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Abstract

In contrast to the classical and semiclassical settings, the Coxeter element (12 . . . n) which cycles

the columns of an m×n matrix does not determine an automorphism of the quantum grassmannian.

Here, we show that this cycling can be obtained by defining a cocycle twist. A consequence is that

the torus invariant prime ideals of the quantum grassmannian are permuted by the action of the

Coxeter element (12 . . . n); we view this as a quantum analogue of the recent result of Knutson,

Lam and Speyer that the Lusztig strata of the classical grassmannian are permuted by (12 . . . n).
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1 Introduction

The symmetric group Sn acts on the grassmannian G(m,n) by permuting the columns of
an m × n matrix that determines a point in G(m,n). If one restricts to considering the
totally nonnegative grassmannian G(m,n)tnn this is no longer true; however, Postnikov,
[14, Remark 3.3], notes that the cycle c = (12 . . . n) acts on the totally nonnegative grass-
mannian. Recently, Knutson, Lam and Speyer, [9], showed that the Lusztig strata of the
classical grassmannian are permuted by (12 . . . n). In fact this invariance property is even
stronger. Indeed, Goodearl and Yakimov, [5], have found a Poisson interpretation of the
Lusztig strata: they coincide with the H-orbits of symplectic leaves of G(m,n), where H
is an n-dimensional algebraic torus. Recently Yakimov, [15], showed that the Coxeter ele-
ment c induces a Poisson automorphism of G(m,n). As a consequence he showed that the
H-orbits of symplectic leaves of G(m,n) are permuted by c; this gives a Poisson geometric
proof of Knutson, Lam and Speyer result.

∗ The research of the first named author was supported by a Marie Curie European Reintegration Grant within
the 7th European Community Framework Programme.
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In view of the close connections that have been discovered between totally nonnegative
matrices, the standard Poisson matrix variety and quantum matrices, see, for example,
[2, 3], and between the totally nonnegative grassmannian and the quantum grassmannian,
see, for example, [10], one might expect that the cycle c produces an automorphism of the
quantum grassmannian. This is not the case, see Example 3.1 below. With this in mind,
one wonders what the analogous result should be. Here, we provide the answer: there is
a 2-cocyle which can be used to twist the quantum grassmannian; the resulting twisted
algebra is again isomorphic to the quantum grassmannian, and the effect of the twist on
a generating quantum minor I is to produce (a scalar multiple of) the quantum minor
obtained by letting the cycle c act on the indices of I. A consequence of this result is that
the torus invariant prime ideals of the quantum grassmannian are permuted by the cycle
(12 . . . n), see Corollary 6.2; we view this as a quantum analogue of the Knutson, Lam and
Speyer result.

2 Basic definitions

In this section, we will give the basic definitions of the objects that interest us in this paper
and recall several results that we need in our proofs. Throughout, K will denote a base
field, we set K∗ := K \ {0}, q will be a non-zero element of K and m and n denote positive
integers with m < n. Moreover, we assume that there exists p ∈ K such that pm = q2.

The quantisation of the coordinate ring of the affine variety Mm,n of m× n matrices with
entries in K is denoted Oq(Mm,n). It is the K-algebra generated by mn indeterminates Xij ,
with 1 ≤ i ≤ m and 1 ≤ j ≤ n, subject to the relations:

XijXil = qXilXij , for 1 ≤ i ≤ m, and 1 ≤ j < l ≤ n ;
XijXkj = qXkjXij , for 1 ≤ i < k ≤ m, and 1 ≤ j ≤ n ;
XijXkl = XklXij , for 1 ≤ k < i ≤ m, and 1 ≤ j < l ≤ n ;
XijXkl −XklXij = (q − q−1)XilXkj , for 1 ≤ i < k ≤ m, and 1 ≤ j < l ≤ n.

