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Abstract

The main aim of this paper is to establish a deep link between the totally nonnegative
grassmannian and the quantum grassmannian. More precisely, under the assumption that
the deformation parameter q is transcendental, we show that “quantum positroids” are
completely prime ideals in the quantum grassmannian Oq(Gmn(F)). As a consequence,
we obtain that torus-invariant prime ideals in the quantum grassmannian are generated by
polynormal sequences of quantum Plücker coordinates and give a combinatorial description
of these generating sets. We also give a topological description of the poset of torus-
invariant prime ideals in Oq(Gmn(F)), and prove a version of the orbit method for torus-
invariant objects. Finally, we construct separating Ore sets for all torus-invariant primes
in Oq(Gmn(F)). The latter is the first step in the Brown-Goodearl strategy to establish the
orbit method for (quantum) grassmannians.
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1 Introduction

The quantum grassmannian Oq(Gmn(F)) is a noncommutative algebra that is a deformation of
the homogeneous coordinate ring of the grassmannian variety of m-dimensional subspaces in
n-dimensional space. As such, it is generated as an F-algebra by the so-called quantum Plücker
coordinates. One important goal in the study of the quantum grassmannian is to understand
the structure of the prime spectrum. This study is aided by the presence of a natural action of
a torus group H := (F∗)n on the quantum grassmannian for which the quantum Plücker coor-
dinates are eigenvectors. The Goodearl-Letzter stratification theory, see [8], suggests that one
should first understand the prime ideals that are invariant under the action of H before going
on to a more detailed study of the whole prime spectrum.

In earlier work [41], the first two authors and Rigal have shown that the H-prime ideals
of Oq(Gmn(F)) are parameterised by Cauchon diagrams on Young diagrams that fit into an
m × (n − m) rectangular array. These diagrams first appear in work by Cauchon [16] in the
study of the prime spectrum of quantum matrices. Remarkably, the same diagrams also appear
in the ground-breaking work of Postnikov [48] on the positroid cell stratification of the totally
nonnegative grassmannian, under the name of Le-diagrams. These diagrams will play a key role
in this paper, and we propose to call them Cauchon-Le diagrams in recognition of their two
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independent appearances in the work of Cauchon and Postnikov.

The positroid cell stratification of the totally nonnegative grassmannian has been intensively
studied over the last dozen or so years following Postnikov’s paper, see, for example, [3, 34, 35,
47, 52]. Besides its intrinsic beauty, there are also applications in the study of partial differential
equations [32], scattering amplitudes [4], and juggling [34].

On seeing Postnikov’s paper, the first two authors observed that the Le diagrams that Post-
nikov introduced to parameterise the positroid cells were the same as the diagrams introduced
by Cauchon to study the H-prime spectrum of quantum matrices. This lead to several papers
investigating this connection, culminating in the present work. In the first paper in the series,
[41] it was shown that the positroid cells of the totally nonnegative grassmannian were in nat-
ural bijection with the H-prime spectrum of the quantum grassmannian via what we are now
calling Cauchon-Le diagrams. We also conjectured at the time that this bijection would be a
homeomorphism between the partially ordered sets provided by the positroid cells under closure
and the H-prime spectrum under inclusion. Further, we conjectured that the H-primes would be
generated by the the quantum Plücker coordinates that they contain, and that the containment
of a quantum Plücker coordinate in an H-prime ideal could be read off from the Postnikov graph.
All of these conjectures have now been answered in the present work. However, at the time, we
did not have the tools in the quantum setting to verify these conjectures. One setting where
we were able to make progress was for quantum matrices, which occur as the “big cell” in the
quantum grassmannian. The first author had already shown that, in the case of a transcenden-
tal deformation parameter q, each H-prime ideal was generated by the quantum minors that it
contained, [38], verifying a conjecture of Goodearl and the second author, [22]. Yakimov also
produced a proof of this result, [54], and Casteels replaced the transcendental restriction by the
natural condition that q be a non root of unity, [13]. Casteels’ use of (noncommutative) Gröbner
basis techniques was crucial to our present work.

In two papers with Goodearl, the first two authors were able to show that the membership
problem for quantum minors in H-prime ideals in quantum matrices exactly corresponded to
the corresponding problem for minors belonging to a positroid cell, [24, 25].

The main aim of this article is to prove thatH-primes in quantum grassmannians are generated
(as left or right ideals) by quantum Plücker coordinates and to describe explicitly which quantum
Plücker coordinates belong to a given H-prime. This aim is achieved under the assumption that
the deformation parameter is transcendental.

Theorem 1.1. Let F be a field, and let q be a nonzero element of F. Assume that q is transcen-
dental over the prime field of F.

Then every H-prime of Oq(Gmn(F)) is generated by an explicit polynormal sequence of quantum
Plücker coordinates.

Once our main result is established, we discuss various applications. In particular, we discuss
the link between positroid cells in totally nonegative grassmannians and H-primes in quantum
grassmannians. This allows us to describe the poset of H-primes in quantum grassmannians,
and prove that, in the spirit of the orbit method, the set of H-primes is homeomorphic to the
set of torus-orbits of symplectic leaves in the corresponding grassmannian variety. Finally, we
use our main result to construct separating Ore sets for all H-primes in the quantum grassman-
nian. These sets are central in the Brown-Goodearl strategy [9] to establish an homeomorphism
between the primitive spectrum of the quantum grassmannian and the set of symplectic leaves
in the corresponding grassmannian variety.

2



Before we explain the strategy of the proof of the main result, we need to introduce necessary
notation.

Let F be a field, and let q a nonzero element of F. We assume that q is not a root of unity. Let
m ≤ n be positive integers and let Oq(Mm,n(F)) denote the quantum deformation of the affine
coordinate ring on m × n matrices. The quantum deformation of the homogeneous coordinate
ring of the grassmannian, denoted Oq(Gmn(F)), is defined as the subalgebra of Oq(Mm,n(F))
generated by the maximal quantum minors of the generic matrix of Oq(Mm,n(F)). To simplify,
these algebras will be referred to as the algebra of quantum matrices and the quantum grassman-
nian, respectively. Moreover, the maximal minors of Oq(Mm,n(F)) are called quantum Plücker
coordinates.

The starting point of this work is the study of the prime spectrum of the quantum grassman-
nian. This algebra is naturally endowed with the action of a torus H, and it is well known that
the stratification theory as developed by Goodearl and Letzter applies to this algebra, that is the
prime spectrum of the quantum grassmannian admits a partition into finitely many H-strata,
each stratum being indexed by an H-prime ideal (equivalently, a prime ideal invariant under the
action of H in the cases that we will consider).

The finiteness of the set H-SpecOq(Gmn(F)) of H-primes in Oq(Gmn(F)) was established
in [41], where it was proved that there is a natural one-to-one correspondence between H-
SpecOq(Gmn(F)) and Cauchon-Le diagrams defined on Young diagrams fitting into a rectangular
m× (n−m) Young diagram. This bijection will feature heavily in the present work, and so we
briefly recall its construction.

We denote by Π the set of quantum Plücker coordinates in Oq(Gmn(F)). Each quantum
Plücker coordinate γ is an m×m quantum minor of Oq(Gmn(F)), and so γ is characterised by
the m columns chosen to form this quantum minor. Thus Π is often identified with the set of all
m-element subsets of the set [[1, n]] := {1, 2, . . . , n}. This allows one to define a natural partial
order on Π by

γ = [γ1 < · · · < γm] ≤ γ′ = [γ′1 < · · · < γ′m] if and only if γi ≤ γ′i for all i ∈ [[1,m]].

As an example, the partial order for Oq(G3,6(F)) is illustrated in Figure 1.
Fix a quantum Plücker coordinate γ = [γ1 < · · · < γm] of Oq(Gmn(F)). The poset ideal

associated to γ, defined by Πγ := {α ∈ Π : α 6≥ γ}, generates a completely prime ideal of
Oq(Gmn(F)) [43]. The corresponding factor algebra S(γ) is the so-called quantum Schubert
variety associated to γ [43]. The coset γ becomes a nonzero normal element of the noetherian
domain S(γ). Thus one can form the noncommutative localised algebra: S(γ)[γ−1]. Computation
in this algebra is facilitated by the fact that it is close to being a noncommutative polynomial
algebra or quantum nilpotent algebra. More precisely, the noncommutative dehomogenisation
theory developed in [31] shows that

Φλ : S(γ)[γ−1]
∼=−→ Oq−1(Yλ(F))[Z±1;σ], (1)

where the so-called partition subalgebra Oq−1(Yλ(F)) is the subalgebra of Oq−1(Mm,n−m(F)) gen-
erated by the canonical generators of Oq−1(Mm,n−m(F)) that sit in the Young tableau Yλ as-
sociated to γ. In particular, when γ = [1, . . . ,m], the partition subalgebra coincides with
Oq−1(Mm,n−m(F)). The Young tableau Yλ can easily be constructed from γ as Figure 2 below
illustrates for γ = [135]: here, γ1, . . . , γm correspond to the vertical steps on a path of length n
with each step being either horizontal towards the left or vertically downwards.
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[245] [236] [146]

[235] [145] [136]

[234] [135] [126]

[134] [125]

[124]

[123]

Figure 1: The standard order for Oq(G3,6(F)).

1

2
3

4
5

6

Figure 2: Young tableau associated to quantum Plücker coordinate γ = [135]

In [41], it was shown that each H-prime (other than the irrelevant ideal) in Oq(Gmn(F))
survives in exactly one localisation S(γ)[γ−1]. This leads, with some slightly abusive notation,
to a partition of H-SpecOq(Gmn(F)):

H− SpecOq(Gmn(F)) = 〈Π〉
⊔⊔

γ∈Π

H− SpecOq−1(Yλ(F))

As each partition subalgebra is a quantum nilpotent algebra (quantum nilpotent algebras also
appear in the literature under the name CGL extension) [40], Cauchon’s theory of deleting
derivations [15] applies to these algebras, and was used to prove that H− SpecOq−1(Yλ(F)) is in
bijection with the set of Cauchon-Le diagrams that sit in the Young tableau Yλ.

Given the above discussion, there is a clear strategy to prove that H-primes are generated by
quantum Plücker coordinates. In view of the isomorphisms (1), we should prove that the H-
primes of H−SpecOq−1(Yλ(F)) are generated by the images of the quantum Plücker coordinates
under Φλ. So one of the first tasks is to identify these images in Oq−1(Yλ(F)). This leads to the
concept of pseudo quantum minor which is a generalisation of the notion of quantum minor. In
the case where γ = [1, . . . ,m], the partition subalgebra coincides with Oq−1(Mm,n−m(F)), and
the pseudo quantum minors are exactly the quantum minors of Oq−1(Mm,n−m(F)). However,
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Figure 3: Example of Postnikov graph

in general, there are more pseudo quantum minors than quantum minors. Care will be needed
when dealing with pseudo quantum minors as not all of the usual formulae for quantum minors
such as quantum Laplace expansions are true for pseudo quantum minors.

In Section 7, we prove that H-primes in partition subalgebras are generated as right (respec-
tively, left) ideals by pseudo quantum minors. In order to do this, we start from the case of
quantum matrices Oq−1(Mm,n−m(F)) and do a decreasing induction on the number of boxes in
the Young tableau Yλ. This part makes heavy use of Cauchon’s theory of deleting derivations.

As a consequence, transferring through the dehomogenisation isomorphism (1), we obtain that
H-primes in S(γ)[γ−1] are generated by quantum Plücker coordinates.

Of course, this is not enough to conclude that H-primes in S(γ) are generated by quantum
Plücker coordinates: we have to deal with a very difficult torsion problem!

In order to tackle this problem, we will make use of a result of Goodearl and the second author
[23, Proposition 2.1], which will allow us to pass information from the classical setting (that is,
when q = 1) to the generic setting (that is, when q is transcendental) in specific circumstances
that we will detail below. In particular, to use this result, we need to have information about
prime ideals in the quantum grassmannian not only over a field, but also over a commutative
Laurent polynomial ring K[q±1], as well as information about which Plücker coordinates generate
prime ideals in the homogeneous coordinate ring of the classical grassmannian.

Working over K[q±1] brings extra technicalities. For instance, we cannot use the full strength
of the H-action and talk about H-primes.

We proceed as follows. For each Cauchon-Le diagram C in Yλ, we give a graph-theoretic way
to recognise whether a quantum Plücker coordinate belongs to the H-prime PC of Oq(Gmn(F))
associated to C. More precisely, we make use of the Postnikov graph associated to a Cauchon-Le
diagram as defined by Postnikov in [48], see also [12, 13]. In each white box of the Cauchon-Le
diagram C, we put a vertex and then draw a Γ-shaped hook at each of these vertices. Labelling
the Cauchon-Le diagram as in Figure 2, we obtain a planar network whose sources are indexed
by γ1, . . . , γm and sinks by [[1, n]] \ γ. Figure 3 illustrates this construction.

We are now ready to state the main result of Section 9.

Theorem 1.2. Assume that q ∈ F∗ is not a root of unity. Let P 6= 〈Π〉 be the H-prime ideal of
Oq(Gmn(F)) associated to the Cauchon-Le diagram C in Yλ. Set {a1 < · · · < an−m} = J1, nK \ γ.
Let α ∈ Π be such that α > γ. Write α = [(γ \ {γi1 , . . . , γit}) t {aj1 , . . . , ajt}] where 1 ≤ i1 <
· · · < it ≤ m and 1 ≤ j1 < · · · < jt ≤ n−m with ajl > γil for all l ∈ J1, tK.

Then the quantum Plücker coordinate α belongs to P if and only if there does not exist a
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vertex-disjoint path system from sources indexed by γi1 , . . . , γit to sinks associated to aj1 , . . . , ajt
in the Postnikov graph of C.

For instance, in the Cauchon-Le diagram C of Figure 3, there is a vertex disjoint set of paths
from {1, 3} to {2, 4} and so Theorem 1.2 shows that the quantum Plücker coordinate [245] is
not in the H-prime associated to C.

On the other hand, there is no vertex disjoint set of paths from {1, 3} to {4, 6} so Theorem
1.2 shows that the quantum Plücker coordinate [456] is in the H-prime associated to C.

In view of Theorem 1.2 we introduce the following sets of quantum Plücker coordinates: for
each Cauchon-Le diagram C in Yλ, denote by PC

λ the set of quantum Plücker coordinates such
that there does not exist a vertex-disjoint path system from sources indexed by γi1 , . . . , γit to
sinks associated to aj1 , . . . , ajt in the Postnikov graph of C. Theorem 1.2 shows that PC

λ is
exactly the set of quantum Plücker coordinates that belong to the H-prime associated to C. Of
course, we would like to prove that the ideal generated by PC

λ in Oq(Gmn(F)) is (completely)
prime.

We will prove this in a rather indirect way. Let K be a field, set R := K[q±1] and let F be the
field of fractions of R. All the algebras we have defined so far can be defined over R, and the
dehomogenisation isomorphisms (1) restrict to isomorphisms of R-algebras. We use a subscript
R to indicate that we are working with the R-algebra.

In order to prove that P λ
C generates a completely prime ideal of S(γ)R[γ−1], we transfer this

problem into a question about certain families of pseudo quantum minors generating completely
prime ideals in Oq−1(Yλ(R)).

Using the deleting derivations algorithm in a way similar to that which we used when prov-
ing that H-primes in Oq−1(Yλ(F)) are generated by pseudo quantum minors, the problem is
reduced to proving that certain families of quantum minors generate completely prime ideals
in quantum matrices over R. The fact that these families of quantum minors generate prime
ideals in quantum matrices over a field was established by Casteels, [13], and we make use of
the fact that they form a Gröbner basis to push down the result over R in Section 6. As a con-
sequence, we prove that the right ideal generated by PC

λ is a completely prime ideal of S(γ)R[γ−1].

Set BR := (〈PC
λ 〉R/〈Πγ〉R)[γ−1] ∩ Oq(Gmn(R))/〈Πγ〉R, and note that BR is completely prime.

Set AR := 〈PC
λ 〉R/〈Πγ〉R. Clearly, AR ⊆ BR, and this inclusion gives a complex of right R-

modules:
AR → BR → 0.

At this stage, we are almost ready to apply [23, Proposition 2.1]. It only remains to prove that
the complex

AR/(q − 1)AR → BR/(q − 1)BR → 0

is exact. In order to achieve this, we use the complete primeness of BR together with results of
Knutson-Lam-Speyer [33, 34] that show that the sets PC

λ generate prime ideals of the homoge-
neous coordinate ring of the (classical) grassmannian over an algebraically closed field (they are
the vanishing ideals of the so-called positroid varieties).

As a consequence, we obtain that AF = BF, so that 〈PC
λ 〉F is completely prime in Oq(Gmn(F))

under the assumption that q is transcendental and K is algebraically closed. The later is neces-
sary at this stage as the results of Knutson-Lam-Speyer are only available under the assumption
that K is algebraically closed. However, using ideas from [20], we remove this assumption to
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obtain Theorem 1.1.

In the final section of this paper, we investigate consequences of our main result. First, we
confirm that the set of quantum Plücker coordinates that belong to an H-prime of Oq(Gmn(F))
are precisely the complements of positroids (in the totally nonnegative grassmannian). This is
a grassmannian analogue of the main result of [19, 20].

Next, we turn our attention to the poset structure of H−Spec(Oq(Gmn(F))). The parallel with
the totally nonnegative world still features heavily here. Indeed, we use the notion of Grass-
mann necklace introduced by Postnikov, [48], in the study of positroids to give a criterion for
one H-prime to be contained in another H-prime. This allows us to describe the poset structure
of H−Spec(Oq(Gmn(F))), and in particular to prove that it is isomorphic to the poset of torus-
orbits of symplectic leaves in the grassmannian. This partly answers a conjecture of Yakimov
[53]. This result was certainly expected and is in the spirit of the orbit method.

In order to prove that the primitive spectra of quantum algebras are homeomorphic to the
space of symplectic leaves of their semi-classical limit, Brown and Goodearl [9] have developed a
strategy based on the H-stratification and the so-called notion of separating Ore sets. Our final
main result gives an explicit construction of separating Ore sets for all H-primes in Oq(Gmn(F)).

The results of this paper have potential applications in theoretical physics, via a recently es-
tablished connection between scattering amplitudes and the totally nonnegative grassmannian,
see, for example, [4], and the very recent paper by Movshev and Schwarz, [45], which takes this
connection onwards to the quantum grassmannian as a result of our work.

The paper is organised as follows. In Section 2, we develop the notion of pseudo quantum mi-
nor in a partition subalgebra. Section 3 is dedicated to general results about deleting derivations.
In Section 4, we give a graph-theoretic interpretation of pseudo quantum minors. These sections
all feed into Section 5 where we give a graph-theoretic characterisation of those pseudo quantum
minors that belong to an H-prime in a partition subalgebra (over a field). In Section 6, we prove
that certain families of quantum minors generate completely prime ideals in Oq(Mm,n(R)). We
prove that H-primes in a partition subalgebra over a field are generated as right ideals by pseudo
quantum minors in Section 7. In Section 8, we prove that certain families of pseudo quantum
minors generate completely prime ideals in Oq−1(Yλ(R)). Sections 9 and 10 are dedicated to the
quantum grassmannian. We prove Theorem 1.2 in Section 9 and Theorem 1.1 in Section 10.
Finally, Section 11 is dedicated to applications of our main results.

Acknowledgment: SL and THL would like to thank MFO (Oberwolfach), CIRM (Luminy)
and ICMS (Edinburgh), where parts of this work were developed over the last few years. The
authors thank Thomas Lam for his explanations about positroid varieties (see discussion after
Proposition 10.8).

2 Quantum matrices and partition subalgbras thereof

2.1 Basic definitions and q-Laplace expansions

Let K be a field, and let q a nonzero element of K. The algebra of m × n quantum matrices
over K, denoted by Oq(Mm,n(K)), is the algebra generated over K by mn indeterminates xij,
with 1 ≤ i ≤ m and 1 ≤ j ≤ n, which commute with the elements of K and are subject to the
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relations:

xijxil = qxilxij, for 1 ≤ i ≤ m, and 1 ≤ j < l ≤ n ;
xijxkj = qxkjxij, for 1 ≤ i < k ≤ m, and 1 ≤ j ≤ n ;
xijxkl = xklxij, for 1 ≤ k < i ≤ m, and 1 ≤ j < l ≤ n ;
xijxkl − xklxij = (q − q−1)xilxkj, for 1 ≤ i < k ≤ m, and 1 ≤ j < l ≤ n.

Informally, we will refer to the final relation above as the nasty relation, as it is responsible for
most of the difficulties in computations in Oq(Mm,n(K)).

When q ∈ K∗ is not a root of unity, one may write Oq(Mm,n(K)) as a Quantum Nilpotent
Algebra (QNA for short) or Cauchon-Goodearl-Letzter extension in the sense of [41, Definition
3.1], by adjoining the generators xij in lexicographic order:

Oq(Mm,n(K)) = K[x11][x12;σ12, δ12] · · · [xmn;σmn, δmn],

(here, the σij are automorphisms and the δij are left σij-derivations of the appropriate subalge-
bras.) The exact definition (of QNA) will be given later in Section 3 .

The algebraic torus H = (K×)m+n acts by automorphisms on Oq(Mm,n(K)) as follows:

(α1, . . . , αm, β1, . . . , βn) · xij = αiβjxij.

By [9, Theorem II.2.7], the action of H on Oq(Mm,n(K)) is rational in the sense of [9, Definition
II.2.6]. All actions of tori which appear in this paper can be checked to be rational using [9,
Theorem II.2.7] along with elementary arguments.

Let R be a commutative noetherian domain and let q be an invertible element of R. Let F be
the field of fractions of R. (Often, q will be restricted to be a non-root of unity or, even more
restrictedly, a transcendental element over some base field contained in R. We will make the
precise requirements clear whenever we need to restrict R and q.) The ring, Oq(Mm,n(R)), of
quantum matrices over R is the subring of Oq(Mm,n(F)) generated over R by the xij.

The ring Oq(Mm,n(R)) is a noetherian domain, as it is an iterated Ore extension over the ring
noetherian ring R.

If a ring A is generated over R by elements xij which satisfy all of the above relations except
possibly the nasty relation (and maybe has other relations as well) then we will say that A is a
pre-quantum matrix algebra.

Definition 2.1. Let λ = {λ1 ≥ λ2 ≥ · · · ≥ λm} be a partition with associated Young diagram
Yλ. In Oq(Mm,n(R)), with n ≥ λ1, look at the subring Oq(Yλ(R)) generated over R by those
xij that fit into the Young diagram for λ. We call this subalgebra the partition subalgebra of
Oq(Mm,n(R)) associated with the partition λ.

When q ∈ K∗ is not a root of unity, the partition subalgebra Oq(Yλ(K)) can be presented as
a QNA with the variables xij added in lexicographic order, and with the torus H acting via
restriction from the action on Oq(Mm,n(K)). Other orderings of the variables are permissible
while maintaining the QNA condition, and some will be used later in the paper. A consequence
of the QNA condition is that important tools such as Cauchon’s deleting derivations procedure
and the Goodearl-Letzter stratification theory are available. (This is the origin of the CGL
terminology, see [40].) These ideas will be introduced in detail later. At the moment, we merely
note that it is immediate that partition subalgebras of Oq(Mm,n(R)) are noetherian domains.

We can augment the generating elements in a partition subalgebra to obtain a pre-quantum
matrix algebra of size m× n by setting xij := 0 whenever (i, j) lies outside the Young diagram
Yλ.

Example 2.2. Let λ = {4, 3, 1}. Then the partition subalgebra associated with λ is generated
by the following variables:
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x11 x12 x13 x14

x21 x22 x23

x31

In the corresponding 3× 4 pre-quantum matrix algebra, x24 = x32 = x33 = x34 = 0.

Later, we also need the following algebras associated to a Young diagram Y . The quantum
affine space corresponding to the Young diagram Y is the algebra generated over R or K (as
appropriate) by variables tij, one for each box (i, j) of the Young diagram, subject to the following
commutation relations: tijtil = qtiltij, for each j < l, and tijtkj = qtkjtij for each i < k, while
all other pairs tij, tkl commute. The quantum torus corresponding to Y is the localisation of the
quantum affine space corresponding to Y obtained by inverting each of the tij (this is possible,
as each tij is a normal element).

An index pair is a pair (I, J) such that I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} are subsets with the
same cardinality. Hence, an index pair is given by an integer t such that 1 ≤ t ≤ min{m,n}
and ordered sets I = {i1 < · · · < it} ⊆ {1, . . . ,m} and J = {j1 < · · · < jt} ⊆ {1, . . . , n}. In
a pre-quantum matrix algebra arising from a partition subalgebra, to any such index pair we
associate the pseudo quantum minor

[I|J ] =
∑
σ∈St

(−q)`(σ)xi1jσ(1) · · ·xitjσ(t) .

with the convention that xij = 0 whenever xij falls outside the partition.
For example, in Example 2.2, [12|12] = x11x22 − qx12x21, which is the usual quantum minor,

whereas [12|34] = −qx14x23.

Remark 2.3. Care is needed when manipulating pseudo quantum minors. With the xij = 0
convention used above, the variables do not form a quantum matrix. For example, the nasty
relation fails: in Example 2.2 above, as x24 = 0 we see that if the nasty relation were to hold
then 0 = x13x24 − x24x13 = (q − q−1)x14x23, which is a contradicion.

So, we are not free to automatically take over known results such as quantum Laplace expan-
sions for quantum minors to pseudo quantum minors. To see this, notice that if we consider the
partition subalgebra of 2 × 2 quantum matrices corresponding to λ = {2, 1} and so generated
by x11, x12, x21 and x22 = 0, then, reasoning as above we see that the pseudo quantum minor
[12|12] = x110 − qx12x21 6= q−1x21x12 = x22x11 − q−1x21x12. Thus, we don’t have the usual
quantum Laplace expansion on the first row, with the first row occurring on the right. However,
there are two quantum Laplace row expansions which do follow easily from the definition, and
these are noted in the next lemma.

Lemma 2.4 (quantum Laplace expansion with rows). Let I = {i1 < . . . < il} ⊆ J1,mK and
J = {j1 < . . . < jl} ⊆ J1, nK. The following quantum Laplace expansions hold for pseudo
quantum minors over a pre-quantum matrix algebra arising from a partition subalgebra:

(1) [I | J ] =
l∑

p=1

(−q)p−1xi1,jp [i2 · · · il | j1 · · · ĵp · · · jl];

(2) [I | J ] =
l∑

p=1

(−q)l−p[i1 · · · il−1 | j1 · · · ĵp · · · jl]xil,jp.
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Proof. We treat part (1) only; part (2) is similar. Let us assume for ease of notation that
I = J = J1, lK (the proof for general I and J is the same but the notation is more unwieldy).
We have

[1 · · · l | 1 · · · l] =
∑
σ∈Sl

(−q)`(σ)x1,σ(1) · · ·xl,σ(l)

=
l∑

p=1

∑
σ ∈ Sl
σ(1) = p

(−q)`(σ)x1,px2,σ(2) · · ·xl,σ(l)

=
l∑

p=1

x1,p

∑
σ ∈ Sl
σ(1) = p

(−q)`(σ)x2,σ(2) · · ·xl,σ(l)

Set {a1 < · · · < al−1} := {2 < · · · < l} and {jp1 < · · · < jpl−1} := {1 < · · · < p̂ < · · · < l}, so that

[1 · · · l | 1 · · · l] =
l∑

p=1

x1,p

∑
ρ∈Sl−1

(−q)`(ρ)+p−1xa1,jpρ(1) · · ·xal−1,j
p
ρ(l−1)

=
l∑

p=1

(−q)p−1x1,p

∑
ρ∈Sl−1

(−q)`(ρ)xa1,jpρ(1) · · ·xal−1,j
p
ρ(l−1)

=
l∑

p=1

(−q)p−1x1,p[a1 · · · al−1 | jp1 · · · j
p
l−1]

=
l∑

p=1

(−q)p−1x1,p[2 · · · l | 1 · · · p̂ · · · l]

We shall also need quantum Laplace expansions on columns, and the next result is preparation
for such results.

Lemma 2.5. If I = {i1 < . . . < il} ⊆ J1,mK and J = {j1 < . . . < jl} ⊆ J1, nK. The following
expression holds for pseudo quantum minors over a pre-quantum matrix algebra arising from a
partition subalgebra:

[I | J ] =
∑
σ∈Sl

(−q)`(σ)xiσ(1),j1xiσ(2),j2 · · ·xiσ(l),jl .

Proof. Let us assume for ease of notation that I = J = J1, lK (the proof for general I and J is the
same but the notation is more unwieldy). Let us set {1 · · · l | 1 · · · l} =

∑
σ∈Sl(−q)

`(σ)xσ(1),1 · · ·xσ(l),l.
Our claim is that {1 · · · l | 1 · · · l} = [1 · · · l | 1 · · · l]. This claim clearly holds if l = 1 and we
proceed by induction on l. We have

[1 · · · l | 1 · · · l] =
l∑

p=1

(−q)p−1x1,p[2 · · · l | 1 · · · p̂ · · · l] (Lemma 2.4(1))

=
l∑

p=1

(−q)p−1x1,p{2 · · · l | 1 · · · p̂ · · · l}. (induction hypothesis)
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Set {a1 < · · · < al−1} := {2 < · · · < l} and {jp1 < · · · < jpl−1} := {1 < · · · < p̂ < · · · < l}, so that

[1 · · · l | 1 · · · l] =
l∑

p=1

(−q)p−1x1,p

 ∑
ρ∈Sl−1

(−q)`(ρ)xaρ(1),jp1 · · ·xaρ(l−1),j
p
l−1


=

l∑
p=1

∑
ρ∈Sl−1

(−q)p−1+`(ρ)x1,pxaρ(1),jp1 · · ·xaρ(l−1),j
p
l−1
.

For all j < p and all s = 1, . . . , l − 1, the relations of the pre-quantum matrix algebra arising
from a partition subalgebra show that x1,p commutes with xaρ(s),j and hence

[1 · · · l | 1 · · · l] =
l∑

p=1

∑
ρ∈Sl−1

(−q)p−1+`(ρ)xaρ(1),1 · · ·xaρ(p−1),p−1x1,pxaρ(p),p+1 · · ·xaρ(l−1),l

=
t∑

p=1

∑
σ ∈ Sl
σ(p) = 1

(−q)`(σ)xσ(1),1 · · ·xσ(l),l

=
∑
σ∈Sl

(−q)`(σ)xσ(1),1 · · · xσ(l),l

= {1 · · · l | 1 · · · l},

as required.

Corollary 2.6 (quantum Laplace expansion with columns). Suppose that {i1 < · · · < il} ⊆
J1,mK and that {j1 < · · · < jl} ⊂ J1, nK. The following quantum Laplace expansions hold for
pseudo quantum minors over a pre-quantum matrix algebra arising from a partition subalgebra:

(1) [i1 · · · il | j1 · · · jl] =
l∑

p=1

(−q)p−1xip,j1 [i1 · · · îp · · · il | j2 · · · jl];

(2) [i1 · · · il | j1 · · · jl] =
l∑

p=1

(−q)l−p[i1 · · · îp · · · il | j1 · · · jl−1]xip,jl.

Proof. Follows easily from Lemma 2.5, with the proof as in Lemma 2.4.

3 Quantum Nilpotent Algebras and their H-primes

In this section, we review the two main tools needed to study the prime spectrum of a quantum
nilpotent algebra: the H-stratification of Goodearl-Letzter and Cauchon’s Deleting Derivations
Algorithm.

3.1 Quantum Nilpotent Algebras

Throughout this section, N denotes a positive integer and A is an iterated Ore extension; that
is,

A = K[x1][x2;σ2, δ2] · · · [xN ;σN , δN ], (2)

where σj is an automorphism of the K-algebra Aj−1 := K[x1][x2;σ2, δ2] . . . [xj−1;σj−1, δj−1] and
δj is a K-linear σj-derivation of Aj−1 for all j ∈ [[2, N ]]. In other words, A is a skew polynomial
ring whose multiplication is defined by:

xja = σj(a)xj + δj(a)
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for all j ∈ [[2, N ]] and a ∈ Aj−1. Thus A is a noetherian domain. Henceforth, we assume that A
is a quantum nilpotent algebra (a.k.a. CGL extension), as in the following definition.

Definition 3.1 ([40]). The iterated Ore extension A is said to be a quantum nilpotent algebra
(QNA for short) if it is equipped with a rational action of a torusH = (K∗)l by K-automorphisms
satisfying the following conditions:

(i) The elements x1, . . . , xN are H-eigenvectors.

(ii) For every j ∈ [[2, N ]], δj is a locally nilpotent σj-derivation of Aj−1.

(iii) For every j ∈ [[1, N ]], there exists hj ∈ H such that (hj·)|Aj−1
= σj and hj · xj = qjxj for

some qj ∈ K∗ which is not a root of unity.

(We have omitted the condition σj ◦ δj = qjδjσj from the original definition, as it follows from
the other conditions; see, e.g., [27, Eq. (3.1); comments, p.694].) From (i) and (iii), there exist
scalars λj,i ∈ K∗ such that σj(xi) = λj,ixi for all i < j in [[1, N ]].

If, in addition, the subgroup of K∗ generated by the λji is torsion-free then we will say that A
is a torsion-free QNA.

For a discussion of rational actions of tori, see [9, Chapter II.2].
It is easy to check that all of these conditions are satisfied for partition subalgebras with the

variables ordered lexicographically.

