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Abstract

Generalised quantum determinantal rings are the analogue in quantum matrices

of Schubert varieties. Maximal orders are the noncommutative version of integrally

closed rings. In this paper, we show that generalised quantum determinantal rings

are maximal orders. The cornerstone of the proof is a description of generalised

quantum determinantal rings, up to a localisation, as skew polynomial extensions.
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1 Introduction

Let K be a field, let m,n be positive integers and let q be a nonzero element of K. The

algebra of quantum matrices overK, denoted byOq(Mmn(K)), is a quantum deformation of

the coordinate ring of the variety of m×n matrices over K. The set of quantum minors Π in

Oq(Mmn(K)) carries a natural partial order with respect to which the standard monomials

form a basis over K: more precisely, Oq(Mmn(K)) is a quantum graded algebra with a

straightening law on the poset of quantum minors equipped with the standard partial

order. (Precise definitions are given later.)

Given a quantum minor γ in Oq(Mmn(K)), one can define a factor ring of Oq(Mmn(K)),

denoted byOq(Mmn(K))γ, and known as the generalised quantum determinantal ring/factor

determined by γ. The generalised quantum determinantal factors of Oq(Mmn(K)) are the

analogues for Oq(Mmn(K)) of the quantum Schubert varieties in the grassmannian studied

in [8]. The term generalised quantum determinantal ring is used because special instances

of γ determine the quantum determinantal factors where all quantum minors of a given

size are set to be zero. Generalised quantum determinantal rings were shown to be integral
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domains in [8, Proposition 4.3], but the question as to whether or not they are maximal

orders was left open, see [8, Remark 4.6]. In this work we show that they are indeed

maximal orders. Maximal orders are the noncommutative analogues of normal varieties,

or integrally closed rings.

Our motivation, here, comes from noncommutative algebraic geometry. The algebras

that we study are noncommutative analogues of coordinate rings of natural varieties arising

from Lie theory and we want to study them as such. This was already the point of view

in the works [6], [7] and [8], where properties of geometric nature of related algebras,

expressible either in ring theoretic language (integrity, normality), or homologically (AS-

Cohen-Macaulay, AS-Gorenstein properties) were studied.

2 Basic definitions

Let K be a field, and let q a nonzero element of K. The algebra of m×n quantum matrices

over K, denoted by Oq(Mmn(K)), is the algebra generated over K by mn indeterminates

xij, with 1 ≤ i ≤ m and 1 ≤ j ≤ n, which commute with the elements of K and are

subject to the relations:

xijxil = qxilxij, for 1 ≤ i ≤ m, and 1 ≤ j < l ≤ n ;

xijxkj = qxkjxij, for 1 ≤ i < k ≤ m, and 1 ≤ j ≤ n ;

xijxkl = xklxij, for 1 ≤ k < i ≤ m, and 1 ≤ j < l ≤ n ;

xijxkl − xklxij = (q − q−1)xilxkj, for 1 ≤ i < k ≤ m, and 1 ≤ j < l ≤ n.

It is well-known that Oq(Mmn(K)) is an iterated skew polynomial extension of K with

the xij added in lexicographic order. An immediate consequence is that Oq(Mmn(K)) is a

noetherian domain.

When m = n, the quantum determinant Dq is defined by;

Dq :=
∑

(−q)l(σ)x1σ(1) . . . xnσ(n),

where the sum is over all permutations σ of {1, . . . , n}.
The quantum determinant is a central element in the algebra Oq(Mnn(K)).

Let I and J be t-element subsets of {1, . . . ,m} and {1, . . . , n}, respectively. It is clear

from the definitions that the subalgebra of Oq(Mmn(K)) generated by those xij with i ∈ I
and j ∈ J is isomorphic in the obvious way to Oq(Mtt(K)). Then the quantum minor

[I | J ] is defined to be the quantum determinant of this subalgebra. (Note that xij = [i | j]
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and [∅ | ∅] is taken to be 1.) It is immediate that xij[I | J ] = [I | J ]xij for i ∈ I and j ∈ J ,

but quantum minors do not commute with other variables. Nevertheless, several useful

commutation relations have been developed, and we will use some of them in this article.

