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Abstract

We obtain formulae for the Krull dimension of the Generalized Weyl Algebra
T = R(σ, a), where R is a left noetherian ring.

1991 Mathematics subject classification: 16P60, 16P40, 16W50, 16S34, 16S36.

Introduction

Krull dimension, in the sense of Rentschler and Gabriel, is one of the most useful invariants
in the study of noetherian rings. However, it is notoriously difficult to calculate its exact
value in general. For example, until recently, the Krull dimension of the enveloping
algebra of a finite dimensional simple Lie algebra was known only for U(sl(2)), [16], and
U(sl(3)), [13]. In this paper, we consider the problem of calculating the Krull dimension
of the Generalised Weyl Algebras, introduced by the first author in [1]. A start has
already been made on this problem in [7] where the Krull dimension of Generalised Weyl
Algebras over a commutative noetherian base ring is calculated. However, in order to
make progress on iterated Generalised Weyl Algebras it is necessary first to consider the
case of a Generalised Weyl Algebra over a noncommutative base ring, and this is the
problem we answer in this paper.

∗This research was done while the first author held a Royal Society/NATO Fellowship at the University
of Edinburgh
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Generalised Weyl Algebras are defined in the following way. Let R be a ring, and let σ be
an automorphism of the ring R. Let a be a central element of R. Then the Generalised
Weyl Algebra T = R(σ, a) is defined to be the ring generated over R by two indeterminates
X, Y subject to the relations

Xα = σ(α)X Y α = σ−1(α)Y Y X = a XY = σ(a),

for all α ∈ R. The terminology, Generalised Weyl Algebra, is appropriate, since the Weyl
algebras can be presented as iterated Generalised Weyl Algebras. The first author has
used this fact to place the classification of the simple modules over the first Weyl algebra
in a more general framework, see, for example, [2], [3] and [6].

In the case that a = 1, or more generally, a is a unit, then the Generalised Weyl Algebra
T is a skew Laurent polynomial ring (with Y = aX−1). In this case, Goodearl and the
second author, [8], have obtained formulae for the Krull dimension of T . The methods
of clean modules and height developed there are adapted here for use in the case of
Generalised Weyl Algebras. However, when a is not a unit new phenomena appear which
are not present in the skew Laurent case, mainly concerned with the problem that aM = 0
is possible for non-trivial modules. In order to deal with this problem, the methods of
stars and holes introduced in [7] are adapted to the non-commutative setting.

Generalised Weyl Algebras are Z-graded algebras: T = ⊕vi⊗R, where vi = X i, for i ≥ 0,
and vi = Y −i for i ≤ 0. Wherever possible, we exploit this graded structure of T .

A reference for most of the basic notions concerning Krull dimension that we need is [15,
Chapter 6]. We denote the Krull dimension of a module M by K(M). If R is a left
noetherian ring, and T = R(σ, a) is a Generalised Weyl Algebra then it is known that

K(R) ≤ K(T ) ≤ K(R) + 1

see [7, Proposition 2.2], and the hard problem is to decide which of the two possibilities
occur.

The strategy we adopt is as follows. The ring T , considered as a left module, is an induced
module T = T ⊗R R. This suggests studying the structure of induced modules. This is a
strategy that has proved successful in earlier results on Krull dimension, see, for example,
[9], [8] and [7], for the cases of differential operator rings, skew Laurent extensions, and
Generalized Weyl Algebras over commutative base rings, respectively. The aim is to
reach T = T ⊗R M , via a chain of induced modules, starting from the induced modules
T (M) = T ⊗R M , where M runs through the simple modules of R. At each step, the
induced modules are Z-graded modules, and this leads us to suspect that the structure of
Z-graded modules should play a large rôle in the proof. Indeed, in the end, the result we
obtain shows that the graded Krull dimension and the ordinary Krull dimension coincide.
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However, we are not able to prove this directly, and then use this fact; it just emerges as
a bonus at the end. It would be interesting to investigate which classes of graded rings
can be shown to have the same graded and ordinary Krull dimensions.

The graded submodules that occur as subfactors of induced modules fall into two distinct
classes: the graded modules with infinite support, and those with finite support. The
former class can be dealt with by developing existing methods. There are two cases to
consider: the graded modules which are infinite in both directions, and those which are
either left or right restricted. It is the class of graded modules with finite support which
causes most problems in the analysis; these modules are both left and right restricted.
Specifically, we need to be able to deal with the extension theory for graded T -modules
with finite support. In some of the earlier results on calculating Krull dimension progress
was possible precisely because this subcategory of the module category was known to be
semisimple, see, for example [16] and [11]. In the latter part of the proof of Theorem 3.5,
we employ graded techniques to reduce the study of the extensions of the finite support
modules that occur within certain factors of induced modules to the study of the modules
over the ring T/[m], where [m] is the ideal generated by the powers Xm and Y m, for a
suitable m.

Here is a brief outline of the contents of the sections. In the first section, we develop the
methods of leading coefficients which are needed to deal with the modules with infinite
support. We find it necessary to introduce three types of modules to deal with this
case: T (M) = T ⊗R M , and V±(M), the latter being needed to deal with the one-sided
restricted modules. In the second section, we investigate the structure of the R-module
subfactors of induced modules, and introduce the ideas of stars and holes which are not
needed in the skew Laurent case, but which are basic tools for modules over Generalized
Weyl Algebras. One of the problems that arises is that the induced module T (M) need
not be a critical module, even if M is a critical R-module, see [8], for example. In the
earlier studies, this problem is overcome by introducing clean modules, and then proving
that there are enough clean modules in the sense that every module contains a clean
submodule. Unfortunately, this is not the case here, because of the existence of restricted
induced modules, and we find it necessary to have three kinds of cleanliness in order to
have enough clean submodules.

Section three is the heart of the paper. Here we establish the basic inductive step, The-
orem 3.5, from which all the formulae follow. It is here that we have to come to grips
with the problems caused by the modules with finite support, and graded techniques are
used to overcome these problems. After this, in section four, the required formulae follow
in a (relatively) routine way. In section five, we specialize to the case of fully bounded
noetherian base rings, and obtain the same theorem as that obtained for commutative
base rings in [7]. Finally, in section six, we provide examples of each of the two possible
kinds of behaviour for the Krull dimension of T . In a subsequent paper, [5], we exploit
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the results obtained here and in [7] to calculate the Krull dimension for many classes of
algebras which can be presented as Generalised Weyl Algebras.

Throughout the paper, we use “module” to stand for “left module”, and abbreviate “left
Krull dimension” to “Krull dimension”.

1 Induced modules

Let T = R(σ, a) be a Generalised Weyl Algebra. The ring T = ⊕n∈Z Tn is Z-graded,
where Tn = Rvn and

vn = Xn (n > 0), vn = Y −n (n < 0), v0 = 1.

Moreover,
vnvm = (n,m)vn+m

for some (n,m) ∈ R. If n > 0 and m > 0, then

n ≥ m : (n,−m) = σn(a) . . . σn−m+1(a), (−n,m) = σ−n+1(a) . . . σ−n+m(a),

n ≤ m : (n,−m) = σn(a) . . . σ(a), (−n,m) = σ−n+1(a) . . . a,

and (n,m) = 1 in all other cases.

The ring T contains the skew polynomial rings T + = ⊕i≥0 Ti = R[X; σ] and T− =
⊕i≤0 Ti = R[Y ; σ−1].

The ring isomorphism

R(σ, a) ' R(σ−1, σ(a)), X ↔ Y, Y ↔ X, r ↔ r, r ∈ R,

is called the ±-symmetry ( or the left-right symmetry).

If the element a ∈ Z(R) is not nilpotent, then the (multiplicative) submonoid S of R\0
generated by all σi(a), i ∈ Z, satisfies the (left and right) Ore condition in T . In other
words, there exists the (left and right) localization S−1T = TS of the ring T at S.
Moreover, σ extends to RS, and TS ' RS[X,X−1; σ] is the skew Laurent polynomial
ring. A T -module M contains the S-torsion (or the a-torsion, for short) submodule
tor(M) := {m ∈ M | sm = 0 for some s ∈ S}. A T -module M is called a-torsion, if
M = tor(M); and a-torsionfree, if tor(M) = 0. If a is a nilpotent element, then, by
definition, any T -module is a-torsion.
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Let M be an R-module and τ ∈ Aut(R). The twisted module τM as an abelian group
coincides with M and the action of R on M is given as follows: rm := τ(r)m. We often
write τ iM ≡ τ−iM , in order to avoid sign changes. Note that vi⊗M ' σiM , as R-modules.

Let M be an R-module. The induced T -module

T (M) := T ⊗ RM = ⊕i∈Z vi ⊗M

is the direct sum of R-submodules Rvi ⊗M ' σiM . The T -module T (M) is Z-graded:

T (M) = ⊕i∈Z T (M)i, where T (M)i = vi ⊗M.

Alternatively, we can write

T ⊗ RM = . . . (Y 2 ⊗M)⊕ (Y ⊗M)⊕ (1⊗M)⊕ (X ⊗M)⊕ (X2 ⊗M) . . . .

It is also useful to keep in mind the following kind of pictures to help see what is happening.

· · · v−2⊗M• −−−−− v−1⊗M• −−−−− v0⊗M• −−−−− v1⊗M• −−−−− v2⊗M• −−−−− v3⊗M• · · ·

· · · Y
2⊗M• −−−−− Y 1⊗M• −−−−− 1⊗M• −−−−− X1⊗M• −−−−− X2⊗M• −−−−− X3⊗M• · · ·

Looking at the pictures, we see that multiplying T ⊗M by elements from R preserves
the grading, while multiplying by X shifts to the right, and multiplying by Y shifts to
the left. If we are in a position to the right of 1⊗M then X· acts as a monomorphism.
However, if we are to the left of 1 ⊗M then the action of X· depends on the action of
some σi(a)·. For example, consider X · (Y ⊗m), for some m ∈M . We have

X · (Y ⊗m) = XY ⊗m = σ(a)⊗m = 1⊗ σ(a)m.

In a similar manner, Y · acts as a monomorphism to the left of 1 ⊗M , but depends on
σi(a)· to the right. Thus, points where σi(a)M = 0 are especially important: for example,
if aM = 0, then Y · (X ⊗M) = a⊗M = 1⊗ aM = 0, and so

L(M)+ :=
∑

i≥1
vi ⊗M =

∑
i≥1

X i ⊗M

which at first sight is only a module over T+ := R[X; σ], is in fact a T -module.

Integers i such that a ·σi M = 0, or, equivalently a · (vi ⊗M) = 0, are called the stars
of M , while the set of integers i + 1, where i is a star, are called the holes of M . The
structure of the induced module T ⊗M depends to a large extent on whether the set of
stars of M is empty, finite or infinite.
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Let M be an R-module with aM = 0. The induced module T ⊗ RM contains the T -
submodule

L(M)+ :=
∑

i≥1
vi ⊗M =

∑
i≥1

X i ⊗M,

and we set
V−(M) := T ⊗ RM/L(M)+ = ⊕i≤0 vi ⊗M.

and draw the picture

. . .
Y 3⊗M• −−−−− Y 2⊗M• −−−−− Y⊗M• −−−−− 1⊗M

?︸ ︷︷ ︸
V−(M)

] · · · X
1⊗M◦ . . .

to illustrate this T -module.

Similarly, let N be an R-module with σ(a)N = 0. The induced module T ⊗ RN contains
the T -submodule

L(N)− :=
∑

i≤−1
vi ⊗N =

∑
i≥1
Y i ⊗M,

and we have the factor module

V+(N) := T ⊗ RN/L(N)− = ⊕i≥0 vi ⊗N.

which is represented by the picture

. . .
Y⊗M
? · · · [ 1⊗M◦ −−−−− X⊗M• −−−−− X2⊗M• −−−−− X3⊗M• . . .︸ ︷︷ ︸

V+(M)

The T -module V = V+(N) is uniquely characterized by the following properties:

• it is a Z+
0 -graded T -module; that is, V = ⊕i≥0Vi is a Z-graded T -module,

• V0 = N , and TV0 = V ,

• the map XV : V → V , given by v 7→ Xv, is injective.

Similarly, the T -module V = V−(N) is uniquely characterized by the following properties:

• it is a Z−0 -graded T -module; that is, V = ⊕i≤0Vi is a Z-graded T -module,

• V0 = N , and TV0 = V ,

• the map YV : V → V , given by v 7→ Y v, is injective.
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Given an R-module M , the nonzero elements of the induced module T ⊗ RM can be
written uniquely in the form

u = vm ⊗ um + vm+1 ⊗ um+1 + · · ·+ vn ⊗ un,
where all ui ∈M and both of um and un are nonzero. The ui are called the coefficients
of u. The (+)-leading coefficient of u is un, and the (−)-leading coefficient of u is um.
The integer n is the (+)-degree of u, denoted by deg+(u), and m is the (−)-degree,
denoted by deg−(u). The non-negative integer n−m is the length of u, denoted by l(u).
The element 0 is defined to have deg±(0) = ∓∞, leading coefficients 0 and length −∞.

