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Note to the reader

These are the course notes for Galois Theory, University of Edinburgh, 2022-23.

Structure Each chapter corresponds to one week of the semester. You are
expected to read Chapter 𝑛 before the lectures in Week 𝑛, except for Chapter 1. I
may make small changes to these notes as we go along (e.g. to correct errors), so I
recommend that you download a fresh copy before you start each week’s reading.

Exercises looking like this are sprinkled through the notes. The idea
is that you try them immediately, before you continue reading.
Most of them are meant to be quick and easy, much easier than as-
signment or workshop questions. If you can do them, you can take it
as a sign that you’re following successfully. For those that defeat you,
talk with others in the class, ask on Piazza, or ask me.
I promise you that if you make a habit of trying every exercise, you’ll
enjoy the course more and understand it better than if you don’t.

Digressions like this are optional and not examinable, but might interest
you. They’re usually on points that I find interesting, and often describe
connections between Galois theory and other parts of mathematics.

Here you’ll see
titles of relevant
videos, made two

years ago when the
class was online.
They are entirely
optional but may

help your
understanding.

References to theorem numbers, page numbers, etc., are clickable links.

What to prioritize You know by now that the most important things in almost
any course are the definitions and the results called Theorem. But I also want to
emphasize the proofs. This course presents a wonderful body of theory, and the
idea is that you learn it all, including the proofs that are its beating heart.

Less idealistically, the exam will test not only that you know the proofs, but
also something harder: that you understand them. So the proofs will need your
attention and energy.
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Compulsory prerequisites To take this course, you must have already taken
these two courses:

• Honours Algebra: We’ll need some abstract linear algebra, corresponding to
Chapter 1 of that course. We’ll also need everything from Honours Algebra
about rings and polynomials (Chapter 3 there), including ideals, quotient
rings (factor rings), the universal property of quotient rings, and the first
isomorphism theorem for rings.

• Group Theory: From that course, we’ll need fundamentals such as normal
subgroups, quotient groups, the universal property of quotient groups, and
the first isomorphism theorem for groups. You should know lots about the
symmetric groups 𝑆𝑛, alternating groups 𝐴𝑛, and cyclic groups 𝐶𝑛, as well
as a little about the dihedral groups 𝐷𝑛, and I hope you can list all of the
groups of order < 8 without having to think too hard.
Chapter 8 of Group Theory, on solvable groups, will be crucial for us. For
example, you’ll need to understand what it means that 𝑆4 is solvable but 𝐴5
is not.
We won’t need anything on free groups, the Sylow theorems, or the Jordan–
Hölder theorem.

If you’re a visiting or MSc student and didn’t take those courses, please contact
me so that we can decide whether your background is suitable.

Mistakes I’ll be grateful to hear of mistakes in these notes (Tom.Leinster@
ed.ac.uk), even if it’s something very small and even if you’re not sure.
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Chapter 1

Overview of Galois theory

This chapter stands apart from all the others,
Modern treatments of Galois theory take advantage of several well-developed

branches of algebra: the theories of groups, rings, fields, and vector spaces. This
is as it should be! However, assembling all the algebraic apparatus will take us
several weeks, during which it’s easy to lose sight of what it’s all for.

Introduction to
Week 1

Galois theory came from two basic insights:

• every polynomial has a symmetry group;

• this group determines whether the polynomial can be solved by radicals (in
a sense I’ll define).

In this chapter, I’ll explain these two ideas in as short and low-tech a way as I can
manage. In Chapter 2 we’ll start again, beginning the modern approach that will
take up the rest of the course. But I hope that all through that long build-up, you’ll
keep in mind the fundamental ideas you learn in this chapter.

1.1 The view of C from Q
Imagine you lived several centuries ago, before the discovery of complex numbers.
Your whole mathematical world is the real numbers, and there is no square root of
−1. This situation frustrates you, and you decide to do something about it.

So, you invent a new symbol 𝑖 (for ‘imaginary’) and decree that 𝑖2 = −1. You
still want to be able to do all the usual arithmetic operations (+, ×, etc.), and you
want to keep all the rules that govern them (associativity, commutativity, etc.). So
you’re also forced to introduce new numbers such as 2+ 3× 𝑖, and you end up with
what today we call the complex numbers.

So far, so good. But then you notice something strange. When you invented
the complex numbers, you only intended to introduce one square root of −1. But
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accidentally, you introduced a second one at the same time: −𝑖. (You wait centuries
for a square root of −1, then two come along at once.) Maybe that’s not so strange
in itself; after all, positive reals have two square roots too. But then you realize
something genuinely weird:

There’s nothing you can do to distinguish 𝑖 from −𝑖.

Try as you might, you can’t find any reasonable statement that’s true for 𝑖 but not
−𝑖. For example, you notice that 𝑖 is a solution of

𝑧3 − 3𝑧2 − 16𝑧 − 3 =
17
𝑧
,

but then you realize that −𝑖 is too.
Of course, there are unreasonable statements that are true for 𝑖 but not −𝑖, such

as ‘𝑧 = 𝑖’. We should restrict to statements that only refer to the known world of
real numbers. More precisely, let’s consider statements of the form

𝑝1(𝑧)
𝑝2(𝑧)

=
𝑝3(𝑧)
𝑝4(𝑧)

,

where 𝑝1, 𝑝2, 𝑝3, 𝑝4 are polynomials with real coefficients. Any such equation
can be rearranged to give

𝑝(𝑧) = 0,

where again 𝑝 is a polynomial with real coefficients, so we might as well just
consider statements of that form. The point is that if 𝑝(𝑖) = 0 then 𝑝(−𝑖) = 0.

Let’s make this formal. We could say that two complex numbers are ‘indistin-
guishable when seen from R’ if they satisfy the same polynomials over R. But the
official term is ‘conjugate’:

Definition 1.1.1 Two complex numbers 𝑧 and 𝑧′ are conjugate over R if for all
polynomials 𝑝 with coefficients in R,

𝑝(𝑧) = 0 ⇐⇒ 𝑝(𝑧′) = 0.