The set of all quantum minors is denoted by Π. The set Π is equipped with the partial

order ≤st defined in [7, Section 3.5]. Namely, if [I | J ] and [K | L] are quantum minors with

I = {i1 < · · · < iu}, J = {j1 < · · · < ju}, K = {k1 < · · · < kv} and L = {l1 < · · · < lv}
then

[I | J ] ≤st [K | L]⇐⇒


u ≥ v,

is ≤ ks for 1 ≤ s ≤ v,

js ≤ ls for 1 ≤ s ≤ v.

The algebra of quantum matrices, equipped with the partial order ≤st defined on the set

of quantum minors Π, is a quantum graded algebra with a straightening law (abbreviated

QGASL), as defined in [7], see [7, Theorem 3.5.3].

Definition 2.1. Let γ ∈ Π and set Πγ := {α ∈ Π | α 6≥st γ}. Set Iγ to be the ideal

generated by Πγ. The generalised quantum determinantal ring Oq(Mmn(K))γ associated

to γ is the factor algebra Oq(Mmn(K))/Iγ. (We let p : Oq(Mmn(K)) −→ Oq(Mmn(K))γ

be the canonical projection.)

The terminology we use arises in the following way. Let γ = [1, . . . , t− 1 | 1, . . . , t− 1].

Then Πγ consists of the s× s quantum minors with s ≥ t, and Oq(Mmn(K))γ is the factor

ring obtained by setting all of the t × t quantum minors to be zero: such algebras are

known as quantum determinantal rings, see, for example, [6]

Proposition 2.2. The generalised quantum determinantal ring Oq(Mmn(K))γ is a QGASL

on the natural projection of Π\Πγ from Oq(Mmn(K)) to Oq(Mmn(K))γ.

Proof. This follows immediately from [7, Theorem 3.5.3 and Corollary 1.2.6].

Recall that an element u of a ring R is a normal element if uR = Ru and is regular if

it is a nonzerodivisor.

Corollary 2.3. The image γ of γ in Oq(Mmn(K))γ is the unique minimal element of

p(Π\Πγ). Further, for each τ ≥st γ, there exists cτ ∈ K, nonzero, such that γ τ = cττ γ,

where τ = p(τ). Consequently, γ is a regular normal element of the generalised quantum

determinantal ring Oq(Mmn(K))γ.

Proof. See the proof of [7, Lemma 1.2.1].
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3 Relations for a subalgebra of quantum matrices

Let γ = [A|B] = [a1, . . . , at | b1, . . . , bt] be a quantum minor in Oq(Mmn(K)), and let

c1 < c2 < · · · < cn−t be the column indices of Oq(Mmn(K)) that do not occur in γ and

r1 < r2 < · · · < rm−t be the row indices of Oq(Mmn(K)) that do not occur in γ. We will

use this notation throughout the paper.

Denote by S the t × t quantum matrix subalgebra of Oq(Mmn(K)) generated by the

xaibj . Our strategy to show that the generalised determinantal algebra determined by

γ is a maximal order will be to show that it is related via localisation to an algebra T

which is an iterated Ore extension. The algebra T is a subalgebra of quantum matrices

generated by S and a family of quantum minors (explicit generators are given below). In

order to show that T is an iterated Ore extension, we need to do two things. First, we

need to develop suitable commutation relations between the generators; this is done in this

section. Secondly, we need to show that the generators are independent enough to give a

presentation as an iterated Ore extension.

Let M be the set of t × t quantum minors that are ≥st γ, and which differ from γ

in precisely one entry. Let T be the subalgebra of Oq(Mmn(K)) generated over S by the

quantum minors in M. To study T , we need a notation for the quantum minors in M.

First, note that each such minor either has the same row set or column set as γ and

differs from γ in the column set or row set, respectively, by exactly one element. Let R
be the set of such quantum minors with the same row set as γ and C be the set of such

quantum minors with the same column set as γ.

Note that a quantum minor [A | B t {c(n−t+1)−i}\{bj}] is in M precisely when bj <

c(n−t+1)−i. Similarly, the quantum minor [At{r(m−t+1)−i}\{aj} | B] is in C precisely when

aj < r(m−t+1)−i.

