notation.

As a further example when λ = (3, 3, 3), it can be shown that



x
(1,2)
11 x

(1,2)
12 x

(1,2)
13

x
(1,2)
21 x

(1,2)
22 x

(1,2)
23

x
(1,2)
31 x

(1,2)
32 x

(1,2)
33


 =




| X |11 | X31 |12 x13

| X13 |21 | X11 |22 x32

x31 x32 x33


 .
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As in [2], we denote by Aλ the subalgebra of Frac(Aλ) generated by the
indeterminates obtained at the end of this algorithm; that is, we denote by Aλ

the subalgebra of Frac(Aλ) generated by the tij := x
(1,2)
ij for each (i, j) such that

j ≤ λi. Cauchon has shown that Aλ can be viewed as the quantum affine space
generated by indeterminates tij for j ≤ λi with relations tijtil = qtiltij for j < l,
while tij tkj = qtkj tij for i < k, and all other pairs commute. Observe that the torus

H still acts by automorphisms on Aλ via (a1, . . . , am, b1, . . . , bn).tij = aibjtij . The
theory of deleting derivations allows the explicit (but technical) construction of an
embedding ϕ, called the canonical embedding, from H-Spec(Aλ) into the H-prime
spectrum of Aλ. The H-prime ideals of Aλ are well-known: they are generated by
the subsets of {tij}. If C is a Cauchon diagram defined on the Young diagram

corresponding to λ, then we denote by KC the (completely) prime ideal of Aλ

generated by the subset of indeterminates tij such that the square in position
(i, j) is a black square of C.

Theorem 3.5. Let λ = (λ1, λ2, . . . , λm) be a partition with n ≥ λ1 ≥ λ2 ≥ · · · ≥
λm > 0 and let Aλ be the corresponding partition subalgebra of generic quantum
matrices. Let Cλ denote the set of Cauchon diagrams defined on the Young diagram
corresponding to λ.

For every Cauchon diagram C ∈ Cλ, there exists a unique H-invariant (com-
pletely) prime ideal JC of Aλ such that ϕ(JC) = KC. Moreover there are no other
H-prime ideals in Aλ; so that

H-Spec(Aλ) = {JC |C ∈ Cλ}.

Proof. As the sets H-Spec(Aλ) and Cλ have the same cardinality by the previous
lemma, it is sufficient to show that ϕ(H-Spec(Aλ)) ⊆ {KC |C ∈ Cλ}. This inclusion
can be obtained by following the arguments of [3, Lemmes 3.1.6 and 3.1.7]. The
details are left to the interested reader. �

Remark 3.6. Theorem 3.5 provides more than just an explicit bijection between the
H-spectrum of Aλ and Cλ. This natural bijection carries algebraic and geometric
data. For example, it can be shown that the height of JC is given by the number
of black boxes of the Cauchon diagram C. Also, the dimension of the H-stratum
(in the sense of [1, Definition II.2.1]) associated to JC can be read off from the
Cauchon diagram C.

An algebra A is said to be catenary if for each pair of prime ideals Q ⊆ P of
A all saturated chains of prime ideals between Q and P have the same length. Our
next aim is to show that partition subalgebras of quantum matrix algebras are
catenary. The key property that we need to establish in order to prove catenarity
is the property of normal separation. Two prime ideals Q $ P are said to be
normally separated if there is an element c ∈ P\Q such that c is normal modulo
Q. The algebra is normally separated if each such pair of prime ideals is normally
separated. In our case, a result of Goodearl, see [9, Section 5], shows that it is
enough to concentrate on the H-prime ideals. Suppose that A is a k-algebra with



18 S Launois, T H Lenagan and L Rigal

a torus H acting rationally. If Q is any H-invariant ideal of A then an element
c is said to be H-normal modulo Q provided that there exists h ∈ H such that
ca− h(a)c ∈ Q for all a ∈ A. Goodearl observes that in this case one may choose
the element c to be an H-eigenvector. The algebra A has H-normal separation
provided that for each pair of H-prime ideals Q $ P there exists an element
c ∈ P\Q such that c is H-normal modulo Q.

A slightly weaker notion, also introduced by Goodearl, is that of normal H-
separation. The algebra A has normal H-separation provided that for each pair of
H-primes Q $ P there is an H-eigenvector c ∈ P\Q which is normal modulo Q.
Goodearl shows that in the situation that we are considering, normal H-separation
implies normal separation, see [9, Theorem 5.3].