For example, 𝑖 and −𝑖 are conjugate over R. This follows from a more general
result, stating that conjugacy in this new sense is closely related to complex
conjugacy:

Lemma 1.1.2 Let 𝑧, 𝑧′ ∈ C. Then 𝑧 and 𝑧′ are conjugate over R if and only if
𝑧′ = 𝑧 or 𝑧′ = 𝑧.
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Proof ‘Only if’: suppose that 𝑧 and 𝑧′ are conjugate over R. Write 𝑧 = 𝑥 + 𝑖𝑦 with
𝑥, 𝑦 ∈ R. Then (𝑧 − 𝑥)2 + 𝑦2 = 0. Since 𝑥 and 𝑦 are real, conjugacy implies that
(𝑧′ − 𝑥)2 + 𝑦2 = 0, so 𝑧′ − 𝑥 = ±𝑖𝑦, so 𝑧′ = 𝑥 ± 𝑖𝑦.

‘If’: obviously 𝑧 is conjugate to itself, so it’s enough to prove that 𝑧 is conjugate
to 𝑧. I’ll give two proofs. Each one teaches us a lesson that will be valuable later.

First proof: recall that complex conjugation satisfies

𝑤1 + 𝑤2 = 𝑤1 + 𝑤2, 𝑤1 · 𝑤2 = 𝑤1 · 𝑤2

for all 𝑤1, 𝑤2 ∈ C. Also, 𝑎 = 𝑎 for all 𝑎 ∈ R. It follows by induction that for any
polynomial 𝑝 over R,

𝑝(𝑤) = 𝑝(𝑤)
for all 𝑤 ∈ C. So

𝑝(𝑧) = 0 ⇐⇒ 𝑝(𝑧) = 0 ⇐⇒ 𝑝(𝑧) = 0.

Second proof: write 𝑧 = 𝑥 + 𝑖𝑦 with 𝑥, 𝑦 ∈ R. Let 𝑝 be a polynomial over
R such that 𝑝(𝑧) = 0. We will prove that 𝑝(𝑧) = 0. This is trivial if 𝑦 = 0, so
suppose that 𝑦 ≠ 0.

Consider the real polynomial 𝑚(𝑡) = (𝑡 − 𝑥)2 + 𝑦2. Then 𝑚(𝑧) = 0. You know
from Honours Algebra that

𝑝(𝑡) = 𝑚(𝑡)𝑞(𝑡) + 𝑟 (𝑡) (1.1)

for some real polynomials 𝑞 and 𝑟 with deg(𝑟) < deg(𝑚) = 2 (so 𝑟 is either a
constant or of degree 1). Putting 𝑡 = 𝑧 in (1.1) gives 𝑟 (𝑧) = 0. It’s easy to see
that this is impossible unless 𝑟 is the zero polynomial (using the assumption that
𝑦 ≠ 0). So 𝑝(𝑡) = 𝑚(𝑡)𝑞(𝑡). But 𝑚(𝑧) = 0, so 𝑝(𝑧) = 0, as required.

We have just shown that for all polynomials 𝑝 overR, if 𝑝(𝑧) = 0 then 𝑝(𝑧) = 0.
Exchanging the roles of 𝑧 and 𝑧 proves the converse. Hence 𝑧 and 𝑧 are conjugate
over R. □

Exercise 1.1.3 Both proofs of ‘if’ contain little gaps: ‘It follows by
induction’ in the first proof, and ‘it’s easy to see’ in the second. Fill
them.

Digression 1.1.4 With complex analysis in mind, we could imagine a stricter
definition of conjugacy in which polynomials are replaced by arbitrary con-
vergent power series (still with coefficients inR). This would allow functions
such as exp, cos and sin, and equations such as exp(𝑖𝜋) = −1.

But this apparently different definition of conjugacy is, in fact, equivalent. A
complex number is still conjugate to exactly itself and its complex conjugate.
(For example, exp(−𝑖𝜋) = −1 too.) Do you see why?
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Lemma 1.1.2 tells us that conjugacy over R is rather simple. But the same idea
becomes much more interesting if we replace R by Q. And in this course, we will
mainly focus on polynomials over Q.

Define conjugacy overQ by replacingR byQ in Definition 1.1.1. Again, when
you see the words ‘conjugate over Q’, you can think to yourself ‘indistinguishable
when seen from Q’. From now on, I will usually just say ‘conjugate’, dropping the
‘over Q’.

Example 1.1.5 I claim that
√

2 and −
√

2 are conjugate. And I’ll give you two
different proofs, closely analogous to the two proofs of the ‘if’ part of Lemma 1.1.2.

First proof: write

Q(
√

2) = {𝑎 + 𝑏
√

2 : 𝑎, 𝑏 ∈ Q}.

For 𝑤 ∈ Q(
√

2), there are unique 𝑎, 𝑏 ∈ Q such that 𝑤 = 𝑎 + 𝑏
√

2, because
√

2 is
irrational. So it is logically valid to define

Example 1.1.5
𝑤 = 𝑎 − 𝑏

√
2 ∈ Q(

√
2).

(Question: what did the uniqueness of 𝑎 and 𝑏 have to do with the logical validity
of that definition?) Now, Q(

√
2) is closed under addition and multiplication, and

it is straightforward to check that�𝑤1 + 𝑤2 = 𝑤1 + 𝑤2, �𝑤1 · 𝑤2 = 𝑤1 · 𝑤2

for all 𝑤1, 𝑤2 ∈ Q(
√

2). Also, �̃� = 𝑎 for all 𝑎 ∈ Q. So just as in the proof of
Lemma 1.1.2, it follows that 𝑤 and 𝑤 are conjugate for every 𝑤 ∈ Q(

√
2). In

particular,
√

2 is conjugate to (‘indistinguishable from’) −
√

2.
Second proof: let 𝑝 = 𝑝(𝑡) be a polynomial with coefficients in Q such that

𝑝(
√

2) = 0. You know from Honours Algebra that

𝑝(𝑡) = (𝑡2 − 2)𝑞(𝑡) + 𝑟 (𝑡)

for some polynomials 𝑞(𝑡) and 𝑟 (𝑡) over Q with deg 𝑟 < 2. Putting 𝑡 =
√

2 gives
𝑟 (
√

2) = 0. But
√

2 is irrational and 𝑟 (𝑡) is of the form 𝑎𝑡 + 𝑏 with 𝑎, 𝑏 ∈ Q, so 𝑟
must be the zero polynomial. Hence 𝑝(𝑡) = (𝑡2 − 2)𝑞(𝑡), giving 𝑝(−

√
2) = 0.

We have just shown that for all polynomials 𝑝 over Q, if 𝑝(
√

2) = 0 then
𝑝(−

√
2) = 0. The same argument with the roles of

√
2 and −

√
2 reversed proves

the converse. Hence ±
√

2 are conjugate.

