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The main goal of the paper is to establish the existence of tensor product decom-

positions for those prime ideals P of the algebra A = Oq(Mn(k)) of quantum n× n matrices
which are invariant under winding automorphisms of A, in the generic case (q not a root of
unity). More specifically, every such P is the kernel of a map of the form

A −→ A⊗ A −→ A+ ⊗A− −→ (A+/P+)⊗ (A−/P−)

where A → A ⊗ A is the comultiplication, A+ and A− are suitable localized factor algebras
of A, and P± is a prime ideal of A± invariant under winding automorphisms. Further, the
algebras A±, which vary with P , can be chosen so that the correspondence (P+, P−) 7→ P is
a bijection. The main theorem is applied, in a sequel to this paper, to completely determine
the winding-invariant prime ideals in the generic quantum 3 × 3 matrix algebra.

Introduction

This paper represents part of an ongoing project to determine the prime and primitive
spectra of the generic quantized coordinate ring of n× n matrices, Oq(Mn(k)). Here k is
an arbitrary field and q ∈ k× is a non-root of unity. The current intermediate goal is to
determine the prime ideals of Oq(Mn(k)) invariant under all winding automorphisms. (See
below for a discussion of the relations between these winding-invariant primes and the full
prime spectrum of Oq(Mn(k)).) Our main result exhibits a bijection between these primes
and pairs of winding-invariant primes from certain ‘localized step-triangular factors’ of
Oq(Mn(k)), namely the algebras

R+� =
(
Oq(Mn(k))/〈Xij | j > t or i < rj〉

)
[X
−1

r11, . . . , X
−1

rtt]

R−� =
(
Oq(Mn(k))/〈Xij | i > t or j < ci〉

)
[X
−1

1c1 , . . . , X
−1

tct ]
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where r = (r1, . . . , rt) and c = (c1, . . . , ct) are strictly increasing sequences of integers in
the range 1, 2, . . . , n. In particular, since each R+� and R−� can be presented as a skew-
Laurent extension of a localized factor algebra of Oq(Mn−1(k)), the above bijection can
be used to obtain descriptions (as pullbacks of primes in the algebras R+� ⊗ R−� ) of the
winding-invariant primes of Oq(Mn(k)) from those of Oq(Mn−1(k)). In a sequel [7] to this
paper, we follow the route just sketched to develop a complete list, with sets of generators,
of the winding-invariant primes in Oq(M3(k)).

The theorem indicated above depends on some detailed structural results concerning
Oq(Mn(k)) and on some general work with primes in tensor product algebras invariant
under group actions. First, we construct a partition of specOq(Mn(k)) indexed by pairs
(r, c) as above, together with localized factor algebras A

�
,
�

of Oq(Mn(k)), such that the
portion of specOq(Mn(k)) indexed by (r, c) is Zariski-homeomorphic to specA �

,
� . We

next prove that A
�
,
� is isomorphic to a subalgebra B �

,
� of R+� ⊗R−� , identify the structure

of B � ,
� , and show that R+� ⊗R−� is a skew-Laurent extension of B �

,
� . Finally, with the help

of some general work on tensor products, we prove that each winding-invariant prime of
B � ,

� extends uniquely to a winding-invariant prime of R+� ⊗R−� , and that the latter primes
can be uniquely expressed in the form (P+ ⊗ R−� ) + (R+� ⊗ P−) where P+ (respectively,
P−) is a winding-invariant prime in R+� (respectively, R−� ). We thus conclude that every
winding-invariant prime of Oq(Mn(k)) can be uniquely expressed as the kernel of a map

Oq(Mn(k)) −→ Oq(Mn(k))⊗Oq(Mn(k)) −→ R+� ⊗ R−� −→ (R+� /P+)⊗ (R−� /P−),

where the first arrow is comultiplication and the others are tensor products of localization
or quotient maps.

Algebraic background. The algebra Oq(Mn(k)) has standard generators Xij for i, j =
1, . . . , n and relations which we recall in (5.1)(a), along with the bialgebra structure of
this algebra. The latter structure allows us to define left and right winding automorphisms
corresponding to those characters (k-algebra homomorphisms Oq(Mn(k))→ k) which are
invertible in Oq(Mn(k))∗ with respect to the convolution product (cf. [1, (I.9.25)] or [12,
(1.3.4)] for the Hopf algebra case). It is well known that the collection of left (respectively,
right) winding automorphisms of Oq(Mn(k)) forms a group isomorphic to the diagonal
subgroup of GLn(k), whose action on the matrix of generators (Xij) is given by left
(respectively, right) multiplication. We combine these actions to obtain an action of the
group H = (k×)n × (k×)n on Oq(Mn(k)) by k-algebra automorphisms satisfying the rule

(∗) (α1, . . . , αn, β1, . . . , βn).Xij = αiβjXij .

One indication of the extent of the symmetry given by this action is the fact that there

are only finitely many (actually, at most 2n
2

) primes of Oq(Mn(k)) invariant under H [9,
(5.7)(i)]. The quoted result also shows that all H-primes of this algebra are prime, and so
the H-primes coincide with the winding-invariant primes in Oq(Mn(k)). (Recall that the
definition of an H-prime ideal is obtained from the standard ideal-theoretic definition of
a prime ideal by restricting to H-invariant ideals.)
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In [9, Theorem 6.6], Letzter and the first author showed that the overall picture of
the prime spectrum of an algebra with certain basic features like those of Oq(Mn(k)) is
determined to a great extent by the primes invariant under a suitable group action. We
quote the improved version of this picture presented in [1, Theorem II.2.13]. Let A be a
noetherian algebra over an infinite field k, and let H = (k×)r be (the group of k-points
of) an algebraic torus acting rationally on A by k-algebra automorphisms. Each H-prime
of A is a prime ideal, and specA is the disjoint union of the sets

specJ A := {P ∈ specA | ⋂
h∈H

h(P ) = J}

as J ranges over the H-primes of A. Further:

(1) Let EJ denote the set of all regular H-eigenvectors in A/J . Then EJ is a denomi-
nator set, and the localization AJ = (A/J)[E−1

J ] is an H-simple ring.
(2) specJ A is homeomorphic to specAJ via localization and contraction.
(3) specAJ is homeomorphic to specZ(AJ ) via contraction and extension.
(4) Z(AJ) is a Laurent polynomial ring, in at most r indeterminates, over the fixed

field Z(FractA/J)H .

Under some additional hypotheses, satisfied by Oq(Mn(k)), we also have:

(5) The primitive ideals of A are exactly the maximal elements of the sets specJ A.
(6) If k is algebraically closed, then the primitive ideals within each specJ A are per-

muted transitively by H.

Statement (5) was proved in [9, Corollary 6.9] (see also [1, Theorem II.8.4]). Statement
(6) is a consequence of general transitivity theorems for algebraic group actions due to
Moeglin-Rentschler [14, Théorème 2.12(ii)] and Vonessen [17, Theorem 2.2], but the case
where the acting group is a torus is much easier (see [9, Theorem 6.8] or [1, Theorem
II.8.14]).

The above results indicate that to draw a complete picture of specOq(Mn(k)), we need
to determine the H-primes. That is easy to do in case n = 2; the result is recorded, for
instance, in [5, (3.6)] (see [1, Example II.2.14(d)] for more detail). In general, we make
the following

Conjecture. Every H-prime of Oq(Mn(k)) can be generated by a set of quantum minors.

This conjecture is easily checked in case n = 2 using the information above, and we verify
it for the case n = 3 in [7]. Further supporting evidence is provided by recent work of
Cauchon, who showed that distinct, comparable H-primes in Oq(Mn(k)) can be distin-
guished by the quantum minors they contain [2, Proposition 6.2.2 and Théorème 6.2.1].
Another source of support for the conjecture is the work of Hodges and Levasseur [10,
11], from which one can deduce that, up to certain localizations, the winding-invariant
primes of Oq(SLn(k)) are generated by quantum minors (cf. [1, Corollary II.4.12]). Since
Oq(GLn(k)) is isomorphic to a Laurent polynomial ring over Oq(SLn(k)) [13, Proposi-
tion], the above statement also holds in Oq(GLn(k)). In particular, those H-primes of
Oq(Mn(k)) which do not contain the quantum determinant can be generated, up to suit-
able localizations, by quantum minors.
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Geometric background. The classical origins of our main theorem, especially as it ap-
plies to winding-invariant primes of Oq(Mn(k)) not containing the quantum determinant,
lie in the geometry of ‘LU-decompositions’ of invertible matrices. For this part of the
introduction, let us assume (to avoid complications) that k is algebraically closed. An LU-
decomposition of a matrix X ∈ GLn(k) is any expression X = LU where L (respectively,
U) is a lower (respectively, upper) triangular invertible matrix. It is well known that X
has such a decomposition if and only if the principal minors of X (those indexed by rows
and columns from an initial segment of {1, . . . , n}) are all nonzero. The LU-decomposable
matrices thus form a dense open subvariety of GLn(k), known as the big cell . We may
write the big cell in the form B+B− where B+ (respectively, B−) is the subgroup of lower
(respectively, upper) triangular matrices in GLn(k), and we have

O(B+B−) = O(GLn(k))[D−1]

where D is the multiplicative subset of O(GLn(k)) generated by the principal minors. The
comorphism of the multiplication map B+ × B− → GLn(k) provides an embedding

β : O(GLn(k))[D−1] −→ O(B+)⊗O(B−);

the restriction of β to O(GLn(k)) is just the composition of the comultiplication map
O(GLn(k)) → O(GLn(k)) ⊗ O(GLn(k)) with the tensor product of the restriction maps
O(GLn(k))→ O(B±). The structure of the image of β is easy to determine, since B+∩B−
is the diagonal subgroup of GLn(k) and the subgroups B± are semidirect products of their
unipotent subgroups with this diagonal subgroup. Namely, the image of β is the subalgebra
of O(B+)⊗O(B−) generated by (the cosets of) the elements

XijX
−1
jj ⊗ 1 1⊗XijX

−1
ii (Xii ⊗Xii)

±1.(†)

Further, O(B+) ⊗ O(B−) is a Laurent polynomial ring over the image of β with respect
to indeterminates 1⊗X±1

ii .
Quantum analogs of the above facts are known, but we have not been able to locate

complete statements in the literature. To formulate them, let us write Oq(B+) and Oq(B−)
for the respective quotients ofOq(GLn(k)) modulo the ideals 〈Xij | i < j〉 and 〈Xij | i > j〉.
Then:

(a) The composition of the comultiplication map on Oq(GLn(k)) with the tensor
product of the quotient maps Oq(GLn(k)) → Oq(B±) yields an embedding β :
Oq(GLn(k))→ Oq(B+)⊗Oq(B−) [16, Theorem 8.1.1].

(b) The multiplicative subset D of Oq(GLn(k)) generated by the principal quantum
minors is a denominator set.

(c) β extends to Oq(GLn(k))[D−1], and the image of this extension is the subalgebra
B of Oq(B+)⊗Oq(B−) generated by (the cosets of) the elements (†).

(d) Oq(B+)⊗ Oq(B−) is a skew-Laurent extension of B with respect to the variables

1⊗X±1
ii .
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These facts will be proved as part of the case r = c = (1, . . . , n) of our work below.
To obtain them via existing results in the literature, one first transfers the problem to
Oq(SLn(k)) using the isomorphism Oq(GLn(k)) ∼= Oq(SLn(k))[z±1] established in [13,
Proposition]; the desired conditions then hold in the generality of Oq(G), where G is an
arbitrary semisimple algebraic group. The isomorphism of the appropriate localization of
Oq(G) with the analog of B is given in [3, Theorem 4.6] and [12, Proposition 9.2.14]. It
is easy to see that Oq(B+) ⊗ Oq(B−) is a skew-Laurent extension of B with appropriate
variables; this is mentioned for the case where q is a root of unity in [4, (4.6)].

The above facts concerning Oq(GLn(k)) immediately carry over to Oq(Mn(k)), since
D is also a denominator set in that algebra and Oq(Mn(k))[D−1] = Oq(GLn(k))[D−1].
Whereas in Oq(GLn(k)) all prime ideals are disjoint from D, that no longer holds in
Oq(Mn(k)), and a sequence of modified versions of (a)–(d) are needed to yield information
about those H-primes of Oq(Mn(k)) that meet D. These modifications, involving maps

β
�
,
� : Oq(Mn(k)) −→ Oq(Mn(k))⊗Oq(Mn(k)) −→ R+� ⊗R−� ,

concern quantum analogs of what can be viewed as LU-decompositions for certain locally
closed subsets of Mn(k) of the form B+w+ew−B− where w± are permutation matrices
and e = e11 + · · ·+ ett is a diagonal idempotent matrix. We leave the formulations of these
geometric facts to the interested reader.

Some notation and conventions. Throughout the paper, let A = Oq(Mn(k)), where
we fix a base field k, a positive integer n, and a nonzero scalar q ∈ k×. See (5.1)(a) for
the basic relations satisfied by the standard generators Xij of Oq(Mn(k)). As mentioned
in (5.2), our relations for A differ from those in [16] by an interchange of q and q−1. On
the other hand, they agree with the relations used in [2, 15]. To match the relations in
[10, 11], replace q by q2.

