Ring theoretic properties of quantum grassmannians

A C Kelly*, T H Lenagan and LRigal ${ }^{\dagger}$

Abstract

The $m \times n$ quantum grassmannian, $\mathcal{G}_{q}(m, n)$, with $m \leq n$, is the subalgebra of the algebra $\mathcal{O}_{q}\left(M_{m n}\right)$ of quantum $m \times n$ matrices that is generated by the maximal $m \times m$ quantum minors. Several properties of $\mathcal{G}_{q}(m, n)$ are established. In particular, a k-basis of $\mathcal{G}_{q}(m, n)$ is obtained, and it is shown that $\mathcal{G}_{q}(m, n)$ is a noetherian domain of Gelfand-Kirillov dimension $m(n-m)+1$. The algebra $\mathcal{G}_{q}(m, n)$ is identified as the subalgebra of coinvariants of a natural left coaction of $\mathcal{O}_{q}\left(S L_{m}\right)$ on $\mathcal{O}_{q}\left(M_{m n}\right)$ and it is shown that $\mathcal{G}_{q}(m, n)$ is a maximal order.

2000 Mathematics subject classification: 16W35, 16P40,16P90, 16S38, 17B37, 20G42

Introduction

Fix a base field k, a nonzero scalar $q \in k$ and positive integers m, n with $m \leq n$. The coordinate ring of quantum $m \times n$ matrices, $\mathcal{O}_{q}\left(M_{m n}\right)$, is the k-algebra generated by $m n$ indeterminates $X_{i j}, 1 \leq i \leq m$ and $1 \leq j \leq n$, subject to the following relations:

$$
\begin{align*}
X_{i j} X_{i l} & =q X_{i l} X_{i j}, \\
X_{i j} X_{k j} & =q X_{k j} X_{i j}, \\
X_{i l} X_{k j} & =X_{k j} X_{i l}, \tag{1}\\
X_{i j} X_{k l}-X_{k l} X_{i j} & =\left(q-q^{-1}\right) X_{i l} X_{k j},
\end{align*}
$$

for $1 \leq i<k \leq m$ and $1 \leq j<l \leq n$. It is well-known that $\mathcal{O}_{q}\left(M_{m n}\right)$ can be presented as an iterated skew polynomial algebra over k with the generators added in lexicographic order. As a consequence of this presentation, it is easy to establish that $\mathcal{O}_{q}\left(M_{m n}\right)$ is a noetherian domain of Gelfand-Kirillov dimension $m n$.

We will usually write $\mathcal{O}_{q}\left(M_{n}\right)$ for the algebra $\mathcal{O}_{q}\left(M_{n n}\right)$. In this algebra the quantum determinant, $D_{q}=\operatorname{det}_{q}$ is defined by

$$
D_{q}:=\sum_{\sigma \in S_{n}}(-q)^{l(\sigma)} X_{1, \sigma(1)} \ldots X_{n, \sigma(n)}
$$

[^0]from [13, Theorem 4.6.1], we know that D_{q} is in the centre of $\mathcal{O}_{q}\left(M_{n}\right)$.
Following [6], we use the notation $[I \mid J]$ to denote the quantum determinant of the quantum matrix subalgebra $\mathcal{O}_{q}\left(M_{I, J}\right)$ of $\mathcal{O}_{q}\left(M_{m n}\right)$ generated by the elements $X_{i j}$ with $i \in I$ and $j \in J$, where I and J are index sets with $|I|=|J|$. The element $[I \mid J]$ is the quantum minor determined by the index sets I and J. If $I=\left\{i_{1}, \ldots, i_{s}\right\}$ and $J=\left\{j_{1}, \ldots, j_{s}\right\}$ where the indices are written in ascending order, then we will often denote $[I \mid J]$ by $\left[i_{1} \ldots i_{s} \mid j_{1} \ldots j_{s}\right]$.

In this paper we are interested in studying the ring theoretic properties of a certain subalgebra of $\mathcal{O}_{q}\left(M_{m n}\right)$, the quantum deformation of the homogeneous coordinate ring of the $m \times n$ grassmannian, $\mathcal{G}_{q}(m, n)$. This is a deformation of the classical homogeneous coordinate ring of the grassmannian of m-dimensional k-subspaces of n-dimensional k-space and is generated by the maximal quantum minors of $\mathcal{O}_{q}\left(M_{m n}\right)$; to be more specific, $\mathcal{G}_{q}(m, n)$ is the subalgebra of $\mathcal{O}_{q}\left(M_{m n}\right)$ generated by the $m \times m$ quantum minors of $\mathcal{O}_{q}\left(M_{m n}\right)$. In the quantum grassmannian $\mathcal{G}_{q}(m, n)$, any $m \times m$ quantum minor will involve rows $1, \ldots, m$ of the quantum matrix $\left(X_{i j}\right)$ associated to $\mathcal{O}_{q}\left(M_{m n}\right)$. Thus, to simplify notation, we may denote a quantum minor by its columns only; that is, the quantum minor given by the row set $\{1, \ldots, m\}$ and column set J will be denoted by $[J]$.

Example $\mathcal{G}_{q}(2,4)$ is the k-algebra generated by the 2×2 minors of the 2×4 quantum matrix of $\mathcal{O}_{q}\left(M_{2,4}\right)$: [12], [13], [14], [23], [24] and [34].
Using the relations for $\mathcal{O}_{q}\left(M_{m n}\right)$ and [6, Lemma A.1] we can calculate the following commutation relations:

$$
\begin{array}{cll}
{[12][13]=q[13][12],} & {[12][14]=q[14][12],} & {[12][23]=q[23][12],} \\
{[12][24]=q[24][12],} & {[12][34]=q^{2}[34][12],} & {[13][14]=q[14][13],} \\
{[13][23]=q[23][13],} & {[13][24]=[24][13]+\left(q-q^{-1}\right)[14][23],} \\
{[13][34]=q[34][13],} & {[14][23]=[23][14],} & {[14][24]=q[24][14],} \\
{[14][34]=q[34][14],} & {[23][24]=q[24][23],} & {[23][34]=q[34][23],} \\
& {[24][34]=q[34][24],}
\end{array}
$$

and the Quantum Plücker relation

$$
[12][34]-q[13][24]+q^{2}[14][23]=0
$$

Remark Quantum matrices and quantum grassmannians can be defined in an exactly similar manner over any commutative ring R with an invertible element $q \in R$. In the next section, we shall need to consider quantum grassmannians defined over a Laurent polynomial extension either of a field or of the integers.

1 Fioresi's commutation relations

In [3], Fioresi has developed useful commutation relations for the $m \times m$ quantum minors which generate $\mathcal{G}_{q}(m, n)$. However, Fioresi works in the following setting. The field k that she considers is required to be algebraically closed of characteristic zero, and the quantum matrix algebra that she considers is generated as an algebra over the ring $k\left[q, q^{-1}\right]$, where q is transcendental over k. The first thing that we need to do is to observe that these commutation relations hold over any field k and for any $0 \neq q \in k$. A couple of warnings about notation for readers comparing [3] with this paper. First, because of the choice of relations for $\mathcal{O}_{q}\left(M_{m n}\right)$, it is necessary to replace q by q^{-1} in any relation taken from [3]. Secondly, Fioresi works with the quantum grassmannian defined by the maximal $m \times m$ minors of $\mathcal{O}_{q}\left(M_{n m}\right)$; thus, in any maximal minor, she uses all of the m columns, and a generating quantum minor of the grassmannian is specified by choosing m rows. To deal with this second difference, we can think of both versions of the quantum grassmannian as being subalgebras in the quantum matrix algebra $\mathcal{O}_{q}\left(M_{n}\right)$ and observe that the transpose automorphism, τ, see [13, 3.7.1], transforms Fioresi's quantum grassmannian to our quantum grassmannian.

Recall the following total lexicographic ordering on quantum minors: $\left[j_{1} j_{2} \ldots j_{m}\right]<_{\text {lex }}$ $\left[i_{1} i_{2} \ldots i_{m}\right]$ if and only if there exists an index α such that $j_{l}=i_{l}$ for $l<\alpha$, but $j_{\alpha}<i_{\alpha}$.

Let $[I]=\left[i_{1} \ldots i_{m}\right]$ denote an $m \times m$ quantum minor. If $[I] \neq[1 \ldots m]$, consider the least integer s such that $i_{s}>s$. Let $\sigma([I])$ be the quantum minor obtained from $[I]$ by replacing i_{s} by $i_{s}-1$ and leaving the other indices unchanged. Obviously, $\sigma([I])<_{\text {lex }}[I]$. The standard tower of $[I]$ is the sequence of quantum minors $\left[I_{N}\right]>_{\text {lex }}\left[I_{N-1}\right]>_{\text {lex }} \ldots>_{\text {lex }}\left[I_{1}\right]>_{\text {lex }}\left[I_{0}\right]$ where $\left[I_{N}\right]=[I],\left[I_{l-1}\right]=\sigma\left(\left[I_{l}\right]\right)$, and $\left[I_{0}\right]=[1, \ldots, r]$. If $[I]=[1 \ldots r]$ then the standard tower is defined to be the single quantum minor $[I]$.

We will denote the version of the $m \times n$ quantum grassmannian constructed by Fioresi by $\mathcal{G}_{h}(m, n)$. Note also that the relations in [3] use h where we would use h^{-1}; thus we should interchange h and h^{-1}.

