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Introduction

In recent publications, the same combinatorial description has arisen for three separate
objects of interest: H-prime ideals in quantum matrices, H-orbits of symplectic leaves in

matrix Poisson varieties and totally nonnegative cells in the space of totally nonnegative
matrices.

Many quantum algebras have a natural action by a torus and a key ingredient in the

study of the structure of these algebras is an understanding of the torus-invariant objects.
For example, the Stratification Theory of Goodearl and Letzter shows that, in the generic

case, a complete understanding of the prime spectrum of quantum matrices would start

by classifying the (finitely many) torus-invariant prime ideals. In [8] Cauchon succeeded
in counting the number of torus-invariant prime ideals in quantum matrices. His method

involved a bijection between certain diagrams, now known as Cauchon diagrams, and the
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torus-invariant primes. Considerable progress in the understanding of quantum matrices

has been made since that time by using Cauchon diagrams.
The semiclassical limit of quantum matrices is the classical coordinate ring of the variety

of matrices endowed with a Poisson bracket that encodes the nature of the quantum defor-

mation which leads to quantum matrices. As a result, the variety of matrices is endowed
with a Poisson structure. A natural torus action leads to a stratification of the variety

via torus-orbits of symplectic leaves. In [5], Brown, Goodearl and Yakimov showed that

there are finitely many such torus-orbits of symplectic leaves. Each torus orbit is defined
by certain rank conditions on submatrices. The classification is given in terms of certain

permutations from the relevant symmetric group with restrictions arising from the Bruhat
order.

The totally nonnegative part of the space of real matrices consists of those matrices

whose minors are all nonnegative. One can specify a cell decomposition of the set of totally
nonnegative matrices by specifying exactly which minors are to be zero/non-zero. In [27],

Postnikov classified the nonempty cells by means of a bijection with certain diagrams,

known as Le-diagrams. The work of Postnikov has recently found applications in Integrable
Systems [19] and Theoretical Physics [2].

The interesting observation from the point of view of this work is that in each of the

above three sets of results the combinatorial objects that arise turn out to be the same! The
definitions of Cauchon diagrams and Le-diagrams are the same, and the restricted permu-

tations arising in the Brown-Goodearl-Yakimov study can be seen to lead to Cauchon/Le

diagrams via the notion of pipe dreams.
Once one is aware of these connections, this suggests that there should be a connection

between torus-invariant prime ideals, torus-orbits of symplectic leaves and totally nonneg-
ative cells. This connection has been investigated in recent papers by Goodearl and the

present authors, [14, 15]. In particular, we have shown that the Restoration Algorithm, de-

veloped by the first author for use in quantum matrices, can also be used in the other two
settings to answer questions concerning the torus-orbits of symplectic leaves and totally

nonnegative cells. The detailed proofs of the results that were obtained in [14, 15] are very

technical, and our aim in this survey is to describe the results informally and to compute
some examples to illuminate our results. We also present applications of these connections

to testing for total nonnegativity through lacunary minors, see Section 6.

1 Totally nonnegative matrices

A real matrix is totally positive (TP for short) if each of its minors is positive and is totally

nonnegative (TNN for short) if each of its minors is nonnegative.

The minor formed by using rows from a set I and columns from a set J is denoted by
[I | J ], or [I | J ](M) if we need to specify the matrix.

An excellent survey of totally positive and totally nonnegative matrices can be found

in [11]. In this survey, the authors draw attention to appearance of TP and TNN matrices
in many areas of mathematics, including: oscillations in mechanical systems, stochastic

processes and approximation theory, Pólya frequency sequences, representation theory,

planar networks, ... . A good source of examples, especially illustrating the important link
with planar networks (discussed below) is [28].
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1.1 Checking total positivity and total nonnegativity

In order to specify a k×k minor of an n×n matrix, we must choose k rows and k columns.

Hence the number of k × k minors of an n× n matrix is
(
n
k

)2
; and so the total number of

minors is
n∑
k=1

(n
k

)2
=

(2n

n

)
− 1 ≈

4n
√
πn

by using Stirling’s approximation n! ≈
√

2πnn
n

en
. This suggests that we do not want to

calculate all of the minors to check for total nonnegativity.

Luckily, for total positivity, we can get away with much less. The simplest example is
the 2× 2 case.

The matrix

(
a b

c d

)
has five minors: a, b, c, d,∆ = ad − bc. Moreover, if a, b, c,∆ =

ad− bc > 0 then d = ∆+bc
a

> 0, so it is sufficient to check four minors.

This observation actually extends to the general situation, and the optimal result is due
to Gasca and Peña, [13, Theorem 4.1]: for an n × n matrix, it is only necessary to check

n2 specified minors.