Proposition 3.2. Partition subalgebras of quantum matrix algebras are torsion-free QNAs when
the parameter q is not a root of unity.

A two-sided ideal I of A is said to be H-invariant if h · I = I for all h ∈ H. An H-prime ideal
of A is a proper H-invariant ideal J of A such that if J contains the product of two H-invariant
ideals of A then J contains at least one of them. We denote by H-Spec(A) the set of all H-prime
ideals of A. Observe that if P is a prime ideal of A then

(P : H) :=
⋂
h∈H

h · P (3)

is an H-prime ideal of A. Indeed, let J be an H-prime ideal of A. We denote by SpecJ(A) the
H-stratum associated to J ; that is,

SpecJ(A) = {P ∈ Spec(A) | (P : H) = J}. (4)

Then the H-strata of Spec(A) form a partition of Spec(A) [9, Chapter II.2]; that is,

Spec(A) =
⊔

J∈H-Spec(A)

SpecJ(A). (5)

This partition is the so-called H-stratification of Spec(A).
It follows from work of Goodearl and Letzter [25] that every H-prime ideal of A is completely

prime, soH-Spec(A) coincides with the set ofH-invariant completely prime ideals of A. Moreover
there are at most 2N H-prime ideals in A. As a consequence, the prime spectrum of A into a
finite number of parts, the H-strata.

For each H-prime ideal J of A, the space SpecJ(A) is homeomorphic to Spec(K[z±1
1 , . . . , z±1

d ])
for some d which depends on J [9, Theorems II.2.13 and II.6.4], and the primitive ideals of A
are precisely the prime ideals that are maximal in their H-strata [9, Theorem II.8.4].
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3.2 Cauchon’s deleting derivations algorithm

We keep the notation of the previous section. In particular, A = K[x1][x2;σ2, δ2] · · · [xN ;σN , δN ]
still denotes a QNA with associated torus H.

As we have seen in the previous section, the H-prime ideals of a QNA A are key in studying
the whole prime spectrum. Cauchon’s deleting derivations algorithm [15, Section 3.2], which we
summarise below, provides a powerful way of studying the H-prime ideals of A.

The deleting derivations algorithm constructs, for each j ∈ {N + 1, N, . . . , 2}, a family

{x(j)
1 , . . . , x

(j)
N } of elements of the division ring of fractions Fract(A) of A defined as follows:

1. When j = N + 1, we set (x
(N+1)
1 , . . . , x

(N+1)
N ) = (x1, . . . , xN).

2. Assume that j < N + 1 and that the x
(j+1)
i (i ∈ [[1, N ]]) are already constructed. Then it

follows from [15, Théorème 3.2.1] that x
(j+1)
j 6= 0 and that, for each i ∈ [[1, N ]], we have

x
(j)
i =


x

(j+1)
i if i ≥ j

+∞∑
k=0

(1− qj)−k

[k]!qj
δkj ◦ σ−kj (x

(j+1)
i )(x

(j+1)
j )−k if i < j,

where [k]!qj = [0]qj × · · · × [k]qj with [0]qj = 1 and [i]qj = 1 + qj + · · ·+ qi−1
j when i ≥ 1.

For all j ∈ [[2, N + 1]], we denote by A(j) the subalgebra of Fract(A) generated by the x
(j)
i ; that

is,
A(j) := F〈x(j)

1 , . . . , x
(j)
N 〉.

The following results were proved by Cauchon [15, Théorème 3.2.1 and Lemme 4.2.1].
For j ∈ [[2, N + 1]], we have

1. A(j) is isomorphic to an iterated Ore extension of the form

K[y1] . . . [yj−1;σj−1, δj−1][yj; τj] · · · [yN ; τN ]

by an isomorphism that sends x
(j)
i to yi (1 ≤ i ≤ N), where τj, . . . , τN denote the K-linear

automorphisms such that τ`(yi) = λ`,iyi (1 ≤ i ≤ `).

2. Assume that j 6= N + 1 and set Sj := {(x(j+1)
j )n | n ∈ N} = {(x(j)

j )n | n ∈ N}.
This is a multiplicative system of regular elements of A(j) and A(j+1), that satisfies the Ore
condition in A(j) and A(j+1). Moreover we have

A(j)S−1
j = A(j+1)S−1

j .

It follows from these results that A(j) is a noetherian domain, for all j ∈ [[2, N + 1]].
As in [15], we use the following notation.

Notation 3.3. We set A := A(2) and ti := x
(2)
i for all i ∈ [[1, N ]].

It follows from [15, Proposition 3.2.1] that A is a quantum affine space in the indeterminates
t1, . . . , tN : it is for this reason that Cauchon used the expression “effacement des dérivations”.
More precisely, let Λ = (µi,j) ∈ MN(K∗) be the multiplicatively antisymmetric matrix whose
entries are defined as follows.

µj,i =


λj,i if i < j
1 if i = j
λ−1
i,j if i > j,
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where the λj,i with i < j come from the QNA structure of A. Then we have

A = KΛ[t1, . . . , tN ] = OΛ(KN)., (6)

where KΛ[t1, . . . , tN ] = OΛ(KN) denotes the K-algebra generated by t1, . . . , tn with relations
titj = µi,jtjti for all i, j.

3.3 Canonical embedding

The deleting derivations algorithm was used by Cauchon in order to relate the prime spectrum
of a QNA A to the prime spectrum of the associated quantum affine space A. More precisely,
Cauchon has used this algorithm to construct embeddings

ϕj : Spec(A(j+1)) −→ Spec(A(j)) for j ∈ [[2, N ]]. (7)

Recall from [15, Section 4.3] that these embeddings are defined as follows.
Let P ∈ Spec(A(j+1)). Then

ϕj(P ) =

{
PS−1

j ∩ A(j) if x
(j+1)
j /∈ P

g−1
j

(
P/〈x(j+1)

j 〉
)

if x
(j+1)
j ∈ P

where gj denotes the surjective homomorphism

gj : A(j) → A(j+1)/〈x(j+1)
j 〉

defined by
gj(x

(j)
i ) := x

(j+1)
i + 〈x(j+1)

j 〉.
(For more details see [15, Lemme 4.3.2].) It was proved by Cauchon [15, Proposition 4.3.1] that
ϕj induces an increasing homeomorphism from the topological space

{P ∈ Spec(A(j+1)) | x(j+1)
j /∈ P}

onto
{Q ∈ Spec(A(j)) | x(j)

j /∈ Q}
whose inverse is also an increasing homeomorphism; also, ϕj induces an increasing homeomor-
phism from

{P ∈ Spec(A(j+1)) | x(j+1)
j ∈ P}

onto its image by ϕj whose inverse similarly is an increasing homeomorphism. Note however
that, in general, ϕj is not an homeomorphism from Spec(A(j+1)) onto its image.

Composing these embeddings, we get an embedding

ϕ := ϕ2 ◦ · · · ◦ ϕN : Spec(A) −→ Spec(A), (8)

which is called the canonical embedding from Spec(A) into Spec(A).
The canonical embedding ϕ is H-equivariant so that ϕ(H−Spec(A)) ⊆ H−Spec(A). Interest-

ingly, the set H−Spec(A) has been described by Cauchon. More precisely, for any subset C of
{1, . . . , N}, let KC denote the H-prime ideal of A generated by the ti with i ∈ C, that is

KC = 〈ti | i ∈ C〉.

Then Cauchon proved (see [15, Proposition 5.5.1]):

H−Spec(A) = {KC | C ⊆ {1, . . . , N}},

so that
ϕ(H−Spec(A)) ⊆ {KC | C ⊆ {1, . . . , N}}.
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3.4 Cauchon diagrams

We are now turning our attention to describing the set ϕ(H−Spec(A)).
A subset C ⊆ {1, . . . , N} is said to be a Cauchon diagram for A if

KC = 〈ti | i ∈ C〉 ∈ ϕ(H−Spec(A)).

In this case, JC denotes the (unique) H-prime ideal of A such that ϕ(JC) = KC .
Cauchon proved that

H−Spec(A) = {JC | C is a Cauchon diagram}.

If J is an H-prime ideal of A, we denote by CD(J) its associated Cauchon diagrams; that is,
CD(J) is the set C such that ϕ(J) = KC = 〈ti | i ∈ C〉. Note that the set of Cauchon diagrams
of A depends on the QNA structure of A (and not just on A).

A useful way to represent a Cauchon diagram C is as follows. Draw N boxes in a row, and
colour the i-th box black if and only i ∈ C; the remaining boxes are coloured white. For example,
if N = 5 and C = {1, 2, 5}, then we draw the diagram:

The Cauchon diagrams that arise for partition subalgebras Oq(Yλ(F)) have been studied in
[41]. In the next sections, we will explain the results of [41] which require modifying the visual
presentation of Cauchon diagrams to take advantage of the Young diagrams that are intrinsic
to the presentation of partitions subalgebras.

3.5 Some relationships between Cauchon diagrams

Let A := K[x1][x2;σ2, δ2] . . . [xN ;σN , δN ] be a QNA, and let ϕ = ϕ2 ◦ · · · ◦ ϕN : H−Spec(A) −→
H−Spec(A) be the canonical embedding.

Suppose that J is an H-prime ideal that does not contain xN . In this case, observe that
CD(J) ⊆ {1, . . . , N − 1}.

After the first step in the deleting derivations algorithm, we have

A(N) = K[x
(N)
1 ][x

(N)
2 ;σ2, δ2] . . . [x

(N)
N ;σN ]

Set yi := x
(N)
i and write B := K[y1] . . . [yN−1;σN−1, δN−1]. Then B is a quantum nilpotent

algebra and A ∼= B[xN ;σN , δN ], while A(N) = B[yN ;σN ]. (Note that yN = xN .)

Let I := ϕN(J) ∩B and note that I ∈ H−Spec(B).

Lemma 3.4. With the notation above, let J be an H-prime ideal that does not contain xN . Then

CD(I) = CD(J)

Proof. Note that

ϕN(J) =
⊕
i∈N

IyiN

by [40, Corollary 2.4].
Note that B is a QNA and so we can apply the deleting-derivations algorithm to B. It is easy

to check that A(k) = B(k)[yN ;σN ] (with a slightly abusive notation regarding the automorphism
σN).
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Next we prove by decreasing induction that for all k ∈ {2, . . . , N}, we have

ϕk ◦ · · · ◦ ϕN(J) =
⊕
i∈N

ψk ◦ · · · ◦ ψN−1(I)yiN ,

where ψ = ψ2 ◦ · · · ◦ ψN−1 is the canonical embedding of B.
To simplify the notation, we set J (k) := ϕk ◦ · · · ◦ ϕN(J) and I(k) := ψk ◦ · · · ◦ ψN−1(I). Note

that J (k) is an H-prime of A(k) that does not contain yN and I(k) is an H-prime of B(k).
The case k = N has already been proved, so we assume that

ϕk+1 ◦ · · · ◦ ϕN(J) =
⊕
i∈N

ψk+1 ◦ · · · ◦ ψN−1(I)yiN

for some k < N , and set tk := y
(k)
k = y

(k+1)
k . To proceed with the induction step, we distinguish

between two cases.
First, if tk /∈ J (k+1), then J (k) = J (k+1)[t−1

k ] ∩ A(k). Moreover, as tk /∈ J (k+1), we get that
tk /∈ I(k+1) = J (k+1) ∩B(k+1). Hence I(k) = I(k+1)[t−1

k ] ∩B(k), so that we have:

J (k) = J (k+1)[t−1
k ] ∩ A(k)

= (
⊕
i∈N

I(k+1)yiN)[t−1
k ] ∩ A(k)

= (
⊕
i∈N

I(k+1)[t−1
k ]yiN) ∩ A(k) (since tk and yN q-commute)

= (
⊕
i∈N

I(k+1)[t−1
k ]yiN) ∩ (

⊕
i∈N

B(k)yiN)

=
⊕
i∈N

(I(k+1)[t−1
k ] ∩B(k))yiN

=
⊕
i∈N

I(k)yiN

as desired.
Next, if tk ∈ J (k+1), then J (k) = g−1

A,k(
J(k+1)

〈tk〉
), where gA,k : A(k) → A(k+1)

〈tk〉
is the surjective

homomorphism defined by gA,k(y
(k)
i ) = y

(k+1)
i + 〈tk〉.

As tk ∈ J (k+1), we get that tk ∈ I(k+1) = J (k+1) ∩ B(k+1). This implies that I(k) = g−1
B,k(

I(k+1)

〈tk〉B
),

where gB,k : B(k) → B(k+1)

〈tk〉B
is the surjective homomorphism defined by gB,k(y

(k)
i ) = y

(k+1)
i + 〈tk〉B.

(Note that, to avoid any confusion, we have denoted by 〈tk〉 the ideal of A(k+1) generated by tk,
and by 〈tk〉B the ideal of B(k+1) generated by tk.)

Observe that A(k+1)

〈tk〉
=
⊕

i∈N
B(k+1)

〈tk〉B
yN

i, where yN = yN + 〈tk〉. Hence, we can see gB,k as the

restriction of gA,k to B(k).
Let u ∈ J (k). We can write u =

⊕
i∈N uiy

i
N with ui ∈ B(k). We need to show that ui ∈ I(k) for

all i. Observe that: ⊕
i∈N

gB,k(ui)yN
i = g(u) ∈ J

(k+1)

〈tk〉
=
⊕
i∈N

I(k+1)

〈tk〉B
yN

i.

Hence, gB,k(ui) ∈ I(k+1)

〈tk〉B
for all i, so that ui ∈ I(k) for all i, as required.

To summarise, we have proved that

J (k) =
⊕
i∈N

I(k)yiN
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for all k ∈ {2, . . . , N}.
The case k = 2 allows us to conclude that CD(I) = CD(J), since J (2) = 〈y(2)

i | i ∈ CD(J)〉
and I(2) = 〈y(2)

i | i ∈ CD(I)〉.

4 Cauchon-Le diagrams and Postnikov graphs

Before we show that each H-prime ideal in a partition subalgebra is generated by the pseudo
quantum minors that it contains, we shall identify these pseudo quantum minors. There are
strong pointers to the result that we should expect. In [12, 13], Casteels has shown that the
membership problem for an H-prime ideal P in Oq(Mm,n(K)) is decided by the non-existence
or existence of certain families of vertex disjoint paths in the Postnikov graph of the Cauchon
diagram belonging to P . Exactly the same result has been obtained by Oh, [47], for the member-
ship problem for Plücker coordinates in positroid cells of the totally nonnegative grassmannian.
In [19, 20] it is shown that the membership problem for cells in the space of totally nonnega-
tive matrices and the membership problem for invariant prime ideals in quantum matrices have
exactly the same solution; so this is what we conjectured happens in the grassmannian setting.
The results in this section achieve this hoped for result for partition subalgebras. This then gives
the desired result for the quantum Schubert cells of the quantum grassmannian, and, later, we
will pull these results back to the quantum grassmannian.

In this section, q ∈ K is just assumed to be nonzero.

4.1 Cauchon-Le diagrams and Postnikov graphs

We consider Young diagrams that fit into an m×n array. Each such Young diagram corresponds
to a partition λ = (λ1, . . . , λm) with λ1 ≤ n. For example, the Young diagram in Example 2.2
corresponds to the partition λ = (4, 3, 1) and fits inside a 3× 4 array (or, an m×n array for any
m ≥ 3, n ≥ 4). We number the rows of Young diagrams from top to bottom, and the columns
from left to right, as in the usual matrix notation.

A Cauchon-Le diagram C on the Young diagram Y is a colouring of the squares of Y with
black or white, with the restriction that if a square is coloured black then either each square to
its left and in the same row is also black, or, each square above and in the same column is black.
The set of black squares in C will be denoted by BC and the set of white squares of C by WC .
Here is an example of a Cauchon-Le diagram C on the Young diagram Y associated with the
partition λ = {4, 3, 1}:

We see that BC = {(1, 3), (2, 1), (2, 2)} and WC = {(1, 1), (1, 2), (1, 4), (2, 3), (3, 1)}.
If A is the partition subalgebra associated with the partition λ and q is not a root of unity

then the H-invariant prime ideals of A are in bijection with Cauchon-Le diagrams on Yλ, the
Young diagram corresponding to λ, by [41, Theorem 3.5]. We will come back to this in more
details in Section 5.4.
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Definition 4.1. The quantum torus associated with the Cauchon-Le diagram C on Yλ is the
K-algebra generated by elements t±1

ij with (i, j) ∈ WC and subject to the relations tijtik = qtiktij
for j < k and tijtlj = qtljtij for i < l while all other pairs of generators commute. An easy way
to remember these relations is as follows: let a, b be squares in WC with a <lex b. Then ta and
tb commute unless a and b are in the same row or column, in which case tatb = qtbta.

In the case that all boxes of C are white, this quantum torus is (isomorphic to) the localisation
obtained by inverting the generators of the K-algebra A = A(2) = K〈tij | (i, j) ∈ C〉 that occurs
at the end of the deleting derivation process on A := Oq(Yλ(K)). In general, there is a natural
surjective homomorphism from A onto K〈tij | (i, j) ∈ WC〉 given by tij −→ tij for (i, j) ∈ WC

and tij −→ 0 for (i, j) in BC , with kernel KC = 〈tij | (i, j) ∈ BC〉.

Definition 4.2. The Postnikov graph, Post(C), of a Cauchon-Le diagram C on the Young
diagram Yλ is a directed planar graph with weighted edges, constructed from C, where the
weights come from the quantum torus corresponding to C. The Postnikov graph is constructed
in the following way. If (i, j) is a white square in C then let (i, j−) be the first white square to
the left of (i, j) (if it exists) and let (i, j+) be the first white square to the right of (i, j) (if it
exists). Similarly, (i+, j) is the first white square below (i, j) (if one exists).

Firstly, place a vertex in each white square of the Cauchon-Le diagram. These vertices are
called internal. Then, place vertices ri immediately to the right of the last box in row i, and also
vertices cj immediately below the last box in column j. Vertices ri and cj are called boundary
vertices. For each row index i, put a directed edge from ri to the rightmost white square in row
i (if it exists), say square (i, k). Weight this edge with the weight tik. For each column index j,
put a directed edge from the bottom-most white square in column j (if it exists), to the vertex
cj. Weight this edge with weight 1. For each white square (i, j), put a directed edge from (i, j)
to (i, j−) (if it exists) and give this edge the weight t−1

i,j ti,j− . Finally, for each white square (i, j),
put a directed edge from (i, j) to (i+, j) (if it exists) and give this edge the weight 1.

Here is an example of a Cauchon-Le diagram and its associated Postnikov graph. Note that
by convention the weight of weight 1 edges are omitted, and so we only record the weight of
horizontal edges when drawing Postnikov graphs.

• •

•

• • •

• •

• r1

• r2

• r3

• r4

•c1 •c2

•c3

•c4

t−1
13 t11 t13

t23

t−1
32 t31 t−1

33 t32 t33

t−1
42 t41 t42

It is clear from the construction of the Postnikov graph that it is represented in the plane. We
shall always assume that Postnikov graphs are embedded in the plane in this way, and this
allows us to use terms such as horizontal, vertical, left, right, North, South, East, West, etc. in
reference to vertices and edges of a Postnikov graph.
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Notation 4.3. • For us, “path” and “edge” shall always mean “directed path” and “directed
edge” respectively.

• Let v and v′ be vertices of Post(C). There is clearly at most one edge from v to v′ and if
it exists, we denote it by (v, v′).

• We denote the weight of an edge e of Post(C) by w(e).

• Suppose that (i, j), (i, j′) ∈ WC and that there is an edge e = ((i, j), (i, j′)) in Post(C)
(notice that this forces j > j′). Then we set row(e) = {i}, col1(e) = {j}, col2(e) = {j′}.

• Let e be an edge of Post(C) from ri to (i, j) ∈ WC . Then we define col1(e) = ∅ and
col2(e) = {j}.

• For any edge e in Post(C), we define col(e) = col1(e) ∪ col2(e).

• If v0, v1, . . . , vk are vertices of Post(C) such that the edges (v0, v1), (v1, v2), . . . , (vk−1, vk)
exist, then we write (v0, v1, . . . , vk) for the path from v0 to vk given by the concatenation
of the edges (v0, v1), (v1, v2), . . . , (vk−1, vk).

• For vertices v and v′ of Post(C), we write P : v =⇒ v′ to mean that P is a path from v to
v′.

Definition 4.4. By the weight of a path (v0, v1, . . . , vk) in Post(C), we mean the ordered product

w(v0, v1)w(v1, v2) · · ·w(vk−1, vk)

of the weights of its edges. We denote the weight of a path P in Post(C) by w(P ).

Definition 4.5. An edge or path in Post(C) is called internal if its beginning and end vertices
belong to WC . An edge (resp. path) that is not internal is called a boundary edge (resp. path).

Remark 4.6. Since vertical edges in Post(C) have weight 1, only horizontal edges contribute
to the weight of any path in Post(C). We shall often use this fact without explicit mention.

Example 4.7. Let c = d = 4, let λ = (4, 3, 3, 1).
In the figure below, we have shown a Cauchon-Le diagram C on Yλ with its Postnikov graph

Post(C) superimposed onto C:

• •

• •

• • •

•

• r1

• r2

• r3

• r4

•c1

•c2 •c3

•c4

t1,4t−1
1,4t1,1

t−1
2,3t2,2 t2,3

t−1
3,2t3,1 t−1

3,3t3,2 t3,3

t4,1

We shall often superimpose Postnikov graphs onto their Cauchon-Le diagrams in this way.
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Proposition 4.8 (cf. Proposition 3.3 of [12]). The Postnikov graph Post(C) has the following
properties:

(1) Post(C) is acyclic; that is, Post(C) has no directed cycles.

(2) The embedding of the Postnikov graph Post(C) in the plane described above is a planar
embedding; that is, all edge crossings occur at vertices.

(3) An internal horizontal path P : (i, j2) =⇒ (i, j1) has weight t−1
i,j2
ti,j1.

(4) A path ri =⇒ (i, j) beginning at a row vertex and consisting solely of horizontal edges has
weight ti,j.

Proof. (1) Because all edges are directed leftwards or downwards, the graph Post(C) cannot
have a directed cycle.

(2) If two edges cross, then one edge must be vertical and the other horizontal. Let a vertical
edge e1 = ((i1, j), (i2, j)) cross a horizontal edge e2 = ((i, j2), (i, j1)) at a black square (i, j)
of the Cauchon-Le diagram C. The black square (i, j) has the white square (i1, j) above it
and the white square (i, j1) to its left, contradicting the definition of a Cauchon-Le diagram.
It follows that the square (i, j) must be white and that the edges e1 and e2 cross at the
vertex (i, j).

(3) If the path P consists of a single edge, then the result follows from the definition of the
Postnikov graph Post(C). Suppose that the path P consists of n > 1 edges and that the
desired result holds for all internal horizontal paths in Post(C) consisting of fewer than n
edges. Let (i, k) be an internal vertex of P . When P ′ and P ′′ are the horizontal paths given
by P ′ : (i, j2) =⇒ (i, k) and P ′′ : (i, k) =⇒ (i, j1), we have P = P ′P ′′. Now the inductive
hypothesis gives w(P ) = w(P ′)w(P ′′) = t−1

i,j2
ti,kt

−1
i,k ti,j1 = t−1

i,j2
ti,j1 .

(4) This follows from part (3) and the definition of the Postnikov graph.

4.2 Commutation relations between weights of paths

In this subsection, we develop commutation relations between edges and certain paths in Post-
nikov graphs. Casteels, [12, Lemmas 3.4, 3.5, 3.6], obtains similar results for the case that the
Young diagram is a rectangle. The proofs for our results are similar, but we record them for the
convenience of the reader.

We refer the reader to Notation 4.3 for the meanings of col1(a), col2(a), col(a) for internal and
boundary edges a.

Lemma 4.9 (cf. Lemma 3.4 of [12]). Let e and f be distinct horizontal edges in Post(C) such
that row(f) ≤ row(e).

(1) If col(e) ∩ col(f) = ∅, then w(f)w(e) = w(e)w(f).

(2) Suppose that |col(e) ∩ col(f)| = 1.

(i) If col1(e) = col1(f) or col2(e) = col2(f), then w(f)w(e) = qw(e)w(f);

(ii) if col1(e) = col2(f) or col2(e) = col1(f) and row(e) 6= row(f), then w(f)w(e) =
q−1w(e)w(f);

(iii) if col2(f) = col1(e) and row(f) = row(e), then w(f)w(e) = q−1w(e)w(f).
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(3) If |col(e) ∩ col(f)| = 2, then w(f)w(e) = q2w(e)w(f).

Proof. The proof consists of an investigation of all possible relative positions of e and f .
Notice that if d is any internal horizontal edge in the graph Post(C) and col2(d) < j < col1(d),

then the square (row(d), j) is a black square in C which has the white square (row(d), col2(d))
to its left, so that for all i ≤ row(d), the square (i, j) is black. This observation will be used
several times below and is the reason why certain cases cannot occur. For instance, the following
configuration cannot occur, because the square immediately to the right of vertex b fails the
Cauchon-Le condition.

• •

• •

v u

ab

f

e

Let a, b, u, v be the vertices of Post(C) such that e = (a, b) and f = (u, v).

Case 0: col(e) ∩ col(f) = ∅.

• If row(e) 6= row(f), then the result follows immediately from the relations in Definition 4.1
because ta and tb commute with tu and tv.
• Suppose that row(e) = row(f) and notice that we may assume without loss of generality

that u and v lie west of a and b. We distinguish between two cases.
•• Assume first that e is internal. The following diagram illustrates the situation:

• • • •v u abf e

The relations in Definition 4.1 now give tutb = qtbtu, tuta = qtatu, tvtb = qtbtv, and tvta = qtatv.
Hence

w(e)w(f) = t−1
a tbt

−1
u tv = qq−1t−1

a t−1
u tvtb = qq−1qq−1t−1

u tvt
−1
a tb = w(f)w(e).

•• Next assume that e is boundary. The following diagram illustrates the situation:

• • • •v u abf e

The relations in Definition 4.1 now give tutb = qtbtu, and tvtb = qtbtv. Hence

w(e)w(f) = tbt
−1
u tv = qq−1t−1

u tvtb = w(f)w(e).

Case 1: |col(e) ∩ col(f)| = 1.
We distinguish between 8 cases.

(i) If we are in the situation of the diagram below (col2(e) = col2(f) and u, a internal),

• •

• •

v u

ab

f

e
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then the relations in Definition 4.1 now give tatu = tuta, tatv = tvta, tbtu = tutb, and
tvtb = qtbtv. Hence

w(e)w(f) = t−1
a tbt

−1
u tv = q−1t−1

u tvt
−1
a tb = q−1w(f)w(e),

as expected in the case where col2(e) = col2(f).

(ii) If we are in the situation of the diagram below (col2(e) = col2(f), u internal and a bound-
ary),

• •

• •

v u

ab

f

e

then the relations in Definition 4.1 now give tbtu = tutb, and tvtb = qtbtv. Hence

w(e)w(f) = tbt
−1
u tv = q−1t−1

u tvtb = q−1w(f)w(e),

as expected in the case where col2(e) = col2(f).

(iii) If we are in the situation of the diagram below (col2(e) = col2(f), a internal and u bound-
ary),

• •

• •

v u

ab

f

e

then the relations in Definition 4.1 now give tatv = tvta, and tvtb = qtbtv. Hence

w(e)w(f) = t−1
a tbtv = q−1tvt

−1
a tb = q−1w(f)w(e),

as expected in the case where col2(e) = col2(f).

(iv) If we are in the situation of the diagram below (col2(e) = col2(f), a and u boundary),

• •

• •

v u

ab

f

e

then the relations in Definition 4.1 now give tbtu = tutb, and tvtb = qtbtv. Hence

w(e)w(f) = tbt
−1
u tv = q−1t−1

u tvtb = q−1w(f)w(e),

as expected in the case where col2(e) = col2(f).

(v) If we are in the situation of the diagram below (col1(e) = col1(f), a and u internal),

• •

• •

v u

ab

f

e
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then the relations in Definition 4.1 now give tbtu = tutb, tvtb = tbtv, tatv = tvta and
tuta = qtatu. Hence

w(e)w(f) = t−1
a tbt

−1
u tv = q−1t−1

u tvt
−1
a tb = q−1w(f)w(e),

as expected in the case where col1(e) = col1(f).

(vi) Suppose that row(e) 6= row(f) and that col1(f) = col2(e) (the case where row(e) 6= row(f)
and col2(f) = col1(e) is similar). The following diagram illustrates the situation when a is
an internal vertex:

• •

• •

v u

ab

f

e

The relations (4.1) now give tatu = tuta, tatv = tvta, tbtv = tvtb, and tutb = qtbtu. It follows
that

w(e)w(f) = t−1
a tbt

−1
u tv = qt−1

u tvt
−1
a tb = qw(f)w(e),

as desired.

(vii) Suppose that row(e) 6= row(f) and col2(f) = col1(e). The following diagram illustrates the
situation when u is an internal vertex:

• •

• •

v u

ab

f

e

The relations (4.1) now give tatu = tuta, tatv = q−1tvta, tbtv = tvtb, and tutb = tbtu. It
follows that

w(e)w(f) = t−1
a tbt

−1
u tv = qt−1

u tvt
−1
a tb = qw(f)w(e).

(viii) Suppose that row(e) = row(f) and that col2(e) = col1(f). Then the end vertex of e is the
starting vertex of f , that is b = u. The following diagram illustrates the situation when a
is internal:

• • •
v u

b ae

f

If a is internal, then the relations in Definition 4.1 give tvtb = qtbtv, tvta = qtatv, and
tbta = qtatb. Hence

w(f)w(e) = t−1
b tvt

−1
a tb = q2tvt

−1
a = qt−1

a tv = qt−1
a tbt

−1
b tv = qw(e)w(f).

If a is boundary, then the relations in Definition 4.1 give tvtb = qtbtv. Hence

w(f)w(e) = t−1
b tvtb = qtbt

−1
b tv = qw(e)w(f).

This ends Case 1.

Case 2: |col(e) ∩ col(f)| = 2. The following diagram illustrates the situation:
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• •

• •

v u

ab

f

e

The relations in Definition 4.1 show that tatv = tvta, tbtu = tutb, tvtb = qtbtv, and tuta = qtatu.
It follows that

w(e)w(f) = t−1
a tbt

−1
u tv = q−1t−1

a t−1
u tvtb = q−2t−1

u tvt
−1
a tb = q−2w(f)w(e).

Remark 4.10. The reader may notice that part (2) of Lemma 4.9 differs from part 2 of [12,
Lemma 3.4]. This is to clear up a slight ambiguity in part 2(ii) of [12, Lemma 3.4], namely that
in the case where row(e) = row(f), part 2(ii) of [12, Lemma 3.4] only holds if e begins where f
ends.

Lemma 4.11 (cf. Lemma 3.5 of [12]). Let K : v0 =⇒ v and L : v =⇒ vt be paths in Post(C).

(1) If either K or L contains only vertical edges, then w(K)w(L) = w(L)w(K).

(2) If K contains a horizontal edge and L contains a horizontal edge, then w(K)w(L) =
q−1w(L)w(K).

Proof. (1) This follows immediately from the fact that vertical edges in Post(C) have weight 1.

(2) Since all vertical edges have weight one, only the horizontal edges of K and L contribute to
their weights. Let v1 be the rightmost vertex in K in the same row as v. (Note that v1 can
be equal to v as illustrated by the dotted alternative in the following diagram.) We denote
by K ′ the subpath of K that starts at v0 and ends at v1, and by K ′′ the subpath of K that
starts at v1 and ends at vt. Clearly, we have w(K) = w(K ′)w(K ′′).

Similarly, let v2 be the leftmost vertex in L in the same row as v. (Note that v2 can be equal
to v as illustrated by the dashed alternative in the following diagram.) We denote by L′′ the
subpath of L that starts at v and ends at v2, and by L′ the subpath of L that starts at v2

and ends at vt. Clearly, we have w(L) = w(L′′)w(L′).

•• •

•••••

•• • •

v0

vv2

vt

v1

w u

ab k

l

K ′

K ′′

K

L′′

LL′

We distinguish between two cases.

• Case 1: K ′′ 6= ∅ and L′′ 6= ∅.
By Lemma 4.9(1), the weights of all edges in K ′ commute with the weights of all edges in L
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and the weights of all edges in L′ commute with the weights of all edges in K. By Lemma
4.9(2)(ii) or Lemma 4.9(2)(iii), we have w(K ′′)w(L′′) = q−1w(L′′)w(K ′′). Now

w(K)w(L) = w(K ′)w(K ′′)w(L′′)w(L′)

= q−1w(K ′)w(L′′)w(K ′′)w(L′)

= q−1w(L′′)w(L′)w(K ′)w(K ′′)

= q−1w(L)w(K).

• Case 2: K ′′ = ∅ or L′′ = ∅.
In this case, we denote by k : a → b the last horizontal edge in K and by l : u → w be the
first horizontal edge in L. We denote by K \{k} the subpath of K starting at v0 and ending
at a, and by L \ {l} the subpath of L starting at w and ending at vt. By Lemma 4.9(1), the
weights of all edges in K \ {k} commute with the weights of all edges in L and the weights
of all edges in L \ {l} commute with the weights of all edges in K. By Lemma 4.9(2)(ii), we
have w(k)w(l) = q−1w(l)w(k). Now

w(K)w(L) = w(K \ {k})w(k)w(l)w(L \ {l})
= q−1w(K \ {k})w(l)w(k)w(L \ {l})
= q−1w(l)w(L \ {l})w(K \ {k})w(k)

= q−1w(L)w(K).

