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Abstract

Formulae for calculating the Krull dimension of noetherian rings obtained by
the authors and their collaborators are used to calculate Krull dimension for certain
classes of algebras. A K-algebra T is said to be Tensor Krull Minimal (TKM)
with respect to a class of K-algebras Ω if K(T ⊗ B) = K(T ) + K(B), for each
B ∈ Ω. We show that Generalized Weyl Algebras over affine commutative K-
algebras, whereK is an uncountable algebraically closed field, are TKM with respect
to the class of countably generated left noetherian K-algebras. This simplifies the
task of calculating many Krull dimensions. In addition, we develop an improved
formula for the Krull dimension of a skew Laurent extension D[x, x−1;σ], where
D is a polynomial algebra over an algebraically closed field, and σ is an affine
automorphism. Finally, we calculate the Krull dimension of the noetherian Down-
Up algebras introduced recently by Benkart.
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Introduction

Computing the Krull dimension of a noncommutative noetherian ring is often a very
difficult problem; for example, the Krull dimension of the enveloping algebra of the Lie
algebra sl(2,C) was believed to be 3 for several years until S P Smith, [12], showed that
the correct value is 2. The value of the Krull dimension of the enveloping algebra of an
arbitrary finite dimensional Lie algebra is still unknown. This is a big problem since Krull
dimension is one of the most useful invariants for noetherian rings. Thus it is of interest
to have ways of calculating the Krull dimension of classes of rings and also of calculating
the Krull dimension of specific examples.

In a recent paper, the present authors have developed formulae for calculating the Krull di-
mension of Generalized Weyl Algebras with noncommutative noetherian coefficient rings,
[3]. This work generalizes earlier results of the first author and Van Oystaeyen, [4], and
the second author and Goodearl, [6]. In this paper we employ the results of all three of
these papers to calculate Krull dimension for several classes of examples.

After recalling the known results, we apply them in three different ways. The first is
in Section 2, where we show that Krull dimension behaves well under the process of
tensoring an algebra with Generalized Weyl Algebras over affine commutative algebras
over uncountable, algebraically closed fields. If A and B are noetherian K-algebras then
it is obvious that K(A ⊗K B) ≥ K(A) + K(B), where K(−) denotes Krull dimension.
However, equality can fail, and any result that shows that equality is achieved is important
in that it considerably simplifies calculation of Krull dimension of algebras built up by
repeated tensor products. A K-algebra A is said to be tensor Krull minimal (TKM) with
respect to a class of K-algebras Ω if K(A ⊗K B) = K(A) + K(B), for all B ∈ Ω. We
show that if T = ⊗n1=1 Ti is a tensor product of generalized Weyl algebras of the form
Ti = Di(σi, ai), where each Di is an affine commutative algebra over the uncountable,
algebraically closed field K then T is tensor Krull minimal with respect to the class of
countably generated left noetherian K-algebras. In particular,

K(
n⊗

i=1

Ti) =
n∑

i=1

K(Ti).

As an example, the universal enveloping algebra U(sl(2)) is isomorphic to a Generalized
Weyl Algebra K[H,C](σ, a) with σ(H) = H − 1, σ(C) = C and a = C − H(H + 1),
see [4]. The results in Section 2 show that U(sl(2)) is TKM with respect to the class of
countably generated left noetherian algebras. In particular, for the enveloping algebra of
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the direct product of n copies of sl(2) we have

K(U(sl(2)× · · · × sl(2))) = K(U(sl(2))⊗ · · · ⊗ U(sl(2)))

= nK(U(sl(2))) =

{
2n, if char(K) = 0;

3n, if char(K) 6= 0.

In Section 3, we consider the problem of calculating the Krull dimension of Generalized
Weyl Algebras arising from a base ring which is the algebra of polynomials in several
variables and where the automorphism involved in the construction is an affine transfor-
mation of the underlying geometric space. In full generality, the problem of calculating
Krull dimension for such algebras leads to extremely difficult problems in classical in-
variant theory (specifically: describe all invariants and semi-invariants for an arbitrary
affine automorphism). However, we are able to give criteria for deciding when an affine
transformation has a finite orbit, and when we use this in conjunction with the Krull
dimension formula obtained by Goodearl-Lenagan, [6], and Hodges, [7], we obtain the fol-
lowing simple formula for the Krull dimension of a skew Laurent extension of a polynomial
algebra formed by using an affine automorphism: if T = D[X,X−1; σ] is a skew Laurent
extension of the polynomial ring, D = K[X1, . . . , Xn], over an algebraically closed field
K, and σ(x) = Ax+ b is an affine automorphism of D then

K(T ) =

{
n+ 1, if either b ∈ Im(I −A) or char(K) 6= 0;
n, otherwise.