Proposition 1.1 Let K be an algebraically closed field of characteristic zero, and let h be an indeterminate over K. Set $\mathcal{G}_{h}(m, n)$ to be the quantum grassmannian subalgebra of $\mathcal{O}_{h}\left(M\left(K\left[h, h^{-1}\right]\right)_{m n}\right)$. Let $I, J \subseteq\{1, \ldots, n\}$ with $|I|=|J|=m$, and $[I]<_{\text {lex }}[J]$. Set $s=m-|I \cap J|$. Then in $\mathcal{G}_{h}(m, n)$,

$$
[I][J]=h^{s}[J][I]+\sum_{[L]<\operatorname{lex}[I]} \lambda_{[L]}\left(h-h^{-1}\right)^{i_{[L]}}(-h)^{j_{[L]}}[L]\left[L^{\prime}\right],
$$

where $i_{[L]}, j_{[L]} \in \mathbb{N}$ and $\lambda_{[L]}$ is either 0 or 1 , while L^{\prime} is the set $(I \cap J) \cup((I \cup J) \backslash L)$.
Proof In [3, Proposition 2.21 and Theorem 3.6], Fioresi obtains commutation relations of the above form, but with the products $[L]\left[L^{\prime}\right]$ on the right hand side of the equation above more carefully stated. In Proposition 2.21 she first obtains the result for the case that $I \cap J=\emptyset$. In this case, the quantum minors $[L]$ involved are members of the standard tower of $[I]$, and so $[L]<_{\text {lex }}[I]$, as we require. The general case where $I \cap J \neq \emptyset$ is dealt
with in Theorem 3.6. Set $[\widetilde{I}]$ to be the quantum minor obtained from columns $I \backslash(I \cap J)$, and similarly, define $[\widetilde{J}]$. Proposition 2.21 provides a commutation rule for $[\widetilde{I}][\widetilde{J}]$ with terms on the right hand side $[\widetilde{L}]\left[\widetilde{L^{\prime}}\right]$ where $[\widetilde{L}]<_{\text {lex }}[\widetilde{I}]$. In Theorem 3.6, a commutation rule with the same coefficients is then obtained for $[I][J]$ by replacing each $[\widetilde{L}]\left[\widetilde{L^{\prime}}\right]$ by $[\widetilde{L} \cup(I \cap J)]\left[\widetilde{L^{\prime}} \cup(I \cap J)\right]$. Thus, all that needs to be done is to make the easy observation that if $[\widetilde{L}]<_{\text {lex }}[\widetilde{I}]$ then $[\widetilde{L} \cup(I \cap J)]<_{\operatorname{lex}}[\widetilde{I} \cup(I \cap J)]=[I]$.

Corollary 1.2 Let k be any field and q any nonzero element of k. Set $\mathcal{G}_{q}(m, n)$ to be the quantum grassmannian subalgebra of $\mathcal{O}_{q}\left(M_{m n}\right)$. Let $I, J \subseteq\{1, \ldots, n\}$ with $|I|=|J|=m$, and $[I]<_{\text {lex }}[J]$. Set $s=m-|I \cap J|$. Then in $\mathcal{G}_{q}(m, n)$,

$$
[I][J]=q^{s}[J][I]+\sum_{[L]<\operatorname{lex}[I]} \lambda_{[L]}\left(q-q^{-1}\right)^{i_{[L]}}(-q)^{j_{[L]}}[L]\left[L^{\prime}\right],
$$

where $\lambda_{[L]} \in k, i_{[L]}, j_{[L]} \in \mathbb{N}$ and $\lambda_{[L]}$ is either 0 or 1 , while L^{\prime} is the set $(I \cap J) \cup$ $((I \cup J) \backslash L)$.

Proof Proposition 1.1 applies in the case that $K=\mathbb{C}$. In this case, observe that the coefficients of the monomials in the maximal minors are all in $\mathbb{Z}\left[h, h^{-1}\right]$; so that these relations hold in the quantum grassmannian over $\mathbb{Z}\left[h, h^{-1}\right]$. There is then a natural homomorphism from this quantum grassmannian to $\mathcal{G}_{q}(m, n)$, such that $z \mapsto z 1_{k}$ for $z \in \mathbb{Z}$ and $h \mapsto q$, which produces the required relations.

Recall that an element a of an algebra A is a normal element if $a A=A a$. The next result follows immediately from the previous Corollary.

Corollary 1.3 An $m \times m$ quantum minor $[I] \in \mathcal{G}_{q}(m, n)$ is normal modulo the ideal generated by the set $\left\{[J] \mid[J]<_{\text {lex }}[I]\right\}$.

The algebra $\mathcal{O}_{q}\left(M_{m n}\right)$ is a connected \mathbb{N}-graded algebra, graded by the total degree in the canonical generators. Since $\mathcal{G}_{q}(m, n)$ is a subalgebra generated by homogeneous elements of degree m with respect to this grading, $\mathcal{G}_{q}(m, n)$ inherits a connected \mathbb{N}-graded structure in which its canonical generators have degree one.

Theorem 1.4 The quantum grassmannian $\mathcal{G}_{q}(m, n)$ is a noetherian domain.
Proof The quantum grassmannian $\mathcal{G}_{q}(m, n)$ is generated by the $\binom{n}{m}$ quantum minors of size m in $\mathcal{O}_{q}\left(M_{m n}\right)$. Denote these quantum minors by $u_{1}<_{\operatorname{lex}} u_{2}<_{\text {lex }} \ldots<_{\text {lex }} u_{\binom{n}{m}}$. Then by Corollary $1.3,\left\{u_{1}, \ldots, u_{\binom{n}{m}}\right\}$ is a normalising sequence of $\mathcal{G}_{q}(m, n)$; that is, u_{1} is normal and u_{l} is normal modulo the ideal generated by $\left\{u_{1}, \ldots, u_{l-1}\right\}$, for $l>1$. The factor by the ideal generated by this normalising sequence is the base field; so the fact that $\mathcal{G}_{q}(m, n)$ is noetherian follows by repeated use of [1, Lemma 8.2].

Finally, $\mathcal{G}_{q}(m, n)$ is a domain since it is a subalgebra of $\mathcal{O}_{q}\left(M_{m n}\right)$ which is a domain.

Remark If A is a noetherian, connected \mathbb{N}-graded k-algebra such that every nonsimple graded prime factor ring A / P contains a nonzero homogeneous normal element in $\oplus_{i \geq 1}(A / P)_{i}$ then we say that A has enough normal elements ([14]). Thus, the two previous results show that the quantum grassmannian has enough normal elements.

There is a useful isomorphism between $\mathcal{G}_{q}(m, n)$ and $\mathcal{G}_{q^{-1}}(m, n)$ which we now describe. Notice that, if $1 \leq i_{1}<\cdots<i_{m} \leq n, \mathcal{G}_{q}(m, n)$ is isomorphic to the subalgebra of $\mathcal{O}_{q}\left(M_{n}\right)$ generated by the $m \times m$ minors that use rows i_{1}, \ldots, i_{m}, that is, the minors $[I \mid J]$ with $I=\left\{i_{1}, \ldots, i_{m}\right\}$ and $J \subseteq\{1, \ldots, n\},|J|=m$. Let $A:=\mathcal{O}_{q}\left(M_{n}\right)$ with generators $X_{i j}$ and $A^{\prime}:=\mathcal{O}_{q^{-1}}\left(M_{n}\right)$ with generators $X_{i j}^{\prime}$. Take a copy R of $\mathcal{G}_{q}(m, n)$ inside A generated by the $m \times m$ quantum minors that use the first m rows of A, and take a copy R^{\prime} of $\mathcal{G}_{q^{-1}}(m, n)$ that uses the last m rows of A^{\prime}. Following the proof of [7, Corollary 5.9], we see that there is an isomorphism $\delta: A \longrightarrow A^{\prime}$ which takes $[I \mid J]$ to $\left[\omega_{0} I \mid \omega_{0} J\right]^{\prime}$, where $[-\mid-]^{\prime}$ denotes a quantum minor in $A^{\prime}:=\mathcal{O}_{q^{-1}}\left(M_{n}\right)$ and ω_{0} is the longest element of the symmetric group S_{n}; that is, $\omega_{0}(i)=n-i+1$. Note that the isomorphism δ restricted to R produces an isomorphism from R to R^{\prime} that takes a generating minor $[I]$ to the minor $\left[\omega_{0} I\right]^{\prime}$. In particular, note that under this isomorphism, $[12 \ldots m]$, the leftmost minor of $R=\mathcal{G}_{q}(m, n)$, is translated into the rightmost minor $[n-m+1 \ldots n]^{\prime}$ of the quantum grassmannian $R^{\prime}=\mathcal{G}_{q^{-1}}(m, n)$. We denote this induced isomorphism from $\mathcal{G}_{q}(m, n)$ to $\mathcal{G}_{q^{-1}}(m, n)$ by δ also.

As an example of the use of the isomorphism δ, we record the following lemma which we need later.

Lemma 1.5 Let $I \subseteq\{1, \ldots, n\}$ with $|I|=m$. Then

$$
[I][n-m+1 \ldots n]=q^{s}[n-m+1 \ldots n][I]
$$

where $s=m-|I \cap\{n-m+1, \ldots, n\}|$, and thus $[n-m+1 \ldots n]$ is normal in $\mathcal{G}_{q}(m, n)$.
Proof Note that $\omega_{0}\{n-m+1, \ldots, n\}=\{1, \ldots, m\}$. Note also that $|I \cap\{n-m+1, \ldots, n\}|=\left|\omega_{0} I \cap \omega_{0}\{n-m+1, \ldots, n\}\right|=\left|\omega_{0} I \cap\{1, \ldots, m\}\right|$.

By Corollary $1.2,[1 \ldots m]\left[\omega_{0} I\right]=q^{s}\left[\omega_{0} I\right][1 \ldots m]$. Applying δ to this equation gives $[n-m+1 \ldots n]^{\prime}[I]^{\prime}=q^{s}[I]^{\prime}[n-m+1 \ldots n]^{\prime}$ in $\mathcal{G}_{q^{-1}}(m, n)$. This can be rewritten as $[I]^{\prime}[n-m+1 \ldots n]^{\prime}=q^{-s}[n-m+1 \ldots n]^{\prime}[I]^{\prime}$ in $\mathcal{G}_{q^{-1}}(m, n)$. Finally, replacing q^{-1} by q, we obtain

$$
[I][n-m+1 \ldots n]=q^{s}[n-m+1 \ldots n][I]
$$

in $\mathcal{G}_{q}(m, n) . \quad$ -

2 A basis for $\mathcal{G}_{q}(m, n)$

In this section, we obtain a basis for $\mathcal{G}_{q}(m, n)$. This basis is a subset of the basis of preferred products of $\mathcal{O}_{q}\left(M_{m n}\right)$ obtained in [6, Section 1]. First, we adapt the language used in that paper to the grassmannian subalgebra $\mathcal{G}_{q}(m, n)$. Recall from Section 1 that if J is an m-element subset of $\{1, \ldots, n\}$ then $[J]$ denotes the quantum minor $[1, \ldots, m \mid J]$
of $\mathcal{O}_{q}\left(M_{m n}\right)$. Thus, let $m, n \in \mathbb{N}^{*}$ with $n \geq m$. We define a partial ordering on m-element subsets of $\{1, \ldots, n\}$.

Definition 2.1 Let $A, B \subseteq\{1, \ldots, n\}$ with $|A|=m=|B|$. We define a partial ordering, denoted by \leq_{*}. Write A and B in ascending order:

$$
A=\left\{a_{1}<a_{2}<\cdots<a_{m}\right\} \quad \text { and } \quad B=\left\{b_{1}<b_{2}<\cdots<b_{m}\right\} .
$$

Define $A \leq_{*} B$ to mean that $a_{i} \leq b_{i}$ for $i=1, \ldots, m$.
This naturally defines a partial ordering on the generators of $\mathcal{G}_{q}(m, n)$.
Definition 2.2 Let $[I]$ and $[J]$ belong to the generating set of $\mathcal{G}_{q}(m, n)$. Then we write that $[I] \leq_{c}[J]$ if and only if $I \leq_{*} J$.