For each i, j such that bj < c(n−t+1)−i, set

mij := [A | B t {c(n−t+1)−i}\{bj}],

and, similarly, set

nij := [A t {r(m−t+1)−i}\{aj} | B]

whenever aj < r(m−t+1)−i.

Then, R = {mij | bj < c(n−t+1)−i} and C = {nij | aj < r(m−t+1)−i}.
We now order M = R t C in the following way. The members of R come before the

members of C, while mij ≤ mkl if and only if (i, j) ≤ (k, l) in lexicographic order and,

similarly, nij ≤ nkl if and only if (i, j) ≤ (k, l) in lexicographic order.
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The plan is to build up T from S by introducing the members of M in this order.

At this point, let’s look at a specific example.

Example 3.1. Consider the quantum minor γ = [13 | 12] in Oq(M3,3(K)). Then S =

K[x11, x12, x31, x32], a quantum matrix subalgebra ofOq(M3,3(K)), whileR = {m11,m12} =

{[13 | 23], [13 | 13]}, C = {n11} = {[23 | 12]} and M = {m11 < m12 < n11} = {[13 | 23] <

[13 | 13] < [23 | 12]}. Then,

T = S[m11,m12, n11].

What we are aiming to do amounts to showing, in this example, that T is (isomorphic

to) a three step iterated Ore extension of S, with the “variables” m11,m12, n11 added in

this order. It then follows that T is a seven step iterated Ore extension of K, and that

GKdim(T ) = 7.

For each mkl that is defined let R(mkl) be the subalgebra of T generated by S and the

mij that are less than or equal to mkl in the order defined above, and for each nkl that is

defined let R(nkl) be the subalgebra of T generated by S, all of the mij and the nij that are

less than or equal to nkl in the order defined above. Let m−kl be the mij that immediately

precedes mkl in the above order and let n−kl be the nij that immediately precedes nkl in the

above order. Then, R(mkl) is generated over R(m−kl) by mkl and R(nkl) is generated over

R(n−kl) by nkl. (If m−kl does not exist set R(m−kl) := S, and, similarly, if n−kl does not exist

then R(n−kl) is generated over S by all of the mij.)

We need to know suitable commutation relations between the members of M and

between members of M and the xij in the quantum matrix subalgebra S.

First, we check how the mij, nij commute with the generators of S.

Lemma 3.2. Let xakbl be a generator for S. Then

(i) xakbl commutes with mij when l 6= j, while

xakbjmij − qmijxakbj = q̂
∑
s<j

(−q)•misxakbs ,

where q̂ = q − q−1 and (−q)• is an unspecified positive integer power of −q.
(ii) xakbl commutes with nij when k 6= j, while

xajblnij − qnijxajbl = q̂
∑
s<j

(−q)•nisxasbl ,

where q̂ = q − q−1 and (−q)• is an unspecified positive integer power of −q.
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Proof. We prove (i), the proof of (ii) is similar. Recall that mij = [A | Bt{c(n−t+1)−i}\{bj}]
is the quantum determinant of a quantum matrix subalgebra that contains the element

xakbl whenever l 6= j, and so commutes with such elements.

When l = j, we use [10, Lemma 4.5.1(2), first equation] with r = ak, s = bj, A(i, s) =

[A | B t {c(n−t+1)−i}\{bj}]. (Note that we must interchange q and q−1 when using results

from [10].) We see that

xakbjmij − qmijxakbj

= xakbj [A | B t {c(n−t+1)−i}\{bj}]− q[A | B t {c(n−t+1)−i}\{bj}]xakbj
= q̂

∑
s<j

(−q)•[A | (B t {c(n−t+1)−i}\{bj}) t {bj}\{bs}]xakbs

= q̂
∑
s<j

(−q)•[A | B t {c(n−t+1)−i}\{bs}]xakbs

= q̂
∑
s<j

(−q)•misxakbs .

Note that these mis exist, as bs < bj < c(n−t+1)−i.