Notice that, as explained in paragraph 5.1 of [9], the action of H induces a
grading on A by a suitable free abelian group. Using this grading, it is easy to see
that A has normal H-separation if and only if for each pair of H-primes Q $ P
there is an element c ∈ P\Q whose image in A/Q is normal and an H-eigenvector.
This fact will be freely used in the sequel.

Recall, from [14, Definition 2.5], the definition of a Cauchon extension. Let
A be a domain that is a noetherian k-algebra and let R = A[X ;σ, δ] be a skew
polynomial extension of A. We say that R = A[X ;σ, δ] is a Cauchon Extension
provided that

• σ is a k-algebra automorphism of A and δ is a k-linear locally nilpotent σ-
derivation of A. Moreover we assume that there exists q ∈ k∗ which is not a
root of unity such that σ ◦ δ = qδ ◦ σ.

• There exists an abelian group H which acts on R by k-algebra automorphisms
such that X is an H-eigenvector and A is H-stable.

• σ coincides with the action on A of an element h0 ∈ H.
• Since X is an H-eigenvector and since h0 ∈ H, there exists λ0 ∈ k∗ such that
h0.X = λ0X . We assume that λ0 is not a root of unity.

• Every H-prime ideal of A is completely prime.

Our next aim is to show that if a Cauchon extension satisfies H-normal
separation then so does its base ring. This will have important consequences later
on.

Suppose that R = A[X ;σ, δ] is a Cauchon extension. Moreover, assume that
the group H is a torus and that the action of H on R is rational. First, note that
S = {Xj | j ∈ N} is an Ore set in R, by [2, Lemme 2.1]; and so we can form

the Ore localization R̂ := RS−1 = S−1R. As X is an H-eigenvector, the rational

action of H on R extends to a rational action on R̂.

For each a ∈ A, set

θ(a) =

+∞∑

n=0

(1 − q)−n

[n]!q
δn ◦ σ−n(a)X−n ∈ R̂.
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(Note that θ(a) is a well-defined element of R̂, since δ is locally nilpotent, q
is not a root of unity, and 0 6= 1 − q ∈ k.)

The following facts are established in [2, Section 2]. The map θ : A −→ R̂ is
a k-algebra monomorphism. Let A[Y ;σ] be a skew polynomial extension. Then θ

extends to a monomorphism θ : A[Y ;σ] −→ R̂ with θ(Y ) = X . Set B = θ(A) (and

note that B ∼= A) and set T = θ(A[Y ;σ]) ⊆ R̂. Then T = B[X ;α], where α is
the automorphism of B defined by α(θ(a)) = θ(σ(a)). The element X is a normal
element in T , and so the set S defined above is also an Ore set in T . Cauchon shows

that TS−1 = S−1T = R̂. Thus, R̂ = B[X±1;α]. Also, the H-action transfers to B
via θ, by [14, Lemma 2.6]. Note, in particular, that α coincides with the action of
an element of H on B.

Hence we have the following picture:

R̂ = B[X±1;α] A[Y ±1;σ]
θ

∼=
oo

A[X ;σ, δ] = R

66mmmmmmmmmmmm

T = B[X ;α]

⊆

OO

A[Y ;σ]

OO

θ

∼=
oo

A

OO

θ(A) = B

⊆

OO

A

OO

θ

∼=
oo

where all the maps are H-equivariant.

Lemma 3.7. Suppose that R = A[X ;σ, δ] is a Cauchon extension. Moreover, as-
sume that H is a torus and that the action of H on R is rational. If R has H-normal
separation then A has H-normal separation.

Proof. In order to prove this lemma, we will proceed in two steps.

First, we show that R̂ has H-normal separation. Suppose that Q $ P are H-prime

ideals of R̂. Then Q∩R $ P ∩R are distinct H-prime ideals of R. Thus, there exist
an element c ∈ (P ∩R)\(Q∩R) and an element h ∈ H such that cr−h(r)c ∈ Q∩R
for all r ∈ R . In particular, cX −λXc = cX −h(X)c ∈ Q∩R for some λ ∈ k∗, as
X is an H-eigenvector. From this it is easy to calculate that (λX)−kc−cX−k ∈ Q.