Definition 1. A minor is said to be an initial minor if it is formed of consecutive rows

and columns, one of which being the first row or the first column.

For example, a 2×2 matrix has 4 initial minors: a, b, c and ∆. More generally, an initial
minor is specified by its bottom right entry; so an n× n matrix has n2 initial minors.

Theorem 1. (Gasca and Peña) The n×n matrix A is totally positive if and only if each

of its initial minors is positive.

In contrast, there is no such family to check whether a matrix is TNN, see, for example,

[10, Example 3.3.1]. However Gasca and Peña do give an efficient algorithm to check TNN,
see the comment after [13, Theorem 5.4].

1.2 Planar networks

We refer the reader to [28] for the definition of a planar network. Consider a directed planar
graph with no directed cycles, m sources, si, and n sinks, tj . Set M = (mij) where mij
is the number of paths from source si to sink tj . The matrix M is called the path matrix

of this planar network. See Figure 1 for an example. Planar networks give an easy way to
construct TNN matrices.

Theorem 2. (Lindström’s Lemma, [25]) The path matrix of any planar network is totally
nonnegative. In fact, the minor [I | J ](M) is equal to the number of families of non-

intersecting paths from sources indexed by I and sinks indexed by J.

For example, the matrixM from Figure 1 is totally nonnegative, by Lindström’s Lemma.
If we allow weights on paths then even more is true.

Theorem 3. (Brenti, [3]) Every totally nonnegative matrix is the weighted path matrix

of some planar network.
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Fig. 1 An example of a planar network and its associated path matrix

1.3 Cell decomposition

Our main concern in this section is to consider the possible patterns of zeros that can occur

as the values of the minors of a totally nonnegative matrix. The following example shows
that one cannot choose a subset of minors arbitrarily and hope to find a totally nonnegative

matrix for which the chosen subset is precisely the subset of minors with value zero.

Example 1. There is no 2×2 totally nonnegative matrix

(
a b

c d

)
with d = 0, but the other

four minors nonzero. For, suppose that

(
a b
c d

)
is TNN and d = 0. Then a, b, c ≥ 0 and

also ad− bc ≥ 0. Thus, −bc ≥ 0 and hence bc = 0 so that b = 0 or c = 0. �

Remark 1. The argument of Example 1 can be used to prove that if M = (xij) is a totally

nonnegative matrix and xst = 0 for some s, t, then, either xit = 0 for all i < s, or xsj = 0
for all j < t. For, suppose not, and that there are entries xit 6= 0, xst = 0 for some i < s,

and consider xsj for any j < t. If xsj > 0 then the minor coming from rows i, s and columns

j, t is equal to −xitxsj < 0, a contradiction. This observation motivates the definition of
Le-diagram which is given below.

Let Mtnn
m,p be the set of totally nonnegative m× p real matrices. Let Z be a subset of

minors. The cell SoZ is the set of matrices inMtnn
m,p for which the minors in Z are zero (and

those not in Z are nonzero). Some cells may be empty. The space Mtnn
m,p is partitioned by

the nonempty cells.

Example 2. It can easily be checked that of the 32 zero patterns for minors inMtnn
2 , only

14 produce nonempty cells.

The question is then to describe the patterns of minors that represent nonempty cells in

the space of totally nonnegative matrices. In [27], Postnikov defines Le-diagrams to solve

this problem. An m×p array with entries either 0 or 1 is said to be a Le-diagram it satisfies
the following rule: if there is a 0 in a given square then either each square to the left is also

filled with 0 or each square above is also filled with 0. (Compare with Remark 1.)
Figure 2 shows an example and a non-example of a Le-diagram on a 3× 3 array

Theorem 4. (Postnikov) There is a bijection between Le-diagrams on an m×p array and

nonempty cells S◦Z in Mtnn
m,p.
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1 0 1
0 0 1
1 1 1

1 0 1
0 0 0
1 0 0

Fig. 2 An example and a non-example of a Le-diagram on a 3× 3 array

In fact, Postnikov proves this theorem for the totally nonnegative grassmannian, and
we are interpreting the result on the big cell, which is the space of totally nonnegative

matrices.

In view of Example 2, there should be 14 2×2 Le-diagrams. At this stage, the interested
reader should draw the 16 possible fillings of a 2× 2 array with either 0 or 1 and identify

the two non-Le-diagrams.

