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We calculate the height of quantum determinantal ideals in the algebra of quan-

tum matrices, and also the Gelfand-Kirillov, Krull and Classical Krull dimensions of the
corresponding quantum determinantal factors.

It has recently been shown that quantum determinantal ideals in the algebra of quan-
tum matrices, Oq(Mm,n), are completely prime ideals, [3, Corollary 2.6]. In this note, we
compute the height of the quantum determinantal ideals and the dimension of the corre-
sponding quantum determinantal factors. The method is to construct a saturated chain
of prime ideals that contains all of the quantum determinantal ideals. The ideals in the
chain are easy to identify, the problem is to prove that they are in fact prime ideals. The
method that we use to achieve this is an extension of the method used successfully in [3,
Proposition 2.4] and [4, Proposition 4.4]. This method exploits the co-algebra structure
of quantum matrices.

Fix a base field k and choose a nonzero element q ∈ k. Given positive integers u, v, we
consider the algebra of quantum matrices Oq(Mu,v). The computations in this paper rely
on the preferred basis for the k-algebra Oq(Mu,v) introduced in [3, Section 1], and we follow
the notation of that paper. See, in particular, [3, Corollary 1.11]. We recall the notation
[T |T ′] for the product of quantum minors corresponding to an allowable bitableau (T, T ′).
We recall also that it is sometimes convenient to label rows of (T, T ′) in the form (I, J)
where I and J are sets of row and column indices, respectively (of course, I ⊆ {1, . . . , u}
and J ⊆ {1, . . . , v}); such a pair is called an index pair (see [3, Section 1]). Many of the
results in [3] are stated for the square case Oq(Mu,u), and there are easy extensions to the
rectangular case Oq(Mu,v), see, for example, [3, 1.11] and [4, Section 2] for more details
of this standard procedure.

From now on, we fix positive integers m,n. Let t be a positive integer; the ideal of
Oq(Mm,n) generated by all of the t × t quantum minors is denoted by It and our aim is
to compute the dimension of the factor ring Oq(Mm,n)/It. The algebras Oq(Mm,n) and
Oq(Mn,m) are isomorphic via the transpose isomorphism τ which takes Xij to Xji, see [6,
Proposition 3.7.1]. By [6, Lemma 4.3.1], τ([I|J ]) = [J |I] for each index pair (I, J). It
follows that τ(It) = It, for each t. As a consequence, in our discussion below, we assume,
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without loss of generality, that m ≤ n. Because of the quantum Laplace expansions [6,
Corollary 4.4.4], the ideal It in Oq(Mm,n) contains all the r × r quantum minors for
t ≤ r ≤ min{m,n}. Hence, [T |T ′] ∈ It whenever (T, T ′) is a preferred bitableau and T
has at least t columns.

Definition. Let u, v, t, l > 0 be integers and let A = Oq(Mu,v).
(i) Set It(A) to be the ideal of A generated by t× t minors.
(ii) For 1 ≤ l ≤ u, set Pt,l(A) to be the ideal of A generated by t × t minors with row

indices from u− l+ 1, . . . , u together with all of the (t+ 1)× (t+ 1) minors. Similarly, for
1 ≤ l ≤ v, set Qt,l(A) to be the ideal of A generated by t× t minors with column indices
from 1, . . . , l together with all of the (t+ 1)× (t+ 1) minors.

Whenever the algebra A is Oq(Mm,n), we will feel free to drop reference to it, and write,
for example, Pt,l for Pt,l(Oq(Mm,n)). Note that, when t > l, Pt,l(A) = Qt,l(A) = It+1(A)
and when t > min{u, v}, It(A) = (0); also, Pt,u(A) = Qt,v(A) = It(A).

Recall that an element a in an algebra A is said to be normal if aA = Aa, and that
a sequence of elements a1, a2, . . . , as in an algebra A is said to be a polynormal sequence
if for each j ∈ {0, . . . , s − 1} the image of aj+1 in the algebra A/

∑j
i=1 ajA is a normal

element. If this is the case, then the ideal generated by a1, a2, . . . , as in A is equal to
a1A+ a2A+ · · ·+ asA.

Remark. Let t, l be positive integers with l ≤ m. Let (I, J) be an index pair such that
|I| = t and I ⊆ {m− l+ 1, . . . ,m} and let (I ′, J ′) be any index pair (i.e. I ′ ⊆ {1, . . . ,m}
and J ′ ⊆ {1, . . . , n}). Suppose that (I ′, J ′) < (I, J), then, either |I ′| > t or |I ′| = t and
I ′ ⊆ {m − l + 1, . . . ,m}. This is clear from the definition of the ordering on index pairs
(see [3, 1.2]).