An index pair is a pair (I, J) such that I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} are subsets with
the same cardinality. Hence, an index pair is given by an integer t such that 1 ≤ t ≤ m

and ordered sets I = {i1 < · · · < it} ⊆ {1, . . . ,m} and J = {j1 < · · · < jt} ⊆ {1, . . . , n}.
To any such index pair we associate the quantum minor

[I|J ] =
∑
σ∈St

(−q)`(σ)Xiσ(1)j1 · · ·Xiσ(t)jt .
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Definition 2.1 The quantisation of the coordinate ring of the grassmannian of m-dimensional
subspaces of Kn, denoted by Oq(G(m,n)) and informally referred to as the (m×n) quantum
grassmannian is the subalgebra of Oq(Mm,n) generated by the m×m quantum minors.

A maximal (that is, m × m) quantum minor in Oq(Mm,n) corresponds to an index pair
[{1, . . . ,m}|J ] with J = {j1, . . . , jm} ⊆ {1, . . . , n}. We call such J index sets and denote the
corresponding minor by [J ] or [j1, . . . , jm] in what follows. Thus, such a [J ] is a generator
of Oq(G(m,n)).

When writing down an m×m quantum minor in Oq(G(m,n)), we will use the convention
that if a column index j is greater than n then j is to be read as j − n. For example, in
Oq(G(2, 4)) the minor specified by [45] is the quantum minor [14]. In order to stress this
point, we will use the convention that given any integer j then j̃ is the integer in the set
{1, . . . , n} that is congruent to j modulo n.

A quantum minor [̃i, ĩ + 1, . . . , ˜i + m− 1] is said to be a consecutive quantum minor of
Oq(G(m,n)). Recalling the convention above, we see that there are four consecutive minors
in Oq(G(2, 4)): they are [12], [23], [34] and [4̃ 5̃] = [14]. More generally, Oq(G(m,n)) has n

consecutive minors.

Two maximal quantum minors [I] and [J ] are said to quasi-commute if there is an integer
c such that [I][J ] = qc[J ][I]. Recall that an element u of a ring R is said to be a normal
element if uR = Ru, in which case uR is a two-sided ideal. The following lemma, first
obtained in [8, Lemma 3.7], shows that consecutive quantum minors quasi-commute with
all maximal quantum minors.

Lemma 2.2 Let [̃i, ĩ + 1, . . . , ˜i + m− 1] be a consecutive quantum minor in the quantum
grassmannian Oq(G(m,n)). Then [̃i, ĩ + 1, . . . , ˜i + m− 1] quasi-commutes with each of the
generating quantum minors of Oq(G(m,n)). In particular, each consecutive quantum minor
is a normal element of Oq(G(m,n)). �

A consequence of this result is that the powers of a consecutive quantum minor form an Ore
set in the noetherian domain Oq(G(m,n)); and so it is possible to invert the consecutive
quantum minor in a localisation.

In order to facilitate computations, we need a version of the Quantum Muir’s Law of Ex-
tensible Minors. This result was first obtained by Krob and Leclerc, [8, Theorem 3.4], with
a proof involving quasi-determinants. The version below, which is sufficient for our needs,
is taken from [12, Proposition 1.3], and is adapted for use in the quantum grassmannian.
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Proposition 2.3 Let Is, Js, for 1 ≤ s ≤ d, be m-element subsets of {1, . . . , n} and let
cs ∈ K be such that

∑d
s=1 cs[Is][Js] = 0 in Oq(G(m,n)). Suppose that P is a subset of

{1, . . . , n} such that (∪d
s=1Is) ∪ (∪d

s=1Js) ⊆ P and let P denote {1, . . . , n}\P . Then

d∑
s=1

cs[Is t P ][Js t P ] = 0.

holds in Oq(G(m′, n)), where m′ = m + #P . �

This result is used, for example, when it is necessary to write down a commutation relation
between two maximal quantum minors [I] and [J ], say. The usefulness of the result is
that one may delete the common members of the index pairs I and J to establish the
commutation relation.

3 Cycling does not induce an automorphism

In contrast to the classical and semiclassical settings, the cycle (12 . . . n) does not act
as an automorphism on the quantum grassmannian. We show this here by considering
Oq(G(2, 4)).