In [27], Postnikov describes an algorithm that starts with a Le-diagram and produces
a planar network from which one generates a totally nonnegative matrix which defines a

nonempty cell in the space of totally nonnegative matrices. The procedure to produce the
planar network is as follows. In each 1 box of the Le-diagram, place a black dot. From each

black dot draw a hook which goes to the right end of the diagram and the bottom of the

diagram. Label the right ends of the horizontal part of the hooks as the sources of a planar
network, numbered from top to bottom, and label the bottom ends of the vertical part of

the hooks as the sinks, numbered from left to right. Then consider the resulting graph to be

directed by allowing movement from right to left along horizontal lines and top to bottom
along vertical lines. By Lindström’s Lemma (see Theorem 2) the path matrix of this planar

network is a totally nonnegative matrix, and so the pattern of its zero minors produces

a nonempty cell in the space of totally nonnegative matrices. The above procedure that
associates to any Le-diagram a nonempty cell provides a bijection between the set of m×p
Le-diagrams and nonempty cells in the space of totally nonnegative m × p matrices (see

Theorem 4).

Example 3. One can easily check that Postnikov’s procedure applied to the 3×3 Le-diagram

on the left of Figure 2 leads to the planar network and the path matrix from Figure 1.
The minors that vanish on this path matrix are:

[1, 2|2, 3], [1, 3|2, 3], [2, 3|2, 3], [2, 3|1, 3], [2, 3|1, 2], [1, 2, 3|1, 2, 3].

The cell associated to this family of minors is nonempty and this is the nonempty cell

associated to the Le-diagram above. �

In fact, by allowing suitable weights on the edges of the above planar network, one can

obtain all of the matrices in this cell as weighted path matrices of the planar network.

2 Quantum matrices

We denote by R := Oq (Mm,p(C)) the standard quantisation of the ring of regular func-
tions on m × p matrices with entries in C; the algebra R is the C-algebra generated by

the m × p indeterminates Xi,α, for 1 ≤ i ≤ m and 1 ≤ α ≤ p, subject to the following
relations:

Xi,αXi,β = qXi,βXi,α (α < β)

Xi,αXj,α = qXj,αXi,α (i < j)

Xj,βXi,α = Xi,αXj,β (i < j, α > β)
Xi,αXj,β −Xj,βXi,α = (q − q−1)Xi,βXj,α (i < j, α < β).
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It is well known that R can be presented as an iterated Ore extension over C, with the

generators Xi,α adjoined in lexicographic order. Thus, the ring R is a noetherian domain;
its skew-field of fractions is denoted by F .

It is easy to check that the torusH :=
(
C×
)m+p

acts on R by C-algebra automorphisms

via:
(a1, . . . , am, b1, . . . , bp).Xi,α = aibαXi,α for all (i, α) ∈ [[1,m]]× [[1, p]].

We refer to this action as the standard action of
(
C×
)m+p

on Oq (Mm,p(C)).

The algebra R possesses a set of distinguished elements called quantum minors that we

now define. If I ⊆ [[1,m]] and Λ ⊆ [[1, p]] with |I| = |Λ| = k ≥ 1, then we denote by [I|Λ]q
the corresponding quantum minor of R. This is the element of R defined by:

[I|Λ]q = [i1, . . . , ik|α1, . . . , αk]q :=
∑
σ∈Sk

(−q)l(σ)Xi1,ασ(1) · · ·Xik,ασ(k) ,

where I = {i1, . . . , ik}, Λ = {α1, . . . , αk} and l(σ) denotes the length of the k-permutation

σ. Note that quantum minors are H-eigenvectors.
In this survey, we will assume that q is not a root of unity. As a consequence, the

stratification theory of Goodearl and Letzter applies, so that the prime spectrum of R is

controlled by those prime ideals of R that are H-invariant, the so-called H-primes. We
denote by H − Spec(R) the set of H-primes of R. The set H − Spec(R) is finite and all

H-primes are completely prime, see [4, Theorem II.5.14].

The aim is to parameterise/study the H-prime ideals in quantum matrices.
In [8], Cauchon showed that his theory of deleting derivations can be applied to the

iterated Ore extension R. As a consequence, he was able to parametrise the set H-Spec(R)

in terms of combinatorial objects called Cauchon diagrams.

Definition 2. [8] An m× p Cauchon diagram C is simply an m× p grid consisting of mp
squares in which certain squares are coloured black. We require that the collection of black

squares have the following property: if a square is black, then either every square strictly

to its left is black or every square strictly above it is black.
We denote by Cm,p the set of m× p Cauchon diagrams.

Note that we will often identify an m × p Cauchon diagram with the set of coordi-

nates of its black boxes. Indeed, if C ∈ Cm,p and (i, α) ∈ [[1,m]] × [[1, p]], we will say that

(i, α) ∈ C if the box in row i and column α of C is black. Recall [8, Corollaire 3.2.1] that

Fig. 3 An example and a non-example of a 3× 3 Cauchon diagram

Cauchon has constructed (using the deleting derivations algorithm) a bijection between

H-Spec(Oq (Mm,p(C))) and the collection Cm,p. As a consequence, Cauchon [8] was able

to give a formula for the size ofH−Spec(Oq (Mm,p(C))). This formula was later re-written
by Goodearl and McCammond (see [22]) in terms of Stirling numbers of second kind and

poly-Bernoulli numbers as defined by Kaneko (see [18]).
Notice that the definitions of Le-diagrams and Cauchon diagrams are the same! Thus,

the nonempty cells in totally nonnegative matrices and the H-prime ideals in quantum

matrices are parameterised by the same combinatorial objects. Much more is true, as we
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will now see in the 2× 2 case.