For example, Figure 1 shows the ordering on generators of $\mathcal{G}_{q}(3,6)$.

Figure 1: The partial ordering \leq_{c} on $\mathcal{G}_{q}(3,6)$

Recall that a tableau is a Young diagram with entries in each box. If each row of a tableau T has length m then we will say that T is an m-tableau. Here, we consider tableaux with entries from $\{1, \ldots, n\}$ and no repetitions in each row. An allowable m-tableau T is an
m-tableau with strictly increasing rows. If an allowable m-tableau T has rows J_{1}, \ldots, J_{s}, then T is preferred if and only if $J_{1} \leq_{*} J_{2} \leq_{*} \ldots \leq_{*} J_{s}$.

Let $I=\{m, m-1, \ldots, 1\}$ and let S be an m-tableau which has the same number of rows as T and such that each row of S is I. Then T is an allowable (preferred) m-tableau if and only if the bitableau $(S \mid T)$ is allowable (preferred) in the sense of [6]. With this in mind, we define the following ordering on allowable m-tableau. Let

$$
T=\left(\begin{array}{c}
J_{1} \\
J_{2} \\
\vdots \\
J_{t}
\end{array}\right), \quad S=\left(\begin{array}{c}
L_{1} \\
L_{2} \\
\vdots \\
L_{s}
\end{array}\right)
$$

Then $T \prec S$ if $t>s$, or if $s=t$ and

$$
\left\{J_{1}, \ldots, J_{t}\right\}<_{\operatorname{lex}}\left\{L_{1}, \ldots, L_{s}\right\}
$$

that is, there exists an index i such that $J_{\alpha}=L_{\alpha}$ for $\alpha<i$, but $J_{i}<_{*} L_{i}$.
Any allowable m-tableau determines a product of quantum minors in the quantum grassmannian as follows.
Definition 2.3 For any (allowable) m-tableau

$$
T=\left(\begin{array}{c}
J_{1} \\
J_{2} \\
\vdots \\
J_{s}
\end{array}\right)
$$

define $[T]=\left[J_{1}\right]\left[J_{2}\right] \ldots\left[J_{s}\right]$.
Definition 2.4 The content of an m-tableau T is the multiset $\left\{1^{t_{1}}, 2^{t_{2}}, \cdots, n^{t_{n}}\right\}$, where t_{i} is the number of times i appears in T.

We will use the content of a tableau to define a natural \mathbb{Z}^{n}-grading on the $m \times n$ quantum grassmannian. There is a \mathbb{Z}^{n}-grading on $\mathcal{O}_{q}\left(M_{m n}\right)$ defined by assigning degree ε_{j} to $X_{i j}$, where ε_{j} for $j=1, \ldots, n$ form the natural basis of \mathbb{Z}^{n}. Since the maximal minors of $\mathcal{O}_{q}\left(M_{m n}\right)$ are homogeneous with respect to this basis, there is an induced \mathbb{Z}^{n}-grading on $\mathcal{G}_{q}(m, n)$: consider a product of minors $[T]$ in $\mathcal{G}_{q}(m, n)$, if the tableau T has content $\left\{1^{t_{1}}, 2^{t_{2}}, \ldots, n^{t_{n}}\right\}$, then $[T]$ is homogeneous of degree $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$. Thus, the degree of a product is dependent on the number of times each column of the $m \times n$ quantum matrix appears in it.
Theorem 2.5 (Generalised Quantum Plücker Relations for Quantum grassmannians)
Let $J_{1}, J_{2}, K \subseteq\{1,2, \ldots, n\}$ be such that $\left|J_{1}\right|,\left|J_{2}\right| \leq m$ and $|K|=2 m-\left|J_{1}\right|-\left|J_{2}\right|>m$. Then

$$
\sum_{K^{\prime} \sqcup K^{\prime \prime}=K}(-q)^{\ell\left(J_{1} ; K^{\prime}\right)+\ell\left(K^{\prime} ; K^{\prime \prime}\right)+\ell\left(K^{\prime \prime} ; J_{2}\right)}\left[J_{1} \sqcup K^{\prime}\right]\left[K^{\prime \prime} \sqcup J_{2}\right]=0,
$$

where $\ell(I ; J)=|\{(i, j) \in I \times J: i>j\}|$.

Proof We work in the algebra $\mathcal{O}_{q}\left(M_{n}\right)$ and apply [6, Proposition B2(a)] with $I_{1}=$ $I_{2}=\{1, \ldots, m\}=: I$. Thus,

$$
\sum_{K^{\prime} \sqcup K^{\prime \prime}=K}(-q)^{\ell\left(J_{1} ; K^{\prime}\right)+\ell\left(K^{\prime} ; K^{\prime \prime}\right)+\ell\left(K^{\prime \prime} ; J_{2}\right)}\left[I \mid J_{1} \sqcup K^{\prime}\right]\left[I \mid K^{\prime \prime} \sqcup J_{2}\right]=0,
$$

since $|K|>m=\left|I_{1} \cup I_{2}\right|$, see [6, B3]. This is the desired relation. -
Lemma 2.6 Let T be an m-tableau with content γ and suppose that T is not preferred. Then
(a) T is not minimal with respect to \prec among m-tableaux with content γ;
(b) $[T]$ can be expressed as a linear combination of products $[S]$, where each S is an m-tableau with content γ such that $S \prec T$.

Proof Follow the proof of [6, Lemma 1.7]. Note that in the proof the only place where the shape of a bitableau might change is near the end of the proof where the right-hand side of the Exchange Formula is considered. In our situation, the right-hand side is zero, as noted in Theorem 2.5.

Note that fixing the content of an m-tableau fixes its shape and thus fixes the number of rows in the m-tableau.

Let $\partial=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{N}^{n}$. Let V be the homogeneous component of degree ∂ in $\mathcal{G}_{q}(m, n)$. Note that V might be zero, and that this is the case if and only if there is no product $[T]$ where T is an m-tableau of content $\left(1^{c_{1}} \ldots n^{c_{n}}\right)$. Also, an element of $\mathcal{G}_{q}(m, n)$ belongs to V if and only if it is a linear combination of products [T], where T runs over all m-tableau with content $\left(1^{c_{1}} \ldots n^{c_{n}}\right)$; that is, the products $[T]$, where T runs over all m-tableau with content $\left(1^{c_{1}} \ldots n^{c_{n}}\right)$ span V.

Theorem 2.7 Let $\partial=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{N}^{n}$, let V be the homogeneous component of $\mathcal{G}_{q}(m, n)$ with degree ∂, and set $\gamma=\left(1^{c_{1}} 2^{c_{2}} \cdots n^{c_{n}}\right)$. The products $[T]$, as T runs over all preferred m-tableau with content γ, form a basis for V.

Proof It is enough to prove that for any m-tableau T with content γ the product $[T]$ is a linear combination of products $[S]$ where S is a preferred m-tableau with content γ. Let \mathcal{E} be the set of m-tableau with content γ; clearly, \mathcal{E} is a finite set and we order it by \prec. We use induction on \prec to show the result. Let $U \in \mathcal{E}$. If U is minimal, then it is preferred, by part (a) of the previous result. Otherwise, by part (b) of the previous result, [U] is a linear combination of products $[S]$, where $S \in \mathcal{E}$ and $S \prec U$. Thus, by an induction argument applied to S, we may conclude that $[U]$ is a linear combination of products $[S]$ where S is a preferred m-tableau with content γ.

Recall that $\mathcal{G}_{q}(m, n)$ is a subalgebra of $\mathcal{O}_{q}\left(M_{m n}\right)$ and notice that the products [T], as T runs over all preferred m-tableaux of content γ, form a subset of the basis of $\mathcal{O}_{q}\left(M_{m n}\right)$ constructed in [6]. Therefore, they are linearly independent and we have the result.

Corollary 2.8 The products [T], as T runs over all preferred m-tableaux, form a basis for $\mathcal{G}_{q}(m, n)$.

This basis can be used to calculate the Gelfand-Kirillov dimension of the $m \times n$ quantum grassmannian.

Consider the partial ordering \leq_{c} on the generating minors of $\mathcal{G}_{q}(m, n)$. A saturated path between two minors $a<_{c} b$ will be an 'upwards path' $a=a_{1}<_{c} a_{2}<_{c} \ldots<_{c} a_{l}=b$ of minors such that no additional terms can be added; that is, for any index i there is no minor d such that $a_{i}<_{c} d<_{c} a_{i+1}$. The length of such a saturated path is defined to be l. For example, a saturated path between the minors [134] and [256] in $\mathcal{G}_{q}(3,6)$ is

$$
[134]<_{c}[234]<_{c}[235]<_{c}[236]<_{c}[246]<_{c}[256] .
$$

The length of this saturated path is 6 .
A maximal path is a saturated path between the two minors $[1 \ldots m]$ and $[n-m+1 \ldots n]$. It is easy to check that any maximal path has length $m(n-m)+1$.
Proposition 2.9 Let $G=\mathcal{G}_{q}(m, n)$ and let α be the length of a maximal path in G. Then

$$
\operatorname{GKdim}\left(\mathcal{G}_{q}(m, n)\right)=\alpha=m(n-m)+1
$$

Proof Let V be the k-subspace of G spanned by the $m \times m$ minors which generate G. Then $\operatorname{GKdim}(G)=\overline{\lim } \log _{n} d_{V}(n)$ where $d_{V}(n)=\operatorname{dim}_{k}\left(\sum_{i=0}^{n} V^{i}\right)$. Let $a_{1}, a_{2}, \ldots, a_{\alpha}$ be a maximal path in G. Then $a_{1}^{s_{1}} a_{2}^{s_{2}} \ldots a_{\alpha}^{s_{\alpha}} \in V^{n+1}$ whenever $\sum_{i=1}^{\alpha} s_{i}=n+1$. The set $\left\{a_{1}^{s_{1}} a_{2}^{s_{2}} \ldots a_{\alpha}^{s_{\alpha}} \mid \Sigma s_{i}=n+1\right\}$ is linearly independent. Therefore

$$
\operatorname{dim}_{k}\left(V^{n+1}\right) \geq\left|\left\{a_{1}^{s_{1}} a_{2}^{s_{2}} \ldots a_{\alpha}^{s_{\alpha}} \mid \Sigma s_{i}=n+1\right\}\right|=\binom{n+\alpha}{\alpha-1}
$$

which is a polynomial in n of degree $\alpha-1$. It follows that $\operatorname{GKdim}(G) \geq \alpha$.
Let $a_{i_{1}} \ldots a_{i_{n}} \in V^{n}$. By Theorem 2.7, $a_{i_{1}} \ldots a_{i_{n}}$ may be rewritten as a linear combination of preferred products from V^{n}.