There are doubly infinite filtrations

. . . ⊆ U−1 ⊆ U0 ⊆ U1 ⊆ . . .

and
. . . ⊇ V−1 ⊇ V0 ⊇ V1 ⊇ . . .

on T ⊗ RM given by the R-submodules

Un = {u ∈ T ⊗ RM | deg+(u) ≤ n},
and

Vn = {v ∈ T ⊗ RM | deg−(v) ≥ n},
for n ∈ Z.

Also,

Un/Un−1 ' vn ⊗M ' σ−nM = σnM and Vn/Vn+1 ' vn ⊗M ' σ−nM = σnM,

for all n.

For a T -submodule N of T ⊗ RM denote by λ−(N) the set of (−)-leading coefficients of
elements of N which have non-positive (−)-degree. Similarly, λ+(N) denotes the set of
(+)-leading coefficients of elements of N which have non-negative (+)-degree. The sets
λ−(N), λ+(N) are R-submodules of M .

For i > 0, let Ni be the set of all (+)-leading coefficients of Ui together with 0. Similarly,
let N−i be the set of all (−)-leading coefficients together with 0. Then

. . . ≥ N−i ≥ . . . ≥ N−1, N1 ≤ . . . ≤ Ni ≤ . . . ,

are chains of R-modules and
λ±(N) = ∪i≥1 N±i.

The most important case of an induced module is the ring T , where we have

TT = ⊕i∈Z viR ' T ⊗ RR = ⊕i∈Z vi ⊗R, vir ↔ vi ⊗ r, r ∈ R.
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Lemma 1.1 1. If I is a left ideal of T , then λ±(I) = I±n for some n > 0.

2. If I, J are left ideals of T with J ⊆ I and λ+(J) = λ+(I), λ−(J) = λ−(I), then

R(I/J) is a finitely generated R-module.

Proof. Straightforward.

Lemma 1.2 1. Let M an R-module that is a-torsionfree and let N be a nonzero T -
submodule of T ⊗ RM . Then there exists a nonzero R-submodule L of M such that
T ⊗ RL embeds in N .

2. Let M an R-module such that σ(a)M = 0 and let N be a nonzero T -submodule
of V+(M). Then there exists a nonzero R-submodule L of σiM , for some i ≥ 0,
such that V+(L) embeds in N . Similarly, if, instead, aM = 0 and N is a nonzero
T -submodule of V−(M), then there exists a nonzero R-submodule L of σiM for some
i ≤ 0 such that V−(L) embeds in N .

Proof. The first statement is exactly [7, Lemma 2.6]. In the second case, the T ±-
module V±(M) is isomorphic to the induced module T ± ⊗R M . Now we may repeat the
arguments of [8, Lemma 1.1].

A module N is a subfactor of a module M if there exist submodules V ≤ U in M such
that N = U/V . Also, if 0 6= V then N is a minor subfactor of M .

Proposition 1.3 ([7, 2.7]) Let M be a Noetherian R-module, and let I, J be T -submodules
of T ⊗ RM such that I < J . Suppose that N is a nonzero Noetherian R-module such that

1. T ⊗ RN is isomorphic to a T -submodule subfactor of J/I. Then there exists a
nonzero subfactor L of λ±(J)/λ±(I) such that L ≤ σ±iN , for some i ≥ 0.

2. V+(N) is isomorphic to a T -submodule subfactor of J/I. Then there exists a nonzero
subfactor L of λ+(J)/λ+(I) such that L ≤ σiN , for some i ≥ 0.

3. V−(N) is isomorphic to a T -submodule subfactor of J/I. Then there exists a nonzero
subfactor L of λ−(J)/λ−(I) such that L ≤ σ−iN , for some i ≥ 0.

2 Submodules of induced modules

The results in the next Proposition are easy to establish, by using the graded structure
of Generalised Weyl Algebras.

Proposition 2.1 Let T = R(σ, a) be a generalized Weyl Algebra.
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1. ([3]) If R is left (right) Noetherian, then so is T .

2. ( [7, 2.2]) Let R be a left Noetherian ring. Then K(R) ≤ K(T ) ≤ K(R) + 1.

In order to study the Krull dimension of an induced module T (M) = T ⊗R M , we find
it necessary to deal with the R-module structure of certain T -module factors T (M)/C.
The next result gives the details necessary to do this.

Proposition 2.2 Let R be a ring and

A ≥ B1 ≥ B2 ≥ . . . ≥ B > 0

be a descending chain of R-submodules with B 6= 0. Suppose that α is an ordinal, and let
. . . ≤ An ≤ An+1 ≤ . . . ≤ A be an ascending chain of R-submodules, with K(An) ≤ α,
for each n, and such that A = ∪An. Suppose that, for sufficiently large n, each factor
An+1/An is an α-critical R-module and B ∩An−1 6= B ∩An. Then there exists an integer
p such that for any integer j ≥ p, all finitely generated R-module subfactors of Bj/Bj+1

have Krull dimension less than α.

Proof. Choose an integer t such that, for all n ≥ t, each factor An/An+1 is α-critical and
B ∩ An−1 6= B ∩ An. Note that (An ∩ B + An−1)/An−1 ' (An ∩ B)/(An−1 ∩ B) 6= 0, for
all n ≥ t.

Since

(B + An)/(B + An−1) ' An/(An ∩ B + An−1) ' (An/An−1)/((An ∩ B + An−1)/An−1)

for n ≥ t, the R-module (B +An)/(B +An−1) is a proper epimorphic image of An/An−1,
so K((B +An)/(B+An−1)) < α, for each n ≥ t, by the choice of t. As A/(B +At) is the
union of the submodules

(B + At+1)/(B + At) ≤ (B + At+2)/(B + At) ≤ . . .

it follows that all finitely generated R-module subfactors of A/(B+At) have Krull dimen-
sion less than α. In the R-module A/B, consider the following two chains of submodules

A/B ≥ (B + At)/B ≥ 0, A/B ≥ B1/B ≥ B2/B ≥ . . . ≥ 0.

On applying the Schreier Refinement Theorem to the two chains above we obtain a com-
mon refinement of them, cf. [8, 3.2(b)]. Namely, there exist R-submodules

A ≥ V01 ≥ V02 ≥ . . . ≥ B + At ≥ V11 ≥ V12 ≥ . . . ≥ B,
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Bj = W0j ≥ W1j ≥ W2j = Bj+1, j = 1, 2, . . .

such that Vij/Vi,j+1 ' Wij/Wi+1,j for all i, j. Now

K((B + At)/B) ≤ K(At) = α.

Hence, there exists an integer p such that K(V1j/V1,j+1) < α, for all j ≥ p. Consequently,
for j ≥ p: K(W1j/W2,j) < α. Since W0j/W1,j is isomorphic to V0j/V0,j+1 which is a
subfactor of A/(B+At), all finitely generated subfactors of W0j/W1,j have Krull dimension
less than α. Therefore for j ≥ p, every finitely generated subfactor of Bj/Bj+1 has Krull
dimension less than α.

Let M be a nonzero R-module and let N be a nonzero T -submodule of T ⊗R M . We
say that N has type (−) if λ−(N) 6= 0, but λ+(N) = 0. Similarly, N has type (+) if
λ+(N) 6= 0, while λ−(N) = 0; and type (−,+) if λ−(N) 6= 0 and λ+(N) 6= 0. Finally,
N has type (0, 0) if both λ±(N) = 0. In this latter case, N is contained in a finite sum
⊕ vi ⊗M ; so N is finitely generated as an R-module, provided that M is a noetherian
R-module, by Lemma 1.1.(2). Let N1 ≥ N2 ≥ . . . be a chain of nonzero submodules of
T ⊗R M ; then, for sufficiently large i, each of the submodules Ni has the same type, say
t, and we say that the chain above has type t.

Corollary 2.3 Let M be an α-critical noetherian R-module, for some ordinal α. Let

T ⊗R M ≥ N1 ≥ N2 ≥ . . . ≥ N > 0

be a chain of nonzero T -submodules of T ⊗R M which is of the the same type t as N ,
with t 6= (0, 0). Then there is a positive integer n such that, for any i ≥ n, all finitely
generated R-module subfactors of Ni/Ni+1 have Krull dimension less than α.

Proof. Without loss of generality, we may assume that n = 1. Suppose that the
T -module N has one of the types (i) (−, +), (ii) (+), or (iii) (−). In cases (ii) and
(iii), there exists k ∈ Z such that N1 is contained in A+ := ⊕i≥k T (M)i, or A− :=
⊕i≤k T (M)i, respectively. The T -module T ⊗R M = ⊕i∈Z T (M)i is Z-graded where
T (M)i = vi ⊗M ' σiM , as an R-module. Consider an ascending chain of R-modules:
. . . ≤ Ai ≤ Ai+1 ≤ . . ., where, in case (i) A−1 = 0, A2n = T (M)−n ⊕ · · · ⊕ T (M)n
and A2n+1 = T (M)−n ⊕ · · · ⊕ T (M)n+1, for n ≥ 1; while in cases (ii) or (iii), set Ai =
⊕k≤j≤i T (M)j, or Ai = ⊕k≥j≥−i T (M)j, respectively. Observe that the conditions of
Proposition 2.2 hold and the result follows. In more detail, we set A = T ⊗RM, A+ and
A−, in cases (i), (ii) and (iii), respectively.

For an R-module M define the sets

St(M) = {i ∈ Z | a σiM = σ−i(a)M = 0}, Ho(M) = {i+ 1 | i ∈ St(M)}.
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The elements of St(M) and Ho(M) are the stars and holes respectively. Set St−(M) =
{i ∈ St(M) | i < 0} and Ho+(M) = {j ∈ Ho(M) | j > 0}. Denote by s−(M) the largest
element of St−(M), and by h+(M) the smallest element of Ho+(M) (if they exist). The
importance of stars and holes is as follows: if i is a positive hole, then Y · (X i ⊗M) = 0;
while if i is a negative star then X · (Y −i ⊗M) = 0.

An R-module M is called a-monic if for every i ∈ Z the map σ i(a)M : M → M , given
by m→ σi(a)m is either injective or zero. It is obvious that a submodule of an a-monic
module is a-monic, and easy to check that any critical R-module is a-monic. Let M be
an a-monic R-module. Then

ker XT (M) = ⊕i∈St−(M) T (M)i, (1)

ker YT (M) = ⊕j∈Ho+(M) T (M)j. (2)

If M is a-monic then either M is a-torsionfree, or St(M) 6= ∅. In the latter case, there is
either a negative star, or a positive hole (or both), and so, either s−(M) or h+(M) exists
(they may both exist).

The T -submodule of T (M)

L(M) :=
∑

i≤s−(M)
T (M)i ⊕

∑
j≥h+(M)

T (M)j

is the largest homogeneous submodule of T (M) which has zero intersection with 1 ⊗
M . Denote by L(M)− and L(M)+ the first and the second summand, respectively. If
St−(M) = ∅ or Ho+(M) = ∅, we set L(M)− = 0 and L(M)+ = 0 respectively. The
L(M)± are T -submodules of T (M). If L(M)− 6= 0, then set

V+(M) = T (M)/L(M)− = ⊕i>s−(M) T (M)i,

pictured as

. . .
s−(M)
? · · · [ ◦ −−−−− . . .−−−−− 1⊗M• −−−−− · · ·︸ ︷︷ ︸

V+(M)

,

and if L(M)+ 6= 0, then set

V−(M) = T (M)/L(M)+ = ⊕i<h+(M) T (M)i,

pictured as

. . .−−−−− 1⊗M• −−−−− · · · −−−−− ?︸ ︷︷ ︸
V−(M)

] · · · h+(M)◦ . . . .
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Finally, if both L(M)− 6= 0 and L(M)+ 6= 0 then set

L(M) := T (M)/L(M) = ⊕s−(M)<i<h+(M) vi ⊗M,

. . .
s−(M)
? · · · [ ◦ −−−−− . . .−−−−− · · · −−−−− ?︸ ︷︷ ︸

L(M)

] · · · h+(M)◦ . . . .

If s−(M) = −1 then V+(M) = V+(M), while if h+(M) = 1 then V−(M) = V−(M).

