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Summary

Magnitude homology is a homology theory of enriched categories.

It specializes to a homology theory of metric spaces.

Main theorem (with Adrián Doña Mateo) Two closed subsets of RN

are magnitude homology equivalent if and only if they are related by a
certain concrete geometric condition.



Motivation

In topology, we have the concept of two continuous maps

X
f //
g
//Y

being homotopic.

We also know that homotopic maps induce the same map H∗(X ) → H∗(Y )
in homology.

Question Is there an analogous concept of homotopy for magnitude
homology of metric spaces, with an analogous theorem?

Yu Tajima and Masahiko Yoshinaga have looked at this question in one way.

We look at it in another.
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1. What is magnitude homology?

Richard Hepworth and Simon Willerton,
Categorifying the magnitude of a graph

Tom Leinster and Michael Shulman, Magnitude
homology of enriched categories and metric spaces



Warm-up: homology of an ordinary category

Any ordinary category X gives rise to a chain complex C∗(X ):

Cn(X ) =
∐

x0,...,xn∈X

Z ·
(
X (x0, x1)× · · · × X (xn−1, xn)

)
where Z · − : Set → Ab is the free abelian group functor.

The differential ∂ is
∑n

i=0(−1)i∂i , where ∂i composes at xi (for 0 < i < n)
or forgets the first/last factor (for i ∈ {0, n}).
The homology H∗(X ) of X is the homology of C∗(X ).

Key ingredients here:

• (Set,×, 1) is a monoidal category, whose unit object 1 is terminal.

• Ab is both abelian and monoidal.

• Z · − is a strong monoidal functor (Z · (S × T ) ∼= Z · S ⊗ Z · T ).



The magnitude homology of an enriched category: setup

Imitating the ordinary, unenriched case, we start with:

• a monoidal category V whose unit object is terminal (generalizing Set)

• a monoidal abelian category A (generalizing Ab)

• a strong monoidal functor Σ: V → A (generalizing Z · −).

Analogy This is a categorification of the setup for magnitude, which is:

• a monoidal category V
• a semiring k

• a monoid homomorphism | · | : (obV )/∼= → k .



The magnitude homology of an enriched category:
definition

We start with:

• a monoidal category V whose unit object is terminal

• a monoidal abelian category A
• a strong monoidal functor Σ: V → A.

Let X be a category enriched in V .

Define a chain complex C∗(X ) in A by

Cn(X ) =
∐

x0,...,xn∈X

Σ
(
X (x0, x1)⊗ · · · ⊗ X (xn−1, xn)

)
.

It has differential ∂ =
∑n

i=0(−1)i∂i , where ∂i either composes at xi or
forgets the first/last factor.

The magnitude homology MH∗(X ) of X is the homology of C∗(X ).



The magnitude homology of a metric space

Metric spaces are categories enriched in V = (([0,∞),≥),+, 0).

To take the magnitude homology of metric spaces, we’ll need:

• a monoidal abelian category A
• a strong monoidal functor Σ: [0,∞) → A.

We choose:

• A = Ab[0,∞) with the convolution product: (A⊗ B)ℓ =
∐

k+m=ℓ

Ak ⊗ Bm

• Σ: [0,∞) → Ab[0,∞) to be the functor defined by

(Σ(ℓ))(m) =

{
Z if ℓ = m

0 otherwise

(ℓ,m ∈ [0,∞)).



The magnitude homology of a metric space, explicitly

Let X be a metric space.

The chain complex C∗,∗(X ) in Ab[0,∞) is given by

Cn,ℓ(X ) = Z ·
{
(x0, . . . , xn) : d(x0, x1) + · · ·+ d(xn−1, xn) = ℓ

}
(n ∈ N, ℓ ∈ [0,∞)).

Equivalently, we can replace C∗,∗(X ) by a normalized version, Ĉ∗,∗(X ):

Ĉn,ℓ(X ) = Z·
{
(x0, . . . , xn) : x0 ̸= · · · ≠ xn, d(x0, x1)+· · ·+d(xn−1, xn) = ℓ

}
.

The differential ∂ : Ĉn(X ) → Ĉn−1(X ) is
∑

0<i<n(−1)i∂i , where

∂i (x0, . . . , xn) =

{
(x0, . . . , xi−1, xi+1, . . . , xn) if xi is between xi−1 and xi+1

0 otherwise.

