Quantised coordinate rings of semisimple groups are unique factorisation domains

S Launois and T H Lenagan *

Abstract

We show that the quantum coordinate ring of a semisimple group is a unique factorisation domain in the sense of Chatters and Jordan in the case where the deformation parameter q is a transcendental element.

Key words: Unique factorisation domain, quantum enveloping algebra, quantum coordinate ring.

Introduction

Throughout this paper, \mathbb{C} denotes the field of complex numbers, $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$ and $q \in \mathbb{C}^*$ is transcendental.

The notion of a noncommutative noetherian unique factorisation domain (UFD for short) has been introduced and studied by Chatters and Jordan in [3, 4]. Recently, the present authors, together with L Rigal, [11], have shown that many quantum algebras are noetherian UFD. In particular, we have shown that the quantum group $O_q(SL_n)$ is a noetherian UFD.

Let G be a connected simply connected complex semisimple algebraic group. Since in the classical setting it was shown by Popov, [12], that the ring of regular functions on G is a unique factorisation domain, one can ask if a similar result holds for the quantisation

*This research was supported by a Marie Curie Intra-European Fellowship within the 6th European Community Framework Programme and by Leverhulme Research Interchange Grant F/00158/X
\(O_q(G) \) of the coordinate ring of \(G \). The aim of this note is to provide a positive answer to this question. In order to do this, we use a stratification of the prime spectrum of \(O_q(G) \) that was constructed by Joseph, [8].

1 Quantised enveloping algebras and quantum coordinate rings

1.1 Quantised enveloping algebras

Let \(\mathfrak{g} \) be a complex semisimple Lie algebra of rank \(n \). We denote by \(\pi = \{\alpha_1, \ldots, \alpha_n\} \) the set of simple roots associated to a triangular decomposition \(\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+ \). Recall that \(\pi \) is a basis of a euclidean vector space \(E \) over \(\mathbb{R} \), whose inner product is denoted by \((\, , \)\) (\(E \) is usually denoted by \(\mathfrak{h}^*_\mathbb{R} \) in Bourbaki). We denote by \(\mathcal{W} \) the Weyl group of \(\mathfrak{g} \); that is, the subgroup of the orthogonal group of \(E \) generated by the reflections \(s_i := s_{\alpha_i} \), for \(i \in \{1, \ldots, n\} \), with reflecting hyperplanes \(H_i := \{\beta \in E \mid (\beta, \alpha_i) = 0\} \), for \(i \in \{1, \ldots, n\} \). If \(w \in \mathcal{W} \), we denote by \(l(w) \) its length. Further, we denote by \(w_0 \) the longest element of \(\mathcal{W} \). Throughout this paper, the Coxeter group \(\mathcal{W} \) will be endowed with the Bruhat order that we denote by \(\leq \). We refer the reader to [8, Appendix A1] for the definition and properties of the Bruhat order.

We denote by \(R^+ \) the set of positive roots and by \(R \) the set of roots. We set \(Q^+ : = \mathbb{N}\alpha_1 \oplus \cdots \oplus \mathbb{N}\alpha_n \). We denote by \(\varpi_1, \ldots, \varpi_n \) the fundamental weights, by \(P \) the \(\mathbb{Z} \)-lattice generated by \(\varpi_1, \ldots, \varpi_n \), and by \(P^+ \) the set of dominant weights. In the sequel, \(P \) will always be endowed with the following partial order:

\[
\lambda \leq \mu \text{ if and only if } \mu - \lambda \in Q^+.
\]

Finally, we denote by \(A = (a_{ij}) \in M_n(\mathbb{Z}) \) the Cartan matrix associated to these data.

Recall that the scalar product of two roots \((\alpha, \beta)\) is always an integer. As in [1], we assume that the short roots have length \(\sqrt{2} \).