Now, let y = rX−k be an element of R̂. Then, working modulo Q, we calculate

cy = crX−k = h(r)(λX)−kc = h(r)h(X−k)c = h(rX−k)c = h(y)c;

so that R̂ has H-normal separation, as claimed.
Secondly, we show that B has H-normal separation. We already know that

R̂ = B[X±1;α] has H-normal separation by the first part of the proof. Let Q $ P

be H-prime ideals of B. Set Q̂ = ⊕i∈Z QX
i and P̂ = ⊕i∈Z PX

i. Then Q̂ ∩B = Q

and P̂ ∩ B = P , and it follows that Q̂ $ P̂ are H-prime ideals in B[X±1;α], see
[14, Theorem 2.3]. As B[X±1;α] has H-normal separation, there is an element

c ∈ P̂\Q̂ and an element h ∈ H such that cs− h(s)c ∈ Q̂, for each s ∈ B[X±1;α].
Now, write c =

∑
i∈Z

ciX
i. Note that each ci ∈ P and at least one ci 6∈ Q, say
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ci0 6∈ Q. Let b ∈ B. Then, cb − h(b)c ∈ Q̂. Therefore,
∑

i ciX
ib − h(b)ciX

i ∈ Q̂;
and so ∑

i

(ciα
i(b) − h(b)ci)X

i ∈ Q̂.

As Q̂ = ⊕i∈Z QX
i, this forces ciα

i(b) − h(b)ci ∈ Q for each i, and, in particular,
ci0α

i0(b) − h(b)ci0 ∈ Q. As b was an arbitrary element of B, we may replace b by
α−i(b) to obtain

ci0b− hα−i(b)ci0 ∈ Q.

As α coincides with the action of an element of H on B, this produces an element
hi0 ∈ H such that

ci0b− hi0(b)ci0 ∈ Q,

as required to show that B has H-normal separation.
As A ∼= B via an H-equivariant isomorphism, this shows that A has H-normal

separation. �

In the next theorem, we use this result to show that partition subalgebras
have H-normal separation. The starting point is the result due to Cauchon that
generic quantum matrices have H-normal separation.

Theorem 3.8. Let λ = (λ1, λ2, . . . , λm) be a partition with n ≥ λ1 ≥ λ2 ≥ · · · ≥
λm ≥ 0 and let Aλ be the corresponding partition subalgebra of generic quantum
matrices. Then Aλ has H-normal separation.

Proof. Let µ = (n, . . . , n) (m times); so that Yµ is an m × n rectangle. Then
Aµ = Oq(Mm,n(k)); and so Aµ has H-normal separation, by [3, Théorème 6.3.1].
We can construct Aµ from Aλ by adding the missing variables xij in lexicographic
order. At each stage, the extension is a Cauchon extension. Thus, Aλ has H-normal
separation, by repeated application of the previous lemma. �

Corollary 3.9. Let λ = (λ1, λ2, . . . , λm) be a partition with n ≥ λ1 ≥ λ2 ≥ · · · ≥
λm ≥ 0 and let Aλ be the corresponding partition subalgebra of generic quantum
matrices. Then Aλ has normal H-separation and normal separation.

Proof. We have already seen earlier that H-normal separation implies normal H-
separation. Normal separation now follows from [9, Theorem 5.3]. �

Corollary 3.10. Let λ = (λ1, λ2, . . . , λm) be a partition with n ≥ λ1 ≥ λ2 ≥ · · · ≥
λm ≥ 0 and let Aλ be the corresponding partition subalgebra of generic quantum
matrices. Then Aλ is catenary.

Proof. This follows from the previous results and [20, Theorem 0.1] which states
that if A is a normally separated filtered k-algebra such that gr(A) is a noetherian
connected graded k-algebra with enough normal elements then Spec(A) is catenary.
(For the notion of an algebra with enough normal elements see [21].) �

Note that it is also possible to deduce this result from [10, Theorem 1.6].
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4. Quantum Schubert cells

Quantum Schubert cells in the quantum grassmannian are obtained from quan-
tum Schubert varieties via the process of noncommutative dehomogenisation in-
troduced in [12]. Recall that if R = ⊕Ri is an N-graded k-algebra and x is a regular
homogeneous normal element of R of degree one, then the dehomogenisation of R
at x, written Dhom(R, x), is defined to be the zero degree subalgebra S0 of the Z-
graded algebra S := R[x−1]. If R is generated as a k-algebra by a1, a2, . . . , as and
each ai has degree one, then it is easy to check that Dhom(R, x) is the k-subalgebra
of S generated by a1x

−1, . . . , asx
−1.