Using [3, Corollary A.2], it follows that the quantum minors generating Pt,l can be
arranged in a polynormal sequence and

Pt,l =
∑

[I|J ]Oq(Mm,n),

where either |I| > t or |I| = t and I ⊆ {m− l + 1, . . . ,m}.
In a similar manner,

Qt,l =
∑

[I|J ]Oq(Mm,n),

where either |J | > t or |J | = t and J ⊆ {1, . . . , l}.
It can easily be checked that, for any positive integer t, there is a morphism of algebras

θt : Oq(Mm,n)→ Oq(Mm,t)⊗Oq(Mt,n)

given byXij 7→
∑t
k=1 Yik⊗Zkj where we use X, Y, Z to denote the generators inOq(Mm,n),

Oq(Mm,t) and Oq(Mt,n), respectively. In order to prove that certain ideals in Oq(Mm,n)
are completely prime ideals, we will show that the ideals in question are the inverse images
under θt of certain ideals in Oq(Mm,t)⊗Oq(Mt,n) which we can easily demonstrate to be
completely prime.

The next lemma gives k-bases of various ideals that we need to consider.
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Lemma 1. Let t, l, l′ be positive integers such that 1 ≤ l ≤ m and 1 ≤ l′ ≤ n.
(a) A k-basis for Pt,l consists of all [T |T ′] where (T, T ′) is a preferred bitableau with

first row of the form (I, J) where |I| > t or |I| = t and I ⊆ {m− l + 1, . . . ,m}.
(b) A k-basis for Qt,l′ consists of all [T |T ′] where (T, T ′) is a preferred bitableau with

first row of the form (I, J) where |J | > t or |J | = t and J ⊆ {1, . . . , l′}.
(c) A k-basis for Pt,l + Qt,l′ consists of all [T |T ′] where (T, T ′) is a preferred bitableau

with first row of the form (I, J) where |I| > t or |I| = t and either I ⊆ {m− l+ 1, . . . ,m}
or J ⊆ {1, . . . , l′}.

(d) A k-basis for Pt,l(Oq(Mm,t))⊗Oq(Mt,n)+Oq(Mm,t)⊗Qt,l′(Oq(Mt,n)) consists of all
pure tensors [S|S ′]⊗ [T |T ′] in Oq(Mm,t)⊗Oq(Mt,n) where (S, S′) and (T, T ′) are preferred
bitableaux such that either the first row of (S, S ′) has the form (I, J) where |I| = t and
I ⊆ {m − l + 1, . . . ,m} or the first row of (T, T ′) has the form (I, J) where |J | = t and
J ⊆ {1, . . . , l′}.
Proof. (a) All such [T |T ′] are in Pt,l by definition. The remark shows that Pt,l is spanned
by terms of the form [I|J ][R|R′] where (R,R′) is a bitableau and R has at most t columns,
and [I|J ] is such that either |I| > t or |I| = t and I ⊆ {m− l+1, . . . ,m}. Now, [I|J ][R|R′]
can be written as a product [S|S ′] with top row [I, J ]. Applying [3, Corollary 1.8] we see
that [S|S′] is a linear combination of products [U |U ′] where each (U,U ′) is a preferred
bitableau with top row (I ′, J ′) such that either |I ′| > t, or (I ′, J ′) ≤ (I, J). In either case,
the preferred bitableau is a member of the putative basis.

Part (b) is proved in a similar manner, and parts (c) and (d) then follow immediately. �

The algebra Oq(Mm,t)⊗Oq(Mt,n) has a natural Zm⊗Zt⊗Zt⊗Zn grading, where Yij⊗1
has degree (εi, εj , 0, 0) and 1⊗Zij has degree (0, 0, εi, εj), where εi, etc are elements of the
standard basis in Zm, etc. For more details of such gradings, see [3, 1.5] and [4, Section
4]. In the sequel, the label ‘homogeneous’ refers to this grading.

Theorem 2. Let t, l, l′ be positive integers such that 1 ≤ l ≤ m and 1 ≤ l′ ≤ n. The ideals
Pt,l, Qt,l′ and Pt,l +Qt,l′ are completely prime ideals in Oq(Mm,n).