First, we summarize the commutation relations and the quantum Plücker relation for
Oq(G(2, 4)); which can easily be obtained from the defining relations of quantum matrices.

[ij][ik] = q[ik][ij], [ik][jk] = q[jk][ik], for i < j < k

and

[14] [23] = [23] [14] , [12][34] = q2[34][12], [13] [24] = [24] [13] +
(
q − q−1

)
[14] [23] .

There is also a quantum Plücker relation [12] [34]−q [13] [24]+q2 [14] [23] = 0. This quantum
Plücker relation may be rewritten as [34] [12]− q−1 [24] [13] + q−2 [23] [14] = 0 and one can
also check that [13] [24] = q2 [24] [13] +

(
q−1 − q

)
[12] [34] .

Example 3.1 Let θ[ij] := [i + 1, j + 1], with the convention that θ(4) = 1; that is, we
work modulo 4 and θ is cycling the indices of quantum minors:

θ[ij] = [c̃(i), c̃(j)],

where c denotes the cycle (1234).

In the classical case, θ induces an isomorphism, and this is also the case in the Poisson
setting, [15].
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However, θ does not induce an automorphism of Oq(G(2, 4)), since, for example, the quan-
tum Plücker relation is not preserved: if we assume that θ induces an automorphism then
we calculate

0 = θ(0) = θ([12][34]− q[13][24] + q2[14][23]) = [23][14]− q[24][13] + q2[12][34].

However, one can check that [23][14]−q[24][13]+q2[12][34] 6= 0. For, suppose that [23][14]−
q[24][13]+q2[12][34] = 0, then [23][14]−q[24][13]+q4[34][12] = 0. However, from the second
version of the quantum Plücker relation, we know that [14][23]− q[24][13] + q2[34][12] = 0.
Subtract one of these equations from the other and note that [14][23] = [23][14] to obtain
(q4 − q2)[34][12] = 0, a contradiction, provided that q2 6= 1.

4 Dehomogenisation at a consecutive minor

Explicit calculations in the quantum grassmannian can be difficult due to the awkward
defining relations (quantum Plücker relations). For this reason, it is often useful to transfer
to an overring where the defining relations are simpler. This can be achieved by localising
at any consecutive quantum minor, and this leads to consideration of the noncommutative
dehomogenisation isomorphism for an arbitrary consecutive quantum minor.

Set Mα := {α̃, α̃ + 1, . . . , ˜α + m− 1} in Oq(G(m,n)). Now, [Mα] is a normal element, by
Lemma 2.2; and so we may form the localisationOq(G(m,n))[[Mα]−1]. InOq(G(m,n))[[Mα]−1]
set

xij := [Mα ∪ { ˜j + α + m− 1}\{ ˜α + m− i}][Mα]−1.

Theorem 4.1 The subalgebra K[xij ] of Oq(G(m,n))[[Mα]−1] is a q-quantum matrix alge-
bra; that is, K[xij ] is isomorphic to Oq(Mm,n−m) by an isomorphism that send xij to Xij.
Moreover there is an isomorphism

φα : Oq(G(m,n))[[Mα]−1] −→ K[xij ][y±1
α ;σα].

where σα is the automorphism of the quantum matrix algebra K[xij ] defined by σα(xij)Mα =
Mαxij. Under this isomorphism, yα = φα(Mα).

Proof: The fact that K[xij ] is a quantum matrix algebra is established in [13, Theorem
3.2]. The inclusion ρα : K[xij ] −→ Oq(G(m,n))[[Mα]−1] extends to a homomorphism
ρα : K[xij ][y±1

α ;σα] −→ Oq(G(m,n))[[Mα]−1], by the universal property of skew polynomial
extensions. The fact that the extension ρα is an isomorphism follows from [13, Lemma 3.1]
and the dehomogenisation isomorphism [6, Lemma 3.1]. Now, set φα = ρ−1

α . �
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Next, we need to calculate the effect of φα on generating quantum minors of Oq(G(m,n)).