In the final section, we apply the results of Section 3 to Down-Up algebras, a class of
algebras that has recently arisen in the study of partially ordered sets. The Down-Up
algebra A = A(α, β, γ), where β 6= 0, can be presented as a Generalized Weyl Algebra
with the base ring being polynomials in two variables. Because of this fact the Krull
dimension is known to be 2 or 3, see [4]. In addition, the automorphism involved is an
affine automorphism; so the considerations of Section 3 apply here, and we are able to
specify the Krull dimension of an arbitrary noetherian Down-Up algebra in terms of the
parameters involved in the original presentation of the algebra. We show that the Krull
dimension of the Down-Up algebra A = A(α, β, γ), where β 6= 0, is equal to 2 if and only
if char(K) = 0, γ 6= 0, and α+ β = 1; otherwise, the Krull dimension of A is 3.

1 Earlier results

We begin by recalling the definition of Generalized Weyl Algebras, and quoting the known
results on Krull dimension of these algebras. Throughout the paper, we will work with left
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modules; so, unless otherwise stated, all modules are left modules, and Krull dimension
means left Krull dimension.

Let R be a ring, and let σ be an automorphism of the ring R. Let a be a central element
of R. Then the Generalised Weyl Algebra, T = R(σ, a), of degree one, is defined to be
the ring generated over R by two indeterminates X, Y subject to the relations

Xα = σ(α)X, Y α = σ−1(α)Y, Y X = a, XY = σ(a),

for all α ∈ R. For the definition of Generalised Weyl Algebras of arbitrary degree the
reader is referred to [1, 2]. The terminology, Generalised Weyl Algebra, is appropriate,
since the Weyl algebras can be presented as Generalised Weyl Algebras.

Generalised Weyl Algebras are Z-graded algebras: T = ⊕(vi ⊗ R), where vi = X i, for
i > 0, while v0 = X0 = 1, and vi = Y −i for i < 0.

A reference for most of the basic notions concerning Krull dimension that we need is [11,
Chapter 6]. We denote the Krull dimension of a module M by K(M). If R is a left
noetherian ring, and T = R(σ, a) is a Generalised Weyl Algebra then it is known that

K(R) ≤ K(T ) ≤ K(R) + 1,

see [4, Proposition 2.2], and the hard problem is to decide which of the two possibilities
occur.

Since we can consider T as an induced module T ⊗R R, one might suppose that we can
control the Krull dimension of T by studying the induced modules of the form T ⊗R
M . This is the approach that is successfully taken in [6] to deal with skew Laurent
extensions. However, for generalized Weyl algebras, the situation is complicated by the
possible existence of the stars and holes, introduced later in this section, which means
that the structure of induced modules for Generalized Weyl Algebras is considerably more
complicated than in the case of skew Laurent extensions.

If the central element a ∈ R is not nilpotent, then the (multiplicative) submonoid S of
R\{0} generated by all σi(a), i ∈ Z, satisfies the (left and right) Ore condition in T . In
other words, one can form the (left and right) localization S−1T = TS of the ring T at
S. Moreover, σ extends to RS, and TS ' RS[X,X−1; σ] is a skew Laurent polynomial
ring. An R-module M contains the S-torsion (or the a-torsion, for short) submodule
tor(M) := {m ∈ M | sm = 0 for some s ∈ S}. An R-module M is called a-torsion, if
M = tor(M); and a-torsionfree, if tor(M) = 0. If a is a nilpotent element, then, by
definition, any R-module is a-torsion.

Let M be an R-module and τ ∈ Aut(R). The twisted module τM as an abelian group
coincides with M and the action of R on M is given as follows: rm := τ(r)m. We often
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write τ iM ≡ τ−iM , in order to avoid sign changes. Note that vi⊗M ' σiM , as R-modules.

Let M be an R-module. The induced T -module

T (M) := T ⊗ RM = ⊕i∈Z vi ⊗M

is the direct sum of R-submodules R(vi ⊗M) ' σiM . The T -module T (M) is Z-graded:

T (M) = ⊕i∈Z T (M)i,

where T (M)i = vi ⊗M .

For an R-module M define the sets

St(M) = {i ∈ Z | a σiM = σ−i(a)M = 0}, Ho(M) = {i+ 1 | i ∈ St(M)}.

The elements of St(M) and Ho(M) are the stars and holes respectively. Set St−(M) =
{i ∈ St(M) | i < 0} and Ho+(M) = {j ∈ Ho(M) | j > 0}. Denote by s−(M) the largest
element of St−(M), and by h+(M) the smallest element of Ho+(M) (if they exist). The
importance of stars and holes is as follows: if i is a positive hole, then Y · (X i ⊗M) = 0;
while if i is a negative star then X · (Y −i ⊗M) = 0.

An R-module M is called a-monic if for every i ∈ Z the map σ i(a)M : M → M , given
by m→ σi(a)m is either injective or zero. It is obvious that a submodule of an a-monic
module is a-monic, and easy to check that any critical R-module is a-monic. Let M be
an a-monic R-module. Then

ker XT (M) = ⊕i∈St−(M) T (M)i, (1)

ker YT (M) = ⊕j∈Ho+(M) T (M)j. (2)

If M is a-monic then either M is a-torsionfree, or St(M) 6= ∅. In the latter case, there is
either a negative star, or a positive hole (or both), and so, either s−(M) or h+(M) exists
(they may both exist).