For each \(i \in \{1, \ldots, n\} \), set \(q_i : = q^{(\alpha_i, \alpha_i)} \) and

\[
\begin{bmatrix}
 m \\
 k
\end{bmatrix}_i : = \frac{(q_i - q_i^{-1})(q_i^{m-1} - q_i^{-m})(q_i^m - q_i^{-m})}{(q_i - q_i^{-1})(q_i^k - q_i^{-k})(q_i - q_i^{-1}) \cdots (q_i^{m-k} - q_i^{k-m})}
\]

for all integers \(0 \leq k \leq m \). By convention, we have

\[
\begin{bmatrix}
 m \\
 0
\end{bmatrix}_i : = 1.
\]
We will use the definition of the quantised enveloping algebra given in [1, I.6.3, I.6.4].

The quantised enveloping algebra $U_q(g)$ of g over \mathbb{C} associated to the previous data is the \mathbb{C}-algebra generated by indeterminates $E_1, \ldots, E_n, F_1, \ldots, F_n, K_1^{\pm 1}, \ldots, K_n^{\pm 1}$ subject to the following relations:

$$K_i K_j = K_j K_i, \quad K_i K_i^{-1} = 1$$

$$K_i E_j K_i^{-1} = q_i^{a_{ij}} E_j, \quad K_i F_j K_i^{-1} = q_i^{-a_{ij}} F_j$$

$$E_i F_j - F_j E_i = \delta_{ij} \frac{K_i - K_i^{-1}}{q_i - q_i^{-1}}$$

and the quantum Serre relations:

$$\sum_{k=0}^{1-a_{ij}} (-1)^k \begin{pmatrix} 1 - a_{ij} \\ k \end{pmatrix} E_i^{1-a_{ij}-k} E_j E_i^k = 0 \quad (i \neq j)$$

and

$$\sum_{k=0}^{1-a_{ij}} (-1)^k \begin{pmatrix} 1 - a_{ij} \\ k \end{pmatrix} F_i^{1-a_{ij}-k} F_j F_i^k = 0 \quad (i \neq j).$$

Note that $U_q(g)$ is a Hopf algebra; its comultiplication is defined by

$$\Delta(K_i) = K_i \otimes K_i, \quad \Delta(E_i) = E_i \otimes 1 + K_i \otimes E_i, \quad \Delta(F_i) = F_i \otimes K_i^{-1} + 1 \otimes F_i,$$

its counit by

$$\varepsilon(K_i) = 1, \quad \varepsilon(E_i) = \varepsilon(F_i) = 0,$$

and its antipode by

$$S(K_i) = K_i^{-1}, \quad S(E_i) = -K_i^{-1} E_i, \quad S(F_i) = -F_i K_i.$$

We refer the reader to [1, 7, 8] for more details on this algebra. Further, as usual, we denote by $U_q^+(g)$ the subalgebra of $U_q(g)$ generated by E_1, \ldots, E_n and by $U_q(b^+)$ the subalgebra of $U_q(g)$ generated by $E_1, \ldots, E_n, K_1^{\pm 1}, \ldots, K_n^{\pm 1}$. In a similar manner, $U_q^-(g)$ is the subalgebra of $U_q(g)$ generated by F_1, \ldots, F_n and $U_q(b^-)$ is the subalgebra of $U_q(g)$ generated by $F_1, \ldots, F_n, K_1^{\pm 1}, \ldots, K_n^{\pm 1}$.

1.2 Representation theory of quantised enveloping algebras

It is well-known that the representation theory of the quantised enveloping algebra $U_q(g)$ is analogous to the representation theory of the classical enveloping algebra $U(g)$. In this section, we collect the properties that will be needed in the rest of the paper.
As usual, if M is a left $U_q(\mathfrak{g})$-module, we denote its dual by M^*. Observe that M^* is a right $U_q(\mathfrak{g})$-module in a natural way. However, by using the antipode of $U_q(\mathfrak{g})$, this right action of $U_q(\mathfrak{g})$ on M^* can be twisted to a left action, so that M^* can be viewed as a left $U_q(\mathfrak{g})$-module.