Exercise 1.1.6 Let 𝑧 ∈ Q. Show that 𝑧 is not conjugate to 𝑧′ for any
complex number 𝑧′ ≠ 𝑧.

One thing that makes conjugacy more subtle over Q than over R is that over Q,
more than two numbers can be conjugate:
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1

𝜔

𝜔2

𝜔3

𝜔4

Figure 1.1: The 5th roots of unity.

Example 1.1.7 The 5th roots of unity are

1, 𝜔, 𝜔2, 𝜔3, 𝜔4,

where 𝜔 = 𝑒2𝜋𝑖/5 (Figure 1.1). Now 1 is not conjugate to any of the rest, since it
is a root of the polynomial 𝑡 − 1 and the others are not. (See also Exercise 1.1.6.)
But it turns out that 𝜔, 𝜔2, 𝜔3, 𝜔4 are all conjugate to each other.

Complex conjugate numbers are conjugate over R, so they’re certainly conju-
gate over Q. (If you’ve got a pair of complex numbers that you can’t tell apart
using only the reals, you certainly can’t tell them apart using only the rationals.)
Since 𝜔4 = 1/𝜔 = 𝜔, it follows that 𝜔 and 𝜔4 are conjugate over Q. By the same
argument, 𝜔2 and 𝜔3 are conjugate. What’s not so obvious is that 𝜔 and 𝜔2 are
conjugate. I know two proofs, which are like the two proofs of Lemma 1.1.2 and
Example 1.1.5. But we’re not equipped to do either yet.

Example 1.1.8 More generally, let 𝑝 be any prime and put 𝜔 = 𝑒2𝜋𝑖/𝑝. Then
𝜔, 𝜔2, . . . , 𝜔𝑝−1 are all conjugate to one another.

So far, we have asked when one complex number can be distinguished from
another, using only polynomials over Q. But what about more than one?

Definition 1.1.9 Let 𝑘 ≥ 0 and let (𝑧1, . . . , 𝑧𝑘 ) and (𝑧′1, . . . , 𝑧
′
𝑘
) be 𝑘-tuples of

complex numbers. Then (𝑧1, . . . , 𝑧𝑘 ) and (𝑧′1, . . . , 𝑧
′
𝑘
) are conjugate over Q if for

all polynomials 𝑝(𝑡1, . . . , 𝑡𝑘 ) over Q in 𝑘 variables,

𝑝(𝑧1, . . . , 𝑧𝑘 ) = 0 ⇐⇒ 𝑝(𝑧′1, . . . , 𝑧
′
𝑘 ) = 0.

When 𝑘 = 1, this is just the earlier definition of conjugacy.
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Exercise 1.1.10 Suppose that (𝑧1, . . . , 𝑧𝑘 ) and (𝑧′1, . . . , 𝑧
′
𝑘
) are con-

jugate. Show that 𝑧𝑖 and 𝑧′
𝑖
are conjugate, for each 𝑖 ∈ {1, . . . , 𝑘}.

Example 1.1.11 For any 𝑧1, . . . , 𝑧𝑘 ∈ C, the 𝑘-tuples (𝑧1, . . . , 𝑧𝑘 ) and (𝑧1, . . . , 𝑧𝑘 )
are conjugate. For let 𝑝(𝑡1, . . . , 𝑡𝑘 ) be a polynomial over Q. Then

𝑝(𝑧1, . . . , 𝑧𝑘 ) = 𝑝(𝑧1, . . . , 𝑧𝑘 )

since the coefficients of 𝑝 are real, by a similar argument to the one in the first
proof of Lemma 1.1.2. Hence

𝑝(𝑧1, . . . , 𝑧𝑘 ) = 0 ⇐⇒ 𝑝(𝑧1, . . . , 𝑧𝑘 ) = 0,

which is what we had to prove.

Example 1.1.12 Let 𝜔 = 𝑒2𝜋𝑖/5, as in Example 1.1.7. Then

(𝜔, 𝜔2, 𝜔3, 𝜔4) and (𝜔4, 𝜔3, 𝜔2, 𝜔)

are conjugate, by Example 1.1.11. It can also be shown that

(𝜔, 𝜔2, 𝜔3, 𝜔4) and (𝜔2, 𝜔4, 𝜔, 𝜔3)

are conjugate, although the proof is beyond us for now. But

(𝜔, 𝜔2, 𝜔3, 𝜔4) and (𝜔2, 𝜔, 𝜔3, 𝜔4) (1.2)

are not conjugate, since if we put 𝑝(𝑡1, 𝑡2, 𝑡3, 𝑡4) = 𝑡2 − 𝑡21 then

𝑝(𝜔, 𝜔2, 𝜔3, 𝜔4) = 0 ≠ 𝑝(𝜔2, 𝜔, 𝜔3, 𝜔4).

Warning 1.1.13 The converse of Exercise 1.1.10 is false: just because
𝑧𝑖 and 𝑧′

𝑖
are conjugate for all 𝑖, it doesn’t follow that (𝑧1, . . . , 𝑧𝑘 ) and

(𝑧′1, . . . , 𝑧
′
𝑘
) are conjugate. For we saw in Example 1.1.7 that 𝜔, 𝜔2,

𝜔3 and 𝜔4 are all conjugate to each other, but we just saw that the
4-tuples (1.2) are not conjugate.

1.2 Every polynomial has a symmetry group. . .
We are now ready to describe the first main idea of Galois theory: every polynomial
has a symmetry group.
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Definition 1.2.1 Let 𝑓 be a polynomial with coefficients in Q. Write 𝛼1, . . . , 𝛼𝑘
for its distinct roots in C. The Galois group of 𝑓 is

Gal( 𝑓 ) = {𝜎 ∈ 𝑆𝑘 : (𝛼1, . . . , 𝛼𝑘 ) and (𝛼𝜎(1) , . . . , 𝛼𝜎(𝑘)) are conjugate}.

‘Distinct roots’ means that we ignore any repetition of roots: e.g. if 𝑓 (𝑡) =

𝑡5(𝑡 − 1)9 then 𝑘 = 2 and {𝛼1, 𝛼2} = {0, 1}.

Exercise 1.2.2 Show that Gal( 𝑓 ) is a subgroup of 𝑆𝑘 . (This one is
harder. Hint: if you permute the variables of a polynomial, you get
another polynomial.)