Let

St−(M) = {. . . < i2 < i1 = s−(M)}, Ho+(M) = {h+(M) = j1 < j2, . . .}. (3)

Then there are two strictly descending chains of T -submodules of T (M):

. . . < V−(in) < . . . < V−(i1) < T (M), (4)

T (M) > V+(j1) > . . . > V+(jm) > . . . , (5)

where
V−(in) := ⊕i≤in T (M)i ' V−(σinM),

and
V+(jm) = ⊕j≥jm T (M)j ' V+(σjmM).

Define

L−(in+1, in] ≡ L−(σin+1M, σinM ] := V−(in)/V−(in+1) ' L(σinM), (6)

and

L+(jm − 1, jm+1 − 1] ≡ L+(σjm−1M, σjm+1−1M ] := V+(jm)/V+(jm+1) ' L(σjmM). (7)

The T -module V = V+(M) is uniquely characterized by the following properties:

• the T -module V = ⊕i∈Z Vi is Z-graded and left restricted (that is, Vi = 0, for all i� 0);

• V = TVj, for some j;
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• the map XV : V → V , given by v 7→ Xv, is injective.

Clearly, the T -module V+(M) has the properties listed above, with Vj = M .

Conversely, suppose that the T -module V satisfies the conditions above. It follows from
the first two conditions that V is isomorphic to a T -module T (Vj)/N , where N is a
homogeneous submodule of T (Vj). Further, N contains L−(Vj) follows from the third
condition. Therefore, V is isomorphic to the factor module V+(Vj)/L, where L is homo-
geneous submodule of V+(Vj). Now, L ⊆ ⊕i≥1 X

i ⊗ Vj, since the map XV is injective
and (1 ⊗ Vj) ∩ L = 0. If L 6= 0 then there exists a nonzero element X i ⊗ l ∈ L. Thus,
X i(1 ⊗ l) ∈ L, and so 0 = 1 ⊗ l, by the third condition. However, 0 6= 1 ⊗ l ∈ L, a
contradiction. Thus L = 0, and V ' V+(Vj).

Similarly, T -module V = V−(M) is uniquely characterized by the following properties:

• the T -module V = ⊕i∈Z Vi is Z-graded and right restricted (that is, Vi = 0, for all
i� 0);

• V = TVj, for some j;

• the map YV : V → V , given by v 7→ Y v, is injective.

Lemma 2.4 Let M be an a-monic R-module.

1. If s−(M) = h−1 exists, then the T -submodule T vh⊗M of V+(M) is isomorphic to
V+(σhM); and the T -submodule T v−h⊗ σhM of V+(σhM) is isomorphic to V+(M).
So, we have

V+(M) ≥ V+(σhM) ≥ V+(M) and K(V+(M)) = K(V+(σhM)).

2. If h+(M) = s+ 1 exists, then the T -submodule T vs⊗M of V−(M) is isomorphic to
V−(σsM); and the T -submodule T v−s ⊗ σsM of V−(σsM) is isomorphic to V−(M).
So, we have

V−(M) ≥ V−(σsM) ≥ V−(M) and K(V−(M)) = K(V−(σsM)).

Proof. This follows immediately from the characterization of the modules V±(M) and
V±(M).

Definition A critical R-module M is called T -clean if M is a-torsionfree and T (M) is
a critical T -module. In a similar manner, a critical R-module M is called (T,+)-clean if
s−(M) exists and V+(M) is a critical T -module, and M is (T,−)-clean if h+(M) exists
and V−(M) is a critical T -module.

13



In view of Lemma 2.4, if M is a critical R-module, then the following hold:

•M is (T,+)-clean if and only if the T -module V+(σhM) is critical, where h = s−(M)+1;

•M is (T,−)-clean if and only if the T -module V−(σsM) is critical, where s = h+(M)−1.

It follows from Lemma 2.4, and (4), (5) that if M is (T,+)-clean then so is σiM , for all
i ≥ s−(M), and if M is (T,−)-clean, then so is σiM , for all i ≤ h+(M).

The next result shows that there are enough (T, •)-clean modules.

Lemma 2.5 Let M be a noetherian critical R-module.

1. If M is a-torsionfree, then M contains a T -clean submodule.

2. If s−(M) exists, then for some i ≥ 0 the R-module σiM contains a (T,+)-clean
submodule.

3. Similarly, if h+(M) exists, then for some i ≤ 0 the R-module σiM contains a (T,−)-
clean submodule.

Proof. The T -module T (M) is noetherian, and so are V±(M), whenever they exist, since
the R-module M is noetherian.

1. Assume that M is a-torsionfree. Fix a critical T -submodule, N say, of T (M). By
Lemma 1.2.(1), there exists a nonzero R-submodule L of M such that T (L) embeds in
N . Let U be a critical R-submodule of L. Since T is a flat right R-module, T (U) embeds
in T (L), and so embeds in the critical module N . Hence, the T -module T (U) is critical;
and so U is T -clean.

2. Assume that s−(M) exists. By Lemma 2.4, the module V+(M) contains the submodule
V+(M ′ := σhM), where h = s−(M) + 1. Fix any critical T -submodule, N say, of V+(M ′).
By Proposition 1.3.(2), there exists a nonzero R-submodule L of σ iM ′, for some i ≥ 0
such that V+(L) embeds in N . Let U be a critical R-submodule of L. Since T is a flat
right R-module, V+(U) embeds in V+(L), and so embeds in the critical module N . Hence,
the T -module V+(U) is critical; and so U is (T,+)-clean. Unfortunately, if i < |h|, then
σiM ′ is still to the left of M , so we need to shift to the right, and get the submodule
σ|h|U of σi+|h|M ′ = σiM , which is also (T,+)-clean by the comment immediately before
the lemma.

3. The case where h+(M) exists is similar to the previous case.
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Let M = ⊕i∈Z Mi be a Z -graded module. Given a submodule N of M , then

Nhom := ⊕i∈Z N ∩Mi

is the largest homogeneous submodule of N .

The next lemma establishes various easy properties of the Krull dimension of the various
kinds of T -modules that have just been introduced.

Lemma 2.6 Let M be an α-critical noetherian R-module.

1. α ≤ K(T (M)) ≤ α + 1 and if the set St(M) is infinite, then K(T (M)) = α + 1.

2. K(L±(σiM, σjM ]) = α.

3. If M is a-torsion, then α ≤ K(V±(M)) ≤ α+ 1. If the set Ho+(M) is infinite, then
K(V−(M)) equals α + 1. Similarly, if St−(M) is infinite, then K(V+(M)) equals
α + 1.

4. Let V be one of the following T -modules: (i) V−(M) and St−(M) = ∅; (ii) V+(M)
and Ho+(M) = ∅; (iii) L(M) and both s−(M) and h+(M) exists. If N is a non-zero
T -submodule of V , then Nhom 6= 0.

5. If V+(M) exists, then K(V+(M)) = K(V+(σiM)), for i > s−(M), while if V−(M)
exists, then K(V−(M)) = K(V−(σiM)), for i < h+(M).

Proof. 2. As a left R-module L±(σiM, σjM ] = ⊕i<k≤j σkM and the result follows.

1 and 3. Follow from (4) and (5) and statement 2.

4. Evident.

5. By Lemma 2.4.(1), K(V+(M)) = K(V+(σhM)), h = s−(M) + 1 and K(V+(σiM)) =
K(V+(σnM)) for some n ∈ Ho+(σiM) ⊆ Ho+(M). Since V+(σhM) ≥ V+(σnM) and, by 2,
K(V+(σhM)/V+(σnM)) = K(L+(σh−1M, σn−1M ]) = K(M), the result follows from 3. The
case (−) is symmetrical to (+).

In the following lemma, we establish the existence of clean subfactors in induced modules,
which have the same Krull dimension as the modules, and see the need for the various
types of clean modules that we have introduced.

Lemma 2.7 Let M be a nonzero noetherian R-module.

1. If σ(a)M = 0 then, for some i ≥ 0, there exists a (T,+)-clean subfactor N of σiM
such that σ(a)N = 0 and K(V+(M)) = K(V+(N)), while if aM = 0, then, for
some i ≤ 0, there exists a (T,−)-clean subfactor N of σiM , such that aN = 0 and
K(V−(M)) = K(V−(N)).
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2. There exists either
(i) a T -clean subfactor L of M such that K(T ⊗R M) = K(T ⊗R L), or
(ii) a (T,+)-clean subfactor N of σiM , for some i ≥ 0, such that K(T ⊗R M) =
K(V+(N)), or
(iii) a (T,−)-clean subfactor N of σiM , for some i ≤ 0, such that K(T ⊗R M) =
K(V−(N)).

Proof. 1. Let us consider the first case. Without loss of generality we may assume
that M is critical. In fact, the R-module M is noetherian, thus we can choose a chain
of submodules M = M1 > M2 > · · · > Mn = 0 with critical factors Mi/Mi+1. Observe
V+(M) = T+⊗R M where T+ = R[X; σ] is the skew polynomial ring. The right R-module
T+ is faithfully flat, so we have the chain of T -submodules:

V+(M) = V+(M1) > V+(M2) > · · · > V+(Mn) = 0

with factors V+(Mi)/V+(Mi+1) ' V+(Mi/Mi+1). So

K(V+(M)) = max{K(V+(Mi/Mi+1), i = 1, . . . , n− 1}.

By replacing M by a suitable factor Mi/Mi+1, we may assume that M is critical. Recall
that, in this case, M is also a-monic. By Lemma 2.5.(2), there exists 0 ≤ j = j1 ∈
Ho+(M) such that σjM contains a (T,+)-clean submodule L1. By Lemma 2.6.(5), n :=
K(V+(M)) = K(V+(σjM)). If K(V+(L1)) = n, then L = L1 and we are done. If not, that
is, if K(V+(L1)) < n, then n = K(V+(σjM)/V+(L1)) = K(V+(σjM/L1)). Using the same
sort of arguments, we find an integer j2 ≥ j1 and R-submodules L2, N2 such that σj2M ≥
L2 > N2 > σj2−j1L1, L2/N2 is (T,+)-clean and V+(L2/N2) exists. If n = K(V+(L2/N2)),
then set L = L2/N2. If not, we find L3 and so on. Since RM is noetherian and σ is
automorphism this process must stop.

2. The module TR is faithfully flat. Applying T ⊗R − to the above chain M = M1 >
M2 > · · · > Mn = 0 we obtain the chain of T -submodules

T (M) = T (M1) > T (M2) > · · · > T (Mn) = 0

with i’th factor isomorphic to T (Mi/Mi+1), hence

K(T (M)) = max{K(T (Mi/Mi+1), i = 1, . . . , n− 1}.

Thus, without loss of generality, we may assume that M is critical.

If St(M) 6= ∅, then either i1 = s−(M) or j1 = h+(M) exists (or both). By (4), (5), we
have at least one of the following exact sequence of T -modules:

0→ V−(i1)→ T (M)→ V+(M)→ 0 or 0→ V+(j1)→ T (M)→ V−(M)→ 0.
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Observe that K(V+(M)) = K(V+(σi1+1M)) and K(V−(M)) = K(V−(σj1−1M)), by Lemma
2.4, so thatK(T (M)) is either equal to max{K(V−(i1)),K(V+(σi1+1M))}, or to max{K(V+(j1)),
K(V−(σj1−1M))} and the result follows from statement 1.

If St(M) = ∅; then M is a critical a-torsionfree R-module. By Lemma 2.5, M contains
a T -clean submodule L1 ≤ M . If n := K(T (M)) = K(T (L1)), there is nothing to
prove. Otherwise, if n > K(T (L1)), then the Krull dimensions of the modules T (M) and
T (M/L1) coincide. Applying the same argument to the factor module M/L1 we either
reduce the problem to the case considered in statement 1 or find a nonzero subfactor L2

of M/L1 (i.e. submodules L2 > N2 ≥ L1, L2 = L2/N2) which has the same property as
L1. The module M is noetherian, so this process must stop.

The next result is part of the inductive step in proving a formula, Theorem 4.1, for the
Krull dimension of an induced module T⊗M , in the case that M is is an a-torsion, critical
noetherian R-module. This is the easy part of the inductive step. The most difficult part
is the case where M is a-torsionfree, see Theorem 3.5, which requires a refined study of
the submodule structure of induced modules. This is done in the remainder of the present
section, see Lemma 2.13.

Proposition 2.8 Let M be a noetherian non-simple R-module of finite Krull dimension.

1. If M is (T,+)-clean, then

K(V+(M)) = max{K(V+(N)) | N ∈ a+}+ 1,

where a+ is the family of (T,+)-clean minor subfactors of σiM , i > s−(M).

2. If M is (T,−)-clean, then

K(V−(M)) = max{K(V−(N)) | N ∈ a−}+ 1,

where a− is the family of (T,−)-clean minor subfactors of σiM , i < h+(M).