Let I be an m-element subset of {1, . . . , n}. For a fixed α, set Ir := I ∩Mα and Ic := I\Ir;
so that I = Ir t Ic (the notation is chosen because Ir will give information about the row
set of the image of [I] and Ic will give information about the column set).

To simplify the notation somewhat, if N is a subset of integers, and i is an integer, then
i + N = {i + k | k ∈ N}.

Corollary 4.2 Let [I] be a generating quantum minor of Oq(G(m,n)). Then

φα([I]) = [(α + m)− (Mα\Ir) | Ic − (α + m− 1)]yα.

Proof: By using [13, Proposition 4.3], we see that for a quantum minor [I|J ] of the
quantum matrix algebra K[xij ]

ρα([I|J ]) = [Mα\((α + m)− I) t ((α + m− 1) + J)][Mα]−1.

As φα = ρ−1
α , the claim will be established once we show that

ρα([(α + m)− (Mα\Ir) | Ic − (α + m− 1)] · yα) = [I].

Now,

ρα([(α + m)− (Mα\Ir) | Ic − (α + m− 1)] · yα) =

[Mα\((α + m)− ((α + m)−Mα\Ir) t ((α + m− 1) + (Ic − (α + m− 1)))][Mα]−1 · [Mα]

= [Mα\(Mα\Ir) t Ic] = [Ir t Ic] = [I],

as required. �

We shall need to use the isomorphisms φα and ρα of Theorem 4.1 in the two cases α = 1
and α = 2. The next two results record the action of σ1 and σ2.

Lemma 4.3 For 1 ≤ i ≤ m and 1 ≤ j ≤ n−m

σ1(xij) = qxij .

Consequently, y1xij = qxijy1 for 1 ≤ i ≤ m and 1 ≤ j ≤ n−m.

Proof: In order to calculate the commutation relation between xij and y1, we need to
consider the commutation relation between xij and M1. This will be the same as the
commutation relation between xijM1 and M1. Set N := {1, . . . ,m}\{m + 1 − i}. Then
xijM1 = [N ∪ {j + m}] and M1 = [N ∪ {m + 1 − i}]. Note that m + 1 − i < j + m; so
that [m + 1 − i][j + m] = q[j + m][m + 1 − i] in Oq(G(1, n)). By using Proposition 2.3,
it follows that M1(xijM1) = q(xijM1)M1. Hence, M1xij = qxijM1, and so σ1(xij) = qxij

and y1xij = qxijy1, as claimed. �
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Lemma 4.4 For 1 ≤ i ≤ m and 1 ≤ j < n−m

σ2(xij) = qxij

while σ2(xi,n−m) = q−1xi,n−m. Consequently, y2xij = qxijy2 for 1 ≤ i ≤ m and 1 ≤ j <

n−m while y2xi,n−m = q−1xi,n−my2.

Proof: When j < n−m, the calculations are similar to those in the proof of the previous
result and so are omitted.

Set N := {2, . . . ,m+1}\{m+2−i}. Then, xi,n−mM2 = [N∪{1}] and M2 = [N∪{m+2−
i}]. Now, 1 < m+2−i; so that [1][m+2−i] = q[m+2−i][1] inOq(G(1, n)). By using Proposi-
tion 2.3, it follows that (xi,n−mM2)M2 = qM2(xi,n−mM2). Hence, xi,n−mM2 = qM2xi,n−m,
and so σ2(xi,n−m) = q−1xi,n−m and y2xi,n−m = q−1xi,n−my2, as claimed. �

5 Twisting by a 2-cocycle

Given a K-algebra A that is graded by a semigroup, one can twist the multiplication in A

by using a cocycle to produce a new multiplication. We only need to deal with Zn-graded
algebras; so restrict our discussion to this case.

Definition 5.1 A 2-cocycle (with values in K∗) on Zn is a map c : Zn × Zn −→ K∗ such
that

c(s, t + u)c(t, u) = c(s, t)c(s + t, u)

for all s, t, u ∈ Zn.

Given a Zn-graded K-algebra A if a is a homogeneous element in As, for s ∈ Zn, then we
set content(a) := s.