Proof. The case t > m is trivial since then, all the ideals considered are zero. If t = 1,
then the result follows from [3, Corollary 2.6]. So, we may assume that 2 ≤ t ≤ m. We
then have Pt,l = Pt,l +Qt,t−1 and Qt,l′ = Pt,t−1 +Qt,l′ , and so it is enough to prove that
Pt,l +Qt,l′ is a completely prime ideal. Suppose for the moment that we have shown that
the ideal Pt,l(Oq(Mm,t))⊗Oq(Mt,n) +Oq(Mm,t)⊗Qt,l′(Oq(Mt,n)) is a completely prime
ideal of Oq(Mm,t)⊗Oq(Mt,n). If we can show that

Pt,l +Qt,l′ = θ−1
t (Pt,l(Oq(Mm,t))⊗Oq(Mt,n) +Oq(Mm,t)⊗Qt,l′(Oq(Mt,n)),

it follows that Pt,l +Qt,l′ is a completely prime ideal. It is easy to check that

Pt,l +Qt,l′ ⊆ θ−1
t (Pt,l(Oq(Mm,t))⊗Oq(Mt,n) +Oq(Mm,t)⊗Qt,l′(Oq(Mt,n)).

If this inclusion is proper, choose an element x =
∑r

i=1 αi[Ti|T ′i ] such that

x ∈ θ−1
t (Pt,l(Oq(Mm,t))⊗Oq(Mt,n) +Oq(Mm,t)⊗Qt,l′(Oq(Mt,n)) \ Pt,l +Qt,l′ ,
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and the αi are nonzero scalars, the (Ti, T
′
i ) are distinct preferred bitableaux, and each of

the Ti has at most t columns. We may assume that none of the [Ti|T ′i ] lie in Pt,l +Qt,l′ .
Thus, no (Ti, T

′
i ) has first row of the form (I, ?) where I ⊆ {m − l + 1, . . . ,m} and no

(Ti, T
′
i ) has first row of the form (?, J) where J ⊆ {1, . . . , l′}.

Define m-tuples ρ(Ti) as in [3, 2.2], and let ρ be the minimum of the ρ(Ti) under
reverse lexicographic order. After re-indexing, we may assume that there is some r ′ such
that ρ(Ti) = ρ for i ≤ r′ and ρ(Ti) >rlex ρ for i > r′. Applying [3, Lemma 2.3] to each
θt[Ti|T ′i ] and collecting terms, we see (using the notation of [3, 2.2]) that

θt(x) =
r′∑

i=1

αi[Ti|µ(Ti)]⊗ [µ′(Ti)|T ′i ] +
∑

j

Xj ⊗ Yj

where the Xj and Yj are homogeneous with c(Xj) = r(Yj) >rlex ρ. We then observe (as
in the proof of [3, Proposition 2.4]) that all of the Xj belong to different homogeneous
components than the [Ti|µ(Ti)] for i ≤ r′. Since θt(x) ∈ Pt,l(Oq(Mm,t)) ⊗ Oq(Mt,n) +
Oq(Mm,t)⊗Qt,l′(Oq(Mt,n)) and since the ideal Pt,l(Oq(Mm,t))⊗Oq(Mt,n) +Oq(Mm,t)⊗
Qt,l′(Oq(Mt,n)) is homogeneous, it follows that

r′∑

i=1

αi[Ti|µ(Ti)]⊗ [µ′(Ti)|T ′i ] ∈ Pt,l(Oq(Mm,t))⊗Oq(Mt,n) +Oq(Mm,t)⊗Qt,l′(Oq(Mt,n)).

For 1 ≤ i < j ≤ r′, either Ti 6= Tj or T ′i 6= T ′j , so (Ti, µ(Ti)) 6= (Tj , µ(Tj)) or
(µ′(Ti), T ′i ) 6= (µ′(Tj), T ′j). Because of the linear independence of the preferred products
in Oq(Mm,t) and Oq(Mt,n), it follows from Lemma 1(d) that either the first row of Ti is a
subset of {m− l+ 1, . . . ,m} or the first row of T ′i is a subset of {1, . . . , l′}, for 1 ≤ i ≤ r′.
This contradicts our choices above, and thus

Pt,l +Qt,l′ = θ−1
t (Pt,l(Oq(Mm,t))⊗Oq(Mt,n) +Oq(Mm,t)⊗Qt,l′(Oq(Mt,n)).