Proof. 1. First, suppose that Ho+(M) is a finite set (it could be empty). Note that M
has a negative star, and so, M has a non-positive hole. Let i be the maximal hole of M .
By Lemma 2.4, K(V+(M)) = K(V+(σiM)). So, without loss of generality, we may replace
M by σiM , which is also (T,+)-clean, and assume that i = 0; that is, V+(M) = V+(M)
and Ho+(M) = ∅.

The R-module M is noetherian, so V+(M) is a noetherian T -module. Set n := K(V+(M)),
so that 1 ≤ K(M) ≤ n = K(V+(M)) ≤ K(M) + 1. Let N be a nonzero submodule of
V+(M) such that K(V+(M)/N) = n − 1. The homogeneous component N0 := N ∩
M 6= 0, by Lemma 2.6.(4)(ii), since Ho+(M) = ∅, and so 0 6= V+(N0) ≤ N ≤ V+(M).
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The T -module V+(M) is critical, since M is assumed to be (T,+)-clean; so n − 1 ≥
K(V+(M)/V+(N0)) = K(V+(M/N0)). On the other hand, n − 1 = K(V+(M)/N) ≤
K(V+(M)/V+(N0)), so that K(V+(M/N0)) = n − 1. By Lemma 2.7.(1), for some i ≥ 0
there exists a (T,+)-clean subfactor L of σi(M/N0) such that K(V+(L)) = n − 1. The
module N0 is nonzero, so L ∈ a+.

Next, suppose that Ho+(M) is infinite. As above, we may assume that σ(a)M = 0; that
is, V+(M) = V+(M). The R-module M is noetherian of finite Krull dimension, say m,
and m ≥ 1, since M is not simple. We can choose a minor subfactor C of M such that
C is critical of Krull dimension m − 1. For some i ≥ 0, the R-module σiC contains a
(T,+)-clean submodule, say C ′, by Lemma 2.5.(2). By going to the next hole bigger
than i, we may assume that σ(a)C ′ = 0. The R-module σiC is critical, since C is critical,
and K(C ′) = K(σiC) = K(C) = m − 1. The sets Ho+(M) and Ho+(C ′) are infinite, so
K(V+(C ′)) = K(C ′) + 1 = m and K(V+(M)) = K(M) + 1 = m + 1, by Lemma 2.6.(3).
Finally, observe that C ′ ∈ a+.

2. The proof of the second part is similar to 1, or one can invoke the ±-symmetry. .

Definition. Let M and N be T -clean noetherian R-modules. Define h(N : M) = 1 if N
is isomorphic to a minor subfactor of M , but no nonzero submodule of N is isomorphic
to a minor subfactor of a T -clean minor subfactor of M .

Note that if h(N : M) = 1 then h(σiN
′ : σiM) = 1, for all nonzero submodules N ′ of N

and for all i ∈ Z.

Definition. Let M be a noetherian R-module that is either T -clean or (T,+)-clean, and
let N be a (T,+)-clean noetherian R-module. Define h+(N : M) = 1 if N is isomorphic
to a minor subfactor of M , but, for any i ≥ 0, no nonzero submodule of σiN is isomorphic
to a minor subfactor of a T -clean or (T,+)-clean minor subfactor of σiM . Similarly, if
M is either T -clean or (T,−)-clean, and N is a (T,−)-clean noetherian R-module then
h−(N : M) = 1 if N is isomorphic to a minor subfactor of M , but, for any i ≤ 0, no
nonzero submodule of σiN is isomorphic to a minor subfactor of a T -clean or (T,−)-clean
minor subfactor of σiM .

Again, note the following.

• If h±(N : M) = 1 then h±(σ±iN
′ : σ±iM) = 1, for all nonzero (T,±)-clean submodules

N ′ of N and for all i ≥ 0.

• Let M and σiM be noetherian R-modules which are either T -clean or (T,±)-clean,
and let N and σiN be (T,±)-clean noetherian R-modules, for some i ∈ Z. Then h±(N :
M) = 1 if and only if h±(σiN : σiM) = 1.
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Lemma 2.9 Let M be a noetherian R-module and let

M ≥ C1 ≥ C2 ≥ . . . ≥ C > 0

be R-submodules of M . If M is (T,+)-clean then there exists an integer m ≥ 1 such that
each module σj (Ci/Ci+1), for i ≥ m and j ≥ 0, has no (T,+)-clean submodules N for
which h+(N : σjM) = 1. Similarly, if M is (T,−)-clean there exists an integer m ≥ 1
such that each module σj (Ci/Ci+1), for i ≥ m and j ≤ 0, has no (T,−)-clean submodules
N for which h−(N : σjM) = 1.

Proof. Suppose that M is (T,+)-clean. The module M is noetherian, so we can choose
C to be maximal among those submodules of M contained in a descending chain for which
the conclusion fails. Then, for each submodule σiC of σiM , for i ≥ 0, the conclusion fails
as well. Thus, C can be chosen in such a way that all σiC, for i ≥ 0, are maximal with
failure.

Refine the chain, so that each of the modules Ci/Ci+1 is a critical module. By Lemma
2.5.(2), there exists an integer n ≥ 0 and a submodule V of σnM such that σnC ⊆ V and
V/σnC is (T,+)-clean.

By the choice of C, there exist two sequences of non-negative integers, 1 < i1 < i2 < . . .
and j1, j2, . . . such that each of the factor modules σjν (Ciν/Ciν+1), for ν ≥ 1, contains a
(T,+)-clean submodule, Nν, say, for which h+(Nν : σjνM) = 1.

Without loss of generality, we may assume that Nν = σjν (Ciν/Ciν+1), and that j1 ≤ j2 ≤
. . ., since if h+(N : M) = 1 then h+(σiN : σiM) = 1, for all i ≥ 0. Fix j = jν, for any ν,
and consider the two chains of modules

σn+jM ⊇ σjV ⊇ σn+jC

and

σn+jM ≥ σn+jC1 ≥ σn+jC2 ≥ . . . ≥ σn+jC.

Comparing these chains, as in Proposition 2.2, we obtain chains of modules

σn+jM ≥ V01 ≥ V02 ≥ . . . ≥ σjV ≥ V11 ≥ V12 ≥ . . . ≥ σn+jC

and

σn+j (Cl) = W0l ≥ W1l ≥ W2l = σn+j (Cl+1), l = 1, 2, . . .

such that Vkl/Vk,l+1 ' Wkl/Wk+1,l for all k, l.

Of course, the modules V0l, V1l and W1l depend on j; that is, Vkl = Vkl(j), etc. For two
integers jν ≤ jµ, it follows from the Schrier Refinement Theorem, that

Vkl(jµ) = σpVkl(jν), Wkl(jµ) = σpWkl(jν), (8)
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where p = jµ − jν.

Now, h+(σnNν : σn+jM) = 1, since h+(Nν : σjM) = 1.

The module σn+jC is nonzero, and the module

σjV

σn+jC
' σj

(
V

σnC

)

is a (T,+)-clean minor subfactor of σn+jM .

It follows that W1jν(jν) = W2jν(jν), for all jν , since h+(σnNν : σn+jM) = 1. By (8),
W1jµ(jν) = W2jµ(jν), for all µ, ν. Now,

V0l(j)

V0,l+1(j)
' σn+jCl

σn+jCl+1
,

for all l = j1, j2, . . .. Thus, we obtain the chain

σn+jM ≥ V0,1 ≥ V0,2 ≥ . . . ≥ σjV,

for which the conclusion of the lemma fails. However, σjV > σn+jC, a contradiction.

Lemma 2.10 Let M be a T -clean noetherian R-module and let

M ≥ C1 ≥ C2 ≥ . . . ≥ C > 0

be R-submodules of M . Then, there exists an integer n ≥ 1 such that the following
conditions hold.

1. Each module Ci/Ci+1, for i ≥ n, has no T -clean submodule N for which
h(N : M) = 1.

2. Each module σ±j (Ci/Ci+1), for i ≥ n and j ≥ 0, has no (T,±)-clean submodule N
such that h±(N : σ±jM) = 1.

Proof. Assume that the result is not true, and suppose that C is maximal among
submodules of M contained in a chain for which the result fails. Thus, the result also
fails above σiC, for each i ∈ Z, and each of these submodules is maximal for failure also.

Choose a submodule M ′ of M , containing C, such that M ′/C is critical; this is possible
since M is noetherian. If M ′/C is a-torsionfree then there exists a submodule V with
C ⊆ V ⊆M ′ such that V/C is T -clean. We now use the argument of [9, Lemma 4.3] and
Lemma 2.9 to obtain a contradiction.

If M ′/C is a-torsion then, for some i ∈ Z, there exists a submodule V with σiC ⊆ V ⊆
σiM

′ such that V/σiC is (T,+)-clean, or (T,−)-clean, by Lemma 2.5.(2, 3). In this case,
we finish the proof as in Lemma 2.9
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Lemma 2.11 Let R be any ring, and let M be an R-module which contains an ascending
chain of submodules 0 = M1 ≤ M2 ≤ . . . ≤ M such that ∪∞i=1Mi = M . Let N be a
nonzero R-module subfactor of M . Then there exists a nonzero submodule N ′ of N such
that N ′ is isomorphic to a subfactor of some Mk/Mk−1.

Proof. Let N = E/F , for some R-submodules F < E ≤ M . We use [9, Proposition
3.2(a)] to obtain a common refinement of the two chains

0 ≤ F < E ≤M, 0 = M1 ≤M2 ≤ . . . ≤M.

Namely, we can choose R-submodules

0 = V01 ≤ V02 ≤ . . . ≤ F = V11 ≤ V12 ≤ . . . ≤ E = V21 ≤ V22 ≤ . . . ≤M

Mi = W0i ≤ W1i ≤ W2i ≤ W3i = Mi+1, for i = 1, 2, . . .

such that
Vi,j+1/Vij ' Wi+1,j/Wij,

for all i, j, and E = ∪∞i=1V1i. Let k be the least positive integer such that V1k > F .
Set N ′ := V1k/F . Then N ′ is a nonzero submodule of N and N ′ ' V1k/V1,k−1 '
W2,k−1/W1,k−1. Hence, N ′ is isomorphic to a subfactor of Mk/Mk−1.

Corollary 2.12 Let R be a ring and let M be an R-module. Suppose that M is one
of the following T -modules: (i) T (M); (ii) V+(M); (iii) V−(M). Let N be a nonzero
R-module subfactor of M. Then there exists a nonzero submodule N ′ of N such that N ′

is isomorphic to a subfactor of σiM , where, in the first case, i ∈ Z, in the second case
i > s−(M), and in the third case i < h+(M).

Proof. Observe thatM is isomorphic to⊕σiM , as anR-module, and apply the previous
lemma.

Proposition 2.13 Let M be a noetherian R-module, and let M be a nonzero subfactor
of the T -module T (M). Then, there exists a chain of T -submodules

M =M0 >M1 > . . . >Mn−1 >Mn = 0

such that to each i there corresponds a cyclic critical R-module V = Vi, which is a subfactor
of some σn(i)M , and each factor moduleMi/Mi+1 is critical and is of one of the following
seven types.

1. T (V ), where V is T -clean.
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2. V−(V ), where V is (T,−)-clean.

3. L−(σsV, V ], where s = s−(V ).

4. V+(V ), where V is (T,+)-clean.

5. T (V )/N , where V is T -clean and N is a nonzero T -submodule of T (V ), and N hom =
0.

6. V−(V )/N , where V is (T,−)-clean with |St−(V )| = ∞ and N is a nonzero T -
submodule of V−(V ) such that Nhom = 0.

7. V+(V )/N , where V is (T,+)-clean with |Ho+(V )| = ∞ and N is a nonzero T -
submodule of V+(V ) such that Nhom = 0.

Remark. If V is a critical R-module then L = L−(σsV, V ], where s = s−(V ), is a critical
T -module.

Proof. The R-module M is noetherian, hence the T -modules T (M) and M are also
noetherian. It is enough to show thatM has a submodule in one of the seven categories.
Without loss of generality, we may assume that M is a critical T -module, in which
case, any nonzero submodule of M is also critical. If follows from the decomposition
T (M) = ⊕σiM and the noetherianity of RM that any finitely generated R-submodule of
T (M) or M is noetherian.

Suppose that the proposition is true without the following assumption on the module
V = Vi

(subfac): “which is a subfactor of some σn(i)M .”