There are finitely many maximal paths in $\mathcal{G}_{q}(m, n)$. Suppose there are c such paths and index them $1, \ldots, c$. Let $a_{1}<_{c} a_{2}<_{c} \ldots<_{c} a_{\alpha}$ be the i th maximal path and let $W_{i}^{(n)}$ denote the subspace generated by monomials $a_{1}^{s_{1}} \ldots a_{\alpha}^{s_{\alpha}}$ such that $\Sigma s_{j}=n$. The above observation shows that $V^{n} \subseteq \sum_{i=1}^{c} W_{i}^{(n)}$. Consider $\operatorname{dim}\left(W_{i}^{(n)}\right)$. The products $a_{1}^{s_{1}} \ldots a_{\alpha}^{s_{\alpha}}$ such that $\Sigma s_{j}=n$ are linearly independent. Therefore

$$
\operatorname{dim}\left(W_{i}^{(n)}\right)=\left|\left\{a_{1}^{s_{1}} \ldots a_{\alpha}^{s_{\alpha}} \mid \sum s_{i}=n\right\}\right|=\left|\left\{\left(s_{1}, \ldots, s_{\alpha}\right) \in \mathbb{N}^{\alpha} \mid \sum s_{i}=n\right\}\right|
$$

Therefore $\operatorname{dim}\left(W_{i}^{(n)}\right)=\operatorname{dim}\left(W_{j}^{(n)}\right)$ for all $i, j \in\{1, \ldots, c\}$. Thus

$$
\operatorname{dim}\left(V^{n}\right) \leq \operatorname{dim}\left(\sum_{i=1}^{c} W_{i}^{(n)}\right) \leq c \operatorname{dim}\left(W_{1}^{(n)}\right)=c\binom{n+\alpha-1}{\alpha-1}
$$

and $d_{V}(n) \leq c \sum_{i=0}^{n}\binom{i+\alpha-1}{\alpha-1}$, a polynomial of degree α. It follows that $\operatorname{GKdim}(G) \leq \alpha$. Hence, $\operatorname{GKdim}(G)=\alpha=m(n-m)+1$.

For example, $\operatorname{GKdim}\left(\mathcal{G}_{q}(2,4)\right)=2(4-2)+1=5$.

3 Noncommutative Dehomogenisation

If R is a commutative \mathbb{N}-graded algebra, and x is a homogeneous nonzerodivisor in degree one, then the dehomogenisation of R at x is usually defined to be the factor algebra $R /(x-1) R$, [2, Appendix 16.D]. This definition is unsuitable in a noncommutative algebra if the element x is merely normal rather than central: in this case, the factor algebra is often too small to be useful. For example, let R be the quantum plane $k_{q}[x, y]$ with $x y=q y x$ and $q \neq 1$. Setting $x=1$ forces $y=0$; so that the factor algebra $R /\langle x-1\rangle$ is isomorphic to k rather than being an algebra of Gelfand-Kirillov dimension 1, as one might hope. However, in the commutative case, an alternative approach is to observe that the localised algebra $S:=R\left[x^{-1}\right]$ is \mathbb{Z}-graded, $S=\oplus_{i \in \mathbb{Z}} S_{i}$, and that $S_{0} \cong R /(x-1) R$. If x is a normal nonzerodivisor of degree one in a noncommutative \mathbb{N}-graded algebra $R=\oplus_{i \in \mathbb{N}} R_{i}$, then one can form the Ore localisation $R\left[x^{-1}\right]=: S$, and then this second approach does yield a useful algebra in the noncommutative case. Indeed, for $i, j \in \mathbb{N}$ denote by $R_{i} x^{-j}$ the k-subspace of elements of S that can be written as $r x^{-j}$ with $r \in R_{i}$; clearly, $R_{i} x^{-j} \subseteq R_{i+1} x^{-(j+1)}$. For $l \in \mathbb{Z}$, set $S_{l}=\sum_{t \geq 0} R_{l+t} x^{-t}=\cup_{t \geq 0} R_{l+t} x^{-t}$. Then S is a \mathbb{Z}-graded algebra with $S=\oplus_{l \in \mathbb{Z}} S_{l}$.

Definition 3.1 Let $R=\oplus R_{i}$ be an \mathbb{N}-graded k-algebra and let x be a regular homogeneous normal element of R of degree one. Then the dehomogenisation of R at x, written $\operatorname{Dhom}(R, x)$, is defined to be the zero degree subalgebra S_{0} of the \mathbb{Z}-graded algebra $S:=R\left[x^{-1}\right]$.

It is easy to check that $\operatorname{Dhom}(R, x)=\sum_{i=0}^{\infty} R_{i} x^{-i}=\cup_{i=0}^{\infty} R_{i} x^{-i}$. In particular, if $R=k\left[R_{1}\right]$ then $\operatorname{Dhom}(R, x)=\sum_{i=0}^{\infty}\left(R_{1} x^{-1}\right)^{i}=\cup_{i=0}^{\infty}\left(R_{1} x^{-1}\right)^{i}$, and further, if $R_{1}=$ $k a_{1}+\cdots+k a_{s}$ then $\operatorname{Dhom}(R, x)=k\left[a_{1} x^{-1}, \ldots, a_{s} x^{-1}\right]$.

Denote by σ the automorphism of S given by $\sigma(s)=x s x^{-1}$ for $s \in S$. Note that σ induces an automorphism of S_{0}, also denoted by σ.

Lemma 3.2 Let R be an \mathbb{N}-graded algebra and let x be a regular normal homogeneous element of degree 1. Then there is an isomorphism

$$
\theta: \operatorname{Dhom}(R, x)\left[y, y^{-1} ; \sigma\right] \longrightarrow R\left[x^{-1}\right]
$$

which is the identity on $\operatorname{Dhom}(R, x)$ and sends y to x.
Proof The existence of θ is clear from the universal property of skew-Laurent extensions. It is easy to check that θ is an isomorphism.

Some properties of dehomogenisation follow in an elementary way from this result.
Corollary 3.3 Let $R=\oplus_{i \geq 0} R_{i}$ be an \mathbb{N}-graded algebra and let x be a regular homogeneous normal element of degree one.
(i) R is a domain if and only if $\operatorname{Dhom}(R, x)$ is a domain.
(ii) If R is noetherian then $\operatorname{Dhom}(R, x)$ is noetherian.
(iii) If R is locally finite (that is, $\operatorname{dim}\left(R_{i}\right)<\infty$ for all $i \in \mathbb{N}$) then $\operatorname{GKdim}(R)=$ $\operatorname{GKdim}(\operatorname{Dhom}(R, x))+1$.

Proof Point (i) follows at once from the isomorphism in Lemma 3.2.
(ii) If R is noetherian then so is $R\left[x^{-1}\right]$ and thus $\operatorname{Dhom}(R, x)\left[y, y^{-1} ; \sigma\right]$ is noetherian, by Lemma 3.2. As is well-known, since σ is an automorphism of $\operatorname{Dhom}(R, x)$, this implies that $\operatorname{Dhom}(R, x)$ is noetherian.
(iii) Let σ be the automorphism of R induced by conjugation by x. It is clear that σ is a graded automorphism; and so from the local finiteness of R, we see that the elements x^{i}, for $i \geq 1$, are local normal elements in the sense of [9, p168]. By using [9, 12.4.4], it follows that $\operatorname{GKdim}\left(R\left[x^{-1}\right]\right)=\operatorname{GKdim}(R)$. On the other hand, the automorphism σ induced on S_{0} by conjugation by x in S is locally algebraic in the sense of [9, p164]. Indeed, $S_{0}=\cup_{t \geq 0} R_{t} x^{-t}$ and for all $t \in \mathbb{N}$ the k-subspace $R_{t} x^{-t}$ is a finite dimensional σ-stable subspace of S_{0}. It follows from $[9, \mathrm{p} 164]$ that $\operatorname{GKdim}\left(S_{0}\left[y, y^{-1} ; \sigma\right]\right)=\operatorname{GKdim}\left(S_{0}\right)+1$. The conclusion follows from Lemma 3.2.

4 Dehomogenisation of $\mathcal{G}_{q}(m, n)$

In the classical commutative theory it is a well-known and basic result that the dehomogenisation of the homogeneous coordinate ring of the $m \times n$ grassmannian at the minor $[n-m+1, \ldots, n]$ is isomorphic to the coordinate ring of $m \times(n-m)$ matrices; that is,

$$
\frac{\mathcal{O}(\mathcal{G}(m, n))}{\langle[n-m+1, \ldots, n]-1\rangle} \cong \mathcal{O}\left(M_{m, n-m}(k)\right) .
$$

In this section, we show that the corresponding result holds for $\mathcal{G}_{q}(m, n)$ when we use the noncommutative dehomogenisation defined in the previous section. Recall from Lemma 1.5 that $[n-m+1, \ldots, n]$ is a normal element of $\mathcal{G}_{q}(m, n)$: in fact, it q-commutes with the other maximal minors, and this will be important in calculations.

Recall that we may consider $\mathcal{G}_{q}(m, n)$ to be a \mathbb{N}-graded algebra with each $m \times m$ quantum minor given degree 1. Set $x=[n-m+1, \ldots, n]$ and $S:=\mathcal{G}_{q}(m, n)\left[x^{-1}\right]$, and note that $\operatorname{Dhom}\left(\mathcal{G}_{q}(m, n),[n-m+1, \ldots, n]\right)=S_{0}$ is generated by elements of the form $\{I\}:=[I][n-m+1, \ldots, n]^{-1}$ with $I \subseteq\{1, \ldots, n\}$ and $|I|=m$, see Section 3 .

Now let u be a positive integer and consider $\mathcal{O}_{q}\left(M_{u}\right)$. If $I \subseteq\{1, \ldots, u\}$ then $\widetilde{I}:=$ $\{1, \ldots, u\} \backslash I$. In an exponent I denotes the sum of the indices occuring in the index set I.

Let D_{q} be the quantum determinant of $\mathcal{O}_{q}\left(M_{u}\right)$. Since D_{q} is a central element, we can invert it to form the $u \times u$ quantum general linear group $\mathcal{O}_{q}\left(G L_{u}\right):=\mathcal{O}_{q}\left(M_{u}\right)\left[D_{q}^{-1}\right]$. The algebra $\mathcal{O}_{q}\left(G L_{u}\right)$ is a Hopf algebra, with antipode S, and counit ε.

