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Abstract

The quantum grassmannian is known to be a graded quantum algebra with a straight-
ening law when the poset of generating quantum minors is endowed with the standard
partial ordering. In this paper it is shown that this result remains true when the or-
dering is subjected to cyclic shifts. The method involves proving that noncommutative
dehomogenisation is possible at any consecutive quantum minor.
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Introduction

The quantum grassmannian Oq(G(m,n)), where m ≤ n, is the subalgebra of the quantum
matrix algebra Oq(Mm,n) generated by the maximal (m × m) quantum minors (precise
definitions are given in Section 1). Two useful tools that have been developed recently to
study properties of these important quantum algebras are the notion of a graded quantum
algebra with a straightening law, [4], and the notion of noncommutative dehomogenisation,
[2]. In [4] it was shown that the quantum grassmannian is a graded quantum algebra with
a straightening law and this fact was then used to study homological properties of the
quantum grassmannian; for example, the quantum grassmannian is AS-Cohen Macaulay.
Noncommutative dehomogenisation is useful for passing properties back and forth between
the quantum grassmannian and quantum matrices; for example, Oq(Mm,n−m) is the non-
commutative dehomogenisation of Oq(G(m, n)) at the right-most maximal quantum minor
[n − m + 1, . . . , n], see [2, Corollary 4.1] and this fact is used to transfer the property of

∗Some of the results in this paper will appear in the second author’s PhD thesis (Edinburgh). The second
author thanks EPSRC for financial support.
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being a graded quantum algebra with a straightening law from the quantum grassmannian
to quantum matrices and the important quantum determinantal factors in [4, Theorem
4.1].

In this paper we show that the uesfulness of both of these tools can be extended once
one realises that one can study partial orders on the set of generating quantum minors Π
of Oq(G(m,n)) other than the usual one defined by [i1, . . . , im] ≤ [ji, . . . , jm] iff il ≤ jl for
each 1 ≤ l ≤ n.

Indeed, for each 1 ≤ s ≤ n, one can study the cyclic order <s defined on {1, . . . , n} by
s <s s + 1 <s · · · <s n <s 1 <s · · · <s s − 1, and use this order to induce a new partial
order Πs on Π. We show in Section 3 that Oq(G(m,n)) is a graded quantum algebra with
a straightening law with respect to Πs.

In order to do this we first have to show in Section 2 that noncommutative dehomogeni-
sation is possible at the maximal element of Πs, a so-called consecutive quantum minor,
and that the resulting noncommutative dehomogenisation is once more Oq(Mm,n−m).

Once this result has been established we show that one can pass the property of being a
graded quantum algebra with a straightening law from quantum matrices to the quantum
grassmannian equipped with the partial order Πs.

1 Basic definitions

In this section, we will give the basic definitions of the objects that interest us in this paper
and recall several results that we need in our proofs. Throughout, k will denote a base
field, q will be a non-zero element of k and m and n denote positive integers.

The quantisation of the coordinate ring of the affine variety Mm,n of m × n matrices
with entries in k is denoted Oq(Mm,n). It is the k-algebra generated by mn indeterminates
xij , with 1 ≤ i ≤ m and 1 ≤ j ≤ n, subject to the relations:

xijxil = qxilxij , for 1 ≤ i ≤ m, and 1 ≤ j < l ≤ n ;
xijxkj = qxkjxij , for 1 ≤ i < k ≤ m, and 1 ≤ j ≤ n ;
xijxkl = xklxij , for 1 ≤ k < i ≤ m, and 1 ≤ j < l ≤ n ;
xijxkl − xklxij = (q − q−1)xilxkj , for 1 ≤ i < k ≤ m, and 1 ≤ j < l ≤ n.

To simplify, we write Oq(Mn) for Oq(Mn,n). The m × n matrix X = (xij) is called the
generic matrix associated with Oq(Mm,n).

As is well known, there exists a k-algebra transpose isomorphism between Oq(Mm,n)
and Oq(Mn,m), see [4, Remark 3.1.3]. Hence, from now on, we assume that m ≤ n, without
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loss of generality.

An index pair is a pair (I, J) such that I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} are subsets
with the same cardinality. Hence, an index pair is given by an integer t such that 1 ≤ t ≤ m

and ordered sets I = {i1 < · · · < it} ⊆ {1, . . . ,m} and J = {j1 < · · · < jt} ⊆ {1, . . . , n}.
To any such index pair we associate the quantum minor

[I|J ] =
∑
σ∈St

(−q)`(σ)xiσ(1)j1 · · ·xiσ(t)jt .

Definition 1.1 – The quantisation of the coordinate ring of the grassmannian of m-
dimensional subspaces of kn, denoted by Oq(G(m,n)) and informally referred to as the
(m × n) quantum grassmannian is the subalgebra of Oq(Mm,n) generated by the m × m

quantum minors.

A maximal (that is, m×m) quantum minor in Oq(Mm,n) corresponds to an index pair
[{1, . . . ,m}|J ] with J = {j1, . . . , jm} ⊆ {1, . . . , n}. We call such J index sets and denote the
corresponding minor by [J ] in what follows. Thus, such a [J ] is a generator of Oq(G(m, n)).
The set of all index sets is denoted by Πm,n, or simply Π if no confusion may arise. As Πm,n

is in one-to-one correspondence with the set of all maximal quantum minors of Oq(Mm,n),
we will often identify these two sets.