Then V is a subfactor of an R-module N := σi1M ⊕ . . .⊕ σisM . The module N has the
ascending chain of submodules

0 < σi1M < σi1M ⊕ σi2M < . . . < N

with subfactors {σijM, j = 1, . . . , s}. By Lemma 2.11, there exists a nonzero cyclic
submodule V ′ of V such that V ′ is isomophic to subfactor of some σijM . Let A(V ) be
one of the modules from categories 1-4. Then the T -module A(V ) naturally contains the
submodule A(V ′) and the inclusion A(V ′) ⊆ A(V ) respects the grading. Moreover, the
transition from A(V ) to A(V ′) preserves all of the properties of A(V ). Let A(V ) be one of
the modules from the remaining three cases. Repeating the same argument, we conclude
that the transition from A(V ) to A(V ′) preserves all of the properties of A(V ) except

22



possibly the property N 6= 0. However, in this case A(V ′) is in one of the categories 1,2
or 4, respectively.

Thus, we need only prove the proposition without the assumption (subfac).

Choose a cyclic, critical, noetherian R-submodule V of M, with least possible Krull
dimension among R-submodules ofM. There is no nonzero R-submodule ofM that is a
proper epimorphic image of the R-module σiV , for any i ∈ Z.

The R-module inclusion V → M induces a T -module map f : T (V ) → M. Suppose
that f is injective. If St(V ) = ∅, then Im(f) belongs to category 1. If St(V ) 6= ∅, then,
by considering the chains (4) and (5) we see that the T -module T (V ) ' Im(f) contains
either V−(U) or V+(W ), hence the submodules f(V−(U)) and f(V+(W )) belong to the
categories 2 and 4, respectively.

Suppose that ker(f) 6= 0. If St(V ) = ∅ then by the choice of V , we have (ker(f))hom = 0,
for otherwise, if (ker(f))hom 6= 0 then V ∩ ker(f) 6= 0, a contradiction. So, Im(f) belongs
to category 5, provided that V is T -clean. If not, the module V contains a T -clean
submodule V ′, by Lemma 2.5.(1). Hence, the image of the homogeneous T -submodule
T (V ′) of T (V ) under the map f belongs either to category 1 or 5.

It remains to consider the case when St(V ) 6= ∅. In this case, either (i) h = h+(V ) exists,
or (ii) s = s−(V ) exists, or both exist.

If h exists, then there is an exact sequence of T -submodules

0→ V+ → T (V )→ V−(V )→ 0,

where V+ = ⊕i≥hT (V )i = V+(σhV ). If s exists, then there is an exact sequence of T -
submodules

0→ V− → T (V )→ V+(V )→ 0,

where V− = ⊕i≤sT (V )i = V+(σsV ).

Consider the first case. We subdivide this into two. Either (I) V+ � ker(f), or (II)
V+ ≤ ker(f). In case (I), denote by g the restriction of f to V+. This is a nonzero
map, let N = ker(g). The nonzero T -module V+/N is isomorphic to Im(g), a submodule
of M. If N = 0, then V+ ' Im(g) belongs to category 4. Suppose that N 6= 0. Then
Ho+(σhV ) 6= ∅. For, if Ho+(σhV ) = ∅, then it follows from Lemma 2.6.(4) that N hom 6= 0,
since N 6= 0. Hence, σhV ∩Nhom 6= 0, which contradicts the choice of V .

Suppose next that Ho+(σhV ) = {h1 < h2 < . . . < hk} is a finite nonempty set. We will
show that

N = Nhom = ⊕i≥hj(X i ⊗ σhV ),
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for some j. Observe that the map XV+ : V+ → V+, given by v 7→ Xv is injective and
the map YV+ : V+ → V+, given by v 7→ Y v, has ker(YV+) = ⊕(Xj ⊗ σhV ), where j runs
through Ho+(σhV )∪{h}. Using this observation, we conclude that N ∩ (Xhk⊗ σhV ) 6= 0,
since N 6= 0. Thus N ⊇ Xhk ⊗ σhV by the choice of V , and so N ⊇ T Xhk ⊗ σhV =
⊕i≥hk(X i ⊗ σhV ).

Set h0 = h. Let hj be the minimal positive hole such that N ≥ N ′ = T Xhj ⊗ σhV =
⊕i≥hj (X i ⊗ σhV ). Then j > 0, since V+/N 6= 0. We aim to show that N = N ′, so that
N = N ′ = Nhom. The factor module V+/N

′ contains the homogeneous T -submodule
L = ⊕hj−1≤i<hjX

i ⊗ σhV . If N 6= N ′ then we see that (Xhj−1 ⊗ σhV ) ∩ N 6= 0, by the
observation above. By the choice of hj, we see that L � N , so the restriction of the map
g to Xhj−1⊗ σhV is nonzero, and is not injective, which contradicts the choice of V , since

R(Xhj−1 ⊗ σhV ) ' σh+hj−1V .

Hence,
N = Nhom = ⊕i≥hj(X i ⊗ σhV ),

for some j. Thus V+/N
′ ' Im(g) is a T -submodule ofM which contains the submodule L.

The T -submodule L generated by Xhj−1⊗ σhV is isomorphic to L−(σh+hj−1−1V, σh+hj−1V ],
which belongs to category 3.

Suppose now that Ho+(σhV ) is an infinite set, so that |Ho+(V )| =∞.

If Nhom = 0, then Im(g) ' V+/N belongs to category 7, if σhV is (T,+)-clean. If

σhV is not (T,+)-clean then, by Lemma 2.5.(2), there exists a (T,+)-clean submodule
U of σiV , for some i ∈ Ho+(V ). Then V+(U) is a homogeneous T -submodule of V+. If
N1 := N∩V+(U) = 0 then V+(U)/N belongs to category 4, while if N1 6= 0 then V+(U)/N
belongs to category 7, since Nhom

1 ≤ Nhom = 0.

If Nhom 6= 0, then, repeating the same argument as in the case when Ho+(σhV ) is finite,
we have that N = Nhom = ⊕i≥hj (X i ⊗ σhV ) holds. Applying the same arguments as in
the case above to the module V+/N

hom we find a submodule of M from category 3.

Consider the case (II) where V+ ≤ ker(f). The T -submodule of V−(V ) generated by
Xh−1 ⊗ V is V−(σh−1V ). By the choice of V , we conclude that V−(σh−1V ) � ker(f). This
situation is dual to case (I).

The remaining case, when s exists is dual to the case when h exists. Observe that the
dual cases are dealt with immediately, by applying the ± symmetry.
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3 Krull dimension of induced modules: the inductive

step

Definition. Let U,W be critical noetherian R-modules. We say that U and W are
subisomorphic if there exist submodules U ′ of U and W ′ of W such that U ′ ' W ′.
The relation, ∼, of subisomorphism is an equivalence relation on the set C of noetherian
critical R-modules. For U ∈ C, we denote by {U} the ∼ equivalence class of U .

Let M be a noetherian module with K(M) = d. Following [10] and [12], we construct
a chain of submodules in the following way. Let M1 be a submodule maximal such that
K(M/M1) = d. Then M/M1 is a d-critical module. Continue in this way to construct a
chain

M = M0 > M1 > M2 > . . . > Mk

such that each factor is d-critical and K(Mk) < d. Note the procedure stops, or we
contradict K(M) = d. Let V be any d-critical subfactor of M . Then V is subisomorphic
to one of the factors Mi/Mi+1 in the above chain.

Proposition 3.1 Let M be an a-torsionfree noetherian R-module and suppose that the
ideal Ra of R has the Artin-Rees property. Suppose that K(M) = β, and that K(M/aM) =
γ < β. Let V be a γ-critical subfactor of M such that aV = 0. Then V is subisomorphic
to a subfactor of M/aM . In particular, if V is γ-critical then V is subisomorphic to one
of the (finitely many up to subisomorphism) γ-critical subfactors of M/aM .

Proof. Suppose that V = E/F , for some submodules F < E of M . The ideal I = Ra has
the Artin-Rees property. Apply the AR property to the module M/F , to find an n such
that anM ∩ E ≤ F . It follows that E/F ' (E + anM)/(F + anM), so without loss of
generality, we may assume that anM ≤ F . By comparing the chain anM ≤ F < E ≤ M
with the chain anM ≤ an−1M ≤ . . . ≤ aM ≤ M , we see that some submodule V ′ of
V is isomorphic to a subfactor of some aiM/ai+1M . However, M is a-torsionfree, so
aiM/ai+1M ' M/aM . Thus V ′ is isomorphic to a subfactor of M/aM . Now, construct
a chain for M/aM as above and V ′ is isomorphic to a subfactor of one of the finitely
many γ-critical factors of this chain. In fact, since each of these factors is γ-critical and
K(V ′) = γ, the submodule V ′ is isomorphic to a submodule of one of these factors.

If V ∼ U , then St(V ) = St(U) and σiV ∼ σiU , for all i ∈ Z. The subgroup G of Aut(R)
generated by the automorphism σ acts on the set C/ ∼ of subisomorphism classes via
σi{V } := {σiV }. Denote by O{V } the orbit {σiV | i ∈ Z} of {V }. The elements in the
set St(O) of O = O{V } annihilated by a are called stars. Clearly,

St(O) = {{σiV } | i ∈ St(V )}.
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An orbit containing a star is called degenerate, otherwise it is non-degenerate. Note
that O{V } is degenerate if and only if St(V ) 6= ∅.

Any non-degenerate orbit O{V } is equal to O{V ′} for some T -clean submodule of V ;
similarly, any degenerate orbit O{V } is equal to O{V ′±} for some (T,±)-clean submodule
of σ±iV , for some i ≥ 0, by Lemma 2.5.

Lemma 3.2 Let M be a nonzero R-module and let M = T (M), V+(V ) or V−(V ).

1. If there exists a nonzero T -submodule N f M with N hom = 0, then there exists
nonzero elements a and b of M such that annR b = σl(annR a) for some natural
l ≥ 1.

2. Hence, the map

Ra ' R/annR a→ σl(R/annR b) ' σl(Rb), r + annR a→ σl(r) + annR b,

is an isomorphism of R-modules. If, in addition, M is a critical R-module, then the
orbit O{M} is finite.

Proof. 1. Let u = vm⊗um+ · · ·+vn⊗un be a nonzero element in N of minimal length
l = n−m where ui ∈M , un 6= 0, um 6= 0, n < · · · < m. Observe that l ≥ 1 since Nhom = 0.
Denote by I and J the annihilators in R of the elements um and un respectively. Then
σm(I) and σn(J) are the annihilators of vm ⊗ um and vn ⊗ un. By the minimality of l we
conclude that σm(I) = σn(J) (otherwise, for any nonzero x ∈ σm(I)\σn(J)∪σm(J)\σn(I)
the element xu is nonzero and has length less than l). So, I = σ l(J).

2. Evident.

Lemma 3.3 Let 0 < C ≤ B < A be a chain of essential T -submodules such that RC =
⊕j∈J Cj is a direct sum of noetherian critical R-modules Cj and A/B is an epimorphic
image of a T -module D which, as R-module, is a direct sum ⊕k∈K Dk of noetherian
critical R-modules Dk such that O{Dk} 6= O{Cj} and K(Dk) ≤ K(Cj) for all k, j. Then
every homogeneous ideal in T which annihilates B also annihilates A.

Proof. Let a = ⊕i∈Z vi ⊗ ai be a nonzero homogeneous ideal in T with aB = 0.
Let f : D → A/B be the epimorphism as above. Since aB = 0, we have an R-module
epimorphism

g : a⊗R D → aA, a⊗ d→ af(d).

As an R-module a⊗R D is the direct sum ⊕i,kDi,k of R-submodules Di,k = vi ⊗ aiDk '
σi(aiDk). The Di,k are critical provided they are nonzero and then O(Di,k) = O(Dk).
Suppose aA 6= 0, then aA ∩ C 6= 0, since C is an essential submodule of A. Choose
0 6= u ∈ aA ∩ C, then Ru is a submodule of Cj1 ⊕ · · · ⊕ Cjs where s is chosen as small
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as possible. Clearly, K(Ru) = n := max{K(Cjα) | α = 1, . . . , s} = K(Cjβ) for some β.
The projection W of Ru on the summand Cjβ is a nonzero (by the choise of s) n-critical
subfactor of Ru with O(W ) = O(Cjβ). Let ũ ∈ a ⊗R D satisfy g(ũ) = u. Thus there is
a natural R-module epimorphism Rũ→ Ru, given by rũ→ ru. The R-submodule Rũ of
a⊗RD is a submodule of some direct sum Di1k1 ⊕ · · ·⊕Ditkt with k as small as possible.
Since K(Diαkα) ≤ n, for all α, we conclude that K(Rũ) = n. Hence O(W ) = O(Diγkγ )
for some γ; that is, O(Cjβ) = O(Dkγ ), a contradiction.