If σ denotes the automorphism of S given by σ(s) = xsx−1 for s ∈ S then σ
induces an automorphism of S0, also denoted by σ, and there is an isomorphism

θ : Dhom(R, x)[y, y−1;σ] −→ R[x−1]

which is the identity on Dhom(R, x) and sends y to x.

Let γ be an element of Πm,n. Recall from Remark 1.4 that

S(γ) = Oq(Gm,n(k))/〈Πγ
m,n〉

and that γ is a homogeneous regular normal element of degree one in S(γ). It
follows that we can form the localisation S(γ)[γ−1] and that S(γ) ⊆ S(γ)[γ−1].

Definition 4.1. The quantum Schubert cell associated to the quantum minor γ is
denoted by So(γ) and is defined to be Dhom(S(γ), γ).

Remark 4.2. In the classical case when q = 1, it can be seen that this definition
coincides with the usual definition of Schubert cells, as discussed, for example, in
[4, Section 9.4].

It follows from the definition that So(γ) is generated by the elements x γ−1,
for x ∈ Πm,n \ (Πγ

m,n ∪ {γ}). However, these elements are not independent; so we
will pick out a better generating set for the quantum Schubert cell.

This is achieved by using the quantum ladder matrix algebras introduced in
[16, Section 3.1]. (The “ladder” terminology is adapted from the classical case, as
introduced, for example, in [8, Section 12.3].) Let us recall the definition. To each
γ = (γ1, . . . , γm) ∈ Πm,n, with 1 ≤ γ1 < · · · < γm ≤ n, we associate the subset Lγ

of {1, . . . ,m} × {1, . . . , n} defined by

Lγ = {(i, j) ∈ {1, . . . ,m} × {1, . . . , n} | j > γm+1−i and j 6= γ` for 1 ≤ ` ≤ m},

which we call the ladder associated with γ.

Definition 4.3. Let γ = (γ1, . . . , γm) be an element of Πm,n, with 1 ≤ γ1 <
· · · < γm ≤ n. The quantum ladder matrix algebra associated with γ, denoted
Oq(Mm,n,γ(k)), is the k-subalgebra of Oq(Mm,n(k)) generated by the elements
xij ∈ Oq(Mm,n(k)) such that (i, j) ∈ Lγ .

The following example, taken from [16] will help clarify this definition.
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Example. We put (m,n) = (3, 7) and γ = (γ1, γ2, γ3) = (1, 3, 6) ∈ Π3,7. In the
3× 7 generic matrix X = (xij) associated with Oq(M3,7(k)), put a bullet on each
row as follows: on the first row, the bullet is in column 6 because γ3 is 6, on the
second row, the bullet is in column 3 because γ2 is 3 and on the third row, the
bullet is in column 1 because γ1 = 1. Now, in each position which is to the left of
a bullet, or which is below a bullet, put a star. To finish, place xij in any position
(i, j) that has not yet been filled. We obtain




∗ ∗ ∗ ∗ ∗ • x17

∗ ∗ • x24 x25 ∗ x27

• x32 ∗ x34 x35 ∗ x37



.

By definition, the quantum ladder matrix algebra associated with γ = (1, 3, 6) is
the subalgebra of Oq(M3,7(k)) generated by the elements x17, x24, x25, x27, x32,
x34, x35, x37.

Notice that if we rotate the matrix above through 180◦ then the xij involved
in the definition of Oq(M3,7,γ(k)) sit naturally in the Young Diagram of the par-
tition λ = (4, 3, 1). We will return to this point later.

Consider the quantum minors mij defined by

mij := [{γ1, . . . , γm} \ {γm+1−i} ∪ {j}],

for each (i, j) ∈ Lγ . These are the quantum minors that are above γ in the standard
order and differ from γ in exactly one position (before re-arranging the entries in
ascending order). Denote the set of these quantum minors by Mγ .

Proposition 4.4. The quantum Schubert cell So(γ) is the k-subalgebra of S(γ) gen-
erated by {mij γ

−1 | mij ∈ Mγ}.

Proof. In the proof of [16, Theorem 3.1.6] it is shown that S(γ)[γ−1] is generated
by the elements γ, γ−1 and the mij . The Schubert cell So(γ) is the degree zero part
of this algebra. As γ and mij commute up to scalars, see [16, Lemma 3.1.4(v)], it
is easy to check that So(γ) is generated by mij γ

−1, as required. �

Set m̃ij := mij γ
−1.

Lemma 4.5. There is an induced action of H = (k∗)n on So(γ) given by

(α1, α2, . . . , αn) ◦ m̃ij := α−1
γm+1−i

αjm̃ij .