There is a useful antiendomorphism $\Gamma: \mathcal{O}_{q}\left(M_{u}\right) \longrightarrow \mathcal{O}_{q}\left(M_{u}\right)$ defined on generators by $\Gamma\left(X_{i j}\right)=(-q)^{i-j}[\widetilde{\{j\}} \mid \widetilde{\{i\}}]$, see [13, Corollary 5.2.2]. We need to know the effect of Γ on quantum minors. This is given in the following lemma, which is presumably well-known but we give a proof since we have been unable to find a clear exposition. Recall that $\Delta([I \mid J])=\sum_{|K|=|I|}[I \mid K] \otimes[K \mid J]$, where Δ is the comultiplication map on $\mathcal{O}_{q}\left(M_{u}\right)$, by $[12$, (1.9)]. Recall also that $\varepsilon([I \mid J])$ equals 1 if $I=J$ and 0 otherwise.

Lemma 4.1 Let $[I \mid J]$ be an $r \times r$ quantum minor in $\mathcal{O}_{q}\left(M_{u}\right)$. Then,
(i) $S([I \mid J])=(-q)^{I-J}[\widetilde{J} \mid \widetilde{I}] D_{q}^{-1}$
(ii) $\Gamma([I \mid J])=(-q)^{I-J}[\widetilde{J} \mid \widetilde{I}] D_{q}^{r-1}$

Proof We establish the first claim by calculating the expression

$$
\sum_{K, L}(-q)^{L-J} S([I \mid K])[K \mid L][\widetilde{J} \mid \widetilde{L}] D_{q}^{-1}
$$

in two different ways.
First,

$$
\begin{aligned}
\sum_{K, L}(-q)^{L-J} S([I \mid K])[K \mid L][\widetilde{J} \mid \widetilde{L}] D_{q}^{-1} & =\sum_{K} S([I \mid K])\left\{\sum_{L}(-q)^{L-J}[K \mid L][\widetilde{J} \mid \widetilde{L}] D_{q}^{-1}\right\} \\
& =\sum_{K} S([I \mid K]) \varepsilon([K \mid J]) 1=S([I \mid J])
\end{aligned}
$$

by using the first equality of [13, 4.4.3].
Secondly,

$$
\begin{aligned}
\sum_{K, L}(-q)^{L-J} S([I \mid K])[K \mid L][\widetilde{J} \mid \widetilde{L}] D_{q}^{-1} & =\sum_{L}\left\{\sum_{K} S([I \mid K])[K \mid L]\right\}(-q)^{L-J}[\widetilde{J} \mid \widetilde{L}] D_{q}^{-1} \\
& =\sum_{L} \varepsilon([I \mid L])(-q)^{L-J}[\widetilde{J} \mid \widetilde{L}] D_{q}^{-1} \\
& =(-q)^{I-J}[\widetilde{J} \mid \widetilde{I}] D_{q}^{-1}
\end{aligned}
$$

by using the defining property of the antipode.
The second claim follows easily from the first, since $S([I \mid J])=\Gamma([I \mid J]) D_{q}^{-r}$ for $r \times r$ quantum minors $[I \mid J]$. This is easily established from the fact that it holds on the generators $X_{i j}$ and that S and Γ are anti-endomorphisms.

We will need the anti-endomorphism $\Gamma \circ \tau: \mathcal{O}_{q}\left(M_{u}\right) \longrightarrow \mathcal{O}_{q}\left(M_{u}\right)$ defined by $\Gamma \circ \tau\left(X_{i j}\right)=$ $(-q)^{j-i}[\widetilde{\{i\}} \widetilde{\mid\{j\}}]$ for $1 \leq i, j \leq u$. Here, τ is the transposition automorphism given in [13, Proposition 3.7.1(1)]. Note that, by Lemma 4.1, the effect of $\Gamma \circ \tau$ on the $r \times r$ quantum minor $[I \mid J]$ is given by $\Gamma \circ \tau([I \mid J])=(-q)^{J-I}[\widetilde{I} \mid \widetilde{J}] D_{q}^{r-1}$.

Given $I=\left\{i_{1}, \ldots, i_{m}\right\} \subseteq\{1, \ldots, n\}$ the set $I \backslash\left\{i_{k}\right\}$ is denoted by $\left\{i_{1}, \ldots, \widehat{i_{k}}, \ldots, i_{m}\right\}$. Given two sets $I, J \subseteq\{1, \ldots, n\}$ recall that

$$
\ell(I ; J):=|\{(i, j) \in I \times J: i>j\}| .
$$

In the next proof, and throughout the paper, $(-q)^{\bullet}$ denotes a power of $-q$ that is not necessary to keep track of explicitly.

Lemma 4.2 The k-algebra $\operatorname{Dhom}\left(\mathcal{G}_{q}(m, n),[n-m+1, \ldots, n]\right)=S_{0}$ is generated as an algebra by the elements $\{j \quad n-m+1 \ldots \widehat{i} \ldots n\}$ for $1 \leq j \leq n-m<i \leq n$.

Proof We know that S_{0} is generated by the elements $\{I\}:=[I][n-m+1, \ldots, n]^{-1}$, where $I \subseteq\{1, \ldots, n\}$ and $|I|=m$. We show that each such element can be expressed as a k-linear combination of products of elements of the form $\{j \quad n-m+1 \ldots \hat{i} \ldots n\}$, where $1 \leq j \leq n-m<i \leq n$. Denote by A the subalgebra of S_{0} generated by the elements $\{j \quad n-m+1 \ldots \widehat{i} \ldots n\}$.

Let $I=\left\{i_{1} \leq \ldots \leq i_{m}\right\} \neq\{n-m+1, \ldots, n\}$ be an ordered subset of $\{1, \ldots, n\}$ and let $2 \leq t \leq m+1$ be such that $i_{t} \geq n-m+1$ but $i_{t-1}<n-m+1$; that is, $I \cap\{1, \ldots, n-m\}=\left\{i_{1}, \ldots i_{t-1}\right\}$. We will use induction on t to show that $\{I\} \in A$.

If $t=2$, then I is of the form $\{j n-m+1 \ldots \widehat{i} \ldots n\}$ and so $\{I\} \in A$. Consider a fixed $t \in\{3, \ldots, m+1\}$ and suppose that the result is true for $t-1$. Now consider $[I]=\left[i_{1} \ldots i_{m}\right]$ with $I \cap\{1, \ldots, n-m\}=\left\{i_{1}, \ldots i_{t-1}\right\}$. We use the generalised Quantum Plücker relations (Theorem 2.5) to rewrite the product $[n-m+1, \ldots, n]\left[i_{1} \ldots i_{m}\right]$.

Let $K=\left\{i_{1}, n-m+1, \ldots, n\right\}, J_{1}=\emptyset$ and $J_{2}=\left\{i_{2}, \ldots, i_{m}\right\}$. Then

$$
\sum_{K^{\prime} \sqcup K^{\prime \prime}=K}(-q)^{\ell\left(K^{\prime} ; K^{\prime \prime}\right)+\ell\left(K^{\prime \prime} ; J_{2}\right)}\left[K^{\prime}\right]\left[K^{\prime \prime} \sqcup J_{2}\right]=0
$$

where either

$$
K^{\prime}=\{n-m+1, \ldots, n\} \text { and } K^{\prime \prime}=\left\{i_{1}\right\},
$$

or

$$
K^{\prime}=\left\{i_{1}\right\} \cup\{n-m+1, \ldots, \widehat{l}, \ldots, n\} \text { and } K^{\prime \prime}=\{l\}
$$

where $n-m+1 \leq l \leq n$ and $l \notin\left\{i_{2}, \ldots, i_{m}\right\}$. Let $S=\{n-m+1, \ldots, n\} \backslash\left\{i_{2}, \ldots, i_{m}\right\}$. By re-arranging the above equation, we obtain

$$
[n-m+1, \ldots, n]\left[i_{1} \ldots i_{m}\right]=-\sum_{l \in S}(-q)^{\bullet}\left[i_{1} n-m+1 \ldots \widehat{l} \ldots n\right]\left[l i_{2} \ldots i_{m}\right]
$$

Multiplying through by $[n-m+1, \ldots, n]^{-2}$ from the right, and using Lemma 1.5 gives

$$
\left\{i_{1} \ldots i_{m}\right\}=\sum_{l \in S} \pm(-q)^{\bullet}\left\{i_{1} n-m+1 \ldots \widehat{l} \ldots n\right\}\left\{l i_{2} \ldots i_{m}\right\}
$$

Now $\left\{l, i_{2}, \ldots, i_{m}\right\} \cap\{1, \ldots, n-m\}=\left\{i_{2}, \ldots, i_{t-1}\right\}$ and so, by the inductive hypothesis, $\left\{l i_{2} \ldots i_{m}\right\} \in A$. Clearly $\left\{i_{1} n-m+1 \ldots \hat{l} \ldots n\right\} \in A$, therefore $\left\{i_{1} \ldots i_{m}\right\} \in A$. This completes the inductive step and the result follows.

Theorem 4.3 There is an isomorphism

$$
\rho: \mathcal{O}_{q}\left(M_{m, n-m}\right) \longrightarrow \operatorname{Dhom}\left(\mathcal{G}_{q}(m, n),[n-m+1, \ldots, n]\right)
$$

which is defined on generators by $\rho\left(X_{i j}\right)=\{j n-m+1 \ldots \widehat{-i+1} \ldots n\}$, for $1 \leq i \leq m$ and $1 \leq j \leq n-m$.