When writing down an m×m quantum minor inOq(G(m, n)), we will use the convention
that if a column index j is greater than n then j is to be read as j − n. For example, in
Oq(G(2, 4)) the minor specified by [45] is the quantum minor [14]. In order to stress this
point, we will use the convention that given any integer j then j̃ is the integer in the set
{1, . . . , n} that is congruent to j modulo n.

A quantum minor {̃i, ĩ + 1, . . . , ˜i + m− 1} is said to be a consecutive quantum mi-
nor of Oq(G(m,n)). Recalling the convention above, we see that there are four consecutive
minors in Oq(G(2, 4)): they are [12], [23], [34] and [4̃ 5̃] = [14]. More generally, Oq(G(m,n))
has n consecutive minors.

Two maximal quantum minors [I] and [J ] are said to quasi-commute if there is an
integer c such that [I][J ] = qc[J ][I]. Recall that an element u of a ring R is said to be a
normal element if uR = Ru, in which case uR is a two-sided ideal. The following lemma,
first obtained in [3, Lemma 3.7], shows that consecutive quantum minors quasi-commute
with all maximal quantum minors.

Lemma 1.2 Let {̃i, ĩ + 1, . . . , ˜i + m− 1} be a consecutive quantum minor in the quantum
grassmannian Oq(G(m,n)). Then {̃i, ĩ + 1, . . . , ˜i + m− 1} quasi-commutes with each of
the generating quantum minors of Oq(G(m,n)). In particular, each consecutive quantum
minor is a normal element of Oq(G(m,n)). �
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Quantum analogues of the classical Plücker relations are available and are stated in the
following theorem.

Theorem 1.3 (Generalised Quantum Plücker Relations for Quantum grassmannians)
Let J1, J2,K ⊆ {1, 2, . . . , n} be such that |J1|, |J2| ≤ m and |K| = 2m − |J1| − |J2| > m.
Then ∑

K′tK′′=K

(−q)`(J1;K′)+`(K′;K′′)+`(K′′;J2)[J1 tK ′][K ′′ t J2] = 0,

where `(I;J) = |{(i, j) ∈ I × J : i > j}|.

Proof: [2, Theorem 2.1] �

Often, when using this result, it is not important to know exactly which power of −q

occurs. In this case, we simply write (−q)• to denote the relevant power of −q.
We will also need a version of the Quantum Muir’s Law of Extensible Minors. This

result was first obtained by Krob and Leclerc, [3, Theorem 3.4], with a proof involving
quasi-determinants. The version below, which is sufficient for our needs, is taken from [5,
Proposition 1.3], and is adapted for use in the quantum grassmannian.

Proposition 1.4 Let Is, Js, for 1 ≤ s ≤ d, be m-element subsets of {1, . . . , n} and let
cs ∈ k be such that

∑d
s=1 cs[Is][Js] = 0 in Oq(G(m,n)). Suppose that P is a subset of

{1, . . . , n} such that (∪d
s=1Is) ∪ (∪d

s=1Js) ⊆ P and let P denote {1, . . . , n}\P . Then
d∑

s=1

cs[Is t P ][Js t P ] = 0.

holds in Oq(G(m′, n)), where m′ = m + #P . �

This result is used, for example, when it is necessary to write down a commutation
relation between two maximal quantum minors [I] and [J ], say. The usefulness of the result
is that one may delete the common members of the index pairs I and J to establish the
commutation relation. It will often be the case that we then only have to find commutation
relations for two minors involving at most 4 indices, and here we may use the following
well-known relations in Oq(G(2, 4)) which can easily be checked from the defining relations
of quantum matrices.

[ij][ik] = q[ik][ij], [ik][jk] = q[jk][ik], for i < j < k

and

[14] [23] = [23] [14] , [12][34] = q2[34][12], [13] [24] = [24] [13] +
(
q − q−1

)
[14] [23] .

There is also a Quantum Plücker relation [12] [34] − q [13] [24] + q2 [14] [23] = 0. This
Quantum Plücker relation may be rewritten as [34] [12]−q−1 [24] [13]+q−2 [23] [14] = 0 and
one can also check that [13] [24] = q2 [24] [13] +

(
q−1 − q

)
[12] [34] .

4



2 Dehomogenisation at a consecutive quantum

minor

Noncommutative dehomogenisation was introduced in [2] in order to pass properties back
and forth between quantum matrices and the quantum grassmannian. Here, we recall the
basic idea. Let A be an N-graded k-algebra and let x be a homogeneous normal nonzero
divisor sitting in degree one. Then the Ore localisation at the powers of x exists and is a
Z-graded algebra. The (noncommutative) dehomogenisation of A at x is defined to be the
degree zero part of this localisation, see [2] for the details.