It remains to show that the ideal

Pt,l(Oq(Mm,t))⊗Oq(Mt,n) +Oq(Mm,t)⊗Qt,l′(Oq(Mt,n))

is a completely prime ideal of Oq(Mm,t)⊗Oq(Mt,n). The factor algebra

Oq(Mm,t)⊗Oq(Mt,n)

Pt,l(Oq(Mm,t))⊗Oq(Mt,n) +Oq(Mm,t)⊗Qt,l′(Oq(Mt,n))

is isomorphic to the algebra

Oq(Mm,t)

Pt,l(Oq(Mm,t))
⊗ Oq(Mt,n)

Qt,l′(Oq(Mt,n))
,

so we need to show that this latter algebra is a domain.
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In order to clarify matters, we will denote the generators of Oq(Mm,t) by Yij and the
generators of Oq(Mt,n) by Zij . Set B to be the l × t quantum matrix algebra generated
by the Yij in Oq(Mm,t) with i ≥ m − l + 1. Note that Pt,l(B) = It(B). In a similar way,
we set C to be the t × l′ quantum matrix algebra generated by the Zij with 1 ≤ j ≤ l′

then Qt,l′(C) = It(C).
The algebra Oq(Mm,t) is an Ore extension of the subalgebra B, with the remaining vari-

ables added in the order Ym−l,t, Ym−l,t−1, . . . , Ym−l,1, . . . , Y1,t, . . . , Y1,1. The ideal It(B) is
stable under the Ore extensions, since any t × t minor [I|J ] with I ⊆ {m − l + 1, . . . ,m}
q-commutes with any Yij provided i ≤ m − l (see [3, A.2]). Similar remarks apply to the
subalgebra C of Oq(Mt,n).

From the remarks in the previous paragraph, it follows that the algebra

Oq(Mm,t)

Pt,l(Oq(Mm,t))
⊗ Oq(Mt,n)

Qt,l′(Oq(Mt,n)
,

is an iterated Ore extension of the algebra

B/It(B)⊗ C/It(C).

For example, we can add the remaining variables in the order

Ym−l,t ⊗ 1, Ym−l,t−1 ⊗ 1, . . . , Ym−l,1 ⊗ 1, . . . , Y1,t ⊗ 1, . . . , Y1,1 ⊗ 1,

1⊗ Z1,l+1, 1⊗ Z2,l+1, . . . , 1⊗ Zt,l+1, . . . , 1⊗ Z1,n, . . . , 1⊗ Zt,n.

(Informally, we are adding the Y variables row by row, from the bottom and moving from
right to left in each row, and then adding the Z variables column by column from the left
and moving down each column.)

Thus, we only need to show that the algebra B/It(B)⊗ C/It(C) is a domain. By [3,
Theorem 2.4], we have two injective maps

φB : B/It(B) = Oq(Ml,t)/It(Oq(Ml,t)) −→ Oq(Ml,t−1)⊗Oq(Mt−1,t),

φC : C/It(C) = Oq(Mt,l′)/It(Oq(Mt,l′)) −→ Oq(Mt,t−1)⊗Oq(Mt−1,l′).

(To be precise, [3, Theorem 2.4] only treats the case of Oq(Mn,n); the easy extension to
nonsquare quantum matrices is explicitly stated in [4, Theorem 2.2].) The tensor product
map φB⊗φC : B/It(B)⊗C/It(C) −→ Oq(Ml,t−1)⊗Oq(Mt−1,t)⊗Oq(Mt,t−1)⊗Oq(Mt−1,l′)
is also injective, since the tensor products are over the base field k. However, the target
algebra is an iterated Ore extension, and so a domain. Hence, B/It(B)⊗C/It(C) is also
a domain. �

We are now in a position to calculate the height of a quantum determinantal ideal
and the dimension of the corresponding quantum determinantal factor algebra. There
is a choice of dimensions for us to work with. For example, we could use Gelfand-
Kirillov dimension, (Gabriel-Rentschler) Krull dimension, or classical Krull dimension.
In fact, we shall show that these all take the same values for quantum determinantal fac-
tors. For any noetherian algebra A, it is known that Kdim(A) ≥ Cl.Kdim(A) and that
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GKdim(A) ≥ Cl.Kdim(A). In fact, for reasonably well-behaved algebras, it is known that
GKdim(A) ≥ Kdim(A). We should clarify what we mean by the phrase “reasonably well-
behaved algebras” in the previous sentence. If Gelfand-Kirillov dimension is known to be
partitive and take only integer values on the category of finitely generated modules over an
algebra A then GKdim(A) ≥ Kdim(A). That these properties hold for quantum matrices
is known, see, for example, [5] or [1]. Another key property that we need is that in this
setting, for each of the three dimensions, if A is a prime noetherian algebra and I is a
nonzero ideal of A then dim(A) ≥ dim(A/I) + 1.