While our main interest is in the case that q is not a root of unity, some of our results
do not require this assumption, and others require only that q 6= ±1. Thus, we impose no
blanket hypotheses on q. To simplify some formulas, write q̂ = q − q−1. We also fix the
torus H = (k×)n × (k×)n and its action on A by winding automorphisms as described in
(∗) above. The algebra A is graded in a natural way by Z2n = Zn×Zn, each generator Xij

having degree (εi, εj) where ε1, . . . , εn is the standard basis for Zn. We refer to this grading
as the standard grading on A. (As long as k is infinite, the homogeneous components of A
for this grading coincide with the eigenspaces for the action of H.)

As in [6], we use the notations [I | J ] and [i1 · · · is | j1 · · · js] for quantum minors
in Oq(Mn(k)), where I (respectively, i1, . . . , is) records the set (respectively, a list) of the
corresponding row indices, and similarly for column indices. Recall that [I | J ] corresponds
to the quantum determinant in a subalgebra of Oq(Mn(k)) isomorphic to Oq(Ms(k)); we
write Oq(MI,J(k)) for that subalgebra (see (5.1)(c)). We allow the index sets I and J to
be empty, following the convention that [∅ | ∅] = 1.

The symbols ⊂ and ⊆ will be reserved for proper and arbitrary inclusions, respectively.
We write t to denote a disjoint union.
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1. A partition of specA

We begin by investigating sets spec � ,
� A of prime ideals defined by certain ‘stepwise

patterns’ of quantum minors corresponding to strictly increasing sequences r and c of row
and column indices. Our aim in this section is to show that these sets partition specA
when q is not a root of unity. In fact, as long as q 6= ±1, these sets at least partition the
collection of completely prime ideals of A. (Recall from [8, Theorem 3.2] that when q is
not a root of unity, all primes of A are completely prime.) We proceed without imposing
special hypotheses on q until needed.

1.1. We introduce the following partial ordering ≤ on index sets I, I ′ ⊆ {1, . . . , n} of the
same cardinality. Write I = {i1 < · · · < il} and I ′ = {i′1 < · · · < i′l}; then I ≤ I ′ if and
only if is ≤ i′s for s = 1, . . . l. (This is the same as the ‘column ordering’ ≤c used in [6].)
All order relations among index sets in this paper will refer to the above partial ordering.
This includes statements that an index set with a particular property is minimal among

index sets with the same cardinality satisfying that property (e.g., the sets Ĩ and J̃ in
Theorem 1.9).

1.2. LetRC denote the set of all pairs (r, c) where r and c are strictly increasing sequences
in {1, . . . , n} of the same length, that is, r = (r1, . . . , rt) and c = (c1, . . . , ct) in Nt with
1 ≤ r1 < r2 < · · · < rt ≤ n and 1 ≤ c1 < c2 < · · · < ct ≤ n. We allow t = 0, in which case
r and c are empty sequences, denoted either ( ) or ∅. When referring to the length t of
r and c, we write (r, c) ∈ RCt.

For (r, c) ∈ RCt, let K
�
,
� be the ideal of A generated by the following set of quantum

minors:

{
[I | J ]

∣∣ |I| > t
}
∪
{

[I | J ]
∣∣ |I| = l ≤ t and I 6≥ {r1, . . . , rl}

}

∪
{

[I | J ]
∣∣ |I| = l ≤ t and J 6≥ {c1, . . . , cl}

}
.

In particular, K∅,∅ = 〈Xij | i, j ∈ {1, . . . , n}〉.
Now set d

�
,
�

l = [r1 · · · rl | c1 · · · cl] for l ≤ t, and observe that these quantum minors
commute with each other (cf. (5.1)(c)). Let D �

,
� denote the multiplicative subset of A

generated by d
�
,
�

1 , . . . , d
�
,
�

t . (In particular, D∅,∅ = {1}.) Set d̃
�
,
�

l = d
�
,
�

l +K �
,
� ∈ A/K �

,
�

for l ≤ t, and let D̃
�
,
�

denote the image of D
�
,
�

in A/K
�
,
�
.

We prove in this section that D̃
�
,
�

is a denominator set in A/K
�
,
�
, and that when q is

generic, specA is partitioned by the subsets

spec � ,
� A := {P ∈ specA | K �

,
� ⊆ P and P ∩D �

,
�

= ∅}
≈ spec (A/K �

,
� )[D̃−1�

,
� ]

as (r, c) ranges over RC.

1.3. Lemma. Let I, J ⊆ {1, . . . , n} with |I| = |J |, and set

L =
〈

[I ′ | J ′]
∣∣ |I ′| = |I|, and I ′ < I or J ′ < J

〉
.
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If r, c ∈ {1, . . . , n} with r ≤ max(I) or c ≤ max(J), then

(∗) [I | J ]Xrc − q2−δ(r,I)−δ(c,J)Xrc[I | J ] ∈ L.

Proof. If r ∈ I and c ∈ J , then [I | J ] commutes with Xrc (cf. Lemma 5.2(a)), and so (*)
holds.

Next, suppose that r ∈ I and c /∈ J . If j ∈ J and j > c, then J t {c} \ {j} < J ,
whence [I | J t {c} \ {j}] ∈ L by definition of L. It follows from Lemma 5.2(b2) that
[I | J ]Xrc − qXrc[I | J ] ∈ L. Thus (*) holds in this case. The case where r /∈ I and c ∈ J
is proved similarly, using Lemma 5.2(c2).

Finally, suppose that r /∈ I and c /∈ J , and note that either r < max(I) or c < max(J).
(This part of the proof is similar to that of Lemma 5.7.) There is no loss of generality in
assuming that

I t {r} = J t {c} = {1, . . . , n},
whence either r < n or c < n. In the notation of [16, (4.3)], [I | J ] = A(r c). Note that
{1, . . . , n} \ {i} < I when i > r, while {1, . . . , n} \ {j} < J when j > c. Hence, A(i j) ∈ L
whenever either i > r or j > c. Set Dq = [1 · · ·n | 1 · · ·n]. The basic q-Laplace relations
(Corollary 5.5) imply that Dq lies in the ideal generated by all the A(n j), and in the ideal
generated by all the A(i n). Since either n > r or n > c, it follows that Dq ∈ L.

We now use the basic q-Laplace relations in the form given in [16, Corollary 4.4.4]. The
first two relations yield

(1)
n∑

j=1

(−q)j−rXrjA(r j) =
n∑

j=1

(−q)r−jA(r j)Xrj = Dq ∈ L.

Since A(r j) ∈ L for j > c, we obtain the following congruences, after multiplying the two
sums in (1) by (−q)r−c and (−q)c−r, respectively:

XrcA(r c) ≡ −
∑

j<c

(−q)j−cXrjA(r j) (mod L)(2)

A(r c)Xrc ≡ −
∑

j<c

(−q)c−jA(r j)Xrj (mod L).(3)

For any j, the third relation of [16, Lemma 5.1.2] implies that

(4) XrjA(r j) ≡ A(r j)Xrj + (1− q−2)
∑

l<j

(−q)j−lA(r l)Xrl (mod L),

since XsjA(s j) ∈ L for s > r. Substituting (4) into (2) for all j < c, we obtain

(5)

XrcA(r c) ≡ −
∑

j<c

(−q)j−cA(r j)Xrj

− (1− q−2)
∑

j<c

∑

l<j

(−q)2j−l−cA(r l)Xrl (mod L)

= −
∑

l<c

[
(−q)l−c + (1− q−2)

∑

l<j<c

(−q)2j−l−c
]
A(r l)Xrl.
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The expression in square brackets can be simplified as follows:

(6)
(−q)l−c + (1− q−2)

∑

l<j<c

(−q)2j−l−c = (−q)l−c
[
1 + (1− q−2)

∑

0<m<c−l
(−q)2m

]

= (−q)c−l−2.

Substituting (6) into (5) and replacing l by j, we obtain

(7) XrcA(r c) ≡ −
∑

j<c

(−q)c−j−2A(r j)Xrj (mod L).

Finally, combining (3) with (7), we conclude that

[I | J ]Xrc = A(r c)Xrc ≡ q2XrcA(r c) = q2Xrc[I | J ] (mod L),

as desired. �
1.4. Corollary. Let I, J ⊆ {1, . . . , n} with |I| = |J |, and set

L =
〈

[I ′ | J ′]
∣∣ |I ′| = |I|, and I ′ < I or J ′ < J

〉
.

Then the coset d = [I | J ] + L generates a denominator set in A/L.

Proof. Set B = A/L, and set xij = Xij + L for all i, j. Lemma 1.3 says that

(1) dxij = q2−δ(i,I)−δ(j,J)xijd

whenever i ≤ max(I) or j ≤ max(J). Hence, in this case we have drxij ∈ Bdr for all
r ≥ 0.

When i > max(I) and j > max(J), Lemma 5.7 says that

(2) dxij − q2xijd = e := (1− q2)[I t {i} | J t {j}] + L.

Observe that d and e commute. Hence, it follows from (2) by an easy induction that

(3)
drxij = q2rxijd

r + (q2r−2 + · · ·+ q2 + 1)edr−1

=
[
q2rxijd+ (q2r−2 + · · ·+ q2 + 1)e

]
dr−1

for all r > 0. Combining (1) and (3), we see that

drxij ∈ Bdr−1 (i, j = 1, . . . , n; r = 1, 2, . . . ).(4)

Since B is spanned by products of the xij , it follows from (4) that D := {dr | r ≥ 0} is a
left Ore set in B. Similarly, D is right Ore, and therefore D is a denominator set because
B is noetherian. �
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1.5. Proposition. Let (r, c) ∈ RCt, and set

L =
〈

[I | J ]
∣∣ |I| = l ≤ t, and I < {r1, . . . , rl} or J < {c1, . . . , cl}

〉
.

Then the image of D �
,
� in A/L is a denominator set. Consequently, D̃ �

,
� is a denominator

set in A/K �
,
� .

Proof. For each l = 1, . . . , t, Corollary 1.4 shows that d
�
,
�

l + L generates a denominator
set in A/L. The proposition follows. �

1.6. In view of Proposition 1.5, we can form Ore localizations

A � ,
� = (A/K �

,
� )[D̃−1�

,
� ]

for (r, c) ∈ RC. (It will follow from Lemma 2.5 that A �
,
� 6= 0.) The localization maps

A→ A/K �
,
� → A � ,

� induce Zariski homeomorphisms

spec � ,
� A −→ specA � ,

� .

Lemma 1.7. Let I, J ⊆ {1, . . . , n} with |I| = |J |, and let P be an ideal of A.

(a) Fix J1 ⊆ J . If [I1 | J1] ∈ P for all I1 ⊆ I with |I1| = |J1|, then [I | J ] ∈ P .

(b) Fix I1 ⊆ I. If [I1 | J1] ∈ P for all J1 ⊆ J with |J1| = |I1|, then [I | J ] ∈ P .

Proof. By symmetry (see (5.1)(b)), we need only prove (a). Set J2 = J \J1. Then Lemma
5.4(a) provides a relation of the form

∑

I1tI2=I

±q•[I1 | J1][I2 | J2] = ±q•[I | J ],

where ± is an unspecified sign and q• stands for an unspecified power of q. Since all the
[I1 | J1] ∈ P by assumption, it follows that [I | J ] ∈ P . �

Lemma 1.8. Let I1, I2, J1, J2 ⊆ {1, . . . , n} with |I1| = |J1| and |I2| = |J2|, and let P be
a completely prime ideal of A. Assume that one of the following conditions (a), (b), or (c)
holds:

(a) (1) |I1 ∩ I2| > |J1 ∩ J2|, and

(2) [I1 | J ′] ∈ P whenever J1 ∩ J2 ⊆ J ′ ⊆ J1 ∪ J2 with |J ′| = |J1| but J ′ 6= J1.

(b) (1) |I1 ∩ I2| < |J1 ∩ J2|, and

(2) [I ′ | J1] ∈ P whenever I1 ∩ I2 ⊆ I ′ ⊆ I1 ∪ I2 with |I ′| = |I1| but I ′ 6= I1.

(c) (1) |I1 ∩ I2| = |J1 ∩ J2| and [I1 ∪ I2 | J1 ∪ J2] ∈ P , and

(2) Either (a)(2) or (b)(2) holds.
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Then either [I1 | J1] ∈ P or [I2 | J2] ∈ P .

Proof. By symmetry, it suffices to prove cases (a) and (c).
(a) Set V = J1 ∪ J2 = J t L where J = J1 ∩ J2 and L = V \ J . Since |I1 ∩ I2| > |J |,

we have |I1 ∪ I2| < |V |, and so there exists U ⊆ {1, . . . , n} such that I1 ∪ I2 ⊂ U and
|U | = |V |. Also, we have |I1|+ |I2| = |J1|+ |J2| = 2|J |+ |L|. Thus, Lemma 5.6(b) yields
a relation of the form

(†)
∑

L=L′tL′′
±q•[I1 | J t L′][I2 | J t L′′] = 0.