The aim in this section is to show that the dehomogenisation of Oq(G(m,n)) at any
consecutive quantum minor is isomorphic to Oq(Mm,n−m). This result is known for the
quantum minor [n−m+1, . . . , n], by [2, Theorem 4.1]. The proof for a general consecutive
minor [ã, ã + 1, . . . , ˜a + m− 1] follows the same route as in this theorem, but the techni-
calities are a little more complicated. First, we identify a suitable generating set for the
dehomogenisation.

Lemma 2.1 The k-algebra

Dhom(Oq(G(m, n)), [ã, ã + 1, . . . , ˜a + m− 1])

is generated by the elements

{{j, a, a + 1, . . . , ̂(a + m− i), . . . , a + m− 1}} :=

[j, ã, ã + 1, . . . , ̂(a + m− i), . . . , ˜a + m− 1][ã, ã + 1, . . . , ˜a + m− 1]−1,

where j ∈ {1, . . . , n}\{ã, ã + 1, . . . , ˜a + m− 1} and i ∈ {1, . . . ,m}.

Proof: Let A be the subalgebra of Dhom(Oq(G(m,n)), [ã, ã + 1, . . . , ˜a + m− 1]) generated
by the elements {{j, a, a + 1, . . . , ̂(a + m− i), . . . , a + m− 1}}.

Let I = {i1, i2, . . . , im}, with each il ∈ {1, . . . , n}, be an index set such that I 6=
{ã, ã + 1, . . . , ˜a + m− 1}. Suppose that |I ∩ {ã, ã + 1, . . . , ˜a + m− 1}| = m − t for some
1 ≤ t ≤ m. Certainly, Dhom(Oq(G(m,n)), [ã, ã + 1, . . . , ˜a + m− 1]) is generated by such
{{I}}; so it is enough to show that each {{I}} is in A. This is done by induction on t.

First, consider the case where t = 1. Then |I ∩ {ã, ã + 1, . . . , ˜a + m− 1}| = m − 1.
Hence,

{{I}} = {{j, a, a + 1, . . . , ̂(a + m− i), . . . , a + m− 1}}

for some j ∈ {1, . . . , n}\{ã, ã + 1, . . . , ˜a + m− 1} and 1 ≤ i ≤ m; so that {{I}} ∈ A, by
definition.

Next, consider t > 1 and suppose that the result is true for t− 1. Let I be an index set
with |I ∩ {ã, ã + 1, . . . , ˜a + m− 1}| = m − t. Choose c ∈ I \{ã, ã + 1, . . . , ˜a + m− 1}. We
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will use the generalised quantum Plücker relations of Theorem 1.3 to rewrite the product
[ã, ã + 1, . . . , ˜a + m− 1][i1, i2, . . . , im].

In the notation of Theorem 1.3, let K = {c} t {ã, ã + 1, . . . , ˜a + m− 1}, J1 = ∅ and
J2 = I\{c}. Then, ∑

K′tK′′=K

(−q)•[K ′][K ′′ t J2] = 0,

where either
K ′ = {ã, ã + 1, . . . , ˜a + m− 1} and K ′′ = {c},

in which case [K ′][K ′′ t J2] = [ã, ã + 1, . . . , ˜a + m− 1][i1, i2, . . . , im], or

K ′ = {c} t {a, a + 1, . . . , ̂(a + m− i), . . . , a + m− 1} and K ′′ = {a + m− i}

for some 1 ≤ i ≤ m. Note that in this case, ˜(a + m− i) 6∈ I. Set S = {i | ˜(a + m− i) 6∈ I}.
Then, by re-arranging the above equation, we obtain

[ã, ã + 1, . . . , ˜a + m− 1][i1, i2, . . . , im] =

−
∑
i∈S

(−q)•[c, ã, . . . , ̂a + m− i, . . . ˜a + m− 1][ ˜a + m− i, i1, . . . , ĉ, . . . , im]

Multiplying through this equation by [ã, ã + 1, . . . , ˜a + m− 1]−2 from the right, and using
Lemma 1.2 gives

{{i1, i2, . . . , im}} =∑
i∈S

±(−q)•{{c, ã, . . . , ̂a + m− i, . . . ˜a + m− 1}}{{ ˜a + m− i, i1, . . . , ĉ, . . . , im}}

Consider the terms on the right hand side of this equation. The first factor of each term is
in A by definition. For the second factor, note that

|{ ˜a + m− i, i1, . . . , ĉ, . . . , im} ∩ {ã, ã + 1, . . . ˜a + m− 1}| = m− t + 1 = m− (t− 1);

and so {{ ˜a + m− i, i1, . . . , ĉ, . . . , im}} ∈ A, by the inductive hypothesis. �

Theorem 2.2 There is an isomorphism

ρ : Oq(Mm,n−m) −→ Dhom(Oq(G(m,n)), [ã, ã + 1, . . . , ˜a + m− 1])

which is defined on generators by

ρ(xij) = {{ ˜(j + a + m− 1), ã, . . . , ̂a + m− i, . . . , ˜a + m− 1}},

for 1 ≤ i ≤ m and 1 ≤ j ≤ n−m.
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Proof: In order to show that ρ defines a homomorphism, we have to show that the images
of the xij under ρ obey the relevant commutation relations. As indicated at the start of
Section 1, there are four types of relations to consider. Set

I := {ã, ã + 1, . . . , . . . , ˜a + m− 1}\{ ˜a + m− k, ˜a + m− i}.