One of the outstanding problems for quantum matrices is whether or not catenarity holds
for chains of prime ideals. A closely connected question is whether Tauvel’s height formula
holds: in other words, if P is a prime ideal, is it true that GKdim(Oq(Mm,n)/P )+ht(P ) =
GKdim(Oq(Mm,n)) = mn? If q is a root of unity, then the algebra Oq(Mm,n) is affine PI.
So it is catenary and Tauvel’s height formula holds for all primes. However, in the general
case, it is not known whether those two properties, which were conjectured in [2], still hold.
The prime ideals that we have just constructed enable us to show that the determinantal
ideals do indeed satisfy this height formula, as we proceed to show.

Lemma 3. Let t ≤ m = min{m,n}. Then there is a chain of primes of length (m− t) +
(n− t) + 1 between It+1 and It. In particular, ht(Im) ≥ n−m+ 1.

Proof. Such a chain of primes is given by

It+1 = Pt,t−1 ⊆ Pt,t ⊆ Pt,t+1 ⊆ · · · ⊆ Pt,m−1 ⊆ Pt,m−1+Qt,t ⊆ · · · ⊆ Pt,m−1+Qt,n−1 ⊆ It.

The fact that the inclusions in those chains are proper follows from the k-basis descriptions
of the ideals given in Lemma 1. �

We can amalgamate the chains of primes produced in the last lemma to give lower
bounds on the height of It and on the classical Krull dimension of Oq(Mm,n)/It.

Proposition 4. Let t ≤ m = min{m,n}. Then

(a) ht(It) ≥ (m− t+ 1)(n− t+ 1)

(b) Cl.Kdim(Oq(Mm,n)/It) ≥ mn− (m− t+ 1)(n− t+ 1).

Proof. (a)

ht(It) ≥ ht(It/It+1) + ht(It+1/It+2) + · · ·+ ht(Im−1/Im) + ht(Im)

≥
m∑

s=t

{(m− s) + (n− s) + 1}

= (m− t+ 1)(m+ n+ 1)− 2
m∑

s=t

s

= (m− t+ 1)(m+ n+ 1)− {m(m+ 1)− (t− 1)t}
= (m− t+ 1)(m+ n+ 1)− (m− t+ 1)(m+ t)

= (m− t+ 1)(n− t+ 1).
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Part (b) is proved in a similar manner:

Cl.Kdim(Oq(Mm,n)/It) ≥ ht(I1/I2) + · · ·+ ht(It−1/It)

≥
t−1∑

s=1

{(m− s) + (n− s) + 1}

= (t− 1)(m+ n+ 1)− 2
t−1∑

s=1

s

= (t− 1)(m+ n+ 1)− (t− 1)t

= · · ·
= mn− (m− t+ 1)(n− t+ 1). �

The lower bounds obtained in the previous result, and the fact that we have an upper
bound of GKdim(Oq(Mm,n)) = mn on the sum of the two numbers enable us to specify the
values precisely and to show that Tauvel’s height formula holds for quantum determinantal
ideals.

Corollary 5. Let t ≤ min{m,n}. Then
(a) ht(It) = (m− t+ 1)(n− t+ 1)
(b) Cl.Kdim(Oq(Mm,n)/It) = Kdim(Oq(Mm,n)/It) = GKdim(Oq(Mm,n)/It) = mn −

(m− t+ 1)(n− t+ 1).
(c) Consequently, GKdim(Oq(Mm,n)/It) + ht(It) = GKdim(Oq(Mm,n)).

Proof. We have already observed that

GKdim(Oq(Mm,n)/It) ≥ Kdim(Oq(Mm,n)/It) ≥ Cl.Kdim(Oq(Mm,n)/It).

Let “dim” stand for any of these three dimensions. We know that dim(Oq(Mm,n)/It) +
ht(It) ≤ dim(Oq(Mm,n)) ≤ mn. We have the two inequalities

dim(Oq(Mm,n)/It) ≥ Cl.Kdim(Oq(Mm,n)/It) ≥ mn− (m− t+ 1)(n− t+ 1)

and ht(It) ≥ (m − t + 1)(n − t + 1). If either of these inequalities is strict, we get
dim(Oq(Mm,n)/It) + ht(It) > mn, a contradiction. �
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