Given a Zn-graded K-algebra A and a 2-cocycle c on Zn, one can define a new K-algebra
T (A) in the following way. As a graded vector space, A and T (A) are isomorphic via an
isomorphism a 7→ a′. The multiplication in T (A) is given by

a′b′ := c(s, t)(ab)′

for homogeneous elements a, b ∈ A with content s and t, respectively. The defining con-
dition of a 2-cocycle is precisely the condition needed to ensure that this multiplication is
associative. We refer to T (A) as the twist of A by c, and the map a 7→ a′ is the twist map.

The property of being an integral domain is preserved under twists, as the next lemma
shows.
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Lemma 5.2 Let A be a Zn-graded K-algebra that is an integral domain, and let c be a
2-cocycle on Zn. Then T (A) is an integral domain.

Proof: We may view A as graded by Zn, which can be made into a totally ordered group;
then T (A) is graded by the same totally ordered group. In order to see that the product of
two nonzero elements a′, b′ of T (A) is nonzero, it suffices to show that the product of their
highest terms is nonzero. Hence, we may assume that a, b are homogeneous elements. In
this case, a′b′ is a nonzero scalar multiple of (ab)′ and ab 6= 0, since A is a domain. Hence,
T (A) is a domain, as required. �

Our aim is to twist the quantum grassmannian Oq(G(m,n)) by a suitable 2-cocycle in such
a way that the effect of the twist map is to cycle the indices of the generating quantum
minors. There is a technical problem associated with this attempt, in that the defining
relations for the quantum grassmannian (quantum Plücker relations) are complicated to
deal with. We avoid the problem by using the notion of noncommutative dehomogenisation
introduced earlier.

Let the standard basis of Zn be denoted by {ε(1), . . . , ε(n)}, and let (s1, . . . , sn) denote the
element s1ε(1) + · · ·+ snε(n).

The quantum grassmannian Oq(G(m,n)) has a natural grading by Zn determined by the
content of a generating quantum minor, where content([I]) :=

∑
i∈I ε(i).

Note that Mα is a homogeneous element ofOq(G(m,n)) and so the Zn-grading ofOq(G(m,n))
extends in a natural way to Oq(G(m,n))[[Mα]−1] and hence to K[xij ][y±1

α ;σα] by using the
dehomogenisation isomorphism of Theorem 4.1.

Lemma 5.3 Let p = q2/m. The map c : Zn × Zn −→ K∗ defined by

c((s1, . . . , sn), (t1, . . . , tn)) :=
∏
j 6=n

psntj .

is a 2-cocycle.

Proof: Set s = (s1, . . . , sn), t = (t1, . . . , tn) and u = (u1, . . . , un). We have to check that

c(s, t + u)c(t, u) = c(s, t)c(s + t, u).

The proof is routine, one checks that each side is equal to∏
j 6=n

psntj+snuj+tnuj .

�
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Now, we look at the effect of twisting the algebra A := K[xij ][y±1
1 ;σ1] by using the 2-cocycle

c. Write y and σ for y1 and σ1, respectively.

We denote by T (A) the twist of A by using the 2-cocyle c; so that if a, b are homogeneous
elements with content s = (s1, . . . , sn) and t = (t1, . . . , tn), respectively, then

a′b′ := c((s1, . . . , sn), (t1, . . . , tn))(ab)′.

Now, we are in the case that α = 1, so that

xij = [{1, . . . ,m} ∪ {j + m}\{m + 1− i}][1, . . . ,m]−1.

Note that the content of xij is ε(j + m) − ε(m + 1 − i) and that the content of y is
ε(1) + · · ·+ ε(m).

As A is generated by the homogeneous elements xij and y, the twisted algebra T (A)
is generated by the homogeneous elements x′ij and y′. Our first aim is to describe the
commutation relations satisfied by these elements.

We will often abuse notation by writing c(a, b) instead of c(content(a), content(b)) for ho-
mogeneous elements a, b ∈ A.