Then

ρ(xij) = [ ˜(j + a + m− 1), ã, . . . , ̂a + m− i, . . . , ˜a + m− 1][ã, ã + 1, . . . , ˜a + m− 1]−1

= [ ˜(j + a + m− 1), ˜a + m− k, I][ ̂a + m− i, ˜a + m− k, I]−1

and

ρ(xkl) = [ ˜(l + a + m− 1), ã, . . . , ̂a + m− k, . . . , ˜a + m− 1][ã, ã + 1, . . . , ˜a + m− 1]−1

= [ ˜(l + a + m− 1), ˜a + m− i, I][ ̂a + m− i, ˜a + m− k, I]−1

In order to calculate commutation relations between these two elements, we may ignore
the occurences of I, by using the Quantum Muir’s Law, Proposition 1.4. This reduces the
problem to computations that only involve the (at most) four columns

˜(j + a + m− 1), ˜(l + a + m− 1), ˜a + m− i and ˜a + m− k. (1)

As only the order of the columns is relevant, all the necessary computations can be done by
using the known relations in Oq(G(2, 4)). For each commutation relation, there are several
subcases involving the relative positions of the column indices (1). Here, we present just
two calculations, since the computations are similar in all cases. The final type of relation
is the most involved, so we will concentrate on that one. So, suppose that i < k and j < l.
We must show that

ρ(xij)ρ(xkl)− ρ(xkl)ρ(xij) = (q − q−1)ρ(xil)ρ(xkj).

(Note that ρ(xil) = [ ˜(l + a + m− 1), ˜a + m− k, I][ ̂a + m− i, ˜a + m− k, I]−1 and that
ρ(xkj) = [ ˜(j + a + m− 1), ˜a + m− i, I][ ̂a + m− i, ˜a + m− k, I]−1.) The restrictions 1 ≤
i < k ≤ m and 1 ≤ j < l ≤ n−m ensure that

a + m− k < a + m− i < j + a + m− 1 < l + a + m− 1

Thus, one of the following four cases must hold:

˜a + m− k < ˜a + m− i < ˜(j + a + m− 1) < ˜(l + a + m− 1) (2)

˜a + m− i < ˜(j + a + m− 1) < ˜(l + a + m− 1) < ˜a + m− k (3)
˜(j + a + m− 1) < ˜(l + a + m− 1) < ˜a + m− k < ˜a + m− i (4)
˜(l + a + m− 1) < ˜a + m− k < ˜a + m− i < ˜(j + a + m− 1) (5)
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We can check the commutation relations from the commutation relations forOq(G(2, 4)),
since only the ordering of the column indices affects the relation. Thus, for example, we
see that in Case (2) we need to check that [13][12]−1[24][12]−1 − [24][12]−1[13][12]−1 =
(q − q−1)[14][12]−1[23][12]−1, and we now do this:

[13][12]−1[24][12]−1 − [24][12]−1[13][12]−1 = q−1[13][24][12]−2 − q−1[24][13][12]−2

= q−1([13][24]− [24][13])[12]−2 = q−1(q − q−1)[14][23][12]−2

= (q − q−1)[14][12]−1[23][12]−1,

as required.
Next, consider Case (3) above. Here we need to check the following equality:

[24][14]−1[13][14]−1 − [13][14]−1[24][14]−1

= q[24][13][14]−2 − q−1[13][24][14]−2

= (q[24][13]− q−1[13][24])[14]−2

= (q[24][13]− q−1[24][13]− q−1(q − q−1)[14][23])[14]−2

= (q − q−1)([24][13]− q−1[14][23])[14]−2

= (q − q−1)q[34][12][14]−2

= (q − q−1)[34][14]−1[12][14]−1.

(Note that the fifth equality is obtained by using a version of the quantum Plücker relation.)
The remaining cases to be considered in the verification of the final quantum matrix

relation are similar to, but easier than, the above two cases; so we omit the rest of the
calculations.

Thus, ρ extends to a homomorphism. The images of the generators under ρ generate
Dhom(Oq(G(m, n)), [ã, ã + 1, . . . , ˜a + m− 1]), by Lemma 2.1; so ρ is an epimorphism. In
order to see that ρ is a monomorphism, we use Gelfand-Kirillov dimension. The argument
is exactly the same as that given at the end of [2, Theorem 4.1]. �

3 The cyclic order <s

The set Π = Πm,n of index sets (equivalently, of generating quantum minors ofOq(G(m,n)))
carries a natural partial order defined in the following way. Let I = {i1 < · · · < im} and
J = {j1 < · · · < jm} be two index sets, then

I ≤st J ⇐⇒ ik ≤ jk for 1 ≤ k ≤ m.

In order to study properties of the quantum grassmannian, the notion of a quantum
graded algebra with a straightening law (on a partially ordered set Π) was introduced in
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[4]. We now recall the definition of these algebras and mention various properties that we
will use later.

Let A be an algebra and Π a finite subset of elements of A with a partial order <st. A
standard monomial on Π is an element of A which is either 1 or of the form α1 · · ·αs, for
some s ≥ 1, where α1, . . . , αs ∈ Π and α1 ≤st · · · ≤st αs.