Exercise 1.2.2
Digression 1.2.3 I brushed something under the carpet. The definition
of Gal( 𝑓 ) depends on the order in which the roots are listed. Different
orderings gives different subgroups of 𝑆𝑘 . However, these subgroups are
all conjugate to each other (conjugacy in the sense of group theory!), and
therefore isomorphic as abstract groups. So Gal( 𝑓 ) is well-defined as an
abstract group, independently of the choice of ordering.

Example 1.2.4 Let 𝑓 be a polynomial over Q whose complex roots 𝛼1, . . . , 𝛼𝑘
are all rational. If 𝜎 ∈ Gal( 𝑓 ) then 𝛼𝜎(𝑖) and 𝛼𝑖 are conjugate for each 𝑖, by Exer-
cise 1.1.10. But since they are rational, that forces 𝛼𝜎(𝑖) = 𝛼𝑖 (by Exercise 1.1.6),
and since 𝛼1, . . . , 𝛼𝑘 are distinct, 𝜎(𝑖) = 𝑖. Hence 𝜎 = id. So the Galois group of
𝑓 is trivial.

Example 1.2.5 Let 𝑓 be a quadratic over Q. If 𝑓 has rational roots then as we
have just seen, Gal( 𝑓 ) is trivial. If 𝑓 has two non-real roots then they are complex
conjugate, so Gal( 𝑓 ) = 𝑆2 by Example 1.1.11. The remaining case is where 𝑓 has
two distinct roots that are real but not rational, and it can be shown that in that case
too, Gal( 𝑓 ) = 𝑆2.

Warning 1.2.6 On terminology: note that just now I said ‘non-real’.
Sometimes people casually say ‘complex’ to mean ‘not real’. But try
not to do this yourself. It makes as little sense as saying ‘real’ to mean
‘irrational’, or ‘rational’ to mean ‘not an integer’.

Example 1.2.7 Let 𝑓 (𝑡) = 𝑡4 + 𝑡3 + 𝑡2 + 𝑡 + 1. Then (𝑡 − 1) 𝑓 (𝑡) = 𝑡5 − 1, so 𝑓 has
roots 𝜔, 𝜔2, 𝜔3, 𝜔4 where 𝜔 = 𝑒2𝜋𝑖/5. We saw in Example 1.1.12 that(

1 2 3 4
4 3 2 1

)
,

(
1 2 3 4
2 4 1 3

)
∈ Gal( 𝑓 ),

(
1 2 3 4
2 1 3 4

)
∉ Gal( 𝑓 ).
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In fact, it can be shown that

Gal( 𝑓 ) =
〈(

1 2 3 4
2 4 1 3

)〉
� 𝐶4.

Example 1.2.8 Let 𝑓 (𝑡) = 𝑡3 + 𝑏𝑡2 + 𝑐𝑡 + 𝑑 be a cubic over Q with no rational
roots. Then

Gal( 𝑓 ) �
{
𝐴3 if

√
−27𝑑2 + 18𝑏𝑐𝑑 − 4𝑐3 − 4𝑏3𝑑 + 𝑏2𝑐2 ∈ Q,

𝑆3 otherwise.

This appears as Proposition 22.4 in Stewart, but is way beyond us for now. Calcu-
lating Galois groups is hard.

Galois groups,
intuitively

1.3 . . . which determines whether it can be solved
Here we meet the second main idea of Galois theory: the Galois group of a
polynomial determines whether it can be solved. More exactly, it determines
whether the polynomial can be ‘solved by radicals’.

To explain what this means, let’s begin with the quadratic formula. The roots
of a quadratic 𝑎𝑡2 + 𝑏𝑡 + 𝑐 are

−𝑏 ±
√
𝑏2 − 4𝑎𝑐
2𝑎

.

After much struggling, it was discovered that there is a similar formula for cubics
𝑎𝑡3 + 𝑏𝑡2 + 𝑐𝑡 + 𝑑: the roots are given by

3
√︃
−27𝑎2𝑑+9𝑎𝑏𝑐−2𝑏3+3𝑎

√
3(27𝑎2𝑑2−18𝑎𝑏𝑐𝑑+4𝑎𝑐3+4𝑏3𝑑−𝑏2𝑐2) + 3

√︃
−27𝑎2𝑑+9𝑎𝑏𝑐−2𝑏3−3𝑎

√
3(27𝑎2𝑑2−18𝑎𝑏𝑐𝑑+4𝑎𝑐3+4𝑏3𝑑−𝑏2𝑐2)

3 3√2𝑎
.

(No, you don’t need to memorize that!) This is a complicated formula, and there’s
also something strange about it. Any nonzero complex number has three cube roots,
and there are two 3

√ signs in the formula (ignoring the 3√2 in the denominator), so
it looks as if the formula gives nine roots for the cubic. But a cubic can only have
three roots. What’s going on?

It turns out that some of the nine aren’t roots of the cubic at all. You have to
choose your cube roots carefully. Section 1.4 of Stewart’s book has much more on
this point, as well as an explanation of how the cubic formula was obtained. We
won’t be going into this ourselves.

As Stewart also explains, there is a similar but even more complicated formula
for quartics (polynomials of degree 4).

11



Digression 1.3.1 Stewart doesn’t actually write out the explicit formula for
the cubic, let alone the much worse one for the quartic. He just describes
algorithms by which they can be solved. But if you unwind the algorithm for
the cubic, you get the formula above. I have done this exercise once and do
not recommend it.

Once mathematicians discovered how to solve quartics, they naturally looked
for a formula for quintics (polynomials of degree 5). But it was eventually proved
by Abel and Ruffini, in the early 19th century, that there is no formula like the
quadratic, cubic or quartic formula for polynomials of degree ≥ 5. A bit more
precisely, there is no formula for the roots in terms of the coefficients that uses
only the usual arithmetic operations (+, −, ×, ÷) and 𝑘th roots (for integers 𝑘).

Spectacular as this result was, Galois went further—and so will we.
Informally, let us say that a complex number is radical if it can be obtained

from the rationals using only the usual arithmetic operations and 𝑘th roots. For
example,

1
2 + 3

√︁
7√2 − 2√7

4

√︂
6 + 5

√︃
2
3

is radical, whichever square root, cube root, etc., we choose. A polynomial over
Q is solvable (or soluble) by radicals if all of its complex roots are radical.