Proof In order to show that ρ is a homomorphism we have to show that the images of the $X_{i j}$ under ρ still obey the relevant commutation relations. We will make repeated use of the anti-endomorphism $\Gamma \circ \tau$ defined before Lemma 4.2. There are four types of products to consider.
(1) Let $1 \leq i<l \leq m$ and $1 \leq j \leq n-m$. Then $X_{i j} X_{l j}=q X_{l j} X_{i j}$, and so we must show that $\rho\left(X_{i j}\right) \rho\left(X_{l j}\right)=q \rho\left(X_{l j}\right) \rho\left(X_{i j}\right)$. Let $t=n+1-i$ and $s=n+1-l$. Note that $s<t$, and consider the product

$$
\left[\begin{array}{cc}
j & n-m+1 \ldots \widehat{t} \ldots n]\left[\begin{array}{ll}
j & n-m+1 \ldots \widehat{s} \ldots n
\end{array}\right],{ }^{2} \ldots .
\end{array}\right.
$$

in $\mathcal{G}_{q}(m, n)$. We can think of this as a product in $\mathcal{O}_{q}\left(M_{m+1}\right)$ where the rows are indexed by $1, \ldots, m+1$ and the columns by $j, n-m+1, \ldots, n$. Apply the anti-endomorphism $\Gamma \circ \tau$ to the commutation relation $X_{m+1, s} X_{m+1, t}=q X_{m+1, t} X_{m+1, s}$ we obtain:

$$
\begin{aligned}
{[j n-m+1 \ldots \widehat{t} \ldots n] } & {[j n-m+1 \ldots \widehat{s} \ldots n] } \\
& =q[j n-m+1 \ldots \widehat{s} \ldots n][j n-m+1 \ldots \widehat{t} \ldots n] .
\end{aligned}
$$

Multiplying through this equation on the right by $[n-m+1, \ldots, n]^{-2}$ on each side and using Lemma 1.5 gives

$$
\begin{aligned}
\{j n-m+1 \ldots \widehat{t} \ldots n\} & \{j n-m+1 \ldots \widehat{s} \ldots n\} \\
& =q\{j n-m+1 \ldots \widehat{s} \ldots n\}\{j n-m+1 \ldots \widehat{t} \ldots n\}
\end{aligned}
$$

that is, $\rho\left(X_{i j}\right) \rho\left(X_{l j}\right)=q \rho\left(X_{l j}\right) \rho\left(X_{i j}\right)$.
(2) Let $1 \leq j<r \leq n-m$ and $1 \leq i \leq m$. Then $X_{i j} X_{i r}=q X_{i r} X_{i j}$. Let $t=n+1-i$ and, as in (1), think of the product

$$
[j n-m+1 \ldots \widehat{t} \ldots n][r n-m+1 \ldots \widehat{t} \ldots n]
$$

as sitting inside $\mathcal{O}_{q}\left(M_{m+1}\right)$ where the rows are indexed by $1, \ldots, m+1$ and the columns by $j, r, n-m+1, \ldots \widehat{t}, \ldots, n$. Then $\Gamma \circ \tau$ applied to the relation $X_{m+1, j} X_{m+1, r}=q X_{m+1, r} X_{m+1, j}$ in $\mathcal{O}_{q}\left(M_{m+1}\right)$ gives us

$$
\begin{aligned}
{[j n-m+1 \ldots \widehat{t} \ldots n] } & {[r n-m+1 \ldots \widehat{t} \ldots n] } \\
& =q[r n-m+1 \ldots \widehat{t} \ldots n][j n-m+1 \ldots \widehat{t} \ldots n] .
\end{aligned}
$$

Therefore, multiplying through this equation on the right by $[n-m+1, \ldots, n]^{-2}$ and using Lemma 1.5, we get

$$
\begin{aligned}
\{j n-m+1 \ldots \widehat{t} \ldots n\} & \{r n-m+1 \ldots \widehat{t} \ldots n\} \\
& =q\{r n-m+1 \ldots \widehat{t} \ldots n\}\{j \quad n-m+1 \ldots \widehat{t} \ldots n\}
\end{aligned}
$$

that is, $\rho\left(X_{i j}\right) \rho\left(X_{i r}\right)=q \rho\left(X_{i r}\right) \rho\left(X_{i j}\right)$
(3) Let $1 \leq i<l \leq m$, and $1 \leq j<r \leq n-m$. Then

$$
X_{i j} X_{l r}=X_{l r} X_{i j}+\left(q-q^{-1}\right) X_{l j} X_{i r}
$$

Let $t=n+1-i$ and $s=n+1-l$. Note that $n-m+1 \leq s<t \leq n$, and that $j<r<s<t$. Consider the product

$$
[j n-m+1 \ldots \widehat{t} \ldots n][r n-m+1 \ldots \widehat{s} \ldots n]
$$

as a product in $\mathcal{O}_{q}\left(M_{m+2}\right)$, where the $m+2$ rows are indexed by $1, \ldots, m+2$ and the columns by $j, r, n-m+1, \ldots, n$.

The relation

$$
[13][24]=[24][13]+\left(q-q^{-1}\right)[14][23]
$$

that we calculated earlier for $\mathcal{G}_{q}(2,4)$ shows that, in $\mathcal{O}_{q}\left(M_{m+2}\right)$,

$$
[I \mid j s][I \mid r t]=[I \mid r t][I \mid j s]+\left(q-q^{-1}\right)[I \mid j t][I \mid r s]
$$

where $I=\{m+1, m+2\}$, since $j<r<s<t$. By applying the anti-endomorphism $\Gamma \circ \tau$ to this relation, we obtain

$$
\begin{aligned}
{[j n-m} & +1 \ldots \widehat{t} \ldots n][r n-m+1 \ldots \widehat{s} \ldots n] \\
= & {[r n-m+1 \ldots \widehat{s} \ldots n][j n-m+1 \ldots \widehat{t} \ldots n] } \\
& +\left(q-q^{-1}\right)[j n-m+1 \ldots \widehat{s} \ldots n][r n-m+1 \ldots \widehat{t} \ldots n]
\end{aligned}
$$

in $\mathcal{G}_{q}(m, n)$. Multiplying through by $[n-m+1, \ldots, n]^{-2}$ and using Lemma 1.5 we get

$$
\begin{aligned}
\{j n-m+ & 1 \ldots \widehat{t} \ldots n\}\{r n-m+1 \ldots \widehat{s} \ldots n\} \\
= & \{r n-m+1 \ldots \widehat{s} \ldots n\}\{j n-m+1 \ldots \widehat{t} \ldots n\} \\
& +\left(q-q^{-1}\right)\{j n-m+1 \ldots \widehat{s} \ldots n\}\{r n-m+1 \ldots \widehat{t} \ldots n\} ;
\end{aligned}
$$

that is, $\rho\left(X_{i j}\right) \rho\left(X_{l r}\right)=\rho\left(X_{l r}\right) \rho\left(X_{i j}\right)+\left(q-q^{-1}\right) \rho\left(X_{l j}\right) \rho\left(X_{i r}\right)$, as required.
(4) Let $1 \leq i<l \leq m$ and $1 \leq j<r \leq n-m$. Then

$$
X_{i r} X_{l j}=X_{l j} X_{i r}
$$

Let $t=n+1-i$ and $s=n+1-l$ so that $n-m+1 \leq s<t \leq n$ and $j<r<s<t$. Arguing as in (3), the relation [23][14] $=[14][23]$ in $\mathcal{G}_{q}(2,4)$ produces, in $\mathcal{O}_{q}\left(M_{m+2}\right)$, the relation

$$
[I \mid r s][I \mid j t]=[I \mid j t][I \mid r s] .
$$

Applying $\Gamma \circ \tau$ to this relation gives

$$
\begin{aligned}
{[r n-m+1 \ldots \widehat{t} \ldots n] } & {[j n-m+1 \ldots \widehat{s} \ldots n] } \\
& =[j n-m+1 \ldots \widehat{s} \ldots n][r n-m+1 \ldots \widehat{t} \ldots n] .
\end{aligned}
$$

Multiplying through by $[n-m+1, \ldots, n]^{-2}$ we get

$$
\begin{aligned}
\{r n-m+1 \ldots \widehat{t} \ldots n\} & \{j n-m+1 \ldots \widehat{s} \ldots n\} \\
& =\{j n-m+1 \ldots \widehat{s} \ldots n\}\{r n-m+1 \ldots \widehat{t} \ldots n\}
\end{aligned}
$$

that is, $\rho\left(X_{i r}\right) \rho\left(X_{l j}\right)=\rho\left(X_{l j}\right) \rho\left(X_{i r}\right)$, as required.
Thus, ρ extends to a homomorphism. The images of the generators under ρ generate $\operatorname{Dhom}\left(\mathcal{G}_{q}(m, n),[n-m+1, \ldots, n]\right)$, by Lemma 4.2 ; so ρ is surjective. We show that ρ is injective by comparing Gelfand-Kirillov dimensions. If ρ was not injective, then $\operatorname{GKdim}\left(\operatorname{Dhom}\left(\mathcal{G}_{q}(m, n),[n-m+1, \ldots, n]\right)<\operatorname{GKdim}\left(\mathcal{O}_{q}\left(M_{m, n-m}\right)\right)=m(n-m)\right.$, since $\mathcal{O}_{q}\left(M_{m, n-m}\right)$ is a domain. However, by Corollary 3.3 and Proposition 2.9, we know that $\operatorname{GKdim}\left(\operatorname{Dhom}\left(\mathcal{G}_{q}(m, n),[n-m+1, \ldots, n]\right)=\operatorname{GKdim}\left(\mathcal{G}_{q}(m, n)\right)-1=m(n-m)+1-1=\right.$ $m(n-m)$. Thus, ρ is injective and hence ρ is an isomorphism.

Corollary 4.4 Let ϕ be the automorphism of $\mathcal{O}_{q}\left(M_{m, n-m}\right)$ defined by $\phi\left(X_{i j}\right)=q^{-1} X_{i j}$, for $1 \leq i \leq m$ and $1 \leq j \leq n-m$. Then

$$
\mathcal{O}_{q}\left(M_{m, n-m}\right)\left[y, y^{-1} ; \phi\right] \longrightarrow \mathcal{G}_{q}(m, n)\left[[n-m+1, \ldots, n]^{-1}\right]
$$

defined by $X_{i j} \mapsto\{j n-m+1 \ldots n \widehat{+1-} i \ldots n\}$ and $y \mapsto[n-m+1, \ldots, n]$ is an isomorphism of algebras.

Proof Recall from Lemma 3.2 that there is an isomorphism

$$
\theta: \operatorname{Dhom}\left(\mathcal{G}_{q}(m, n),[n-m+1, \ldots, n]\right)\left[y, y^{-1} ; \sigma\right] \longrightarrow \mathcal{G}_{q}(m, n)\left[[n-m+1, \ldots, n]^{-1}\right]
$$

given by $y \mapsto[n-m+1, \ldots, n]$ and $\{j n-m+1 \ldots \widehat{t} \ldots n\} \mapsto\{j n-m+1 \ldots \widehat{t} \ldots n\}$, where σ is the automorphism of $\operatorname{Dhom}\left(\mathcal{G}_{q}(m, n),[n-m+1, \ldots, n]\right)$ given by conjugation by the quantum minor $[n-m+1, \ldots, n]$. On the other hand, by Theorem 4.3, there is an isomorphism $\rho: \mathcal{O}_{q}\left(M_{m, n-m}\right) \longrightarrow \operatorname{Dhom}\left(\mathcal{G}_{q}(m, n),[n-m+1, \ldots, n]\right)$, and it is easy to see, by using Lemma 1.5, that the automorphism induced in $\mathcal{O}_{q}\left(M_{m, n-m}\right)$ by σ via ρ is ϕ. Thus, ρ extends to an isomorphism

$$
\bar{\rho}: \mathcal{O}_{q}\left(M_{m, n-m}\right)\left[y, y^{-1} ; \phi\right] \longrightarrow \operatorname{Dhom}\left(\mathcal{G}_{q}(m, n),[n-m+1, \ldots, n]\right)\left[y, y^{-1} ; \sigma\right]
$$

such that $\bar{\rho}(y)=y$. Clearly, $\theta \circ \bar{\rho}$ is the desired isomorphism.