Now for each term in this sum, J1∩J2 ⊆ JtL′ ⊆ J1∪J2 with |JtL′| = |J1|. If L′ 6= J1\J ,
then J tL′ 6= J1, whence [I1 | J tL′] ∈ P by hypothesis. Therefore the remaining term in
(†) must lie in P . This is the term with L′ = J1 \J , whence L′′ = J2 \J , and so J tL′ = J1

and J t L′′ = J2. Thus
±q•[I1 | J1][I2 | J2] ∈ P.

Since P is completely prime, either [I1 | J1] ∈ P or [I2 | J2] ∈ P .
(c) By symmetry, we may assume that (a)(2) holds. Again, set V = J1 ∪ J2 = J t L

where J = J1∩J2 and L = V \J . Set U = I1∪ I2, and observe that |I1|+ |I2| = 2|J |+ |L|.
This time, Lemma 5.6(b) provides a relation of the form

(‡)
∑

L=L′tL′′
±q•[I1 | J t L′][I2 | J t L′′] = ±q•[I1 ∩ I2 | J ][U | V ].

Since [U | V ] ∈ P by hypothesis, the right hand side of (‡) lies in P . Therefore we can
proceed as in the proof above. �
1.9. Theorem. Assume that q 6= ±1. Let P be a completely prime ideal of A, and let
t ≤ n be maximal such that P does not contain all t× t quantum minors. Choose

Ĩ = {r1 < · · · < rt} ⊆ {1, . . . , n} and J̃ = {c1 < · · · < ct} ⊆ {1, . . . , n}

with Ĩ minimal such that some [Ĩ | ∗] /∈ P , and J̃ minimal such that some [∗ | J̃ ] /∈ P .
Then

(a) [r1 · · · rs | c1 · · · cs] /∈ P for s = 1, . . . , t. In particular, [Ĩ | J̃ ] /∈ P .
(b) [I | J ] ∈ P whenever |I| = s ≤ t and either I � {r1, . . . , rs} or J � {c1, . . . , cs}. In

particular, it follows that Ĩ and J̃ are unique.

Proof. Since the theorem holds trivially when t = 0, we may assume that t > 0. By

assumption, there exists J0 such that [Ĩ | J0] /∈ P . We first claim that

(1) [I | J ] ∈ P whenever |I| = s ≤ t and I < {r1, . . . , rs}.
Suppose not, so that some [I | J ] /∈ P where |I| = s ≤ t and I < {r1, . . . , rs}. We may
assume that s is minimal for this, and that with I fixed, |J ∩ J0| is maximal. Note from

the minimality of Ĩ that s < t.
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Write I = {i1 < · · · < is}. There is some b ≤ s such that il = rl for l < b while ib < rb,
whence {i1, . . . , ib} < {r1, . . . , rb}. Since [I | J ] /∈ P , Lemma 1.7(b) implies that some
[i1 · · · ib | ∗] /∈ P . Hence, the minimality of s implies that b = s. Thus, we have il = rl for
l < s while is < rs. In particular, rs−1 = is−1 < is < rs.

Assume that |J ∩ J0| ≥ s− 1. In this case, we will apply Lemma 1.8 with

I1 = Ĩ I2 = I J1 = J0 J2 = J.

Note that |I1 ∩ I2| = s − 1 and [I1 | J1], [I2 | J2] /∈ P . When I1 ∩ I2 ⊆ I ′ ⊆ I1 ∪ I2
with |I ′| = t and I ′ 6= I1, we have I ′ = Ĩ ∪ {is} \ {rl} for some l ≥ s. Then since

rs−1 < is < rs ≤ rl, we have I ′ < Ĩ, and so [I ′ | J1] ∈ P by the minimality of Ĩ. Further,
if |J1 ∩ J2| = s − 1, then [I1 ∪ I2 | J1 ∪ J2] ∈ P because P contains all (t + 1) × (t + 1)
quantum minors. Therefore by Lemma 1.8(b), if |J ∩ J0| ≥ s, or by Lemma 1.8(c), if
|J ∩ J0| = s − 1, we have either [I1 | J1] ∈ P or [I2 | J2] ∈ P , giving us a contradiction.
Therefore |J ∩ J0| < s− 1.

Next, we will apply Lemma 1.8 with the roles of I1, I2 and J1, J2 reversed, that is, with

I1 = I I2 = Ĩ J1 = J J2 = J0.

When J1∩J2 ⊆ J ′ ⊆ J1∪J2 with |J ′| = s and J ′ 6= J1, we must have |J ′∩J0| = |J ′∩J2| >
|J ∩ J0|. By the maximality of |J ∩ J0|, we obtain [I | J ′] ∈ P in this case. But then
Lemma 1.8(a) leads to the same contradiction.

Therefore (1) holds. By symmetry, we must also have

(2) [I | J ] ∈ P whenever |I| = s ≤ t and J < {c1, . . . , cs}.
We now proceed by induction on s = 1, . . . , t to verify the following properties:

(Ps) [r1 · · · rs | c1 · · · cs] /∈ P ;
(Qs) [I | J ] ∈ P whenever |I| = s and either I � {r1, . . . , rs} or J � {c1, . . . , cs}.

The theorem will then be established.
To start, note that we cannot have all [r1 | ∗] ∈ P or all [∗ | c1] ∈ P , by Lemma 1.7.

Choose i, j such that [r1 | j], [i | c1] /∈ P . If j = c1 or i = r1, then [r1 | c1] /∈ P . Otherwise,
in view of (1) and (2) we must have j > c1 and i > r1. Hence, because of the assumption
that q 6= ±1, we have

[r1 | c1][i | j]− [i | j][r1 | c1] = (q − q−1)[r1 | j][i | c1] /∈ P,

which implies that [r1 | c1] /∈ P . Therefore (P1) holds. Property (Q1) is immediate from
(1) and (2).

Now let 1 < s ≤ t and assume that (Pa) and (Qa) hold for all a < s. By Lemma 1.7,
there exist j1 < · · · < js such that

[r1 · · · rs | j1 · · · js] /∈ P,
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and we may assume that {j1, . . . , js} is minimal for this. Likewise, there exist i1 <
· · · < is such that [i1 · · · is | c1 · · · cs] /∈ P and such that {i1, . . . , is} is minimal for this.
We cannot have {i1, . . . , is−1} � {r1, . . . , rs−1}, since then (Qs−1) would imply that all
[i1 · · · is−1 | ∗] ∈ P , whence Lemma 1.7(b) would imply that all [i1 · · · is | ∗] ∈ P . Therefore
{i1, . . . , is−1} ≥ {r1, . . . , rs−1}, and similarly {j1, . . . , js−1} ≥ {c1, . . . , cs−1}.

Suppose there exists b < s such that jl = cl for l < b while jb > cb. We will apply
Lemma 1.8 with

I1 = {r1, . . . , rs} I2 = {r1, . . . , rb}
J1 = {j1, . . . , js} J2 = {c1, . . . , cb}.

Observe that |I1 ∩ I2| = b > |J1 ∩ J2|. If J1 ∩ J2 ⊆ J ′ ⊆ J1 ∪ J2 with |J ′| = s and
J ′ 6= J1, then J ′ = J1 ∪ {cb} \ {jd} for some d ≥ b. In this case, J ′ < {j1, . . . , js}, whence
[I1 | J ′] ∈ P by the minimality of {j1, . . . , js}. Therefore Lemma 1.8(a) implies that either
[I1 | J1] ∈ P or [I2 | J2] ∈ P . But [I1 | J1] /∈ P by choice of J1, and [I2 | J2] /∈ P by (Pb),
so we have a contradiction. Therefore jl = cl for all l < s. Similarly, il = rl for all l < s.

If js = cs, then (Ps) holds. If js < cs, then {j1, . . . , js} < {c1, . . . , cs}, which would
imply [r1 · · · rs | j1 · · · js] ∈ P by (2), contradicting our assumptions. Therefore we may
assume that js > cs. Likewise, we may assume that is > rs.

Set U = {r1, . . . , rs, is} and V = {c1, . . . , cs, js}. By Lemma 5.3(d), we have

[i1 · · · is | j1 · · · js][r1 · · · rs | c1 · · · cs]− [r1 · · · rs | c1 · · · cs][i1 · · · is | j1 · · · js]
= (q−1 − q)[r1 · · · rs | j1 · · · js][i1 · · · is | c1 · · · cs].

Since neither of the factors [r1 · · · rs | j1 · · · js] and [i1 · · · is | c1 · · · cs] is in P , it follows
that [r1 · · · rs | c1 · · · cs] cannot be in P . This establishes property (Ps).

Finally, suppose that (Qs) fails. By symmetry, we may assume that [I | J ] /∈ P for some
I, J with |I| = s and I � {r1, . . . , rs}. We may also assume that I is minimal for this, and
that with I fixed, J is minimal.

Write I = {i1 < · · · < is} and J = {j1 < · · · < js}. If {i1, . . . , is−1} � {r1, . . . , rs−1},
then by (Qs−1) we would have all [i1 · · · is−1 | ∗] ∈ P , whence Lemma 1.7(b) would imply
that all [I | ∗] ∈ P , contradicting our choice of I. Thus {i1, . . . , is−1} ≥ {r1, . . . , rs−1}, and
similarly {j1, . . . , js−1} ≥ {c1, . . . , cs−1}. Since I � {r1, . . . , rs}, we must also have is < rs.
Note that rs−1 ≤ is−1 < is < rs, and so is /∈ {r1, . . . , rs−1}. Further, {r1, . . . , rs−1, is} <
{r1, . . . , rs}, and so all [r1 · · · rs−1is | ∗] ∈ P by (1), whence I 6= {r1, . . . , rs−1, is}. There-
fore there is some b < s such that il = rl for l < b while ib > rb.

Suppose there exists d ≤ b such that jm = cm for m < d while jd > cd. We will apply
Lemma 1.8 with

I1 = I = {i1, . . . , is} I2 = {r1, . . . , rd}
J1 = J = {j1, . . . , js} J2 = {c1, . . . , cd}.

Note that |I1∩ I2| ≥ d− 1 = |J1 ∩J2|, and that |I1∩ I2| = |J1∩J2| only when d = b. Since
rb−1 < rb < ib, we have {r1, . . . , rb, ib, . . . , is−1} < I, and so all [r1 · · · rbib · · · is−1 | ∗] ∈ P
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by the minimality of I. Then Lemma 1.7(b) implies that all [r1 · · · rbib · · · is | ∗] ∈ P . In
particular, when d = b we find that [I1 ∪ I2 | J1 ∪ J2] ∈ P .

If J1 ∩ J2 ⊆ J ′ ⊆ J1 ∪ J2 with |J ′| = s and J ′ 6= J1, then J ′ = J ∪ {cd} \ {jp} for some
p ≥ d. In this case, J ′ < J , and so [I1 | J ′] ∈ P by the minimality of J . Hence, case (a) of
Lemma 1.8 (if d > b) or case (c) (if d = b) implies that either [I1 | J1] ∈ P or [I2 | J2] ∈ P .
But [I1 | J1] /∈ P by assumption, and [I2 | J2] /∈ P by (Pd), so we have a contradiction.
Therefore jm = cm for all m ≤ b.

We will conclude by applying Lemma 1.8 with

I1 = I = {i1, . . . , is} I2 = {r1, . . . , rb}
J1 = J = {j1, . . . , js} J2 = {c1, . . . , cb}.

Note that ib−1 = rb−1 < rb < ib implies rb /∈ I, and so |I1 ∩ I2| < |J1 ∩ J2|. If I1 ∩ I2 ⊆
I ′ ⊆ I1 ∪ I2 with |I ′| = s and I ′ 6= I1, then I ′ = I ∪ {rb} \ {ip} for some p ≥ b. In this
case, I ′ < I, whence [I ′ | J1] ∈ P by the minimality of I. Thus Lemma 1.8(b) implies that
either [I1 | J1] ∈ P or [I2 | J2] ∈ P , and again we have reached a contradiction.

Therefore (Qs) must hold, which establishes our induction step. �
1.10. Corollary. Assume that q 6= ±1. Given any completely prime ideal P ∈ specA,
there is a unique pair (r, c) ∈ RC such that K

�
,
� ⊆ P and P ∩D �

,
� = ∅.

Thus, if q is not a root of unity,

specA =
⊔

(
�
,
�
)∈ ���

spec � ,
� A.