The R-submodule of T (M)

L(M)− :=
∑

i≤s−(M)
T (M)i

is, in fact, a T -submodule, since X · (Y −s−(M) ⊗M) = 0. We set

V+(M) = T (M)/L(M)− = ⊕i>s−(M) T (M)i.
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In a similar manner,

L(M)+ :=
∑

j≥h+(M)
T (M)j,

is also a T submodule, and we set

V−(M) = T (M)/L(M)+ = ⊕i<h+(M) T (M)i.

In order to study the Krull dimension it is then necessary to be able to work with three
kinds of induced modules: T ⊗M, V+(M) and V−(M). The point at issue is whether
forming one of these modules increases the Krull dimension, or allows it to remain the
same.

Definition. A critical R-module M is called T -clean if M is a-torsionfree and T (M) is
a critical T -module. In a similar manner, a critical R-module M is called (T,+)-clean if
s−(M) exists and V+(M) is a critical T -module, and M is (T,−)-clean if h+(M) exists
and V−(M) is a critical T -module.

Lemma 2.5 of [3] establishes that there are enough (T, •)-clean modules, where • ∈ {∅,±},
in the sense that if M is a noetherian critical R-module then either M or some twist σiM
contains a (T, •)-clean submodule.

It is also necessary to have a notion of height for the simple modules of R. Again the
situation is complicated by the three possible types of behaviour.

Definition. Let A be a simple R-module and let M be an arbitrary R-module.

1. If A is a-torsionfree, then h(A : M) is defined to be the supremum of those non-negative
integers n for which there exists a sequence A = A0, A1, . . . , An of T -clean R-modules
such that Ai is isomorphic to a minor subfactor of Ai+1, for i = 0, . . . , n− 1, while An is
isomorphic to a subfactor (not necessarily minor) of M .

2. If A is a-torsion, then h+(A : M), (respectively, h−(A : M)), is defined to be the supre-
mum of those non-negative integers n for which there exists a sequence A = A0, A1, . . . , An
of R-modules such that each of the R-modules A = A0, A1, . . . , Ai, for some i ≥ 0, is
(T,+)-clean, (respectively, (T,−)-clean), while each of the R-modules Ai+1, . . . , An is T -
clean; and Aj is isomorphic to a minor subfactor of Aj+1, for j = 0, . . . n− 1, while An is
isomorphic to a subfactor (not necessarily minor) of M .

Remark. Any simple a-torsionfree R-module is T -clean. However, a simple a-torsion
R-module may fail to be either (T,+)-clean or (T,−)-clean. So, h±(A,M) is only defined
for the simple a-torsion modules which are (T,±)-clean.
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The sequence of R-modules A = A0, A1, . . . , An is called a (T, •)-clean sequence as-
sociated with A in M , where • stands for ∅,+ or −. The corresponding h•(A : M) is
called the •-height of A in M . If M has Krull dimension, then h•(A : M) ≤ K(M), since
K(An) > K(An−1) > . . . > K(A0) = 0, so K(M) ≥ n.

The following two theorems are from the earlier paper by the authors on Krull dimension
of generalized Weyl algebras, see [3, Corollaries 4.3, 4.4].

Theorem 1.1 Let R be a left noetherian ring with finite Krull dimension and let T =
R(σ, a) be a generalized Weyl algbera over R. Then

K(T ) = K(R)

unless there exists a simple (T, •)-clean R-module A such that K(V•(A)) = 1 and h•(A :
R) = K(R), in which case

K(T ) = K(R) + 1.

Here, V•(A) is equal to T ⊗R A when A is a-torsionfree, and is equal to V±(A) when A is
a-torsion, and h• = h, h+ or h−, as appropriate.

Theorem 1.2 Let R be a left noetherian ring with finite Krull dimension. Then

K(T ) = K(R)

unless there exists either
(i) a simple a-torsionfree R-module A such that h(A : R) = K(R) and O{A} is finite; or
(ii) a simple (T,+)-clean R-module A such that h+(A : R) = K(R) and the set St+(A) is
infinite; or
(iii) a simple (T,−)-clean R-module A such that h−(A : R) = K(R) and the set St−(A)
is infinite.

In the case that the element a is invertible, the algebra T is a skew Laurent extension
of R, there is only one kind of cleanliness, and the above results specialize to the following
theorem of Goodearl and the second author, [6, Corollary 3.3].

Theorem 1.3 Let R be a left noetherian ring with finite Krull dimension and let T =
R[X,X−1; σ] be a skew Laurent extension of R. Then

K(T ) = K(R)

unless there exists a simple R-module M such that K(T ⊗M) = 1, and h(M : R) = K(R),
in which case

K(T ) = K(R) + 1.
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If R is a commutative ring then we recover the following theorem of the first author and
Van Oystaeyen, [4, Theorem 1.2].

Theorem 1.4 Let R be a commutative noetherian ring with finite Krull dimension, and
let T = R(σ, a) be a generalized Weyl algebra over R. Then K(T ) = K(R) unless there
exists a maximal ideal p of R such that height(p) = K(R) and either p is invariant under
some nonzero power of σ, or there are infinitely many i ∈ Z with σ i(a) ∈ p.