Lemma 4.12 (cf. Lemma 3.6 of [12]). Let K : v =⇒ ci and L : v =⇒ cj be two paths in
Post(C) which share their initial vertex and no other vertex. Let K be the path that starts with
a horizontal edge and let L be the path that starts with a vertical edge.

(1) If L consists only of vertical edges, then w(K)w(L) = w(L)w(K).

(2) If L has a horizontal edge then w(K)w(L) = qw(L)w(K).

•••

••

•

•• • • •

•

•

••

v

• ci

• cj

K

L

Postnikov diagram illustrating Lemma 5.12 (2)

Proof. (1) This follows immediately from the fact that vertical edges have weight 1.

(2) Suppose that L has a horizontal edge. Because of the Cauchon-Le condition, no vertex of
K lies (with respect to column coordinates) between the vertices of a horizontal edge of L
(see the beginning of the proof of Lemma 4.9 for more details).
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Claim: If e is any horizontal edge of L except the first horizontal edge of L, then w(e)w(K) =
w(K)w(e).

There are four possibilities for e:
• Case (i): No vertex in K shares a column coordinate with either vertex of e. In this case,
Lemma 4.9(1) then shows that the weights of the horizontal edges of K commute with w(e),
so that w(e) commutes with w(K).
• Case (ii): There are two distinct horizontal edges f ′ and f ′′ of K such that |col(e) ∩
col(f ′)| = |col(e) ∩ col(f ′′)| = 1, col2(f ′) = col1(f ′′) = col2(e), and col(e) ∩ col(f) = ∅ for all
other edges f of K.

••

••

• •

f ′

f ′′

e

Postnikov diagram illustrating Case (ii)

In this case, Lemma 4.9(2) shows that w(f ′)w(f ′′)w(e) = qq−1w(e)w(f ′)w(f ′′) = w(e)w(f ′)w(f ′′).
Now with Lemma 4.9(1), we can conclude that w(e)w(K) = w(K)w(e).
• Case (iii): There are two distinct horizontal edges f ′ and f ′′ of K such that |col(e) ∩
col(f ′)| = |col(e) ∩ col(f ′′)| = 1, col2(f ′) = col1(f ′′) = col1(e), and col(e) ∩ col(f) = ∅ for all
other edges of K.

••

••

••

f ′

f ′′

e

Postnikov diagram illustrating Case (iii)

This case is similar to Case (ii).
• Case (iv): There are edges f ′, f ′′, f ′′ of K such that |col(e) ∩ col(f ′′)| = 2, col2(f ′) =
col1(e), and col1(f ′′′) = col2(e).

••

••

••

••

f ′

f ′′

f ′′′

e

Postnikov diagram illustrating Case (iv)

By Lemma 4.9 parts (2) and (3), we have

w(f ′)w(f ′′)w(f ′′′)w(e) = q−1q2q−1w(e)w(f ′)w(f ′′)w(f ′′′) = w(e)w(f ′)w(f ′′)w(f ′′′)
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and now with Lemma 4.9(1), we can conclude that w(e)w(K) = w(K)w(e). This establishes
the claim that if e is any horizontal edge of L except the first horizontal edge of L, then
w(e)w(K) = w(K)w(e).

Let us turn now to the first horizontal edge e1 of L.

Claim: w(K)w(e1) = qw(e1)w(K).

Let us denote by f1 the first horizontal edge of K. There are two cases to consider:

(i) Let us suppose that col2(f1) < col2(e1). Then Lemma 4.9(2) gives w(f1)w(e1) =
qw(e1)w(f1) and Lemma 4.9(1) allows us to conclude that w(K)w(e1) = qw(e1)w(K).

(ii) Let us suppose that col2(f1) = col2(e1). Then the second horizontal edge f2 of K
satisfies col1(f2) = col2(f1) = col2(e1). Then by Lemma 4.9 parts (2) and (3), we have
w(f1)w(f2)w(e1) = qw(e1)w(f1)w(f2) and now with Lemma 4.9(1), we can conclude that
w(K)w(e1) = qw(e1)w(K). This completes the proof of the claim. (Note that the case
col2(f1) > col2(e1) cannot happen because Postnikov graphs are built from Cauchon-Le
diagrams.)

The result now follows from the two claims which we have proven, namely that if e is any
horizontal edge of L except the first horizontal edge of L, then w(K)w(e) = w(e)w(K) and
that if e1 is the first horizontal edge of L, then w(K)w(e1) = qw(e1)w(K).

4.3 Path systems

Definition 4.13. Suppose that I = {i1 < · · · < it} ⊆ J1,mK and J = {j1 < · · · < jt} ⊆
J1, nK. An R(I,J)-path system in Post(C) is a collection P = (P1, . . . , Pt) of paths in Post(C)
starting respectively at the row vertices ri1 , . . . , rit and ending respectively at the column vertices
cjσP (1)

, . . . , cjσP (t)
for some permutation σP ∈ St, called the permutation of the path system P .

The path system P is called vertex-disjoint if no two of its paths share a vertex. The weight of
the path system P = (P1, . . . , Pt) is defined simply as the ordered product w(P1) · · ·w(Pt) of the
weights of the paths P1, . . . , Pt.

Example 4.14. Let c = d = 4 and let λ = (4, 3, 3, 1). Below are the Cauchon-Le diagram
on Yλ from Example 4.7, with a vertex-disjoint R({1,4},{1,4})-path system marked in solid lines
and a non vertex-disjoint R({2,3},{2,3})-path system marked in dotted and dashed lines; each path
system has permutation (1 2) ∈ S2.

•

•

• •

•

• r1

• r2

• r3

• r4

•c1

•c2 •c3

•c4
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In the case that a Young diagram is rectangular, the permutation of a vertex disjoint path
system must be the identity permutation. This needs not be the case for nonrectangular Young
diagrams, and the following lemma deals with this problem.

Lemma 4.15. Suppose that I = {i1 < · · · < it} ⊆ J1, cK and J = {j1 < · · · < jt} ⊆ J1, dK. Then
all vertex-disjoint R(I,J)-path systems in Post(C) have the same permutation.

Proof. The proof is by induction on t. The case t = 1 is obvious; so, suppose that t > 1 and
that the result holds for vertex disjoint path systems of smaller size than t.

Choose s as large as possible such that the Young diagram Yλ has a square in the (is, jt)
position. Let S denote any vertex-disjoint R(I,J)-path system. We claim that the path Ss in S
starting at ris must finish at cjt .

Suppose, for a contradiction, that the path Ss in S starting at ris does not end at cjt . Let l be
such that the path Sl in S starting at ril ends at cjt , forcing l < s because of the maximality of s.
Suppose that Ss ends at cju , and note that u < t. As Post(C) is planar, the paths Ss : ris =⇒ cju
and Sl : ril =⇒ cjt must cross, as ris is to the right of the path Sl and cju is to the left of Sl;
this crossing must occur at a vertex by Proposition 4.8(2). This gives the desired contradiction
and proves the claim that the path Ss in S starting at ris must finish at cjt .

• ril
• ris

•cju
•cjt

Ss

Sl

•

Consider any two vertex-disjoint R(I,J)-path systems P = (P1, . . . , Pt) and Q = (Q1, . . . , Qt) in
Post(C). The paths Ps and Qs which start at ris must finish at cjt . Now P \ {Ps} and Q\ {Qs}
are two vertex-disjoint R(I\{is},J\{jt})-path systems and hence must have the same permutation
by the induction hypothesis. The result follows immediately.

Lemma 4.16 (cf. Lemma 4.2 of [12]). Suppose that I = {i1 < · · · < it} ⊆ J1,mK and J = {j1 <
· · · < jt} ⊆ J1, nK. If P = (P1, . . . , Pt) is a non-vertex-disjoint R(I,J)-path system in Post(C),
then there exists s ∈ J1, t− 1K such that Ps and Ps+1 share a vertex.

Proof. Let d = min{|a − b| | a 6= b and Pa and Pb share a vertex} and suppose that d > 1. Let
a < b be such that |a− b| = d and Pa shares a vertex with Pb. Let x be the first vertex which is
common to Pa and Pb and consider the subpaths P ′a : ria =⇒ x of Pa and P ′b : rib =⇒ x of Pb.

Since d > 1, there exists ` ∈ J1, tK such that a < ` < b. The path P` ∈ P which starts at ri`
must intersect either P ′a or P ′b and this intersection must be at a vertex of Post(C) by Proposition
4.8(2), contradicting the minimality of d.
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• ria

• rib
• ril

•x

P ′a

P ′b

4.4 Path matrices and their pseudo quantum minors

Definition 4.17. Let λ = (λ1, . . . , λc) be a partition with d = λ1 ≥ · · · ≥ λc ≥ 1, where c ≤ m
and d ≤ n. Define the path matrix MC = (MC [i, j]) of C to be the c×d matrix with entries from
the quantum torus associated with C such that for each (i, j) ∈ J1, cK× J1, dK, the entry MC [i, j]
is the sum of the weights of all paths from ri to cj in Post(C). For I = {i1 < . . . < it} ⊆ J1, cK
and J = {j1 < . . . < jt} ⊆ J1, dK, we define the pseudo quantum minor [I | J ] of MC as follows

[I | J ] :=
∑
σ∈St

(−q)`(σ)MC [i1, jσ(1)] · · ·MC [it, jσ(t)].

In the case of a rectangular Young diagram, [12, Theorem 4.4] shows that the quantum minor
[I | J ] of MC is equal to the sum of the weights of all vertex-disjoint R(I,J)-path systems in
Post(C). In the nonrectangular case, we have to take account of the permutation associated
with the vertex disjoint path systems (cf. Lemma 4.15), to obtain the next theorem.

Theorem 4.18 (cf. Theorem 4.4 of [12]). Let I ⊆ J1, cK and J ⊆ J1, dK have the same cardinality
and let σ(I,J) be the permutation of all vertex-disjoint R(I,J)-path systems (see Lemma 4.15). Then
the pseudo quantum minor [I | J ] of MC is given by

[I | J ] = (−q)`(σ(I,J))
∑
P

w(P), (9)

where P runs over all vertex-disjoint R(I,J)-path systems in Post(C). In particular, if there are
no vertex-disjoint R(I,J)-path systems in Post(C), then [I | J ] = 0.

Proof. For ease of notation, let us take I = J = {1, . . . , t} (the proof for general I and J is the
same but the notation is more unwieldy).

By the definition of the path matrix, we have

[I | J ] =
∑
σ∈St

(−q)`(σ)MC [1, σ(1)] · · ·MC [t, σ(t)]

=
∑
σ∈St

(−q)`(σ)

 ∑
P1:r1 =⇒ cσ(1)

w(P1)

 ∑
P2:r2 =⇒ cσ(2)

w(P2)

 · · ·
 ∑
Pt:rt =⇒ cσ(t)

w(Pt)


=
∑
P

(−q)`(σP )w(P),
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where, in the final sum, P runs over all R(I,J)-path systems.
We claim that ∑

P∈N

(−q)`(σP )w(P) = 0. (10)

where N is the set of non-vertex-disjoint (RI , CJ)-path systems.
To show that (10) holds, we construct a fixed-point-free involution π : N → N which satisfies

(−q)`(σP )w(P) = −(−q)`(σπ(P))w(π(P)) (11)

for every P ∈ N .
Let P = (P1, . . . , Pt) ∈ N and let i be minimal such that Pi and Pi+1 share a vertex (this i

exists by Lemma 4.16). Let x be the last vertex shared by Pi and Pi+1 and let K1 : ri =⇒ x and
L1 : x =⇒ cσP (i) be subpaths of Pi so that Pi = K1L1; define K2 and L2 from Pi+1 similarly.
For any j ∈ J1, tK, set

π(Pj) :=


K1L2 j = i

K2L1 j = i+ 1

Pj otherwise

(see Example 4.19 below for an example of the action of π). Define π(P) to be the R(I,J)-path
system (π(P1), . . . , π(Pt)). This gives us a map π : N → N which is clearly an involution
and which clearly has no fixed points. In order to prove (11), we may assume without loss of
generality that σP(i) < σP(i + 1), so that σπ(P) = σP(i i + 1) satisfies `(σπ(P)) = `(σP) + 1.
Notice that because x is the last vertex shared by Pi and Pi+1, the assumption σP(i) < σP(i+ 1)
forces L1 to start with a horizontal edge.

We claim that w(Pi)w(Pi+1) = qw(π(Pi))w(π(Pi+1)). There are two cases to consider:

(i) Suppose that L2 has a horizontal edge. Then

w(Pi)w(Pi+1) = w(K1)w(L1)w(K2)w(L2)

= qw(K1)w(K2)w(L1)w(L2) (Lemma 4.11)

= q2w(K1)w(K2)w(L2)w(L1) (Lemma 4.12)

= q2q−1w(K1)w(L2)w(K2)w(L1) (Lemma 4.11)

= qw(π(Pi))w(π(Pi+1)).

(ii) Suppose that L2 consists of vertical edges. Then w(L2) = 1 and we have

w(Pi)w(Pi+1) = w(K1)w(L1)w(K2)w(L2)

= w(K1)w(L2)w(L1)w(K2)

= qw(K1)w(L2)w(K2)w(L1) (Lemma 4.11)

= qw(π(Pi))w(π(Pi+1)).

Hence we have

w(P) =

(
i−1∏
j=1

w(Pj)

)
w(Pi)w(Pi+1)

(
t∏

j=i+2

w(Pj)

)

=

(
i−1∏
j=1

w(π(Pj))

)
qw(π(Pi))w(π(Pi+1))

(
t∏

j=i+2

w(π(Pj))

)
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= qw(π(P)).

Now

(−q)`(σP )w(P) = (−q)`(σP )qw(π(P))

= −(−q)`(σP )+1w(π(P))

= −(−q)`(σπ(P))w(π(P)),

proving that π : N → N satisfies (11); the claim (10) follows immediately. Moreover, the claim
(10) immediately gives

[I | J ] =
∑
P

(−q)`(σP )w(P),

where P runs over all vertex-disjoint R(I,J)-path systems in Post(C). Lemma 4.15 shows that
σP = σ(I,J) for all such P , giving the result.

Example 4.19. Below left is an example of a non-vertex-disjoint R({1,2},{1,3})-path system P =
(P1, P2) on the Postnikov graph of a Cauchon-Le diagram. Below right is the non-vertex-disjoint
R({1,2},{1,3})-path system π(P) = (π(P1), π(P2)).

•

•

••

•

•

•

•

•

• •

•

• r1

• r2

•c1 •c3

x

P1

P2

P1 marked with straight lines. P2 marked with
dashed lines.

•

•

••

•

•

•

•

•

• •

•

• r1

• r2

•c1 •c3

x

π(P1)

π(P2)

π(P1) marked with straight lines. π(P2) marked with
dashed lines.

Example 4.20. Let c = d = 4, let λ = (4, 3, 3, 1), and let C be the Cauchon-Le diagram on Yλ
from Example 4.7. Below are C and Post(C):

• •

• •

• • •

•

• r1

• r2

• r3

• r4

•c1

•c2 •c3

•c4

t1,4t−1
1,4t1,1

t−1
2,3t2,2 t2,3

t−1
3,2t3,1 t−1

3,3t3,2 t3,3

t4,1
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The only vertex-disjoint R({1,4},{1,4})-path system in Post(C) is that which is marked with
dashed lines above; this path system has weight t1,4t4,1 and has permutation (1, 2) ∈ S2, whose
length is 1. Theorem 4.18 predicts that the pseudo quantum minor [14 | 14] of MC is −qt1,4t4,1.
Computing the pseudo quantum minor [14 |14] of MC directly, we indeed get

[14 | 14] = MC [1, 1]MC [4, 4]− qMC [4, 1]MC [1, 4] = 0− qt4,1t1,4 = −qt1,4t4,1.

There are no vertex-disjoint R({2,3},{1,2})-path systems in Post(C), so that Theorem 4.18 pre-
dicts that the quantum minor [23 | 12] of MC is zero. Computing the quantum minor [23 | 12]
of MC directly, we indeed get

[23 | 12] = MC [2, 1]MC [3, 2]− qMC [3, 1]MC [2, 2]

= (t2,2t
−1
3,2t3,1 + t2,3t

−1
3,3t3,1)(t3,2)− q(t3,1)(t2,3t

−1
3,3t3,2 + t2,2)

= t2,2t
−1
3,2t3,1t3,2 + t2,3t

−1
3,3t3,1t3,2 − qt3,1t2,3t−1

3,3t3,2 − qt3,1t2,2
= qt2,2t3,1 + qt3,1t2,3t

−1
3,3t3,2 − qt3,1t2,3t−1

3,3t3,2 − qt3,1t2,2
= 0.

4.5 Vanishing of pseudo quantum minors of a path matrix

Definition 4.21 (cf. Definition 3.1.7 of [13]). Let v ∈ WC be a vertex of a path P : ri =⇒ cj
in Post(C). Let e be the edge of P which ends at v and let f be the edge of P which begins
at v. Then we say that v is a Γ-turn of P (or that P has a Γ-turn at v) if e is horizontal and
f is vertical and that v is a

Γ

-turn of P (or that P has a

Γ

-turn at v) if e is vertical and f is
horizontal.

Proposition 4.22 (cf. Proposition 3.1.8 of [13]). Let P : ri =⇒ cj be a path in Post(C). If
v1, v2, . . . , vs is the sequence of all Γ-turns and

Γ

-turns in P, then va is a Γ-turn for odd values
of a and a

Γ

-turn for even values of a, s is odd, and

w(P) = tv1t
−1
v2
tv3 · · · t−1

vs−1
tvs .

Proof. It is clear that va is a Γ-turn for a odd and a

Γ

-turn for a even. Since P ends with a
vertical edge, s must be odd. Consider the subpaths:

P1 : ri =⇒ v1, P2 : v1 =⇒ v2, . . . , Ps : vs−1 =⇒ vs, Ps+1 : vs =⇒ cj

of P . For a ∈ J1, s+ 1K even (that is for a = 2, 4, . . . , s− 1, s+ 1), the path Pa consists solely of
vertical edges and hence w(Pa) = 1. It follows that

w(P) = w(P1)w(P2) · · ·w(Ps)w(Ps+1)

= w(P1)w(P3) · · ·w(Ps−2)w(Ps)

= tv1w(P3) · · ·w(Ps−2)w(Ps) (by Proposition 4.8(4)).

However, P3, . . . Ps−2, Ps are internal horizontal paths in Post(C) and their respective weights
are t−1

v2
tv3 , . . . , t

−1
vs−3

tvs−2 , t
−1
vs−1

tvs by Proposition 4.8(3). The result follows.

Notation 4.23. Let M be any c× d matrix with entries from Z. Then tM denotes the element∏
(i,j)∈WC

t
M [i,j]
i,j , where the factors appear in lexicographical order.

Theorem 4.24 (cf. Theorem 4.1.9 of [13]). Let I ⊆ J1, cK and J ⊆ J1, dK have the same
cardinality. Then the pseudo quantum minor [I | J ] of MC is zero if and only if there does not
exist a vertex-disjoint R(I,J)-path system in Post(C).

32



Proof. For ease of notation, let us take I = J = {1, . . . , t} (the proof for general I and J is the
same but notationally more unwieldy).

By Proposition 4.22, the weight of any vertex-disjoint R(I,J)-path system P is equal to qαtMP

for some integer α, where the c× d matrix MP = (MP [i, j]) is defined as follows:

MP [i, j] =


1 if there is a path in P with a Γ-turn at (i, j);

−1 if there is a path in P with a

Γ

-turn at (i, j);

0 otherwise.

Let P = (P1, . . . , Pt) and Q = (Q1, . . . , Qt) be vertex-disjoint R(I,J)-path systems satisfying
MP = MQ. Fix any i ∈ J1, tK and let (i, `) be the first vertex where Pi turns and (i, `′) be the
first vertex where Qi turns. Suppose that `′ > `, so that Pi goes horizontally straight through
(i, `′) and in particular, (i, `′) is a vertex of Pi but neither a Γ-turn nor a

Γ

-turn of Pi. However,
since (i, `′) is a Γ-turn of Qi and MP = MQ, there must be a path P 6= Pi in P which has a
Γ-turn at (i, `′), which is a contradiction since P is a vertex-disjoint path system. Hence `′ ≯ `.
A similar argument shows that ` ≯ `′, so that ` = `′; that is, the first turning vertices of Pi
and Qi coincide. A similar argument can be applied to the remaining turning vertices (if any)
of Pi and Qi to show that Pi and Qi have the same turning vertices and hence Pi = Qi. Since
i ∈ J1, tK was chosen arbitrarily, we conclude that P = Q.

We have shown that if P = (P1, . . . , Pt) and Q = (Q1, . . . , Qt) are distinct vertex-disjoint
R(I,J)-path systems, then MP 6= MQ and hence MP [i, j] 6= MQ[i, j] for some (i, j) ∈ WC .

It follows easily that if there exists at least one vertex-disjoint R(I,J)-path system in Post(C)
then [I | J ] is a nontrivial linear combination of pairwise distinct lex-ordered monomials in the
t±1
i,j where (i, j) ∈ WC and hence [I |J ] 6= 0, because the lex-ordered monomials in the t±1

i,j with
(i, j) ∈ WC form a basis for the quantum torus associated with C. Theorem 4.18 gives the
converse.

5 H-primes in partition subalgebras: membership

The aim of this section is to give a characterisation of those pseudo quantum minors that belong
to an H-prime in a partition subalgebra. To achieve this aim, we will use the parametisation
of H-primes by Cauchon-Le diagrams through the deleting derivations algorithm for partition
subalgebras.

Throughout this section we assume that q ∈ K∗ is not a root of unity.

5.1 Partition subalgebras as QNAs

Let λ = {λ1 ≥ λ2 ≥ · · · ≥ λm} be a partition with associated Young diagram Yλ and n ≥ λ1.
Recall that Oq(Yλ(K)) is the K-subalgebra of Oq(Mm,n(K)) generated by those xij that fit into
the Young diagram for λ. The partition subalgebra Oq(Yλ(K)) can be presented as a QNA with
the variables xij added in lexicographic order, and with the torusH acting via restriction from the
action on Oq(Mm,n(K)). More precisely, adding the generators xi,j ((i, j) ∈ Yλ) in lexicographical
order, we may write the partition subalgebra Oq(Yλ(K)) as an iterated Ore extension

Oq(Yλ(K)) = K[x1,1] · · · [xi,j;σi,j, δi,j] · · · [xm,λm ;σm,λm , δm,λm ], (12)

where for each (a, b) ∈ Yλ, the automorphism σa,b and the left σa,b-derivation δa,b are defined
such that for each (i, j) ∈ Yλ satisfying (i, j) <lex (a, b), we have

σa,b(xi,j) =

{
q−1xi,j if i = a or j = b

xi,j otherwise
(13)
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and

δa,b(xi,j) =

{
(q−1 − q)xi,bxa,j i < a and j < b

0 otherwise.
(14)

It is easy to check thatOq(Yλ(K)) is a QNA for this presentation as an iterated Ore extension (and
torus H = (K∗)m+n acting via restriction from the action on Oq(Mm,n(K))). As a consequence,
Cauchon’s deleting derivations theory applies to the QNA Oq(Yλ(K)). We make explicit the
results of Section 3.2 in the context of partition subalgebras in the next sections.

5.2 Deleting derivations algorithm for partition subalgebras

Set Eλ = (Yλ \ {(1, 1)}) t {(m,λm + 1)}. For (a, b) ∈ Yλ, let (a, b)+ be the smallest (with
respect to the lexicographical order) element of Eλ satisfying (a, b)+ >lex (a, b). Clearly (1, 1)+

and (m,λm + 1) are respectively the smallest and largest elements of Eλ with respect to the
lexicographical order. Moreover Eλ = {(a, b)+ | (a, b) ∈ Yλ}. For (a, b) ∈ Eλ, let (a, b)− be the
largest (with respect to the lexicographical order) element of Yλ satisfying (a, b)− <lex (a, b).

With this notation, the deleting derivations algorithm constructs, for each (a, b) ∈ Eλ, a family

{x(a,b)
1,1 , . . . , x

(a,b)
m,λm
} of elements of Frac(Oq(Yλ(K))) defined as follows:

1. x
(m,λm+1)
i,j := xi,j for all (i, j) ∈ Yλ;

2. Assume that (a, b) 6= (m,λm + 1). Then x
(a,b)+

a,b 6= 0 and

x
(a,b)
i,j :=


+∞∑
n=0

(1− qa,b)−n

[n]!qa,b
δna,b ◦ σ−na,b (x

(a,b)+

i,j )(x
(a,b)+

a,b )−n if (i, j) <lex (a, b);

x
(a,b)+

i,j if (i, j) ≥lex (a, b),

that is

x
(a,b)
i,j :=

{
x

(a,b)+

i,j − x(a,b)+

i,b (x
(a,b)+

a,b )−1x
(a,b)+

a,j if i < a and j < b;

x
(a,b)+

i,j otherwise.
(15)

As usual, for all (a, b) ∈ Eλ, Oq(Yλ(K))(a,b) denotes the subalgebra of Frac(Oq(Yλ(K))) gener-

ated by the x
(a,b)
i,j with (i, j) ∈ Yλ. Moreover, we set ti,j := x

(1,2)
i,j . Recall that the subalgebra

Oq(Yλ(K)) = Oq(Yλ(K))(1,2) of Frac(Oq(Yλ(K))) generated by the ti,j with (i, j) ∈ Yλ is a quan-
tum affine space in the ti,j, and ti,j and tk,l commute unless (i, j) and (k, l) are in the same row
or column (that is, unless (k, l) is West or North of (i, j)), in which case ti,jtk,l = q−1tk,lti,j.

5.3 Canonical embedding and H-primes

By [15, Section 4.3] (see also Section 3.2), for each (a, b) ∈ Eλ \{(c, λc+1)}, there is an injection

ϕa,b : Spec(Oq(Yλ(K))(a,b)+)→ Spec(Oq(Yλ(K))(a,b)).

We shall not describe again the construction of this injection but we shall recall some of its useful
properties.

Let (a, b) ∈ Eλ \ {(m,λm + 1)} and let Q be a prime ideal of Oq(Yλ(K))(a,b)+ . The Lemmas
[15, Lemme 5.3.1 and Lemme 5.3.2] give isomorphisms

Frac(Oq(Yλ(K))(a,b)+/Q)
∼=−→ Frac(Oq(Yλ(K))(a,b)/ϕa,b(Q)). (16)
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Fix a prime ideal P of Oq(Yλ(K)). For each (a, b) ∈ Eλ, set P (a,b) = ϕa,b ◦ · · · ◦ ϕm,λm(P ) ∈
Spec(Oq(Yλ(K))(a,b)) (which gives P (m,λm+1) = P ) and for each (i, j) ∈ Yλ, let χ

(a,b)
i,j be the

canonical image of x
(a,b)
i,j in Oq(Yλ(K))(a,b)/P (a,b). Let us denote by G the total ring of fractions

ofOq(Yλ(K))/P (which is a division ring since all prime ideals ofOq(Yλ(K)) are completely prime)
and by varying (a, b) over Eλ\{(m,λm+1)} and Q over P (1,1)+ , . . . , P (m,λm+1) in the isomorphism
(16), let us identify the total ring of fractions of each noetherian domain Oq(Yλ(K))(a,b)/P (a,b)

((a, b) ∈ Eλ) with G.
Some immediate consequences of this setup (noted in [15, Proposition 5.4.1]) are that for each

(a, b) ∈ Eλ,

• Oq(Yλ(K))(a,b)/P (a,b) is the subalgebra of G generated by (χ
(a,b)
i,j )(i,j)∈Yλ ;

• there is a morphism of algebras fa,b : Oq(Yλ(K))(a,b) → G which sends each x
(a,b)
i,j ((i, j) ∈

Yλ) to χ
(a,b)
i,j ;

• the kernel of fa,b is P (a,b) and its image is Oq(Yλ(K))(a,b)/P (a,b).

Suppose that (a, b) ∈ Eλ \ {(m,λm + 1)}. By [15, Proposition 5.4.2], we may construct the

generators χ
(a,b)
i,j ((i, j) ∈ Yλ) of the algebra Oq(Yλ(K))(a,b)/P (a,b) from the generators χ

(a,b)+

i,j

((i, j) ∈ Yλ) of the algebra Oq(Yλ(K))(a,b)+/P (a,b)+ as follows:

Lemma 5.1. Suppose that (a, b) ∈ Eλ \ {(m,λm + 1)}. Then for all (i, j) ∈ Yλ, we have

χ
(a,b)+

i,j =

{
χ

(a,b)
i,j + χ

(a,b)
i,b (χ

(1,1)+

a,b )−1χ
(1,1)+

a,j if i < a, j < b, and χ
(1,1)+

a,b 6= 0;

χ
(a,b)
i,j otherwise.

5.4 Cauchon-Le diagrams in Oq(Yλ(K))

Let us now assume that P is not just a prime ideal but an H-prime ideal of Oq(Yλ(K)).
The canonical embedding ϕ : Spec(Oq(Yλ(K))) → Spec(Oq(Yλ(K))(1,1)+) is defined by ϕ =

ϕ(1,1)+ ◦ · · · ◦ ϕm,λm (see [15] or Section 3.2). By the results of Cauchon described in Section 3.2

the action of H on Oq(Yλ(K)) induces an action of H on the quantum affine space Oq(Yλ(K)) =

Oq(Yλ(K))(1,1)+ such that ϕ sends P to an H-prime ideal ϕ(P ) (= P (1,1)+) of Oq(Yλ(K)) and
ϕ(P ) is generated by {ti,j | (i, j) ∈ B} for some subset B of Yλ. In the terminology of Section
3.2, B is a Cauchon diagram for the QNA Oq(Yλ(K)).

As mentioned at the end of Section 3.2, we modify the visual presentation of Cauchon diagrams
as defined in Section 3.2 to take advantage of the Young diagram that is intrinsic to the partition
subalgebra Oq(Yλ(K)). More precisely, we colour the squares of the Young diagram Yλ in the
following way: for (i, j) ∈ Yλ, if (i, j) ∈ B, then assign colour black to the square of Yλ in the
(i, j)-position and if (i, j) /∈ B, then assign colour white to the square of Yλ in the (i, j)-position;
call the resulting diagram C. By [41, Theorem 3.5], the diagram C is a Cauchon-Le diagram
(see Subsection 4.1) and all Cauchon-Le diagrams on Yλ arise from H-prime ideals of Oq(Yλ(K))
in this way, giving us a one-to-one correspondence

H− SpecOq(Yλ(K))←→ Cauchon-Le diagrams on the Young diagram Yλ. (17)

Recall that WC denotes the set of white boxes of the Cauchon-Le diagram C.
As we have identified the division ring G = Frac(Oq(Yλ(K))/P ) with the total ring of fractions

of each noetherian domain Oq(Yλ(K))(a,b)/P (a,b) ((a, b) ∈ Eλ), we have in particular identified G
with the total ring of fractions of the quantum affine space

Oq(Yλ(K))(1,1)+/ϕ(P ). (18)
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For (i, j) ∈ Yλ, let ti,j denote the canonical image of ti,j in the algebra (18), so that ti,j = χ
(1,1)+

i,j

and we may realise G as the total ring of fractions of the uniparameter quantum torus TC which
is generated by {t±1

i,j | (i, j) ∈ WC} with relations

ti,jti,l = qti,lti,j if (i, j), (i, l) ∈ WC and j < l;
ti,jtk,j = qtk,jti,j if (i, j), (k, j) ∈ WC and i < k;
ti,jtk,l = tk,lti,j if (i, j), (k, l) ∈ WC , k 6= i, and j 6= l;

ti,jt
−1
i,j = 1 if (i, j) ∈ WC .

(19)

The following result allows us to express the χ
(a,b)+

i,j in terms of the χ
(a,b)
k,l .

Corollary 5.2. For all (a, b) ∈ Eλ \ {(m,λm + 1)} and all (i, j) ∈ Yλ, we have

χ
(a,b)+

i,j =

{
χ

(a,b)
i,j + χ

(a,b)
i,b t

−1
a,bta,j if i < a, j < b, and (a, b) ∈ WC;

χ
(a,b)
i,j otherwise.

Proof. Since χ
(1,1)+

a,b = ta,b is nonzero if and only if (a, b) ∈ WC and since χ
(1,1)+

a,j = ta,j, this result
is an immediate consequence of Lemma 5.1.

5.5 Pseudo quantum minors belonging to an H-primes in Oq(Yλ(K))

Let P be an H-prime ideal of the partition subalgebra Oq(Yλ(K)) corresponding to a Cauchon-Le
diagram C on the Young diagram Yλ and let I ⊆ J1,mK and J ⊆ J1, nK have the same cardinality.
As in Section 4.4, we denote by MC the path matrix associated to C.

Theorem 5.3 (cf. Lemma 5.4 of [12]). For each (i, j) ∈ Yλ, MC [i, j] is the canonical image in

Oq(Yλ(K))/P of xi,j, namely MC [i, j] = χ
(m,λm+1)
i,j . For each (i, j) ∈ J1,mK× J1, nK \Yλ, MC [i, j]

is zero.

Proof. It is obvious that MC [i, j] is zero for each (i, j) ∈ J1,mK × J1, nK \ Yλ; so for the rest of
this proof all boxes shall be in Yλ.