Let M be a $U_q(\mathfrak{g})$-module and $m \in M$. The element m is said to have weight $\lambda \in P$ if $K_i.m = q^{(\lambda,\alpha_i)}m$ for all $i \in \{1, \ldots, n\}$. For each $\lambda \in P$, set $M_{\lambda} := \{ m \in M \mid K_i.m = q^{(\lambda,\alpha_i)}m \text{ for all } i \in \{1, \ldots, n\} \}$. If $M_{\lambda} \neq 0$ then M_{λ} is said to be a weight space of M and λ is a weight of M.

It is well-known, see, for example [1, 7], that, for each dominant weight $\lambda \in P^+$, there exists a unique (up to isomorphism) simple finite dimensional $U_q(\mathfrak{g})$-module of highest weight λ that we denote by $V(\lambda)$. In the following proposition, we collect some well-known properties of the $V(\lambda)$, for $\lambda \in P^+$. We refer the reader to [1, especially I.6.12], [6] and [7] for details and proofs.

Proposition 1.1 Denote by $\Omega(\lambda)$ the set of those weights $\mu \in P$ such that $V(\lambda)_{\mu} \neq 0$.

1. $V(\lambda) = \bigoplus_{\mu \in \Omega(\lambda)} V(\lambda)_{\mu}$

2. The weights of $V(\lambda)$ are given by Weyl’s character formula. In particular, if $\mu \in \Omega(\lambda)$, then $w\mu \in \Omega(\lambda)$ for all $w \in W$.

3. For all $w \in W$, one has $\dim_{\mathbb{C}} V(\lambda)_{w\lambda} = 1$.

4. $V(\lambda)^* \simeq V(-w_0\lambda)$.

5. The weight $w_0\lambda$ is the unique lowest weight of $V(\lambda)$.

In particular, for all $\mu \in \Omega(\lambda)$, one has $w_0\lambda \leq \mu \leq \lambda$.

For all $w \in W$ and $\lambda \in P^+$, let $u_{w\lambda}$ denote a nonzero vector of weight $w\lambda$ in $V(\lambda)$. Then we denote by $V_w^+(\lambda)$ the Demazure module associated to the pair λ, w, that is: $V_w^+(\lambda) := U_q^+(\mathfrak{g})u_{w\lambda} = U_q^+(\mathfrak{b}^+)u_{w\lambda}$. We also set $V_w^-(\lambda) := U_q^-(\mathfrak{g})u_{w\lambda} = U_q^-(\mathfrak{b}^-)u_{w\lambda}$.

(Observable that these definitions are independent of the choice of $u_{w\lambda}$ because of Proposition 1.1 (3).)

The following result may be well-known; however, we have been unable to locate a precise statement.
Proposition 1.2

1. \(V^+_{w_0}(\lambda) = V(\lambda) = V^-_{id}(\lambda)\).

2. For all \(i, j \in \{1, \ldots, n\}\), one has

\[
V^+_{w_0s_i}(\varpi_j) = \begin{cases} \sum_{\mu \in \Omega(\varpi_j) \setminus \{w_0\varpi_j\}} V(\varpi_j)^{\mu} & \text{if } i = j \\ V(\varpi_j) & \text{otherwise}, \end{cases}
\]

and

\[
V^-_{s_i}(\varpi_j) = \begin{cases} \sum_{\mu \in \Omega(\varpi_j) \setminus \{\varpi_j\}} V(\varpi_j)^{\mu} & \text{if } i = j \\ V(\varpi_j) & \text{otherwise}. \end{cases}
\]

Proof. We only prove the assertions corresponding to “positive” Demazure modules, the proof for “negative” Demazure modules is similar.

Since \(w_0\lambda\) is the lowest weight of \(V(\lambda)\), we have \(U_q^+(g)u_{w_0}\lambda = V(\lambda)\); that is, \(V^+_{w_0}(\lambda) = V(\lambda)\). This proves the first assertion.

In order to prove the second claim, we distinguish between two cases.