2 Tensor Krull Minimal Algebras

Throughout this section, all rings that are considered are to be taken as algebras over a
fixed field K. Whenever we use the tensor product symbol ⊗, we are denoting ⊗K .

It is well-known that

K(A⊗ B) ≥ K(A) +K(B),

for all left noetherian K-algebras A, B such that K(A⊗B) exists. However, equality may
fail to hold: for example, if K(X) := K(X1, . . . , Xn) is a field of rational functions in n
indeterminates, then K(K(X)⊗K(X)) = n > 0 = K(K(X)) + K(K(X)). Thus, it is of
interest to establish when this minimal possible Krull dimension of A⊗ B is attained.

Definition. A K-algebra A is said to be tensor Krull minimal, written TKM, with
respect to a class of algebras Ω, if

K(A⊗ B) = K(A) +K(B),

for all algebras B ∈ Ω.

In this section, we investigate the TKM property for generalized Weyl algebras. The
corresponding problem of the tensor homological minimality of generalized Weyl algebras
was addressed in [2].

Example. The polynomial algebra in n variables over K is TKM with respect to the
class of all left noetherian K-algebras.

Lemma 2.1 Let A be a commutative affine algebra over an uncountable, algebraically
closed field K. Then

K(A⊗ B) = K(A) +K(B), (3)

for any left noetherian K-algebra B.
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Proof. First, we use standard techniques to reduce to the case that A is a domain. The nil
radical N of A is nilpotent, since A is noetherian; suppose that N s = 0, for some s ≥ 1.
Each factor in the chain of A⊗ B-modules

A⊗B ≥ N ⊗ B ≥ . . . ≥ N i ⊗B ≥ . . . ≥ N s ⊗ B = 0

is a (A/N)⊗ B-module, hence,

K(A⊗ B) = K((A/N)⊗ B).

Thus, we may assume that A is semiprime. Let p1, . . .pn be the set of minimal prime
ideals of A. Note that ∩pi = 0, since A is semiprime; so there is a ring monomorphism

A = A/(∩pi) −→ A/p1 × · · · × A/pn, (4)

given by a 7→ (a + p1, · · · , a+ pn). It follows that

K(A) = max{K(A/pi) | i = 1, . . . , n}. (5)

We obtain a ring monomorphism A⊗B → ∏n
i=1 (A/pi)⊗B, by tensoring (4) over K by

B. Hence,

K(A⊗ B) = max{K((A/pi)⊗B) | i = 1, . . . , n}. (6)

We conclude, from (5) and (6), that it is sufficient to prove (3) in the case that A is prime.
Thus, without loss of generality, A is a domain. Moreover, it is a finitely generated module
over a polynomial subalgebra P = K[x1, . . . , xm], where m = K(A) = GKdim(A), by
Noether normalisation. Thus,

K(A⊗ B) = K(P ⊗B) = m+K(B) = K(A) +K(B).

Theorem 2.2 Let T = ⊗n1=1 Ti be a tensor product of generalized Weyl algebras of the
form Ti = Di(σi, ai), where each Di is an affine commutative algebra over an uncountable,
algebraically closed field K. Then T is Tensor Krull Minimal with respect to the class of
countably generated left noetherian algebras; that is,

K(T ⊗ B) = K(T ) +K(B) =
n∑

i=1

K(Ti) +K(B) (7)

for any countable dimensional, left noetherian K-algebra B.

In particular,

K(
n⊗

i=1

Ti) =
n∑

i=1

K(Ti). (8)
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Proof. First, we prove that (7) holds in the case that n = 1. Let T = D(σ, a) be a
generalized Weyl algebra, where D is a commutative affine algebra over the field K. The
tensor product T ⊗ B can be considered as the generalized Weyl algebra (D ⊗ B)(σ, a),
where the automorphism σ extends trivially on B; that is, σ(1 ⊗ b) = b, for b ∈ B. The
algebra D ⊗B is left noetherian, since D is affine commutative and B is left noetherian.
Hence, the algebra T ⊗ B is also left noetherian. Therefore, we can apply Theorem 1.1.
First, observe that every simple D-module is a one dimensional vector space over K,
since K is an algebraically closed uncountable field and D is an affine commutative K-
algebra. The algebra D⊗B is countably generated, and D belongs to the centre of D⊗B.
Hence, every simple D ⊗ B-module is isomorphic to a tensor product Km ⊗M , where
M is a simple B-module, Km := D/m ' K is a simple D-module, and m is a maximal
ideal of D. Clearly, Km ⊗ M = K ⊗K M = M , so that every simple D ⊗ B-module
Km⊗M is, in fact, a simple B-module which is annihilated by the ideal m of D. We set
M = Mm := Km ⊗M .

Observe that

K(D ⊗ B) = K(D) +K(B), (9)

by Lemma 2.1, and that

hD(Km : D) = height(m) = K(D), (10)

for every maximal ideal m of D. Now, in the case that n = 1, the formula (7) follows
immediately from (9), (10) and Theorem 1.2.