The algebra of 2× 2 quantum matrices may be presented as

Oq(M2(C)) := C
[
a b
c d

]
with relations

ab = qba ac = qca bc = cb

bd = qdb cd = qdc ad− da = (q − q−1)bc.

This algebra has 5 quantum minors: a, b, c, d and the quantum determinant Dq :=
[12|12]q = ad− qbc.

Example 4. Let P be an H-prime ideal that contains d. Then

(q − q−1)bc = ad− da ∈ P

and, as 0 6= (q − q−1) ∈ C and P is completely prime, we deduce that either b ∈ P or
c ∈ P . Thus, there is no H-prime ideal in Oq(M2(C)) such that d is the only quantum

minor that is in P . �

You should notice the analogy with the corresponding result in the space of 2×2 totally
nonnegative matrices: the cell corresponding to d being the only vanishing minor is empty

(see Example 1).
The algebra Oq(M2(C)) has 14 H-prime ideals, as there are 14 Cauchon/Le-diagrams.

It is relatively easy to identify these H-primes: they are 〈0〉, 〈b〉, 〈c〉, 〈Dq〉, 〈a, b〉, 〈a, c〉,
〈b, c〉, 〈b, d〉, 〈c, d〉, 〈a, b, c〉, 〈a, b, d〉, 〈a, c, d〉, 〈b, c, d〉, 〈a, b, c, d〉,

It is easy to check that 13 of the ideals are prime. For example, let P be the ideal

generated by b and d. Then Oq(M2(C))/P ∼= C[a, c] and C[a, c] is an iterated Ore extension

of C and so a domain. The only problem is to show that the determinant generates a prime
ideal. This was originally proved by Jordan, and, independently, by Levasseur and Stafford.

A general result that includes this as a special case is [16, Theorem 2.5].

Recently, Casteels, [7], has shown that all H-prime ideals are generated by the quantum
minors that they contain, following on from a similar result by the first author with the

restriction that the parameter q be transcendental over Q, [21] (see also [29]).

Comparing Example 2 with the above list reveals that the sets of all quantum minors
that define H-prime ideals in Oq(M2(C)) are exactly the quantum versions of the sets of

vanishing minors for nonempty cells in the space of 2 × 2 totally nonnegative matrices.
This coincidence also occurs in the general case and an explanation of this coincidence is

obtained in [14, 15]. However, in order to explain the coincidence, we need to introduce a

third setting, that of Poisson matrices, and this is done in the next section.

3 Poisson matrix varieties

In this section, we study the standard Poisson structure of the coordinate ringO(Mm,p(C))
coming from the commutators of Oq(Mm,p(C)). Recall that a Poisson algebra (over C)
is a commutative C-algebra A equipped with a Lie bracket {−,−} which is a derivation

(for the associative multiplication) in each variable. The derivations {a,−} on A are called

Hamiltonian derivations. When A is the algebra of complex-valued C∞ functions on a
smooth affine variety V , one can use Hamiltonian derivations in order to define Hamiltonian

paths in V . A smooth path γ : [0, 1] → V is a Hamiltonian path in V if there exists
H ∈ C∞(V ) such that for all f ∈ C∞(V ):
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d

dt
(f ◦ γ)(t) = {H, f} ◦ γ(t), (1)

for all 0 < t < 1. In other words, Hamiltonian paths are the integral curves (or flows) of
the Hamiltonian vector fields induced by the Poisson bracket. It is easy to check that the

relation “connected by a piecewise Hamiltonian path” is an equivalence relation. The equiv-

alence classes of this relation are called the symplectic leaves of V ; they form a partition
of V .

3.1 The Poisson algebra O(Mm,p(C))

Denote byO(Mm,p(C)) the coordinate ring of the varietyMm,p(C); note thatO(Mm,p(C))
is a (commutative) polynomial algebra in mp indeterminates Yi,α with 1 ≤ i ≤ m and

1 ≤ α ≤ p.
The variety Mm,p(C) is a Poisson variety: there is a unique Poisson bracket on the

coordinate ring O(Mm,p(C)) determined by the following data. For all (i, α) < (k, γ), we

set:

{Yi,α, Yk,γ} =


Yi,αYk,γ if i = k and α < γ
Yi,αYk,γ if i < k and α = γ

0 if i < k and α > γ

2Yi,γYk,α if i < k and α < γ.