For any (a, b), (i, j) ∈ Yλ, let us define M
(a,b)
C [i, j] to be the sum of the weights of all paths

P : ri =⇒ cj in Post(C) which have no

Γ

-turn after (a, b) with respect to the lexicographical
order (that is, whose

Γ

-turns v all satisfy v ≤lex (a, b)). It will suffice to show that for any
(a, b), (i, j) ∈ Yλ, we have

M
(a,b)
C [i, j] = χ

(a,b)+

i,j ; (20)

setting (a, b) = (m,λm) in (20) gives the result. We prove the claim (20) by induction on (a, b).
If (i, j) ∈ BC , then there is no path P : ri =⇒ cj in Post(C) which has no

Γ

-turn after (1, 1)

and we have M (1,1)[i, j] = 0 = ti,j = χ
(1,1)+

i,j . If (i, j) ∈ WC , then the only path in Post(C) from
ri to cj which has no

Γ

-turn after (1, 1) is the path which runs horizontally from ri to (i, j) and

then vertically from (i, j) to cj; this path has weight ti,j = χ
(1,1)+

i,j by Proposition 4.8(4), so that

M (1,1)[i, j] = χ
(1,1)+

i,j .
Let (a, b) ∈ Eλ \ {(m,λm + 1)} be such that

M
(a,b)−

C [i, j] = χ
(a,b)
i,j (21)

for all (i, j) ∈ Yλ. For any (i, j) ∈ Yλ, let us define Fi,j to be the set of all paths in Post(C) from
ri to cj which have a

Γ

-turn at (a, b) and no later

Γ

-turn; it will suffice to show that for each

(i, j) ∈ Yλ, χ(a,b)+

i,j is obtained from χ
(a,b)
i,j by adding

∑
P∈Fi,j w(P ).
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We may assume that i < a, j < b, and (a, b) ∈ WC (since otherwise Fi,j is empty and Corollary

5.2 gives χ
(a,b)+

i,j = χ
(a,b)
i,j ). By Corollary 5.2, we have χ

(a,b)+

i,j = χ
(a,b)
i,j + χ

(a,b)
i,b t

−1
a,bta,j, so that it will

suffice to show that ∑
P∈Fi,j

w(P ) = χ
(a,b)
i,b t

−1
a,bta,j. (22)

There are two cases to consider:

(a) Suppose that (a, j) ∈ BC . Then Fi,j is empty and ta,j = 0; (22) follows immediately.

(b) Suppose that (a, j) ∈ WC .

Let Fi be the set of all paths in Post(C) from ri to cb which have no

Γ

-turn after (a, b)− =

(a, b−1), so that
∑

Q∈Fi w(Q) = M
(a,b)−

C [i, b] and hence
∑

Q∈Fi w(Q) = χ
(a,b)
i,b by the induction

hypothesis (21). Let the path Kj : (a, b) =⇒ cj be given by concatenating the horizontal
path (a, b) =⇒ (a, j) with the vertical path (a, j) =⇒ cj. Proposition 4.8(3) gives

w(Kj) = t
−1
a,bta,j. Let Lb be the vertical path from (a, b) to cb. For any path P ∈ Fi,j, the

subpath P ′ : ri =⇒ (a, b) of P is such that P = P ′Kj, P
′Lb ∈ Fi, and w(P ′Lb) = w(P ′).

Notice that each path in Fi has the form P ′Lb for a unique path P ∈ Fi,j.
We have ∑

P∈Fi,j

w(P ) =
∑
P∈Fi,j

w(P ′)w(Kj)

=

 ∑
P∈Fi,j

w(P ′Lb)

w(Kj)

=

(∑
Q∈Fi

w(Q)

)
w(Kj)

= χ
(a,b)
i,b w(Kj)

= χ
(a,b)
i,b t

−1
a,bta,j,

establishing (22).

The proof is complete.

As an immediate corollary of Theorems 4.24 and 5.3, we get the main result of this section,
which is a generalisation of the main result of [12]:

Theorem 5.4 (cf. Theorem 5.6 of [12]). Assume that q ∈ K∗ is not a root of unity. Let P be
an H-prime ideal of the partition subalgebra Oq(Yλ(K)) corresponding to a Cauchon-Le diagram
C on the Young diagram Yλ and let I ⊆ J1,mK and J ⊆ J1, nK have the same cardinality. Then
the pseudo quantum minor [I | J ] of Oq(Yλ(K)) belongs to P if and only if there exists no
vertex-disjoint R(I,J)-path system in the Postnikov graph Post(C) of C.

6 Primes in Oq(Mm,n(R)) from Cauchon-Le diagrams

In Section 9, we will use Theorem 5.4 together with noncommutative dehomogenisation to iden-
tify the quantum Plücker coordinates that are contained in an H-prime P of Oq(Gmn(K)).
However, we would like to show that these quantum Plücker coordinates generate P as an ideal.
This is a known result in the classical (commutative) case and our strategy is to pull back the

37



result from the classical case by using the technique developed in [23]. In order to do this, we
need to work with q transcendental over a base field K and with R := K[q±1] as the base ring so
that we can “set q = 1”.

With this in mind, we need to re-develop some of the theory of the earlier sections for partition
subalgebras of Oq(Mm,n(R)). In this section, we focus on the case of Oq(Mm,n(R)).

Let F = K(q) be the field of fractions of R. In this section, we start by considering certain
prime ideals in Oq(Mm,n(R)). We need to be careful here, as H = (F∗)m+n does not act on
Oq(Mm,n(R)); so it does not make sense to refer to H-prime ideals of Oq(Mm,n(R)). Instead, we
proceed as follows. Let Π denote the set of all quantum minors of Oq(Mm,n(R)). Let C be a
Cauchon-Le diagram on an m× n array. Let ΠC be the set of quantum minors [I | J ] such that
there are no vertex disjoint R(I,J)-path systems in Post(C), and let 〈ΠC〉R denote the ideal of
Oq(Mm,n(R)) generated by ΠC . The aim is to show that 〈ΠC〉R is a completely prime ideal of
Oq(Mm,n(R)). When the base ring is a field, Casteels, [12], has shown that ΠC is a generating
set for P , the H-prime ideal corresponding to the Cauchon-Le diagram C. In fact, in [13], he
goes further and shows that ΠC is a Gröbner basis for P either as a left ideal or as a right ideal.
As this is a crucial result for us, we state his theorem below.

Notation 6.1. If If M = (Mi,j) ∈Mm,n(Z≥0), then we set:

xM = x
M1,1

1,1 x
M1,2

1,2 · · ·xMm,n
m,n ,

where the indices are in the lexicographic order, from the smallest to the largest when one goes
from left to right. Such a monomial is called a lexicographic monomial.

Note that lexicographic monomials form a R-basis (resp. F-basis) of Oq(Mm,n(R)) (resp.
Oq(Mm,n(F))). This basis is referred to as the PBW basis of Oq(Mm,n(R)) (resp. Oq(Mm,n(F))),
and the expression of an element a ∈ Oq(Mm,n(R)) (resp. a ∈ Oq(Mm,n(F))) in this basis is
called the lexicographic expression of a.

For details about Gröbner bases, see either [13], or [11].
In this section, by a symbol q•, we mean some power of q with exponent in Z.

6.1 Matrix lexicographic order and lexicographic expression

In order to discuss Gröbner bases, one first has to choose an ordering on the generators of an
algebra. We give the generators xij of Oq(Mm,n(R)), or Oq(Mm,n(F)), the matrix lexicographic
order as defined below.

Definition 6.2. The matrix lexicographic order ≺ on m × n matrices with integer coefficients
is defined as follows. If M 6= N ∈Mm,n(Z), let (k, `) be the least coordinate in which M and N
differ. Then we set

M ≺ N ⇔ (M)k,` < (N)k,`.

If M ≺ N are both in Mm,n(Z≥0), then the matrix lexicographic order induces a total order
(that we also call matrix lexicographic) on the lexicographic monomials of Oq(Mm,n(R)) and
Oq(Mm,n(F)) by setting

xM ≺ xN ⇔M ≺ N.

On the generators, under the matrix lexicographic order, we have

xi,j ≺ xk,` ⇔ (i, j) > (k, `);
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so that, for example, in quantum 2× 2 matrices x22 ≺ x21 ≺ x12 ≺ x11.

For a given element a, the leading monomial, LM(a) is the monomial xN that is the greatest
monomial in the ≺ order that occurs with a nonzero coefficient. The leading exponent, LE(a) is
N where LM(a) = xN . If xW is any other monomial that occurs with a nonzero coefficient in
the expression of a in the PBW basis then we know that W ≺ N . For example the quantum
minor [12|12] = x11x22 − qx12x21 has leading monomial x11x22. More generally, let I = {i1 <
· · · < it} ∈ {1, . . . ,m} and J = {j1 < · · · < jt} ∈ {1, . . . , n}. Then Casteels prove [13, Lemma
4.2.8] that the leading monomial of the quantum minor [I | J ] of Oq(Mm,n(F)) is given by:

LM([I | J ]) = xi1,j1 · xi2,j2 · · · xit,jt .

In particular, observe that

[I | J ] = LM([I | J ]) + smaller terms,

that is the coefficients of the leading monomial of a quantum minor is always equal to 1.
If i < k and j < ` then

xk,`xi,j = xi,jxk,` − (q − q−1)xi,`xk,j.

On the other hand, we also have
xi,`xk,j ≺ xi,jxk,`.

By repeated application of this fact and the other relations for Oq(Mn(R)), we obtain the
following, which is a special case of the more general [11, Chapter 2, Proposition 2.4], although
there the authors are working over a field.

Proposition 6.3. For M,N ∈Mm,n(Z≥0), the lexicographic expression of xMxN in Oq(Mn(R))
is

xMxN = q•xM+N +
∑

L∈Mm,n(Z≥0)

αLx
L, (23)

where αL ∈ Z[q±1] and for every αL 6= 0, one has L ≺M +N .

Proof. For this proof, note the following easy properties of ≺ for any A,B,C ∈Mm,p(Z≥0).

• A ≺ A+B;

• A ≺ B =⇒ A+ C ≺ B + C.

One can show easily by induction on the matrix lexicographic order of M that it is enough to
prove (23) when M is elementary, that is, when M = Ea,b, where Ea,b ∈ Mm,n(Z≥0) has all its
entries equal to zero, except its (a, b)-entry which is equal to 1. Indeed (23) clearly holds when
M = 0. Suppose that the first nonzero entry of M is Mi,j and set M ′ = M − Ei,j ≺M . Then

xMxN = xi,jx
M ′xN

= xi,j

(
q•xM

′+N +
∑

L≺M ′+N

αLx
L

)
,

where the latter equality holds by the induction hypothesis; the assumption that (23) holds when
M is elementary now allows us to conclude.

So let us assume from now on that M is elementary; let M = Ea,b. We proceed by induction
on the matrix lex order of N (the result clearly holds when N = 0). Let Ni,j be the first nonzero
entry of N and set N ′ = N − Ei,j ≺ N . We may assume that (i, j) < (a, b) as otherwise the
result is trivial. There are two cases to consider:
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Case 1: i = a or (i < a and b ≥ j).

xMxN = xa,bxi,jx
N ′

= q•xi,j(xa,bx
N ′)

= q•xi,j

q•xN ′+Ea,b +
∑

L≺N ′+Ea,b

αLx
L

 (by the induction hypothesis)

Using the induction hypothesis again, we may settle Case 1.
Case 2: i < a and j < b.

xMxN = xa,bxi,jx
N ′

= xi,jxa,bx
N ′ + (q−1 − q)xi,bxa,jxN

′

= xi,j

q•xN ′+Ea,b +
∑

L≺N ′+Ea,b

αLx
L

+ (q−1 − q)xi,b

xN
′+Ea,j +

∑
L≺N ′+Ea,j

αLx
L


(by the induction hypothesis)

Using the induction hypothesis again, we may settle Case 2.

Definition 6.4. Let M,N ∈ Mm,n(Z≥0). We say that xM occurs in xN if (M)i,j ≤ (N)i,j for
all (i, j) ∈ J1,mK× J1, nK.

As a consequence of Proposition 6.3, we obtain the below result. It is similar to [13, Corollary
4.2.4], but the extra information on the coefficients will be crucial in the next section.

Corollary 6.5. Let M,N ∈Mm,n(Z≥0). If xM occurs in xN , then there exist matrices L ≺ N ,
and αL ∈ Z[q±1] such that

xN = q•xN−MxM +
∑
L

αLx
L.

with L ≺ N for each L such that αL 6= 0.

6.2 Gröbner bases and completely prime ideals of Oq(Mm,n(R))

Let J be a right (resp. left) ideal of Oq(Mm,n(F)). Recall (see for instance [13, Definition 4.2.7])
that G = {g1, . . . , gt} ∈ J is a Gröbner basis for J if for all a ∈ J , there exists gi ∈ G such that
LM(gj) occurs in LM(a). While it is not a requirement of the definition, as in the commutative
setting, it is easy to show that G is indeed a basis of the right (resp. left) ideal J .

We can now state Casteels’ result.

Theorem 6.6. [13, Theorem 4.4.1] Let C be a Cauchon-Le diagram on an m× n array and let
ΠC be the set of quantum minors [I | J ] such that there are no vertex disjoint R(I,J)-path systems
in Post(C). Then 〈ΠC〉F is a completely prime ideal of Oq(Mm,n(F)) and ΠC is a Gröbner basis
for 〈ΠC〉F considered either as a left ideal or as a right ideal.

Proof. This is the case t = mn in [13, Theorem 4.4.1].

We will use this result to show that 〈ΠC〉R is a completely prime ideal of Oq(Mm,n(R)).
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Theorem 6.7. Let C be an m×n Cauchon-Le diagram and let ΠC be the set of quantum minors
[I | J ] such that there are no vertex disjoint R(I,J)-path systems in Post(C). Let ICR denote the
left ideal of Oq(Mm,n(R)) generated by ΠC. Then

ICR = 〈ΠC〉F ∩ Oq(Mm,n(R)).

Proof. It is obvious that ICR ⊆ 〈ΠC〉F∩Oq(Mm,n(R)); so we need to show that 〈ΠC〉F∩Oq(Mm,n(R)) ⊆
ICR .

Suppose that 〈ΠC〉F∩Oq(Mm,n(R)) 6⊆ ICR . We will derive a contradiction from this assumption.

Set S := 〈ΠC〉F ∩Oq(Mm,n(R))\ICR , a nonempty set by assumption. Choose a ∈ S with small-
est possible leading monomial LM(a).

We know that 〈ΠC〉F is generated by ΠC as a left ideal of Oq(Mm,n(F)); so we may write

a =
t∑

`=1

bI`x
I` =

s∑
`=1

cl∆`

with I` ∈Mm,n(Z≥0), 0 6= bI` ∈ K[q±1] and 0 6= c` ∈ Oq(Mm,n(F)) for all ` ∈ {1, . . . , t}, and with
∆` ∈ ΠC for all ` ∈ {1, . . . , s}. Note that each ∆` ∈ ICR and let us emphasise that bI` ∈ K[q±1]
as this will be crucial later in the proof.

As ΠC is a Gröbner basis for 〈ΠC〉F as a left ideal of Oq(Mm,n(F)), the previous equality implies
that there exists ` ∈ {1, . . . , t} such that LM(∆`) occurs in LM(a). Without loss of generality,
assume that ` = 1 and that LM(a) = xI1 . Suppose that LM(∆1) = xM . Write ∆1 = xM + u
and note that LM(u) ≺ xM .

By Corollary 6.5, we can write

xI1 = q•xI1−MxM +
∑
L≺I1

αLx
L

= q•xI1−M∆1 − q•xI1−Mu+
∑
L≺I1

αLx
L

We use this expression for xI1 in the PBW expression for a to obtain

a = bI1x
I1 +

t∑
`=2

bI`x
I`

= bI1q
•xI1−M∆1 − bI1q•xI1−Mu+

∑
L≺I1

αLx
L

If −bI1q•xI1−Mu +
∑

L≺I1 αLx
L = 0 then a = bI1q

•xI1−M∆1 is in ICR (here, we are using our
previous observation that bI1 ∈ K[q±1]), contradicting our assumption that a ∈ S.

Hence, we may assume that

0 6= −bI1q•xI1−Mu+
∑
L≺I1

αLx
L = a− bI1q•xI1−M∆1. (24)

So a′ := a− bI1q•xI1−M∆1 is a nonzero element of S (since a ∈ S and bI1q
•xI1−M∆1 ∈ ICR ).
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On the other hand, note that

LM(−bI1q•xI1−Mu) = LM(xI1−M)LM(u) ≺ LM(xI1−M)LM(xM) = LM(xI1).

Having noticed this, inspection of the left hand side of Equation (24) above reveals that

LM(a′) = LM(−bI1q•xI1−Mu+
∑
L≺I1

αLx
L) ≺ LM(a),

a contradiction to the choice of a having least leading monomial among members of S. Hence,
ICR = 〈ΠC〉F ∩ Oq(Mm,n(R)), as required.

An immediate corollary of this result is that the ideal 〈ΠC〉R is a completely prime ideal of
Oq(Mm,n(R)).

Corollary 6.8. The ideal 〈ΠC〉R is a completely prime ideal of Oq(Mm,n(R)) that is generated
by ΠC as a left ideal and as a right ideal.

Proof. As ICR = 〈ΠC〉F ∩ Oq(Mm,n(R)), by the previous result, we see that ICR is a two-sided
ideal and is also completely prime, because 〈ΠC〉F is a completely prime ideal of Oq(Mm,n(F)).
Now, ΠC ⊆ ICR and this forces 〈ΠC〉R ⊆ ICR ⊆ 〈ΠC〉R. Hence, ICR = 〈ΠC〉R; and so 〈ΠC〉R
is a completely prime ideal that is generated by ΠC as a left ideal of Oq(Mm,n(R)). In the
previous theorem, we could have chosen to use right ideals rather than left ideals; so 〈ΠC〉R is
also generated by ΠC as a right ideal of Oq(Mm,n(R)).

7 H-primes in partition subalgebras: generation

Let F be a field containing a non root of unity q and let R be any subring of F containing q and
q−1.

Let λ = {λ1 ≥ λ2 ≥ · · · ≥ λm} (λ1 ≤ n) be a partition with associated Young diagram Yλ and
consider the partition subalgebras Oq(Yλ(R)) and Oq(Yλ(F)) of Oq(Mm,n(R)) and Oq(Mm,n(F))
respectively. The partition subalgebra Oq(Yλ(F)) can be presented as a QNA extension in many
ways. In fact, it is straightforward to check that a QNA presentation is associated with any
ordering of the variables xij which satisfies the following property: suppose that i < j and k < l,
then xjl should be later in the ordering than xik, xil and xjk. A specific such ordering would
be the lexicographic ordering; however, for some partition subalgebras, we also need another
ordering which we now describe.

Suppose that Oq(Yλ(F)) is a proper partition subalgebra of Oq(Mm,n(F)) and notice that this
forces the partition λ = (λ1, . . . , λm) to satisfy λm < n. Let us choose the QNA presentation of
Oq(Yλ(F)) with the variables xij ordered lexicographically.

Choose u to be minimal such that λu < n, set v = λu + 1, and consider the partition λ′ :=
(λ1, . . . , λu−1, v, λu+1, . . . , λm). Set z = xuv ∈ Oq(Yλ′(F)). The following picture illustrates the
idea (for m = n = 5).

z
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We obtain a QNA presentation for Oq(Yλ′(F)) by using the variables for Oq(Yλ(F)) in the
(lexicographical) order already chosen, together with z = xuv as the final variable in the ordering.
More precisely:

Lemma 7.1. There is an automorphism σ of Oq(Yλ(F)) and a left σ-derivation δ of Oq(Yλ(F))
such that

σ(xa,b) =

{
q−1xa,b if a = u or b = v;

xa,b otherwise,

δ(xa,b) =

{
(q−1 − q)xa,vxu,b if a < u and b < v;

0 otherwise,

and there is a QNA presentation for Oq(Yλ′(F)) given by

Oq(Yλ′(F)) = Oq(Yλ(F))[z;σ, δ]. (25)

We shall later rely on the following proposition, which essentially says that this nonstandard
QNA expression for Oq(Yλ′(F)) does not affect its Cauchon diagrams (Cauchon diagrams in the
sense of Section 3.4). First we introduce some new notation. Let G be any division ring and let
{yi,j}(i,j)∈Y be a collection of elements of G indexed by the boxes of a Young diagram Y . For

any (a, b) ∈ Y , define the collection {y〈a,b〉i,j }(i,j)∈Y of elements of G by:

y
〈a,b〉
i,j =

{
yi,j − yi,by−1

a,bya,j i < a, j < b, ya,b 6= 0

yi,j otherwise.
(26)

Set Y := Yλ′ (and assume for ease of notation that this Young diagram is not just a column, so
that (1, 1)+ = (1, 2)), G := Oq(Yλ′(F))/J for some H-prime ideal J , and yi,j := xi,j + J ∈ G.
Then by [15, Proposition 5.4.2],

• with respect to the usual QNA structure ofOq(Yλ′(F)), we have x
(1,2)
i,j +J (1,2) =

(
(y
〈m,λm〉
i,j )

···)〈1,2〉
for all (i, j) ∈ Y , where 〈m,λm〉 → 〈1, 2〉 proceeds backwards along the boxes of the Young
diagram Y = Yλ′ ;

• with respect to the alternative QNA structure of Oq(Yλ′(F)) (see (25)), we have x
(1,2)
i,j +

J (1,2) =

(
(y
〈u,v〉
i,j )

〈m,λm〉···
)〈1,2〉

for all (i, j) ∈ Y , where 〈m,λm〉 → 〈1, 2〉 proceeds backwards

along the boxes of the Young diagram Yλ.

So if we can show that
(

(y
〈m,λm〉
i,j )

···)〈1,2〉
=

(
(y
〈u,v〉
i,j )

〈m,λm〉···
)〈1,2〉

for all (i, j) ∈ Y , then for both

QNA expressions, the Cauchon diagrams for J (in the sense of Section 3.4; that is, those (i, j)

such that x
(1,2)
i,j ∈ J (1,2)) must coincide; this is the purpose of the following lemma.

Lemma 7.2. Let G be any division ring and let {yi,j}(i,j)∈Y be a collection of elements of G
indexed by the boxes of a Young diagram Y .

If (a′, b′) is strictly south-west of (a, b) in Y (that is, if a′ > a and b′ < b), then {y〈a,b〉i,j }(i,j)∈Y

and {y〈a
′,b′〉

i,j }(i,j)∈Y – which are themselves collection of elements of G indexed by the boxes of the
Young diagram Y – satisfy(

y
〈a,b〉
i,j

)〈a′,b′〉
=
(
y
〈a′,b′〉
i,j

)〈a,b〉
for all (i, j) ∈ Y.
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Proof. Notice that y
〈a′,b′〉
a,b = ya,b and y

〈a,b〉
a′,b′ = ya′,b′ . The result is clear if i ≥ a, j ≥ b′, ya,b =

y
〈a′,b′〉
a,b = 0, or ya′,b′ = y

〈a,b〉
a′,b′ = 0, so let us assume that i < a, j < b′, ya,b = y

〈a′,b′〉
a,b 6= 0, and

ya′,b′ = y
〈a,b〉
a′,b′ 6= 0. We have(

y
〈a′,b′〉
i,j

)〈a,b〉
= y

〈a′,b′〉
i,j − y〈a

′,b′〉
i,b

(
y
〈a′,b′〉
a,b

)−1

y
〈a′,b′〉
a,j

= yi,j − yi,b′y−1
a′,b′ya′,j − yi,by

−1
a,b

(
ya,j − ya,b′y−1

a′,b′ya′,j
)

and (
y
〈a,b〉
i,j

)〈a′,b′〉
= y

〈a,b〉
i,j − y

〈a,b〉
i,b′

(
y
〈a,b〉
a′,b′

)−1

y
〈a,b〉
a′,j

= yi,j − yi,by−1
a,bya,j −

(
yi,b′ − yi,by−1

a,bya,b′
)
y−1
a′,b′ya′,j.

It is trivial to check that the above expressions for
(
y
〈a′,b′〉
i,j

)〈a,b〉
and

(
y
〈a,b〉
i,j

)〈a′,b′〉
coincide.

Remark 7.3. In adapting the above lemma to Oq(Yλ′(F)), one should think of (a, b) as (u, v)
and (a′, b′) as any box occurring after (u, v) in Yλ′ .

The following proposition is an immediate consequence of Lemma 7.2 and the discussion pre-
ceding it.

Proposition 7.4. Let J be any H-prime ideal of Oq(Yλ′(F)). Then the Cauchon diagram for
J is the same whether one uses the standard lexicographical QNA presentation for Oq(Yλ′(F))
or the QNA presentation for Oq(Yλ′(F)) given in (25), where z = xu,v appears at the end. As
a consequence, the set of Cauchon diagrams in both cases coincide with the set of Cauchon-Le
diagrams on Yλ′.

Both the automorphism σ and the left σ-derivation δ ofOq(Yλ(F)) clearly restrict toOq(Yλ(R));
we shall abuse notation slightly and refer to these restrictions also as σ and δ. The equality (25)
restricts to give

Oq(Yλ′(R)) = Oq(Yλ(R))[z;σ, δ].

In the rest of this section, in order to save space in displays, we will set

Aλ := Oq(Yλ(R)), Aλ′ := Oq(Yλ′(R)), Bλ := Oq(Yλ(F)), and Bλ′ := Oq(Yλ′(F)).

In particular,
Bλ′ = Bλ[z;σ, δ] and Aλ′ = Aλ[z;σ, δ].

Remark 7.5. Notice that if we take R = F, then Aλ = Bλ and Aλ′ = Bλ′ .

By [15, Lemme 2.1], the powers of z form a left and a right Ore set in Bλ′ ; inspection of the
proof shows that although not all of the assumptions of [15, Lemme 2.1] hold for Aλ′ , the proof
is valid for showing that the powers of z form a left and a right Ore set in Aλ′ . As an immediate
consequence of [15, Proposition 2.2, Proposition 2.3(2)], there is an embedding

θ : Bλ ↪→ Bλ′ [z
−1]

such that for all (i, j) ∈ Yλ,

θ(xi,j) =

{
xi,j − xi,vz−1xu,j if i < u and j < v;

xi,j otherwise.
(27)
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Notation 7.6. For all (i, j) ∈ Yλ, set yi,j := θ(xi,j).

From now on, we will identify Bλ with its image under θ in Bλ′ [z
−1]. By [15, Propositions 2.3,

2.4], we have
Bλ[z

±1;σ] = Bλ′ [z
−1]. (28)

The embedding θ : Bλ ↪→ Bλ′ [z
−1] clearly restricts to an embedding θ : Aλ ↪→ Aλ′ [z

−1]; from
now on, we will identify Aλ with its image under θ in Aλ′ [z

−1]. The equality (28) restricts to

Aλ[z
±1;σ] = Aλ′ [z

−1]. (29)

From now on, we shall work in Aλ′ [z
−1] and Bλ′ [z

−1]. This means in particular that

• xi,j (with (i, j) ∈ Yλ′) shall always denote a standard generator of Aλ′ and Bλ′ ;

• Aλ and Bλ denote respectively the subalgebras of Aλ′ [z
−1] and Bλ′ [z

−1] generated by
{yi,j | (i, j) ∈ Yλ}.

The following technical lemma will be useful.

Lemma 7.7. Let J, J ′ be ideals of Bλ, Bλ′ respectively and consider the ideals I = J ∩ Aλ, I ′ =
J ′ ∩ Aλ′ of Aλ, Aλ′ respectively.

(i) If z /∈ J ′, then we have J ′[z−1] ∩ Aλ′ [z−1] = I ′[z−1].

(ii) If z /∈ J ′ and
⊕

i∈Z Jz
i = J ′[z−1], then

⊕
i∈Z Iz

i = I ′[z−1].

Proof. (i) We claim that if p ∈ J ′, m ≥ 0 are such that there exist s ∈ Aλ′ , n ≥ 0 with
pz−m = sz−n, then either p or s belongs to I ′. Indeed

• If m = n, then obviously p = s ∈ J ′ ∩ Aλ′ = I ′.

• If n > m, then s = pzn−m, which belongs to J ′ because p does; hence s ∈ J ′∩Aλ′ = I ′.

• If m > n, then p = szm−n, which belongs to Aλ′ because s and z do; hence p ∈
J ′ ∩ Aλ′ = I ′.

From this claim the required result follows easily.

(ii) By part (i), we have⊕
i∈Z

Jzi ∩ Aλ[z±1;σ] = J ′[z−1] ∩ Aλ′ [z−1] = I ′[z−1]. (30)

By the independence of the powers of z over Bλ ⊇ Aλ, we get⊕
i∈Z

Jzi ∩ Aλ[z±1;σ] =
⊕
i∈Z

(J ∩ Aλ)zi =
⊕
i∈Z

Izi. (31)

Now (30) and (31) give
⊕

i∈Z Iz
i = I ′[z−1], as required.

Proposition 7.8. Fix any ideal I of Aλ and let I ′ be the ideal
⊕

i∈Z Iz
i ∩ Aλ′ of Aλ′. Every

pseudo quantum minor of Aλ′ belonging to I ′ can be expressed as an R[z±1]-linear combination
(with coefficients on the right) of pseudo quantum minors of Aλ which belong to I.

Proof. Let us set xij := 0 for all (i, j) /∈ Yλ′ and yij := 0 for all (i, j) /∈ Yλ. Recall that z = xuv
and note the following facts which will be used often in this proof:
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• xij = yij when i ≥ u or j ≥ v (except when (i, j) = (u, v))

• yij = 0 when i ≥ u and j ≥ v.

Let us use subscripts to indicate the partition subalgebra in which we are taking pseudo
quantum minors. Consider a pseudo quantum minor [i1 · · · il | j1 · · · jl]Aλ′ of Aλ′ which belongs
to I ′. We wish to express [i1 · · · il | j1 · · · jl]Aλ′ as an R[z±1]-linear combination (with coefficients
on the right) of pseudo quantum minors of Aλ which belong to I. Because the powers of z
are independent over Aλ and I ′ ⊆

⊕
i∈Z Iz

i, it will be enough to show that there exist pseudo
quantum minors δ−1, δ0, δ1 of Aλ and µ−1, µ0, µ1 ∈ R∗ ∪ {0} such that

[i1 · · · il | j1 · · · jl]Aλ′ = µ−1δ−1z
−1 + µ0δ0 + µ1δ1z.

If u < i1 or v < j1, then x•• = y•• for each entry in the two pseudo quantum minors; so

[i1 · · · il | j1 · · · jl]Aλ′ = [i1 · · · il | j1 · · · jl]Aλ .

Thus we may assume that u ≥ i1 and v ≥ j1; from here we break the proof down into four
distinct and exhaustive cases.

Case 1: u ∈ {i1, . . . , il} and v /∈ {j1, . . . , jl}.
In this case, we claim that

[i1 · · · il | j1 · · · jl]Aλ′ = [i1 · · · il | j1 · · · jl]Aλ . (32)

We prove this claim by induction on (#i′s > u) + (#j′s > v). Assume that (#i′s > u) +
(#j′s > v) = 0; that is, assume that u = il and v > jl. Then the pseudo quantum minors
are actually genuine quantum minors and (32) follows from [16, Lemme 4.2.1]. Assume that
(#i′s > u) + (#j′s > v) > 0. The inductive step differs slightly depending on whether or not
il = u:

Assume that il 6= u. Then il > u and we have

[i1 · · · il | j1 · · · jl]Aλ′ =1

l∑
p=1

(−q)l−p[i1 · · · il−1 | ĵp]Aλ′xiljp

=2

l∑
p=1

(−q)l−p[i1 · · · il−1 | ĵp]Aλyiljp

=3 [i1 · · · il | j1 · · · jl]Aλ ,

where in (=1) and (=3), we are using q-Laplace expansion on the last row with entries on the
right (see Lemma 2.4 (2)), and (=2) follows from the inductive hypothesis.

On the other hand, assume that il = u. Then jl > v and, noting that xujl = yujl = 0, we have

[i1 · · · il | j1 · · · jl]Aλ′ =1

l−1∑
p=1

(−q)l−p[îp | j1 . . . jl−1]Aλ′xipjl

=2

l−1∑
p=1

(−q)l−p[îp | j1 . . . jl−1]Aλyipjl

=3 [i1 · · · il | j1 · · · jl]Aλ ,

where in (=1) and (=3), we are using q-Laplace expansion on the last column with entries on
the right (see Corollary 2.6 (2)), and (=2) follows from the inductive hypothesis.
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This finishes Case 1.

Case 2: u /∈ {i1, . . . , il} and v ∈ {j1, . . . , jl}.
In this case, we claim that

[i1 · · · il | j1 · · · jl]Aλ′ = [i1 · · · il | j1 · · · jl]Aλ . (33)

We prove this claim by induction on (#i′s > u) + (#j′s > v). Assume that (#i′s > u) +
(#j′s > v) = 0; that is, assume that il < u and jl = v. Then the pseudo quantum minors
are actually genuine quantum minors and (33) follows from [16, Lemme 4.2.2]. Assume that
(#i′s > u) + (#j′s > v) > 0. The inductive step differs slightly depending on whether or not
jl = v.

Assume that jl 6= v. Then jl > v and we have

[i1 · · · il | j1 · · · jl]Aλ′ =1

l∑
p=1

(−q)l−p[îp | j1 . . . jl−1]Aλ′xipjl

=2

l∑
p=1

(−q)l−p[îp | j1 . . . jl−1]Aλyipjl

=3 [i1 · · · il | j1 · · · jl]Aλ ,

where in (=1) and (=3), we are using q-Laplace expansion on the last column with entries on
the right (see Corollary 2.6 (2)), and (=2) follows from the inductive hypothesis.