For n > 1, we use induction on n. We have

K(T ⊗ B) = K(T1 ⊗ (T̃ ⊗B)) = K(T1) +K(T̃ ⊗B)) =
∑
K(Ti) +K(B),

where T̃ = T2 ⊗ · · · ⊗ Tn. (Note, we are using the fact that a Generalized Weyl Algebra
T = D(σ, a) is left noetherian if and only if D is a left noetherian ring.) Hence, (7) holds,
and then (8) also holds, by setting B = K in the argument.

3 Affine automorphims

Let A = D(σ, a) be a generalized Weyl algebra with D = K[x1, . . . , xn], the polynomial
ring in n variables over an algebraically closed field K. Suppose that σ ∈ AutFil(D) is
a K−automorphism of D which preserves the natural filtration of the polynomial ring.
Then σ can be written as

σ(x) = Ax+ b,

10



for some A ∈ GLn(K), b ∈ Kn, where x = (x1, . . . , xn)T . The map σ → (A, b) establishes
a one-to-one correspondence between AutFil(D) and (GLn(K), Kn). In order to study
the generalized Weyl algebra A, it is useful to consider a canonical form for such pairs
(A, b) ∈ (GLn(K), Kn). This has been done in [2, Section 4], and the following discussion
is extracted from there.

If we take another generating set for the algebra D, given by x′ = Sx + c, where S ∈
GLn(K), and c ∈ Kn, then σ acts on x′ via

σ(x′) = SAS−1x′ + Sb + (I − SAS−1)c. (11)

Pairs (A, b) and (A′, b′) are called equivalent, denoted by (A, b) ∼ (A′, b′), if

A′ = SAS−1 and b′ = Sb+ (I − SAS−1)c, (12)

for some S ∈ GLn(K), c ∈ Kn. The aim is to develop a canonical form to which (A, b)
can be reduced by the transformation (12), in line with the Jordan Canonical Form of A.

Since K is algebraically closed, we can choose S ∈ GLn(K) such that A is reduced by
the transformation A → SAS−1 to the block diagonal matrix

A = diag(J(λ1), . . . , J(λs)), (13)

where λ1, . . . , λs are distinct eigenvalues of A and every matrix J(λi) consists of Jordan
matrices

Jm(λi) = λiE +
∑m−1

i=1
ek,k+1 ∈ GLm(K),

where the eij are matrix units. We can write b = (b1, . . . , bs)
T , for some vectors bi

corresponding to the decomposition in (13).

If λi 6= 1, then the matrix I − J(λi) is non-singular, therefore by (11), the vector bi can
be chosen to be 0.

It remains to consider the case when, say, λ1 = 1. By using (13), for the sake of simplicity,
we put A = J(1); that is, 1 is the unique eigenvalue of A. Then

J(1) = diag(J
(m1)
1 , J

(m2)
2 , . . . , J

(mk)
k , . . . ), (14)

where

J
(mk)
k = diag(Jk(1), . . . , Jk(1)) (15)

has mk occurences of the k × k block Jk(1). Corresponding to (14), the vector b is
written as b = (b1, . . . , bk, . . . ), with each bk = (bk1, . . . , bkmk), corresponding to the block
decomposition (15).
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Let A be an m × m Jordan matrix A = Jm(1) and let e1 = (1, 0, . . . , 0) . . . , em =
(0, . . . , 0, 1) be the standard basis of Km. Then e1, . . . , em−1 is a basis of Im (I−A); and
so the vector b can be reduced to b = (0, . . . , 0, λ), for some λ ∈ K, by the transformation
b → b + (I − A)c. If λ 6= 0, then by replacing {xi} by {−λ−1xi}, for i = 1, . . . , n, we
reduce (Jm(1), (0, . . . 0, λ)) to (Jm(1), (0, . . . , 0,−1)).

Suppose that A = J
(k)
m = diag(Jm(1), . . . , Jm(1)), with k occurences of Jm(1). By using

the above arguments b can be reduced to b = (b1, . . . , bk) where each bi is either of the
form (0, . . . , 0,−1) or 0. If b 6= 0, then, by re-arrangement, if necessary, we may suppose
that bk = (0, . . . , 0,−1). Let S be the k × k matrix with elements from the matrix ring
Mm(K):

S = diag(E, . . . , E) +
∑k−1

i=1
Sikeik,

where E = diag(1, . . . , 1), and Sik = −E, if bi 6= 0, while Sik = 0, if bi = 0. Choosing c =
0 in (11), we see that (A, b) ∼ (A, b = (0, . . . , 0, bk)) where bk = (0, . . . , 0,−1). The vector

b = (0, . . . , 0, (0, . . . , 0,−1)) is called exceptional. LetA = J(1) = diag(J
(m1)
1 , . . . , J

(mk)
k , . . . ).