Proof. Let t ≤ n be maximal such that P does not contain all t × t quantum minors, let
{r1 < · · · < rt} and {c1 < · · · < ct} be as in Theorem 1.9, and set r = (r1, . . . , rt) and
c = (c1, . . . , ct). The theorem implies that K

�
,
� ⊆ P and that d

�
,
�

s /∈ P for s = 1, . . . , t.
Since P is completely prime, it follows that P ∩D �

,
�

= ∅.
Now suppose that we also have (r′, c′) ∈ RCt′ for some t′ such that K �

′,
�
′ ⊆ P and

P ∩D �
′,
�
′ = ∅. Then P contains all (t′ + 1)× (t′ + 1) quantum minors but not all t′ × t′

quantum minors, whence t′ = t. Moreover, we have d
�
,
�

t /∈ K �
′,
�
′ and d

� ′,
� ′

t /∈ K �
,
� . The

first relation implies that r ≥ r′ and c ≥ c′, and the second relation yields the reverse
inequalities. (Here we have transferred the relation ≤ in (1.1) from index sets to sequences
in the obvious manner.) Therefore r′ = r and c′ = c. �

2. Structure of A � ,
�

The purpose of this section is to develop a structure theorem for the localizations A �
,
� .

We introduce localized factor algebras R+� and R−� of A (patterned after quantized coor-
dinate rings of groups of triangular matrices) together with subalgebras B+� ⊂ R+� and
B−� ⊂ R−� (patterned after quantized coordinate rings of unipotent groups of triangu-
lar matrices), and we show that A

�
,
�

is isomorphic to an algebra B
�
,
�

trapped between
B+� ⊗ B−� and R+� ⊗ R−� . More precisely, we prove that B

�
,
�

is a skew-Laurent extension
of B+� ⊗B−� (this is a key ingredient in establishing that A � ,

� ∼= B � ,
� ), and that R+� ⊗R−�

is a skew-Laurent extension of B � ,
� .
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2.1. Fix t ∈ {0, 1, . . . , n} and (r, c) ∈ RCt throughout the section. Set

R+�
,0 = A/〈Xij | j > t or i < rj〉 and R−� ,0 = A/〈Xij | i > t or j < ci〉.

Write Yij and Zij for the images of Xij in R+�
,0 and R−� ,0, respectively. Note that these

algebras are iterated skew polynomial extensions of k, hence noetherian domains, the
natural indeterminates for these iterated skew polynomial structures being those Yij and
Zij which are nonzero. These indeterminates, when recorded within an n × n matrix,
display ‘stairstep’ patterns – for example, if n = 4 and r = (1, 2, 4), the Yij may be
displayed as follows: [ Y11 0 0 0

Y21 Y22 0 0

Y31 Y32 0 0

Y41 Y42 Y43 0

]
.

Since all the information is recorded in the placement of the zero and nonzero positions
within this matrix, a convenient abbreviation for this example is to write

R+
(1,2,4),0 = k

[ + 0 0 0

+ + 0 0

+ + 0 0

+ + + 0

]
.

Observe that the Yrss are regular normal elements in R+�
,0, and that the Zscs are regular

normal elements in R−� ,0. More precisely,

YrssYij =





q−1YijYrss (i = rs, j 6= s)

qYijYrss (i 6= rs, j = s)

YijYrss (i 6= rs, j 6= s)

ZscsZlm =





qZlmZscs (l = s, m 6= cs)

q−1ZlmZscs (l 6= s, m = cs)

ZlmZscs (l 6= s, m 6= cs).

(For instance, the first relation above holds when j > s because Yij = 0 in that case.
To verify the third relation, observe that Yrsj = 0 if j > s, while Yis = 0 if i < rs.) In
particular, the Yrss commute with each other, and the Zscs commute with each other.

Due to the normality of the Yrss and the Zscs , we can form Ore localizations

R+� = R+�
,0[Y −1

r11 , Y
−1
r22 , . . . , Y

−1
rtt ] and R−� = R−� ,0[Z−1

1c1
, Z−1

2c2
, . . . , Z−1

tct ].

These algebras are noetherian domains, and they may be viewed as quantized coordinate
rings of certain locally closed subvarieties of Mn(k). Extending the abbreviated description
given for the example above, we display the following abbreviation for R+� in that case:

R+
(1,2,4) = k

[± 0 0 0

+ ± 0 0

+ + 0 0

+ + ± 0

]
.

Observe that the standard Z2n-grading on A induces Z2n-gradings on R+� and R−� , which
we also refer to as standard .
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2.2. Let π+�
,0 : A→ R+�

,0 and π−� ,0 : A→ R−� ,0 be the quotient maps, and define

β
�
,
�

: A
∆−→ A⊗A

π+�
,0⊗π−� ,0−−−−−−→ R+�

,0 ⊗R−� ,0
⊆−→ R+� ⊗ R−� .

Observe that

β
�
,
�
(Xij) =

∑

l≤t, rl≤i, cl≤j
Yil ⊗ Zlj

for all i, j. In particular, β � ,
� (Xij) = 0 when i < r1 or j < c1.

2.3. Lemma. K �
,
� ⊆ ker(β � ,

� ).

Remark. We conjecture that ker(β � ,
� ) = K �

,
� .

Proof. Since Xij ∈ ker(π+�
,0) for j > t, all (t+ 1)× (t+ 1) and larger quantum minors lie

in ker(π+�
,0). In view of the rule for comultiplication of quantum minors (see (5.1)(d)), it

follows that all (t+ 1)× (t+ 1) and larger quantum minors lie in ker(β
�
,
�
).

Consider an index set I with |I| = l ≤ t and I 6≥ {r1, . . . , rl}. Write I = {i1 < · · · < il};
then im < rm for some m ≤ l. Hence, Yisj = 0 for all s ≤ m and j ≥ m. This implies
that π+�

,0[i1 · · · im |M ] = 0 for all M with |M | = m, whence π+�
,0[I | K] = 0 for all K with

|K| = l (cf. Lemmas 1.7 or 5.4). Therefore β � ,
� [I | J ] = 0 for all J with |J | = l.

Likewise, β � ,
� [I | J ] = 0 whenever |I| = l ≤ t and J 6≥ {c1, . . . , cl}. �

2.4. Let B � ,
� denote the k-subalgebra of R+� ⊗R−� generated by the set

{Yil ⊗ Zlj | l ≤ t, i ≥ rl, j ≥ cl} ∪ {Y −1
rll
⊗ Z−1

lcl
| l ≤ t}.

We may also express B
�
,
�

as the subalgebra of R+� ⊗ R−� generated by

{YilY −1
rll
⊗ 1 | l ≤ t, i > rl} ∪ {1⊗ ZljZ−1

lcl
| l ≤ t, j > cl} ∪ {(Yrll ⊗ Zlcl)±1 | l ≤ t}.

Note that β � ,
� (Xij) ∈ B � , � for all i, j, so that β � ,

� (A) ⊆ B � , � .
Let l ≤ t. Since Yrsj = 0 for s ≤ l and j > s, we have

π+�
,0[r1 · · · rl | K] =

{
Yr11Yr22 · · ·Yrll (K = {1, . . . , l})
0 (K 6= {1, . . . , l}).

Similarly, π−� ,0[1 · · · l | c1 · · · cl] = Z1c1Z2c2 · · ·Zlcl , and therefore

β � ,
� (d

�
,
�

l ) = (Yr11 ⊗ Z1c1)(Yr22 ⊗ Z2c2) · · · (Yrll ⊗ Zlcl).

In particular, β
�
,
�
(d
�
,
�

l ) is invertible in B
�
,
�
.
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2.5. Lemma. The map β � ,
� induces a surjective k-algebra homomorphism

β̃ � ,
� : A � ,

� −→ B � ,
� .

Remark. We shall prove later (Theorem 2.11) that β̃
�
,
�

is an isomorphism. Note that the
lemma already implies that A

�
,
�

is nonzero.

Proof. We have K �
,
� ⊆ ker(β � ,

� ) by Lemma 2.3 and β � ,
� (A) ⊆ B � ,

� by (2.4), and so β � ,
�

induces a homomorphism β′� ,
� : A/K �

,
� → B � ,

� . It also follows from (2.4) that β′� ,
� sends

the elements of D̃ �
,
� to units of B � ,

� , and therefore β′� ,
� does induce a homomorphism

β̃
�
,
�

: A
�
,
� → B

�
,
�
.

Set E = β̃ � ,
� (A � ,

� ); we must show that E = B � ,
� . Note that

(Yrll ⊗ Zlcl)±1 = β � ,
� (d

�
,
�

l )±1β
�
,
� (d

�
,
�

l−1)∓1 ∈ E

for l ≤ t, where d
�
,
�

0 = 1. It remains to show that Yil ⊗ Zlj ∈ E for all i, l, j.
As in (2.4), we see that

β � ,
� (

[r1 · · · rl−1i | c1 · · · cl]
)

= (Yr11 ⊗ Z1c1) · · · (Yrl−1,l−1 ⊗ Zl−1,cl−1
)(Yil ⊗ Zlcl)

= β � ,
� (d

�
,
�

l−1)(Yil ⊗ Zlcl)

for l ≤ t and i ≥ rl, whence Yil ⊗ Zlcl ∈ E. Similarly, Yrll ⊗ Zlj ∈ E for j ≥ cl, and
therefore

Yil ⊗ Zlj = q1−δ(j,cl)(Y −1
rll
⊗ Z−1

lcl
)(Yrll ⊗ Zlj)(Yil ⊗ Zlcl) ∈ E,

as desired. �
2.6. Lemma. R+� ⊗ R−� is a skew-Laurent extension of B � ,

� of the form

R+� ⊗R−� = B
�
,
�
[1⊗ Z±1

1c1
, . . . , 1⊗ Z±1

tct ; τ1, . . . , τt]

for some τ1, . . . , τt ∈ {1}2n ×H.

Proof. First observe that there exist σ1, . . . , σt ∈ H such that Zlclr = σl(r)Zlcl for l ≤ t
and r ∈ R−� ,0. This relation extends to r ∈ R−� , and so

(1⊗ Zlcl)w = (1× σl)(w)(1⊗ Zlcl)

for l ≤ t and w ∈ R+� ⊗ R−� . In particular, if τl = (1, . . . , 1, σl) then 1⊗ Zlcl is τl-normal
with respect to B � ,

� .
The standard Z2n-gradings on R+� and R−� (cf. (2.1)) induce a Z4n-grading on R+� ⊗R−� .

With respect to this grading, B �
,
� is a homogeneous subalgebra of R+� ⊗ R−� , and its

homogeneous components have degrees of the form (∗, b, b, ∗). On the other hand, 1⊗Zlcl
has degree (0, 0, εl, ∗), so the monomials

(1⊗ Z1c1)m1(1⊗ Z2c2)m2 · · · (1⊗ Ztct)mt
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have degrees (0, 0,m1ε1 + · · ·+mtεt, ∗). It follows that these monomials are left (or right)
linearly independent over B �

,
� . Hence, the subalgebra

C =
∑

m1,...,mt∈Z
B
�
,
�
(1⊗ Z1c1)m1(1⊗ Z2c2)m2 · · · (1⊗ Ztct)mt

of R+� ⊗ R−� is a skew-Laurent extension of B
�
,
�

of the desired form.

It remains to show that C = R+� ⊗R−� . First note that Yil⊗1 = (Yil⊗Zlcl)(1⊗Z−1
lcl

) ∈ C
for l ≤ t and i ≥ rl, and that

Y −1
rll
⊗ 1 = (Y −1

rll
⊗ Z−1

lcl
)(1⊗ Zlcl) ∈ C

for l ≤ t. On the other hand,

1⊗ Zlj = (Yrll ⊗ Zlj)(Y −1
rll
⊗ Z−1

lcl
)(1⊗ Zlcl) ∈ C

for l ≤ t and j ≥ cl, and 1⊗ Z−1
lcl
∈ C for l ≤ t. Therefore C = R+� ⊗ R−� . �

2.7. Let B+� and B−� denote the subalgebras of R+� and R−� generated by the respective
subsets

{YilY −1
rll
| l ≤ t, i > rl} and {ZljZ−1

lcl
| l ≤ t, j > cl}.

The algebra B+� , for instance, may be viewed as a quantized coordinate ring of the variety

{(aij) ∈Mn(k) | aij = 0 when j > t or i < rj , and arjj = 1 for j ≤ t}.

(The factor algebra R+� /〈Yr11 − 1, . . . , Yrtt − 1〉, which one might expect to appear in the
above role, is inappropriate because it collapses to k[Y ±1

r11 , . . . , Y
±1
rtt ] when q 6= 1.)

As noted in (2.4), B
�
,
�

is generated by its subalgebra B+� ⊗ B−� together with the
elements (Yrll ⊗ Zlcl)±1 for l ≤ t. In fact:

Lemma. B � ,
� is a skew-Laurent extension of B+� ⊗ B−� of the form

B � ,
� = (B+� ⊗ B−� )[(Yr11 ⊗ Z1c1)±1, . . . , (Yrtt ⊗ Ztct)±1; η1, . . . , ηt]

for some η1, . . . , ηt ∈ H ×H.