Definition 3.1 Let A be an N-graded k-algebra and Π a finite subset of A equipped with
a partial order <st. We say that A is a quantum graded algebra with a straightening law
on the poset (Π, <st) if the following conditions are satisfied.
(1) The elements of Π are homogeneous with positive degree.
(2) The elements of Π generate A as a k-algebra.
(3) The set of standard monomials on Π is a linearly independent set.
(4) If α, β ∈ Π are not comparable for <st, then αβ is a linear combination of terms λ or
λµ, where λ, µ ∈ Π, λ ≤st µ and λ <st α, β.
(5) For all α, β ∈ Π, there exists cαβ ∈ k∗ such that αβ − cαββα is a linear combination of
terms λ or λµ, where λ, µ ∈ Π, λ ≤st µ and λ <st α, β.

By [4, Proposition 1.1.4], if A is a quantum graded algebra with a straightening law on
the partially ordered set (Π, <st), then the set of standard monomials on Π forms a k-basis
of A. Hence, in the presence of a standard monomial basis, the structure of a quantum
graded algebra with a straightening law may be seen as providing more detailed information
on the way standard monomials multiply and commute.

It is shown, in [4, Theorem 3.4.4], that Oq(G(m,n)) is a quantum graded algebra with
a straightening law on (Πm,n,≤st).

The aim in this section is to show that there are other partial orderings that can be put
on Π in such a way that Oq(G(m, n)) has the structure of a quantum graded algebra with
a straightening law.

Consider the order <s defined by s <s s + 1 <s . . . <s n <s 1 <s . . . <s s− 1.
We use this ordering of the set {1, . . . , n} of column indices of Oq(Mm,n) to induce a

partial ordering <s on Π = Πm,n: let I = {i1 <s · · · <s im} and J = {j1 <s · · · <s jm} be
two index sets, then

I ≤s J ⇐⇒ ik ≤s jk for each k ∈ {1, . . . ,m}.

When we are considering Π with this induced partial ordering, we will use the notation
Πs.

For example, Figure 1 shows the poset Π2 in Oq(G(2, 4)).
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Figure 1: The poset Π2 on Oq(G(2, 4)).

The aim in this section is to show that Oq(G(m, n)) is a graded quantum algebra with
a straightening law with respect to the poset Πs.

Set M = {ã, ã + 1, . . . , ˜a + m− 1} for some 1 ≤ a ≤ n. In the previous section, we have
seen that the dehomogenisation of Oq(G(m,n)) at [M ] is isomorphic to Oq(Mm,n−m). We
will show that the usual standard partial order on the quantum minors of Oq(Mm,n−m)
is order isomorphic to the partial order Πs on Oq(G(m, n)) when a = s − m. Once this
is established, we use the fact that Oq(Mm,n−m) is a graded quantum algebra with a
straightening law to obtain the desired result.

In order to do this, we need to know how the quantum minors of Oq(Mm,n−m) behave
under the dehomogenisation isomorphism ρ of Theorem 2.2.

Note that

ρ(xij) = {{(j + a + m− 1), a, . . . , ̂a + m− i, . . . , a + m− 1}},

for 1 ≤ i ≤ m and 1 ≤ j ≤ n−m.
Consider the quantum minor [I|J ] of Oq(Mm,n−m). Suppose that I = {i1, . . . , it} and

J = {j1, . . . , jt}, for some 1 ≤ t ≤ m, with ik ∈ {1, . . . ,m} and jk ∈ {1, . . . , n − m}.
Define the maximal quantum minor [Q(I, J)] ∈ Πs to be the quantum minor with index
set Q(I, J) defined by

Q(I, J) := { ˜(j1 + a + m− 1), ˜(j2 + a + m− 1) . . . , ˜(jt + a + m− 1)}⊔ (
{ã, ã + 1, . . . , ˜a + m− 1}\{ ˜a + m− i1, ˜a + m− i2, . . . , ˜a + m− it}

)
In the special case where I = {i} and J = {j}, we will write Q(i, j) for Q(I, J). Thus,

ρ(xij) = {{(j + a + m− 1), a, . . . , ̂a + m− i, . . . , a + m− 1}} = [Q(i, j)][M ]−1.

Finally, define
{{Q(I, J)}} := [Q(I, J)][M ]−1.
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The aim is to show that ρ([I|J ]) = {{Q(I, J)}}. The main calculation is performed in the
following preparatory lemma.

Set sign(i, j) = `(j, i)− `(i, j); so that sign(i, j) =


1, if i < j;
0, if i = j;
−1, if i > j.

Lemma 3.2 Suppose that I = {i1, i2, . . . , it} and J = {j1, j2, . . . , jt} with t ≤ min{m, n−
m}. Let M = {ã, ã + 1, . . . , ˜a + m− 1}, for some 1 ≤ a ≤ n. Then

[Q(I, J)][M ] +
t∑

k=1

(−q)(t−k)−sign( ˜a+m−it, ˜jk+a+m−1)[Q(I\{it}, J\{jk})][Q(xitjk
)] = 0 (6)

in Oq(G(m,n)).