On the other hand, assume that jl = v. Then il > u and, noting that xilv = yilv = 0, we have

[i1 · · · il | j1 · · · jl]Aλ′ =1

l−1∑
p=1

(−q)l−p[i1 · · · il−1 | ĵp]Aλ′xiljp

=2

l−1∑
p=1

(−q)l−p[i1 · · · il−1 | ĵp]Aλyiljp

=3 [i1 · · · il | j1 · · · jl]Aλ ,

where in (=1) and (=3), we are using q-Laplace expansion on the last row with entries on the
right (see Lemma 2.4 (2)), and (=2) follows from the inductive hypothesis.

This finishes Case 2.

Case 3: u ∈ {i1, . . . , il} and v ∈ {j1, . . . , jl}.
Where v = jk and u = it, we claim that

[i1 · · · il | j1 · · · jl]Aλ′ = (−q)2l−k−t[{i1, . . . , il} \ {u} | {j1, . . . , jl} \ {v}]Aλz. (34)

We prove this claim by induction on (#i′s > u) + (#j′s > v). Assume that (#i′s > u) +
(#j′s > v) = 0; that is, assume that u = il and v = jl. Then the pseudo quantum minors
are actually genuine quantum minors and (32) follows from [16, Lemme 4.1.2]. Assume that
(#i′s > u) + (#j′s > v) > 0. The inductive step differs slightly depending on whether or not
il = u:

Assume that il 6= u. Then il > u and, noting that xiljp = yiljp = 0 for p ≥ k, we have

[i1 · · · il | j1 · · · jl]Aλ′ =0

k−1∑
p=1

(−q)l−p[îl | ĵp]Aλ′xiljp
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=1

k−1∑
p=1

(−q)l−p[îl | ĵp]Aλ′yiljp

=2

k−1∑
p=1

(−q)l−p(−q)(l−1)−t+l−k[û îl | ĵpv̂]Aλzyiljp

=3 (−q)2l−k−t

(
k−1∑
p=1

(−q)l−1−p[{i1, . . . , il−1} \ {u} | ĵpv̂]Aλyiljp

)
z

=4 (−q)2l−k−t[{i1, . . . , il} \ {u} | {j1, . . . , jl} \ {v}]Aλz,

where in (=0) and (=4), we are using q-Laplace expansion on the last row with entries on the
right (see Lemma 2.4 (2)), (=1) follows from relevant x•• and y•• being equal, (=2) follows from
the inductive hypothesis, and (=3) follows from the commutation between z with relevant y••.

On the other hand, if il = u, then jl > v and so, noting that xujl = yujl = 0, we have

[i1 · · · il | j1 · · · jl]Aλ′ =0

l−1∑
p=1

(−q)l−p[îp | j1 · · · jl−1]Aλ′xipjl

=1

l−1∑
p=1

(−q)l−p[îp | j1 · · · jl−1]Aλ′yipjl

=2

l−1∑
p=1

(−q)l−p(−q)(l−1)−k[îp û | {j1, . . . , jl−1} \ {v}]Aλzyipjl

=3 (−q)l−k
l−1∑
p=1

(−q)l−1−p[îp û | {j1, . . . , jl−1} \ {v}]Aλyipjlz

=4 (−q)l−k[{i1, . . . , il} \ {u} | {j1, . . . , jl} \ {v}]Aλz,

where in (=0) and (=4), we are using q-Laplace expansion on the last column with entries on
the right (see Corollary 2.6 (2)), (=1) follows from relevant x•• and y•• being equal, (=2) follows
from the inductive hypothesis, and (=3) follows from the commutation between z with relevant
y••.

This finishes Case 3.

Case 4: u /∈ {i1, . . . , il} and v /∈ {j1, . . . , jl}.
Where k is maximal such that jk < v and t is maximal such that it < u, we claim that

[i1 · · · il | j1 · · · jl]Aλ′ = [i1 · · · il | j1 · · · jl]Aλ−(−q)k+t−2l[{i1, . . . , il}t{u} |{j1, . . . , jl}t{v}]Aλz−1.
(35)

We prove this claim by induction on (#i′s > u)+(#j′s > v). Assume that (#i′s > u)+(#j′s >
v) = 0; that is, assume that u > il and v > jl. Then [37, Proposition 3.1.4.3] gives

[i1 · · · il | j1 · · · jl]Aλ′ = [i1 · · · il | j1 · · · jl]Aλ −
l∑

p=1

(−q)(l+1)−p[i1 · · · îp · · · il u | j1 · · · jl]Aλyipvz−1

(36)
(all pseudo quantum minors appearing in (36) are genuine quantum minors). However it follows
from q-Laplace expansion with the last column on the right (Lemma 2.6) and from the fact that
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yuv = 0 that

l∑
p=1

(−q)(l+1)−p[i1 · · · îp · · · il u | j1 · · · jl]Aλyipv = [i1 · · · il u | j1 · · · jl v]Aλ ,

so that (35) holds.
Assume that (#i′s > u) + (#j′s > v) > 0. The inductive step differs slightly depending on

whether or not il > u.
Assume that il > u. Then, noting that xiljp = yiljp = 0 for p > k, we have

[i1 · · · il | j1 · · · jl]Aλ′

=0

k∑
p=1

(−q)l−p[i1 · · · il−1 | ĵp]Aλ′xiljp

=1

k∑
p=1

(−q)l−p[i1 · · · il−1 | ĵp]Aλ′yiljp

=2

k∑
p=1

(−q)l−p
(

[i1 · · · il−1 | ĵp]Aλ − (−q)t−(l−1)+k−l[{i1, . . . , il−1} t {u} | ĵp t {v}]Aλz−1
)
yiljp

=3

k∑
p=1

(−q)l−p[i1 · · · il−1 | ĵp]AλYiljp − (−q)k+t−2l

k∑
p=1

(−q)l+1−p[{i1, . . . , il−1} t {u} | ĵp t {v}]Aλyiljpz−1

=4 [i1 · · · il | j1 · · · jl]Aλ − (−q)k+t−2l[{i1, . . . , il} t {u} |{j1, . . . , jl} t {v}]Aλz−1.

where in (=0) and (=4), we are using q-Laplace expansion on the last row with entries on the
right (see Lemma 2.4 (2)), (=1) follows from relevant x•• and y•• being equal, (=2) follows from
the inductive hypothesis, and (=3) follows from the commutation between z−1 with relevant y••.

On the other hand, assume that il ≯ u. Then il < u, jl > v, and we have

[i1 · · · il | j1 · · · jl]Aλ′

=0

l∑
p=1

(−q)l−p[îp | j1 · · · jl−1]Aλ′xipjl

=1

l∑
p=1

(−q)l−p[îp | j1 · · · jl−1]Aλ′yipjl

=2

l∑
p=1

(−q)l−p
(

[îp | j1 · · · jl−1]Aλ − (−q)k−(l−1)[îp t {u} | {j1, . . . , jl−1} t {v}]Aλz−1
)
yipjl

=3

l∑
p=1

(−q)l−p[îp | j1 · · · jl−1]AλYipjl − (−q)k−l
l∑

p=1

(−q)l+1−p[îp t {u} | {j1, . . . , jl−1} t {v}]Aλyipjlz−1

=4 [i1 · · · il | j1 · · · jl]Aλ − (−q)k−l[{i1, . . . , il} t {u} |{j1, . . . , jl} t {v}]Aλz−1,

where in (=0) and (=4), we are using q-Laplace expansion on the last column with entries on the
right (see Corollary 2.6 (2)), (=1) follows from relevant x•• and y•• being equal, (=2) follows from
the inductive hypothesis, and (=3) follows from the commutation between z−1 with relevant y••.

This finishes Case 4 and completes the proof.
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Remark 7.9. Though we did not say it explicitly, in the proof of Proposition 7.8 we showed
that that every pseudo quantum minor in Aλ′ can be expressed as an R[z±1]-linear combination
(with coefficients on the right) of pseudo quantum minors in Aλ. We can also get this result
simply by setting I = Aλ in Proposition 7.8.

Corollary 7.10. Let P ′ be a completely prime ideal of Aλ′ that does not contain z and that is
generated as a right ideal by pseudo quantum minors of Aλ′. Assume there is an ideal P of Aλ
satisfying

⊕
i∈Z Pz

i = P ′[z−1]. Then P is completely prime and is generated as a right ideal by
pseudo quantum minors of Aλ.

Proof. Clearly P = P ′[z−1] ∩ Aλ, from which it follows easily that P is completely prime.
Where δ′1, . . . , δ

′
n are all the pseudo quantum minors of Aλ′ belonging to P ′, by assumption we

have P ′ = δ′1Aλ′ + · · ·+ δ′nAλ′ . Since P ⊂ P ′[z−1], we have

P ⊂ δ′1Aλ′ [z
−1] + · · ·+ δ′nAλ′ [z

−1] = δ′1Aλ[z
±1;σ] + · · ·+ δ′nAλ[z

±1;σ].

Let δ1, . . . , δm be the pseudo quantum minors of Aλ belonging to P . Notice that P ′ =
⊕

i∈Z Pz
i∩

Aλ′ ; this allows us to invoke Proposition 7.8 to give

P ⊂ δ1Aλ[z
±1;σ] + · · ·+ δmAλ[z

±1;σ]. (37)

From the independence of the powers of z over Aλ, we conclude that

P = δ1Aλ + · · ·+ δmAλ.

Proposition 7.11. If the H-prime ideals of Bλ′ are generated as right ideals by pseudo quantum
minors of Bλ′, then the same statement is true for Bλ.

Proof. Let J be an H-prime ideal of Bλ and let J ′ =
⊕

i∈Z Jz
i ∩ Bλ′ ; clearly z /∈ J ′. By [40,

Theorem 2.3],
⊕

i∈Z Jz
i is an H-prime ideal of Bλ[z

±1;σ] = Bλ′ [z
−1]; hence J ′ is an H-prime

ideal of Bλ′ and ⊕
i∈Z

Jzi = J ′[z−1]. (38)

Since J ′ is completely prime (in fact all prime ideals of Bλ′ are completely prime) and does not
contain z, we may conclude via Corollary 7.10 (with R = F).

We are now ready to state the main result of this section.

Theorem 7.12. Assume that q ∈ F∗ is not a root of unity. The H-prime ideals in a partition
subalgebra of quantum matrices are generated as right ideals by pseudo quantum minors.

Proof. The H-primes in Oq(Mm,n(F)) are generated as right ideals by quantum minors, see
[12, 13]. For a partition subalgebra of Oq(Mm,n(F)), induction on the number of missing boxes,
plus Proposition 7.11 gives the result.

8 Primes in Oq(Yλ(R)) from Cauchon-Le diagrams

Let us continue with the notation and conventions of Section 7 and let us add the following
conventions:

• There is a subfield K of F over which q is transcendental.
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• R is the Laurent polynomial algebra K[q±1].

• F = Frac(R) = K(q).

Let C be a Cauchon-Le diagram on Yλ and let C ′ be the Cauchon-Le diagram on Yλ′ that has
the same black boxes as C has on Yλ

Notation 8.1. Let Πλ denote the set of pseudo quantum minors in Oq(Yλ(R)) (or, equivalently,
in Oq(Yλ(F))) and let ΠC

λ denote the set of pseudo quantum minors [I | J ] for which there are no
vertex disjoint families of R(I,J)-paths in the Postnikov graph of C. Define Πλ′ and ΠC′

λ′ similarly.

Let 〈ΠC
λ 〉R be the ideal in Oq(Yλ(R)) generated by ΠC

λ . We aim to show that 〈ΠC
λ 〉R is a

completely prime ideal in Oq(Yλ(R)) that is generated as a right ideal by ΠC
λ . The proof will be

by induction. The partition Yλ sits in an m×n array, and the induction will be on the difference
between mn and the number of boxes in Yλ. The base case, where this difference is equal to
zero, is that of Oq(Mm,n(R)), and this result has been established in Section 6 (see Corollary
6.8). Thus, we need only deal with the inductive step. Before embarking on the proof, we need
some notation and preparatory results.

Let 〈ΠC′

λ′ 〉R be the ideal in Oq(Yλ′(R)) generated by ΠC′

λ′ . Over the next few results, under the
assumption that J ′R := 〈ΠC′

λ′ 〉R is completely prime and generated as a right ideal by ΠC′

λ′ , we will
show that 〈ΠC

λ 〉R is also completely prime and is generated as a right ideal by ΠC
λ .

Recall that, as in the previous section, we set Aλ := Oq(Yλ(R)), Aλ′ := Oq(Yλ′(R)), Bλ :=
Oq(Yλ(F)) and Bλ′ := Oq(Yλ′(F)). Moreover, z still denotes the new variable corresponding to
the extra box in Yλ′ .

Now, let J ′F := 〈ΠC′

λ′ 〉F be the ideal of Oq(Yλ′(F)) generated by ΠC′

λ′ . Notice that, by Theorems
5.4 and 7.12, J ′F is the H-invariant (completely) prime ideal of Oq(Yλ′(F)) with Cauchon-Le
diagram C ′. Since the box in C ′ corresponding to z is white, [15, Proposition 5.4.2] (which is
rewritten for our current context as Lemma 4.3.3 in [46]) guarantees that z /∈ J ′F. Set J0

F :=
J ′F[z

−1] ∩ Oq(Yλ(F)) and notice that, by [40, Theorem 2.3], J0
F is an H-prime ideal of Oq(Yλ(F))

satisfying ⊕
i∈Z

J0
Fz

i = J ′F[z
−1]. (39)

By Lemma 3.4, the black boxes in the Cauchon-Le diagram of J0
F in Yλ are the same as the

black boxes in the Cauchon-Le diagram C ′ of J ′F in Yλ′ . (Note that, here, we are really talking
about the Cauchon diagram of J ′F with respect to the alternative QNA presentation of Oq(Yλ′(F))
where z appears at the end. However, Lemma 7.4 shows that this Cauchon diagram coincides
with the Cauchon-Le diagram of J ′F for the standard QNA presentation of Oq(Yλ′(F)).) Hence,
J0
F is the H-prime ideal of Oq(Yλ(F)) with Cauchon-Le diagram C; it follows by Theorem 5.4

that J0
F ∩ Πλ = ΠC

λ .

Assume that J ′R = 〈ΠC′

λ′ 〉R is completely prime and, noting that z /∈ J ′R since z /∈ J ′F ⊃ J ′R, set
J0
R := J ′R[z−1] ∩ Aλ. Then J0

R is a completely prime ideal of Aλ.

Lemma 8.2. With the notation and assumptions above,

J0
R ∩ Πλ = ΠC

λ .

Proof. It follows from the definitions that J0
R ⊆ J0

F. Recalling that Theorem 5.4 gives J0
F ∩Πλ =

ΠC
λ , we have J0

R ∩ Πλ ⊆ J0
F ∩ Πλ = ΠC

λ . Thus, all we need to show is that ΠC
λ ⊆ J0

R. Suppose
that δ ∈ ΠC

λ . Then
δ ∈ J0

F = J ′F[z
−1] ∩Bλ.
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Hence, there exists a nonnegative integer i such that δzi ∈ J ′F = J ′R[(R∗)−1], where R∗ denotes
the nonzero elements of R. Thus, there exists 0 6= w ∈ R such that δziw ∈ J ′R. As J ′R is a
completely prime ideal, either w ∈ J ′R, or δzi ∈ J ′R. If the first possibility occurs then w ∈ J ′F,
which is impossible as w is a unit in Bλ′ . Hence, δ ∈ J ′R[z−1] ∩ Aλ = J0

R, as required.

Corollary 8.3. Suppose that that J ′R := 〈ΠC′

λ′ 〉R is completely prime and generated as a right
ideal by ΠC′

λ′ . Then 〈ΠC
λ 〉R is also completely prime and is generated as a right ideal by ΠC

λ .

Proof. Recall that J ′F = J ′R[(R∗)−1] and that we have assumed that J ′R is completely prime, so
that J ′R = J ′F ∩ Aλ′ . It follows that J0

R = J0
F ∩ Aλ. Indeed

J0
R = J ′R[z−1] ∩ Aλ

= (J ′F ∩ Aλ′)[z−1] ∩ Aλ
= J ′F[z

−1] ∩ Aλ′ [z−1] ∩ Aλ (by Lemma 7.7(i))

= J ′F[z
−1] ∩ Aλ

= (J ′F[z
−1] ∩Bλ) ∩ Aλ

= J0
F ∩ Aλ.

Hence, by Lemma 7.7(ii) and (39), we get⊕
i∈Z

J0
Rz

i = J ′R[z−1]. (40)

Now Corollary 7.10 shows that J0
R is completely prime and is generated as a right ideal by

the pseudo quantum minors which it contains. Thus we deduce from Lemma 8.2 that J0
R is

completely prime and is generated as a right ideal by ΠC
λ ; that is, J0

R = 〈ΠC
λ 〉R is completely

prime and is generated as a right ideal by ΠC
λ , as required.

We now have all the necessary ingredients to prove the main theorem of this section.

Theorem 8.4. Let K be a field and let q be an element that is transcendental over K. Set
R := K[q±1]. Fix a partition λ and let C be a Cauchon-Le diagram on the Young diagram
Yλ. Let ΠC

λ be the set of pseudo quantum minors [I | J ] for which there are no vertex disjoint
families of R(I,J)-paths in the Postnikov graph Post(C) of C, and let P := 〈ΠC

λ 〉R be the ideal of
Oq(Yλ(R)) generated by ΠC

λ .
Then P is a completely prime ideal of Oq(Yλ(R)) and P is generated as a right ideal by ΠC

λ .

Proof. Let m,n be minimal such that Yλ sits in an m× n array. The proof will be by induction
on the number t that is the difference between mn and the number of boxes in Yλ.

If t = 0 then Yλ is itself an m × n array, and Oq(Yλ(R)) = Oq(Mm,n(R)). In this case, the
result is given by Corollary 6.8.

Now, assume that t > 0 and that the result is true for values less than t.

Augment λ to λ′ such that the Young diagram Yλ′ of λ′ is obtained from Yλ by adding a box
in the manner described at the beginning of Section 7. Let C ′ be the Cauchon-Le diagram on
Yλ′ that has the same black boxes as C has on Yλ, and let 〈ΠC′

λ′ 〉R be the ideal in Oq(Yλ′(R))
generated by ΠC′

λ′ . Let t′ be the difference between mn and the number of boxes in Yλ′ . Then
t′ = t−1 and so the result holds in Oq(Yλ′(R)), by the inductive hypothesis; that is, P ′ := 〈ΠC′

λ′ 〉R
is a completely prime ideal of Oq(Yλ′(R)) that is generated as a right ideal of Oq(Yλ′(R)) by ΠC′

λ′ .
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Corollary 8.3 shows that 〈ΠC
λ 〉R is a completely prime ideal that is generated as a right ideal

by ΠC
λ , as required to prove the inductive step.

Of course, one can also show that the ideal P from Theorem 8.4 is generated as a left ideal by
ΠC
λ .

9 H-primes in the quantum grassmannian: membership

Fix positive integers m < n and let q ∈ K∗. Assume that q is not a root of unity. The quantised
homogeneous coordinate ring of the m×n grassmannian over a field K (informally known as the
(m× n) quantum grassmannian), and denoted by Oq(Gmn(K)), is defined to be the subalgebra
of Oq(Mm,n(K)) generated by the maximal quantum minors of the matrix x1,1 · · · x1,n

...
. . .

...
xm,1 · · · xm,n

 (41)

of canonical generators of Oq(Mm,n(K)). By [31, Theorem 1.1], the quantum grassmannian
Oq(Gmn(K)) is a noetherian domain.

An m ×m quantum minor of the matrix (41) must involve each of the m rows of (41); so in
order to specify a maximal quantum minor one needs only specify m of the n columns. As such,
the generators of Oq(Gmn(K)) are written as [γ1 · · · γm] where 1 ≤ γ1 < γ2 < · · · < γm ≤ n; that
is, [γ1 · · · γm] denotes the maximal quantum minor [1 · · ·m | γ1 · · · γm] of Oq(Mm,n(K)). Such sets
γ := {γ1 < γ2 < · · · < γm} are called index sets, and the maximal quantum minors [γ1 · · · γm] are
called the quantum Plücker coordinates of Oq(Gmn(K)). The set of quantum Plücker coordinates
of Oq(Gmn(F)) is denoted Πm,n or Π when m and n are understood. We shall often identify Π
with the set of all m-element subsets of J1, nK in the obvious way.

There is a natural partial order on Π given by

[γ1 · · · γm] ≤ [γ′1 · · · γ′m] ⇐⇒ (γi ≤ γ′i for all i ∈ J1,mK). (42)

Next, there is an action of the torus H := (K∗)n on Oq(Gmn(K)) coming from the column action
on quantum matrices. Thus,

(α1, . . . , αn) · [γ1 · · · γm] := αγ1 · · ·αγm [γ1 · · · γm]. (43)

By [31, Corollary 2.1], the algebra Oq(Gmn(K)) has a K-basis consisting of products of quantum
Plücker coordinates. Since quantum Plücker coordinates are clearly H-eigenvectors with rational
eigenvalues, it follows easily that the action of H on Oq(Gmn(K)) is rational.

The set of H-invariant prime ideals of Oq(Gmn(K)) has been studied in [41], building on earlier
work in [31, 42, 43] and [44]. Our aim in this chapter is to develop a graph-theoretical method
for deciding whether or not a given quantum Plücker coordinate belongs to a given H-prime
ideal of Oq(Gmn(K)), by using and refining the methods developed in these papers to reduce
this problem to the problem of deciding when a given pseudo quantum minor in a partition
subalgebra is in an H-prime ideal of the partition subalgebra, a problem that we have solved in
Section 5.5.

We start by summarising the known results that we need from these aforementioned papers.

53



9.1 Quantum graded algebras with a straightening law

The quantum grassmannian Oq(Gmn(K)), equipped with the partially ordered set (Π,≤) is a
quantum graded algebra with a straightening law in the sense of the following definition, see [42,
Theorem 3.4.4]. In particular, Oq(Gmn(K)) is N-graded, with all quantum Plücker coordinates
in degree one.

Let A be an algebra and Π a finite subset of elements of A with a partial order <st. A standard
monomial on Π is an element of A which is either 1 or of the form α1 · · ·αs, for some s ≥ 1,
where α1, . . . , αs ∈ Π and α1 ≤st · · · ≤st αs.

Definition 9.1. Let A be an N-graded K-algebra and Π a finite subset of A equipped with a
partial order <st. We say that A is a quantum graded algebra with a straightening law (QGASL
for short) on the poset (Π, <st) if the following conditions are satisfied.
(1) The elements of Π are homogeneous with positive degree.
(2) The elements of Π generate A as a K-algebra.
(3) The set of standard monomials on Π is a linearly independent set.
(4) If α, β ∈ Π are not comparable for <st, then αβ is a linear combination of terms λ or λµ,
where λ, µ ∈ Π, λ ≤st µ and λ <st α, β.
(5) For all α, β ∈ Π, there exists cαβ ∈ K∗ such that αβ− cαββα is a linear combination of terms
λ or λµ, where λ, µ ∈ Π, λ ≤st µ and λ <st α, β.

By [42, Proposition 1.1.4], if A is a QGASL on the partially ordered set (Π, <st), then the
set of standard monomials on Π forms an K-basis of A. Hence, in the presence of a standard
monomial basis, the structure of a QGASL may be seen as providing more detailed information
on the way standard monomials multiply and commute.

For any γ ∈ Π, set Πγ = {α ∈ Π | α � γ}. By [41, Theorem 5.1], for every P ∈
Spec(Oq(Gmn(K))) other than the irrelevant ideal 〈Π〉, there is a unique γ ∈ Π such that
γ /∈ P and Πγ ⊆ P . For any γ ∈ Π, let H−Specγ(Oq(Gmn(K))) denote the subspace of
Spec(Oq(Gmn(K))) consisting of all those H-prime ideals J such that γ /∈ J and Πγ ⊆ J ; we
have

H−Spec(Oq(Gmn(K))) =
⊔
γ∈Π

H−Specγ(Oq(Gmn(K))) t 〈Π〉. (44)

In order to understand the whole of H−Spec(Oq(Gmn(K))) it is useful to study the individual
subsets H−Specγ(Oq(Gmn(K))) of this partition. This is done via the notions of quantum
Schubert varieties and quantum Schubert cells, as outlined below.

Convention 9.2. For the rest of this chapter, let us fix some γ = [γ1 · · · γm] ∈ Π.

If J ∈ H−Specγ(Oq(Gmn(K))), then by the definition of H−Specγ(Oq(Gmn(K))), we know
that γ /∈ J and that α ∈ J for all α ∈ Π such that α � γ. What remains is to decide which
other quantum Plücker coordinates belong to J ; that is, given α ∈ Π such that α > γ, we
seek to decide whether or not α belongs to J . The key to achieving this goal is to exploit the
correspondence (established in [41]) between H−SpecγOq(Gmn(K)) and the H-spectrum of a
certain partition subalgebra of Oq−1(Mm,n−m(K)). We shall describe this correspondence below.

9.2 Noncommutative dehomogenisation

The process of noncommutative dehomogenisation, introduced in [31, Section 3], is the foun-
dation for the construction in [41] of a biincreasing one-to-one correspondence between H−
Specγ(Oq(Gmn(K))) and H−Spec(Oq−1(Yλ(K))), where λ is a partition associated to γ.
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Let R =
⊕

i∈NRi be an N-graded F-algebra, and let x be a homogeneous normal regular
element of degree one. Set S := R[x−1]. The algebra S is Z-graded with S =

⊕
l∈Z Sl where

Sl :=
∑∞

t=0Rl+tx
−t. (In this sum, we take Ri = 0 for i < 0.)

Definition 9.3. Let R =
⊕

i∈NRi be an N-graded K-algebra and let x be a homogeneous
regular normal element of R of degree one. The noncommutative dehomogenisation of R at x,
written Dhom(R, x), is the subalgebra S0 =

∑∞
t=0 Rtx

−t =
⋃∞
t=0Rtx

−t of the Z-graded algebra
R[x−1] = S =

⊕
l∈Z Sl.

Denote by σ the conjugation automorphism of S given by σ(s) = xsx−1 for all s ∈ S. It is easy
to check that σ restricts to an automorphism of Dhom(R, x) = S0 (which we shall also denote
by σ). By [31, Lemma 3.1], the inclusion Dhom(R, x) ↪→ R[x−1] extends to an isomorphism

Dhom(R, x)[y±1;σ]
∼=−→ R[x−1]

which sends y to x.

9.3 Quantum Schubert varieties and quantum Schubert cells

The ideal 〈Πγ〉 ofOq(Gmn(K)) is completely prime, by [42, Corollary 3.1.7]; and so the noetherian
algebra S(γ) := Oq(Gmn(F))/〈Πγ〉 is a domain. It is well known that Oq(Gmn(K)) is an N-
graded K-algebra with each quantum Plücker coordinate being homogeneous of degree 1. As the
elements of Πγ are homogeneous, there is an induced N-grading on S(γ). By [41, Remark 1.4],
γ ∈ S(γ) is a homogeneous regular normal element of degree one, so that we may dehomogenise
S(γ) at γ (in fact this follows from a more general result, see [42, Lemma 1.2.1]).

Definition 9.4. The algebra S(γ) := Oq(Gmn(K))/〈Πγ〉 is called the quantum Schubert vari-
ety associated to γ. The algebra So(γ) := Dhom(S(γ), γ) is called the quantum Schubert cell
associated to γ.

Remark 9.5. We shall later describe an isomorphism (established in [41, Theorem 4.7]), between
the quantum Schubert cell So(γ) and a partition subalgebra of Oq−1(Mm,n−m(K)).

Definition 9.6. The ladder associated to γ is denoted by Lγ and defined by

Lγ = {(i, j) ∈ J1,mK× J1, nK | j > γm+1−i and j 6= γl for all l ∈ J1,mK}.

A generating set for the quantum Schubert cell So(γ) was described in [41, Proposition 4.4]:
if, for (i, j) ∈ Lγ, one defines mi,j := [{γ1, . . . , γm} \ {γm+1−i} t {j}] (which clearly belongs to
Π\Πγ, so that mi,j ∈ S(γ) is nonzero and homogeneous of degree 1), then the quantum Schubert
cell So(γ) is generated by {mi,j γ̄

−1 | (i, j) ∈ Lγ}. Let us set m̃i,j := mi,j γ̄
−1 for all (i, j) ∈ Lγ.

Since 〈Πγ〉 is clearly an H-invariant ideal of Oq(Gmn(K)), the action of H on Oq(Gmn(K))
descends to S(γ). Since γ is an H-eigenvector of S(γ), the action of H on S(γ) extends to
S(γ)[γ−1]. This action of H on S(γ)[γ−1] restricts to So(γ); indeed for any m̃i,j with (i, j) ∈ Lγ,
and any (α1, . . . , αn) ∈ H, an elementary calculation shows that

(α1, . . . , αn) · m̃i,j = α−1
γm+1−i

αjm̃i,j. (45)

Recall from the general theory of noncommutative dehomogenisation that when σ is the re-
striction to So(γ) of the automorphism of S(γ)[γ−1] given by s  γsγ−1 for all s ∈ S(γ)[γ−1],
the inclusion So(γ) ↪→ S(γ)[γ−1] extends to an isomorphism

So(γ)[y±1;σ]→ (Oq(Gmn(K))/〈Πγ〉)[γ−1] (46)
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which sends y to γ. Notice here that by [42, Lemma 3.1.4(v)], the automorphism σ multiplies
each m̃i,j ((i, j) ∈ Lγ) by q. The action of H on (Oq(Gmn(F))/〈Πγ〉)[γ−1] passes to So(γ)[y±1;σ]
via the isomorphism (46) and this action of H on So(γ)[y±1;σ] restricts to the action of H on
So(γ) described in (45). In particular, the isomorphism (46) is H-equivariant where H acts on
So(γ) as in (45) and each (α1, . . . , αn) ∈ H acts on y as follows

(α1, . . . , αn) · y = αγ1 · · ·αγmy (47)

(cf. (43)).

9.4 Quantum ladder matrix algebras

It was shown in [41] that the quantum Schubert cell So(γ) can be identified with a well-behaved
subalgebra of Oq(Mm,n(K)), which can in turn be identified with a partition subalgebra of
Oq−1(Mm,n−m(K)). We describe these isomorphisms in detail in this section.

Definition 9.7. The quantum ladder matrix algebra associated to γ is the subalgebra ofOq(Mm,n(K))
generated by all those xi,j with (i, j) ∈ Lγ; it is denoted by Oq(Mm,n,γ(K)).

By [41, Lemma 4.6], there is an isomorphism

So(γ)
∼=−→ Oq(Mm,n,γ(K))

m̃i,j  xi,j.
(48)

One may obtain the generators of Oq(Mm,n,γ(K)) as follows. Consider the matrix x1,1 · · · x1,n
...

. . .
...

xm,1 · · · xm,n

 (49)

of canonical generators of Oq(Mm,n(K)) and recall that γ = [γ1 · · · γm]. For each i ∈ J1,mK,
remove the ith-last entry of the γth

i column of (49) (namely the entry xm+1−i,γi) and replace it
with a bullet. For each bullet, replace all matrix entries which are to its left and all matrix
entries which are below it with stars. Then the quantum ladder matrix algebra Oq(Mm,n,γ(K))
is the subalgebra of Oq(Mm,n(K)) which is generated by the entries of the matrix (49) which
survive this process (that is, which are not replaced by a bullet or a star).

Example 9.8. Let γ be the maximal quantum minor [1347] of Oq(G4,8(K)) and consider the
matrix 

x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8

x2,1 x2,2 x2,3 x2,4 x2,5 x2,6 x2,7 x2,8

x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7 x3,8

x4,1 x4,2 x4,3 x4,4 x4,5 x4,6 x4,7 x4,8


of canonical generators of Oq(M4,8(K)). Applying the prescribed procedure, we are left with

∗ ∗ ∗ ∗ ∗ ∗ • x1,8

∗ ∗ ∗ • x2,5 x2,6 ∗ x2,8

∗ ∗ • ∗ x3,5 x3,6 ∗ x3,8

• x4,2 ∗ ∗ x4,5 x4,6 ∗ x4,8

 (50)

The quantum ladder matrix algebra Oq(M4,8,γ(K)) is the subalgebra of Oq(M4,8(K)) generated
by those xi,j appearing in (50). After rotating (50) through 180◦ and deleting the columns
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containing bullets, notice that the generators of Oq(M4,8,γ(K)) lie in the Young diagram below

(51)

In fact it turns out that the quantum ladder matrix algebra Oq(M4,8,γ(K)) is isomorphic to the
partition subalgebra of Oq−1(M4,4(K)) corresponding to the partition whose Young diagram is
(52).

Notation 9.9. Notice that γi − i = |{a ∈ J1, nK \ γ | a < γi}| for each i ∈ J1,mK. It follows
easily that if we define λi = n−m− (γi − i) for each i ∈ J1,mK, then (λ1, . . . , λm) is a partition
with n − m ≥ λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0. Let c be as large as possible such that λc 6= 0 and
denote by λ the partition (λ1, . . . , λc). Recall that Oq−1(Yλ(K)) denotes the partition subalgebra
of Oq−1(Mm,n−m(K)) associated to the partition λ.