First, let \(i, j \in \{1, \ldots, n\}\) with \(i \neq j\). Then \(s_i(\varpi_j) = \varpi_j\). Hence, in this case, one has:

\[
V^+_{w_0s_i}(\varpi_j) = U_q^+(g)u_{w_0s_i}\varpi_j = U_q^+(g)u_{w_0}\varpi_j = V^+_{w_0}(\varpi_j) = V(\varpi_j).
\]

Next, let \(j \in \{1, \ldots, n\}\). Then \(s_j(\varpi_j) = \varpi_j - \alpha_j\). Let \(\mu \in \Omega(\varpi_j)\) with \(\mu \neq w_0\varpi_j\), and let \(m \in V(\varpi_j)_\mu\) be any nonzero element. It follows from the first assertion that there exists \(x \in U_q^+(g)\) such that \(m = x.u_{w_0}\varpi_j\). The element \(x\) can be written as a linear combination of products \(E_{i_1}\ldots E_{i_k}\), with \(k \in \mathbb{N}^*\) and \(i_1, \ldots, i_k \in \{1, \ldots, n\}\). Naturally, one can assume that \(E_{i_1}\ldots E_{i_k}.u_{w_0}\varpi_j \neq 0\) for each such product. Let \(E_{i_1}\ldots E_{i_k}\) be one of these products. Since \(w_0\pi = -\pi\), there exists \(l \in \{1, \ldots, n\}\) such that \(w_0\alpha_{i_k} = -\alpha_l\). We will prove that \(l = j\). Indeed, assume that \(l \neq j\). Since \(E_{i_k}.u_{w_0}\varpi_j\) is a nonzero vector of \(V(\varpi_j)\) of weight \(w_0\varpi_j + \alpha_{i_k}\), we get that

\[
w_0\varpi_j + \alpha_{i_k} \in \Omega(\varpi_j).
\]

Then, we deduce from Proposition 1.1 that

\[
s_l w_0 (w_0\varpi_j + \alpha_{i_k}) \in \Omega(\varpi_j),
\]

that is,

\[
s_l \varpi_j + \alpha_l \in \Omega(\varpi_j).
\]

Further, since we have assumed that \(l \neq j\), we get \(s_l \varpi_j = \varpi_j\), so that

\[
\varpi_j + \alpha_l \in \Omega(\varpi_j).
\]

This contradicts the fact that \(\varpi_j\) is the highest weight of \(V(\varpi_j)\).
Thus, we have just proved that \(w_0 \alpha_{ik} = -\alpha_j \) for all products \(E_{i_1} \ldots E_{i_k} \) that appear in \(x \). Now, observe that \(E_{i_k}.u_{w_0 \varpi_j} \) is a nonzero vector of \(V(\varpi_j) \) of weight \(w_0(\varpi_j - \alpha_j) = w_0 s_j \varpi_j \). Since \(\dim \, V(\varpi_j)_{w_0 s_j \varpi_j} = 1 \), we get that \(E_{i_k}.u_{w_0 \varpi_j} = a u_{w_0 s_j \varpi_j} \) for a certain nonzero complex number \(a \). Hence we get that
\[
m = x.u_{w_0 \varpi_j} = \sum \bullet E_{i_1} \ldots E_{i_k}.u_{w_0 \varpi_j} = y.u_{w_0 s_j \varpi_j},
\]
where \(\bullet \) denote some nonzero complex numbers and \(y \in U^+_q(g) \). Thus \(m \in V^+_{w_0 s_j}(\varpi_j) \). This shows that
\[
\bigoplus_{\mu \in \Omega(\varpi_j) \setminus \{ w_0 \varpi_j \}} V(\varpi_j)_\mu \subseteq V^+_{w_0 s_j}(\varpi_j).
\]
As the reverse inclusion is trivial, this finishes the proof. □