Then MH∗,∗(X ) is the homology of the chain complex Ĉ∗,∗(X ) in Ab[0,∞).



Magnitude homology is graded!

Magnitude homology of a metric space is a [0,∞)-graded homology theory.

That is, when X is a metric space and n is a natural number, MHn(X ) is not
just an abelian group, but an object of Ab[0,∞)— a family(

MHn,ℓ(X )
)
ℓ∈[0,∞)

of abelian groups.

(Compare Khovanov homology. . . )



Sample results

• Let X be a closed subset of RN . Then

X is convex ⇐⇒ MH1,ℓ(X ) = 0 for all ℓ > 0.

In fact, if X is convex then MHn,ℓ(X ) = 0 for all n ≥ 1 and ℓ > 0.

• Work of Kyonori Gomi and others gives evidence for the slogan:

The more geodesics are unique, the more magnitude homology is trivial.

• Ordinary homology detects the existence of holes.

Magnitude homology detects the size of holes.

Example (Ryuki Kaneta & Masahiko Yoshinaga) Let r > 0 and

X = {x ∈ RN : ∥x∥ ≥ r}.

Then r = sup{ℓ/2n : MHn,ℓ(X ) ̸= 0}.



2. Preparation for the main
theorem



What does it mean to “have the same homology”?
For any homology theory, what does it mean for two objects X and Y to
“have the same homology”? There are several interpretations. . .

Answer 1 Crude: H∗(X ) ∼= H∗(Y ).

Usually seen as unhelpful, too loose.

Unhelpful for us too. E.g. Emily Roff has exhibited metric spaces
with the same magnitude homology (in this sense) but different
topological homology.

Answer 2 Quasi-isomorphism: Declare X and Y to “have the same
homology” if there is a map X → Y inducing an iso H∗(X ) → H∗(Y ).

Answer 3 One step further: Ask for existence of maps X ⇄ Y inducing
mutually inverse maps H∗(X ) ⇄ H∗(Y ).

We follow Answer 3, where our objects are metric spaces and map means
distance-decreasing (= 1-Lipschitz = weakly contractive = short) map:
d(f (x), f (x ′)) ≤ d(x , x ′).



Another preview of the main theorem

Theorem (with Adrián Doña Mateo) Let X and Y be nonempty closed
subsets of RN . The following are equivalent:

• there are distance-decreasing maps X ⇄ Y inducing mutually inverse
maps MHn,∗(X ) ⇄ MHn,∗(Y ) for all n ≥ 1

• there are distance-decreasing maps X ⇄ Y inducing mutually inverse
maps MHn,∗(X ) ⇄ MHn,∗(Y ) for some n ≥ 1

• X and Y are related by a certain concrete geometric condition.

Next: that “concrete geometric condition”.



The inner boundary of a space

Let X be a metric space.

Points x , y ∈ X are adjacent if they are distinct and there is no point z ∈ X
strictly between them: d(x , z) + d(z , y) = d(x , y) ⇒ z ∈ {x , y}.
The inner boundary of X is

ρX = {x ∈ X : x is adjacent to some point of X}.

Note When X ⊆ RN , the inner boundary is a subset of the topological
boundary: ρX ⊆ ∂X .



Examples of inner boundaries (all closed subsets of RN)
• ρX : inner boundary of X (the set of points adjacent to some other point)

• conv(ρX ): closure of convex hull of ρX

• core(X ) = conv(ρX ) ∩ X

Fact: core(core(X )) = core(X )

R2 with two discs removed

ρX = ∅
⇐⇒

X is convex

ρX is not
closed



The core of a subset of RN

• ρX : inner boundary of X (the set of points adjacent to some other point)

• conv(ρX ): closure of convex hull of ρX

• core(X ) = conv(ρX ) ∩ X

Fact: core(core(X )) = core(X )



The core of a subset of RN

• ρX : inner boundary of X (the set of points adjacent to some other point)

• conv(ρX ): closure of convex hull of ρX

• core(X ) = conv(ρX ) ∩ X Fact: core(core(X )) = core(X )



3. The main theorem



The main theorem

Theorem (with Adrián Doña Mateo) Let X and Y be nonempty closed
subsets of RN . The following are equivalent:

(i) there exist distance-decreasing maps X ⇄ Y inducing mutually inverse
maps MHn,∗(X ) ⇄ MHn,∗(Y ) for all n ≥ 1

(ii) there exist distance-decreasing maps X ⇄ Y inducing mutually inverse
maps MHn,∗(X ) ⇄ MHn,∗(Y ) for some n ≥ 1

(iii) core(X ) and core(Y ) are isometric.