Example 1.3.2 Every quadratic over Q is solvable by radicals. This follows from
the quadratic formula: (−𝑏 ±

√
𝑏2 − 4𝑎𝑐)/2𝑎 is visibly a radical number.

Example 1.3.3 Similarly, the cubic formula shows that every cubic over Q is
solvable by radicals. The same goes for quartics.

Example 1.3.4 Some quintics are solvable by radicals. For instance,

(𝑡 − 1) (𝑡 − 2) (𝑡 − 3) (𝑡 − 4) (𝑡 − 5)

is solvable by radicals, since all its roots are rational and, therefore, radical. A bit
less trivially, (𝑡 − 123)5 + 456 is solvable by radicals, since its roots are the five
complex numbers 123 + 5√−456, which are all radical.

What determines whether a polynomial is solvable by radicals? Galois’s
amazing achievement was to answer this question completely:

12



Theorem 1.3.5 (Galois) Let 𝑓 be a polynomial over Q. Then

𝑓 is solvable by radicals ⇐⇒ Gal( 𝑓 ) is a solvable group.

Example 1.3.6 Definition 1.2.1 implies that if 𝑓 has degree 𝑛 then Gal( 𝑓 ) is
isomorphic to a subgroup of 𝑆𝑛. You saw in Group Theory that 𝑆4 is solvable,
and that every subgroup of a solvable group is solvable. Hence the Galois group
of any polynomial of degree ≤ 4 is solvable. It follows from Theorem 1.3.5 that
every polynomial of degree ≤ 4 is solvable by radicals.

Example 1.3.7 Put 𝑓 (𝑡) = 𝑡5 − 6𝑡 + 3. Later we’ll show that Gal( 𝑓 ) = 𝑆5. You
saw in Group Theory that 𝑆5 is not solvable. Hence 𝑓 is not solvable by radicals.

If there was a quintic formula then all quintics would be solvable by radicals,
for the same reason as in Examples 1.3.2 and 1.3.3. But since this is not the case,
there is no quintic formula.

Galois’s result is much sharper than Abel and Ruffini’s. They proved that there
is no formula providing a solution by radicals of every quintic, whereas Galois
found a way of determining which quintics (and higher) can be solved by radicals
and which cannot.

Digression 1.3.8 From the point of view of modern numerical computation,
this is all a bit odd. Computationally speaking, there is probably not much
difference between solving 𝑡5 + 3 = 0 to 100 decimal places (that is, finding
5√−3) and solving 𝑡5 − 6𝑡 + 3 = 0 to 100 decimal places (that is, solving
a polynomial that isn’t solvable by radicals). Numerical computation and
abstract algebra have different ideas about what is easy and what is hard!

∗ ∗ ∗

This completes our overview of Galois theory. What’s next?
Mathematics increasingly emphasizes abstraction over calculation. Individual

mathematicians’ tastes vary, but the historical trend is clear. In the case of Galois
theory, this means dealing with abstract algebraic structures, principally fields,
instead of manipulating explicit algebraic expressions such as polynomials. The
cubic formula already gave you a taste of how hairy that can get.

Developing Galois theory using abstract algebraic structures helps us to see its
connections to other parts of mathematics, and also has some fringe benefits. For
example, we’ll solve some notorious geometry problems that perplexed the ancient
Greeks and remained unsolved for millennia. For that and many other things, we’ll
need some of the theory of groups, rings and fields—and that’s what’s next.

13



Chapter 2

Group actions, rings and fields

We now start again. This chapter is a mixture of revision and material that is
likely to be new to you. The revision is from Fundamentals of Pure Mathematics,
Honours Algebra, and Introduction to Number Theory (if you took it, which I
won’t assume). Because much of it is revision, it’s a longer chapter than usual.

Introduction to
Week 2

2.1 Group actions
Let’s begin with a definition from Fundamentals of Pure Mathematics (Figure 2.1).

Definition 2.1.1 Let 𝐺 be a group and 𝑋 a set. An action of 𝐺 on 𝑋 is a function
𝐺 × 𝑋 → 𝑋 , written as (𝑔, 𝑥) ↦→ 𝑔𝑥, such that

(𝑔ℎ)𝑥 = 𝑔(ℎ𝑥)

for all 𝑔, ℎ ∈ 𝐺 and 𝑥 ∈ 𝑋 , and
1𝑥 = 𝑥

for all 𝑥 ∈ 𝑋 . Here 1 denotes the identity element of 𝐺.

Figure 2.1: Action of a group 𝐺 on a set 𝑋 . (Image adapted from @rowvector.)
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Examples 2.1.2 i. Let 𝑋 be a set. There is a group Sym(𝑋) whose elements
are the bĳections 𝑋 → 𝑋 , with composition as the group operation and
the identity function id𝑋 : 𝑋 → 𝑋 as the identity of the group. When
𝑋 = {1, . . . , 𝑛}, this group is nothing but 𝑆𝑛.
There is an action of Sym(𝑋) on 𝑋 defined by

Sym(𝑋) × 𝑋 → 𝑋

(𝑔, 𝑥) ↦→ 𝑔(𝑥).

Acting on 𝑋 is what Sym(𝑋) was born to do!

ii. Similar examples can be given for many kinds of mathematical object, not
just sets. Generally, an automorphism of an object 𝑋 is an isomorphism
𝑋 → 𝑋 (preserving whatever structure 𝑋 has), and the automorphisms of
𝑋 form a group Aut(𝑋) under composition. It acts on 𝑋 just as in (i):
𝑔𝑥 = 𝑔(𝑥), for 𝑔 ∈ Aut(𝑋) and 𝑥 ∈ 𝑋 .
For instance, when 𝑋 is a real vector space, the linear automorphisms form
a group Aut(𝑋) which acts on the vector space 𝑋 . When 𝑋 is finite-
dimensional, we can describe this action in more concrete terms. Writing
𝑛 = dim 𝑋 , the vector space 𝑋 is isomorphic to R𝑛, whose elements we will
view as column vectors. The group Aut(𝑋) is isomorphic to the group of
𝑛 × 𝑛 real invertible matrices under multiplication, usually called GL𝑛 (R)
(‘general linear’ group). Under these isomorphisms, the action of Aut(𝑋)
on 𝑋 becomes

GL𝑛 (R) × R𝑛 → R𝑛

(𝑀, v) ↦→ 𝑀v,
where 𝑀v is the usual matrix product.

iii. Let 𝐺 be the 48-element group of isometries (rotations and reflections) of a
cube. Then 𝐺 acts on the 6-element set of faces of the cube: any isometry
maps faces to faces. It also acts in a similar way on the 12-element set of
edges, the 8-element set of vertices, and a little less obviously, the 4-element
set of long diagonals. (The long diagonals are the lines between a vertex
and its opposite, furthest-away, vertex.)

iv. For any group 𝐺 and set 𝑋 , the trivial action of 𝐺 on 𝑋 is given by 𝑔𝑥 = 𝑥
for all 𝑔 and 𝑥. Nothing moves anything!