This is the standard Poisson structure on the affine variety Mm,p(C) (cf. [5, §1.5]); the

Poisson algebra structure on O(Mm,p(C)) is the semiclassical limit of the noncommutative
algebras Oq(Mm,p(C)). Indeed one can easily check that

{Yi,α, Yk,γ} =
[Xi,α, Xk,γ ]

q − 1
|q=1 .

In particular, the Poisson bracket on O(M2(C)) = C
[
a b
c d

]
is defined by:

{a, b} = ab {a, c} = ac {b, c} = 0

{b, d} = bd {c, d} = cd {a, d} = 2bc.

Note that the Poisson bracket on O(Mm,p(C)) extends uniquely to a Poisson bracket on

C∞(Mm,p(C)), so that Mm,p(C) can be viewed as a Poisson manifold. Hence, Mm,p(C)
can be decomposed as the disjoint union of its symplectic leaves.

We finish this section by stating an analogue of Examples 1 and 4 in the Poisson setting.

Proposition 1. Let L be a symplectic leaf such that d(M) = 0 for all M ∈ L. Then,

either b(M) = 0 for all M ∈ L or c(M) = 0 for all M ∈ L.

3.2 H-orbits of symplectic leaves in Mm,p(C)

Notice that the torus H :=
(
C×
)m+p

acts rationally on O(Mm,p(C)) by Poisson auto-
morphisms via:

(a1, . . . , am, b1, . . . , bp).Yi,α = aibαYi,α for all (i, α) ∈ [[1,m]]× [[1, p]].
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At the geometric level, this action of the algebraic torus H comes from the left action

of H on Mm,p(C) by Poisson isomorphisms via:

(a1, . . . , am, b1, . . . , bp).M := diag(a1, . . . , am)−1 ·M · diag(b1, . . . , bp)−1.

This action of H on Mm,p(C) induces an action of H on the set Sympl(Mm,p(C)) of
symplectic leaves inMm,p(C) (cf. [5, §0.1]). As in [5], we view the H-orbit of a symplectic

leaf L as the set-theoretic union
⋃
h∈H h.L ⊆ Mm,p(C), rather than as the family {h.L |

h ∈ H}. We denote the set of such orbits by H-Sympl(Mm,p(C)).
As the symplectic leaves of Mm,p(C) form a partition of Mm,p(C), so too do the

H-orbits of symplectic leaves.

Example 5. The symplectic leaf L containing

(
1 1
1 1

)
is the set E of those 2 × 2 complex

matrices M =

(
x y

z t

)
with y − z = 0, xt− yz = 0 and y 6= 0. In other words,

E := {M ∈M2(C) | ∆(M) = 0, (b− c)(M) = 0 and b(M) 6= 0},

where a, b, c, d denote the canonical generators of the coordinate ring of M2(C) and

∆ := ad − bc is the determinant function. It easily follows from this that the H-orbit

of symplectic leaves in M2(C) that contains the point

(
1 1
1 1

)
is the set of those 2 × 2

matrices M with ∆(M) = 0 and b(M)c(M) 6= 0. Moreover the closure of this H-orbit

coincides with the set of those 2× 2 matrices M with ∆(M) = 0. �

TheH-orbits of symplectic leaves inMm,p(C) have been explicitly described by Brown,

Goodearl and Yakimov, [5, Theorems 3.9, 3.13, 4.2].

Theorem 5. Set S := {w ∈ Sm+p | − p ≤ w(i)− i ≤ m for all i = 1, 2, . . . ,m+ p}.

1. The H-orbits of symplectic leaves in Mm,p(C) are smooth irreducible locally closed

subvarieties.
2. There is an explicit 1 : 1 correspondence between S and H-Sympl(Mm,p(C)).
3. Each H-orbit is defined by some rank conditions.

Before going any further let us look at the 2× 2 case: by the above theorem, there is a

1 : 1 correspondence between H-Sympl(M2(C)) and

S = {w ∈ S4 | − 2 ≤ w(i)− i ≤ 2 for all i = 1, 2, 3, 4},

in other words, with the set of those permutations w in S4 such that w(1) 6= 4 and w(4) 6= 1.
One may be disappointed not to retrieve 2× 2 Cauchon diagrams, but a direct inspection

shows that there are exactly 14 such restricted permutations in the 2× 2 case! This is not

at all a coincidence as we will see in the following section.
The rank conditions that define the H-orbits of symplectic leaves and their closures are

explicit in [5]. The reader is refered to [5] for more details.
For w ∈ S, we denote by Pw theH-orbit of symplectic leaves associated to the restricted

permutation w. To finish, let us mention that the set M(w) of all minors that vanish on

the closure of Pw has been described in [14, Definition 2.6].