It is important to note that this result shows that xakbjmij − qmijxakbj ∈ R(m−ij), and

similarly for nij.

Next, we need to know commutation relations for M.

Proposition 3.3. (i) The mij obey the rules for quantum matrix variables, with parameter

q−1, as do the nij.

(ii) Given mij ∈ R and nkl ∈ C, mijnkl = nklmij.

Proof. There are several relations to check. We present the proof of the following claim.

(The proofs for all other cases are similar, but easier.) Suppose that i < k and j < l and

that mij and mkl are defined. Then mil and mkj are defined and

mijmkl −mklmij = (q−1 − q)milmkj .

Proof of claim. We know that bj < bl, and bl < c(n−t+1)−k as mkl is defined. Thus,

bj < c(n−t+1)−k and so mkj = [A | B t {c(n−t+1)−k}\{bj}] is defined. Also, bl < c(n−t+1)−k,

as mkl is defined, and c(n−t+1)−k < c(n−t+1)−i as i < k. As a consequence, bl < c(n−t+1)−i

and so mil = [A | B t {c(n−t+1)−i}\{bl}] is defined.

SetA′ = A\{a1, a2} andB′ := B\{bj, bl}. Thenmij = [A′t{a1, a2} | B′t{c(n−t+1)−i, bl}]
and mkl = [A′ t {a1, a2} | B′ t {c(n−t+1)−k, bj}].
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We need a commutation rule for the quantum minors [a1a2 | blc(n−t+1)−i] and [a1a2 |
bjc(n−t+1)−k], where bj < bl < c(n−t+1)−k < c(n−t+1)−i. It is easy to verify that, in

Oq(M2,4(K)), we have [12|24][12|13] − [12|13][12|24] = (q−1 − q)[12|14][12|23]. It follows

that, in Oq(Mmn(K)),

[a1a2|blc(n−t+1)−i][a1a2|bjc(n−t+1)−k]− [a1a2|bjc(n−t+1)−k][a1a2|blc(n−t+1)−i]

= (q−1 − q)[a1a2|bjc(n−t+1)−i][a1a2|blc(n−t+1)−k].

Using the quantum Muir’s Law of extensible minors, see [8, Proposition 1.3] for example,

to re-introduce A′ and B′ we obtain

mijmkl −mklmij = (q−1 − q)milmkj ,

as required.

4 Torus actions induced from Oq(Mmn(K))

The algebra T is a subalgebra of Oq(Mmn(K)). Recall that there is an action of the torus

H = (K∗)m+n on Oq(Mmn(K)) defined on the generators of Oq(Mmn(K)) in the following

way: if h = (α1, . . . , αm; β1 . . . , βn) then h · xij := αiβjxij. The generators xij,mij, nij

are all eigenvectors for the action of H; and so it is easy to check that H restricts to

automorphisms of T and the various subalgebras that we are using to build up T as a

purported Ore extension. Our aim is to show that the commutation relations developed in

Section 3 can be rephrased by using suitable choices of elements h ∈ H.

Definition 4.1. Set hmkl
:= (α1, . . . , αm; β1, . . . , βn) where (i) αs = 1 when s ∈ A, and

αs = q−1 when s 6∈ A, and (ii) βc(n−t+1)−k
= q−2, βbl = q, and βs = 1 for s ∈ B\{bl}, with

βs = q−1 for s 6∈ B t {c(n−t+1)−k}.
Also, set hnkl

:= (α1, . . . , αm; β1, . . . , βn) where (i) αr(m−t+1)−k
= q−2, αl = q, and αs = 1

for s ∈ A\{al}, while αs = q−1 for s 6∈ A t {r(m−t+1)−k}, and (ii) βs = 1 for s ∈ B and

βs = q−1 for s 6∈ B.

Let’s check the action of the h that we have just defined on relevant generators of T .

Lemma 4.2. The following hold.

(1) For i ∈ A, j ∈ B, then hmkl
(xibl) = qxibl and hmkl

(xij) = xij when j 6= bl.

(2) For i ∈ A, j ∈ B, then hnkl
(xalj) = qxalj and hnkl

(xij) = xij when i 6= al.