Proof. This follows immediately from the fact that

m̃ij = [{γ1, . . . , γm}\{γm+1−i} ∪ {j}] [γ1, . . . , γm]
−1
.

�

We now need to establish the commutation relations between the m̃ij .
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Lemma 4.6. The quantum Schubert cell So(γ) is isomorphic to the quantum ladder
matrix algebra Oq(Mm,n,γ(k)).

Proof. Lemma 3.1.4 of [16] shows that the commutation relations for the mij are
the same as the commutation relations for corresponding variables xij in the quan-
tum ladder matrix algebra Oq(Mm,n,γ(k)). As γmij = qmijγ, for each i, j, by [16,
Lemma 3.1.4(v)], it follows that the m̃ij satisfy the same relations. Thus there is an
epimorphism from Oq(Mm,n,γ(k)) onto So(γ). If this epimorphism were not also a
monomorphism then we would obtain GKdim(So(γ)) < GKdim(Oq(Mm,n,γ(k)),
by [13, Proposition 3.15], and then a comparison of Gelfand-Kirillov dimensions
similar to that used in [16, Theorem 3.1.6] would produce a contradiction. Thus,
there is an isomorphism from Oq(Mm,n,γ(k)) to So(γ), as required. �

Theorem 4.7. The quantum Schubert cell So(γ) is (isomorphic to) a partition
subalgebra of Oq−1(Mm,n−m(k)).

Proof. For any n, there is an isomorphism δ : Oq(Mn(k)) −→ Oq−1 (Mn(k)) defined
by δ(xij) = xn+1−i,n+1−j , see the proof of [11, Corollary 5.9]. The isomorphism δ
can be used to convert quantum ladder matrix algebras into partition subalgebras.
As Schubert cells are isomorphic to quantum ladder matrix algebras, the result
follows. �

The previous theorem should be considered as a noncommutative analogue
of the well-known result in the classical case that each Schubert cell is isomorphic
to affine space of the appropriate dimension, see, for example, the discussion in [4,
Section 9.4].

The isomorphism described in the previous result carries over the H-action
on So(γ) to the partition subalgebra, and this induced action acts via row and
column multiplications. After suitable re-numbering of the summands of H, this
action coincides with the action discussed at the beginning of Section 3. As a
consequence of Theorem 4.7, the results obtained in Section 3 apply to quantum
Schubert cells. In particular, the following results hold.

Theorem 4.8. Let λ = (λ1, λ2, . . . , λm) be the partition with n ≥ λ1 ≥ λ2 ≥
· · · ≥ λm ≥ 0 defined by λi + γi = n − m + i and let Yλ be the corresponding
Young diagram. Then the H-prime spectrum of So(γ) is in bijection with the set
of Cauchon diagrams on the Young diagram, Yλ, as described in Theorem 3.5.

Theorem 4.9. The quantum Schubert cell So(γ) has H-normal separation, normal
H-separation and normal separation.

Corollary 4.10. The quantum Schubert cell So(γ) is catenary.

5. The prime spectrum of the quantum grassmannian

In this section, we use the quantum Schubert cells to obtain information concerning
the prime spectrum of the quantum grassmannian. We show that, in the generic
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case, where q is not a root of unity, all primes are completely prime and that there
are only finitely many primes that are invariant under the natural torus action
on the quantum grassmannian. By using a result of Lauren Williams, we are able
to count the number of H-primes. Also, we are able to show that the quantum
grassmannian is catenary.

Note that the following result is valid for any q 6= 0.

Theorem 5.1. Let P be a prime ideal of Oq(Gm,n(k)) with P 6= 〈Π〉; that is, P
is not the irrelevant ideal. Then there is a unique γ in Π with the property that
γ 6∈ P but π ∈ P for all π 6≥st γ.

Proof. If Π ⊆ P then P is the irrelevant ideal. Otherwise, there exists γ ∈ Π with
γ 6∈ P . Choose such a γ that is minimal in Π with this property. Then λ ∈ P for
all λ <st γ.

Note that 〈{λ | λ <st γ}〉 ⊆ P and that γ is normal modulo 〈{λ | λ <st γ}〉,
by [15, Lemma 1.2.1]; so that γ is normal modulo P .