For any natural number i denote by [i] the ideal of T generated by X i and Y i. Then
[i] = ⊕j∈Z vj ⊗ [i]j is the homogeneous ideal with the ideals [i]j of R satisfying

R = [i]−i ⊇ · · · ⊇ [i]−1 ⊇ [i]0, [i]0 ⊆ [i]1 ⊆ · · · ⊆ [i]i = R,

and [i]j = R, for all |j| ≥ i. The left and right R-module T/[i] is finitely generated.
Clearly,

T ≥ [1] ≥ · · · ≥ [i] ≥ · · · , [i][j] ⊇ [i+ j].

Note that any module of type L−(σsV, V ] is annihilated by [|s|].

Lemma 3.4 Let M be a noetherian R-module and let M be a nonzero subfactor of the
T -module T (M). Let M = M0 > M1 > · · · > Mn−1 > Mn = 0 be the chain of
sumbodules from Proposition 2.13. Then

1. [m]M = 0 for some m ≥ 1 if and only if all subfactorsMi/Mi+1 belong to category
3.

2. XmM = 0 for some m ≥ 1 if and only if all subfactors Mi/Mi+1 belong to cate-
gories 2, 3, 6 and the module V in case of categories 2 or 6 has finite orbit O{V }.

3. Y mM = 0 for some m ≥ 1 if and only if all subfactors Mi/Mi+1 belong to cate-
gories 3, 4, 7 and the module V in case of categories 4 or 7 has finite orbit O{V }.

Proof. 1. (⇐) Suppose that all subfactors Mi/Mi+1 belong to category 3. Let j be
the maximum of the corresponding s = s(i) as in Proposition 2.13. Then the ideal [j]
annihilates all subfactors Mi/Mi+1, hence [j]n annihilates M. Observe that [jn] ⊆ [j]n.

(⇒) Suppose [m]M = 0, for some m ≥ 1. Then [m]Mi/Mi+1 = 0 for all i. Let
V be one of the T -modules T (V ), V±(V ). The T -submodule [m]V of V is nonzero and
homogeneous, hence each Mi/Mi+1 does not belong to classes 1, 2, 4-7.

2. (⇐) Let j be the maximum of the corresponding s = s(i) and |O(V )|. Then
evidently X j annihilates all subfactors, hence X jn annihilates M.

(⇒) Suppose XmM = 0 for some m ≥ 1. Then Xm(Mi/Mi+1) = 0 for all i. Let V
be either T (V ) or V+(V ). The T -submodule TXmV of V is nonzero and homogeneous,
hence each Mi/Mi+1 does not belong to classes 1, 4, 5, 7.

3. The proof is similar to case 2.
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Let S be any ring and let B be a submodule of an S-module A. Take an additive
complement, B•, of B in A; that is, a submodule that is maximal subject to having zero
intersection with B•. Then B⊕B• is an essential submodule of A and B ≡ (B⊕B•)/B•
is an essential submodule of A/B•. Whenever we pass from the chain of submodules
0 ≤ B ≤ A to the chain 0 ≤ B• ≤ B ⊕B• ≤ A, we will say that we make a perestroika
with the first chain.

Theorem 3.5 Let M be a nonzero, non-simple T -clean noetherian R-module of finite
Krull dimension and suppose that the ideal Ra of R have the left Artin-Rees property (for
example, if R is left noetherian). Then

K(T ⊗RM) = max{α−, α0, α+}+ 1

where α0 = max{K(T ⊗R N) | N ∈ A0}, and A0 is the set of T -clean minor subfactors
of M , while α± = max{K(V±(N)) | N ∈ A±}, and A± is the set of (T,±)-clean minor
subfactors of σ±iM , for i ≥ 0.

Remark. It follows, from Lemma 2.6.(5) and Lemma 2.4, that α± = max{K(V±(N)) |
N ∈ A′±}, where A′± is the set of (T,±)-clean minor subfactors of σiM , for i ∈ Z.

Proof. At least one of the sets A0,A± is nonempty, by Lemma 2.5, since the R-module
M is nonzero and non-simple. Set β = K(M) < ∞, and note that K(T (M)) ≤ β + 1 <
∞, and that α := max{α−, α0, α+} < ∞. Clearly, K(T (M)) ≥ α + 1. Suppose that
K(T (M)) = K(M) = β. There exists either a T -clean, or a (T,+)-clean, or a (T,−)-clean
minor subfactor, V say, of M with Krull dimension β−1. Now, β−1 = K(V ) ≤ K(W(V )),
where W(V ) = T (V ), V+(V ), V−(V ), respectively; so α ≥ β − 1. Thus the claim of the
theorem holds. Hence, we need only concentrate on the case where K(T (M)) = β + 1.
Choose N ∈ A := A− ∪ A0 ∪ A+ with K(N ) = α, where N = T (N),V+(N) or V−(N),
respectively, according to whether N ∈ A0,A+, or A−. Then N is isomorphic to a minor
subfactor of T (M), and so K(T (M)) > α.

If K(T (M)) > α+1 then α = β−1, and K(T (M)/C) > α, for some nonzero T -submodule
C of T (M) such that T (M)/C is critical. Hence, there exists a chain of T -submodules

T (M) ≥ C1 ≥ C2 ≥ . . . > C > 0

such that K(Cj/Cj+1) = α, for infinitely many j. After refining the chain, we may
assume that each Cj/Cj+1 is one of the modules from Proposition 2.13. By Corollary 2.3,
there exists a positive integer p such that, for all j ≥ p, any finitely generated R-module
subfactor of Cj/Cj+1 has Krull dimension less than β. Hence, for each j ≥ p, every
Cj/Cj+1 from the categories 5-7 in Proposition 2.13 has Krull dimension less than α.
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Thus, if, for some j ≥ p, we have K(Cj/Cj+1) = α, then Cj/Cj+1 belongs to one of the
sets 1-4 in Proposition 2.13.

Set λ = λ+ or λ−. Inside M there is a chain of R-submodules

M ≥ λ(C1) ≥ λ(C2) ≥ . . . ≥ λ(C) > 0

(note that λ(C) 6= 0, since M is a-torsionfree and C 6= 0).

By Lemma 2.10, there exists a positive integer q such that, for all j ≥ q,
(i) each module λ(Cj)/λ(Cj+1) has no T -clean subfactors N for which h(N : M) = 1;
(ii) each module σ±i(λ(Cj)/λ(Cj+1)), for i ≥ 0, has no (T,±)-clean submodule N such
that h±(N : σ±iM) = 1.

Choose m ≥ max{p, q} such that K(Cm/Cm+1) = α. We aim to show that Cm/Cm+1

belongs to category 3 of Proposition 2.13. It is enough to prove that Cm/Cm+1 is not in
categories 1 and 4 (since the category 2 is dual to category 4). Suppose that the module
Cm/Cm+1 = T (V ), or Cm/Cm+1 = V+(V ), belongs to category 1 or 4, respectively. Then
K(V ) < β, since m ≥ p, and hence V is a minor subfactor of some σkM , since M is a
critical R-module. Set λ = λ+. By Proposition 1.3, there exists a nonzero subfactor N of
λ(Cm)/λ(Cm+1) such that N ≤ σiV , for some i ∈ Z, or i ≥ 0 respectively. The R-module
V is T -clean in case 1, or (T,+)-clean in case 4, and hence so is σiV , for i ∈ Z, or i ≥ 0,
respectively. In any case, the R-module N is either T -clean (in case 1) or (T,+)-clean (in
case 4); and

α = K(T (V )) = K(T (σiV )) = K(T (N))

in case 1, while
α = K(V+(V )) = K(V+(σiV )) = K(V+(N))

in case 4.

The R-module N is T -clean (or (T,+)-clean) and m ≥ q. Thus there exists either
(a) a nonzero R-submodule L of N and a T -clean minor subfactor G of M such that L is
isomorphic to a minor subfactor of G (case 1), or
(b) a nonzero R-submodule L of σnN , for some n ≥ 0, and a (T,+)-clean minor subfactor
G of σnM such that L is isomorphic to a minor subfactor of G (case 1 or 4).

Suppose that case (a) holds. Then

α = K(T (N)) = K(T (L)) < K(T (G)) ≤ α,

a contradiction.

Similarly, if case 1 and case (b) hold, then

α = K(V+(N)) = K(V+(L)) < K(T (G)) ≤ α,
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while if case 4 and case (b) hold, then

α = K(V+(N)) = K(V+(L)) < K(V+(G)) ≤ α.

In each case, we have a contradiction.

So, for every m ≥ r = max{p, q}, a factor Cm/Cm+1 that has Krull dimension β − 1
must belong to category 3 of Proposition 2.13. The set {Cm(i)/Cm(i)+1 | i = 1, 2, . . .} of
all such factors is infinite.

Consider the chain of submodules

A1 ≥ B1 ≥ A2 ≥ B2 ≥ A3 ≥ . . . > C (9)

where A1 = Cr, Bi = Cm(i) and Ai+1 = Cm(i)+1. Observe that K(Bi/Ai+1) = β − 1 and
K(Ai/Bi) < β − 1, for all i. Making a perestroika with the chain A1 ≥ B1 ≥ A2, we
obtain a chain A1 ≥ B′1 ≥ A′2 ≥ A2, where the module B ′1/A

′
2 is essential in A1/A

′
2, and

is isomorphic to B1/A2, and the first and third factors in the chain have Krull dimension
less than β − 1. Continuing, by making a perestroika with the chain A′2 ≥ B2 ≥ A3, we
get a chain A′2 ≥ B′2 ≥ A′3 ≥ A3 with the same properties as the new chain above. After
making all perestroikas, we have a chain

A′1 = A1 ≥ B′1 ≥ A′2 ≥ B′2 ≥ A′3 ≥ . . . > C (10)

where every subfactor B ′i/A
′
i+1 is essential in A′i/A

′
i+1, belongs to category 3 of Proposi-

tion 2.13 and has Krull dimension β − 1. Further, all other subfactors in the chain have
Krull dimension less than β − 1.

The module T (M)/C is critical with the same Krull dimension as A′1/C
′, where C ′ :=

∩∞i=1Ai, hence, C ′ = C. Without loss of generality, we may assume that chains 9 and
10 coincide. Now, note that the T -module Bi/Ai+1 is isomorphic to L−(σs(i)Vi, Vi], by
Proposition 2.13.(3) and T (M) = ⊕j∈Z (vj ⊗M), where R(vj ⊗M) ' σjM . Thus, we
conclude that the critical R-module Vi is isomorphic to a subfactor of some σjM , for
j = j(i).

The R-module M is a-torsionfree, thus

K(σjM/a σjM) < K(σjM) = β.

By Lemma 2.6.(2), K(Vi) = β− 1 and, by Proposition 3.1, Vi is isomorphic to a subfactor
of σjM/aσjM . It follows that

β − 1 = K(Vi) = K(σjM/a σjM) = K(M/aM),
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that Vi is a (β − 1)-critical subfactor of σjM/aσjM , and that the orbit O{Vi} belongs to
the finite set of orbits, Λ, of the (β− 1)-critical subfactors of the R-module M/aM . Note
that the orbit O{Vi} is infinite, and St(Vi) is finite, since α = β−1, using Lemma 2.6.(3).
Denote by Ω the subset of Λ which consists of the infinite orbits Oγ = Oγ{Uγ}, where
γ = 1, . . . , s, which have finitely many, but at least two, stars; that is, subisomorphism
classes annihilated by a. Note that {W} is a star of Oγ if and only if {W} = {σjUγ}, for
j ∈ St(Uγ). Observe that O{Vi} ∈ Ω and Vi is a star of O{Vi}.

Denote by m the maximum value of mγ := Smax
γ − Smin

γ , for γ = 1, . . . , s, where Smax
γ and

Smin
γ are the maximal and minimal elements of St(Uγ). Note that mγ does not depend on

the choice of Uγ but only on the orbit Oγ .

Let
Int := {{σjUγ} | γ = 1, . . . , s; Smin

γ < j ≤ Smax
γ }.

Then every T -module Bi/Ai+1 is annihilated by the homogeneous ideal [m] of T that is
generated by Xm and Y m.

The T -submodule Bi/Ai+1 of Ai/Ai+1 is essential and is an epimorphic image of T (Vi).
Every other subfactor Cj/Cj+1 of Ai/Ai+1 belongs to one of the categories 3, 5-7 in
Proposition 2.13 and is an epimorphic image of T (Vj), where K(Vj) ≤ β − 1 = K(Vi).
Every orbit O{Vj} is distinct from O{Vi}, since in the last three categories, O{Vj} is
finite, by Lemma 3.2, and K(Vj) < β − 1 = K(Vi), in the first case. Thus, applying
Lemma 3.3, step by step, to the chain of submodules

0 ≤ Bi/Ai+1 = Cm(i)/Cm(i)+1 ≤ Cm(i)−1/Cm(i)+1 ≤ . . . ≤ Cm(i−1)+1/Cm(i)+1 = Ai/Ai+1,

we conclude that [m](Ai/Ai+1) = 0. Then, by Lemma 3.4, all subfactors Cj/Cj+1 '
L−(σs(j)Vj, Vj] are from category 3 in Proposition 2.13.