(3) Suppose that (i, j) < (k, l) in lexicographic order, then:

(a) hmkl
(mij) = mij when i 6= k and j 6= l;
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(b) hmkl
(mij) = q−1mij when i = k and j < l or i < k and j = l.

(4) Suppose that (i, j) < (k, l) in lexicographic order, then:

(a) hnkl
(nij) = nij when i 6= k and j 6= l;

(b) hnkl
(nij) = q−1nij when i = k and j < l or i < k and j = l.

(5) hnkl
(mij) = mij, for all nkl and mij.

Proof. We prove (1) and (3a). The proofs of all other claims are similar to one of these

two.

(1) hmkl
(xij) = αiβjxij. Now i ∈ A, so αi = 1 and hmkl

(xij) = βjxij, which is equal to qxij

when j = bl and equal to 1.xij otherwise.

(3a) Suppose that i 6= k and j 6= l. Now, mij := [A | B t {c(n−t+1)−i}\{bj}] with

bj < c(n−t+1)−i, and mkl := [A | B t {c(n−t+1)−k}\{bl}] with bl < c(n−t+1)−k.

Let h = hmkl
= (α1, . . . , αm; β1 . . . , βn). Then

hmkl
(mij)

= hmkl
([A | B t {c(n−t+1)−i}\{bj}])

= αa1 . . . αatβb1 . . . β̂bj . . . βbtβc(n−t+1)−i
[A | B t {c(n−t+1)−i}\{bj}]

= αa1 . . . αatβb1 . . . β̂bj . . . βbtβc(n−t+1)−i
mij

Hence, we need to evaluate λ := αa1 . . . αatβb1 . . . β̂bj . . . βbtβc(n−t+1)−i
. From the defi-

nition of hmkl
we see that each αai = 1. Also, for s ∈ B\{bl} we know that βs = 1.

Therefore, λ = βblβc(n−t+1)−i
. We know that βbl = q, so it remains to evaluate βc(n−t+1)−i

.

As i 6= k it follows that c(n−t+1)−i 6= c(n−t+1)−k so that c(n−t+1)−i 6∈ B t {c(n−t+1)−k} and so

βc(n−t+1)−i
= q−1. Hence, λ = βblβc(n−t+1)−i

= qq−1 = 1.

The previous lemma, together with the results obtained in Section 3 are sufficient to

establish the following result.

Proposition 4.3. (i) For xij ∈ S and for any mkl that is defined,

mklxij − h−1mkl
(xij)mkl ∈ R(m−kl)

(ii) For xij ∈ S and for any nkl that is defined,

nklxij − h−1nkl
(xij)nkl ∈ R(n−kl)

(iii) mklmij − h−1mkl
(mij)mkl ∈ R(m−kl) for (i, j) < (k, l) in lexicographic order

(iv) nklmij = h−1nkl
(mij)nkl for all (i, j) and (k, l)

(v) nklnij − h−1nkl
(nij)nkl ∈ R(n−kl) for (i, j) < (k, l) in lexicographic order.
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We can use this proposition to show that at each stage in the construction of T we have

an Ore extension. In order to do this, we need to utilise the following result concerning

Gelfand-Kirillov dimension of extensions of the type considered in the previous result. See

[5] for standard properties of Gelfand-Kirillov dimension.

Lemma 4.4. Let B be a K-algebra. Suppose A is a finitely generated subalgebra of B

that is an integral domain with finite Gelfand-Kirillov dimension and that x is an element

of B such that B is generated by A and x as an algebra. Furthermore, suppose there

exists an automorphism σ of A and finite-dimensional subspace V of A that generates A

as an algebra such that σ(V ) = V . Suppose that xa − σ(a)x ∈ A, for each a ∈ A. Then

GKdim(B) ≤ GKdim(A) + 1.

Also,

(i) δ : A −→ A, defined by δ(a) := xa− σ(a)x, is a σ-derivation of A, and

(ii) if C := A[y;σ, δ], the natural algebra morphism θ : C −→ B such that θ|A = idA and

θ(y) = x is an isomorphism if only if GKdim(B) = GKdim(A) + 1.