Take an action of a group 𝐺 on a set 𝑋 . Every group element 𝑔 gives rise to a
function

�̄� : 𝑋 → 𝑋
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defined by
�̄�(𝑥) = 𝑔𝑥.

In fact, �̄� is a bĳection, because 𝑔−1 is the inverse function of �̄�. So �̄� ∈ Sym(𝑋)
for each 𝑔 ∈ 𝐺. For instance, consider the usual action of the isometry group 𝐺
of the cube on the set 𝑋 of faces (Example 2.1.2(iii)). If 𝑔 is a particular isometry,
then �̄� is whatever permutation of the set of faces the isometry induces.

We have just seen that whenever 𝐺 acts on 𝑋 , every element 𝑔 of the group 𝐺
gives rise to an element �̄� of the group Sym(𝑋). So, we have defined a function

Σ : 𝐺 → Sym(𝑋)
𝑔 ↦→ �̄�.

You can check that Σ is a group homomorphism.

Exercise 2.1.3 Check that �̄� is a bĳection for each 𝑔 ∈ 𝐺. Also check
that Σ is a homomorphism.

In summary: any action of a group 𝐺 on 𝑋 gives rise to a homomorphism
𝐺 → Sym(𝑋), in a natural way.

Examples 2.1.4 i. Let 𝑋 be a set, and consider the action of Sym(𝑋) on 𝑋
described in Example 2.1.2(i). For each 𝑔 ∈ Sym(𝑋), the function �̄� : 𝑋 →
𝑋 is just 𝑔 itself. Hence the homomorphism Σ : Sym(𝑋) → Sym(𝑋) is the
identity.

ii. Similarly, take a real vector space 𝑋 and consider the action of Aut(𝑋)
on 𝑋 described in Example 2.1.2(ii). The resulting homomorphism
Σ : Aut(𝑋) → Sym(𝑋) is the inclusion; that is, Σ(𝑔) = 𝑔 for all 𝑔 ∈ Aut(𝑋).
(The domain of Σ is the group of linear bĳections 𝑋 → 𝑋 , whereas the
codomain is the group of all bĳections 𝑋 → 𝑋 .)

iii. Consider the usual action of the isometry group 𝐺 of the cube on the set 𝑋
of edges (Example 2.1.2(iii)). Since 𝑋 has 12 elements, Sym(𝑋) � 𝑆12, and
Σ amounts to a homomorphism 𝐺 → 𝑆12.

iv. The trivial action of a group 𝐺 on a set 𝑋 (Example 2.1.2(iv)) corresponds
to the trivial homomorphism 𝐺 → Sym(𝑋).

Remark 2.1.5 When 𝑋 is finite, we often choose an ordering of its elements,
writing 𝑋 = {𝑥1, . . . , 𝑥𝑘 }. Then Sym(𝑋) � 𝑆𝑘 (assuming the 𝑥𝑖s are all distinct).
For each 𝑔 ∈ 𝐺 and 𝑖 ∈ {1, . . . , 𝑘}, the element 𝑔𝑥𝑖 of 𝑋 must be equal to 𝑥 𝑗 for
some 𝑗 . Write that 𝑗 as 𝜎𝑔 (𝑖), so that

𝑔𝑥𝑖 = 𝑥𝜎𝑔 (𝑖) .
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Then 𝜎𝑔 ∈ 𝑆𝑘 , and the composite homomorphism

𝐺
Σ−→ Sym(𝑋) � 𝑆𝑘

is 𝑔 ↦→ 𝜎𝑔.

Digression 2.1.6 In fact, an action of 𝐺 on 𝑋 is the same thing as a
homomorphism 𝐺 → Sym(𝑋). What I mean is that there is a natural
one-to-one correspondence between actions of𝐺 on 𝑋 and homomorphisms
𝐺 → Sym(𝑋). Some books even define an action of 𝐺 on 𝑋 to be a
homomorphism 𝐺 → Sym(𝑋).
In detail: we’ve just seen how an action of 𝐺 on 𝑋 gives rise to a homomor-
phism Σ : 𝐺 → Sym(𝑋). In the other direction, take any homomorphism
Σ : 𝐺 → Sym(𝑋). Define a function 𝐺 × 𝑋 → 𝑋 by

(𝑔, 𝑥) ↦→
(
Σ(𝑔)

)
(𝑥).

(To make sense of the right-hand side: Σ(𝑔) is an element of the group
Sym(𝑋), which is the set of bĳections 𝑋 → 𝑋 , so we can apply the function
Σ(𝑔) to the element 𝑥 to obtain another element (Σ(𝑔)) (𝑥) of 𝑋 .) You can
check that this function 𝐺 × 𝑋 → 𝑋 is an action of 𝐺 on 𝑋 . So, we’ve now
seen how to convert an action into a homomorphism and vice versa. These
two processes are mutually inverse. Hence actions of 𝐺 on 𝑋 correspond
one-to-one with homomorphisms 𝐺 → Sym(𝑋).
At the purely set-theoretic level (ignoring the group structures), the key is
that for any sets 𝐴, 𝐵 and 𝐶, there’s a natural bĳection

𝐶𝐴×𝐵 � (𝐶𝐵)𝐴.

Here 𝐶𝐵 means the set of functions 𝐵 → 𝐶. The general proof is very
similar to what we’ve just done (where 𝐴 = 𝐺 and 𝐵 = 𝐶 = 𝑋). In words, a
function 𝐴 × 𝐵 → 𝐶 can be seen as a way of assigning to each element of 𝐴
a function 𝐵 → 𝐶. In a picture:

Here 𝐴 = 𝐵 = 𝐶 = R. By slicing up the surface as shown, a functionR2 → R
can be seen as a function from R to {functions R→ R}.
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Definition 2.1.7 An action of a group 𝐺 on a set 𝑋 is faithful if for 𝑔, ℎ ∈ 𝐺,

𝑔𝑥 = ℎ𝑥 for all 𝑥 ∈ 𝑋 ⇒ 𝑔 = ℎ.