Example 6. When m = p = 3 and w = (2 3 5 4), then we obtain

M(w) = {[1, 2|2, 3], [1, 3|2, 3], [2, 3|2, 3], [2, 3|1, 3], [2, 3|1, 2], [1, 2, 3|1, 2, 3]}.

Observe that this family of minors defines a nonempty cell in Mtnn
3 (R) by Example 3. �
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In [14], the following result was obtained thanks to previous results of [5] and [12].

Theorem 6. Let w ∈ S. The closure of the H-orbit Pw is given by:

Pw = {x ∈Mm,p(C) | [I|J ](x) = 0 for all [I|J ] ∈M(w)}.

Moreover, the minor [I|J ] vanishes on Pw if and only if [I|J ] ∈M(w).

4 From Cauchon diagrams to restricted permutations,
via pipe dreams

In the previous section, we have seen that the H-orbits of symplectic leaves in Mm,p(C)

are parameterised by the restricted permutations in Sm+p given by

S = {w ∈ Sm+p | − p ≤ w(i)− i ≤ m for all i = 1, 2, . . . ,m+ p}.

In the 2× 2 case, this subposet of the Bruhat poset of S4 is

S = {w ∈ S4 | − 2 ≤ w(i)− i ≤ 2 for all i = 1, 2, 3, 4}.

and is shown below.

(13)(24)
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hhhhhhhhhhhhhhhhhhhhhhhhhhh
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qqqqqqqqqqqqq
(234)

MMMMMMMMMMMM

(12)

MMMMMMMMMMMMM

ppppppppppppp
(23)

VVVVVVVVVVVVVVVVVVVVVVVVVVVV

NNNNNNNNNNNNNN

pppppppppppppp

hhhhhhhhhhhhhhhhhhhhhhhhhhhh
(34)

NNNNNNNNNNNNN

qqqqqqqqqqqqq

(1)

NNNNNNNNNNNNNNN

ppppppppppppppp

Inspection of this poset reveals that it is isomorphic to the poset of the H-prime ideals of

Oq(M2(C)) in Section 2, partially ordered by inclusion; and so to a similar poset of the

Cauchon diagrams corresponding to the H-prime ideals.
More generally, it is known that the numbers of H-primes in Oq (Mm,p(C)) (and so

the number of m× p Cauchon diagrams) is equal to |S| (see [23]). This is no coincidence,
and the connection between the two posets can be illuminated by using Pipe Dreams.

The procedure to produce a restricted permutation from a Cauchon diagram goes as

follows. Given a Cauchon diagram, replace each black box by a cross, and each white box
by an elbow joint, that is:
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←→ ←→

For example, the Cauchon diagram on the left below produces the pipe dream on the
right

1

2

3

4

5

6

1 2 3

4 5 6

We obtain a permutation σ from the pipe dream in the following way. To calculate

σ(i), locate the i either on the right hand side or the bottom of the pipe dream and trace
through the pipe dream to find the number σ(i) that is at the end of the pipe starting at

i. In the example displayed, we find that σ = 135246 (in one-line notation).
It is easy to check that this produces a restricted permutation of the required type by

using the observation that as you move along a pipe from source to image, you can only

move upwards and leftwards; so, for example, in any 3× 3 example σ(2) is at most 5 (the
number directly above 2).

This procedure provides an explicit bijection between the set of m×p Cauchon diagrams

and the poset S (see [27, 9]).

5 The Unifying Theory

In the previous sections we have seen that the nonempty cells inMtnn
m,p, the torus-invariant

prime ideals in Oq (Mm,p(C)) and the closure of the H-orbits of symplectic leaves are all
parametrised by m× p Cauchon diagrams. This suggests that there might be a connection

between these objects. Going a step further, all these objects are characterised by certain

families of (quantum) minors.
Totally nonnegative cells are defined by the vanishing of families of minors. Some of

the TNN cells are empty. So it is natural to introduce the following definition. A family of

minors is admissible if the corresponding TNN cell is nonempty. Three obvious questions,
which we discuss in the next section, are:

Question 1: what are the admissible families of minors?

Question 2: which families of quantum minors generate H-prime ideals?

Question 3: which families of minors define closures of H-orbits of symplectic
leaves?
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5.1 An algorithm to rule them all

In [8], Cauchon developed and used an algorithm, called the deleting derivations algorithm

in order to study the H-invariant prime ideals in Oq (Mm,p(C)). Roughly speaking, in the
2× 2 case, this algorithm consists in the following change of variable:(

a b

c d

)
−→

(
a− bd−1c b

c d

)
.