Proof. Note that [8, Lemma 2.3] guarantees that GKdim(B) ≤ GKdim(A) + 1. As C

is a particular example of such a B, we have GKdim(C) ≤ GKdim(A) + 1. However,

it is well-known that GKdim(C) ≥ GKdim(A) + 1 (see [5, p.164]) and so GKdim(C) =

GKdim(A) + 1.

It is routine to check that δ is a σ-derivation of A. The map θ : C −→ B given

by θ(f(y)) := f(x) is an epimorphism from C to B. If θ is not an isomorphism then

GKdim(B) ≤ GKdim(C) − 1 = GKdim(A), by [5, Proposition 3.15], while if θ is an

isomorphism then GKdim(B) = GKdim(C) = GKdim(A) + 1, as required.

Corollary 4.5. GKdim(T ) ≤ (m+ n+ 1)t−
∑t

i=1 (ai + bi)

Proof. Recall that T is generated over K by the t2 elements xaibj together with those t× t
quantum minors that are greater than γ and differ from γ in exactly one entry. Such a

minor which excludes ai is given by including a row index which is bigger than ai but

not equal to any of the other aj. There are m − ai − (t − i) such indices. Summing over

i = 1, . . . , t, one obtains mt−
∑
ai− t(t− 1)/2. There are also nt−

∑
bj − t(t− 1)/2 such

quantum minors that exclude a bj, giving a total of (m+ n)t−
∑

(ai + bi)− t(t− 1) such

quantum minors. Adding in t2 for the elements xaibj produces (m+n+ 1)t−
∑t

i=1 (ai+ bi)

generators. At each stage that a new generator is introduced, we have an algebra A, a

new generator x to generate an algebra B containing A and an automorphism σ with the

property that xa − σ(a)x ∈ A for elements a in a generating set of A as an algebra. As

σ is an automorphism, this property extends to all elements of A and so the first part
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of Lemma 4.4 is applicable to establish that GKdim(B) ≤ GKdim(A) + 1. There are

(m + n + 1)t −
∑t

i=1 (ai + bi) such extensions building up T from the base field k and so

the required inequality is obtained.

5 Generalised quantum determinantal rings are max-

imal orders

Let γ = [A|B] = [a1, . . . , at | b1, . . . , bt] be a quantum minor in Oq(Mmn(K)) and set

Jγ = Oq(Mmn(K))γ. Then γ is a regular normal element of Jγ, by Corollary 2.3; and so

we can invert γ to obtain the localisation Jγ[γ
−1]. Our aim is to show that this localisation

is isomorphic to a localisation T [γ−1] of the algebra T constructed in the previous section.

As a consequence, Jγ[γ
−1] will be a maximal order. From this we will deduce that Jγ is a

maximal order.

There is a natural homorphism θ from T [γ−1] to Jγ[γ
−1], see below. In order to show

that θ is surjective, we need to employ quantum Laplace expansions; while in order to see

that θ is injective, we need to use Gelfand-Kirillov dimension calculations. The details are

in the next few results.

Lemma 5.1. The quantum minor γ is a regular normal element in the algebra T . More

precisely, γ q•-commutes with each of the generators of T .

Proof. A variable xij is in the generating set for T as an algebra precisely when i ∈ A and

j ∈ B, in which case xij commutes with γ.

Recall that mij = [A | B t {c(n−t+1)−i}\{bj}], with bj < c(n−t+1)−i. A simple applica-

tion of the quantum Muir’s law [8, Proposition 1.3] shows that the commutation relation

between γ = [A | B] and mij is the same as that between xa1bj and xa1c(n−t+1)−i
, and this

is a q-commutation as these two variables are on the same row of a quantum matrix. A

similar remark applies to the commutation relations between γ and the nij with the roles

of rows and columns interchanged.

As a consequence of the previous lemma, we can form the localisation T [γ−1] of T

obtained by inverting the powers of γ and the canonical morphism T −→ T [γ−1] is injective.

Gelfand-Kirillov dimension behaves well with respect to this localisation, as we see below.

Lemma 5.2. (i) GKdim(T [γ−1]) = GKdim(T ) ≤ (m+ n+ 1)t−
∑t

i=1 (ai + bi).