The vector b is written as b = (b1, . . . , bk, . . . ), with respect to (14), and we may suppose
that each bk is either 0 or exceptional. The maximal k such that bk is exceptional is also
said to be exceptional. Let k be exceptional: then it is easy to show that all bi, for i < k
can be made equal to 0. This analysis establishes the following Lemma.

Lemma 3.1 With the notation as above, a pair (A, b) is equivalent to a pair

(diag(J(λ1), . . . , J(λs)), b = (b1, . . . , bs)),

where b = 0, if all λi 6= 1. Otherwise, with λ1 = 1, say, then, with respect to the
decomposition of J(1) in (14), the vector b1 can be written as b1 = (c, 0, . . . , 0), with
ck = (0, . . . , 0, (0, . . . , 0,−1)) or ck = 0 for some k.

We say that a pair (A, b) is exceptional if and only if it is equivalent to a pair (A′, b′), in
the canonical form given by Lemma 3.1, with b′ 6= 0.

Corollary 3.2 A pair (A, b) is equivalent to (A′, 0) (so that (A, b) is not exceptional) if
and only if b ∈ Im(I −A).

Proof. The vector b in (A, b) is specified only up to an element of Im(I − A), by (14).
Hence, (A, b) is equivalent to (A′, 0) if and only if b ∈ Im(I −A).

Any maximal ideal m of D is given by

m := mα = (x− α) = (x1 − α1, . . . , xn − αn),

12



for some uniquely defined α = (α1, . . . , αn) ∈ Kn, since K is algebraically closed. We use
this to identify MaxSpec(D) with Kn, via the assignment mα 7→ α. We will use the same
letter σ for the affine bijection

σ : Kn → Kn, σ(α) = Aα+ b (16)

Now,

σ(mα) = (σ(x)− α) = (Ax + b− α) = (A(x−A−1(b− α)))

= (x−A−1(α− b)) = (x− σ−1(α)) = mσ−1(α)

so, under the above identification, the orbit, O(mα), of the maximal ideal mα in D can
be identified with the orbit O(α) := {σi(α) | i ∈ Z}, of the corresponding vector α under
the action of the group G = 〈σ〉, defined in (16) above.

The following formulae are easy to establish by induction.

σi(α) = Aiα + (I +A+ . . .+Ai−1)b, (17)

σ−i(α) = A−iα− (I +A−1 + . . .+A−i+1)b. (18)

Lemma 3.3 The following three statements are equivalent.

1. There is a finite orbit in MaxSpec(D) under the action of the group G.

2. Im(I −A) ∩ {b + ker(I +A+ . . .+Ai−1)} 6= ∅, for some i ≥ 1.

3. Either b ∈ Im(I −A) or char(K) = p > 0 (or both).

Proof. Denote the intersection in statement 2. by Ii.

(1⇔2). The first statement is true if and only if σi(α) = α, for some α ∈ Kn. However,

α− σi(α) = (I −Ai)α− (I +A+ . . .+Ai−1)b = (I +A+ . . .+Ai−1)((I −A)α− b);

so the equivalence follows.

(3⇒2). Note that if b ∈ Im(I −A) then b ∈ Ii, for each i. Suppose that char(K) = p > 0
and that b 6∈ Im(I−A); so that the pair (A, b) is exceptional, by Corollary 3.2. In view of
Lemma 3.1, we may restrict ourselves to the case that A = Jm(1) and b = (0, . . . , 0,−1).
Set Θ := A− I, and note that Θm = 0. Hence,

Apm = (I + Θ)p
m

= I + Θpm = I.
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Let S be the minimal positive integer satisfying AS = I. Then

I +A+ . . .+ApS−1 =

p−1∑

i=0

AiS(I +A+ . . .+AS−1) = p(I +A+ . . .+AS−1) = 0,

so IpS−1 = Im(I −A) 6= ∅.

(2⇒3). Suppose that statement 3. does not hold, so that b 6∈ Im(I−A) and char(K) = 0.
It suffices to show that each of the sets Ii is empty. As in the previous case, we may assume
that A = Jm(1) and that b = (0, . . . , 0,−1). For each i ≥ 1, let Bi be the matrix such
that I +A+ . . .+Ai−1 = iI +Bi. Note that Bi is a strictly upper triangular matrix, so
that ker(iI + Bi) ⊆ U :=

∑m−1
i=1 Kei, since char(K) = 0. Observe that Im(I − A) = U ,

and that b 6∈ U , hence Ii = ∅, for each i ≥ 1.

The above results enable us to give a good description of the Krull dimension of skew
Laurent extensions which involve affine automorphisms.

Theorem 3.4 Let T = D[X,X−1; σ] be a skew Laurent extension of the polynomial ring,
D = K[X1, . . . , Xn], over an algebraically closed field K, and suppose that σ(x) = Ax+b.
Then

K(T ) =

{
n+ 1, if either b ∈ Im(I −A) or char(K) 6= 0;
n, otherwise.

Proof. This follows immediately from the above lemma and [6, Theorem 4.3].

Many interesting Generalized Weyl Algebras can be constructed starting from the base
ring of polynomials in two variables. Next we summarize the above results in this case,
for use in the next section.