1.3 Quantised coordinate rings of semisimple groups and their prime spectra.

Let \(G \) be a connected, simply connected, semisimple algebraic group over \(\mathbb{C} \) with Lie algebra \(\text{Lie}(G) = g \). Since \(U_q(g) \) is a Hopf algebra, one can define its Hopf dual \(U_q(g)^\ast \) (see [8, 1.4]) via
\[
U_q(g)^\ast := \{ f \in \text{Hom}_\mathbb{C}(U_q(g), \mathbb{C}) \mid f = 0 \text{ on some ideal of finite codimension} \}.
\]

The quantised coordinate ring \(O_q(G) \) of \(G \) is the subalgebra of \(U_q(g)^\ast \) generated by the coordinate functions \(c_{\lambda, \xi, v}^\lambda \) for all \(\lambda \in P^+ \), \(\xi \in V(\lambda)^\ast \) and \(v \in V(\lambda) \), where \(c_{\xi, v}^\lambda \) is the element of \(U_q(g)^\ast \) defined by
\[
c_{\xi, v}^\lambda(u) := \xi(uv) \text{ for all } u \in U_q(g),
\]
see, for example, [8, Chapter 9]. As usual, if \(\xi \in V(\lambda)_\eta^\ast \) and \(v \in V(\lambda)_\mu \), we write \(c_{\eta, \mu}^\lambda \) instead of \(c_{\xi, v}^\lambda \). Naturally, this leads to some ambiguity. However, when \(\mu \in W.\lambda \) and \(\eta \in W.(-w_0 \lambda) \), then \(\dim \, V(\lambda)_\mu = 1 = \dim \, V(\lambda)_\eta^\ast \), so that this ambiguity is very minor.

It is well-known that \(O_q(G) \) is a noetherian domain and a Hopf-subalgebra of \(U_q(g)^\ast \), see [1, 8]. This latter structure allows us to define the so-called left and right winding automorphisms (see, for instance, [1, 1.9.25] or [8, 1.3.5]), and then to obtain an action of the torus \(\mathcal{H} := (\mathbb{C}^*)^{2n} \) on \(O_q(G) \) (see [2, 5.2]). More precisely, observe that the torus \(H := (\mathbb{C}^*)^n \) can be identified with \(\text{Hom}(P, \mathbb{C}^*) \) via:
\[
h(\lambda) = h_1^\lambda \ldots h_n^\lambda,
\]
where \(h = (h_1, \ldots, h_n) \in H \) and \(\lambda = \lambda_1 \varpi_1 + \cdots + \lambda_n \varpi_n \) with \(\lambda_1, \ldots, \lambda_n \in \mathbb{Z} \). Then, it is known (see [5, 3.3] or [1, I.1.18]) that the torus \(H \) acts rationally by \(\mathbb{C} \)-algebra automorphisms on \(O_q(G) \) via:

\[
g \cdot c^\lambda_{\xi,v} = g_1(\mu)g_2(\eta)c^\lambda_{\xi,v},
\]

for all \(g = (g_1, g_2) \in H = H \times H, \lambda \in P^+, \xi \in V(\lambda)^*_\mu \) and \(v \in V(\lambda)_\eta \).

(We refer the reader to [1, II.2.6] for the definition of a rational action.)

As usual, we denote by Spec\((O_q(G))\) the set of prime ideals in \(O_q(G) \). Recall that Joseph has proved [9] that every prime in \(O_q(G) \) is completely prime.

Since \(H \) acts by automorphisms on \(O_q(G) \), this induces an action of \(H \) on the prime spectrum of \(O_q(G) \). As usual, we denote by \(\mathcal{H}\text{-Spec}(O_q(G)) \) the set of those prime ideals of \(O_q(G) \) that are \(\mathcal{H} \)-invariant. This is a finite set since Brown and Goodearl [2, Section 5] (see also [1, II.4]) have shown using previous results of Joseph that

\[
\mathcal{H}\text{-Spec}(O_q(G)) = \{Q_{w_+,w_-} \mid (w_+, w_-) \in W \times W\},
\]

where

\[
Q^+_{w_+} := \langle c^\lambda_{\xi,v} \mid \lambda \in P^+, \xi \in (V^+_\mu(\lambda))_\mu^* \subseteq V(\lambda)^*_\mu \rangle,
\]

\[
Q^-_{w_-} := \langle c^\lambda_{\xi,v} \mid \lambda \in P^+, \xi \in (V^-_{w_0}(\lambda))_\mu^* \subseteq V(\lambda)^*_\mu \rangle,
\]

and

\[
Q_{w_+,w_-} := Q^+_{w_+} + Q^-_{w_-}.
\]