Note that the value taken by c on a pair of elements from the set {xij , y} is often equal
to p0 = 1. In fact, the only possibilities for a value other than p0 occur in the cases when
ε(n) occurs in the content of the first argument in c. This can only occur for xi,n−m and
we check that

c(xi,n−m, xl,n−m) = p−1, c(xi,n−m, y) = pm = q2.

while c(xi,n−m, xl,j) = 1 for j < n − m and c(y, xij) = 1 for all i, j. These observations
make the calculation of the twisted product on pairs from the set {x′ij , y′} very easy.

Lemma 5.4 (x′ij) is a generic q-quantum matrix; that is, the algebra K[x′ij ] is isomorphic
to Oq(Mm,n−m). Moreover

y′x′ij = qx′ijy
′ for j < n−m, and y′x′i,n−m = q−1x′i,n−my′.

Proof: First, we show that the x′ij satisfy the commutation relations for a q-quantum
matrix. The cases where c(−,−) takes value 1 are easy to check, for example, for i1 < i2

and j < n−m,
x′i1jx

′
i2j = c(xi1j , xi2j)(xi1jxi2j)′ = (xi1jxi2j)′
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while

x′i2jx
′
i1j = c(xi2j , xi1j)(xi2jxi1j)′ = (xi2jxi1j)′ = q−1(xi1jxi2j)′ = q−1x′i1jx

′
i2j

and so x′i1jx
′
i2j = qx′i2jx

′
i1j , as required.

Also, for i1 < i2,
x′i1(n−m)x

′
i2(n−m) = p−1(xi1(n−m)xi2(n−m))

′

and
x′i2(n−m)x

′
i1(n−m) = p−1(xi2(n−m)xi1(n−m))

′

so again the desired q-commutation follows and the column relations are established.

The row computations are similar and so are omitted.

When i1 < i2 and j1 < j2, note that c(xi1j2 , xi2j1) = c(xi2j1 , xi1j2) = 1; and so

x′i1j2x
′
i2j1 = (xi1j2xi2j1)

′ = (xi2j1xi1j2)
′ = x′i2j1x

′
i1j2 ,

as required.

Continuing with i1 < i2 and j1 < j2, note that c(xi1j1 , xi2j2) = c(xi2j2 , xi1j1) = 1; and so

x′i1j1x
′
i2j2 − x′i2j2x

′
i1j1 = (xi1j1xi2j2)

′ − (xi2j2xi1j1)
′ = (xi1j1xi2j2 − xi2j2xi1j1)

′

= (q − q−1)(xi1j2xi2j1)
′ = (q − q−1)x′i1j2x

′
i2j1 .

This finishes the verification that the x′ij satisfy the commutation relations of Oq(Mm,n−m).
As a result, there is an epimorphism from Oq(Mm,n−m) onto K[x′ij ]. If this epimorphism
were not an isomorphism then GKdim(K[x′ij ]) < GKdim(Oq(Mm,n−m)) = m(n − m), by
[7, Proposition 3.15], since Oq(Mm,n−m) is a domain.

However, any monomial x′i1j1
x′i2j2

. . . x′itjt
is a nonzero scalar multiple of (xi1j1xi2j2 . . . xitjt)′;

and so a linear combination of such monomials is zero if and only if a corresponding
linear combination of monomials in the xij is zero. It follows that GKdim(K[x′ij ]) =
GKdim(K[xij ]) = m(n−m). Thus, K[x′ij ] ∼= Oq(Mm,n−m).

Now, we calculate how y′ commutes with the x′ij .

For j < n−m, observe that

x′ijy
′ = c(xij , y)(xijy)′ = (xijy)′

and so
y′x′ij = c(y, xij)(yxij)′ = (yxij)′ = q(xijy)′ = qx′ijy

′.

Finally,
x′i,n−my′ = c(xi,n−m, y)(xi,n−my)′ = q2(xi,n−my)′
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and so

y′x′i,n−m = c(y, xi,n−m)(yxi,n−m)′ = (yxi,n−m)′ = q(xi,n−my)′ = q−1x′i,n−my′.