Let D = K[x1, x2] be the polynomial ring in two variables over an algebraically closed
field K. The considerations earlier in the section show that, up to an affine change of
variables, there are four possible equivalence types of automorphism σ to consider:

(F) σ(x1) = λx1, σ(x2) = µx2;

(G) σ(x1) = λx1 + x2, σ(x2) = λx2;

(H) σ(x1) = x1 − 1, σ(x2) = λx2;

(I) σ(x1) = x1 − 1, σ(x2) = x2 + x1;

where λ and µ are nonzero elements of K.

In characteristic zero, Case (I) can be simplified somewhat by making a non-affine change
of variables. Suppose that σ is of the form occuring in Case (I). Note that the polynomial
θ := x2

1 + x1 + 2x2 is invariant under σ; that is, σ(θ) = θ.
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Lemma 3.5 Suppose that σ is of the form occuring in Case (I).
1. If char(K) 6= 2, then K[x1, x2] = K[x1, θ] and σ(x1) = x1 − 1, σ(θ) = θ.
2. If char(K) = 2, then σ4 is the identity automorphism.

Proof. Straightforward.

4 Down-up algebras

In this section, we calculate the Krull dimension of the Down-Up algebras introduced by
Benkart, [5], and recently studied in papers by Kulkarni, [10], and Kirkman, Musson and
Passman, [9], Jordan, [8], and others. Let K be a field, and choose elements α, β, γ ∈ K,
with β 6= 0. Set A := A(α, β, γ) to be the K-algebra generated by indeterminates d and
u and subject to the relations

d2u = αdud+ βud2 + γd = (αdu+ βud+ γ)d

du2 = αudu+ βu2d+ γu = u(αdu+ βud+ γ).

Kirkman, Musson and Passman show that A(α, β, γ) is isomorphic to a generalized Weyl
algebra R(σ, a), where R is the polynomial ring K[x1, x2] and a = x1. The correspondence
is given by

x1 ↔ du, x2 ↔ ud, X ↔ d, Y ↔ u,

and the automorphism σ is given by

σ(x1) = x2 σ(x2) = αx2 + βx1 + γ.

As a consequence, A(α, β, γ), with β 6= 0 is a noetherian domain, by [1]. Hence, the Krull
dimension of A(α, β, γ) is either two or three, since K(K[x1, x2]) = 2. If β = 0, then
Kirkman, Musson and Passman show that A(α, β, γ) is neither noetherian nor a domain.

Note that if we set

x =

(
x1

x2

)
, A =

(
0 1
β α

)
and b =

(
0
γ

)

then

σ(x) = Ax + b.

In order to calculate the Krull dimension of noetherian Down-Up algebras, we need to
identify which of the four possible equivalence classes of automorphisms (F), (G), (H)
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and (I), introduced at the end of the previous section, arises for the various choices
of the parameters α, β, γ. Observe that if 1 is a root of the characteristic polynomial
det(A− tI) = t2 − αt− β of the matrix A, then det(A− tI) = (t− 1)(t− α+ 1), and so
α− 1 is the other root of det(A− tI).

Lemma 4.1 Let b =

(
0
γ

)
∈ K2.

1. b ∈ Im(I −A) if and only if γ = 0 or γ 6= 0 and α + β 6= 1.
2. Suppose that b 6= 0. Then b 6∈ Im(I −A) if and only if α + β = 1 if and only if 1 is a
root of the characteristic polynomial det(A− tI).
3. Suppose that b 6= 0 while β = −1 and α = 2. Then the pair (A, b) belongs to Case (I).
4. Suppose that b 6= 0 while α + β = 1 but β 6= −1, 0. Then the pair (A, b) belongs to
Case (H).

Proof. 1. Note that

(
0
γ

)
∈ Im(I − A) if and only if there exists

(
x0

y0

)
∈ K2 such

that (I−A)

(
x0

y0

)
=

(
0
γ

)
if and only if x0 = y0 and (1−α−β)x0 = γ, and the result

then follows easily.
2. This is evident, since det(A− tI) = t2 − αt− β.
3. Suppose that b 6= 0 while β = −1 and α = 2. Set H = γ−1x1−γ−1x2 and C = −γ−1x1.
Then

σ(H) = γ−1x2 − γ−1(−x1 + 2x2 + γ) = γ−1x1 − γ−1x2 − 1 = H − 1

and

σ(C) = −γ−1x2 = γ−1x1 − γ−1x2 − γ−1x1 = H + C;

so that Case (I) applies.
4. Suppose that b 6= 0 while α + β = 1 but β 6= −1. Set H = −γ−1βx1 − γ−1x2 and
C = x1 − x2 + γ/(1 + β). Then

σ(H) = −γ−1βx2 − γ−1(x2 − βx2 + βx1 + γ) = −γ−1βx1 − γ−1x2 − 1 = H − 1

and

σ(C) = x2 − (x2 − βx2 + βx1 + γ) + γ/(1 + β) = −β(x1 − x2 + γ/(1 + β)) = −βC.