Let us now give a precise definition of the deleting derivations algorithm.

If M = (xi,α) ∈ Mm,p(K) with K a skew-field, then we set gj,β(M) = (x′i,α) ∈
Mm,p(K), where

x′i,α :=

{
xi,α − xi,βx−1

j,βxj,α if xj,β 6= 0, i < j and α < β

xi,α otherwise.

We setM(j,β) := gj,β◦· · ·◦gm,p−1◦gm,p(M) where the indices are taken in lexicographic
order.

The matrix M(1,1) is called the matrix obtained from M at the end of the deleting

derivations algorithm.
The deleting derivations algorithm has an inverse that is called the restoration algo-

rithm. It was originally developed in [21] to study H-primes in quantum matrices. Roughly

speaking, in the 2 × 2 case, the restoration algorithm consists of making the following
change of variable: (

a b

c d

)
−→

(
a+ bd−1c b

c d

)
.

Let us now give a precise definition of the restoration algorithm.

If M = (xi,α) ∈Mm,p(K), then we set fj,β(M) = (x′i,α) ∈Mm,p(K), where

x′i,α :=

{
xi,α + xi,βx

−1
j,βxj,α if xj,β 6= 0, i < j and α < β

xi,α otherwise.

We set M(j,β)+ := fj,β ◦ · · · ◦ f1,2 ◦ f1,1(M) where the indices are taken in the reverse
of the lexicographic order and where (j, β)+ ∈ {1, . . . ,m}×{1, . . . , p}∪ {(m+ 1, p)} is the

successor of (j, β) in the lexicographic order.

The matrix M(m,p)+ = M(m+1,p) is called the matrix obtained from M at the end of

the restoration algorithm.

Example 7. Set M =

 1 −1 1
0 2 1

1 1 1

. Then, applying the restoration algorithm to M , we get

M(3,3)+ =

 3 2 1

3 3 1
1 1 1

 , which is the matrix obtained from M at the end of the restoration

algorithm. �

5.2 The restoration algorithm and TNN matrices

The matrix M(3,3)+ obtained from M by the restoration algorithm in Example 7 is not

TNN, as the minor [1, 2|2, 3] is negative. The reason for this failure to be TNN is that the
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starting matrix M has a negative entry. In general, one can express the (quantum) minors

of M(j,β)+ in terms of the (quantum) minors of M(j,β) (see [14, 15]). As a consequence,

one is able to prove the following result that gives a necessary and sufficient condition for
a real matrix to be TNN.

Theorem 7. [14]

1. If the entries of M are nonnegative and its zeros form a Cauchon diagram, then the

matrix M(m,p)+ obtained from M at the end of the restoration algorithm is TNN.
2. Let M be a matrix with real entries. Let N be the matrix obtained at the end of the

deleting derivations algorithm applied to M . Then M is TNN if and only if the matrix
N is nonnegative and its zeros form a Cauchon diagram. (That is, the zeros of N

correspond to the black boxes of a Cauchon diagram.)

Example 8. Use the deleting derivations algorithm to test whether the following matrices

are TNN: M1 =


11 7 4 1
7 5 3 1

4 3 2 1

1 1 1 1

 and M2 =


7 5 4 1
6 5 3 1

4 3 2 1

1 1 1 1

 .

5.3 Main result

Let C be an m × p Cauchon diagram and T = (ti,α) be a matrix with entries in a

skew-field K. Assume that ti,α = 0 if and only if (i, α) is a black box of C. Set TC :=

fm,p ◦ · · · ◦ f1,2 ◦ f1,1(T ), so that TC is the matrix obtained from T by the restoration
algorithm.

Example 9. Let m = p = 3 and consider the Cauchon diagram .

Then T =

 t1,1 0 t1,3
0 0 t2,3
t3,1 t3,2 t3,3

 and T (j,β)+ := fj,β ◦ · · · ◦ f1,1(T ), so that

TC = T (3,3)+ =

 t1,1 + t1,3t
−1
3,3t3,1 t1,3t

−1
3,3t3,2 t1,3

t2,3t
−1
3,3t3,1 t2,3t

−1
3,3t3,2 t2,3

t3,1 t3,2 t3,3

 .

The above construction can be applied in a variety of situations. In particular, we have
the following.

• If K = R and T is nonnegative, then TC is TNN.
• If the nonzero entries of T commute and are algebraically independent, and if K =

C(tij), then the minors of TC that are equal to zero are exactly those that vanish on the

closure of a given H-orbit of symplectic leaves. (See [14].)
• If the nonzero entries of T are the generators of a certain quantum affine space over

C and K is the skew-field of fractions of this quantum affine space, then the quantum
minors of TC that are equal to zero are exactly those belonging to the unique H-prime in
Oq (Mm,p(C)) associated to the Cauchon diagram C. (See [21] for more details.)