Proof: Special case: We start by considering the special case where t = m and
n = 2m. In this case, I = J = {1, . . . ,m}. Thus, Q(I, J) = {ã + m, . . . , ˜a + 2m− 1} and
M = {ã, . . . , ˜a + m− 1}.

Special case, subcase 1: First, consider the case where m+1 ≤ a ≤ 2m, and write a =
m+1+b, with 0 ≤ b ≤ m−1. Note that ˜k + a + m− 1 = b+k and sign(a, ˜k + a + m− 1) =
sign(a, k + b) = −1, because k + b < a. Also, (6), which is what we need to prove, becomes

[Q(I, J)][M ] +
m∑

k=1

(−q)m+1−k[Q(I\{m}, J\{k})]× [k + b, a + 1, . . . , 2m, 1, . . . , b] = 0 (7)

The proof uses Theorem 1.3 with J1 = ∅. Thus,∑
K′tK′′=K

(−q)`(K′;K′′)+`(K′′;J2)[K ′][K ′′ t J2] = 0, (8)

and we set K = {b + 1, . . . , b + m} t {a} and J2 = {1 . . . , b, a + 1, . . . , 2m}.
There are m + 1 terms in this sum, corresponding to the choices K ′′ = {a} and K ′′ =

{b + k} for 1 ≤ k ≤ m.
When K ′′ = {a} and K ′ = {b + 1, . . . , b + m} we have

`(K ′;K ′′) + `(K ′′;J2) = `({b + 1, . . . , b + m}; {a}) + `({a}; {a + 1, . . . , 2m, 1, . . . , b})

= 0 + b = b

and so the corresponding term in the sum is (−q)b[Q(I, J)][M ].
When K ′′ = {b + k} and K ′ = {b + 1, . . . , b + m}\{b + k} t {a} we have

`(K ′;K ′′) + `(K ′′;J2) = `({b + 1, . . . , b + m}\{b + k} t {a}; {b + k})

+`({b + k}; {a + 1, . . . , 2m, 1, . . . , b})

= (m + 1− k) + b

11



and so the corresponding term in the sum is (−q)m+1−k+bQ(I\{m}, J\{k})Q(m, k).
Thus,

(−q)b[Q(I, J)][M ] +
m∑

k=1

(−q)m+1−k+bQ(I\{m}, J\{k})Q(m, k) = 0.

Cancelling (−q)b gives (7), the equality we need to finish this case.

Special case, subcase 2: Now, consider the case where 1 ≤ a ≤ m. Note that
k + a + m− 1 ≤ 2m when k ≤ m− a + 1 while k + a + m− 1 > 2m when k > a + m− 1.
Thus, ˜k + a + m− 1 = k + a + m− 1 for k ≤ m− a + 1 and ˜k + a + m− 1 = k + a−m− 1
for k > a + m− 1. Set k = ˜k + a + m− 1 in each of these cases.

Now, sign(a, ˜k + a + m− 1) = sign(a, k) = 1 when k ≤ m − a + 1 and, similarly,
sign(a, ˜k + a + m− 1) = −1 when k > m− a + 1

Thus, in this case, (6), which is what we need to prove, becomes

[Q(I, J)][M ] +
m−a+1∑

k=1

(−q)m−1−k[Q(I\{m}, J\{k})][k + a + m− 1, a + 1, . . . , a + m− 1]

− (
m∑

k>m−a+1

(−q)m+1−k[Q(I\{m}, J\{k})][k + a−m− 1, a + 1, . . . , a + m− 1])

= 0 (9)

The proof again uses Theorem 1.3 with J1 = ∅, but K = {1, . . . , a−1, a+m, . . . , 2m}t
{a} and J2 = {a+1, . . . , a+m−1}. When K ′′ = {a} and K ′ = {1, . . . , a−1, a+m, . . . , 2m}
we have

`(K ′;K ′′) + `(K ′′;J2) = `({1, . . . , a− 1, a + m, . . . , 2m}; {a})

+ `({a}; {a + 1, . . . , a + m− 1})

= (m + 1− a) + 0 = m + 1− a

and so the corresponding term in the sum is (−q)m+1−a[Q(I, J)][M ].
Consider the case that 1 ≤ k ≤ m − a + 1. In this case, k = k + a + m − 1 and

a+m ≤ k ≤ 2m. When K ′′ = k and K ′ = {1, . . . , a− 1, a+m, . . . , 2m}\{k}t{a} we have

`(K ′;K ′′) + `(K ′′;J2) = `({1, . . . , a− 1, a + m, . . . , 2m}\{k} t {a}; {k + a + m− 1})

+ `({k + a + m− 1}; {a + 1, . . . , a + m− 1})

= 2m− (k + m + a− 1) + m− 1 = 2m− a− k

and so the corresponding term in the sum is

(−q)2m−a−k[Q(I\{m}, J\{k})][k + a + m− 1, a + 1, . . . , a + m− 1]).
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Next, consider the case where m− a + 1 < k ≤ m. In this case, k = k + a−m− 1 and
1 ≤ k ≤ a− 1. When K ′′ = k and K ′ = {1, . . . , a− 1, a + m, . . . , 2m}\{k} t {a} we have

`(K ′;K ′′) + `(K ′′;J2) = `({1, . . . , a− 1, a + m, . . . , 2m}\{k} t {a}; {k + a−m− 1})

+ `({k + a−m− 1}; {a + 1, . . . , a + m− 1})

= m + 1− k + 0 = m + 1− (k − a−m− 1) = 2(m + 1)− k − a;

and so the corresponding term in the sum is

(−q)2(m+1)−a−k[Q(I\{m}, J\{k})][k + a + m− 1, a + 1, . . . , a + m− 1]).