Faithfulness means that if two elements of the group do the same, they are the
same. Here are some other ways to express it.

Lemma 2.1.8 For an action of a group𝐺 on a set 𝑋 , the following are equivalent:

i. the action is faithful;

ii. for 𝑔 ∈ 𝐺, if 𝑔𝑥 = 𝑥 for all 𝑥 ∈ 𝑋 then 𝑔 = 1;

iii. the homomorphism Σ : 𝐺 → Sym(𝑋) is injective;

iv. kerΣ is trivial.

Proof Faithfulness states that whenever 𝑔, ℎ ∈ 𝐺 with �̄� = ℎ̄, then 𝑔 = ℎ. But
Σ(𝑔) = �̄�, so (i) ⇐⇒ (iii). Similarly, (ii) ⇐⇒ (iv). Finally, it is a standard fact that
a homomorphism is injective if and only if its kernel is trivial, so (iii) ⇐⇒ (iv).□

Many common actions are faithful:

Examples 2.1.9 i. The natural action of Sym(𝑋) on a set 𝑋 (Exam-
ples 2.1.2(i) and 2.1.4(i)) is faithful, since the corresponding homomorphism
id : Sym(𝑋) → Sym(𝑋) is injective.

ii. Similarly, the natural action of Aut(𝑋) on a vector space (Examples 2.1.2(ii)
and 2.1.4(ii)) is faithful, since the corresponding homomorphism Aut(𝑋) →
Sym(𝑋) is injective.

iii. The action of the isometry group 𝐺 of the cube on the set of faces (Exam-
ples 2.1.2(iii) and 2.1.4(iii)) is faithful, since an isometry is determined by
its effect on faces. The same is true for edges and vertices.
But the action of 𝐺 on the 4-element set 𝑋 of long diagonals is not faithful:
for 𝐺 has 48 elements, whereas Sym(𝑋) has only 4! = 24 elements, so the
homomorphism Σ : 𝐺 → Sym(𝑋) cannot be injective.

iv. The trivial action of a group 𝐺 on a set 𝑋 is never faithful unless 𝐺 itself is
trivial, since 𝑔𝑥 = 𝑥 for all 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝑋 .

Exercise 2.1.10 Example 2.1.9(iii) shows that the action of the isom-
etry cube 𝐺 of the cube on the set 𝑋 of long diagonals is not faithful.
By Lemma 2.1.8, there must be some non-identity isometry of the
cube that fixes all four long diagonals. In fact, there is exactly one.
What is it?
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When a group 𝐺 acts faithfully on a set 𝑋 , there is a copy of 𝐺 sitting inside
Sym(𝑋) as a subgroup (a ‘faithful representation’ of 𝐺):

Lemma 2.1.11 Let𝐺 be a group acting faithfully on a set 𝑋 . Then𝐺 is isomorphic
to the subgroup

imΣ = {�̄� : 𝑔 ∈ 𝐺}
of Sym(𝑋), where Σ : 𝐺 → Sym(𝑋) and �̄� are defined as above.

Proof By Lemma 2.1.8, Σ is injective, and it is a general group-theoretic fact that
any injective homomorphism 𝜑 : 𝐺 → 𝐻 induces an isomorphism between 𝐺 and
im 𝜑. □

Example 2.1.12 Consider the usual action of the isometry group 𝐺 of the cube
on the 8-element set 𝑋 of vertices. As we have seen, this action is faithful. Hence
the associated homomorphism

Σ : 𝐺 → Sym(𝑋)
𝑔 ↦→ �̄�

induces an isomorphism between 𝐺 and the subgroup {�̄� : 𝑔 ∈ 𝐺} of Sym(𝑋).
The subgroup consists of all permutations of the set of vertices that come from
some isometry. For instance, there is no isometry that exchanges two vertices but
leaves the rest fixed, so this subgroup contains no 2-cycles.

Remark 2.1.13 How does Lemma 2.1.11 look when 𝑋 is a finite set with elements
𝑥1, . . . , 𝑥𝑘? Then Sym(𝑋) � 𝑆𝑘 , and as in Remark 2.1.5, we can write 𝑔𝑥𝑖 = 𝑥𝜎𝑔 (𝑖) .
It follows from that lemma and remark that 𝐺 is isomorphic to the subgroup
{𝜎𝑔 : 𝑔 ∈ 𝐺} of 𝑆𝑘 (which is a subgroup). The isomorphism is given by 𝑔 ↦→ 𝜎𝑔.

Faithfulness is about which elements of the group fix everything in the set. We
can also ask which elements of the set are fixed by everything in the group—or
more generally, by some prescribed set 𝑆 of group elements.

Definition 2.1.14 Let 𝐺 be a group acting on a set 𝑋 . Let 𝑆 ⊆ 𝐺. The fixed set
of 𝑆 is

Fix(𝑆) = {𝑥 ∈ 𝑋 : 𝑠𝑥 = 𝑥 for all 𝑠 ∈ 𝑆}.

Later, we’ll need the following lemma.

Lemma 2.1.15 Let 𝐺 be a group acting on a set 𝑋 , let 𝑆 ⊆ 𝐺, and let 𝑔 ∈ 𝐺.
Then Fix(𝑔𝑆𝑔−1) = 𝑔 Fix(𝑆).

Here 𝑔𝑆𝑔−1 = {𝑔𝑠𝑔−1 : 𝑠 ∈ 𝑆} and 𝑔 Fix(𝑆) = {𝑔𝑥 : 𝑥 ∈ Fix(𝑆)}.
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Proof For 𝑥 ∈ 𝑋 , we have

𝑥 ∈ Fix(𝑔𝑆𝑔−1) ⇐⇒ 𝑔𝑠𝑔−1𝑥 = 𝑥 for all 𝑠 ∈ 𝑆
⇐⇒ 𝑠𝑔−1𝑥 = 𝑔−1𝑥 for all 𝑠 ∈ 𝑆
⇐⇒ 𝑔−1𝑥 ∈ Fix(𝑆)
⇐⇒ 𝑥 ∈ 𝑔 Fix(𝑆). □

2.2 Rings
We’ll begin this part with some stuff you know—but with a twist.

In this course, the word ring means commutative ring with 1 (multiplicative
identity). Noncommutative rings and rings without 1 are important in some parts
of mathematics, but since we’ll be focusing on commutative rings with 1, it will
be easier to just call them ‘rings’.