(ii) GKdim(Jγ[γ
−1]) = GKdim(Jγ) = (m+ n+ 1)t−

∑t
i=1 (ai + bi).

(iii) GKdim(T [γ−1]) ≤ GKdim(Jγ[γ
−1]).
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Proof. (i) Let V be the vector space generated by the generators of T (that is, the xij,mij

and nij). Then the previous lemma shows that γV = V γ. Set W := V + γ−1K and note

that W generates T [γ−1] as an algebra and that Wγ ⊆ T . Set Y := Wγ + Kγ + K, a

finite dimensional vector subspace of T . It is easy to check that W nγn ⊆ Y n. It follows

that dim(W n) ≤ dim(Y n) and so GKdim(T [γ−1]) ≤ GKdim(T ). As it is obvious that

GKdim(T [γ−1]) ≥ GKdim(T ), equality follows. The inequality is already established in

Corollary 4.5.

(ii) For the first equality, a similar proof to that in (i) works, taking the generating subspace

V to be generated by the image of Π in Jγ, and using Corollary 2.3 instead of Lemma 5.1.

For the second equality, see [8, Remark 4.2(iii)].

(iii) This is immediate, from (i) and (ii).

The inclusion of T in Oq(Mmn(K)) induces a natural homomorphism θ : T −→ Jγ[γ
−1]

which sends any quantum minor [I | J ] to its image [I | J ] in Jγ ⊆ Jγ[γ
−1]. In particular,

θ(γ) = γ, and so we may extend θ to a homomorphism (also denoted by θ) from T [γ−1] to

Jγ[γ
−1].

Proposition 5.3. The homomorphism

θ : T [γ−1] −→ Jγ[ γ
−1]

is an isomorphism.

Proof. The algebra Jγ[ γ
−1] is generated over K by γ ±1 together with the image xrs in Jγ

of the mn generators xrs of Oq(Mmn(K)). Thus, in order to prove surjectivity, it is enough

to see that the xrs are all in the image of θ. This is obvious for the xrs which have r ∈ A
and s ∈ B.

Let xrs be a generator with (r, s) /∈ A×B.

Suppose first that s 6∈ B. By [3, A.5. Corollary (b)(i)], for any I ⊆ {1, . . . ,m} and

J ⊆ {1, . . . , n} with |J | = |I|+ 1 we have

∑
j∈J

(−q)|[1,j)∩J |xrj[I | J \ {j}] =

{
(−q)|[1,r)∩I|[I t {r} | J ] (r /∈ I)

0 (r ∈ I)
.

If we set I = A and J = Bt{s} then we obtain the following relation in Oq(Mmn(K)):

(−q)•xrs[A|B] +
t∑

j=1

(−q)•xrbj [A | B t {s}\{bj}] =

{
(−q)•[A t {r} | B t {s}] (r /∈ A)

0 (r ∈ A)
.
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To start with, suppose in addition that r ∈ A. Let us look at the image in Jγ of the above

relation. The terms xrbj [A | B t {s}\{bj}] where s < bj are sent to zero because they are

not greater than or equal to γ. In addition, the image in Jγ of the remaining such terms is

in the image of θ. It follows from this that, in this case, xrs is in the image of θ. Of course,

by a similar argument, exchanging rows and columns, we get that xrs is in the image of θ

whenever r /∈ A and s ∈ B.

It remains to deal with the case where r /∈ A and s /∈ B. In that case, we have the

relation (−q)•xrs[A|B] +
∑t

j=1 (−q)•xrbj [A | B t {s}\{bj}] = (−q)•[A t {r} | B t {s}] in

Oq(Mmn(K)). In this relation, the right hand term is not greater than or equal to γ since

it is a (t+ 1)× (t+ 1) minor. So, taking the image of this latter relation in Jγ, we get, by

the same argument as above, that xrs is in the image of θ since, as we have just proved,

xrbj is in the image of θ.

This finishes the proof that θ is a surjective map.