Since \(q \) is transcendental, it follows from [10, Théorème 3] that it is enough to consider the fundamental weights in the definition of \(Q^+_{w_+} \) and \(Q^-_{w_-} \). More precisely, we deduce from [10, Théorème 3] the following result.

Theorem 1.3 (Joseph)

\[
\mathcal{H}\text{-Spec}(O_q(G)) = \{Q_{w_+,w_-} \mid (w_+, w_-) \in W \times W\},
\]

where

\[
Q^+_{w_+} := \langle c^\varpi_j \mid j \in \{1, \ldots, n\}, \varpi \in V(\varpi_j)^* \rangle\text{ and } Q^-_{w_-} := \langle c^\varpi_j \mid j \in \{1, \ldots, n\}, \varpi \in (V^-_{w_0}(\varpi_j))_\mu^* \subseteq V(\varpi_j)^* \rangle,
\]

and

\[
Q_{w_+,w_-} := Q^+_{w_+} + Q^-_{w_-}.
\]

Moreover the prime ideals \(Q_{w_+,w_-} \), for \((w_+, w_-) \in W \times W \), are pairwise distinct.
2 $O_q(G)$ is a noetherian UFD.

In this section, we prove that $O_q(G)$ is a noetherian UFD (We refer the reader to [11, Section 1] for the definition of a noetherian UFD; the key point is that each height one prime ideal should be generated by a normal element.) In order to do this, we proceed in three steps.

1. First, by using results of Joseph, we show that there exist a finite number of nonzero normal \mathcal{H}-eigenvectors r_1, \ldots, r_k of $O_q(G)$ such that each $\langle r_i \rangle$ is (completely) prime, and that each nonzero \mathcal{H}-invariant prime ideal of $O_q(G)$ contains one of the r_i. This property may be thought of as a “weak factoriality” result: $O_q(G)$ is an \mathcal{H}-UFD in the terminology of [11].

2. Secondly, by using the H-stratification theory of Goodearl and Letzter (see [1, II]), we show that the localisation of $O_q(G)$ with respect to the multiplicative system generated by the r_i is a noetherian UFD.

3. Finally, we use a noncommutative analogue of Nagata’s Lemma (see [11, Proposition 1.6]) to prove that $O_q(G)$ itself is a noetherian UFD.

2.1 $O_q(G)$ is an \mathcal{H}-UFD

This aim of this section is two-fold. First, we show that for each $i \in \{1, \ldots, n\}$, the ideal generated by the normal element $c_{w_0, w}^{v_i}$ or $c_{w_0, w}^{-v_i}$ is (completely) prime and then we prove that every nonzero \mathcal{H}-invariant prime ideal of $O_q(G)$ contains either one of the $c_{w_0, w}^{v_i}$ or one of the $c_{w_0, w}^{v_i}$.

Lemma 2.1 Let $i \in \{1, \ldots, n\}$. Then $Q_{w_0, s_i, w_0} = \langle c_{w_0, w_0, w}^{v_i} \rangle$ and $Q_{w_0, s_i, w_0} = \langle c_{w_0, w_0, w}^{-v_i} \rangle$.