Proof. This is proved in the same manner as Lemma 2.6. �

2.8. We use the above structure of B �
,
� in constructing a homomorphism B �

,
� → A � ,

�

which will be the inverse of β̃
�
,
�
. To begin the construction, we will define suitable homo-

morphisms from B+� and B−� to A
�
,
�

whose images centralize each other. For that purpose,
we need to know the defining relations for B+� and B−� , as well as certain commutation
relations in A � ,

� .
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Set yij = YijY
−1
rjj

for j ≤ t and i > rj. In view of the basic commutation relations

satisfied by the Ylm, it is easily checked that the yij satisfy the following relations:

(1)

yijyim = qyimyij (j < m)

yijylj = qyljyij (i < l)

yijylm = ylmyij (i < l, j > m)

yijylm =





ylmyij (i < rm)

q−1ylmyij + q̂ylj (i = rm)

ylmyij + q̂yimylj (i > rm)

(i < l, j < m).

Lemma. The relations (1) are defining relations for the elements yij generating the alge-
bra B+� .

Proof. Let S be the k-algebra presented by generators sij for j ≤ t and i > rj satisfying
the analogs of (1). Then there is a k-algebra homomorphism φ : S → B+� such that
φ(sij) = yij for all i, j.

In R+� , list the Yij lexicographically, and observe that the ordered monomials in the Yij
are linearly independent. This remains true for ordered monomials in which we allow the
Yrjj to have negative exponents. Since the Yrjj commute up to scalars with the Ylm (recall
(2.1)), it follows that the ordered monomials in the yij are linearly independent, and so
these monomials form a basis for B+� . On the other hand, there are sufficient commutation
relations for the sij to show that the ordered monomials in the sij span S. Hence, φ maps
a spanning subset of S to a basis for B+� . Therefore φ is an isomorphism, and the lemma
is proved. �

2.9. Lemma. Let M = [I t {a} | J ] and N = [I ′ | J ′] be quantum minors in A with
I ⊂ I ′ and J ⊆ J ′. Assume that a /∈ I ′ and that b = max(I ′) /∈ I.

(a) If a > b, then MN = q−1NM .
(b) If a < b, then

MN − q−1NM ≡ q̂(−q)|(I′\I)∩(a,b)|[I t {b} | J ][I ′ t {a} \ {b} | J ′]

modulo the ideal L :=
〈

[I ′ t {a} \ {i′} | J ′]
∣∣ i′ ∈ I ′ ∩ (a, b)

〉
.

Proof. (a) Expand M using the q-Laplace relation of Corollary 5.5(b2) with r = a. Since
(a, n] ∩ I = ∅, we get

(1) M =
∑

j∈J
(−q)|(j,n]∩J|[I | J \ {j}]Xaj.

Note that all the [I | J \ {j}] commute with N . Lemma 5.2(c1) implies that XajN =
q−1NXaj for all j ∈ J , and thus it follows from (1) that MN = q−1NM .
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(b) Set α = |(a, n] ∩ I|, and again expand M using Corollary 5.5(b2) with r = a. This
time, we get

(2) (−q)αM =
∑

j∈J
(−q)|(j,n]∩J|[I | J \ {j}]Xaj.

For all j ∈ J , Lemma 5.2(c2) implies that

NXaj − qXajN = q̂
∑

i′∈I′
i′>a

(−q)|I′∩[a,i′]|Xi′j [I
′ t {a} \ {i′} | J ′],

whence

(3) XajN − q−1NXaj ≡ q̂(−q)βXbj [I
′ t {a} \ {b} | J ′] (mod L),

where β = |I ′ ∩ [a, b]| − 1 = |I ′ ∩ (a, b)|. Note that β − α = |(I ′ \ I) ∩ (a, b)|.
Combining (2) and (3), we obtain

(4) MN ≡
∑

j∈J
(−q)|(j,n]∩J|−α[I | J \ {j}]

(
q−1NXaj + q̂(−q)βXbj[I

′ t {a} \ {b} | J ′]
)

modulo L. Since all the [I | J \ {j}] commute with N , it follows from (2) that

(5)
∑

j∈J
(−q)|(j,n]∩J|−α[I | J \ {j}]q−1NXaj = q−1NM.

Further, an application of Corollary 5.5(b2) with r = b yields

(6)
∑

j∈J
(−q)|(j,n]∩J|[I | J \ {j}]Xbj = [I t {b} | J ].

Combining (4), (5), and (6), we complete the proof. �
2.10. Corollary. Let M = [I | J t {a}] and N = [I ′ | J ′] be quantum minors in A with
I ⊆ I ′ and J ⊂ J ′. Assume that a /∈ J ′ and that b = max(J ′) /∈ J .

(a) If a > b, then MN = q−1NM .
(b) If a < b, then

MN − q−1NM ≡ q̂(−q)|(J ′\J)∩(a,b)|[I | J t {b}][I ′ | J ′ t {a} \ {b}]

modulo the ideal L :=
〈

[I ′ | J ′ t {a} \ {j′}]
∣∣ j′ ∈ J ′ ∩ (a, b)

〉
.

Proof. This follows from Lemma 2.9 by symmetry. �
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2.11. Theorem. The map β̃ � ,
� : A � ,

� −→ B � ,
� is an isomorphism.

Proof. Recall the notation d̃
�
,
�

l = d
�
,
�

l + K �
,
� from (1.2). Similarly, we shall use tildes to

denote other cosets in A/K �
,
� . To abbreviate the relation of congruence modulo K �

,
� , we

adopt the notation ≡ � , � . We shall use the same symbols for elements of A/K
�
,
�

and their
images in the localization A

�
,
�
, which does not cause problems as long as we only transfer

equations from A/K
�
,
�

to A
�
,
�

and not in the reverse direction.
We proceed to construct, in several steps, a k-algebra homomorphism φ : B

�
,
� → A

�
,
�

that will be an inverse for β
�
,
�
. The construction of φ is based on the skew-Laurent

structure of B � ,
� given in Lemma 2.7. The first ingredient will be a homomorphism from

B+� to A � ,
� . To describe it, set

uij = [r1 · · · rj−1i | c1 · · · cj ] ∈ A (j ≤ t, i ≥ rj)
vij = ũij(d̃

�
,
�

j )−1 ∈ A � , � (j ≤ t, i > rj)

yij = YijY
−1
rjj
∈ R+� (as in (2.8)) (j ≤ t, i > rj).

(While the given expressions for vij and yij also make sense for j ≤ t and i = rj, they
yield vrjj = 1 ∈ A � , � and yrjj = 1 ∈ R+� . It is more convenient for the proof to exclude
these possibilities.) Recall that the yij generate B+� .

Claim 1: There exists a homomorphism φ+ : B+� → A
�
,
�

such that φ+(yij) = vij for
j ≤ t and i > rj .

To prove this, we must show that the vij satisfy the analogs of the relations (2.8)(1),
i.e., the corresponding equations with all y’s replaced by v’s. We first check that the
uij satisfy the relations (1) below. The first relation follows from Lemma 2.9(a); for the
second, observe that {r1, . . . , rj−1, i} ⊂ {r1, . . . , rm−1, l} and {c1, . . . , cj} ⊂ {c1, . . . , cm}
in that case.

(1) ulmuij =

{
q−1uijulm (i < l, j ≥ m)

uijulm (i ≤ l, j < m, i ∈ {rj , . . . , rm−1, l}).

Furthermore, when i < l and j < m but i /∈ {rj , . . . , rm−1}, Lemma 2.9(b) implies that

(2) uijulm − q−1ulmuij ≡ � , �
{
q̂uljuim (i ≥ rm)

0 (i < rm).

Since urll = d
�
,
�

l for l ≤ t, the relations (1) and (2) yield commutation relations for the
d
�
,
�

l and uij , which we combine in the following form:

(3)
d
�
,
�

l uij = uijd
�
,
�

l

{
(l < j), or

(l ≥ j and i ∈ {rj , . . . , rl})
d
�
,
�

l uij ≡ � , � quijd
�
,
�

l (l ≥ j and i /∈ {rj , . . . , rl}).

(Note that when l < j, we have i ≥ rj > rl.)
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It follows from (1), (2), and (3) that the elements vij ∈ A � , � indeed satisfy the analogs
of the relations (2.8)(1), as desired. This establishes Claim 1.

Next, set

wlm = [r1 · · · rl | c1 · · · cl−1m] ∈ A (l ≤ t, m ≥ cl)
tlm = w̃lm(d̃

�
,
�

l )−1 ∈ A � , � (l ≤ t, m > cl)

zlm = ZlmZ
−1
lcl
∈ R−� (l ≤ t, m > cl),

and recall that the zlm generate B−� .
Claim 2. There exists a homomorphism φ− : B−� → A � ,

� such that φ−(zlm) = tlm for
l ≤ t and m > cl.

This follows from Claim 1 by symmetry.
Claim 3. Each vij commutes with each tlm.
We first collect the following commutation relations between the uij and the wlm:

(4)

uijwlm = wlmuij





(j = l), or

(j < l and i ∈ {rj+1, . . . , rl}), or

(j > l and m ∈ {cl+1, . . . , cj})

uijwlm ≡ � , �
{
q−1wlmuij (j < l and i /∈ {rj+1, . . . , rl})
qwlmuij (j > l and m /∈ {cl+1, . . . , cj}).

The first equation in (4) follows from Lemma 5.3(c). The next two equations hold because
{r1, . . . , rj−1, i} ⊂ {r1, . . . , rl} and {c1, . . . , cj} ⊂ {c1, . . . , cl−1,m} in the first case, while
those inclusions are reversed in the second case. Finally, the last two relations follow from
Lemma 2.9 and Corollary 2.10.

Commutation relations between the d
�
,
�

l and the uij are given in (3), and, by symmetry,
we also have

(5)
d
�
,
�

j wlm = wlmd
�
,
�

j

{
(j < l), or

(j ≥ l and m ∈ {cl, . . . , cj})
d
�
,
�

j wlm ≡ � , � qwlmd
�
,
�

j (j ≥ l and m /∈ {cl, . . . , cj}).

It follows from (3), (4), and (5) that vij indeed commutes with tlm, and Claim 3 is proved.
Combining Claims 1, 2, and 3, we see that there exists a homomorphism

φ : B+� ⊗ B−� → A
�
,
�

such that φ(yij ⊗ 1) = vij and φ(1⊗ zlm) = tlm for all i, j, l,m.
Claim 4. φ extends to a homomorphism B �

,
� → A � ,

� such that φ(Yrss ⊗ Zscs) =

d̃
�
,
�

s (d̃
�
,
�

s−1)−1 for s ≤ t.
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In view of the relations given in (2.1), we see that

(6)

YrssyijY
−1
rss =





q−1yij (i = rs)

qyij (j = s)

yij (i 6= rs, j 6= s)

ZscszlmZ
−1
scs

=





qzlm (l = s)

q−1zlm (m = cs)

zlm (l 6= s, m 6= cs).

On the other hand, it follows from (3) and (5) that the units d̃
�
,
�

s (d̃
�
,
�

s−1)−1 in A
�
,
�

normalize
the elements vij and tlm in exactly the same way, that is,

(7)

d̃
�
,
�

s (d̃
�
,
�

s−1)−1vij d̃
�
,
�

s−1(d̃
�
,
�

s )−1 =





q−1vij (i = rs)

qvij (j = s)

vij (i 6= rs, j 6= s)

d̃
�
,
�

s (d̃
�
,
�

s−1)−1tlmd̃
�
,
�

s−1(d̃
�
,
�

s )−1 =





qtlm (l = s)

q−1tlm (m = cs)

tlm (l 6= s, m 6= cs).

Claim 4 follows from (6), (7), and Lemma 2.7.

Claim 5. φ = β̃−1�
,
� .

Since β̃
�
,
�

is surjective (Lemma 2.5), it is enough to show that φβ̃
�
,
�

is the identity on
A
�
,
�
. First note, using (2.4), that

φβ̃
�
,
�
(d̃
�
,
�

s (d̃
�
,
�

s−1)−1) = φ(Yrss ⊗ Zscs) = d̃
�
,
�

s (d̃
�
,
�

s−1)−1

for all s, whence φβ̃ � ,
� (d̃

�
,
�

s ) = d̃
�
,
�

s for all s. Next, for j ≤ t and i > rj we have

φβ̃ � ,
� (ũij) = φ

(
(Yr11 ⊗ Z1c1) · · · (Yrj−1,j−1 ⊗ Zj−1,cj−1)(Yij ⊗ Zjcj )

)

= φ
(
(yij ⊗ 1)(Yr11 ⊗ Z1c1) · · · (Yrjj ⊗ Zjcj )

)

= φ
(
(yij ⊗ 1)β

�
,
�
(d̃
�
,
�

j )
)

= vij d̃
�
,
�

j = ũij .

By symmetry, φβ̃ � ,
� (w̃lm) = w̃lm for l ≤ t and m > cl. Therefore φβ̃ � ,

� at least equals the
identity on the subalgebra C of A � ,

� generated by (the image of) the set

{(d̃
�
,
�

s )±1 | s ≤ t} ∪ {ũij | j ≤ t, i > rj} ∪ {w̃lm | l ≤ t, m > cl}.