Thus,

(−q)m+1−a[Q(I, J)][M ] +
m−a+1∑

k=1

(−q)2m−a−k[Q(I\{m}, J\{k})][Q(xmk)]

+
m∑

k>m−a+1

(−q)2(m+1)−a−k[Q(I\{m}, J\{k})][Q(xmk)] = 0

Cancelling (−q)m+1−a gives (9), the equality we need to prove to finish this case.

This establishes the special case.

General case: Now, consider the general case. Here, the proof is by induction. The base
case of Oq(G(1, 2)) is trivial to check. First, suppose that the result holds in Oq(G(m′, n′))
for all m′ ≤ n′ < n. Next, suppose that the result holds in all Oq(G(m′, n)) for all m′ < m.
Finally, suppose that the result holds in Oq(G(m,n)) for all values of t′ < t.

Suppose that t < n − m. Then t + m < n; and so there is an index c, say, with
c 6∈ M t{j1, . . . , jt}. Note that the index c does not occur in any of the terms in (6). Thus,
we may ignore the column c and work in Oq(G(m,n − 1)) where the result holds by the
inductive hypothesis.

Next, suppose that t = n −m < m. Choose an index r ∈ {1, . . . ,m}\{i1, . . . , it}. The
index ˜a + m− r occurs in each of the quantum minors in (6). By the inductive hypoth-
esis, the result (6) holds for the triple I ′ := I\{ ˜a + m− r}, J ′ := J\{ ˜a + m− r},M ′ :=
M\{ ˜a + m− r} in the copy of Oq(G(m−1, n−1)) that sits inside the copy of Oq(Mm−1,n−1)
obtained by removing the row r and the column ˜a + m− r: call the resulting equation (1′).
We obtain the desired result by invoking the Quantum Muir Law, Proposition 1.4, to insert
the index ˜a + m− r in each quantum minor occuring in (1′).
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It only remains to consider the case where t = n−m = m. However, this is the special
case that was established in the first part of the proof. �

Proposition 3.3 ρ([I|J ]) = {{Q(I, J)}}

Proof: The proof is by induction on t. The case t = 1 is given in Theorem 2.2.
Suppose that I = {i1, i2, . . . , it} and J = {j1, j2, . . . , jt}, with t ≥ 2. Expand [I|J ] along

its final row, by using [6, Corollary 4.4.4], to obtain

[I|J ] =
t∑

k=1

(−q)t−k[I\{it}|J\{jk}]xitjk
.

Now apply ρ to this expression, using the inductive hypothesis on the quantum minors
[I\{it}|J\{jk}] to obtain

ρ([I|J ]) =
t∑

k=1

(−q)t−k[Q(I\{it}, J\{jk})][M ]−1[Q(it, jk)][M ]−1

Note that the index sets Q(it, jk) = { ˜(jk + a + m− 1), ã, . . . , ̂a + m− it, . . . , ˜a + m− 1}
and M = {ã, ã + 1, . . . , ˜a + m− 1} differ only in the indices ˜(jk + a + m− 1) and ˜a + m− it;
so that

[M ]−1[Q(it, jk)] = q−sign( ˜a+m−it, ˜jk+a+m−1)[Q(it, jk)][M ]−1.

Thus,

ρ([I|J ]) = −(
t∑

k=1

(−q)(t−k)−sign( ˜a+m−it, ˜jk+a+m−1)[Q(I\{it}, J\{jk})][Q(xij)])[M ]−2

However,

−(
t∑

k=1

(−q)(t−k)−sign( ˜a+m−it, ˜jk+a+m−1)[Q(I\{it}, J\{jk})][Q(xij)]) = [Q(I, J)][M ]

by Lemma 3.2; so

ρ([I|J ]) = [Q(I, J)][M ][M ]−2 = [Q(I, J)][M ]−1 = {{Q(I, J)}}

as required. �

Recall from Section 1 the definition of an index pair (I, J) and the corresponding quan-
tum minor [I | J ] in a fixed quantum matrix algebra, say Oq(Mm,n−m). Let ∆ denote the
set of index pairs (or quantum minors).

We put a partial order on ∆ that is denoted by ≤st. Let u, v be integers such that
1 ≤ u ≤ m and 1 ≤ v ≤ n −m, and let (I, J) and (K, L) be index pairs with I = {i1 <

14



· · · < iu},K = {k1 < · · · < kv} ⊆ {1, . . . ,m}, and J = {j1 < · · · < ju}, L = {l1 < · · · <

lv} ⊆ {1, . . . , n−m}. We define ≤st as follows:

(I, J) ≤st (K, L) ⇐⇒


u ≥ v,

is ≤ ks for 1 ≤ s ≤ v,

js ≤ ls for 1 ≤ s ≤ v.