�

We now wish to consider the dehomogenisation isomorphism when α = 2. In order to avoid
a clash of notation, we will write

Oq(G(m,n))[[M2]−1] ∼= K[zij ][w±1;φ]

where zij := [M2 ∪ { ˜j + m + 1}\{m + 2− i}] and M2 = [2, 3, . . . ,m + 1].

Theorem 5.5
T (K[xij ][y±1;σ]) ∼= K[zij ][w±1;φ]

via a map θ : T (K[xij ][y±1;σ]) −→ K[zij ][w±1;φ] that sends x′ij to zij and y to w.

Proof: From Lemma 4.4 and Lemma 5.4, we see that the commutation relations among
the {x′ij , y′1} of T (K[xij ][y±1

1 ;σ1]) are the same as the corresponding commutation relations
among the generating set {z′ij , y′2} of K[zij ][y±1

2 ;σ2].

Thus, we may define a homomorphism from T (K[xij ][y±1;σ]) to K[zij ][w±1;φ] by send-
ing x′ij to z′ij and y to w. This homomorphism is an epimorphism, since the generators of
K[zij ][w±1;φ] are in the image. Finally, the two algebras have the same Gelfand-Kirillov di-
mension, m(n−m)+1; so this epimorphism between two domains must also be a monomor-
phism, by [7, Proposition 3.15]. �

We may identify Oq(G(m,n)) as a subalgebra of K[xij ][y±1
1 ;σ1] via the dehomogenisation

isomorphismOq(G(m,n))[[M1]−1] ∼= K[xij ][y±1
1 ;σ1] and identify another copy ofOq(G(m,n))

with a subalgebra of K[zij ][y±1
2 ;σ2] via the isomorphismOq(G(m,n))[[M2]−1] ∼= K[zij ][y±1

2 ;σ2].
Our next aim is to show that the image of the first copy of Oq(G(m,n)) under the map
θ ◦ T is the second copy of Oq(G(m,n)). In order to do this, we need to track the image of
a generating quantum minor through the sequence of maps

Oq(G(m,n))
φ1−→ K[xij ][y±1

1 ;σ1]
T−→ K[x′ij ][y

′±1
1 ] θ−→ K[zij ][y±1

2 ;σ2]
ρ2−→ Oq(G(m,n))[[M2]−1]

First, we record the effect of the twist map on quantum minors. We need to consider
quantum minors in each of the quantum matrix algebras K[xij ] and K[x′ij ]; so for a given
row set I and column set J we will denote the corresponding quantum minors by [I|J ]x
and [I|J ]x′ , respectively.

Lemma 5.6 Let [I|J ]x be a quantum minor of the quantum matrix algebra K[xij ] in the
previous theorem. Then the image of [I|J ]x under the twist map is [I|J ]x′.
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Proof: This proof is a routine calculation, using induction on the size of the quantum mi-
nor and quantum Laplace expansions, noting that each c(−,−) that occurs takes value 1. �

Lemma 5.7 c([I|J ], y) = 1 when n−m 6∈ J and c([I|J ], y) = q2 when n−m ∈ J

Proof: This follows from the fact that ε(n) appears (with nonzero coefficients) in content([I|J ])
if and only if n−m ∈ J by [13, Proposition 4.3]. �

As before, for a given row set I and column set J we will denote the corresponding quantum
minors of the various quantum matrix algebras by [I|J ]x, [I|J ]x′ and [I|J ]z, respectively.

Lemma 5.8 Let I = [i1, . . . , im] be a generating quantum minor of Oq(G(m,n)). Then

ρ2 ◦ θ ◦ T ◦ φ1([I]) =

{
[i1 + 1, . . . , im + 1] if im 6= n

q−2[1, i1 + 1, . . . , im−1 + 1] if im = n

Proof: Note that
φ1(I) = [(m + 1)−M1\Ir|Ic −m]xy1;

and so

T ◦ φ1(I) = ([(m + 1)−M1\Ir|Ic −m]xy1)′ = C−1[(m + 1)M1\Ir|Ic −m]x′y′1

where C := c([(m + 1) −M1\Ir|Ic −m]x, y) and note that C = 1 if n −m 6∈ Ic −m (and
so if n 6∈ I), while C = q2 if n−m ∈ Ic −m (and so if n ∈ I).