• The families of (quantum) minors we get depend only on C in these three cases, and
if we start from the same Cauchon diagram in these three cases, then we get exactly the
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same families.

As a consequence, we get the following comparison result (see [14, 15]).

Theorem 8. Let F be a family of minors in the coordinate ring of Mm,p(C), and let Fq
be the corresponding family of quantum minors in Oq(Mm,p(C)). Then the following are

equivalent:

1. The totally nonnegative cell associated to F is nonempty.
2. F is the set of minors that vanish on the closure of a torus-orbit of symplectic leaves

in Mm,p(C).

3. Fq is the set of quantum minors that belong to an H-prime in Oq(Mm,p(C)).

This result has several interesting consequences.
First, it easily follows from Theorem 8 that the TNN cells in Mtnn

m,p are the traces of

the closure of H-orbits of symplectic leaves on Mtnn
m,p.

Next, the sets of all minors that vanish on the closure of a torus-orbit of symplectic
leaves in Mm,p(C) have been explicitly described in [14] (see also Theorem 6). So, as

a consequence of the previous theorem, the sets of minors that define nonempty totally

nonnegative cells are explicitly described: these are the families M(w) of [14, Definition
2.6] for w ∈ S.

On the other hand, the torus-invariant primes in O(Mm,p(C)) are generated by the

quantum minors that they contain, and so we deduce from the above theorem explicit
generating sets of quantum minors for the torus-invariant prime ideals of Oq(Mm,p(C)).

Recently and independently, Yakimov [29] also described explicit families of quantum mi-
nors that generate H-primes. However his families are smaller than ours and so are not

adapted to the TNN world. The problem of deciding whether a given quantum minor be-

longs to the H-prime associated to a Cauchon diagram C was studied by Casteels [6] who
gave a combinatorial criterion inspired by Lindström’s Lemma.

6 Lacunary sequences

It follows from Theorem 7 that each totally nonnegative matrix is associated to a Cauchon

diagram via the deleting derivation algorithm. In other words, we have a mapping π : M 7→
C fromMtnn

m,p to the set Cm,p of m×p Cauchon diagrams, where C is the Cauchon diagram

associated to the matrix N deduced from M by the deleting derivations algorithm. In [24],
we have proved that the nonempty totally nonnegative cells are precisely the fibres of π,

so that the nonempty totally nonnegative cells in Mtnn
m,p are precisely the sets

S0
C := {M ∈Mtnn

m,p | π(M) = C},

where C runs through the set of m× p Cauchon diagrams.

When C is the all white diagram, S0
C is the cell of all totally positive matrix. Gasca and

Peña’s result, Theorem 1, specifies a set of n2 minors that need to be checked to guarantee
that an n× n matrix is totally positive; that is, in S0

C .
Here we outline a generalisation of this result to arbitrary nonnegative cells: full details

are in [24]. The inspiration for lacunary minors comes from Cauchon’s work on H-primes
in quantum matrices and Theorem 8.

Given an m × p Cauchon diagram C, we specify for each box (i, j) a lacunary minor,

∆i,j , given by [24, Algorithm 1]. Then a matrix A is totally nonnegative and in the cell
corresponding to the Cauchon diagram C if and only if each of the lacunary minors of A
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corresponding to a black box is zero, while each of the lacunary minors of A corresponding

to a white box is greater than zero.
Note that this test only involves mp minors. In the case that C is the Cauchon diagram

with all boxes coloured white, the test states that a real matrix M is totally positive if and

only if each final minor of M is strictly positive. (A minor [I|J ] is a final minor if I and
J consist of consecutive entries and either m ∈ I or p ∈ J .) This is the well-known Gasca

and Peña test, but applied to final minors rather than initial minors.

Example 10. A real matrix M is TNN and belongs to the cell associated to the Cauchon

diagram C on the left below if and only if the nine lacunary conditions on the right below
are satisfied. (The lacunary minors have all been obtained by using [24, Algorithm 1].)

C =

∆1,1 = [13|12] > 0, ∆1,2 = [12|23] > 0, ∆1,3 = [1|3] = 0

∆2,1 = [23|12] = 0, ∆2,2 = [23|23] = 0, ∆2,3 = [2|3] > 0

∆3,1 = [3|1] > 0, ∆3,2 = [3|2] > 0, ∆3,3 = [3|3] > 0.

It is easy to check that the matrix M =

 16 5 0

12 6 3

4 2 1

 satisfies the above nine conditions.

Hence, we deduce from the comments above that M is TNN and belongs to the TNN cell
S0
C associated to C. �

Lacunary minors have been used in recent work by Adm and Garloff on intervals of

totally nonnegative matrices, [1].
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