Proof. Recall that

$$Q_{w_0, s_i, w_0} = Q^+_{w_0} + Q^-_{w_0},$$

where

$$Q^+_{w_0} = \langle c_{\xi, v}^{v_i} \rangle \mid j \in \{1, \ldots, n\}, v \in V(w_j)_{w_0, w}, \xi \in (V^+_{w_0}(w_j))^+ \subseteq V(w_j)^*,$$

$$Q^-_{s_i, w_0} = \langle c_{\xi, v}^{-v_i} \rangle \mid j \in \{1, \ldots, n\}, v \in V(w_j)_{w_0, w}, \xi \in (V^-_{w_0}(w_j))^+ \subseteq V(w_j)^*.$$

Next, it follows from Proposition 1.2(1) that $V^+_{w_0}(w_j) = V(w_j)$ for all j, so that $Q^+_{w_0} = (0)$. Also, we deduce from Proposition 1.2(2) that $V^-_{w_0}(w_j) = V(w_j)$ if $j \neq i$, and $V^-_{s_i}(w_j) = \oplus_{\mu \in \Omega(w_i) \setminus \{w_i\}} V(w_i, \mu)$. Hence,

$$Q^-_{s_i, w_0} = \langle c_{\xi, v}^{-v_i} \rangle \mid v \in V(w_i)_{w_0, w}, \xi \in V(w_i)^*_{w_0, w}.$$
that is, \(Q_{s_1 w_0} = \langle c_{w_1, u_0 w_0}^i \rangle \). Therefore \(Q_{w_0, s_1 w_0} = Q_{w_0}^+ + Q_{s_1 w_0}^{-} = \langle c_{w_1, u_0 w_0}^i \rangle \), as desired.

The second claim of the lemma is obtained in the same way. \(\square \)

Now observe that, in [8], Joseph uses slightly different conventions for the dual \(M^* \) of a left \(U_q(\mathfrak{g}) \)-module. Indeed, it is mentioned in [8, 9.1] that the dual \(M^* \) is viewed with its natural right \(U_q(\mathfrak{g}) \)-module structure. As a consequence, Joseph’s convention for the weights of the dual \(L(\lambda)^* \) of \(L(\lambda) \), for \(\lambda \in P^+ \), is not exactly the same as our convention. In particular, the elements \(c_{w_1, u_0 w_1}^i \) and \(c_{w_0, u_0 w_1}^i \), \(i \in \{1, \ldots, n\} \), that appear in [8, Corollary 9.1.4], correspond to the elements \(c_{w_1, u_0 w_1}^i \) and \(c_{w_0, w_1}^i \) in our notation. With this in mind, it follows from [8, Corollary 9.1.4] that the elements \(c_{w_1, u_0 w_1}^i \) and \(c_{w_0, w_1}^i \), for \(i \in \{1, \ldots, n\} \), are normal in \(O_q(G) \). Thus we deduce from Lemma 2.1 the following result which will allow us later to use a noncommutative analogue of Nagata’s Lemma in order to prove that \(O_q(G) \) is a noetherian UFD.

Corollary 2.2 The \(2n \) elements \(c_{w_1, u_0 w_1}^i \) and \(c_{w_0, w_1}^i \), for \(i \in \{1, \ldots, n\} \), are nonzero normal elements of \(O_q(G) \) and they generate pairwise distinct completely prime ideals of \(O_q(G) \).

Since the \(c_{w_1, u_0 w_1}^i \) and \(c_{w_0, w_1}^i \), for \(i \in \{1, \ldots, n\} \), are \(\mathcal{H} \)-eigenvectors of \(O_q(G) \), in order to prove that \(O_q(G) \) is an \(\mathcal{H} \)-UFD in the sense of [11, Definition 2.7], it only remains to prove that every nonzero \(\mathcal{H} \)-invariant prime ideal of \(O_q(G) \) contains either one of the \(c_{w_1, u_0 w_1}^i \) or one of the \(c_{w_0, w_1}^i \). This is what we do next.

Lemma 2.3 Let \(w = (w_+, w_-) \in W \times W \), with \(w \neq (w_0, w_0) \). Then \(Q_w \) contains either one of the \(c_{w_1, u_0 w_1}^i \), or one of the \(c_{w_0 w_1}^i \).