Therefore, every A1/Ai has a finite chain of R-submodules

A1 = D1 > D2 > . . . > Dt = Ai, t = t(i)

with factors isomorphic to one of the direct summands σkVj of L−(σs(j)Vj, Vj] = ⊕s(j)<k≤0 σkVj.
We use induction on i to show that [m] annihilates A1/Ai. This is certainly true for i = 2;
so assume, by induction, that [m](A1/Ai−1) = 0, or, equivalently, that

[m]A1 = TXmA1 + TY mA1 ≤ Ai−1.

Hence, E = [m](A1/Ai) is a T -submodule of Ai−1/Ai. If E 6= 0, then E ∩ (Bi−1/Ai) 6= 0
and so the Krull dimension of the T -module E is β − 1. On the other hand, inside
Ai−1/Ai there is a chain of R-modules XmA1 + Ai = XmD1 + Ai ≥ XmD2 + Ai ≥ . . . ≥
XmDt + Ai = Ai, and each factor (XmDj + Ai)/(X

mDj+1 + Ai) is an epimorphic image
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of the R-module σm(Dj/Dj+1). Clearly, KR(Ai−1/Ai) = β − 1 and the subisomorphism
class of every (β − 1)-critical subfactor of the R-module Ai−1/Ai belongs to Int.

If K(Dj/Dj+1) = β − 1, then {σm(Dj/Dj+1)} 6∈ Int, by the choice of m, hence the
factor (XmDj + Ai)/(X

mDj+1 + Ai) is a proper epimorphic image of σm(Dj/Dj+1) and
so has Krull dimension less than β − 1. Finally, KR(Xm(A1/Ai)) < β − 1, and similarly,
KR(Y m(A1/Ai)) < β − 1.
Now,

β − 1 = KT ([m](A1/Ai)) ≤ KR([m](A1/Ai)) = KR(T · U),

where U = Xm(A1/Ai) + Y m(A1/Ai) is an R-submodule of Ai−1/Ai of Krull dimension
< β − 1. Consider the R-module epimorphism

T ⊗R U = ⊕j∈Z (vj ⊗ U)� T · U, t⊗ u 7→ tu.

The R-module Ai−1/Ai is noetherian, so there is a finite sum F = ⊕ (vj ⊗ U) which
maps onto T · U . However, KR(F ) = KR(⊕ σjU) < β − 1. Hence KR(T · U) < β − 1, a
contradiction, so that [m]A1 ⊆ Ai. This now holds for each i, and so [m]A1 ⊆ ∩∞i=1Ai = C.
Hence, [m] annihilates the module A1/C.

We conclude that

β = KT (A1/C) = KT (L−(σkW,W ]) = KR(W ),

by Lemma 3.4 and Lemma 2.6.(2), where L−(σkW,W ] is isomorphic to a subfactor of
A1/C. We have shown above that W is isomorphic to a subfactor of some σrM . Since
both of the R-modules W and σrM are critical and have the same Krull dimension, β, this
forces W to be a submodule of σrM , leading to O{W} = O{M}, which is contradiction,
since M is a-torsionfree, whereas aW = 0.

4 Krull dimension formulae

The formulae given in Proposition 2.8 and Theorem 3.5 will be used as an inductive step
by which the Krull dimension of an induced module T ⊗RM may be computed in terms
of the Krull dimension of the modules T ⊗R A, V±(A), where A runs through the simple
subfactors of M .

Definition. Let A be a simple R-module and let M be an arbitrary R-module.

1. If A is a-torsionfree, then h(A : M) is defined to be the supremum of those non-negative
integers n for which there exists a sequence A = A0, A1, . . . , An of T -clean R-modules
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such that Ai is isomorphic to a minor subfactor of Ai+1, for i = 0, . . . , n− 1, while An is
isomorphic to a subfactor (not necessarily minor) of M .

2. If A is a-torsion, then h+(A : M), (h−(A : M)), is defined to be the supremum
of those non-negative integers n for which there exists a sequence A = A0, A1, . . . , An
of R-modules such that each of the R-modules A = A0, A1, . . . , Ai, for some i ≥ 0, is
(T,+)-clean, ((T,−)-clean), while each of the R-modules Ai+1, . . . , An is T -clean; and Aj

is isomorphic to a minor subfactor of Aj+1, for j = 0, . . . n− 1, while An is isomorphic to
a subfactor (not necessarily minor) of M .

Remark. Any simple a-torsionfree R-module is T -clean. However, a simple a-torsion
R-module may fail to be either (T,+)-clean or (T,−)-clean. So, h±(A,M) is only defined
for the simple a-torsion modules which are (T,±)-clean.

The sequence of R-modules A = A0, A1, . . . , An is called a (T, •)-clean sequence asso-
ciated with A in M , where • stands for ∅,+ or −. The corresponding h•(A : M) is
called the •-height of A in M . If M has Krull dimension, then h•(A : M) ≤ K(M), since
K(An) > K(An−1) > . . . > K(A0) = 0, so K(M) ≥ n.

Observe that if A = A0, A1, . . . , An is a T -clean (or (T,±)-clean) sequence associated with
A in M , then σiA = σiA0, σiA1, . . . , σiAn is a T -clean (or (T,±)-clean) sequence associated
with σiA in σiM , for i ∈ Z (or ±i ≥ 0). Thus, h(A : M) = h(σiA : σiM), for i ∈ Z (or
h±(A,M) ≤ h±(σiA, σiM), for ±i ≥ 0).

Theorem 4.1 Let M be a nonzero noetherian R-module with finite Krull dimension.
Suppose that the ideal Ra of R has the left AR property.

Then
1.

K(T ⊗R M) = µ(M) := max{µ−, µ0, µ+}
where

µ0 = max{K(T ⊗R A) + h(A : M) | A ∈ M}
and M is the set of a-torsionfree simple subfactors of M ;

µ± = max{K(V±(Ai)) + h±(Ai : σ±iM) | Ai ∈ M±,i, i ≥ 0}

and M±,i is the set of (T,±)-clean a-torsion simple subfactors of σ±iM .

2. Let A = R/I be a simple R-module, where I is a maximal left ideal of R.
(i) If A is a-torsionfree, then K(T ⊗R A) = 1 if and only if the orbit, O{A}, is finite;

that is, σnA ' A, for some n ≥ 1, or, equivalently, σn(I)x ⊆ I, for some x ∈ R\I, and
some n ≥ 1.
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(ii) If A is a-torsion, then K(V±(A)) = 1 if and only if the set

St±(A) := {0 < ±i ∈ Z | a σiA = σ−i(a)A = 0}

is infinite.

Remark. If A is a simple a-torsion R-module, then σ±iA is (T,±)-clean for i � 0, by
Lemma 2.5.(2,3).

Proof. Set n = K(M). If n = 0, then every (T, •)-clean subfactor of σjM , for j ∈ Z, is a
simple R-module of zero height, so the result follows from Lemma 2.7.(2).

Now, let n ≥ 1, and assume that the result holds for noetherian R-modules of Krull
dimension less than n. If A ∈ M and h(A : M) = m, then there exists a T -clean
sequence A = A0, A1, . . . , Am associated with A in M . Then each T ⊗R Ai is isomorphic
to a minor subfactor of the critical T -module T ⊗R Ai+1, hence

K(T ⊗RM) ≥ K(T ⊗R Am) > K(T ⊗R Am−1) > . . . > K(T ⊗R A0).

Thus,
K(T ⊗RM) ≥ K(T ⊗R A0) + h(A : M)

and so K(T ⊗RM) ≥ µ0.

If A ∈ M±,i, for some i ≥ 0, and h±(A : σ±iM) = m, then there exists a (T,±)-clean
sequence A = A0, A1, . . . , Am associated with A in σ±iM , with each of the R-submodules
A0, . . . , Aj, for some 0 < j ≤ m, being (T,±)-clean, while each of the R-modules
Aj+1, . . . , Am is T -clean (if j < m). Then each V±(Ak), for 0 ≤ k < j, is isomorphic
to a minor subfactor of the critical T -module V±(Ak+1); while V±(Aj) is isomorphic to a
minor subfactor of the T -critical module T ⊗RAj+1, and each T ⊗RAl, for j+ 1 ≤ l < m,
is isomorphic to a minor subfactor of the T -critical module T ⊗R Al+1. Hence,

K(T ⊗R M) ≥ K(T ⊗R Am) > . . . > K(T ⊗R Aj+1)

> K(V±(Aj)) > K(V±(Aj−1)) > . . . > K(V±(A0)).

Thus, we obtain

K(T ⊗RM) ≥ K(V•(Am)) ≥ K(V±(A0)) +m = K(V±(A)) + h±(A : σ±iM),

where V•(Am) = T ⊗R Am, if j < m, while V•(Am) = V±(Am), if j = m. Consequently,
K(T ⊗RM) ≥ µ±, and, finally, K(T ⊗RM) ≥ µ.

Without loss of generality, we may suppose that M is (T, •)-clean, by Lemma 2.7.(2).
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If M is (T,±)-clean then, by Proposition 2.8, there exists a (T,±)-clean minor subfactor,
N say, of σ±iM , for some i ≥ 0, such that

K(V±(M)) = K(V±(N)) + 1.

Note that here we are using the fact that if N is (T,±)-clean then so is σ±iN , for all i ≥ 0.

Since M is critical, so is σ±iM , and so K(N) < n. Hence, using the inductive hypothesis,
there exists a simple subfactor A of σ±jN , for some j ≥ 0, such that

K(V±(N)) = K(V±(A)) + h±(A : σ±jN).

Consequently,
K(V±(M)) = K(V±(A)) + h±(A : σ±jN) + 1.

In addition, A ∈ M±,(i+j), and h±(A : σ±(i+j)(M)) ≥ h±(A : σ±jN) + 1, since N is a minor
subfactor of the (T,±)-clean module σ±iM . Hence,

K(V±(M)) ≤ K(V±(A)) + h±(A : σ±(i+j)(M)) ≤ µ(M).

If M is T -clean, then by Theorem 3.5, there exists either a T -clean minor subfactor N
of M such that K(T ⊗R M) = K(T ⊗R N) + 1, or a (T,±)-clean minor subfactor N± of

σ±iM , for some i ≥ 0, such that K(T ⊗RM) = K(V±(N)) + 1. Note that K(N) < n, since
M is critical.

In the latter two cases, we use the same arguments as above to show that K(T⊗RM) ≤ µ±.
In the first case, K(T ⊗R N) = µ(N), by the inductive hypothesis. Clearly, µ(M) ≥
µ(N) + 1, hence K(T ⊗RM) = µ(N) + 1 ≤ µ(M).

2.(i) As an R-module, T ⊗R A is the direct sum of simple modules ⊕i∈Z σiA. Thus, if
the orbit, O{A}, of A is infinite (that is, σiA 6' σjA, for all i 6= j), then T ⊗R A is a
simple T -module and so K(T ⊗R A) = 0. If the orbit O(A) is finite, and contains n
elements, then σnA ' A, and there exists x ∈ R\I with σn(I)x ⊆ I. The nonzero element
u := 1⊗ (1 + I) + (Y n ⊗ x) is annihilated by I; moreover, the submodule Tu of T ⊗R A
is proper and isomorphic to T ⊗R A, by using the Z-grading of T ⊗R A and the fact that
A is a-torsionfree. Therefore, 1 ≤ K(T ⊗R A) ≤ K(A) + 1, and so K(T ⊗R A) = 1.

(ii)If St±(A) is infinite, then K(V±(A)) = 1, by (4) or (5). If St±(A) is finite, then the
orbit O{A} is infinite. Let h be the maximal hole in Ho+(A), and let s be the minimal
star in St−(A). Then K(V+(A)) = K(V+(σhA)) and K(V−(A)) = K(V−(σsA)).

As R-modules V+(σhA) = ⊕j≥h σjA and V−(σsA) = ⊕j≤s σjA are the direct sums of non-
isomorphic R-modules, hence, as T -modules, they are simple, and so K(V±(A)) = 0.
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Corollary 4.2 Let R be a left noetherian ring with finite Krull dimension. Then

K(T ) = max{K(V•(A)) + h•(A : R) | A ∈ M, • ∈ {∅,±}}

where M is the family of simple (T, •)-clean R-modules, and V•(A) is equal to T ⊗R A
when A is a-torsionfree, and is equal to V±(A) when A is a-torsion.

Proof. Observe that T ' T ⊗R R, and that σiR ' R, for all i ∈ Z.