Suppose that π 6≥st γ. If π <st γ then π ∈ P by the choice of γ. If not, then
π and γ are not comparable. Thus, we can write

πγ =
∑

kλµλµ

with kλµ ∈ k while λ, µ ∈ Π with λ <st γ, by [15, Theorem 3.3.8].
It follows that πγ ∈ P . Thus, π ∈ P , since γ 6∈ P and γ is normal modulo P .
This shows that there is a γ with the required properties. It is easy to check

that there can only be one such γ. �

This theorem enables us to give a decomposition of the prime spectrum,
Spec(Oq(Gm,n(k))). Set Specγ(Oq(Gm,n(k))) to be the set of prime ideals P such
that γ 6∈ P while π ∈ P for all π 6≥st γ. The previous result shows that

Spec(Oq(Gm,n(k))) =
⊔

γ∈Π

Specγ(Oq(Gm,n(k)))
⊔

〈Π〉 .

We now re-instate our convention that q is not a root of unity.

Theorem 5.2. Let q be a non-root of unity. Then all prime ideals of the quantum
grassmannian Oq(Gm,n(k)) are completely prime.

Proof. Let P be a prime ideal of Oq(Gm,n(k)). If P = 〈Π〉 then Oq(Gm,n(k))/P ∼=
k; so P is completely prime.
Otherwise, suppose that P ∈ Specγ(Oq(Gm,n(k))). In this case, P = P/〈Πγ

m,n〉
is a prime ideal in S(γ) = Oq(Gm,n(k))/〈Πγ

m,n〉 and it is enough to show that

P is completely prime. Set T := S(γ)[γ−1]. Then PT is a prime ideal of T and
PT ∩ S(γ) = P . Thus S(γ)/P ⊆ T/PT and so it is enough to show that PT is
completely prime.

Now, the dehomogenisation isomorphism shows that T ∼= So(γ)[y, y−1;σ],
where σ is the automorphism determined by the conjugation action of γ, see the
beginning of Section 4.
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We know that So(γ) is a torsion-free CGL extension by Proposition 3.2 and
Theorem 4.7. It is then easy to check that So(γ)[y;σ] is also a torsion-free CGL ex-
tension. Thus, all prime ideals of So(γ)[y;σ] are completely prime, by [1, Theorem
II.6.9], and it follows that all prime ideals of T ∼= So(γ)[y, y−1;σ] are completely
prime, as required. �

Of course, the decomposition of Spec(Oq(Gm,n(k))) above induces a similar
decomposition of H-Spec(Oq(Gm,n(k))):

H-Spec(Oq(Gm,n(k))) =
⊔

γ∈Π

H-Specγ(Oq(Gm,n(k)))
⊔

〈Π〉 ,

where H-Specγ(Oq(Gm,n(k))) is the set of H-prime ideals P such that γ 6∈ P while
π ∈ P for all π 6≥st γ.

Our next task is to show that H-Specγ(Oq(Gm,n(k))) is in natural bijection
with H-Spec(So(γ)) and hence in bijection with Cauchon diagrams on the asso-
ciated Young diagram Yλ. As a consequence, we are able to calculate the size of
H-Spec(Oq(Gm,n(k))).

Remark 5.3. Recall from the beginning of Section 4 that, for any γ ∈ Πm,n, there
is the dehomogenisation isomorphism

θ : So(γ)[y, y−1;σ] −→ S(γ)[γ−1],

where σ is conjugation by γ. Hence, the action of H on S(γ)[γ−1] transfers, via θ,
to an action on So(γ)[y, y−1;σ]. By Lemma 4.5, So(γ) is stable under this action
and it is clear that y is an H-eigenvector. Further, let h0 = (α1, . . . , αn) ∈ H
be such that αi = q2 if i /∈ {γ1, . . . , γm} and αi = q otherwise. Then, by using
[16, Lemma 3.1.4(v)] and Lemma 4.5, it is easily verified that the action of h0 on
So(γ) coincides with σ. In addition, h0(y) = qmy, since h0(γ) = qmγ. It follows
that So(γ)[y, y−1;σ] satisfies Hypothesis 2.1 in [14].

Theorem 5.4. Let P ∈ H-Specγ(Oq(Gm,n(k))); so that P is an H-prime ideal of

Oq(Gm,n(k)) such that γ 6∈ P , while π ∈ P for all π 6≥st γ. Set T = S(γ)[γ−1] ∼=
So(γ)[y, y−1;σ]. Then the assignment P 7→ PT ∩ So(γ) defines an inclusion-
preserving bijection from H-Specγ(Oq(Gm,n(k))) to H-Spec(So(γ)), with inverse
obtained by sending Q to the inverse image in Oq(Gm,n(k)) of QT ∩ S(γ). (Note,
we are treating the isomorphism above as an identification in these assignments.)