Hence, GKdim(T [γ−1]) ≥ GKdim(θ(T [γ−1])) = GKdim(Jγ[γ
−1]) = GKdim(Jγ). To-

gether with Lemma 5.2(iii) this gives GKdim(T [γ−1]) = GKdim(Jγ[γ
−1]).

Suppose now that θ is not injective. Then ker(θ) is a nonzero ideal in the noetherian

domain T [γ±1]. Hence, GKdim(θ(T [γ±1])) < GKdim(T [γ±1]), by [5, Proposition 3.15].

However, this contradicts the fact that these two dimensions are equal, as observed in the

previous paragraph. Thus, θ is injective and so θ is an isomorphism.

Corollary 5.4. GKdim(T ) = (m+ n+ 1)t−
∑t

i=1 (ai + bi).

Proof. This follows immediately from Lemma 5.2.

Corollary 5.5. The algebra T is an iterated Ore extension.

Proof. The algebra T is constructed from K by adding in the (m+n+ 1)t−
∑t

i=1 (ai + bi)

generators one-by-one. At each stage, the Gelfand-Kirillov dimension can increase by at

most one, by Lemma 4.4, and so must increase by exactly one, as GKdim(T ) = (m+ n+

1)t−
∑t

i=1 (ai + bi). Thus, each stage is an Ore extension, by Lemma 4.4.

Remark 5.6. Corollary 5.5 extends Lemma 6.4 of [1], which asserts that in the commu-

tative case (that is when q = 1), O1(Mmn(K))γ is a localisation of a polynomial ring in

(m+ n+ 1)t−
∑t

i=1 (ai + bi) indeterminates.

Proposition 5.7. The QGASL Oq(Mmn(K))γ is an integral domain.

Proof. The algebra T [γ−1] is an integral domain as it is a localisation of T which is a

subalgebra of the domain Oq(Mmn(K)). As a consequence, the isomorphism T [γ−1] ∼=

12



Oq(Mmn(K))γ[ γ
−1] of Proposition 5.3 shows that Oq(Mmn(K))γ[ γ

−1] is an integral do-

main. As γ is a regular normal element of Oq(Mmn(K))γ by Corollary 2.3, the natural

map Oq(Mmn(K))γ −→ Oq(Mmn(K))γ[γ
−1] is a monomorphism, and so Oq(Mmn(K))γ is

also an integral domain.

Remark 5.8. The previous result applies to all generalised quantum determinantal rings

Oq(Mmn(K))τ , for any τ ∈ Π. In particular, it applies to the upper neighbours of γ which

are the elements τ ∈ Π\Πγ with the property that if σ ∈ Π with γ <st σ ≤st τ then σ = τ .

This makes available [8, Proposition 2.2.2] which we use in the proof of our main theorem

below.

Theorem 5.9. The generalised quantum determinantal ring Oq(Mmn(K))γ is a maximal

order.

Proof. The algebra T [γ±1]) is a localisation of an iterated Ore extension, and so is a

maximal order, by [9, V. Proposition 2.5, IV. Proposition 2.1]. Thus, Oq(Mmn(K))γ[γ
−1] is

a maximal order, by the isomorphism established in Proposition 5.3. Hence, [8, Proposition

2.2.2] applies to the quantum graded algebra with a straightening lawOq(Mmn(K))γ (whose

underlying poset has the single minimal element γ); so we conclude that Oq(Mmn(K))γ is

a maximal order.

Remark 5.10. As pointed out in the introduction, our motivation in the present work is

to complete the study, from the point of view of noncommutative algebraic geometry, of

generalised quantum determinantal rings. Here is a summary of the results.

Let γ ∈ Π. Then, Oq(Mmn(K))γ is an integral domain and a maximal order in its

division ring of fractions, as established in [8] and the present work.

Further, Oq(Mmn(K))γ is AS-Cohen-Macaulay, and it is AS-Gorenstein for any nonzero

q in K if and only if it is AS-Gorenstein for q = 1. All this can be shown following the

arguments developed in paragraph 4 of [7] (see in particular Theorems 4.2 and 4.3). Notice

in addition that necessary and sufficient conditions for O1(Mmn(K)) to be AS-Gorenstein

are given in [1, Theorem 8.14].
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