Corollary 4.3 Let R be a left noetherian ring with finite Krull dimension. Then

K(T ) = K(R)

unless there exists a simple (T, •)-clean R-module A such that K(V•(A)) = 1 and h•(A :
R) = K(R), in which case

K(T ) = K(R) + 1.

Corollary 4.4 Let R be a left noetherian ring with finite Krull dimension. Then

K(T ) = K(R)

unless there exists either
(i) a simple a-torsionfree R-module A such that h(A : R) = K(R) and O{A} is finite; or
(ii) a simple (T,+)-clean R-module A such that h+(A : R) = K(R) and the set St+(A) is
infinite; or
(iii) a simple (T,−)-clean R-module A such that h−(A : R) = K(R) and the set St−(A)
is infinite.

5 Fully Bounded Noetherian rings

In this section, we specialize our results to the case of Generalized Weyl Algebras, T =
R(σ, a), where R is a fully bounded noetherian ring. In this case we recover the same
formula as that obtained in the case of a commutative noetherian base ring in [7].

Lemma 5.1 Let R be a left noetherian ring, and let A be a simple R-module. Set p =
AnnR(A), and assume that R/p is a simple artinian ring. Then

1. If A is a-torsionfree, then K(T ⊗R A) = 1 if and only if p is invariant under some
nonzero power of σ.

2. If A is a-torsion, then K(V±(A)) = 1 if and only if the set Z±(p) := {i ≥ 0 | a ∈
σ±i(p)} is finite.
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Proof. 1. By Theorem 4.1.2(i), K(T ⊗R A) = 1 if and only if the orbit O{A} is finite, or,
equivalently, σn(p) = p, for some n ≥ 1, since R/p is a simple artinian ring.

2. By Theorem 4.1.2(ii), K(V±(A)) = 1 if and only if the set St± is infinite, or, equiv-
alently, if and only if the set Z±(p) is infinite, since R/p is a simple artinian ring.

Proposition 5.2 Let R be a fully bounded noetherian ring, and let A be a simple R-
module. Set p = AnnR(A).

If A is a-torsionfree, then h(A : R) = height(p).

If A is a-torsion, then

height(p) = max{h+(σjA : R) | j � 0} = max{h−(σjA : R) | j � 0}.

Proof. If A is a-torsion, then σ±jA is (T,±)-clean, for j � 0; and h±(σ±j (A : R)) ≤
h±(σ±k(A : R)), for k ≥ j � 0. Hence, without loss of generality, in the case that
A is a-torsion, we may assume that A is (T,±)-clean. Suppose that there is a (T, •)-
clean sequence A = A0, A1, . . . , An associated with A in R. Each of the annihilators
pi := AnnR(Ai) is a prime ideal of R and Ai is a nonsingular R/pi-module, so that
K(Ai) = K(R/pi), see, for example [10, Theorem 2.5, Proposition 1.4]. Now, pi >
pi+1, for each i, since pi ≥ pi+1 and K(pi) > K(pi+1). Thus, height(p) ≥ n, and so
height(p) ≥ h•(A : R), By combining this with the facts that AnnR(σjA) = σj(p) and
height(σj(p)) = height(p), for all j ∈ Z, we obtain, in the case that A is a-torsion,

height(p) ≥ h± := max{h±(σ±jA : R) | j � 0}.

Next, consider a strictly descending chain of prime ideals p = p0 > p1 > . . . > pn. Set
A = A0. By repeating the argument in [9, Proposition 6.2], we can construct cyclic critical
R/pi-modules Ai, for each i < n, such that Ai is isomorphic to a minor subfactor of Ai+1.
Since An is cyclic, it is isomorphic to a subfactor of R. Each Ai is compressible, by [10,
Theorem 2.5]. If Ai is a-torsionfree, then Ai is T -clean, by Lemma 2.5, and so σjAi is T -
clean, for each j ∈ Z. If Ai is a-torsion, then, by using Lemma 2.5.(2), or Lemma 2.5.(3),
we conclude either that σjAi is (T,+)-clean, for almost all positive integers j, or that σjAi
is (T,−)-clean, for almost all negative integers j.

Hence, if A is a-torsionfree, then h(A : R) ≥ n, and so h(A : R) ≥ height(p); while if A
is a-torsion then there exist a positive integer, j say, such that each σjAi is either T -clean
or (T,+)-clean, so that h+(σjA : R) ≥ n, and h+ ≥ height(p); similarly, h− ≥ height(p).
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Theorem 5.3 Let R be a fully bounded noetherian ring with finite Krull dimension. Then
K(T ) = K(R) unless there exists a maximal ideal p of R such that height(p) = K(R) and
either p is invariant under some nonzero power of σ, or there are infinitely many i ∈ Z
with σi(a) ∈ p.

Proof. This follows from Corollary 4.4 and the above Proposition.

Corollary 5.4 Let R be a fully bounded noetherian ring with finite Krull dimension.
Then the left and right Krull dimensions of T coincide.

Proof. This follows immediately form the above result, by using the ±-symmetry.

6 Examples

In this final section, we present a class of examples that demonstrates that the methods
we have introduced and the theorems we have proved do, indeed, enable one to calculate
Krull dimensions.

Let R be a ring. Suppose that we are given the following data: σ ∈ Aut(R) and b,
ρ ∈ Z(R), the centre of R, with ρ being a σ-stable unit; that is, σ(ρ) = ρ. We form an
overing, E = R〈σ; b, ρ〉, by adjoining symbols X and Y to R subjected to the relations:

Xr = σ(r)X, Y r = σ−1(r)Y, for all r ∈ R; XY − ρY X = b.

As an example, observe that in the case that R = K[H], ρ = 1 and σ is defined by
σ(H) = H − 1, while b = 2H, then E is the enveloping algebra U(sl(2)).

We may view E as the iterated skew polynomial ring E = R[Y ; σ−1][X; σ, ∂], where ∂ is
a σ-derivation of R[Y ; σ−1] and ∂R = 0, while ∂Y = b; moreover σ is extended from R to
R[Y ; σ−1] by setting σ(Y ) = ρY .

When R is left Noetherian it is known, [15, 6.5.4], that

K(R〈σ; b, ρ〉) = K(R) + 1 or K(R) + 2.

It is not trivial to decide which of the two cases actually happens.

The rings of type E fall within in the scope of this paper because, as the lemma below
shows, the rings E = D〈σ; b, ρ〉 are generalized Weyl algebras, see [4].
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Lemma 6.1 Let R be a ring; then R〈σ; b, ρ〉 ' R[H](σ,H) and σ is extended from R to
R[H] by σ(H) = ρH + b.

If b = 0, then ∂ = 0 and E = R[Y ; σ−1][X; σ], thus K(E) = K(R) + 2, by [15, 6.5.4.(i)].
From here on, we will assume that b 6= 0.

Let K be an algebraically closed field of characteristic zero, and let A1 = A1(K) be the
first Weyl Algebra; so that A1 = K[p, q] with pq − qp = 1. We aim to compute the Krull
dimension of the algebra

E = A1〈σ; b(6= 0), ρ〉, σ ∈ AutK(A1).

We may view E in the form E = A1⊗K[H](σ,H), where σ(H) = ρH+b, by the previous
lemma. The algebra A1 is central simple, since the characteristic is zero; so both ρ and b
are nonzero scalars. If ρ 6= 1, then σ(H − γ) = ρ(H − γ), where γ = b(1− ρ)−1, while if
ρ = 1, then σ(b−1H) = b−1H + 1. Thus, by making the obvious change of variables, we
may assume that either (i) σ(H) = ρH, with ρ 6= 1 and a = H + γ, or (ii) σ(H) = H + 1
and a = bH.

Lemma 6.2 Let K be an algebraically closed field of characteristic zero. Then

K(A1〈σ; b(6= 0), ρ〉) = 3

if and only if at least one of the following two cases holds:
1. ρ 6= 1 and there is a simple A1-module M such that σnM 'M , for some n ≥ 1, or
2. ρ 6= 1, but ρn = 1, for some n ≥ 2.

In all other cases, K(A1〈σ; b(6= 0), ρ〉) = 2.

Proof. (⇐) The algebra A1〈σ; b, ρ〉 is isomorphic to E = A1⊗K[H](σ,H), where either (i)
σ(H) = ρH, with ρ 6= 1 and a = H + γ, or (ii) σ(H) = H + 1 and a = bH. Suppose first
that case 1 above holds; so that ρ 6= 1, and σ(H) = ρH. Let M be a module as in case
1 above. The simple K[H]-module K0 := K[H]/(H) is isomorphic to σK0. The simple
A1 ⊗ K[H]-module M0 := M ⊗ K0 is a-torsionfree, while σnM0 ' M0, as A1 ⊗ K[H]-
modules. Also, h(M0 : A1⊗K[H]) = 2, because the sequence {M0, M⊗K[H], A1⊗K[H]}
is a T -clean sequence associated with M0 in A1 ⊗ K[H], since all the modules involved
are compressible. It follows, from Theorem 4.1, that

K(E) = K(A1 ⊗K[H]) + 1 = K(A1) + 2 = 3.

Suppose next that case 2 holds. Let N be a simple A1-module, and let K−γ = K[H]/(a) =
K[H]/(H + γ). Then the simple A1 ⊗ K[H]-module N−γ := N ⊗ K−γ is a-torsion, and
both of the sets St±(N−γ) are infinite, since σn(H) = ρnH = H. By Lemma 2.5, there
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is a positive integer i such that σ±iN−γ is (T,±)-clean. Also, h±(σ±iN−γ : A1 ⊗K[H]) =
2, since the sequence {σ±iN−γ, σ±iN−γ ⊗ K[H], A1 ⊗ K[H]} is a (T,±)-clean sequence
associated with σ±iN−γ in A1⊗K[H], by noting that the second and third modules in the
sequence are compressible. The result follows as in the first case.

(⇒) We now prove the converse. The field K is algebraically closed and the first Weyl
algebra is almost commutative, hence, by Quillen’s Lemma, [15, 9.7.3(a)], the simple
A1⊗K[H]-modules are exactly the modules which are isomorphic to modules of the form
Mλ := M ⊗ Kλ, where M is a simple A1-module and Kλ := K[H]/(H − λ), for some
λ ∈ K.

Now assume that neither case 1 nor 2 holds. There are two possibilities: either ρ = 1, or
the orbit O{M} is infinite for every simple A1-module M and ρ is not a root of unity. In
either case, it can easily be checked that the orbit O{Mλ} is infinite and the set St(Mλ)
is finite, for every simple A1 ⊗K[H]-module Mλ. Thus, K(E) = K(A1 ⊗K[H]) = 2, by
Theorem 4.1.

It is easy to give examples of the two possibilities. If ρ 6= 1 is a root of unity then
K(E) = 3, while if we choose σ to be the identity automorphism and b = ρ = 1, the
algebra E is isomorphic to the second Weyl algebra A2 = A1 ⊗ A1. In this case, we have
K(A2) = 2, since the characteristic is zero.

In fact, the analysis of this example can also be used to establish the following corollary.
First, recall that a K-algebra A is said to have the endomorphism property over K if,
for each simple A-module M , the endomorphism ring EndK(M) is algebraic over K, see,
for example [15, 9.1.4]. Every countably generated algebra over an uncountable field has
the endomorphism property, [15, 9.1.7].

Corollary 6.3 Let K be an algebraically closed field of characteristic zero, and let A be
a left noetherian K-algebra which is a domain, has Krull dimension equal to one, and
has the endomorphism property over K. Let E = A〈σ; b, ρ〉, with σ ∈ AutK(A) and
b, ρ ∈ K∗ = K\{0}. Then K(E) = 3 if and only if at least one of the following cases
holds.
1. ρ 6= 1 and there is a simple A1-module M such that σnM 'M , for some n ≥ 1, or
2. ρ 6= 1, but ρn = 1, for some n ≥ 2.

In all other cases, K(A〈σ; b, ρ〉) = 2.

Proof. Quillen’s Lemma is used in the proof of the previous lemma to establish that the
first Weyl algebra has the endomorphism property. Here we given the endomorphism
property and the proof is then the same.
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A particular class of algebras to which we could apply this corollary would be the
McConnell-Pettit algebras, [14]. Let K be an uncountable algebraically closed field
of characteristic zero, and let Λ = (λij) be a multiplicatively antisymmetric matrix
of nonzero elements of K. The McConnell-Pettit algebra, P (Λ), associated with this
data, is the K-algebra generated by X±1

1 , . . . , X±1
n , subject to the commutation relations

XiXj = λijXjXi. In the case that the multiplicative subgroup of K∗ generated by the λij
has maximal rank, n(n − 1)/2, the algebra P (Λ) is known to have Krull dimension one,
[14, Corollary 3.10]; and so the Corollary above applies.
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