To finish the proof, we just need to show that C = A � ,
� , that is, that X̃ij ∈ C for all

i, j. This is clear in case i < r1 or j < c1, since in those cases X̃ij = 0. We also have
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X̃ic1 = ũi1 ∈ C for i ≥ r1 and X̃r1j = w̃1j ∈ C for j ≥ c1. Hence, X̃ij ∈ C whenever i ≤ r1

or j ≤ c1.

Now let 1 < l ≤ t and assume that X̃ij ∈ C whenever i ≤ rl−1 or j ≤ cl−1. For
rl−1 < i ≤ t and cl−1 < j ≤ cl, it follows from Corollary 5.5(b1) that

(8) (−q)l−1[r1 · · · rl−1i | c1 · · · cl−1j] = (−q)l−1Xij [r1 · · · rl−1 | c1 · · · cl−1]

+
l−1∑

s=1

(−q)s−1Xics [r1 · · · rl−1 | c1 · · · ĉs · · · cl−1j].

Most of the cosets of the factors in (8) can be seen to lie in C right away. For instance, the
coset of the left hand side is zero if either i < rl or j < cl, and it equals ũil if i ≥ rl and

j = cl. For s < l, we have X̃ics ∈ C by the inductive hypothesis, and similarly the coset
[r1 · · · rl−1 | c1 · · · ĉs · · · cl−1j] +K

�
,
�

is in C since it is a linear combination of products of

elements X̃ab with a ≤ rl−1. Consequently, we obtain from (8) that

Xij [r1 · · · rl−1 | c1 · · · cl−1] +K �
,
� ∈ C.

In other words, X̃ij d̃
�
,
�

l−1 ∈ C, whence X̃ij ∈ C. Thus, X̃ij ∈ C whenever j ≤ cl. By

symmetry, X̃ij ∈ C whenever i ≤ rl.
The above induction proves that X̃ij ∈ C whenever i ≤ rt or j ≤ ct. If there exist

indices i > rt and j > ct, we have

(9) (−q)t[r1 · · · rti | c1 · · · ctj] = (−q)tXij [r1 · · · rt | c1 · · · ct]

+
t∑

s=1

(−q)s−1Xics [r1 · · · rt | c1 · · · ĉs · · · ctj]

by Corollary 5.5(b1), from which we see as above that X̃ij ∈ C. (Note that the left hand
side of (9) necessarily lies in K

�
,
�

because it involves a (t+ 1)× (t+ 1) quantum minor.)

Therefore all X̃ij ∈ C, and the proof is complete. �

3. Tensor product decompositions of H-primes

Throughout this section, we assume that q is not a root of unity; we shall place reminders
of this hypothesis in the relevant results. Thus, by [8, Theorem 3.2], all primes of A are
completely prime. Since this property survives in factors and localizations, all primes in the
algebras A � ,

� , R+� , and R−� are completely prime, and also in B �
,
� because of Theorem 2.11.

We have already observed that the algebras R+�
,0 and R−� ,0 are iterated skew polynomial

algebras over k, and so is their tensor product. The iterated skew polynomial structure
of R+�

,0 ⊗R−� ,0 is easily seen to satisfy the hypotheses of [8, Theorem 2.3], and thus all its

primes are completely prime. Consequently, all primes in the localizations R+� ⊗ R−� are
completely prime.
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3.1. In order to deal with H-primes in tensor products, we need the following rationality
property. Suppose that S is a noetherian k-algebra and that G is a group acting on S by
k-algebra automorphisms. We say that a G-prime P of S is strongly G-rational provided
the algebra Z(FractS/P )G, the fixed ring of the center of the Goldie quotient ring of S/P
under the induced G-action, equals k.

By [9, (5.7)(i)] (cf. [1, Theorem II.5.14]) and [1, Corollary II.6.5], A has only finitely
many H-primes, and they are all completely prime and strongly H-rational. These prop-
erties carry over to A

�
,
�
, R+� , and R−� . Analogous results [1, Theorems II.5.12 and II.6.4]

imply that R+�
,0⊗R−� ,0 has only finitely many (H×H)-primes, and they are all completely

prime and strongly (H ×H)-rational. These properties now carry over to R+� ⊗ R−� .
Identify H with the subgroup

H̃ =
(
(k×)n × {1}n

)
×
(
{1}n × (k×)n

)
C H ×H

in the obvious way. With this identification, β
�
,
�

and β̃
�
,
�

are H-equivariant. In particular,

it follows that B
�
,
�

has only finitely many H̃-primes, and they are all completely prime

and strongly H̃-rational.

3.2. Lemma. For i = 1, 2, let Ai be a k-algebra, Hi a group acting on Ai by k-algebra
automorphisms, and Pi an Hi-prime ideal of Ai. Set P = (P1 ⊗ A2) + (A1 ⊗ P2), and let
H1 ×H2 act on A1 ⊗ A2 in the natural manner.

(a) If each Ai/Pi is Hi-simple and Z(A1/P1)H1 = k, then (A1 ⊗ A2)/P is (H1 × H2)-
simple.

(b) If each Ai is noetherian and P1 is strongly H1-rational, then P is an (H1×H2)-prime
ideal of A1⊗A2. Moreover, P is the only (H1×H2)-prime ideal of A1⊗A2 that contracts
to P1 ⊗ 1 in A1 ⊗ 1 and to 1⊗ P2 in 1⊗A2.

(c) If each Ai is noetherian and each Pi is strongly Hi-rational, then P is strongly
(H1 ×H2)-rational.

Proof. Since (A1⊗A2)/P ∼= (A1/P1)⊗ (A2/P2), there is no loss of generality in assuming
that each Pi = 0.

(a) This is a standard shortest length argument. Let I be a nonzero (H1 × H2)-ideal
of A1 ⊗ A2, and let m be the shortest length for nonzero elements of I (as sums of pure
tensors). Choose a nonzero element

x = b1 ⊗ c1 + · · ·+ bm ⊗ cm ∈ I

of length m, where the bj ∈ A1 and cj ∈ A2, and note that the cj are linearly independent
over k. Now the set

{b ∈ A1 | (b⊗ c1 + A1 ⊗ c2 + · · ·+ A1 ⊗ cm) ∩ I 6= ∅}

is a nonzero H1-ideal of A1, and so it equals A1. Thus, without loss of generality, b1 = 1.
For any a ∈ A1, we now have x(a ⊗ 1) − (a ⊗ 1)x in I with length less than m, whence
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x(a⊗ 1)− (a⊗ 1)x = 0 and so bja = abj for all j. For any h ∈ H1, we have (h, 1)(x)−x in
I with length less than m, whence (h, 1)(x)− x = 0 and so h(bj) = bj for all j. Therefore
all bj lie in Z(A1)H1 = k. It follows that x ∈ 1 ⊗ A2, whence m = 1 and x = 1 ⊗ c1.
Consequently, the set {c ∈ A2 | 1 ⊗ c ∈ I} is a nonzero H2-ideal of A2, and so it equals
A2. Therefore 1⊗ 1 ∈ I, proving that I = A1 ⊗A2.

(b) Each Ai is an Hi-prime noetherian ring, and so is semiprime. Let Ci be the set of
regular elements in Ai, and note that the set

C = {c1 ⊗ c2 | ci ∈ Ci}

is an (H1 × H2)-stable denominator set in A1 ⊗ A2, consisting of regular elements. Each
AiC−1

i is Hi-simple artinian, and Z(A1C−1
1 )H1 = k by our hypothesis on P1. Thus by part

(a), the localization
(A1 ⊗A2)C−1 = A1C−1

1 ⊗ A2C−1
2

is (H1 ×H2)-simple. It follows that each nonzero (H1 ×H2)-ideal of A1 ⊗A2 meets C; in
particular, A1 ⊗ A2 is an (H1 ×H2)-prime ring.

Now let Q be any (H1 × H2)-prime ideal of A1 ⊗ A2 that contracts to zero in both
A1 ⊗ 1 and 1 ⊗ A2. Then Q is a semiprime ideal, disjoint from both C1 ⊗ 1 and 1 ⊗ C2.
If some prime ideal Q0 minimal over Q meets C1 ⊗ 1, then h(Q0) meets C1 ⊗ 1 for all
h ∈ H1×H2. But since Q is a finite intersection of some of the h(Q0), it would follow that
Q meets C1 ⊗ 1, a contradiction. Therefore C1 ⊗ 1 is disjoint from all primes minimal over
Q, whence C1 ⊗ 1 is regular modulo Q. Likewise, 1 ⊗ C2 is regular modulo Q. It follows
that C is disjoint from Q, and therefore Q = 0.

(c) After localization, we can assume that each Ai is Hi-simple artinian. By part (a),
A1 ⊗ A2 is now (H1 × H2)-simple. Consider an element u in Z(Fract(A1 ⊗ A2))H1×H2 .
The set {a ∈ A1 ⊗ A2 | au ∈ A1 ⊗ A2} is a nonzero (H1 ×H2)-ideal of A1 ⊗A2, and so it
equals A1 ⊗ A2. Therefore u ∈ A1 ⊗ A2. Now write u = v1 ⊗ w1 + · · ·+ vt ⊗ wt for some
vj ∈ A1 and some linearly independent wj ∈ A2. Since u is fixed by H1× 1 and commutes
with A1 ⊗ 1, we see that all vj ∈ Z(A1)H1 = k. Hence, u = 1⊗ w for some w ∈ A2. But
then w ∈ Z(A2)H2 = k, and therefore u ∈ k. �
3.3. Proposition. For i = 1, 2, let Ai be a noetherian k-algebra and Hi a group acting on
Ai by k-algebra automorphisms. Assume that allH1-primes of A1 are strongly H1-rational.
Then the rule (P1, P2) 7→ (P1 ⊗A2) + (A1 ⊗ P2) provides a bijection

(H1 -specA1)× (H2 -specA2) −→ (H1 ×H2) -spec(A1 ⊗ A2).

Proof. Lemma 3.2(b) shows that the given rule maps (H1 -specA1) × (H2 -specA2) to
(H1 ×H2) -spec(A1 ⊗ A2).

Now consider an (H1 ×H2)-prime P in A1 ⊗ A2. Let P1 and P2 be the inverse images
of P under the natural maps Ai → A1 ⊗ A2. Then each Pi is an Hi-ideal of Ai, and
(P1 ⊗ A2) + (A1 ⊗ P2) ⊆ P . There are H1-primes Q1, . . . , Qt in A1, containing P1, such
that Q1Q2 · · ·Qt ⊆ P1. Then the Qi ⊗ A2 are (H1 ×H2)-ideals of A1 ⊗A2 such that

(Q1 ⊗ A2)(Q2 ⊗ A2) · · · (Qt ⊗ A2) ⊆ P1 ⊗A2 ⊆ P.
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Consequently, some Qj ⊗ A2 ⊆ P , whence Qj ⊆ P1, and so Qj = P1. This shows that P1

is H1-prime. Similarly, P2 is H2-prime.
By Lemma 3.2(b), (P1⊗A2)+(A1⊗P2) is an (H1×H2)-prime of A1⊗A2, and it is the

only (H1×H2)-prime of A1⊗A2 that contracts to P1⊗1 in A1⊗1 and to 1⊗P2 in 1⊗A2.
Therefore P = (P1⊗A2)+(A1⊗P2). It is clear that P1 and P2 are unique, since Pi equals
the inverse image of (P1 ⊗A2) + (A1 ⊗ P2) under the natural map Ai → A1 ⊗A2. �

3.4. Lemma. [q not a root of unity] Let (r, c) ∈ RC. If P̃ is an H̃-prime of B
�
,
�
, then

there exists a unique (H ×H)-prime Q of R+� ⊗R−� such that Q ∩B � , � = P̃ .

Proof. Since B
�
,
�

has only finitely many H̃-primes andH×H just permutes them, the (H×
H)-orbit of P̃ in specB � ,

� is finite. Since P̃ is prime, it now follows from [1, Proposition

II.2.9] that P̃ must be invariant under H ×H. In view of Lemma 2.6, Q = P̃ (R+� ⊗ R−� )

is an (H × H)-invariant prime of R+� ⊗ R−� such that Q ∩ B � , � = P̃ . It remains to show

that if Q′ is any (H ×H)-prime of R+� ⊗R−� that contracts to P̃ , then Q′ = Q. Note that
Q′ ⊇ Q by definition of Q.