Note that the south and east borders of Yλ give rise to path of length n, from the north-east
corner to the south-west corner of the m×(n−m) rectangle. Label each of edges of this path with
the numbers 1 through n (starting from the north-east corner). Then the elements of γ coincide
with the vertical steps in this numbering. The following example illustrates this construction
when γ = [1347].

1

23

4

567

8 (52)

Let {a1 < · · · < an−m} = J1, nK \ γ and notice that all elements of Lγ take the form (i, aj)
for some i ∈ J1,mK and some j ∈ J1, n −mK. The following result appears in the proof of [41,
Theorem 4.7]. We write down the maps explicitly here as we shall need them later.

Lemma 9.10. There is an isomorphism

f : Oq(Mm,n,γ(K))
∼=−→ Oq−1(Yλ(K))

such that

• f(xi,aj) = xm+1−i,n−m+1−j for each (i, aj) ∈ Lγ;

• f−1(xi,j) = xm+1−i,an−m+1−j for each (i, j) ∈ Yλ.

Proof. By the proof of [22, Corollary 5.9], there is an isomorphism Oq(Mn(K))
∼=−→ Oq−1(Mn(K))

which sends each xi,j to xn+1−i,n+1−j; this isomorphism can be thought of as rotating the matrix
of canonical generators for Oq(Mn(K)) through 180◦.

There is an isomorphism δ : Oq(Mm,n(K))
∼=−→ Oq−1(Mm,n(K)) with δ(xi,j) = xm+1−i,n+1−j

for each (i, j) ∈ J1,mK × J1, nK, (this isomorphism can be thought of as rotating the matrix
of canonical generators for Oq(Mm,n(K)) through 180◦). This isomorphism is constructed by
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identifying Oq(Mm,n(K)) with the subalgebra of Oq(Mn(K)) generated by the last m rows of
the matrix of canonical generators for Oq(Mn(K)), identifying Oq−1(Mm,n(K)) with the subal-
gebra of Oq−1(Mn(K)) generated by the first m rows of the matrix of canonical generators for
Oq−1(Mn(K)), and applying the isomorphism described in the previous paragraph.

There is an isomorphism δ(Oq(Mm,n,γ(K)))
∼=−→ Oq−1(Yλ(K)) which sends each δ(xi,aj) =

xm+1−i,n+1−aj ((i, aj) ∈ Lγ) to xm+1−i,n−m+1−j. Composing this isomorphism with δ (or rather
the restriction of δ to Oq(Mm,n,γ(F))) gives the desired isomorphism f .

The isomorphism f is simpler than the notation of Lemma 9.10 might make it seem. The
following example should illuminate the idea.

Example 9.11. In the situation of Example 9.8, where γ is the quantum Plücker coordinate
[1347] of Oq(G4,8(K)), the generators of the quantum ladder matrix algebra Oq(M4,8,γ(K)) are
those appearing below 

∗ ∗ ∗ ∗ ∗ ∗ • x1,8

∗ ∗ ∗ • x2,5 x2,6 ∗ x2,8

∗ ∗ • ∗ x3,5 x3,6 ∗ x3,8

• x4,2 ∗ ∗ x4,5 x4,6 ∗ x4,8

 .

The action of the isomorphism δ(Oq(M4,8(K)))
∼=−→ Oq−1(M4,8(K)) may be understood as rotating

this picture through 180◦: 
x1,1 ∗ x1,3 x1,4 ∗ ∗ x1,7 •
x2,1 ∗ x2,3 x2,4 ∗ • ∗ ∗
x3,1 ∗ x3,3 x3,4 • ∗ ∗ ∗
x4,1 • ∗ ∗ ∗ ∗ ∗ ∗

 (53)

Let λ be the partition associated to γ as in Notation 9.9, whose Young diagram is

The subalgebra of Oq−1(M4,8(K)) generated by the xi,j appearing in (53) is clearly isomorphic
to the partition subalgebra Oq−1(Yλ(K)) of Oq−1(M4,4(K)).

The following is a more explicit statement of [41, Theorem 4.7].

Theorem 9.12. There is an isomorphism θ : So(γ)
∼=−→ Oq−1(Yλ(K)) such that

• θ(m̃i,aj) = xm+1−i,n−m+1−j for each (i, aj) ∈ Lγ;

• θ−1(xi,j) = ˜mm+1−i,an−m+1−j for each (i, j) ∈ Yλ.

Proof. When g is the isomorphism So(γ)
∼=−→ Oq(Mm,n,γ(K)) given in (48) and f is the isomor-

phism Oq(Mm,n,γ(K))
∼=−→ Oq−1(Yλ(K)) given in Lemma 9.10, the desired isomorphism θ is given

by f ◦ g.

58



We may pass the action ofH on So(γ) through θ to get an action ofH onOq−1(Yλ(F)) described
by

(α1, . . . , αn) · xi,j = α−1
γi
αan−m+1−jxi,j (54)

for all (α1, . . . , αn) ∈ H and all (i, j) ∈ Yλ. With this action of H on Oq−1(Yλ(F)), the isomor-
phism θ is H-equivariant.

BWARNINGB Because it allows the isomorphism θ to be H-equivariant, the H-action on

Oq−1(Yλ(K)) which we shall use is that given in (54); this is NOT the usual action of H on
Oq−1(Yλ(K)) (which is the restriction of the action of H on Oq−1(Mm,n−m(K))).

In spite of the warning above, the following lemma shows that in fact we may use the term
H-prime ideal of Oq−1(Yλ(F)) without ambiguity (cf. commentary in [41] before Theorem 4.8).

Lemma 9.13. The same subsets (and in particular the same prime ideals) of Oq−1(Yλ(F)) are
invariant under H whether one uses the action of H described in (54) or the restriction of the
action of H on on Oq−1(Mm,n−m(K)).

Proof. Let us use “·” to denote the action of H on Oq−1(Yλ(F)) transferred through θ from
the action on So(γ) (described in (54)), let us use “#” to denote the standard action of H on
Oq−1(Yλ(F)), and let us fix any α = (α1, . . . , αn) ∈ H.

Define α′ = (α′1, . . . , α
′
n), α′′ = (α′′1, . . . , α

′′
n) ∈ H by α′i = α−1

γi
for all i ∈ J1,mK, α′m+j =

αan−m+1−j for all j ∈ J1, n − mK, α′′γi = α−1
i for all i ∈ J1,mK and α′′an−m+1−j

= αm+j for all
j ∈ J1, n−mK.

One checks easily that if (i, j) ∈ Yλ, then α · xi,j = α′#xi,j and α#xi,j = α′′ · xi,j. Since these
xi,j generate Oq−1(Yλ(K)), we have α · x = α′#x and α#x = α′′ · x for all x ∈ Oq−1(Yλ(K)). The
result follows.

9.5 The correspondence betweenH-primes and Cauchon-Le diagrams

Recall that we have set {a1 < · · · < an−m} = J1, nK \ γ and that all elements of Lγ take the form
(i, aj) for some i ∈ J1,mK and some j ∈ J1, n−mK.

When σ is the automorphism of Oq−1(Yλ(K)) which multiplies each xi,j by q, the H-equivariant

isomorphism θ : So(γ)
∼=−→ Oq−1(Yλ(K)) (from Theorem 9.12) and the H-equivariant dehomogeni-

sation isomorphism

So(γ)[y±1;σ]
∼=−→ (Oq(Gmn(K))/〈Πγ〉)[γ−1]

given in (46) induce an H-equivariant isomorphism

Φ : Oq−1(Yλ(K))[y±1;σ]
∼=−→ (Oq(Gmn(K))/〈Πγ〉)[γ−1]

xi,j  ˜mm+1−i,an−m+1−j ((i, j) ∈ Yλ)
y  γ.

(55)

whose inverse we shall denote by Ψ.

Remark 9.14. Recall that the dehomogenisation isomorphism

So(γ)[y±1;σ]
∼=−→ (Oq(Gmn(K))/〈Πγ〉)[γ−1]

extends the inclusion So(γ) ↪→ (Oq(Gmn(K))/〈Πγ〉)[γ−1], so that for any x ∈ So(γ), we have
Ψ(x) = θ(x) ∈ Oq−1(Yλ(K)).
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By [41, Theorem 5.4], there is a bi-increasing bijection

ξ : H−Specγ(Oq(Gmn(K)))
∼=−→ H−Spec(Oq−1(Yλ(K))) (56)

such that
ξ(P ) = Ψ(P [γ−1]) ∩ Oq−1(Yλ(K))

for any P ∈ H−SpecγOq(Gmn(K)) (with the convention that P := P/〈Πγ〉) and ξ−1(Q) is the
preimage in Oq(Gmn(K)) of

Φ

(⊕
i∈Z

Qyi

)
∩ (Oq(Gmn(K))/〈Πγ〉) .

for any Q ∈ H−Spec(Oq−1(Yλ(K))). Recall the one-to-one correspondence (17) (first estab-
lished in [41, Theorem 3.5]) between the H-prime ideals of Oq−1(Yλ(K)) and the Cauchon-Le
diagrams on the Young diagram Yλ. Composing this correspondence with ξ gives the one-to-one
correspondence

H− SpecγOq(Gmn(K))←→ Cauchon-Le diagrams on Yλ (57)

which was established in [41, Corollary 5.5]: any P ∈ H− SpecγOq(Gmn(K)) corresponds to the
Cauchon-Le diagram of the H-prime ideal ξ(P ) of Oq−1(Yλ(K)) and any Cauchon-Le diagram C
on the Young diagram Yλ corresponds to the image under ξ−1 of theH-prime ideal ofOq−1(Yλ(K))
which has Cauchon-Le diagram C.

9.6 Quantum Plücker coordinates in H-primes

Fix P ∈ H − SpecγOq(Gmn(K)) and denote by C the Cauchon-Le diagram on Yλ which corre-
sponds to P under (57). We seek to identify those quantum Plücker coordinates that belong to P
by considering the Postnikov graph of C. Recall that by the definition of H−Specγ(Oq(Gmn(K)))
(see the beginning of Section 9.1), if α � γ then α ∈ P ; so we need only consider α ≥ γ. Fix
such an α ∈ Π. Notice that there exist 1 ≤ i1 < · · · < it ≤ m and 1 ≤ j1 < · · · < jt ≤ n −m
such that ajl > γil for all l = 1, . . . , t and α = [(γ \ {γi1 , . . . , γit}) t {aj1 , . . . , ajt}].

Notice that when h0 = (α1, . . . , αn) ∈ H is such that αi = q2 if i /∈ {γ1, . . . , γm} and αi = q oth-
erwise, the isomorphism σ of Oq−1(Yλ(K)) (which multiplies each xi,j ((i, j) ∈ Yλ) by q) coincides
with the action of h0. Moreover h0 · y = qmy by (47). Hence the algebra Oq−1(Yλ(K))[y±1;σ],
along with its H-action, satisfies [40, Hypothesis 2.1]. We shall use this fact in the proof of the
following proposition.

Proposition 9.15. The condition that α belongs to P is equivalent to the condition that Ψ(ᾱγ̄−1)
belongs to ξ(P ).

Proof. By [40, Lemma 2.2], we have
⊕

i∈Z ξ(P )yi = Ψ((P/〈Πγ〉)[γ−1]), so that the isomorphism
Ψ induces an isomorphism

(Oq(Gmn(K))/〈Πγ〉)[γ−1]

(P/〈Πγ〉)[γ−1]

∼=−→
Oq−1(Yλ(K))[y±1;σ]⊕

i∈Z ξ(P )yi
,

which in turn induces an isomorphism

Ψ :
Oq(Gmn(K))

P
[γ−1]

∼=−→
Oq−1(Yλ(K))[y±1;σ]⊕

i∈Z ξ(P )yi
.
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Now, α ∈ P if and only if ᾱγ̄−1 = 0 in (Oq(Gmn(K))/P )[γ̄−1], and this is true if and only if
Ψ(ᾱγ̄−1) = 0. Since

Ψ(ᾱγ̄−1) = Ψ(ᾱγ̄−1) ∈ Oq−1(Yλ(K))[y±1;σ]/
⊕
i∈Z

ξ(P )yi,

we find that α ∈ P if and only if Ψ(ᾱγ̄−1) ∈
⊕

i∈Z ξ(P )yi.
However the element ᾱγ̄−1 of (Oq(Gmn(K))/〈Πγ〉)[γ−1] in fact belongs to So(γ), so that

Ψ(ᾱγ̄−1) ∈ Oq−1(Yλ(K)) by Remark 9.14; hence α ∈ P if and only if

Ψ(ᾱγ̄−1) ∈

(⊕
i∈Z

ξ(P )yi

)
∩ Oq−1(Yλ(K)) = ξ(P ).

For the proof of the next theorem, we shall need two sets of relations, known to hold in quan-
tum grassmannians, called the generalised quantum Plücker relations and the quantum Muir
Law of extensible minors.

Theorem 9.16.

1. Generalised quantum Plücker relations [31, Theorem 2.1]:
Let J1, J2, K ⊆ J1, nK be such that |J1|, |J2| ≤ m and |K| = 2m− |J1| − |J2| > m. Then∑

K′tK′′=K

(−q)`(J1;K′)+`(K′;K′′)+`(K′′;J2)[J1 tK ′][K ′′ t J2] = 0, (58)

where for any two sets I, J of integers, `(I; J) denotes the cardinality of the set {(i, j) ∈
I × J | i > j}.

2. Quantum Muir Law (adapted from [42, Proposition 1.3]):
Let r be a positive integer. For s ∈ J1, rK, let Is, Js be m-element subsets of J1, nK and let
cs ∈ F be such that

∑r
s=1 cs[Is][Js] = 0 in Oq(Gmn(F)). Suppose that D is a subset of J1, nK

such that (
⋃r
s=1 Is) ∪ (

⋃r
s=1 Js) does not intersect D. Then in Oq(Gm+|D|,n(F)), we have

r∑
s=1

cs[Is tD][Js tD] = 0. (59)

Before reading the following proof, the reader might want to revisit the construction, given in
Notation 9.9, of the partition λ from the quantum Plücker coordinate γ.

Theorem 9.17. Let α ∈ Π with α ≥ γ, and write α = [(γ \ {γi1 , . . . , γit}) t {aj1 , . . . , ajt}] with
1 ≤ i1 < · · · < it ≤ m, 1 ≤ j1 < · · · < jt ≤ n−m and ajl > γil for all l = 1, . . . , t.

The isomorphism

Ψ : (Oq(Gmn(K))/〈Πγ〉)[γ−1]
∼=−→ Oq−1(Yλ(K))[y±1;σ]

sends ᾱγ̄−1 to

(−q)`({γi1 ,...,γit}; {aj1 ,...,ajt})[i1 · · · it | n−m+ 1− jt · · ·n−m+ 1− j1].
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Proof. Suppose that t = 1. Then ᾱγ̄−1 = [(γ \ {γi1}) t {aj1}] = mm+1−i1,aj1 γ̄
−1 = ˜mm+1−i1,aj1 ,

which is sent by Ψ to xi1,n−m+1−j1 = [i1 | n −m + 1 − j1]. Since `({γi1}; {aj1}) = 0, the claim
holds.

We proceed by induction on t. (In order to keep the notation managable here, we denote a
singleton set by its element; that is, we write a singleton set {z} simply as z.)

Let us set ã = {aj2 , . . . , ajt} and γ̃ = {γi1 , . . . , γit}. Applying the generalised quantum Plücker
relations (58) with J1 = ã, J2 = ∅, K = aj1 t γ̃, and noticing that `(γil ; (aj1 t γ̃) \ γil) =
`(γil ; aj1) + l − 1 (for all l = 1, . . . , t) and `(ã; aj1) = t − 1, we see that the following holds in
Oq(Gt,n(F)):

t∑
l=1

(−q)`(ã;γil )+`(γil ;aj1 )+l−1[ã t γil ][(aj1 t γ̃) \ γil ] + (−q)t−1+`(aj1 ;γ̃)[aj1 · · · ajt ][γ̃] = 0.

Notice that no element of γ \ γ̃ appears in any of the quantum Plücker coordinates in the
above display, so that the quantum version of Muir’s Law (59) with D = γ \ γ̃ shows that in
Oq(Gt+|D|,n(F)) = Oq(Gmn(F)), we have

t∑
l=1

(−q)`(ã;γil )+`(γil ;aj1 )+l−1[(ã t γil) t (γ \ γ̃)] [

(γ\γil )taj1︷ ︸︸ ︷
((aj1 t γ̃) \ γil) t (γ \ γ̃)]

+(−q)t−1+`(aj1 ;γ̃)

α︷ ︸︸ ︷
[(γ \ γ̃) t {aj1 , . . . , ajt}]

γ︷ ︸︸ ︷
[γ̃ t (γ \ γ̃)] = 0;

that is,

t∑
l=1

(−q)`(ã;γil )+`(γil ;aj1 )+l−1[(ã t γil) t (γ \ γ̃)] [(γ \ γil) t aj1 ] + (−q)t−1+`(aj1 ;γ̃)αγ = 0.

Let s be maximal such that aj1 > γis , so that in S(γ) = Oq(Gmn(F))/〈Πγ〉, we have [(γ \ γil) t aj1 ] =
0 for l > s. Notice that if l ≤ s, then `(ã; γil) = t− 1 and `(γil ; aj1) = 0, while `(aj1 ; γ̃) = s; so
that we may conclude from the above display that the following holds in S(γ):

ᾱγ̄ = −
s∑
l=1

(−q)l−1−s[(ã t γil) t (γ \ γ̃)]mm+1−il,aj1 .

Now [42, Lemma 3.1.4 (v)] gives γmm+1−il,aj1 = qmm+1−il,aj1γ for all l = 1, . . . , s, so that in
So(γ), we have

ᾱγ̄−1 = −q
s∑
l=1

(−q)l−1−s [(ã t γil) t (γ \ γ̃)] γ−1mm+1−il,aj1γ
−1.

Now if we write [îl | ̂n−m+ 1− j1] for [i1 · · · îl · · · it | n −m + 1 − jt · · ·n −m + 1 − j2] the
induction hypothesis gives

Ψ(ᾱγ̄−1) =
s∑
l=1

(−q)l−s(−q)`({γi1 ,...,γ̂il ,...,γit},ã) [îl | ̂n−m+ 1− j1]xil,n−m+1−j1 .

For l ≤ s, we have

`({γi1 , . . . , γit}; {aj1 , . . . , ajt})
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= `({γi1 , . . . , γ̂il , . . . , γit}, ã) + `(γil , {aj1 , . . . , ajt}) + `({γi1 , . . . , γit}; aj1)
= `({γi1 , . . . , γ̂il , . . . , γit}, ã) + 0 + t− s.

Now

Ψ(ᾱγ̄−1) =
s∑
l=1

(−q)`({γi1 ,...,γit}; {aj1 ,...,ajt})+l−t [îl | ̂n−m+ 1− j1]xil,n−m+1−j1 .

If l > s, then aj1 < γil and hence |{j | aj < γil}| ≥ j1. Now since |{j | aj < γil}| = γil − il (see
Notation 9.9), we have

γil − il ≥ j1 for all l > s. (60)

If l > s, then (60) shows that n−m+ 1− j1 > n−m+ il−γil and hence (il, n−m+ 1− j1) /∈ Yλ
since row il of the Young diagram Yλ has only λil = n−m+ il− γil squares (again see Notation
9.9), so that our convention (see Section 2.1) says that xil,n−m+1−j1 = 0 in Oq−1(Yλ(K)). Hence
we get the following expression for Ψ(ᾱγ̄−1):

Ψ(ᾱγ̄−1) = (−q)`({γi1 ,...,γit}; {aj1 ,...,ajt})
t∑
l=1

(−q−1)t−l [îl | ̂n−m+ 1− j1]xil,n−m+1−j1 .

Quantum Laplace expansion in Oq−1(Yλ(K)) with the last column on the right (see Corollary
2.6(2))1 shows that, as required, we have

Ψ(ᾱγ̄−1) = (−q)`({γi1 ,...,γit}; {aj1 ,...,ajt})[i1 · · · it | n−m+ 1− jt · · ·n−m+ 1− j1].

For later use, we also compute the image of a pseudo quantum minors of Oq−1(Yλ(K)) by Ψ−1.

Corollary 9.18. Let [i1 · · · it | i′1 · · · i′t] be a nonzero pseudo quantum minor in Oq−1(Yλ(K)). Set
j1 := n−m+ 1− i′t < · · · < jt := n−m+ 1− i′1 and α := [γ \ {γi1 , . . . , γit} t {aj1 , . . . , ajt}].

Then α > γ and

Ψ−1([i1 · · · it | i′1 · · · i′t]) = (−q)−`({γi1 ,...,γit}; {aj1 ,...,ajt})ᾱγ̄−1.

Proof. We claim that
γil < ajl for all l = 1, . . . , t (61)

or equivalently that there is a permutation σ ∈ St such that

γiσ(l) < ajl for all l = 1, . . . , t. (62)

Define C0 to be the Cauchon-Le diagram on Yλ where all boxes are white (this corresponds to
the H-prime ideal 〈0〉 of Oq−1(Yλ(K))). Since [i1 · · · it | i′1 · · · i′t] is nonzero, Theorem 5.4 (with
P = 〈0〉) implies that there is a vertex-disjoint path system in Post(C0) from {ri1 , . . . , rit} to
{ci′1 , . . . , ci′t}. In the labeling of source and target vertices introduced just after Notation 9.9
(see (52)), this is a vertex-disjoint path system from {γi1 , . . . , γit} to {aj1 , . . . , ajt}; it follows
immediately that (62) holds, that is (61) holds, as required.

Recall the biincreasing bijection

ξ : H− SpecγOq(Gmn(K))
∼=−→ H− SpecOq−1(Yλ(K))

given in (56). As in immediate consequence of Proposition 9.15 and Theorem 9.17, we get

1Care is needed with the parameters q and q−1 here because in the proof of Theorem 9.17, we are working
with a partition subalgebra of Oq−1(Mm,n−m(K)), whereas Corollary 2.6 is stated for partition subalgebras of
Oq(Mm,n(K)).
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Corollary 9.19. Let α ∈ Π with α > γ, and write α = [(γ \ {γi1 , . . . , γit}) t {aj1 , . . . , ajt}] with
1 ≤ i1 < · · · < it ≤ m, 1 ≤ j1 < · · · < jt ≤ n−m and ajl > γil for all l = 1, . . . , t.

The condition that α belongs to P is equivalent to the condition that the pseudo quantum minor

[i1 · · · it | n−m+ 1− jt · · ·n−m+ 1− j1] = (−q)−`({γi1 ,...,γit}; {aj1 ,...,ajt})Ψ(ᾱγ̄−1)

of Oq−1(Yλ(K)) belongs to the H-prime ideal ξ(P ) of Oq−1(Yλ(K)).

Recall from Notation 9.9 that we have set λi = n−m− (γi− i) for each i ∈ J1,mK, chosen c as
large as possible such that λc 6= 0, and defined the partition λ by λ = (λ1, . . . , λc). When d = λ1,
if we can show that {i1, . . . , it} ⊆ J1, cK and {n−m+1−jt, . . . , n−m+1−j1} ⊆ J1, dK, then the
question of whether or not the pseudo quantum minor [i1 · · · it | n−m+ 1− jt · · ·n−m+ 1− j1]
of Oq−1(Yλ(F)) is in ξ(P ) can be settled by the graph-theoretic method of Theorem 5.4.

Lemma 9.20. We have

(i) {i1, . . . , it} ⊆ J1, cK and

(ii) {n−m+ 1− jt, . . . , n−m+ 1− j1} ⊆ J1, dK.

Proof. (i) Clearly it will suffice to show that λit > 0. Recall from Notation 9.9 that

λit = n−m− (γit − it)
= n−m− |{a ∈ J1, nK \ γ | a < γit}|.

Now if λit = 0, then |{a ∈ J1, nK \ γ | a < γit}| = n − m so that every a ∈ J1, nK \ γ =
{a1 < · · · < an−m} satisfies a < γit ; this is impossible since ajt > γit .

(ii) Clearly it will suffice to show that λ1 ≥ n − m + 1 − j1. Recall from Notation 9.9 that
λ1 = n − m − (γ1 − 1), so that it will suffice to show that j1 ≥ γ1. Since α > γ, γ
cannot be the largest element [n −m + 1 · · ·n] of Π with respect to the partial order on
Π, so that γ1 ∈ J1, n − mK. Notice that aj = j for all j < γ1 and aγ1 > γ1, so that
inf{j ∈ J1, n−mK | aj > γ1} = γ1. Since aj1 > γi1 ≥ γ1, we must have j1 ≥ γ1, as required.

This brings us to the main result of this section, which tells us that α belongs to P if and
only if there exists no vertex-disjoint R(I,J)-path system in the Postnikov graph of C, where
I := {i1, . . . , it} and J := {n −m + 1 − jt, . . . , n −m + 1 − j1}. For the sake of completeness,
we include our conventions in the statement of the theorem.

Theorem 9.21. Assume that q ∈ K∗ is not a root of unity. Let P 6= 〈Π〉 be an H-prime ideal
of Oq(Gmn(K)) and let γ = [γ1 < · · · < γm] be the unique quantum Plücker coordinate such
that P ∈ H−Specγ(Oq(Gmn(K))) (see [41, Theorem 5.1]). Let λ be the partition corresponding
to γ as in Notation 9.9 and let Yλ be the Young diagram of λ. Let C be the Cauchon-Le
diagram on Yλ corresponding to P as in (57). Set {a1 < · · · < an−m} = J1, nK \ γ. Let
α ∈ Π be such that α > γ and let 1 ≤ i1 < · · · < it ≤ m, 1 ≤ j1 < · · · < jt ≤ n − m
be such that α = [(γ \ {γi1 , . . . , γit}) t {aj1 , . . . , ajt}] and ajl > γil for all l ∈ J1, tK. Then
the quantum Plücker coordinate α belongs to P if and only if there does not exist a vertex-
disjoint R(I,J)-path system in the Postnikov graph Post(C) of C, where I := {i1, . . . , it} and
J := {n−m+ 1− jt, . . . , n−m+ 1− j1}.

Proof. This follows immediately from Corollary 9.19, Lemma 9.20, and Theorem 5.4.
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For example, let us consider the Cauchon-Le diagram below, and denote by P the corresponding
H-prime in Oq(Gmn(K)). Then, P belongs to H−Spec[135](Oq(G36(K)))

1

3
2

2
3

1

• •

• •

•

Moreover, there is a vertex disjoint set of paths from {1, 2} to {2, 3} so [245] is not in the
prime P . On the other hand, there is no vertex disjoint set of paths from {1, 2} to {1, 2} so [456]
is in P .

As the reader has seen on the previous examples, the labeling of the sources and sinks is not
helpful when one wants to decide whether a given quantum Plücker coordinate belongs to a
specific H-prime (given by its Cauchon-Le diagram). It is more natural to label the sources of
Post(C) by the γi (that is, one replaces source ri by γi), and the sinks by the aj from the left (that
is, sink cn−m+1−j is replaced by aj). Note that this labeling coincide with the path-numbering
introduced after Notation 9.9 (see also (52)).

We denote by Post′(C) the Postnikov graph Post(C) with this alternative diagram. With this
new convention, the example above becomes:

1

2
3

4
5

6

• •

• •

•

Moreover, there is a vertex disjoint set of paths from {1, 3} to {2, 4} so [245] = [γ\{1, 3}∪{2, 4}]
is not in the prime P . On the other hand, there is no vertex disjoint set of paths from {1, 3} to
{4, 6} so [456] = [γ \ {1, 3} ∪ {4, 6}] is in P .

We finish this section by restating Theorem 9.21 with the new labeling of the sources and sinks
of Post(C).

Theorem 9.22. Assume that q ∈ K∗ is not a root of unity. Let P 6= 〈Π〉 be an H-prime ideal
of Oq(Gmn(K)) and let γ = [γ1 < · · · < γm] be the unique quantum Plücker coordinate such that
P ∈ H−Specγ(Oq(Gmn(K))) (see [41, Theorem 5.1]). Let λ be the partition corresponding to
γ as in Notation 9.9 and let Yλ be the Young diagram of λ. Let C be the Cauchon-Le diagram
on Yλ corresponding to P as in (57). Set {a1 < · · · < an−m} = J1, nK \ γ. Let α ∈ Π be
such that α > γ and let 1 ≤ i1 < · · · < it ≤ m, 1 ≤ j1 < · · · < jt ≤ n − m be such that
α = [(γ \{γi1 , . . . , γit})t{aj1 , . . . , ajt}] and ajl > γil for all l ∈ J1, tK. Then the quantum Plücker
coordinate α belongs to P if and only if there does not exist a vertex-disjoint R({γi1 ,...,γit},{aj1 ,...,ajt})-
path system in the Postnikov graph Post′(C) of C.

10 H-primes in Oq(Gmn(K)): generation

In this section, we prove the main result of this article. More precisely, we prove that H-primes
of Oq(Gmn(F)) are generated by quantum Plücker coordinates when q is transcendental (over
the prime field of F).

In order to prove this result, we proceed as follows. First, we use noncommutative dehomogeni-
sation to prove that the result is true up to localisation. Then we use results from [23] to prove
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the main result under the assumption that certain ideals of the homogeneous coordinate ring of
the corresponding grassmannian are prime. Using results of [33, 47] on positroid varieties, we
conclude that the main result is true over an algebraically close field. Finally, we extend the
result to arbitrary fields using ideas from [20].

10.1 Noncommutative dehomogenisation over R

Throughout this section, let R be a commutative noetherian domain containing a nonroot of
unity q ∈ R∗. Let F denote the field of fractions of R, and let γ ∈ Π. We set {a1 < · · · <
an−m} := J1, nK \ γ.

We need to check that the dehomogenisation isomorphism obtained in Section 9 restricts to
the quantum grassmannian over a commutative noetherian domain R from the quantum grass-
mannian over the field of fractions F of R.

Recall that Oq(Gmn(R)) and Oq(Gmn(F)) are both N-graded, with all quantum Plücker coor-
dinates in degree one.

Set S(γ)R := Oq(Gmn(R))/〈Πγ〉R and S(γ)F := Oq(Gmn(F))/〈Πγ〉F. (Here, we use a subscript

F in order to avoid confusion.) There is a natural map φ : Oq(Gmn(R)) −→ S(γ)F induced
by the inclusion of Oq(Gmn(R)) into Oq(Gmn(F)) followed by the natural homomorphism onto
the factor S(γ)F. Obviously, 〈Πγ〉R ⊆ ker(φ) and we claim that ker(φ) = 〈Πγ〉R. Suppose that
a ∈ ker(φ). Note that any standard monomial that involves an α 6≥ γ is certainly in 〈Πγ〉R; so,
without loss of generality, assume that a =

∑
riSi for some ri ∈ R and Si standard monomials

that do not involve such α. Let b denote the coset b+〈Πγ〉F. Then,
∑

riSi = φ(a) = 0. However,
S(γ)F is a graded quantum algebra with a straightening law, with the Si forming a basis over F,
by [42, Corollary 1.2.6]; and so each ri = 0. Hence, each ri ∈ 〈Πγ〉F ∩ R = 0. Thus, a ∈ 〈Πγ〉R,
as required to show that ker(φ) = 〈Πγ〉R.

It follows that S(γ)R ⊆ S(γ)F, via the inclusion a + 〈Πγ〉R −→ a + 〈Πγ〉F. As a consequence,
S(γ)R is a domain and 〈Πγ〉R is a completely prime ideal of Oq(Gmn(R)). Also, S(γ)R and S(γ)F
inherit an N-grading from the N-grading on Oq(Gmn(R)) and Oq(Gmn(F)), respectively; and the
inclusion we have just obtained preserves the N-grading on S(γ)R and S(γ)F. Each of these two
rings is N-graded and the inclusion respects the graded components.

It follows easily from [42, Theorem 3.4.2] that γ commutes up to a power of q with any α for
any α > γ. Thus, γ is a regular normal element in both S(γ)R and S(γ)F, and we may invert
the powers of γ to obtain S(γ)R[γ −1] ⊆ S(γ)F[γ

−1]. Each of these rings is Z-graded and the
inclusion respects the graded components. In particular, considering the zero components, we
see that S0(γ)R ⊆ S0(γ)F. (Note the use of subscripts compared to previous sections. Again this
is just to avoid confusion.)

By Theorem 9.12, there is an isomorphism θ : S0(γ)F
∼=−→ Oq−1(Yλ(F)) such that, with the

notation of Theorem 9.12, we have:

θ(m̃i,aj) = xm+1−i,n−m+1−j

for each (i, aj) ∈ Lγ; and
θ−1(xi,j) = ˜mm+1−i,an−m+1−j

for each (i, j) ∈ Yλ.
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This isomorphism θ clearly restricts to an isomorphism S0(γ)R ∼= Oq−1(Yλ(R)). Then the
noncommutative dehomogenisation isomorphism

Ψ : S(γ)F[γ
−1]

∼=−→ Oq−1(Yλ(F))[y±1;σ] (63)

from Section 9.5 (see (55)) restricts to an isomorphism

S(γ)R[γ −1]
∼=−→ Oq−1(Yλ(R))[y±1;σ], (64)

which we shall also call Ψ, by tracing through the maps above. We summarise our discussion in
the following proposition.

Proposition 10.1 (Dehomogenisation over R). Let γ ∈ Π, and set {a1 < · · · < an−m} :=
J1, nK \ γ. Then there is an R-isomorphism

Ψ : S(γ)R[γ −1]
∼=−→ Oq−1(Yλ(R))[y±1;σ] (65)

defined by Ψ(γ̄) = y and Ψ( ˜mm+1−i,an−m+1−j) = xi,j for all (i, j) ∈ Yλ.