Note that in [4] Fioresi proves a restricted version of Theorem 4.3. More specifically, operating over the ring $K\left[q, q^{-1}\right]$, where K is algebraically closed of characteristic zero and q is transcendental over K, she shows that $\mathcal{O}_{q}\left(M_{n}\right)$ is isomorphic to the subalgebra of $\mathcal{G}_{q}(n, 2 n)\left[[n+1 \ldots 2 n]^{-1}\right]$ generated by the elements $\{j \quad n+1 \ldots \widehat{i} \ldots 2 n\}$, but does not show that this subalgebra is the dehomogenisation of $\mathcal{G}_{q}(n, 2 n)$ at $[n+1 \ldots 2 n]$.

Example Let $S=\mathcal{G}_{q}(2,4)\left[[34]^{-1}\right]$. Then $\operatorname{Dhom}\left(\mathcal{G}_{q}(2,4),[34]\right)=S_{0}$ and S_{0} is generated by the elements

$$
[12][34]^{-1}, \quad[13][34]^{-1}, \quad[14][34]^{-1}, \quad[23][34]^{-1}, \quad[24][34]^{-1} .
$$

Recall that $\{i j\}=[i j][34]^{-1}$. From the commutation relations for $\mathcal{G}_{q}(2,4)$ given in the introduction, we can calculate the following commutation relations:

$$
\begin{gathered}
\{13\}\{23\}=q\{23\}\{13\} ; \quad\{13\}\{14\}=q\{14\}\{13\} ; \\
\{13\}\{24\}=\{24\}\{13\}+\left(q-q^{-1}\right)\{23\}\{14\} ; \\
\{14\}\{23\}=\{23\}\{14\} ; \quad\{14\}\{24\}=q\{24\}\{14\} ; \quad\{23\}\{24\}=q\{24\}\{23\}
\end{gathered}
$$

and from the Quantum Plücker relation;

$$
\{12\}=\{13\}\{24\}-q\{23\}\{14\} .
$$

We can immediately see the correspondence (or we can use ρ to find the correspondence):

$\mathcal{O}_{q}(M(2))$	\longleftrightarrow	S_{0}
X_{11}	\longleftrightarrow	$\{13\}$
X_{12}	\longleftrightarrow	$\{23\}$
X_{21}	\longleftrightarrow	$\{14\}$
X_{22}	\longleftrightarrow	$\{24\}$
D_{q}	\longleftrightarrow	$\{12\}$,

and from Theorem 4.3
$\operatorname{Dhom}\left(\mathcal{G}_{q}(2,4),[34]\right) \cong \mathcal{O}_{q}(M(2))$.

$5 \quad \mathcal{G}_{q}(m, n)$ as coinvariants of $\mathcal{O}_{q}\left(S L_{m}\right)$

Recall that the $m \times m$ quantum special linear group, $\mathcal{O}_{q}\left(S L_{m}\right)$, is defined by $\mathcal{O}_{q}\left(S L_{m}\right):=$ $\mathcal{O}_{q}\left(M_{m}\right) /\left\langle D_{q}-1\right\rangle$ 。

In this section we show that $\mathcal{G}_{q}(m, n)$ is the algebra of coinvariants of a natural left coaction of $\mathcal{O}_{q}\left(S L_{m}\right)$ on $\mathcal{O}_{q}\left(M_{m n}\right)$. There is a natural epimorphism $\pi: \mathcal{O}_{q}\left(G L_{m}\right) \longrightarrow$ $\mathcal{O}_{q}\left(S L_{m}\right)$ which sends D_{q} to 1 . In order to distinguish generators in the various algebras, we will often denote the canonical generators in $\mathcal{O}_{q}\left(M_{n}\right)$ by $X_{i j}$, in $\mathcal{O}_{q}\left(M_{n m}\right)$ by $Y_{i j}$, in $\mathcal{O}_{q}\left(M_{m n}\right)$ by $Z_{i j}$ and in $\mathcal{O}_{q}\left(G L_{m}\right)$ by $T_{i j}$. Further, set $U_{i j}:=\pi\left(T_{i j}\right) \in \mathcal{O}_{q}\left(S L_{m}\right)$. Note that both $\mathcal{O}_{q}\left(G L_{m}\right)$ and $\mathcal{O}_{q}\left(S L_{m}\right)$ are Hopf algebras.

It is easy to check that one can define a morphism of algebras satisfying the following rule:

$$
\lambda: \mathcal{O}_{q}\left(M_{m n}\right) \longrightarrow \mathcal{O}_{q}\left(G L_{m}\right) \otimes \mathcal{O}_{q}\left(M_{m n}\right), \quad Z_{i j} \mapsto \sum_{k=1}^{m} T_{i k} \otimes Z_{k j}
$$

and that this induces a morphism of algebras

$$
\Lambda: \mathcal{O}_{q}\left(M_{m n}\right) \longrightarrow \mathcal{O}_{q}\left(S L_{m}\right) \otimes \mathcal{O}_{q}\left(M_{m n}\right), \quad Z_{i j} \mapsto \sum_{k=1}^{m} U_{i k} \otimes Z_{k j}
$$

where $\Lambda:=(\pi \otimes \mathrm{id}) \circ \lambda$.
The morphisms λ and Λ endow $\mathcal{O}_{q}\left(M_{m n}\right)$ with left comodule algebra structures over $\mathcal{O}_{q}\left(G L_{m}\right)$ and $\mathcal{O}_{q}\left(S L_{m}\right)$, respectively. Recall that if H is a Hopf algebra and M is a left H comodule via the coaction $\gamma: M \longrightarrow H \otimes M$ then $m \in M$ is a coinvariant if $\gamma(m)=1 \otimes m$. In this section we show that $\mathcal{G}_{q}(m, n)$ is the set of coinvariants of the $\mathcal{O}_{q}\left(S L_{m}\right)$-comodule $\mathcal{O}_{q}\left(M_{m n}\right)$ under the comodule map Λ. In fact, this result is an easy consequence of [8, Theorem 6.6], once we have described the set-up of that paper.

The map $Y_{i j} \mapsto \sum_{k=1}^{m} Y_{i k} \otimes T_{k j}$ induces a morphism of algebras $\rho: \mathcal{O}_{q}\left(M_{n m}\right) \longrightarrow$ $\mathcal{O}_{q}\left(M_{n m}\right) \otimes \mathcal{O}_{q}\left(G L_{m}\right)$ which endows $\mathcal{O}_{q}\left(M_{n m}\right)$ with a right comodule algebra stucture over $\mathcal{O}_{q}\left(G L_{m}\right)$. Let $\mathcal{O}_{q}(V)$ denote the algebra $\mathcal{O}_{q}\left(M_{n m}\right) \otimes \mathcal{O}_{q}\left(M_{m n}\right)$. The coactions λ and ρ defined above can be combined to give a left comodule structure on $\mathcal{O}_{q}(V)$ which we denote by γ. To be precise,

$$
\gamma: \mathcal{O}_{q}(V) \longrightarrow \mathcal{O}_{q}\left(G L_{m}\right) \otimes \mathcal{O}_{q}(V)
$$

is given by the rule

$$
\gamma(a \otimes b):=\sum_{(a),(b)} S\left(a_{1}\right) b_{-1} \otimes a_{0} \otimes b_{0}
$$

for $a \in \mathcal{O}_{q}\left(M_{n m}\right)$ and $b \in \mathcal{O}_{q}\left(M_{m n}\right)$, where $\lambda(b)=\sum_{(b)} b_{-1} \otimes b_{0}$ and $\rho(a)=\sum_{(a)} a_{0} \otimes a_{1}$. Here, we are using the Sweedler notation and S is the antipode of $\mathcal{O}_{q}\left(G L_{m}\right)$. In turn, this coaction induces a coaction $\Gamma: \mathcal{O}_{q}(V) \longrightarrow \mathcal{O}_{q}\left(S L_{m}\right) \otimes \mathcal{O}_{q}(V)$ given by $\Gamma:=(\pi \otimes \mathrm{id}) \circ \gamma ;$ so that

$$
\Gamma(a \otimes b):=\sum_{(a),(b)} \pi\left(S\left(a_{1}\right) b_{-1}\right) \otimes a_{0} \otimes b_{0}
$$

The main results of [8] identify the coinvariants of the coactions γ and Γ. In particular, Theorem 6.6 of [8] identifies the coinvariants of the coaction Γ in the following way. There is a morphism of algebras $\mu: \mathcal{O}_{q}\left(M_{n}\right) \longrightarrow \mathcal{O}_{q}(V)=\mathcal{O}_{q}\left(M_{n m}\right) \otimes \mathcal{O}_{q}\left(M_{m n}\right)$ given by $X_{i j} \mapsto \sum_{k=1}^{m} Y_{i k} \otimes Z_{k j}$. Let R denote $\mu\left(\mathcal{O}_{q}\left(M_{n}\right)\right)$. It is proved in [6] that $R \cong \mathcal{O}_{q}\left(M_{n}\right) / I$, where I is the ideal generated by the $(m+1) \times(m+1)$ quantum minors of $\mathcal{O}_{q}\left(M_{n}\right)$. We have the following theorem.

Theorem 5.1 [8, Theorem 6.6] Let G_{1} and G_{2} denote the respective grassmannian subalgebras of $\mathcal{O}_{q}\left(M_{n m}\right)$ and $\mathcal{O}_{q}\left(M_{m n}\right)$ generated by all the $m \times m$ quantum minors. The set of
Γ-coinvariants in $\mathcal{O}_{q}(V)=\mathcal{O}_{q}\left(M_{n m}\right) \otimes \mathcal{O}_{q}\left(M_{m n}\right)$ is the subalgebra generated by $G_{1} \otimes G_{2}$ and R. More precisely,

$$
\left(\mathcal{O}_{q}\left(M_{n m}\right) \otimes \mathcal{O}_{q}\left(M_{m n}\right)\right)^{\operatorname{co} \mathcal{O}_{q}\left(S L_{m}\right)}=\left(G_{1} \otimes G_{2}\right) \cdot R .
$$

The result we are aiming for follows easily from this.