Set G = (k×)n, let φ : G →
(
{1}n × (k×)n

)
×
(
(k×)n × {1}n

)
⊂ H × H be the

homomorphism given by the rule

φ(α1, . . . , αn) = (1, . . . , 1, α−1
1 , . . . , α−1

n , α1, . . . , αn, 1, . . . , 1),

and use φ to pull back the action of H ×H on R+� ⊗ R−� to an action of G. With respect
to this G-action, B � ,

� is generated by fixed elements, and each of the elements 1 ⊗ Zscs
is a G-eigenvector with eigenvalue equal to the projection (α1, . . . , αn) 7→ αs. In view of
Lemma 2.6 and the fact that k is infinite, it follows that the G-eigenspaces of R+� ⊗ R−�
are the subspaces B

�
,
� (

1 ⊗ (Zm1
1c1
Zm2

2c2
· · ·Zmttc1 )

)
for (m1, . . . ,mt) ∈ Zt. Consequently, any

G-eigenvector in R+� ⊗R−� has the form du where d ∈ B � , � and u is a unit. If du ∈ Q′, then

d ∈ Q′ ∩ B � , � = P̃ , whence du ∈ Q. Since Q′ is G-invariant, we conclude that Q′ = Q, as
desired. �
3.5. Set H- spec � ,

� A = (H- specA) ∩ (spec � ,
� A) for (r, c) ∈ RC. These sets partition

H- specA because of Corollary 1.10.

Theorem. [q not a root of unity] For each (r, c) ∈ RC, there is a bijection

(H- specR+� )× (H- specR−� ) −→ H- spec � ,
� A

given by the rule (Q+, Q−) 7→ β−1�
,
� ((Q+ ⊗ R−� ) + (R+� ⊗Q−)

)
.

Proof. If Q+ ∈ H- specR+� and Q− ∈ H- specR−� , then Proposition 3.3 shows that the
ideal Q = (Q+ ⊗ R−� ) + (R+� ⊗Q−) is an (H ×H)-prime of R+� ⊗R−� . In particular, Q is

completely prime, and so Q∩B � , � is an H̃-prime of B � ,
� , whence β−1�

,
� (Q) = β−1�

,
� (Q∩B � , � )

is an H-prime of A lying in spec � ,
� A. This shows that the given rule does define a map

from (H- specR+� )× (H- specR−� ) to H- spec � ,
� A.

Now consider an arbitrary H-prime P in H- spec � ,
� A. Then P induces an H-prime in

A � ,
� that contracts to P under the localization map. In view of Theorem 2.11, it follows
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that β � ,
� (P ) induces an H̃-prime P̃ of B � ,

� such that β−1�
,
� (P̃ ) = P . By Lemma 3.4, there

is a unique (H ×H)-prime Q of R+� ⊗ R−� such that Q ∩ B � , � = P̃ . Then Proposition 3.3
implies that Q = (Q+ ⊗ R−� ) + (R+� ⊗Q−) for some H-primes Q+ in R+� and Q− in R−� .
Thus,

β−1�
,
� ((Q+ ⊗R−� ) + (R+� ⊗Q−)

)
= β−1�

,
� (Q) = β−1�

,
� (Q ∩ B � , � ) = β−1�

,
� (P̃ ) = P.

It remains to show that Q+ and Q− are unique. Consider any T+ ∈ H- specR+� and
T− ∈ H- specR−� such that P = β−1�

,
� (T ) where T = (T+ ⊗ R−� ) + (R+� ⊗ T−). As in

the first paragraph of the proof, T is an (H × H)-prime of R+� ⊗ R−� and T ∩ B � , � is an

H̃-prime of B
�
,
�
. Since β−1�

,
� (T ∩ B � , � ) = P , we must have T ∩ B � , � = P̃ , whence T = Q

by the uniqueness of Q. Therefore Proposition 3.3 shows that T+ = Q+ and T− = Q−,
as desired. �
3.6. Fix t ∈ {0, 1, . . . , n}, and let H- spec[t]A be the set of those H-primes of A which
contain all (t+1)× (t+1) quantum minors but not all t× t quantum minors. By Corollary
1.10,

H- spec[t]A =
⊔

(
�
,
�
)∈ ��� t

H- spec � ,
� A,

and consequently Theorem 3.5 implies that

|H- spec[t]A| =
∑

(
�
,
�
)∈ ��� t

|H- specR+� | · |H- specR−� |.

If Rt denotes the set of sequences (r1, . . . , rt) ∈ Nt with 1 ≤ r1 < · · · < rt ≤ n, then
RCt = Rt ×Rt. For each r ∈ Rt, the automorphism τ of A discussed in (5.1) induces
an isomorphism τ : R+� → R−� . While τ is not H-equivariant, there is an automorphism γ
of H, given by (α1, . . . , αn, β1, . . . , βn) 7→ (β1, . . . , βn, α1, . . . , αn), such that the following
diagram commutes:

H
γ−−−−→ H

y
y

AutR+� � ∗
−−−−→ AutR−�

(Here the vertical arrows denote the standard actions of H on R+� and R−� .) Hence, τ
provides a bijection of H- specR+� onto H- specR−� . Therefore

|H- spec[t]A| =
∑

�
,
�
∈ � t
|H- specR+� | · |H- specR+� | =

( ∑
�
∈ � t
|H- specR+� |

)2

,

a perfect square. These numbers are known in three cases:

|H- spec[t]A| =





1 (t = 0)

(2n − 1)2 (t = 1)

(n!)2 (t = n).
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The case when t = 0 is trivial, and the case when t = 1 is given by [5, Corollary 3.5].
For the remaining case, note first that H- spec[n]A ≈ H- specOq(GLn(k)). It can be
checked that there is a bijection between H- specOq(GLn(k)) and the set of winding-in-
variant primes of Oq(SLn(k)) (e.g., see [1, Lemma II.5.16]), and it follows from the work
of Hodges and Levasseur [11] that the latter set is in bijection with the double Weyl group
Sn × Sn (cf. [1, Corollary II.4.12]).

3.7. As a corollary of Theorem 3.5, we obtain the following less specific but more digestible
result.

Corollary. [q not a root of unity] Set

R+ = A/〈Xij | i < j〉 and R− = A/〈Xij | i > j〉,

let π± : A→ R± denote the quotient maps, and let β denote the composition

A
∆−−→ A⊗ A π+⊗π−−−−−−→ R+ ⊗ R−.

Given any H-prime P in A, there exist H-primes P± in R± such that

P = β−1
(
(P+ ⊗R−) + (R+ ⊗ P−)

)
.

Proof. By Corollary 1.10 and Theorem 3.5, P = β−1�
,
� ((Q+ ⊗ R−� ) + (R+� ⊗Q−)

)
for some

(r, c) ∈ RC and some H-primes Q+ in R+� and Q− in R−� . Observe that Xij ∈ kerπ+�
,0

when i < j, and that Xij ∈ kerπ−� ,0 when i > j. Hence, there are surjective k-algebra

homomorphisms τ+ : R+ → R+�
,0 and τ− : R− → R−� ,0 such that τ+π+ = π+�

,0 and τ−π− =

π−� ,0. Consequently, (τ+ ⊗ τ−)β = β � ,
� (with the obvious adjustment of codomains).

Next, observe that Q+
0 = Q+ ∩ R+�

,0 and Q−0 = Q− ∩ R−� ,0 are H-primes of R+�
,0 and

R−� ,0, respectively, whence the ideals P± = (τ±)−1(Q±0 ) are H-primes in R±. Finally,

P =
(
(τ+ ⊗ τ−)β

)−1(
(Q+

0 ⊗ R−� ,0) + (R+�
,0 ⊗Q−0 )

)
= β−1

(
(P+ ⊗ R−) + (R+ ⊗ P−)

)
,

as desired. �

4. Illustration: Oq(M2(k))

Theorem 3.5 opens a potential route to computing the H-primes of A in the generic case:
If we can find all the H-primes in each R+� and R−� , we immediately obtain descriptions of
all the H-primes in A. Since these descriptions would be in terms of pullbacks of H-primes
from the algebras R+� ⊗ R−� , it would still remain to find generating sets for these ideals.

To illustrate the procedure, we sketch the case where n = 2, for which H- specA is
already known. In [7], we use the above process to compute H- specA when n = 3.



WINDING-INVARIANT PRIME IDEALS IN QUANTUM MATRICES 29

4.1. Assume that q is not a root of unity, and fix n = 2. There are only four choices for
r and c, namely ∅, (1), (2), and (1, 2). The corresponding algebras R+� and R−� are

R+
∅ = A/〈X11, X12, X21, X22〉 = k R−∅ = k

R+
(1) =

(
A/〈X12, X22〉

)
[X−1

11 ] = k〈Y ±1
11 , Y21〉 R−(1) = k〈Z±1

11 , Z12〉
R+

(2) =
(
A/〈X11, X12, X22〉

)
[X−1

21 ] = k[Y ±1
21 ] R−(2) = k[Z±1

12 ]

R+
(1,2) =

(
A/〈X12〉

)
[X−1

11 , X
−1
22 ] = k〈Y ±1

11 , Y21, Y
±1
22 〉 R−(1,2) = k〈Z±1

11 , Z12, Z
±1
22 〉.

The H-primes in these algebras are easily computed:

H- specR+
∅ =

{
〈0〉
}

H- specR−∅ =
{
〈0〉
}

H- specR+
(1) =

{
〈0〉, 〈Y21〉

}
H- specR−(1) =

{
〈0〉, 〈Z12〉

}

H- specR+
(2) =

{
〈0〉
}

H- specR−(2) =
{
〈0〉
}

H- specR+
(1,2) =

{
〈0〉, 〈Y21〉

}
H- specR−(1,2) =

{
〈0〉, 〈Z12〉

}
.

The only choice for (r, c) ∈ RC0 is r = c = ∅. In this case, the only H-primes in R+�

and R−� are the zero ideals, and β−1
∅,∅(〈0〉) = 〈X11, X12, X21, X22〉, the augmentation ideal

of A. We record this H-prime using the symbol

••••
to denote the generating set {X11, X12, X21, X22}, the bullet in position (i, j) being a
marker for the element Xij .

Corresponding to the four pairs (r, c) ∈ RC1, there are nine H-primes in A of the form

β−1�
,
� ((Q+ ⊗ R−� ) + (R+� ⊗Q−)

)

where Q+ is an H-prime in R+� and Q− is an H-prime in R−� . We can record generating sets
for these ideals as follows, continuing the notation introduced in the previous paragraph;
here ◦ is a placeholder and � denotes the 2× 2 quantum determinant.

〈0〉

R−(1)

〈Z12〉 〈0〉

R−(2)

〈0〉R+
(1) ◦ • • ◦◦ • • ◦
〈Y21〉 ◦ ◦ ◦ • • ◦• • • • • •

〈0〉R+
(2) • • • • • •◦ ◦ ◦ • • ◦
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(See, e.g., [5, Theorem 1.1] for a proof that the quantum determinant generates the kernel
of β(1),(1). We leave it to the reader to check that the other H-primes are generated as
indicated.)

Finally, the only choice for (r, c) ∈ RC2 is r = c = (1, 2), and there are four H-primes
in A of the form

β−1
(1,2),(1,2)

(
(Q+ ⊗ R−(1,2)) + (R+

(1,2) ⊗Q−)
)

with Q± ∈ H- specR±(1,2). We record generating sets for these ideals as follows:

〈0〉 〈Z12〉

〈0〉 ◦ ◦ ◦ •◦ ◦ ◦ ◦
〈Y21〉 ◦ ◦ ◦ •• ◦ • ◦

We now conclude from Theorem 3.5 that we have found all the H-primes of A =
Oq(M2(k)). There are 14 in total, which we can display as follows:

• • ◦ • • ◦ ◦ ◦ ◦ •• • ◦ • • ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • • ◦ ◦ ◦ ◦ •• • • • • • • ◦ • ◦
• • • • • •◦ ◦ ◦ • • ◦

For a display showing the inclusions among these ideals, see [5, (3.6)].

5. Appendix. Relations in Oq(Mn(k))

The proofs in this paper rely on a number of relations among the generators and quan-
tum minors in quantum matrix algebras. We record and/or derive those relations in this
appendix. Throughout, let A = Oq(Mn(k)) with k an arbitrary field and q ∈ k× an
arbitrary nonzero scalar.

5.1. (a) We present the algebra A with generators Xij for i, j = 1, . . . , n and relations

XijXlj = qXljXij (i < l)

XijXim = qXimXij (j < m)

XijXlm = XlmXij (i < l, j > m)

XijXlm −XlmXij = (q − q−1)XimXlj (i < l, j < m).

As is well known, A is in fact a bialgebra, with comultiplication ∆ : A→ A⊗A and counit
ε : A→ k such that

∆(Xij) =
n∑

l=1

Xil ⊗Xlj and ε(Xij) = δij



WINDING-INVARIANT PRIME IDEALS IN QUANTUM MATRICES 31

for all i, j.
(b) The algebra A possesses various symmetries. In particular, it supports a k-algebra

automorphism τ such that τ (Xij) = Xji for all i, j [16, Proposition 3.7.1]. Pairs of
results which imply each other just through applications of τ will be simply referred to as
“symmetric”.

(c) Given U, V ⊆ {1, . . . , n} with |U | = |V | = t, let Oq(MU,V (k)) denote the k-
subalgebra of A generated by those Xij with i ∈ U and j ∈ V . There is a natural isomor-
phism Oq(Mt(k)) → Oq(MU,V (k)), which sends the quantum determinant of Oq(Mt(k))
to the quantum minor in A involving rows from U and columns from V . As in [6], we
denote this quantum minor by [U | V ], or in the form [u1 · · ·ut | v1 · · ·vt] if we wish to list
the elements of U and V .