10.2 Quantum Plücker coordinates generate H-primes: algebraically
closed case

In this section, we set R := K[q±1] with q transcendental over a field K, and F := K(q±1) denotes
the field of fractions of R.

The aim in this section is to show that any H-prime ideal in Oq(Gmn(F)) is generated by the
quantum Plücker coordinates that it contains, under the assumption that the corresponding list
of (classical) Plücker coordinate generates a prime ideal of the homogeneous coordinate ring of
the grassmannian Gmn(K).

Let P be a H-prime ideal in Oq(Gmn(F)). As the augmentation ideal is clearly generated by
quantum Plücker coordinates, we assume that P is distinct from the augmentation ideal.

As usual, we denote by γ = [γ1 < · · · < γm] the unique quantum Plücker coordinate such that
γ /∈ P but α ∈ P for all α � γ. Let λ be the partition associated with γ and let C be the
Cauchon-Le diagram on Yλ corresponding to P .

Notation 10.2. 1. We set PC
λ := {α ∈ Π | α ∈ P}.

2. We define {a1 < · · · < an−m} := J1, nK \ γ.

3. Let α ∈ Π be such that α > γ. Then there exists 1 ≤ i1 < · · · < it ≤ m, 1 ≤ j1 < · · · <
jt ≤ n−m such that α = [(γ \ {γi1 , . . . , γit})t{aj1 , . . . , ajt}] and ajl > γil for all l ∈ J1, tK.

We set Iα := {γi1 , . . . , γit} and Jα := {aj1 , . . . , ajt}.

With the above notation, it follows from Theorem 9.22 that

PC
λ = Πγ t {α ∈ Π | α > γ and there is no vertex-disjoint R(Iα,Jα)-path system in Post′(C)}.

Lemma 10.3. The ideal (P/〈Πγ〉)[γ−1] is completely prime in (Oq(Gmn(F))/〈Πγ〉)[γ−1] and is
generated as a right ideal by PC

λ .
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Proof. Note that complete primeness is clear.
We use the notation from Sections 9.5 and 9.6. In particular,we still denote by ξ the biincreasing

bijection

ξ : H− SpecγOq(Gmn(F))
∼=−→ H− SpecOq−1(Yλ(F))

given in (56).
Recall thatQ := ξ(P ) = Ψ(P [γ−1])∩Oq−1(Yλ(F)) and P = Φ

(⊕
i∈ZQy

i
)
∩(Oq(Gmn(F))/〈Πγ〉).

As the Cauchon-Le diagram associated to Q is C, it follows from Theorems 5.4 and 7.12 that
Q is generated as a right ideal by the pseudo quantum minors [I | J ] of Oq−1(Yλ(F)) such that
there are no vertex-disjoint R(I,J)-path system in Post(C).

Hence we deduce from Theorem 9.17 that P [γ−1] = Φ
(⊕

i∈ZQy
i
)

is generated by PC
λ as a

right ideal of (Oq(Gmn(F))/〈Πγ〉)[γ−1], as desired.

As extension and contraction are inverse bijections between the prime spectra ofOq(Gmn(F))/〈Πγ〉
and (Oq(Gmn(F))/〈Πγ〉)[γ−1], we deduce from the previous lemma the following remark.

Remark 10.4. If PC
λ generates a prime ideal in Oq(Gmn(F)), then 〈PC

λ 〉F = P .

So, we are aiming to show that the set PC
λ generates a prime ideal in Oq(Gmn(F)). Let 〈PC

λ 〉R
denote the ideal of Oq(Gmn(R)) generated by PC

λ .

Notation 10.5. Set {α1, . . . , αs} := PC
λ . To avoid confusion later, in this section, we use over-

bars to denote images modulo q−1 and we denote the image of γ in S(γ)R := Oq(Gmn(R))/〈Πγ〉R
by µ. Similarly, we write µi for the image of αi in S(γ)R, for i = 1, . . . , s.

Before proving the main result of this section, we establish an analogue of Lemma 10.3 over
R.

Lemma 10.6. The ideal (〈PC
λ 〉R/〈Πγ〉R)[µ−1] is completely prime in (Oq(Gmn(R))/〈Πγ〉R)[µ−1]

and is generated as a right ideal by µ1, . . . , µs.

Proof. As in Theorem 8.4 (with q replaced by q−1), ΠC
λ denotes the set of pseudo quantum

minors [I | J ] in Oq−1(Yλ(R)) for which there are no vertex disjoint families of R(I,J)-paths in
the Postnikov graph Post(C) of C.

Recall that, where S(γ)R = Oq(Gmn(R))/〈Πγ〉R and S0(γ)R ∼= Oq−1(Yλ(R)), Corollaries 9.18
and 9.19 show that the noncommutative dehomogenisation isomorphism

Ψ : S(γ)R[µ−1]
∼=−→ S0(γ)R[y±1;σ], (66)

established in (65), sends the right ideal of Sγ(R)[µ−1] generated by µ1, . . . , µs (or equivalently by
µ1µ

−1, . . . , µsµ
−1) to the right ideal of Oq−1(Yλ(R))[y±1;σ] generated by ΠC

λ , which is a two-sided
prime ideal by Theorem 8.4. The result follows immediately.

We are now ready to prove the main result of this section. To state it, we need to introduce a
few additional notation.

Set BR := (〈PC
λ 〉R/〈Πγ〉R)[µ−1] ∩ Oq(Gmn(R))/〈Πγ〉R, and note that BR is completely prime.

Set AR := 〈PC
λ 〉R/〈Πγ〉R. Clearly, AR ⊆ BR.

Similarly, define AF and BF.

We wish to prove that AF = BF. If we can do this then AF is completely prime (since BF is
the localisation at R∗ of the completely prime ideal BR and hence BF is itself completely prime)
and it follows that 〈PC

λ 〉F is completely prime.

The idea is to use [23, Proposition 2.1] whose right-module version is reproduced next for the
reader’s convenience.
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Proposition 10.7. Let k ⊂ K be a field extension and q ∈ K \ k transcendental over k (so
that the k-subalgebra R = k[q, q−1] ⊂ K is a Laurent polynomial ring). Let us denote reduction
modulo q−1 by overbars, that is, given any right R-module homomorphism φ : A→ B, we write
φ : A→ B for the induced map A/(q − 1)A→ B/(q − 1)B.

Let A
φ−→ B

ψ−→ C be a complex of right R-modules, such that C is torsionfree. Suppose that
there are right R-module decompositions

A =
⊕
j∈J

Aj, B =
⊕
j∈J

Bj, C =
⊕
j∈J

Cj

such that Bj is finitely generated, φ(Aj) ⊆ Bj, and ψ(Bj) ⊆ Cj for all j ∈ J .

If the reduced complex A
φ−→ B

ψ−→ C is exact, then so is

A⊗R K
id⊗φ // B ⊗R K

id⊗ψ // C ⊗R K.

We would like to use this result with k = K and A := AR, B := BR while C := 0.

If we assign degree one to each (image of a) quantum Plücker coordinate, then A and B both
have R-module decompositions of the type required by the proposition, with J = Z.

Let φ : A −→ B be inclusion and ψ : B −→ C be the zero map. We aim to show that

A
φ−→ B

ψ−→ C

is exact; that is, we aim to show that φ(A) = B, and to do this it is enough to show that
BR ⊆ AR + (q − 1)BR.

Let b ∈ BR. Then there is an i ≥ 0 with bµi ∈ AR. Reducing modulo q − 1, we obtain
bµi ∈ 〈µ1, . . . , µt〉.

Assume that 〈µ1, . . . , µt〉 is a prime ideal and µ is not in this ideal; then we deduce
that b ∈ 〈µ1, . . . , µt〉.

Hence, b = µ1c1 + · · ·+ µtct + (q − 1)d for some ci, d ∈ S(γ)R.

Now, µ1c1 + · · · + µtct ∈ AR ⊆ BR; and so (q − 1)d ∈ BR. As BR is completely prime and
q − 1 6∈ BR, we obtain that d ∈ BR and so BR ⊆ AR + (q − 1)BR, as required.

Thus, the conditions of Proposition 10.7 are satisfied, and we deduce that

A⊗R F
id⊗φ // B ⊗R F

id⊗ψ // C ⊗R F

is exact when F = K(q±1).

As C ⊗R F = 0, it follows that A⊗R F = B ⊗R F; that is, AF = BF as right ideals.
The discussion above is summarised in the following proposition.

Proposition 10.8. Let K be a field, and let F := K(q) be the field of fractions of the Laurent
polynomial ring K[q±1]. Assume that 〈µ1, . . . , µt〉 is a prime ideal of the homogeneous coordinate
ring of the classical grassmannian Gmn(F) and µ is not in this ideal. Then P = 〈µ1, . . . , µt〉 is a
(completely) prime ideal of Oq(Gmn(F)), and P is generated by µ1, . . . , µt as a right (resp. left)
ideal.
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Unfortunately, it is not known in general whether 〈µ1, . . . , µt〉 is a prime ideal. It is only known
under the assumption that the base field K is algebraically closed. We thank Thomas Lam for
the explanation below.

Recall that a positroid is a matroid that can be represented by a m×n matrix with nonnegative
maximal minors. In other words, positroids are the set of maximal minors that do not vanish
on an m × n matrix with nonnegative maximal minors. These matroids were introduced and
studied by Postnikov in [48, Definition 3.2] (see also [47, Definition 3]). Crucially for us, Oh
proved that each positroid is exactly the intersection of cyclically shifted Schubert matroids (we
refer the reader to [47, Theorem 6] for more details).

Let K be an algebraic closed field in any finite characteristic. It is shown in [33, Corollary
4.3] that projections of Richardson varieties are compatibly Frobenius split. Positroid varieties
defined in [34, Section 5.2] are special cases of these. By [33, Lemma 4.1], components of inter-
sections of Frobenius split subvarieties are automatically Frobenius split and therefore reduced.
By standard arguments, the “reduced” statement also holds in characteristic 0 (see for example
[7, Section 1.6]).

Since each positroid variety is the (reduced) intersection of cyclically rotated Schubert varieties
by [47], the above comment implies that it must be a scheme-theoretic intersection. It is known
for algebraically closed fields in any characteristic that the ideal of a Schubert variety is linearly
generated by the Plücker variables vanishing on it, see for example [49].

It follows that the ideal of a positroid variety is linearly generated by Plücker variables not in
its positroid. This ideal is prime because a positroid variety is irreducible.

Finally, recall that Postnikov parametrised positroids by Cauchon-Le diagrams in a Young
diagram that fits in a rectangle of size m × n − m. Moreover, [48, Theorem 6.5] (see also
[47, Proposition 13]) shows that the Plücker coordinate α ∈ Π belongs to the positroid asso-
ciated to the Cauchon-Le diagram C on the Young diagram Yλ if and only if there exists a
vertex-disjoint R({γi1 ,...,γit},{aj1 ,...,ajt})-path system in the Postnikov graph Post′(C) of C, where
{a1 < · · · < an−m} = J1, nK \ γ and 1 ≤ i1 < · · · < it ≤ m, 1 ≤ j1 < · · · < jt ≤ n − m with
α = [(γ \ {γi1 , . . . , γit}) t {aj1 , . . . , ajt}] and ajl > γil for all l ∈ J1, tK.

Comparing the above with Theorem 9.22, we obtain that the set µ1, . . . , µt is exactly the set
of Plücker coordinates that don’t belong to the positroid associated to the Cauchon-Le diagram
C. Hence we conclude that 〈µ1, . . . , µt〉 is prime and does not contain µ.

We are now ready to state the main result of this section.

Theorem 10.9. Let K be an algebraically closed field and let F := K(q) be the field of fractions
of the Laurent polynomial ring K[q±1]. Let P be an H-prime ideal of Oq(Gmn(F)).

Then P is generated as a right ideal by the quantum Plücker coordinates contained in P .

Note that if P is the H-prime corresponding to the Cauchon-Le diagram C on the Young
diagram Yλ then the quantum Plücker coordinates that it contains are specified in Theorem 9.21.

In the next section, we extend this result to the quantum grassmannian over any field that
contains a transcendental element q.
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10.3 Quantum Plücker coordinates generate H-primes: general case

In this section, F denotes an field and q ∈ F∗ is not a root of unity.
In order to extend Theorem 10.9 to arbitrary field, we will use an idea from [20] which is based

on the notion of strongly H-rational ideal.

Definition 10.10. Let R be an integral domain that is an F-algebra and supports a rational
action of a torus H. Let P be a completely prime H-prime ideal of R. Then P is strongly
H-rational provided that the set of H-invariant elements in the centre of the division ring of
fractions of R/P is precisely the field F. If all H-prime ideals of R are completely prime and
also strongly H-rational then we say that R is a strongly H-rational F-algebra.

By [8, Theorem II.6.4], quantum nilpotent algebras are strongly H-rational algebras.

In what follows, D(R) will denote the division ring of fractions of an integral domain R that
is a F-algebra, and ZD(R) will denote the centre of this division ring. In all occurences, D(R)
will have an induced H-action from R, and the task will be to show that the set of H-invariant
central elements ZD(R)H := {d ∈ ZD(R) | h · d = d for all h ∈ H} is precisely F.

Lemma 10.11. Let R be a strongly H-rational F-algebra that contains a nonzero normal H-
eigenvector u. Set T := R[u−1] and note that there is a natural induced action of H on T . Let
Q be an H-prime ideal of T . Then T/Q is an integral domain with an induced action of H, and
ZD(T/Q)H = F.

Proof. Note that Q = (Q ∩ R)T and that Q ∩ R is a completely prime ideal of R that does
not contain u. It follows that the image u of u in R/(Q ∩ R) is a nonzero normal element of
R/(Q ∩ R). Also, R/(Q ∩ R) ⊆ T/Q, via the natural map embedding that sends r + Q ∩ R to
r + Q. This map induces an H-isomorphism T/Q ∼= (R/(Q ∩R)) [u−1] which we will consider
to be an identification. Then

D(T/Q) = D((R/(Q ∩R)) [u−1]) = D(R/(Q ∩R)),

where the final equality holds because u−1 ∈ D(R/(Q ∩ R)). Hence ZD(T/Q)H = ZD(R/(Q ∩
R)H = F, as R is a strongly H-rational F-algebra.

Theorem 10.12. The quantum grassmannian Oq(Gmn(F)) is a strongly H-rational algebra.

Proof. Note that the augmentation ideal is clearly strongly H-rational.
Let P be an H-prime ideal of Oq(Gmn(F)) distinct from the augmentation ideal. Suppose that

γ is the quantum Plücker coordinate such that γ 6∈ P but α ∈ P for all α � γ. Then Πγ ⊆ P . Set
Q := P/〈Πγ〉 / S(γ), and note that Q is an H-prime ideal of S(γ). As Oq(Gmn(F))/P ∼= S(γ)/Q,
it is enough to show that Q is strongly H-rational in S(γ).

Set u := γ ∈ S(γ) and recall that u is a nonzero normal element in S(γ). It follows that
u := u + Q is a nonzero normal element of S(γ)/Q. It also follows that Q[u−1] is an H-prime
ideal in S(γ)[u−1] and that S(γ)[u−1]/Q[u−1] ∼= (S/Q)[u−1].

As u−1 ∈ D(S/Q), we see that

ZD(S/Q)H = ZD((S/Q)[u−1])H = ZD(S(γ)[u−1]/Q[u−1])H.

In view of this, it is enough to show that ZD(S(γ)[u−1]/Q[u−1])H = F.

71



In order to prove this latter equality, we use the (H-equivariant) dehomogenisation isomor-
phism (more precisely, we use the H-equivariant isomorphism (55))

So(γ)[y±1;σ] ∼= S(γ)[u−1] .

to transfer the problem into the problem of showing that ZD(So(γ)[y±1;σ]/J)H = F, for each
H-prime ideal J of So(γ)[y±1;σ].

Note that So(γ) is a torsionfree quantum nilpotent algebra, by Theorem 9.12 and Proposi-
tion 3.2. It is then easy to check that So(γ)[y;σ] is also a torsionfree quantum nilpotent algebra.
Hence, So(γ)[y;σ] is strongly H-rational. As y is a nonzero normal H-eigenvector in So(γ)[y;σ],
the equality we desire is obtained by using Lemma 10.11

In order to prove that H-primes of Oq(Gmn(F)) are generated by quantum Plücker coordinates
when q is transcendental, we need results from [20] and [21]. For the reader’s convenience, we
have extracted the necessary results.

Proposition 10.13. Let K ⊆ K be fields, let A be a noetherian K-algebra and let H be a group
acting on A by K-algebra automorphisms.

Assume that all H-prime ideals of A are strongly H-rational. Then the rule P  P ⊗K K
gives a bijection from H−Spec(A) −→ H−Spec(A⊗K K).

Proof. This is a special case of [21, Proposition 3.3] where, in the statement of that proposition,
we set A1 := A,A2 := K,P1 = P, P2 = 0, H1 := H and H2 to be the trivial group.

Lemma 10.14. [20, Lemma 1.3] Let K1 ⊆ K2 be infinite fields and let A be a noetherian K2-
algebra supporting a rational action of a torus H2 := (K∗2)r by K2-algebra automorphisms. Set
H1 := (K∗1)r, which acts on A by restriction of the H2-action. Then the H1-prime ideals of A
coincide with the H2-prime ideals of A.

Proposition 10.15. (c.f. [20, Proposition 1.4]) Let K1 ⊆ K2 be infinite fields, let q ∈ K∗1
be a nonroot of unity and identify the algebra Oq(Gmn(K2)) with Oq(Gmn(K1)) ⊗ K2. Set
Hi := (K∗i )n for i = 1, 2 and let Hi act on Oq(Gmn(Ki)) by Ki-automorphisms in the stan-
dard way. Then the rule P  P ⊗K1 K2 gives a bijection from H1−Spec(Oq(Gmn(K1))) −→
H2−Spec(Oq(Gmn(K2))).

Proof. Set Ai = Oq(Gmn(Ki)) and recall that Hi acts rationally on Ai and that every Hi-prime
ideal P of Ai is stongly Hi-rational.

The action of H1 on A1 extends naturally to an action of H1 on A2 by K2-automorphisms,
and it follows from Proposition 10.13 that the rule P  P ⊗K1 K2 gives a bijection from
H1−Spec(A1) −→ H1−Spec(A2). In view of Lemma 10.14, H1−Spec(A2) = H2−Spec(A2), and
the proposition is proved.

A version of the following theorem is obtained for quantum matrices in [20, Theorem 1.5], and
the proof we give is similar to the proof of that theorem.

Theorem 10.16. Let F be a field that contains an element q which is transcendental (over the
prime field of F). Then every H-prime ideal of Oq(Gmn(F)) is generated as a right (or left) ideal
by the quantum Plücker coordinates that it contains.

Proof. First, let K be the prime subfield of F, and consider the subfield K1 := K(q) ⊆ F, and
identify Oq(Gmn(F)) with Oq(Gmn(K1)) ⊗K1 F. Set H1 := (K∗1)n with the standard action on
Oq(Gmn(K1)). By Proposition 10.15, any H-prime ideal of Oq(Gmn(F)) is of the form P ⊗K1 F
for some H1-prime ideal P of Oq(Gmn(K1)). Hence, it suffices to prove that P is generated, as
a right (or left) ideal by the quantum Plücker coordinates that it contains.
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Now, suppose without loss of generality, that q is transcendental over the algebraic closure
K of K and set H2 := (K∗)n with the standard action on Oq(Gmn(K2)), with K2 = K(q). By
Proposition 10.15, P ⊗K1 K2 is an H2-prime ideal of Oq(Gmn(K2)), and thus, by Theorem 10.9
P ⊗K1 K2 is generated as a right ideal by the set X of quantum Plücker coordinates that it
contains. Note that X is also the set of quantum Plücker coordinates contained in P , and let
P ′ be the right ideal of Oq(Gmn(K1)) generated by X. Then P ′ ⊗K1 K2 = P ⊗K1 K2, and,
consequently, P ′ = P . Therefore, P is generated as a right ideal by X, and similarly as a left
ideal.

11 The link with the total nonnegative grassmannian and

applications

The positroid cell stratification of the totally nonnegative grassmannian has been intensively
studied over the last dozen or so years following Postnikov’s groundbreaking paper [48], see,
for example, [2, 3, 36, 47]. Besides its intrinsic beauty, there are also applications in the study
of partial differential equations [32], scattering amplitudes [4], and juggling [34]. On seeing
Postnikov’s paper, the first two authors observed that the Le diagrams that Postnikov introduced
to parameterise the positroid cells were the same as the diagrams introduced by Cauchon to
study the H-prime spectrum of quantum matrices. This lead to several papers investigating
this connection, culminating in the present work. In the first paper in the series, [41] it was
shown that the positroid cells of the totally nonnegative grassmannian were in natural bijection
with the H-prime spectrum of the quantum grassmannian via what we are now calling Cauchon-
Le diagrams. We also conjectured at the time that this bijection would be a homeomorphism
between the partially ordered sets provided by the positroid cells under closure and the H-prime
spectrum under inclusion. Further, we conjectured that the H-primes would be generated by
the quantum Plücker coordinates that they contain, and that the containment of a quantum
Plücker coordinate in an H-prime ideal could be read off from the Postnikov graph. All of
these conjectures have now been answered in the present work. However, at the time, we
did not have the tools in the quantum setting to verify these conjectures. One setting where
we were able to make progress was for quantum matrices, which occur as the “big cell” in the
quantum grassmannian. The first author had already shown that, in the case of a transcendental
deformation parameter q, each H-prime ideal was generated by the quantum minors that it
contained, [38], verifying a conjecture of Goodearl and the second author, [22]. Yakimov also
produced a proof of this result, [54], and Casteels replaced the transcendental restriction by
the natural condition that q be a not a root of unity, [13]. Casteels’ use of (noncommutative)
Gröbner basis techniques was crucial to our present work.

In two papers with Goodearl, the first two authors were able to show that the membership
problem for quantum minors in H-prime ideals exactly matches to the corresponding problem
for minors belonging to a positroid cell, [24, 25]. Our first task in this section is to show that
the same correspondence holds with respect to (quantum) Plücker coordinates in the quantum
and totally nonnegative grassmannians.

We start by outlining the key properties concerning the positroid cell stratification of the
totally nonnegative grassmannian.

11.1 The positroid stratification of G≥0
mn(R)

The totally nonnegative m × n grassmannian, denoted by G≥0
mn(R), consists of those points in

the m × n real grassmannian which can be represented by a m × n real matrix whose Plücker
coordinates are all ≥ 0.
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The study of the cell decomposition of the totally nonnegative grassmannian was initiated by
Postnikov in [48].

Given a set M of m-element subsets of {1, . . . , n}, the cell in G≥0
mn(R) determined by M, and

denoted by Cell(M), consists of those points p in G≥0
mn(R) for which the Plücker coordinates of

p that are in M are zero, while those not in M are greater than zero. For a given choice of
M, the corresponding cell may well be empty: for example, in the 2 × 4 totally nonnegative
grassmannian the Plücker relation [12][34] − [13][24] + [14][23] = 0 shows that it is impossible
to have a point where [12] = [23] = 0 while the remaining four Plücker coordinates are greater
than zero. (As a precursor to what we are to discuss below, notice that essentially the same
reasoning, using the quantum Plücker relation [12][34]− q[13][24] + q2[14][23] = 0, shows that if
a (completely) prime ideal P in the 2× 4 quantum grassmannian contains [12] and [23] then it
must also contain at least one of [13] and [24].)

Postnikov made the following definition.

Definition 11.1. If Cell(M) is nonempty then Cell(M) is a positroid cell in G≥0
mn(R).

It is obvious that the positroid cells give a partition of the totally nonnegative grassmannian,
but much more is true: the positroid cell decomposition is a stratification, in the sense that the
closure of a positroid cell is a union of positroid cells.

Postnikov showed that the positroid cells are parameterised by a variety of combinatorial
objects. Two that are relevant to us in this section are Le-diagrams and Grassmann necklaces.
Le-diagrams are what we have been calling Cauchon-Le diagrams and we will continue to use
that terminology. Grassmann necklaces are defined later in the section.

A fundamental question is to describe the points in a positroid cell when given the Cauchon-Le
diagram corresponding to the cell. Oh obtains the following result and attributes it as a corollary
of [48, Theorem 6.5]

Theorem 11.2. [47, Proposition 13] Let C be a Cauchon-Le diagram defined on a partition
Yλ which fits into a m × (n − m) rectangle, and let PC denote the positroid cell in G≥0

mn(R)
corresponding to C. Let [I] be the Plücker coordinate corresponding to the partition λ; so that
the rows of Yλ are indexed by I. Then a Plücker coordinate [J ] vanishes on all points of PC if
and only if there are no vertex disjoint R(I,J)-path systems in the Postnikov graph Post′(C) of
C.

11.2 Links between the quantum and totally nonnegative grassman-
nians

Comparison of Theorem 11.2 with our Theorem 9.21 immediately gives the following theorem.

Theorem 11.3. Let C be a Cauchon-Le diagram that fits into a m× (n−m) rectangle. Let PC
be the positroid cell corresponding to C. Let K be a field, q ∈ K∗ not a root of unity, and let QC

be the H-prime ideal of Oq(Gmn(K)) corresponding to C. Let F be the set of Plücker coordinates
in Gmn(R) that vanish on the whole of PC and let Fq be the set of quantum Plücker coordinates
that are contained in QC.

Then F and Fq are essentially the same, in the sense that the Plücker coordinates in F are
obtained from the quantum Plücker coordinates in Fq by setting q = 1.

Proof. Membership of F and Fq are both recognised by the same test: nonexistence of vertex
disjoint families of paths in Post′(C), by Theorem 9.22 and Theorem 11.2.

In view of this theorem, for the rest of this section, we will assume that K is a field and that
q ∈ K∗ is not a root of unity. We can then use the theorem to transfer many results concerning
the positroid cells of Gtnn

mn(R) to the H-prime spectrum of Oq(Gmn(K)).
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11.3 Grassmann necklaces

In [48], Postnikov associated various combinatorial objects with the nonempty positroid cells of
the totally nonempty grassmannian. In view of the connection that we have established between
positroid cells in the totally nonnegative grassmannian and the H-spectrum of the quantum
grassmannian, we can potentially use these combinatorial objects to study the quantum grass-
mannian. Here, we use the notion of Grassmann necklace to study the Zariski topology of
H−Spec(Oq(Gmn(K))); that is, to decide when Q ⊆ P for H-prime ideals P,Q.

Recall that the irrelevant ideal of Oq(Gmn(K)) is the ideal generated by all of the quantum
Plücker coordinates. This ideal is an H-prime ideal that contains all other H-prime ideals and so
in what follows we will usually assume that we are dealing with H-prime ideals that are distinct
from the irrelevant ideal.

A matroid of rank m on the set {1, . . . , n} is a non-empty collection of m-element subsets M
of {1, . . . , n} called bases of M, that satisfy the exchange axiom: for any I, J ∈ M and i ∈ I,
there exists j ∈ J such that I\{i} t {j} ∈ M, see, for example, [48, 2.3].

Postnikov showed [48, 2.3] that the set of Plücker coordinates that do not vanish on a given
positroid cell inG≥0

mn(R) forms a matroid of rankm. In view of Theorem 11.3, the same conclusion
applies to the set of quantum Plücker coordinates that are not contained in a given H-prime
ideal of Oq(Gmn(K)) distinct from the irrelevant ideal. For the convenience of the reader, we
give a direct proof which is essentially the same as that for G≥0

mn(R), but uses quantum Plücker
relations rather than classical Plücker relations.

Proposition 11.4. Let q ∈ K∗ and assume that q is not a root of unity. Let P be an H-prime of
Oq(Gmn(K)) that is not the irrelevant ideal and letM be the set of quantum Plücker coordinates
that are not in P . Then M is a matroid of rank m.

Proof. Let [I] and [J ] be two quantum Plücker coordinates that are not in P . We need to verify
the exchange axiom for I and J . Fix i ∈ I. If i ∈ J then the exchange axiom is trivially satisfied
by choosing j = i. Thus, assume that i 6∈ J .

The generalised quantum Plücker relations of [31, Theorem 2.1] (see also Theorem 9.16),
applied with J1 = I\{i}, J2 = ∅ and K = J t {i} give a relation∑

K′tK′′=K

(−q)•[J1 tK ′][K ′′] = 0

in Oq(Gmn(K)). (Here, by a symbol (−q)•, we mean some power of −q with exponent in Z.)
Consider the various terms in the above expression. When K ′ = {i} then J1 t K ′ = I and

K ′′ = J . Otherwise, K ′ = {j} for some j ∈ J and each of the other terms is of the form
[I\{i} t {j}][J\{j} t {i}]. If every term [I\{i} t {j}] is in P then we obtain [I][J ] ∈ P .
However, P is completely prime; so either [I] ∈ P or [J ] ∈ P , a contradiction. Thus there exists
j ∈ J with [I\{i} t {j}] ∈M and the exchange axiom is verified.

We know that the quantum grassmannian is a graded quantum algebra with a straightening
law (abbreviated to QGASL) on the usual poset Π, see [42] and Section 9.1 earlier in this paper.
However, we can put other partial orderings on the quantum Plücker coordinates and again get a
QGASL structure. In particular, for each i with 1 ≤ i ≤ n we can define the i-ordering, denoted
by <i. In this ordering, we have

i <i i+ 1 <i i+ 2 <i . . . <i n <i 1 <i . . . <i i− 1.

There is then an induced partial ordering on the quantum Plücker coordinates given by

[a1 <i . . . <i am] ≤i [b1 <i . . . <i bm]
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if and only if aj ≤i bj for each 1 ≤ j ≤ m.
We will refer to the set of quantum Plücker coordinates with this partial ordering as Πi. Note

that <1 is just the usual ordering on the natural numbers and that Π1 is the usual Π.
As an example, we show the four partial orders on Oq(G24(K)) in Figure 4.

[34]

[24]

[14] [23]

[13]

[12]

[14]

[13]

[12] [34]

[24]

[23]

[12]

[24]

[23] [14]

[13]

[34]

[23]

[13]

[34] [12]

[24]

[14]

Figure 4: The four i-orderings on Oq(G24(K)).

Theorem 11.5. The quantum grassmannian Oq(Gmn(K)) is a QGASL on the poset Πi for each
i with 1 ≤ i ≤ n.

Proof. See [44, Theorem 3.5]

Theorem 11.6. Consider the QGASL structure on Oq(Gmn(K)) determined by the poset Πi.
Let P be an H-prime ideal of Oq(Gmn(K)). Then there is a unique quantum Plücker coordinate
[Ii] in Πi with the property that [Ii] 6∈ P but [J ] ∈ P for all J 6≥i Ii.

Proof. This is proved in [41, Theorem 5.1] for the standard order ≤1. Inspection of the proof
reveals that it works for any quantum graded algebra with a straightening law; so the result
follows from the previous theorem.

We adapt Postnikov’s definition of a Grassmann necklace, see [48, Definition 16.1], from the
totally nonnegative case to the quantum case in the following definition.

Definition 11.7. A Grassmann necklace in Oq(Gmn(K)) is a sequence I = ([I1], . . . , [In]) of
quantum Plücker coordinates such that for each 1 ≤ i ≤ n, if i ∈ Ii then Ii+1 = (Ii\{i}) t {j}
for some 1 ≤ j ≤ n, and, if i 6∈ Ii then Ii+1 = Ii. (Here, indices are taken modulo n, so that
In+1 = I1.)
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In [48], Postnikov shows that each positroid cell in G≥0
mn(R) determines a Grassmann neck-

lace. In view of Theorem 11.3, the same result is available for H-prime ideals in the quantum
grassmannian Oq(Gmn(K)). Nonetheless, we give a direct proof in the quantum setting for the
convenience of the reader.

Theorem 11.8. Let q ∈ K∗ and assume that q is not a root of unity. Let P be an H-prime
ideal of Oq(Gmn(K)) and let I = ([I1], . . . , [In]), where [Ii] is the quantum Plücker coordinate of
Oq(Gmn(K)) determined by Theorem 11.6. Then I is a Grassmann necklace.

Proof. For each i = 1, . . . , n we need to show the correct relationship between Ii and Ii+1. The
proof is the same in all cases, but we will present the proof in the case that i = 1 to simplify the
notation.

Note that if a ≤1 b and a 6= 1 then a ≤2 b. As a consequence, if [I] and [J ] are quantum
Plücker coordinates with I ≤1 J and 1 6∈ I then I ≤2 J .

Let [I1] = [i1 <1 i2 <1 . . . <1 im] and [I2] = [j1 <1 j2 <1 . . . <1 jm].
It follows from the previous theorem that I1 ≤1 I2, as [I2] 6∈ P . As a consequence, is ≤1 js for

each 1 ≤ s ≤ m. Also, the observation above shows that is ≤2 js for each 2 ≤ s ≤ m and that
i1 ≤2 j1 whenever i1 6= 1.

In a similar way, I2 ≤2 I1, as [I1] 6∈ P .

We consider three mutually exclusive and exhaustive cases. Case 1: i1 6= 1. Case 2: i1 = j1 = 1.
Case 3: i1 = 1 and j1 6= 1.