Proof. This follows from the conjunction of two bijections. First, standard lo-
calisation theory shows that P = PT ∩ S(γ); and this gives a bijection be-
tween H-Specγ(Oq(Gm,n(k))) and H-Spec(T ). For the second bijection, note that

T ∼= So(γ)[y, y−1;σ] and that the automorphism σ is given by the action of an ele-
ment of H, see Remark 5.3. Thus, it follows from [14, Theorem 2.3] that there is a
bijection between H-Spec(T ) and H-Spec(So(γ)) given by intersecting an H-prime
of T with So(γ). The composition of these two bijections produces the required
bijection. �
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Corollary 5.5. H-Specγ(Oq(Gm,n(k))) is in bijection with the Cauchon diagrams
on Yλ, where λ is the partition associated with γ.

Proof. This follows from the previous theorem and Theorem 4.8. �

It follows from this corollary and the partition of the H-spectrum of the
quantum grassmannian that the H-spectrum of the quantum grassmannian is fi-
nite. This finiteness is a crucial condition needed to investigate normal separation,
Dixmier-Moeglin equivalence, etc. in the quantum case because of the stratification
theory, see, for example, [9, Theorem 5.3], [1, Theorem II.8.4 ]. However, in this
situation, we can say much more: we can say exactly how many H-primes there
are in the quantum grassmannian Oq(Gm,n(k)). This is one more (the irrelevant
ideal 〈Π〉) than the total number of Cauchon diagrams on the Young diagrams
Yλ corresponding to the partitions λ that fit into the partition (n − m)m. This
combinatorial problem has been solved by Lauren Williams, in [19]. The following
result is obtained by setting q = 1 in the formula for Ak,n(q) in [19, Theorem 4.1].

Theorem 5.6.

|H-Spec(Oq(Gm,n(k)))|

= 1 +

m−1∑

i=0

(
n

i

)(
(i−m)i(m− i+ 1)n−i − (i−m+ 1)i(m− i)n−i

)

Proof. By using the results above, we see that, except for the irrelevant ideal, each
H-prime corresponds to a unique Cauchon diagram drawn on the Young diagram
Yλ that corresponds to the partition λ associated to the quantum minor γ which
determines the cell that P is in.

In [19, Theorem 4.1], Lauren Williams has counted the number of Cauchon
diagrams on the Young diagrams Yλ that fit into the partition (n−m)m; and this
count, plus one, gives the number of H-prime ideals of Oq(Gm,n(k)). �

For example, |H-Spec(Oq(G2,4(k)))| = 34 and |H-Spec(Oq(G3,6(k)))| = 884.
(These numbers can be seen from the table in [17, Figure 23.1].)

We turn now to the questions of normal separation and catenarity. In or-
der to establish these properties for the quantum grassmannian, we need to use
the dehomogenisation isomorphism. Recall that the methods of [14] are available
because of Remark 5.3.

Lemma 5.7. Let Q $ P be H-prime ideals in S(γ) that do not contain γ. Then,
there is an H-eigenvector in P\Q that is normal modulo Q.

Proof. Let Q $ P be H-prime ideals in S(γ) that do not contain γ. Set T :=
S(γ)[γ−1] and observe that there is an induced action of the torus H on T , because
γ is an H-eigenvector. Note that P = PT ∩S(γ) and Q = QT ∩S(γ); so QT $ PT
are H-prime ideals in T . Now, set P0 := PT ∩So(γ) and Q0 := QT ∩So(γ) (here,
we are treating the isomorphism T ∼= So(γ)[y, y−1;σ] as an identification) and
note that PT = ⊕n∈ZP0 y

n and QT = ⊕n∈ZQ0 y
n; so Q0 $ P0 are H-prime ideals



Prime ideals in the quantum grassmannian 27

of So(γ), see Remark 5.3 and [14, Theorem 2.3]. These observations make it clear
that

So(γ)

Q0
[y, y−1;σ] ∼=

T

QT
∼=

S(γ)

Q
[γ−1].

As usual, So(γ) will denote So(γ)/Q0, etc.
The quantum Schubert cell So(γ) has H-normal separation, by Theorem 4.9.