Thus, Case (H) applies, with λ = −β.

Theorem 4.2 Let K be an arbitrary field (not necessarily algebraically closed) and let
β 6= 0. Then the noetherian Down-Up algebra A = A(α, β, γ) has Krull dimension equal
to 2 if and only if char(K) = 0, γ 6= 0, and α + β = 1. Otherwise, the Krull dimension
of A is 3.
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Proof. If b :=

(
0
γ

)
∈ Im(I−A), then the pair (A, b) is equivalent to the pair (A′, 0); that

is, there exist elements H,C ∈ K[x1, x2] = D such that D = K[H,C] and σ

(
H
C

)
=

A′
(
H
C

)
. In this case, the maximal ideal J of D that is generated by H and C is

σ-invariant and has height 2. Hence, K(A) = 3, by Theorem 1.4.

Thus, we may assume that b 6∈ Im(I −A), or equivalently, that γ 6= 0 and α + β = 1, by
Lemma 4.1.(2). Then 1 is a root of the characteristic polynomial, det(A− tI), of A and
λ := α− 1 is the other root so that det(A− tI) = (t− 1)(t− λ).

Suppose first that char(K) = p > 0. If β = −1 then Case (I) applies, by Lemma 4.1.(3),
and with H = γ−1x1 − γ−1x2, C = −γ−1x1 we have σ(H) = H − 1 and σ(C) = C + H.
By using Lemma 3.5, we see that the maximal ideal generated by C and H is invariant
under σp, when p is odd, and invariant under σ4 when p = 2. Thus, K(A) = 3, by
Theorem 1.4. If β 6= −1, then again, the maximal ideal generated by H and C, as in the
proof of Lemma 4.1.(4), is invariant under σp, and so K(A) = 3, by Theorem 1.4.

Thus, we may assume that char(K) = 0, and we aim to show that K(A) = 2. It is enough
to show that K(A) ≤ 2, since K(A) is either 2 or 3. Let K denote the algebraic closure of
K and let A denote the Down-Up algebra constructed over K using the same parameters
as for A. Then there is an injective map from the lattice of left ideals of A into the lattice
of left ideals of A given by I → K ⊗ I. Hence, K(A) ≤ K(A). Thus, it suffices to prove
the result when K is algebraically closed.

Suppose first that β = −1, so that Case (I) applies, by Lemma 4.1.(3), and with H =
γ−1x1 − γ−1x2, C = −γ−1x1 we have σ(H) = H − 1 and σ(C) = C + H. Note that
a = x1 = −γC. It is easy to check, by induction, that σn(C) = C + nH − n(n− 1)/2, for
n ≥ 1, and it then follows that σ−n(C) = C − nH − n(n+ 1)/2, for n ≥ 1. Suppose that
K(A) = 3. Then, by Theorem 1.4, there exists a maximal ideal m of D and an infinite
subset I ⊆ Z such that σi(a) ∈ m, for i ∈ I, or, equivalently, that σi(C) ∈ m, for i ∈ I.
Suppose that m is generated by the elements H − h and C − c, for h, c ∈ K. Then, for
each positive i ∈ I, we have c+ ih− i(i− 1)/2 = 0 and, for each negative i ∈ I, we have
c− ih− i(i+1)/2 = 0. Thus, the possible i are among the solutions of these two quadratic
equations, and so I cannot be infinite, a contradiction. Thus K(A) = 2 in this case.

Now suppose that β 6= −1, so that Case (H) applies, by Lemma 4.1.(4). Again, supposing
that K(A) = 3, there is a maximal ideal m generated by elements H − h and C − c, for
h, c ∈ K and an infinite set I such that

σi(x1) ∈ m = (H − h, C − c) for i ∈ I (19)
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Write x1 = x1(H,C) = µH+νC+ξ, for some µ, ν, ξ ∈ K. Note that µ 6= 0, since otherwise
x2 = σ(x1) = σ(νC + ξ) = νλC + ξ = λx1 + ξ − ξλ, with λ = −β, a contradiction since
x1 and x2 are algebraically independent. Thus, (19) is equivalent to

µ(h− i) + νλic+ ξ = 0 for i ∈ I. (20)

Clearly, c 6= 0 and ν 6= 0; so i− j = δ(λi − λj), for i, j ∈ I, where δ := νc/µ. So,

i− j
k − j =

λi−j − 1

λk−j − 1
for i, j, k ∈ I with j 6= k. (21)

In view of (21), and since (i − j)/(k − j) ∈ Q and char(K) = 0, we may suppose that
λ ∈ C, and that the nonzero element δ = (i−j)/(λi−λj) ∈ C. Without loss of generality,
since I is an infinite set, we may assume that I ∩N is infinite. If j and k are fixed, and i is
chosen sufficiently large, then the absolute value of the complex number λ will be greater
than 1, which implies that δ = limi→∞

i−j
λi−λj = 0, a contradiction. Thus, K(A) = 2 in this

case also. In summary, K(A) = 2 if char(A) = 0, γ 6= 0 and α + β = 1; while otherwise
K(A) = 3.
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