Proof. Since \(w \neq (w_0, w_0) \), either \(w_+ \neq w_0 \), or \(w_- \neq w_0 \). Assume, for instance, that \(w_+ \neq w_0 \), so that there exists \(i \in \{1, \ldots, n\} \) such that \(w_+ \leq w_0 s_i \). One can easily check from the definition of \(Q_w \) that this forces \(c_{w_1, u_0 w_1}^i \in Q_+^{w_+} \), so that

\[
\begin{align*}
c_{w_1, u_0 w_1}^i & \in Q_+^{w_+} \subseteq Q_w,
\end{align*}
\]

as required. \(\square \)

As a consequence of Corollary 2.2 and Lemma 2.3, we get the following result.

Corollary 2.4 \(O_q(G) \) is an \(\mathcal{H} \)-UFD.

Proof. Theorem 1.3 establishes that \(\mathcal{H} \)-Spec\((O_q(G)) = \{Q_{w_+, w_-} \mid (w_+, w_-) \in W \times W\} \). Note that \(Q_{w_+, w_-} = 0 \) precisely when \(w_+ = w_- = w_0 \). Thus, Corollary 2.2 and Lemma 2.3 show that each nonzero \(\mathcal{H} \)-prime ideal of \(O_q(G) \) contains a nonzero \(\mathcal{H} \)-prime of height one that is generated by a normal \(\mathcal{H} \)-eigenvector. Thus, \(O_q(G) \) is an \(\mathcal{H} \)-UFD. \(\square \)
2.2 \(O_q(G) \) is a noetherian UFD.

Set \(T \) to be the localisation of \(O_q(G) \) with respect to the multiplicatively closed set generated by the normal \(\mathcal{H} \)-eigenvectors \(c_{\omega_i, w_0 \omega_i} \) and \(c_{w_0 \omega_i, \omega_i} \), for \(i \in \{1, \ldots, n\} \). Then the rational action of \(\mathcal{H} \) on \(O_q(G) \) extends to an action of \(\mathcal{H} \) on the localisation \(T \) by \(\mathbb{C} \)-algebra automorphisms, since we are localising with respect to \(\mathcal{H} \)-eigenvectors, and this action of \(\mathcal{H} \) on \(T \) is also rational, by using [1, II.2.7]. The following result is a consequence of Corollary 2.4 and [11, Proposition 3.5].

Proposition 2.5 The ring \(T \) is \(\mathcal{H} \)-simple; that is, the only \(\mathcal{H} \)-ideals of \(T \) are 0 and \(T \).

We are now in position to show that \(O_q(G) \) is a noetherian UFD.

Theorem 2.6 \(O_q(G) \) is a noetherian UFD.

Proof. By [11, Proposition 1.6], it is enough to prove that the localisation \(T \) is a noetherian UFD. Now, as proved in Proposition 2.5, \(T \) is an \(\mathcal{H} \)-simple ring. Thus, using [1, II.3.9], \(T \) is a noetherian UFD, as required. \(\square \)

As a consequence, we deduce from Theorem 2.6 and [4, Theorem 2.4] the following result.

Corollary 2.7 \(O_q(G) \) is a maximal order.

The fact that \(O_q(G) \) is a maximal order can also be proved directly by using a suitable localisation of \(O_q(G) \), [8, Corollary 9.3.10], which is itself a maximal order.

Acknowledgment We thank Laurent Rigal with whom we first discussed this problem. We also thank Christian Ohn for a very helpful conversation concerning the representation theory of \(U(g) \) during a meeting of the Groupe de Travail Inter-universitaire en Algèbre in La Rochelle and thank the organisers for the opportunity to attend this meeting.

References

S Launois:
School of Mathematics, University of Edinburgh,
James Clerk Maxwell Building, King’s Buildings, Mayfield Road,
Edinburgh EH9 3JZ, Scotland
E-mail : stephane.launois@ed.ac.uk

T H Lenagan:
School of Mathematics, University of Edinburgh,
James Clerk Maxwell Building, King’s Buildings, Mayfield Road,
Edinburgh EH9 3JZ, Scotland
E-mail: tom@maths.ed.ac.uk