We shall also use the isomorphism Oq(Mt(k)) → Oq(MU,V (k)) to simplify various
proofs, since it will allow us to work in smaller quantum matrix algebras than A on
occasion. For example, since the quantum determinant in Oq(Mt(k)) is central (e.g., [16,
Theorem 4.6.1]), the quantum minor [U | V ] commutes with Xij for all i ∈ U and j ∈ V .
Consequently,

[U | V ][I | J ] = [I | J ][U | V ] (I ⊆ U, J ⊆ V ).

(d) Recall from [15, Equation 1.9] the comultiplication rule for quantum minors:

∆
(
[I | J ]

)
=

∑

|K|=|I|
[I | K]⊗ [K | J ].

5.2. We next restate some identities from [16], given there for generators and maximal
minors, in a form that applies to minors of arbitrary size. Note the difference between our
choice of relations for A (see (5.1)(a)) and that in [16, p. 37]. Because of this, we must
interchange q and q−1 whenever carrying over a formula from [16].

Lemma. Let r, c ∈ {1, . . . , n} and I, J ⊆ {1, . . . , n} with |I| = |J | ≥ 1.
(a) If r ∈ I and c ∈ J , then Xrc[I | J ] = [I | J ]Xrc.
(b) If r ∈ I and c /∈ J , set J+ = J t {c}. Then

Xrc[I | J ]− q−1[I | J ]Xrc = (q−1 − q)
∑

j∈J
j>c

(−q)−|J∩[c,j]|[I | J+ \ {j}]Xrj(1)

[I | J ]Xrc − qXrc[I | J ] = (q − q−1)
∑

j∈J
j>c

(−q)|J∩[c,j]|Xrj [I | J+ \ {j}](2)

(c) If r /∈ I and c ∈ J , set I+ = I t {r}. Then

Xrc[I | J ]− q−1[I | J ]Xrc = (q−1 − q)
∑

i∈I
i>r

(−q)−|I∩[r,i]|[I+ \ {i} | J ]Xic(1)
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[I | J ]Xrc − qXrc[I | J ] = (q − q−1)
∑

i∈I
i>r

(−q)|I∩[r,i]|Xic[I
+ \ {i} | J ](2)

Proof. Part (a) is clear. To obtain part (b), we may work in Oq(MIt{r′},J+(k)) for some

r′ /∈ I, and so there is no loss of generality in assuming that I ⊂ J+ = {1, . . . , n}. The
desired relations then follow from the second cases of parts (1) and (2) of [16, Lemma
4.5.1]. Part (c) is symmetric to (b). �

5.3. Lemma. Let U, V ⊆ {1, . . . , n} with |U | = |V |, and let u1, u2 ∈ U and v1, v2 ∈ V .
Set Us = U \ {us} and Vs = V \ {vs} for s = 1, 2.

(a) If u1 < u2, then [U1 | V1][U2 | V1] = q−1[U2 | V1][U1 | V1].
(b) If v1 < v2, then [U1 | V1][U1 | V2] = q−1[U1 | V2][U1 | V1].
(c) If u1 < u2 and v1 > v2, then [U1 | V1][U2 | V2] = [U2 | V2][U1 | V1].
(d) If u1 < u2 and v1 < v2, then

[U1 | V1][U2 | V2]− [U2 | V2][U1 | V1] = (q−1 − q)[U2 | V1][U1 | V2].

Proof. Since we may work in Oq(MU,V (k)), there is no loss of generality in assuming that
U = V = {1, . . . , n}. The result then follows from [16, Theorem 5.2.1]. �

5.4. We also require the form of the q-Laplace relations given in [15]. For index sets I
and J , set

`(I; J) =
∣∣{(i, j) ∈ I × J | i > j}

∣∣.

Lemma. (q-Laplace relations) Let I, J ⊆ {1, . . . , n}.
(a) If J1, J2 ⊆ {1, . . . , n} with |J1|+ |J2| = |I|, then

∑

I1tI2=I
|Iν |=|Jν |

(−q)`(I1;I2)[I1 | J1][I2 | J2] =

{
(−q)`(J1;J2)[I | J1 t J2] (J1 ∩ J2 = ∅)

0 (J1 ∩ J2 6= ∅).

(b) If I1, I2 ⊆ {1, . . . , n} with |I1|+ |I2| = |J |, then

∑

J1tJ2=J
|Jν |=|Iν |

(−q)`(J1;J2)[I1 | J1][I2 | J2] =

{
(−q)`(I1;I2)[I1 t I2 | J ] (I1 ∩ I2 = ∅)

0 (I1 ∩ I2 6= ∅).

Proof. [15, Proposition 1.1]. �

5.5. The q-Laplace relations simplify somewhat when one of the index sets is a singleton,
as follows.
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Corollary. Let r, c ∈ {1, . . . , n} and I, J ⊆ {1, . . . , n}.
(a) If |I| = |J |+ 1, then

∑

i∈I
(−q)|[1,i)∩I|Xic[I \ {i} | J ] =

{
(−q)|[1,c)∩J|[I | J t {c}] (c /∈ J)

0 (c ∈ J)
(1)

∑

i∈I
(−q)|(i,n]∩I|[I \ {i} | J ]Xic =

{
(−q)|(c,n]∩J|[I | J t {c}] (c /∈ J)

0 (c ∈ J).
(2)

(b) If |J | = |I|+ 1, then

∑

j∈J
(−q)|[1,j)∩J|Xrj[I | J \ {j}] =

{
(−q)|[1,r)∩I|[I t {r} | J ] (r /∈ I)

0 (r ∈ I)
(1)

∑

j∈J
(−q)|(j,n]∩J|[I | J \ {j}]Xrj =

{
(−q)|(r,n]∩I|[I t {r} | J ] (r /∈ I)

0 (r ∈ I).
(2)

Proof. (a) For the first case, fix J1 = {c} and J2 = J . We will use Lemma 5.4(a), which
involves a sum over I1 t I2 = I with |I1| = 1; thus I1 = {i} and I2 = I \ {i} for some i ∈ I.
In that case, `(I1; I2) = |[1, i) ∩ I| and `(J1; J2) = |[1, c) ∩ J |. Thus, formula (1) follows
directly from Lemma 5.4(a). Formula (2) follows similarly, where this time we fix J1 = J
and J2 = {c}.

(b) These follow from (a) by symmetry. �
5.6. Lemma. Let U, V ⊆ {1, . . . , n} with |U | = |V |.

(a) Let U = I tK, and let J1, J2 ⊆ V such that |J1|+ |J2| = 2|I|+ |K|. Then

∑

K=K′tK′′
|K′|=|J1|−|I|

(−q)`(I;K′)+`(K′;K′′tI)[I tK ′ | J1][K ′′ t I | J2]

=

{
(−q)`(J1∩J2;J1\J2)+`(J1\J2;J2)[I | J1 ∩ J2][U | V ] (|J1 ∩ J2| = |I|)
0 (|J1 ∩ J2| > |I|).

(b) Let V = J t L, and let I1, I2 ⊆ U such that |I1|+ |I2| = 2|J |+ |L|. Then

∑

L=L′tL′′
|L′|=|I1|−|J|

(−q)`(J ;L′)+`(L′;L′′tJ)[I1 | J t L′][I2 | J t L′′]

=

{
(−q)`(I1∩I2;I1\I2)+`(I1\I2;I2)[I1 ∩ I2 | J ][U | V ] (|I1 ∩ I2| = |J |)
0 (|I1 ∩ I2| > |J |).

Proof. By symmetry, we need only prove (a). Note that

|J1|+ |J2| = 2|I|+ |K| = |I|+ |U | ≥ |I|+ |J1 ∪ J2| = |I|+ |J1|+ |J2| − |J1 ∩ J2|,
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whence |J1 ∩ J2| ≥ |I|. Let (1) denote the left hand side of the formula to be established,
and (2) the first choice on the right hand side.

Expand each term (−q)`(I;K′)[ItK ′ | J1] using Lemma 5.4(b) and insert into (1). Thus,
(1) equals

(3)
∑

K=K′tK′′
J1=J ′1tJ ′′1

(−q)`(J ′1;J ′′1 )+`(K′;K′′tI)[I | J ′1][K ′ | J ′′1 ][K ′′ t I | J2].

We next claim that the sum

(4)
∑

U=I1tI2
J1=J ′1tJ ′′1

(−q)`(I1;I2)+`(J ′1;J ′′1 )[I | J ′1][I1 | J ′′1 ][I2 | J2]

equals (3). For I1 as in (4), we have |I|+ |I1| = |J ′1|+ |J ′′1 | = |J1|, and so Lemma 5.4(b)
gives

∑

J1=J ′1tJ ′′1

(−q)`(J ′1;J ′′1 )[I | J ′1][I1 | J ′′1 ] = 0 (I1 6⊆ K),(5)

because I ∩ I1 6= ∅ in this case. On the other hand, for fixed J ′1, J ′′1 as in (4), we have

(6)
∑

U=I1tI2
I1⊆K

(−q)`(I1;I2)[I1 | J ′′1 ][I2 | J2]

=
∑

K=K′tK′′
(−q)`(K′;K′′tI)[K ′ | J ′′1 ][K ′′ t I | J2].

It follows from (5) and (6) that (4) = (3) as claimed, and thus (1) = (4).
For J ′′1 as in (4), we have |J ′′1 | = |K ′| = |K|− |K ′′| = |U |− |K ′′ t I| = |V |− |J2|. Hence,

Lemma 5.4(a) says that

(7)
∑

U=I1tI2
(−q)`(I1;I2)[I1 | J ′′1 ][I2 | J2] =

{
(−q)`(J ′′1 ;J2)[U | V ] (J ′′1 ∩ J2 = ∅)

0 (J ′′1 ∩ J2 6= ∅).

Substituting (7) into (4), it follows that (1) is equal to the sum

(8)
∑

J1=J ′1tJ ′′1

(−q)`(J ′1;J ′′1 )+`(J ′′1 ;J2)[I | J ′1]d(J ′′1 ),

where d(J ′′1 ) = [U | V ] if J ′′1 and J2 are disjoint, but d(J ′′1 ) = 0 otherwise.
If |J1 ∩J2| > |I|, then since any |J ′1| = |I|, we see that J1 ∩J2 * J ′1 and so J ′′1 ∩J2 6= ∅.

Thus in this case all d(J ′′1 ) = 0, and so (1) = (8) = 0.
Finally, suppose that |J1 ∩ J2| = |I|. Then the only time J ′′1 and J2 can be disjoint is

when J ′1 = J1 ∩ J2, and therefore (1) = (8) = (2) in this case. �
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5.7. Lemma. Let r, c ∈ {1, . . . , n} and I, J ⊆ {1, . . . , n} with |I| = |J | ≥ 1. If r > max(I)
and c > max(J), then

[I | J ]Xrc − q2Xrc[I | J ] = (1− q2)[I t {r} | J t {c}].

Proof. Since we may work in Oq(MIt{r},Jt{c}(k)), it suffices to consider the case that
r = c = n and I = J = {1, . . . , n− 1}. Now [I | J ] = A(nn) in the notation of [16, (4.3)].
Set Dq = [I t {r} | J t {c}] = [1 · · ·n | 1 · · ·n].

The first two q-Laplace relations in [16, Corollary 4.4.4] yield

(1)
n∑

j=1

(−q)j−nXnjA(n j) =
n∑

j=1

(−q)n−jA(n j)Xnj = Dq.

Solving for XnnA(nn) and A(nn)Xnn, we obtain

XnnA(nn) = Dq −
∑

j<n

(−q)j−nXnjA(n j)(2)

A(nn)Xnn = Dq −
∑

j<n

(−q)n−jA(n j)Xnj.(3)

For any j, the third relation of [16, Lemma 5.1.2] implies that

(4) XnjA(n j) = A(n j)Xnj + (1− q−2)
∑

l<j

(−q)j−lA(n l)Xnl.

Substituting (4) into (2) for all j < n, we obtain

(5)

XnnA(nn) = Dq −
∑

j<n

(−q)j−nA(n j)Xnj

− (1− q−2)
∑

j<n

∑

l<j

(−q)2j−l−nA(n l)Xnl

= Dq −
∑

l<n

[
(−q)l−n + (1− q−2)

∑

l<j<n

(−q)2j−l−n
]
A(n l)Xnl.

The expression in square brackets can be simplified as follows:

(6)
(−q)l−n + (1− q−2)

∑

l<j<n

(−q)2j−l−n = (−q)l−n
[
1 + (1− q−2)

∑

0<m<n−l
(−q)2m

]

= (−q)n−l−2.

Substituting (6) into (5) and replacing l by j, we obtain

(7) XnnA(nn) = Dq −
∑

j<n

(−q)n−j−2A(n j)Xnj.

Finally, combining (3) with (7), we conclude that

A(nn)Xnn − q2XnnA(nn) = (1− q2)Dq,

as desired. �
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