In particular, X and core(X ) have the same magnitude homology, for any X .

Magnitude homology equivalence
reduces to a concrete geometric condition,

for closed subsets of Euclidean space.



Examples

Each of these pairs has the same magnitude homology in degree ≥ 1:

R2 with two discs removed



4. What goes into the proof?



The ingredients, in brief

• Kaneta and Yoshinaga’s structure theorem for magnitude homology.

• An analysis of when two maps X
f //
g
//Y of metric spaces induce the

same map in magnitude homology.

• Some convex geometry.

Now for some more detail. . .



Straight metric spaces
Let X be a metric space. For x , y ∈ X , define

[x , y ] = {z ∈ X : z is between x and y}
= {z ∈ X : d(x , z) + d(z , y) = d(x , y)}.

x0
x1

x2

x3

Call X straight if whenever x0 ̸= x1 ̸= · · · ≠ xn with xi ∈ [xi−1, xi+1] for all i ,
we have

[x0, xn] = [x0, x1] ∪ · · · ∪ [xn−1, xn].

Examples

• RN is straight.

• Any subspace of a straight space is straight.

Lemma Straight ⇐⇒ geodetic and no 4-cuts.

The definitions of ‘geodetic’ and ‘no 4-cuts’ won’t be needed today.

Informally “Straight” means that the betweenness relation behaves as in
subsets of RN .



Kaneta and Yoshinaga’s structure theorem
By definition, an element of MHn,∗(X ) is an equivalence class of cycles
x = (x0, . . . , xn).

An (n + 1)-tuple of points x = (x0, . . . , xn) is thin if:

• xi−1 and xi are adjacent for all i (no point of X is between them)

• xi is not between xi−1 and xi+1, for any i .

Then every xi is in ρX , and x is automatically a cycle.

Theorem (Kaneta and Yoshinaga) If X is straight then MHn,∗(X ) is freely
generated by the set of thin (n + 1)-tuples.

In fact, they proved something more precise.

But even this crude version has important consequences, e.g.:

• the magnitude homology of a straight space only depends on its inner
boundary

• convex subsets of RN have trivial magnitude homology in degree ≥ 1.



When are two maps the same in homology?

For us, a map of metric spaces is a (non-strictly) distance-decreasing map.

Theorem Take maps of metric spaces X
f //
g
//Y , with X straight. If

f |ρX = g |ρX then C∗,∗(X )
f# //
g#
//C∗,∗(Y ) are chain homotopic in degree ≥ 1.

Hence MH∗,∗(X )
f∗ //
g∗
//MH∗,∗(Y ) are equal.

Proof 1 Construct an explicit chain homotopy.

Proof 2 Follows from Kaneta and Yoshinaga’s structure theorem by a
homological algebraic argument.

Corollary Let X be a straight metric space. Then any retract of X
containing its inner boundary has the same homology as X .



When does a self-map induce the identity in homology?
Theorem Let X be a straight metric space. The following conditions on a
self-map e : X → X are equivalent:

• e∗ : MHn,∗(X ) → MHn,∗(X ) is the identity for all n ≥ 1

• e∗ : MHn,∗(X ) → MHn,∗(X ) is the identity for some n ≥ 1

• e is the identity on the inner boundary of X .

The main ingredient of the proof is Kaneta and Yoshinaga’s structure
theorem, again.

All ⇐⇒ some???

This may seem surprising at first, but. . .

Key point The magnitude homology of straight spaces is rather simple,
because:

• betweenness behaves like in subsets of RN ;

• geodesics in RN are straightforward;

• “the more geodesics are unique, the more magnitude is trivial” (Gomi).



The convex geometry part

Our main theorem is about subsets of RN , not arbitrary straight spaces.

What specific properties of RN do we use?

Some of them:

• every interval [x , y ] is compact

• every isometry from a subset of RN to RN extends to an isometric
isomorphism RN → RN

• for closed X ⊆ RN , we have conv(X ) = X ∪ conv(ρX ), where conv
means convex hull.
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