Thus,

θ ◦ T ◦ φ1(I) = C−1[(m + 1)−M1\Ir|Ic −m]zw

= C−1[(m + 2)−M2\(Ir + 1)|(Ic + 1)− (m + 1)]zw

Finally,

ρ2 ◦ θ ◦ T ◦ φ1(I) = C−1ρ2([(m + 2)−M2\(Ir + 1)|(Ic + 1)− (m + 1)]zw)

= C−1[(Ir + 1) t (Ic + 1)] = C−1[I + 1]

and the result follows. Note that the last equality is obtained by the same calculation as
in the proof of Corollary 4.2. �

We can now reach our conclusion.

Theorem 5.9
T (Oq(G(m,n))) ∼= Oq(G(m,n))

via a map θ that sends [i1, . . . , im]′ to [i1 + 1, . . . , im + 1], for im < n, and [i1, . . . , im−1, n]
is sent to q−2[1, i1 + 1, . . . , im−1 + 1].

Proof: This follows immediately from the previous lemma. �
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6 Twisting the H-prime spectrum

In this section we assume that q is a not a root of unity, in order that we know that the
prime ideals of Oq(G(m,n)) are completely prime, see [10, Theorem 5.2].

The natural Zn-grading on Oq(G(m,n)) induces a rational action of the algebraic torus
H := (K∗)n on Oq(G(m,n)) by K-automorphisms via

(h1, . . . , hn).[i1, . . . , im] = hi1 · · ·him [i1, . . . , im],

(see [1, Lemma II.2.11] for more details). In this setting, the homogeneous prime ideals
of Oq(G(m,n)) are exactly those primes that are invariant under this torus action. Hence
homogeneous primes are also called H-primes, and the set H−Spec(Oq(G(m,n))) of all
H-primes of Oq(G(m,n)) is called the H-prime spectrum of Oq(G(m,n)). It was proved
in [10] that this set is finite, and its cardinality was computed. The importance of the
H-prime spectrum was pointed out by Goodearl and Letzter who proved that the H-prime
spectrum parametrizes a natural stratification of the prime spectrum of Oq(G(m,n)).

Theorem 6.1 Suppose that q is not a root of unity. Let P be an H-prime ideal of
Oq(G(m,n)). Then T (P ) := {p′ | p ∈ P} is an H-prime ideal of T (Oq(G(m,n))).

Proof: The algebra Oq(G(m,n))/P inherits a Zn-grading, as P is homogeneous; and so we
can form the twisted algebra T (Oq(G(m,n))/P ). It then follows that T (Oq(G(m,n))/P ) ∼=
T (Oq(G(m,n)))/T (P ). Hence, it is enough to show that T (Oq(G(m,n))/P ) is a domain
and this follows from Lemma 5.2.

Corollary 6.2 Suppose that q is not a root of unity. Then

θ(T (H−Spec(Oq(G(m,n))))) = H−Spec(Oq(G(m,n))),

where θ is the isomorphism defined in Theorem 5.9.

Proof: If P,Q are two distinct H-prime ideals of Oq(G(m,n)) then T (P ) and T (Q) are
distinct H-prime ideals of T (Oq(G(m,n))); and so their images under the isomorphism θ

are distinct H-prime ideals of Oq(G(m,n)). As the set of H-prime ideals is finite, this
establishes the claim. �

It follows that if P is an H-prime ideal of Oq(G(m,n)) then a quantum minor [i1, . . . , im]
is in P if and only if the quantum minor [i1 +1, . . . , im +1] is in θ(T (P )), where im +1 := 1
if im = n. In other words, the sets of quantum minors that are in H-prime ideals are
permuted by θ ◦ T .

Note that in [10], it was shown that each H-prime ideal of Oq(G(2, 4)) is generated by the
quantum minors that it contains, and it was conjectured that this holds in any Oq(G(m,n)).
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