In [4, Theorem 3.5.3] it is shown that quantum matrices form a graded algebra with a
straightening law with respect to this order.

Let [M ] = [ã, ã + 1, . . . , ˜a + m− 1]. The previous proposition shows that for each
quantum minor [I | J ] of Oq(Mm,n−m) produces, in a natural way, a generating minor
[Q(I, J)] = ρ([I | J ])[M ] of Oq(G(m, n)). It is easy to check that every generating minor
of Oq(G(m, n)), apart from [M ] itself, arises in this way. Thus, we can use the previous
proposition to induce a partial order on Π, the set of generating minors of Oq(G(m,n)).
The following combinatorial lemma identifies this partial order.

Proposition 3.4 Let 1 ≤ s ≤ n and set a = s̃. Then [I|J ] ≤st [K|L] if and only if
Q(I, J) <s Q(K, L).

Proof: This is similar to the proof of [1, Lemma 4.9] �

Note that [M ] = [ã, ã + 1, . . . , ˜a + m− 1] is the maximal element in the partially ordered
set Πs. Figure 2 illustrates the previous result in Oq(G(2, 4)) with s = 2.

1

[2|2]

wwwww
GGGGG

[2|1]

GGGGG [1|2]

wwwww

[1|1]

[12|12]

≤st on Oq(M2)

  

[14]

[13]

wwwww
GGGGG

[12]

GGGGG [34]

wwwww

[24]

[23]

Π2 on Oq(G(2, 4))

Figure 2:

We use the previous results to transfer the graded algebra with a straightening law
property from Oq(Mm,n−m) to Oq(G(m,n)). The proof is essentially obtained by reversing
the direction of the proof of [4, Theorem 3.5.3], and, for this reason, we merely sketch the
proof.
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Theorem 3.5 The quantum grassmannian Oq(G(m,n)) is a graded quantum algebra with
a straightening law on the poset Πs for each 1 ≤ s ≤ n.

Proof: There are five conditions in the definition of a graded quantum algebra with a
straightening law, see Definition 3.1. Conditions (1) and (2) are immediate; so we need to
check (3), (4) and (5). We use Theorem 2.2 with a = s̃−m.

The map ρ of Theorem 2.2 extends to an isomorphism

ρ : Oq(Mm,n−m)[y, y−1;σ] −→ Dhom(Oq(G(m,n)), [ã, ã + 1, . . . , ˜a + m− 1])

with ρ(y) = [M ], cf. [2, Corollary 4.1]. Let θ denote the inverse of this isomorphism. Note
that y quasi-commutes with each of the quantum minors in Oq(Mm,n−m).

Suppose that [I1]a1 [I2]a2 . . . [It]at [M ]a is a standard monomial with respect to the or-
dering <s, and suppose that It 6= M . Let ρ([Ki | Li]) = [Ii][M ]−1 for each i = 1, . . . , t.
Then

θ([I1]a1 [I2]a2 . . . [It]at [M ]a) = (−q)•[K1 | L1]a1 [K2 | L2]a2 . . . [Kt | Lt]atya+
P

ai .

Note that this image is a non-zero scalar multiple of a term in the standard basis of
Oq(Mm,n−m) multiplied by a power of y. Note also that distinct [I1]a1 [I2]a2 . . . [It]at [M ]a

produce distinct images. Thus, a linear combination of such terms is mapped to a linear
combination of terms which are linearly independent, and so the standard monomials with
respect to the ordering <s are linearly independent. This establishes (3).

Next, suppose that [I], [J ] are incomparable with respect to <s. Note that neither [I]
nor [J ] is equal to [M ], since [M ] is the maximal element of the poset Πs. Thus, there are
quantum minors [K | L], [U | V ] with ρ([K | L]) = [I][M ]−1 and ρ([U | V ]) = [I][M ]−1.
Note that [K | L] and [U | V ] are incomparable, by Proposition 3.4. As Oq(Mm,n) is a
graded quantum algebra with a straightening law, there is an equation

[K | L][U | V ] =
∑

αi[Ki | Li][Ui | Vi]

with αi ∈ k and [Ki | Li] <st [Ui | Vi] while [Ki | Li] <st [K | L], [U | V ].
Apply ρ to this equation, and cancel [M ]−2 in the resulting equation to obtain an

equation
[I][J ] =

∑
αi(−q)•[Ii][Ji]

and note that [Ii] <s [Ji] and [Ii] <s [I], [J ] for each i, by using Proposition 3.4. This
establishes (4).

Finally, suppose that [I], [J ] ∈ Πs. If [I] = [M ] or [J ] = [M ] then these quantum minors
quasi-commute; and so (5) is established for this pair. Otherwise, we argue in a similar
manner to the previous paragraph, but this time using the fact that (5) holds in quantum
matrices, to establish (5) for Oq(G(m, n)).
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Thus, Oq(G(m,n)) is a graded quantum algebra with a straightening law with respect
to the poset Πs. �
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