Case 1 Assume that i1 6= 1, and note that this implies that 1 6∈ I1, so we need to prove that
I2 = I1. Now, [I1] = [i1 <2 i2 <2 . . . <2 im] and [I2] = [j1 <2 j2 <2 . . . <2 jm]. Also, it follows
from the previous theorem that I2 ≤2 I1, as [I1] 6∈ P . Thus, js ≤2 is for each 1 ≤ s ≤ m. How-
ever, we know from above that is ≤2 js for each 1 ≤ s ≤ m. Thus, is = js for each 1 ≤ s ≤ m;
and so I2 = I1, as required.

Case 2 Assume that i1 = j1 = 1. We need to show that I2 = (I1\{i1}) t {jk} for some jk ∈ I2.
Now, [I1] = [i2 <2 i3 <2 . . . <2 im <2 i1] and [I2] = [j2 <2 j3 <2 . . . <2 jm <2 j1]. Thus, js ≤2 is
for each 1 ≤ s ≤ m, because I2 ≤2 I1. As we already know from above that is ≤2 js for each
2 ≤ s ≤ m this shows that is = js for each 2 ≤ s ≤ m. As we are in Case 2, we know that
i1 = j1 = 1; so I2 = I1 = (I1\{i1}) t {j1}, as required.

Case 3 Assume that i1 = 1 and j1 6= 1. In particular, 1 6∈ I2. We need to show that
I2 = (I1\{i1}) t {jk} for some jk ∈ I2.

Recall that i1 = 1 is the largest element with respect to <2 so displaying I1 in the order <2,
we have

[I1] = [i2 <2 . . . <2 im <2 i1].

Also, j1 6= 1; so displaying I2 in the order <2, we have

[I2] = [j1 <2 j2 <2 . . . <2 jm].

Thus, jt ≤2 it+1 for each t = 1, . . . ,m− 1, because I2 ≤2 I1.

We apply the generalised quantum Plücker relations of [31, Theorem 2.1] (see also Theorem
9.16) with the following assignations. Set J1 := I1\{1} and J2 := ∅, while K := I2 t {1}. There
is a relation ∑

K′tK′′=K

(−q)•[J1 tK ′][K ′′] = 0
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in Oq(Gmn(K)). (As usual, by a symbol (−q)•, we mean some power of −q with exponent in Z.)
Consider the various terms in the above expression. When K ′ = {1} then J1 tK ′ = I1 and

K ′′ = I2. Thus, [I1][I2] is one of the terms in the above relation. Each of the other terms is of
the form [(I1\{1}) t {js}][(I2\{js}) t {1}] for some 1 ≤ s ≤ m.

Now, [I1][I2] 6∈ P ; so there must be a term [(I1\{1}) t {js}][(I2\{js}) t {1}] 6∈ P . For such a
term, set [X] := [(I1\{1})t {js}] and [Y ] := [(I2\{js})t {1}]. Note that [X], [Y ] 6∈ P , as P is a
completely prime ideal. Hence, I1 ≤1 X, Y and I2 ≤2 X, Y .

We consider three subcases: (i) s = 1; (ii) 1 < s < m; and (iii) s = m.

Subcase (i) Assume that s = 1. Thus, [X] := [(I1\{1}) t {j1}] and [Y ] := [(I2\{j1}) t {1}].
We know j1 ≤2 i2 from above. In fact, j1 <2 i2, since j1 6∈ I1. As a result, displaying X in <2,

we have
[X] = [j1 <2 i2 <2 . . . <2 im].

Hence, jt ≤2 it for each 2 ≤ t ≤ m, because I2 ≤2 X. From the beginning of the proof we know
that it ≤2 jt for each 2 ≤ t ≤ m; so jt = it for each 2 ≤ t ≤ m. Thus,

I2 = {j1, j2, . . . , jm} = {j1, i2, . . . , im} = (I1\{i1}) t {j1},

as required.

Subcase (ii) Assume that 1 < s < m. We wish to display X with respect to <2 and to do
this we need to know where to place js. We have already observed that js ≤2 is+1, and, in fact
js <2 is+1, since js 6∈ I1. From the beginning of the proof, we know that is ≤2 js. In fact,
is <2 js, since js 6∈ I1. Thus, is <2 js <2 is+1. Hence, displaying X in the order <2, we have

[X] = [i2 <2 i3 <2 . . . <2 is <2 js <2 is+1 <2 . . . <2 im].

Thus, we see that

j1 ≤2 i2, . . . , js−1 ≤2 is, js+1 ≤2 is+1, . . . , jm ≤2 im, (67)

because I2 ≤2 X.
As [Y ] 6∈ P , we know that I1 ≤1 Y . Now displaying [Y ] := [(I2\{js}) t {1}] in the order <1,

we have
[Y ] = [i1 <1 j1 <1 . . . <1 js−1 <1 js+1 <1 . . . <1 jm]

(recalling that i1 = 1). Hence, the fact that I1 ≤1 Y shows that

i2 ≤1 j1, . . . , is ≤1 js−1, is+1 ≤1 js+1, . . . , im ≤1 jm.

As i2 > 1 we get the same inequalities with respect to <2; that is,

i2 ≤2 j1, . . . , is ≤2 js−1, is+1 ≤2 js+1, . . . , im ≤2 jm. (68)

From (67) and (68), we see that

j1 = i2, . . . , js−1 = is, js+1 = is+1, . . . , jm = im.

Therefore,

I2 = {j1, . . . , js−1, js, js+1, . . . , jm}
= {i2, . . . , is, js, is+1, . . . , im}
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= (I1\{i1}) t {js},

as required.

Subcase (iii) Assume that s = m. This case is similar to the previous case; so we will be brief.
Recall that im ≤2 jm, and, note that, in fact, im <2 jm as jm 6∈ I1. Consequently,

[X] = [(I1\{i1}) t {jm}] = [i2 <2 i3 <2 . . . <2 im <2 jm];

and so

j1 ≤2 i2, . . . , jm−1 ≤2 im (69)

because I2 ≤2 X.

Now [Y ] = [i1 <1 j1 <1 . . . <1 jm−1] and so, as I1 ≤1 Y1, we see that

i2 ≤1 j1, . . . , im ≤1 jm−1

and deduce that

i2 ≤2 j1, . . . , im ≤2 jm−1, (70)

as i2 6= 1.
From (69) and (70), we see that

j1 = i2, . . . , jm−1 = im.

Therefore,

I2 = {j1, . . . , jm−1, jm}
= {i2, . . . , im, jm}
= (I1\{i1}) t {jm},

as required.

Let P be anH-prime ideal inOq(Gmn(K)) with associated Grassmann necklace I = ([I1], . . . , [In]).
Then Theorem 11.6 shows that P contains the quantum Plücker coordinates in the set

n⋃
i=1

{[J ] | J 6≥i Ii}.

The first two authors and Rigal had conjectured earlier that these are precisely the quantum
Plücker coordinates in P . We can now prove this conjecture by appealing to the connection with
the totally nonnegative grassmannian.

Theorem 11.9. Assume that q ∈ K∗ is not a root of unity. Let P be an H-prime ideal in
Oq(Gmn(K)) with associated Grassmann necklace I = ([I1], . . . , [In]). Then the set of quantum
Plücker coordinates contained in P is equal to the set

n⋃
i=1

{[J ] | J 6≥i Ii}.
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Proof. Let Fq be the set of quantum Plücker coordinates contained in P . Then the corresponding
set of Plücker coordinates F determines a nonempty cell S in the totally nonnegative grassman-
nian. The Grassmann necklace associated with S is also given by I = ([I1], . . . , [In]) (where
we are now interpreting the [Ij] as classical Plücker coordinates). By [47, Proposition 16], the
members of F can be described as in the claim of the theorem; and so the same result holds for
Fq.

If P is the H-prime ideal P of Oq(Gmn(F)) with Grassmann necklace ([I1], . . . , [In]), we set
Neck(P ) := ([I1], . . . , [In]).

Define a partial order on the set of Grassmann necklaces in the following way. Let Q be
another H-prime ideal with Neck(Q) = ([J1], . . . , [Jn]). Then set Neck(Q) ≤ Neck(P ) if and
only if Ji ≤i Ii for each i = 1, . . . , n.

Theorem 11.10. Assume that q ∈ K∗ is transcendental over the prime field of K and suppose
that P and Q are H-prime ideals of Oq(Gmn(K)). Then Q ⊆ P if and only if Neck(Q) ≤
Neck(P ).

Proof. Set Neck(P ) = ([I1], . . . , [In]) and Neck(Q) = ([J1], . . . , [Jn]).
(⇒) Suppose that Q ⊆ P but that there is an i with Ji 6≤i Ii. Then [Ii] ∈ Q ⊆ P , a

contradiction. Hence, Ji ≤i Ii for each i = 1, . . . , n; that is, Neck(Q) ≤ Neck(P ).
(⇐) Suppose that Q 6⊆ P . We need both quantum Plücker coordinates and classical Plücker

coordinates in this argument; so, if [I] is a classical Plücker coordinate then the corresponding
quantum Plücker coordinate is denoted by [I]q.

Suppose that P is associated with the Cauchon-Le diagram C and denote the corresponding
positroid cell by SC . Similarly, suppose that Q is associated with the Cauchon-Le diagram D
with corresponding positroid cell SD. Then [I]q ∈ P if and only if [I](s) = 0 for all s ∈ SC , and
[I]q ∈ Q if and only if [I](s) = 0 for all s ∈ SD.

As Q 6⊆ P there is a quantum Plücker coordinate [I]q ∈ Q\P by Theorem 10.16. Hence,
[I](s) = 0 for all s ∈ SD. Thus, by [47, Proposition 16], there exists a j with I 6≥j Jj.

Now, [I]q 6∈ P and so there exists s ∈ SC with [I](s) 6= 0. It follows from [47, Proposition
16] that I ≥i Ii for all i. In particular, I ≥j Ij. If Ij ≥j Jj then I ≥j Ij ≥j Jj, which is a
contradiction. Thus, Ij 6≥j Jj and so Neck(P ) 6≥ Neck(Q).

The previous proposition shows that we can decide containment between two H-primes P and
Q of Oq(Gmn(K)) by comparing their Grassmann necklaces. Let C be the Cauchon-Le diagram
associated with P . In [47] an algorithm is given to determine Neck(P ) from C and so this gives
an algorithm for the containment problem for H−Spec(Oq(Gmn(K))), as it is easy to compare
quantum Plücker coordinates in each i-order. Another description of an algorithm to compute
the Grassmann necklace from a Cauchon-Le diagram is given in [14], at least in the case of
Oq(Mm,n(K)). This latter algorithm is perhaps easier to understand than Oh’s algorithm, and
can easily be adapted to work in the general Oq(Gmn(K)) case. An algorithm to perform the
reverse procedure; that is, to reconstruct a Cauchon-Le diagram from a Grassmann necklace, is
presented in [1].

11.4 On Yakimov’s conjecture

In [53], Yakimov parameterises the H-prime ideals in quantum partial flag varieties by pairs of
elements in the associated Weyl group, and makes a conjecture about containments between
such primes in terms of the parameterisation. He states that the conjecture was proved in the
full flag case by Gorelik, [28], but otherwise remains open, even in the grassmannian case. In
this subsection, we give a characterisation of the poset ofH-primes in the quantum grassmannian.
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We begin by describing briefly Yakimov’s parameterisation and his conjecture. Full details are
available in [53].

Let G be a split, simply connected, semisimple algebraic group over a field K of characteristic
zero and let PI be the standard parabolic subgroup associated with a set of simple roots I. If W
is the Weyl group of G then W I denotes the minimal length representatives of cosets in W/WI

where WI is the parabolic subgroup of W corresponding to PI .

Theorem 11.11. (Yakimov, [53, Theorem 1.1]) The H-invariant primes of the quantum partial
flag variety Rq[G/PI ] are parameterised by

SW,I := {(w, v) ∈ W I ×W | v ≤ w},

the partial ordering being the Bruhat order.

Conjecture 11.12. (Yakimov, [53, Conjecture 1.2]) For (w, v), (w′, v′) ∈ SW,I the containment
Pw,v ⊆ Pw′,v′ holds if and only if there exists z ∈ WI such that

w ≥ w′z and v ≤ v′z.

The inspiration for Yakimov’s conjecture is the following. The algebra Rq[G/PI ] is a quantisa-
tion of the projective Poisson variety (G/PI , πI), and there is a bijection between the H-prime
ideals in Rq[G/PI ] and the so-called torus orbits of symplectic leaves T Iw,v of (G/PI , πI), as these
torus orbits are also parameterised by SW,I .

The Zariski closures of T Iw,v were explicitly determined in [26] and [50]:

T Iw,v = {T Iw′,v′ | there exists z ∈ WI such that w ≥ w′z, v ≤ v′z}.

The orbit method then suggests that the containments between H-prime ideals in Rq[G/PI ]
should mirror the description of the Zariski closures for the torus orbits of symplectic leaves and
this leads to Yakimov’s conjecture.

In [26, Theorem 1.8], Goodearl and Yakimov give the result for membership of the closures in
the Zariski topology of the torus orbits of symplectic leaves. They state that Rietsch has the
same result in [50, Proposition 7.2], and also that she obtains the same result for closures of
nonnegative cells in the corresponding nonnegative setting. Note that, at first sight, the param-
eterisations given by Rietsch and Goodearl-Yakimov are not the same. However, the fact that
they are indeed the same is covered in an appendix in a paper by He and Lam, [29].

We now consider the special case of grassmannians; that is we assume that G = SLn+1(K) and
I = {α1, . . . , αn} \ {αm}, so that Rq[G/PI ] = Oq(Gmn(K)). As we now know that containments
between H-prime ideals in the quantum grassmannian correspond to membership of the closure
of positroid cells in the totally nonnegative grassmannian by Theorem 11.3, we deduce from the
above description the following result.

Theorem 11.13. Assume that q ∈ K is transcendental over the prime field of K. The following
posets are isomorphic:

1. H-SpecOq(Gmn(K)) (endowed with inclusion);
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2. the set of torus orbits of symplectic leaves in the grassmannian SLn+1(C)/PI (ordered by
closure);

3. SW,I , where W is the symmetric group W = Sn+1 and WI is the subgroup generated by
s1, . . . , sm−1, sm+1, . . . , sm, and where the order (w, v) < (w′, v′) in SW,I is defined by

(w, v) < (w′, v′) if and only if there exists z ∈ WI such that w ≥ w′z and v ≤ v′z.

Previously, only a bijection between H-SpecOq(Gmn(K)) and SW,I had been established by
Yakimov [53].

The above result can be seen as a first step towards proving that the primitive spectrum
of Oq(Gmn(K)) and the the space of symplective leaves in the corresponding grassmannian
SLn+1(C)/PI are homeomorphic.

We note that, in order to prove the full Yakimov’s conjecture in the quantum grassmannian
case, additional work is needed: one still need to compare his parametrisation of H-primes by
the set SW,I with our parametrisation of H-primes by Cauchon-Le diagrams.

11.5 Separating Ore sets

In [9], Brown and Goodearl consider the problem of determining the Zariski topology of the prime
spectrum of algebras A equipped with a suitable rational action of a torus H. More precisely,
they assume that they are dealing with a noetherian algebra over a field K such that A satisfies
the noncommutative nullstellensatz, that H is a K-torus acting rationally on A by K-algebra
automorphisms and that A has only finitely many H-prime ideals. The basic question is to
decide, given two prime ideals P,Q, whether or not Q ⊆ P . If the stratification theorem applies
and P and Q are in the same stratum then the problem is relatively easy to solve. The difficult
part is when the two primes belong to different strata. In order to have a chance of progress one
needs to be able to first decide this problem for H-prime ideals; that is, given H-prime ideals P
and Q, recognise when Q ⊆ P . In the case of quantum grassmannians, we have answered this
question thanks to the notion of Grassmann necklace.

In order to deal with the general situation, Brown and Goodearl introduce a notion that is
subsequently named a separating Ore set in works by Casteels and Fryer, [14], and Fryer and
Yakimov, [17]. Explicit separating Ore sets have been constructed by Casteels and Fryer for
quantum matrices [14], and by Fryer and Yakimov for quantised coordinate rings of algebraic
groups and quantum Schubert cells [17]. In this subsection, we show that Grassmann necklaces
generate separating Ore sets in the quantum grassmannian.

As mentioned above, Casteels and Fryer, [14] addressed this problem in the case of quantum
matrices and our belief that Grassmann necklaces would generate separating Ore sets is a result
of reading their paper. Our proof of the Ore condition for powers of a quantum Plücker coordi-
nate is via noncommutative dehomogenisation from a result due to Skoda [51] that any quantum
minor in the algebra of quantum matrices generates an Ore set.

Definition 11.14. Let A be a K-algebra that supports a rational action of a K-torus H and let
P be an H-prime. A separating Ore set for P in H-Spec(A) is an Ore set SP with the following
two properties: (i) P ∩ SP = ∅, (ii) if Q ∈ H−Spec(A) and Q 6⊆ P then Q ∩ SP 6= ∅.

We begin by recalling some well-known facts about Ore sets. In order to avoid some technical
details concerning denominator sets, we will assume throughout the discussion that we are dealing
with rings R that are (noncommutative) integral domains.

Recall that a multiplicatively closed subset S of nonzero elements in a domain R is said to
satisfy the right Ore condition if for each a ∈ R and s ∈ S there exist t ∈ S and r ∈ R such
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that at = sr (that is, aS ∩ sR 6= ∅). If this equation holds for a pair (a, s) with s ∈ S, we say
that the pair (a, s) satisfies the right Ore condition with respect to the set S and that (a, s) is a
right Ore pair (with respect to S). If (a, s) is a right Ore pair for each a ∈ R then we say that
s is a right Ore element with respect to S. The left Ore condition is defined in a similar man-
ner, and, if S satisfies both the right and left Ore conditions then we say that S is an Ore set in R.

Our first aim in this section is to show that the set of powers of an arbitrary quantum minor
is an Ore set in the algebra of quantum matrices. This result was first obtained by Skoda [51],
but we present a complete proof which may be more transparent than that given in [51].

We begin with some preparatory results, some well-known and some taken from or inspired
by Skoda’s work. As we will only be dealing with domains, we assume throughout that R is an
integral domain and that S is a multiplicatively closed subset of nonzero elements of R.

Lemma 11.15. Suppose that S is a multiplicatively closed set and that S0 is a subset of S such
that each element of S is a product of elements of S0 (that is, S is generated as a multiplicative
set by S0). Suppose that each s ∈ S0 is a right Ore element with respect to S. Then S is a right
Ore set.

Proof. Suppose that s1, s2 are right Ore elements with respect to S. We will show that s1s2 is
a right Ore element with respect to S.

Let a ∈ R. As (a, s1) is a right Ore pair, there exist t1 ∈ S and r1 ∈ R such that at1 = s1r1.
As (r1, s2) is a right Ore pair there exist t2 ∈ S and r2 ∈ R with r1t2 = s2r2. Thus,

a(t1t2) = s1r1t2 = s1s2r2,

which shows that (a, s1s2) is a right Ore pair, because t1t2 ∈ S; and so s1s2 is a right Ore
element, as required.

The claim of the lemma now follows by induction on the length of any element of s ∈ S when
represented as a product of elements of S0.

Corollary 11.16. Let S1, . . . , Sn be right Ore sets in R and let S be the multiplicatively closed
set of all products of elements from S1 ∪ · · · ∪ Sn. Then S is a right Ore set.

Proof. This follows immediately from the previous lemma.

Definition 11.17. For a multiplicatively closed set S of the integral domain R, define E(S) to
be the subset of elements e of R such that (e, s) is a right Ore pair with respect to S for each
s ∈ S; that is, for each s ∈ S there exists an element s1 ∈ S and r1 ∈ R such that es1 = sr1

Note that if we can prove that E(S) = R then we have proved that S is a right Ore set in R.
Lemma 11.15 above occurs as [51, Lemma 3.1(iii)]. As we need more from Skoda’s lemma, we

restate it in full here.

Lemma 11.18. Suppose that S is a multiplicatively closed subset of the integral domain R and
that S ⊆ E(S). Then
(i) E(S) is a subalgebra of R.
(ii) Suppose further that an element f ∈ R satisfies the following property: for each s ∈ S there
exists s1 ∈ S and r1 ∈ R such that fs1 − sr1 ∈ E(S). Then f ∈ E(S).
(iii) Suppose that S0 is a subset of S that generates S as a multiplicative set and that for each
s ∈ S0 and r ∈ R, there exists s1 ∈ S and r1 ∈ R such that sr1 = rs1. Then S is a right Ore set
in R.

Proof. See the proof of [51, Lemma 3.1].
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Note that Part (i) of the previous lemma shows that we only need to consider elements in a
generating subset of R when checking the Ore condition for S.

Lemma 11.19. Let xkl be a generator in Oq(Mm,n(K)) and set S := {xdkl | d ∈ N}. Then S is
an Ore set in Oq(Mm,n(K)).

Proof. It is obvious that S ⊆ E(S); so Lemma 11.18 is available for use.
By Lemma 11.18(i), it is enough to check the right Ore condition for the pair (a, s) = (xij, x

d
kl)

with d ∈ N.

If xij is weakly NE or weakly SW of xkl then the pair of variables commute up to a power of q
and so the Ore condition holds. Thus, we may assume that xij is either strictly NW or strictly
SE of xkl. Assume that xij is strictly NW of xkl. Then, an easy induction left to the reader
shows that

xijx
d+1
kl = xdkl

(
xijxkl + (q2d+1 − q)xilxkj

)
for all d ≥ 1. This demonstrates the right Ore condition for the pair (xij, x

d
kl), as required.

The case where xij is strictly SE of xkl follows by a similar calculation.
Finally, the left Ore condition is checked in a similar way.

Remark 11.20. We note for later use that the proof of Lemma 11.19 shows that for all d ≥ 1,
there exist e ≥ d and r ∈ Oq(Mm,n(K)) such that

xijx
e
kl = xdklr.

Recall that the quantum determinant Dq of Oq(Mn(K)) is central in the noetherian domain
Oq(Mn(K)). Hence we can form the localisation Oq(GLn(K)) := Oq(Mn(K))[D−1

q ] of Oq(Mn(K))
at the multiplicative set generated by Dq. The resulting algebra Oq(GLn(K)) is the so-called
quantum general linear group. This is a quantum group in the sense that it supports a Hopf
algebra structure (see for instance [30]). In the following proof, we will make use of its antipode
S which we will apply to quantum minors of Oq(GLn(K)). Recall for later use that the formula

for the antipode applied to a quantum minor is S([I|J ]) = (−q)I−J [J̃ |Ĩ]D−1
q , where the exponent

I − J is the sum of the row indices in I minus the sum of the column indices in J and Dq is the

quantum determinant, while Ĩ denotes the complement of I in {1, . . . , n}, see, for example, [31,
Lemma 4.1].

Theorem 11.21. [Skoda, [51]] Let [K|L] be a quantum minor in Oq(Mm,n(K)) and set S :=
{[K|L]t | t ∈ N}. Then S is an Ore set.

Proof. We may assume that [K|L] is of size at least two, as the case of size one is dealt with in
the previous lemma.

As S ⊆ E(S), Lemma 11.18 is available for use.
By Lemma 11.18(i), it is enough to check the right Ore condition for the pair (a, s) =

(xij, [K|L]t) with t ≥ 1.
There is a submatrix of generators of Oq(Mm,n(K)) that contains these two elements and

has at most one more row and column than [K|L]. We can perform all calculations within
this subalgebra, and so, without loss of generality, we may assume that [K|L] is an (n − 1) ×
(n − 1) quantum minor in Oq(Mn(K)). By inverting the quantum determinant we may work
in Oq(GLn(K)) – this makes available the antipode which is an anti-automorphism. Note that
n ≥ 3. Our plan is to look at the images of the two elements under the antipode, establish the
left Ore condition for two related elements and then apply the antipode once more to obtain the
right Ore condition that we are seeking.
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Let c, d be such that {1, . . . , n} = K t {c} = L t {d} and let U, V be such that {1, . . . , n} =
{i} t U = {j} t V . Note that S(xdc) = (−q)d−c[K|L]D−1

q and that S([V |U ]) = (−q)V−UxijD−1
q .

By the previous result, the left Ore condition holds in Oq(Mn(K)) for the pair ([V |U ], xtdc).
Hence, there exist s ∈ N and an element r ∈ Oq(Mn(K)) such that

rxtdc = xsdc[V |U ].

Observe that s ≥ t by Remark 11.20.
Note that the equation above is a homogeneous equation, and so r will be a sum of products

of s− t+n− 1 variables multiplied by various scalars. Thus, S(r) will be equal to r1D
−(s−t+n−1)
q

for a suitable r1 ∈ Oq(Mn(K)). By applying the antipode to the above equation, we obtain

{(−q)d−c[K|L]D−1
q }t · r1D

−(s−t+n−1)
q = (−q)V−UxijD−1

q {(−q)d−c[K|L]D−1
q }s

so that
[K|L]t.{(−q)•r1} = xij[K|L]sDn−2

q .

where (−q)• is some power of (−q) that we need not know explicitly. Note that n− 2 > 0; so all
terms in this equation are in Oq(Mn(K)). Now 〈Dq〉 is a completely prime ideal in Oq(Mn(K))
and [K|L] is not in this ideal. Hence, r1 = r2Dq for some r2 ∈ Oq(Mn(K)). Thus, we obtain

[K|L]t · {(−q)•r2} = xij[K|L]sDn−3
q .

Continuing in this way, eventually we find an r′ ∈ Oq(Mn(K)) such that

[K|L]t · {(−q)•r′} = xij[K|L]s,

and this confirms the Ore condition for the pair (xij, [K|L]t).

Remark 11.22. We note for later use that the proof of Theorem 11.21 shows that for all t ≥ 1,
there exist s ≥ t and r ∈ Oq(Mm,n(K)) such that

[K|L]t · r = xij[K|L]s.

We are now ready to prove that quantum Plücker coordinates generate Ore sets in Oq(Gmn(K))
by using the dehomogenisation isomorphism Ψ from Theorem 9.17. Indeed, Ψ will allow us to
transfer Skoda’s result to quantum grassmannians.

Theorem 11.23. Let q be a nonzero element of a field K. Let [C] be a quantum Plücker
coordinate in Oq(Gmn(K)) and let S be the set of powers of [C]. Then S is an Ore set in
Oq(Gmn(K)).

Proof. If [C] = [1, . . . ,m] then [C] is a normal element and so the result is well-known. Thus, we
may assume that [C] 6= [1, . . . ,m]. Let [A] be any quantum Plücker coordinate. By Lemma 11.18
it is enough to show that ([A], [C]t) is a right Ore pair with respect to S for all t ≥ 1; that is,
we need to show that there exists s ∈ N and r ∈ Oq(Gmn(K)) such that [A][C]s = [C]tr.

We consider noncommutative dehomogenisation at u := [1, . . . ,m], see Section 9.2. More
precisely, we will make use of Theorem 9.17 in the case where γ = u. By Theorem 9.17 the
elements [A]u−1 and [C]u−1 are sent to quantum minors inOq−1(Mm,n−m(K)) by the isomorphism
Ψ, say Ψ([A]u−1) = [I | J ] is a c× c quantum minor and Ψ([C]u−1) = [K | L] is a d×d quantum
minor. Denote the generators of Oq−1(Mm,n−m(K)) by xij and, in the next part of the argument,
we consider the degree of elements in Oq−1(Mm,n−m(K)) with each xij having degree equal to
one. By Skoda’s work, Theorem 11.21 and Remark 11.22, there exists s ∈ N with s ≥ t and an
element w ∈ Oq−1(Mm,n−m(K)) such that

[I | J ] · [K | L]s = [K | L]t · w (71)
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The degree of the term on the left hand side of this equation is c+ sd and [K | L] has degree d;
so w is a linear combination of terms of Oq−1(Mm,n−m(K)) each having degree e := c+ (s− t)d.
Consider one such term w1 . . . we, where each wi is some xij.

By using the dehomogenisation isomorphism Ψ, we may write wi = Ψ([Bi]u
−1) for some

quantum Plücker coordinate [Bi]. Hence, w1 . . . we = ψ(([B1]u−1) . . . ([Be]u
−1)). Each [Bi] q-

commutes with u, so we may write w1 . . . we = Ψ((−q)•[B1] . . . [Be]u
−e). We may also rewrite the

left hand side of Equation (71) as [I | J ].[K | L]s = Ψ([A]u−1)·Ψ([C]u−1)s = (−q)•Ψ([A][C]su−(s+1)).
Hence, applying Ψ−1 to Equation (71), we see that

[A][C]su−(s+1) = [C]tz,

where z is a linear combination of terms of the form [B1] . . . [Be]u
−(e+t). Multiplying through by

ue+t, we obtain
[A][C]sue+t−s−1 = [C]tz′,

where z′ is a linear combination of terms of the form [B1] . . . [Be]. It follows that z′ ∈ Oq(Gmn(K)).
Also, note that e+t−s−1 = c+(s−t)(d−1)−1 ≥ 0 since s−t ≥ 0. If e+t−s−1 = 0 then this
gives the required Ore condition. Otherwise, note that u generates a prime ideal of Oq(Gmn(K)),
and [C] is not in this ideal; so we may rewrite z′ = ue+t−s−1z′′ for some z′′ ∈ Oq(Gmn(K)). We
then cancel ue+t−s−1 in this equation to obtain

[A][C]s = [C]tz′′,

which is the required Ore condition.

We are now in position to construct separating Ore sets for H-prime ideals of Oq(Gmn(K)).

Theorem 11.24. Let K be a field and assume that q ∈ K∗ is transcendental over the prime field
of K. Let P be an H-prime ideal of Oq(Gmn(K)) with Neck(P ) = ([I1], . . . , [In]). Let N be the
multiplicatively closed set generated by [I1], . . . , [In]. Then N is a separating Ore set for P .

Proof. Suppose that N is the multiplicatively closed set generated by [I1], . . . , [In]. Then N
is an Ore set by Theorem 11.23 and Corollary 11.16. Suppose that Q is an H-prime ideal of
Oq(Gmn(K)) withQ 6⊆ P and suppose that Neck(Q) = ([J1], . . . , [Jn]). Then Neck(Q) 6≤ Neck(P )
by Proposition 11.10 and so there exists i ∈ {1, . . . , n} with Ji 6≤i Ii. This forces [Ii] ∈ Q.
However, [Ii] ∈ N , by definition. Thus, Q ∩N 6= ∅.

Corollary 11.25. Let K be a field and assume that q ∈ K∗ is transcendental over the prime
field of K. Let P be an H-prime ideal in Oq(Gmn(K)) with Grassmann necklace N . Then

(Oq(Gmn(K))/P ) [N
−1

] is an H-simple ring, where N is the image of N in Oq(Gmn(K))/P .

Proof. Set R := Oq(Gmn(K))/P . Then N generates an Ore set in R and the localisation R[N
−1

]
exists. As P is an H-ideal, the action of H on Oq(Gmn(K)) induces a natural action of H on

R, and as the elements in N are H-eigenvectors, there is an induced action of H on R[N
−1

].

Suppose that R[N
−1

] is not H-simple and choose a proper, nonzero H-prime ideal I in R[N
−1

].

Then I = (I∩R)[N
−1

], and it follows that 0 6= I∩R. Let Q be the H-prime ideal of Oq(Gmn(K))
such that P ( Q and I ∩R = Q/P . Then, Q∩N 6= ∅, by the previous Theorem. It follows that

I = R[N
−1

], which is a contradiction. Hence, R[N
−1

] is H-simple, as required.

In order to pursue the Brown-Goodearl strategy (see [9]), the next step is to fully describe the

centre of the H-simple ring (Oq(Gmn(K))/P ) [N
−1

].
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11.6 Polynormality for H-prime ideals of Oq(Gmn(K))

In this subsection, K is a field and q ∈ K∗ is transcendental over the prime field of K.
Recall that a sequence of elements u1, . . . , un in a ring R is a polynormal sequence if u1 is a

normal element of R (that is, u1R = Ru1), and, for each i = 2, . . . , n, the image of ui is a normal
element of the factor ring R/〈u1, . . . , ui−1〉.

In [22], Goodearl and the second author conjectured that theH-prime ideals in quantum matrix
algebras would have polynormal sequences of generators, and verified the conjecture for the 3×3
case. In [55], Yakimov verified the conjecture in the general case. (In fact, Yakimov proved a
polynormality result for the much wider class of quantum nilpotent algebras of type Uw

− (g), of
which quantum matrix algebras are a special case.) Here, we establish the corresponding result
for the quantum grassmannian.

Theorem 11.26. Let K be a field and assume that q ∈ K∗ is transcendental over the prime
field of K. Then each H-prime ideal in Oq(Gmn(K)) is generated by a polynormal sequence of
quantum Plücker coordinates.

Proof. Let P be an H-prime ideal in Oq(Gmn(K)) and let ([I1], . . . , [In]) be the Grassmann
necklace of P . By Theorem 11.9, the set of quantum Plücker coordinates that are contained
in P is given by ΠP :=

⋃n
i=1 Πi, where Πi = {[J ] | J 6≥i Ii}. As we are assuming that q

is transcendental, Theorem 10.16 shows that P is generated as a right (or left) ideal by ΠP .
Therefore, it suffices to show that the elements in ΠP can be listed in such a way that they form
a polynormal sequence.

Now, Oq(Gmn(K)) is a quantum graded algebra with a straightening law with respect to
(Πi, <i), for each i, by Theorem 11.6. In view of this fact, [42, Proposition 1.2.2] shows that
the elements of Πi may be listed so that they form a polynormal sequence of generators of
the ideal that they generate. Let Li be such a list for each i. Then the concatenated list
LP := (L1, L2, . . . , Ln) forms a polynormal sequence of generators for P .
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