Theorem 5.2

$$
\left(\mathcal{O}_{q}\left(M_{m n}\right)\right)^{\operatorname{co} \mathcal{O}_{q}\left(S L_{m}\right)}=\mathcal{G}_{q}(m, n)
$$

Proof It is easily seen that there is a commutative diagram

$$
\begin{array}{ccc}
\mathcal{O}_{q}\left(M_{m n}\right) & \stackrel{i}{\longrightarrow} & \mathcal{O}_{q}\left(M_{n m}\right) \otimes \mathcal{O}_{q}\left(M_{m n}\right) \\
\Lambda \downarrow & \Gamma \downarrow \\
\mathcal{O}_{q}\left(S L_{m}\right) \otimes \mathcal{O}_{q}\left(M_{m n}\right) \stackrel{i \mathrm{~d} \otimes i}{\longrightarrow} & \mathcal{O}_{q}\left(S L_{m}\right) \otimes \mathcal{O}_{q}\left(M_{n m}\right) \otimes \mathcal{O}_{q}\left(M_{m n}\right)
\end{array}
$$

where i is the canonical injection. Moreover, let $j: \mathcal{O}_{q}\left(M_{n m}\right) \otimes \mathcal{O}_{q}\left(M_{m n}\right) \longrightarrow \mathcal{O}_{q}\left(M_{m n}\right)$ be the canonical projection; that is,

$$
j: \mathcal{O}_{q}\left(M_{n m}\right) \otimes \mathcal{O}_{q}\left(M_{m n}\right) \xrightarrow{p \otimes \mathrm{id}} k \otimes \mathcal{O}_{q}\left(M_{m n}\right) \cong \mathcal{O}_{q}\left(M_{m n}\right)
$$

where p is the projection modulo the irrelevant ideal of $\mathcal{O}_{q}\left(M_{n m}\right)$. Clearly, we have that $j \circ i=\mathrm{id}$. We see from the above commutative diagram that, if $b \in \mathcal{O}_{q}\left(M_{m n}\right)$ is a Λ coinvariant, then $i(b)=1 \otimes b$ is a Γ-coinvariant. Thus, it follows from Theorem 5.1 that $1 \otimes b \in\left(G_{1} \otimes G_{2}\right) . R$. Hence, $b=j(1 \otimes b) \in j\left(G_{1} \otimes G_{2}\right) j(R)$. Clearly, $j(R) \subseteq k$ and $j\left(\left(G_{1} \otimes G_{2}\right)\right) \subseteq G_{2} ;$ and so $b \in G_{2}=\mathcal{G}_{q}(m, n)$. This shows that $\mathcal{O}_{q}\left(M_{m n}\right)^{\operatorname{coO}_{q}\left(S L_{m}\right)} \subseteq$ $\mathcal{G}_{q}(m, n)$. Since it is clear that an $m \times m$ quantum minor of $\mathcal{O}_{q}\left(M_{m n}\right)$ is a Λ-coinvariant, the converse inclusion follows from the fact that Λ is a morphism of algebras.

Note that Fioresi and Hacon, [5], have a version of this result, with the usual restrictions as described earlier in this paper.

$6 \quad \mathcal{G}_{q}(m, n)$ is a maximal order

Let R be a noetherian domain with division ring of fractions Q. Then R is said to be a maximal order in Q if the following condition is satisfied: if T is a ring such that $R \subseteq T \subseteq Q$ and such that there exist nonzero elements $a, b \in R$ with $a T b \subseteq R$, then $T=$ R. This condition is the natural noncommutative analogue of normality for commutative domains, see, for example, [11, Section 5.1].

Recall that an element d in a ring R is said to be left regular if $r d=0$ implies that $r=0$ for $r \in R$. The following is a general result that we will be able to apply to show that the quantum grassmannian $\mathcal{G}_{q}(m, n)$ is a maximal order.

Proposition 6.1 Suppose that R is a noetherian domain with division ring of fractions Q. Suppose that $a, b \in R$ are nonzero normal elements such that $R\left[a^{-1}\right]$ and $R\left[b^{-1}\right]$ are both maximal orders, that b is left regular modulo $a R$ and that $a b=\lambda b a$ for some central unit $\lambda \in R$. Then R is a maximal order.

Proof First, we show that $R\left[a^{-1}\right] \cap R\left[b^{-1}\right]=R$. Suppose that this is not the case, and choose $q \in R\left[a^{-1}\right] \cap R\left[b^{-1}\right] \backslash R$. Write $q=r a^{-d}=s b^{-e}$ with $d, e \geq 1$ and $r \in R \backslash R a$, $s \in R \backslash R b$. Cross multiply to get $r b^{e}=\lambda \bullet a^{d}$ (remember that $a b=\lambda b a$). Since b is left regular modulo $a R$, this gives $r \in R a$, a contradiction. Thus, $R\left[a^{-1}\right] \cap R\left[b^{-1}\right]=R$.

Now, to show that R is a maximal order, it is enough to show that if J is a nonzero ideal of R and $q \in Q$ with either $q J \subseteq J$ or $J q \subseteq J$ then $q \in R$, [11, Proposition 5.1.4]. Suppose, without loss of generality, that $q J \subseteq J$. By assumption, $S:=R\left[a^{-1}\right]$ and $T:=R\left[b^{-1}\right]$ are maximal orders. Also, $S J=J S$ is an ideal of S and $T J=J T$ is an ideal of T. We have $q J S \subseteq J S$ and so $q \in S$. Similarly, $q \in T$. Thus, $q \in S \cap T=R$; and so R is a maximal order.

Theorem 6.2 $\mathcal{G}_{q}(m, n)$ is a maximal order.
Proof We will apply the previous result to $R:=\mathcal{G}_{q}(m, n)$ with $a:=[1, \ldots, m]$ and $b:=[n-m+1, \ldots, n]$. Observe that b is normal by Lemma 1.5 and that a is normal by Corollary 1.2. Note that $a b=(-q)^{\bullet} b a$, by Lemma 1.5. First we observe that b is left regular modulo $a R$. The reason is that since a is the minimal minor in the preferred ordering, a basis for $a R$ is given by preferred products that start with a. If $r \in R$ is such that $r b \in a R$, then when we write r as a linear combination of preferred products then multiplying each preferred product that occurs by b on the right still gives a preferred product, since b is the maximal element with respect to the preferred order. Thus, since $r b \in a R$ each of these preferred products must begin with a, and so the original ones also begin with a, hence $r \in a R$.

In Corollary 4.4, we have shown that $R\left[b^{-1}\right] \cong \mathcal{O}_{q}\left(M_{m, n-m}\right)\left[y, y^{-1} ; \phi\right]$ and so $R\left[b^{-1}\right]$ is a maximal order ([10, V. Proposition 2.5, IV. Proposition 2.1]). Also $R\left[a^{-1}\right]$ is a maximal order by using the isomorphism δ introduced in Section 1 and the fact that $R\left[b^{-1}\right]$ is a maximal order.

Thus, the hypotheses of Proposition 6.1 are satisfied, and we deduce that $\mathcal{G}_{q}(m, n)$ is a maximal order.

References

[1] M Artin, J Tate and M van den Bergh, Some algebras associated to automorphisms of elliptic curves, The Grothendieck Festschrift, Vol. I, 33-85, Progr. Math., 86, Birkhäuser Boston, Boston, MA, 1990.
[2] W Bruns and U Vetter, Determinantal rings, Springer Lecture Notes in Mathematics, 1327, Springer-Verlag, Berlin, 1988.
[3] R Fioresi, Quantum deformation of the Grassmannian manifold, J. Algebra 214 (1999), 418-447.
[4] R Fioresi, A deformation of the big cell inside the Grassmannian manifold $G(r, n)$, Rev. Math. Phys. 11 (1999), 25-40.
[5] R Fioresi and C Hacon, Quantum coinvariant theory for the quantum special linear group and quantum Schubert varieties, J. Algebra 242 (2001), 433-446.
[6] K R Goodearl and T H Lenagan. Quantum determinantal ideals, Duke Mathematical Journal 103 165-190, 2000.
[7] K R Goodearl and T H Lenagan. Winding-invariant prime ideals in quantum 3×3 matrices, to appear in Journal of Algebra, preprint available at math.QA/0112051.
[8] K R Goodearl, T H Lenagan and L Rigal, The first fundamental theorem of coinvariant theory for the quantum general linear group, Publ. RIMS (Kyoto) 36 (2000), 269-296.
[9] G R Krause and T H Lenagan. Growth of algebras and Gelfand-Kirillov dimension, Revised edition. Graduate Studies in Mathematics, 22. American Mathematical Society, Providence, RI, 2000.
[10] G Maury and J Raynaud, Ordres maximaux au sens de K Asano, Springer Lecture Notes in Mathematics Vol 808, Springer-Verlag, Berlin, 1980.
[11] J C McConnell and J C Robson. Noncommutative Noetherian Rings. Wiley, Chichester, 1987.
[12] M Noumi, H Yamada and K Mimachi, Finite-dimensional representations of the quantum group $\mathrm{GL}_{q}(n ; \mathbb{C})$ and the zonal spherical functions on $U_{q}(n-1) \backslash U_{q}(n)$, Japanese J. Math 19 (1993), 31-80.
[13] B Parshall and J Wang. Quantum linear groups. Mem. Amer. Math. Soc 89 (1991), no. 439.
[14] J J Zhang, Connected graded Gorenstein algebras with enough normal elements, J. Algebra 189 (1997), 390-405.
A. C. Kelly, T. H. Lenagan:

School of Mathematics, University of Edinburgh,
James Clerk Maxwell Building, King's Buildings, Mayfield Road,
Edinburgh EH9 3JZ, Scotland
E-mail: ACK@bosinternet.com, tom@maths.ed.ac.uk
L. Rigal:

Université Jean Monnet (Saint-Étienne), Faculté des Sciences et

Techniques, Département de Mathématiques
23 rue du Docteur Paul Michelon
42023 Saint-Étienne Cédex 2,
France
E-mail: Laurent.Rigal@univ-st-etienne.fr

[^0]: *Some of the results in this paper appear in the first author's PhD thesis (Edinburgh, 2001). She thanks EPSRC for financial support.
 ${ }^{\dagger}$ Part of this work was done while the third author was visiting the University of Edinburgh. He thanks the Edinburgh Mathematical Society for the financial support of this visit.