Thus, there exists an H-eigenvector c ∈ P0\Q0 and an element h ∈ H such that
ca − h(a)c ∈ Q0 for all a ∈ So(γ). Recall that the action of σ coincides with the
action of an element hy of H; so that yc = hy(c)y = λcy for some λ ∈ k∗. It follows
that c is normal in T/QT . Define σc : T/QT −→ T/QT by ct = σc(t)c for all
t ∈ T . Note that σc|So(γ) = h|

So(γ) and that σc(y) = λ−1y.

We claim that σc(S(γ)/Q) = S(γ)/Q; so that σc induces an isomorphism
on this algebra. In order to see this, note that S(γ)/Q is generated as an algebra
by the images of the quantum minors [α1, . . . , αm] for [α1, . . . , αm] ≥ γ. Now,

[α1, . . . , αm] γ−1 ∈ So(γ), because [α1, . . . , αm]γ−1 has degree zero in T so that
[α1, . . . , αm]γ−1 ∈ So(γ). Thus, recalling that γ is identified with y under the
isomorphisms above,

σc([α1, . . . , αm]) = σc([α1, . . . , αm] γ−1)σc(γ) = h([α1, . . . , αm] γ−1)(λ−1y)

= µ [α1, . . . , αm] γ−1(λ−1y) = (µλ−1)[α1, . . . , αm] γ−1y

= (µλ−1)[α1, . . . , αm],

where the existence of µ ∈ k∗ is guaranteed because h is acting as a scalar on the
element [α1, . . . , αm] γ−1 ∈ So(γ)/Q0. The claim follows.

There exists d ≥ 0 such that c γd ∈ S(γ)/Q. It is obvious that cγd is an
H-eigenvector, because each of c and γ is an H-eigenvector. Also, cγd ∈ P\Q.
Finally, c γd is normal in S(γ)/Q, because S(γ)/Q is invariant under conjugation
by each of c and γ. �

Theorem 5.8. The quantum grassmannian Oq(Gm,n(k)) has normal H-separation
and hence normal separation.

Proof. Suppose that Q $ P are H-prime ideals of Oq(Gm,n(k)). Suppose that
Q ∈ Specγ(Oq(Gm,n(k))). If γ ∈ P , then P contains the H-eigenvector γ.

Otherwise, γ 6∈ P and P ∈ Specγ(Oq(Gm,n(k))). In this case, it is enough

to show that there is a H-eigenvector in P\Q which is normal modulo Q, where
P = P/〈Πγ

m,n〉 and Q = Q/〈Πγ
m,n〉 are H-prime ideals in S(γ). However, this has

been done in the previous lemma. �

Theorem 5.9. The quantum grassmannian Oq(Gm,n(k)) is catenary.

Proof. As in Corollary 3.10, this follows from the previous results and [20, Theorem
0.1]. �
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Remark 5.10. It is obvious from the style of proof of the preceding results that
there is now a good strategy for producing results concerning the quantum grass-
mannian: first, establish the corresponding results for partition subalgebras of
quantum matrices, and then use the theory of quantum Schubert cells and non-
commutative dehomogenisation to obtain the result in the quantum grassmannian.
We leave any further developments for interested readers.

6. Concluding remark.

We end this work by stressing some important connections between the results
established in Section 5 above, and recent work of Postnikov in total positivity,
see [17].

Let M+
m,n(R) denote the space of m × n real matrices of rank m and whose

m × m minors are nonnegative. The group GL+
m(R) of m × m real matrices of

positive determinant act naturally on M+
m,n(R) by left multiplication. The corre-

sponding quotient space G+
m,n(R) = M+

m,n(R)/GL+
m(R) is the totally nonnegative

grassmannian of m dimensional subspaces in Rn. One can define a cellular de-
composition of G+

m,n(R) by specifying, for each element of G+
m,n(R), which m×m

minors are zero and which are strictly positive. The corresponding cells are called
the totally nonnegative cells of G+

m,n(R). In [17], Postnikov shows that totally non-

negative cells in G+
m,n(R) are in bijection with the Cauchon diagrams on partitions

fitting into the partition (n−m)m. For further details, see Sections 3 and 6 in [17].

Hence, by the results in Section 5 above, the set of totally nonnegative cells
of G+

m,n(R) is in one-to-one correspondence with the set of H-prime ideals of
Oq(Gm,n(k)) distinct from the augmentation ideal. We believe it would be inter-
esting to understand this coincidence and we intend to pursue this theme in a
subsequent paper.
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Faculté des Sciences et Techniques,
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