Example 2.2.1 There are many ways of building new rings from old. One of the
most fundamental is that from any ring 𝑅, we can build the ring 𝑅[𝑡] of polynomials
over 𝑅. We will define 𝑅[𝑡] formally and study it in detail in Chapter 3.

Given rings 𝑅 and 𝑆, a homomorphism from 𝑅 to 𝑆 is a function 𝜑 : 𝑅 → 𝑆

satisfying the equations

𝜑(𝑟 + 𝑟′) = 𝜑(𝑟) + 𝜑(𝑟′), 𝜑(0) = 0, 𝜑(−𝑟) = −𝜑(𝑟),
𝜑(𝑟𝑟′) = 𝜑(𝑟)𝜑(𝑟′), 𝜑(1) = 1 (note this!)

for all 𝑟, 𝑟′ ∈ 𝑅. For example, complex conjugation is a homomorphism C → C.
It is a very useful lemma that if

𝜑(𝑟 + 𝑟′) = 𝜑(𝑟) + 𝜑(𝑟′), 𝜑(𝑟𝑟′) = 𝜑(𝑟)𝜑(𝑟′), 𝜑(1) = 1

for all 𝑟, 𝑟′ ∈ 𝑅 then 𝜑 is a homomorphism. In other words, to show that 𝜑 is a
homomorphism, you only need to check it preserves +, · and 1; preservation of 0
and negatives then comes for free. But you do need to check it preserves 1. That
doesn’t follow from the other conditions.

A subring of a ring 𝑅 is a subset 𝑆 ⊆ 𝑅 that contains 0 and 1 and is closed
under addition, multiplication and negatives. Whenever 𝑆 is a subring of 𝑅, the
inclusion ] : 𝑆 → 𝑅 (defined by ](𝑠) = 𝑠) is a homomorphism.
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Warning 2.2.2 In Honours Algebra, rings had 1s but homomorphisms
were not required to preserve 1. Similarly, subrings of 𝑅 had to have
a 1, but it was not required to be the same as the 1 of 𝑅.
For example, take the ring C, the noncommutative ring 𝑀 of 2 × 2
matrices over C, and the function 𝜑 : C→ 𝑀 defined by

𝜑(𝑧) =
(
𝑧 0
0 0

)
.

In the terminology of Honours Algebra, 𝜑 is a homomorphism and
its image im 𝜑 is a subring of 𝑀 . But in our terminology, 𝜑 is not
a homomorphism (as 𝜑(1) ≠ 𝐼) and im 𝜑 is not a subring of 𝑀 (as
𝐼 ∉ im 𝜑).

Lemma 2.2.3 Let 𝑅 be a ring and let S be any set (perhaps infinite) of subrings
of 𝑅. Then their intersection

⋂
𝑆∈S 𝑆 is also a subring of 𝑅.

In contrast, in the Honours Algebra setup, even the intersection of two subrings
need not be a subring.

Proof Write 𝑇 =
⋂
𝑆∈S 𝑆.

For each 𝑆 ∈ S , we have 0 ∈ 𝑆 since 𝑆 is a subring. Hence 0 ∈ 𝑇 by definition
of intersection.

Let 𝑟, 𝑠 ∈ 𝑇 . For each 𝑆 ∈ S , we have 𝑟, 𝑠 ∈ 𝑆 by definition of intersection,
so 𝑟 + 𝑠 ∈ 𝑆 since 𝑆 is a subring. Hence 𝑟 + 𝑠 ∈ 𝑇 by definition of intersection.

Similar arguments show that 𝑟 ∈ 𝑇 ⇒ −𝑟 ∈ 𝑇 , that 1 ∈ 𝑇 , and that 𝑟, 𝑠 ∈ 𝑇 ⇒
𝑟𝑠 ∈ 𝑇 . □

Example 2.2.4 For any ring 𝑅, there is exactly one homomorphism Z→ 𝑅. Here
is a sketch of the proof.

To show there is at least one homomorphism 𝜒 : Z → 𝑅, we construct one.
Define 𝜒 inductively on integers 𝑛 ≥ 0 by 𝜒(0) = 0 and 𝜒(𝑛 + 1) = 𝜒(𝑛) + 1𝑅.
Thus,

𝜒(𝑛) = 1𝑅 + · · · + 1𝑅 .
Define 𝜒 on negative integers 𝑛 by 𝜒(𝑛) = −𝜒(−𝑛). A series of tedious checks
shows that 𝜒 is indeed a ring homomorphism.

To show there is only one homomorphism Z→ 𝑅, let 𝜑 be any homomorphism
Z → 𝑅; we have to prove that 𝜑 = 𝜒. Certainly 𝜑(0) = 0 = 𝜒(0). Next prove
by induction on 𝑛 that 𝜑(𝑛) = 𝜒(𝑛) for nonnegative integers 𝑛. I leave the details
to you, but the crucial point is that because homomorphisms preserve 1, we must
have

𝜑(𝑛 + 1) = 𝜑(𝑛) + 𝜑(1) = 𝜑(𝑛) + 1𝑅
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for all 𝑛 ≥ 0. Once we have shown that 𝜑 and 𝜒 agree on the nonnegative integers,
it follows that for negative 𝑛,

𝜑(𝑛) = −𝜑(−𝑛) = −𝜒(−𝑛) = 𝜒(𝑛).

Hence 𝜑(𝑛) = 𝜒(𝑛) for all 𝑛 ∈ Z; that is, 𝜑 = 𝜒.
Usually we write 𝜒(𝑛) as 𝑛 · 1𝑅, or simply as 𝑛 if it is clear from the contextThe meaning of

‘𝑛 · 1’, and
Exercise 2.3.13

that 𝑛 is to be interpreted as an element of 𝑅. So for 𝑛 ≥ 0,

𝑛 · 1𝑅 = 1𝑅 + · · · + 1𝑅︸          ︷︷          ︸
𝑛 times

.

The dot in the expression ‘𝑛 · 1𝑅’ is not multiplication in any ring, since 𝑛 ∈ Z but
1𝑅 ∈ 𝑅. It’s just notation.

Every ring homomorphism 𝜑 : 𝑅 → 𝑆 has an image im 𝜑, which is a subring
of 𝑆, and a kernel ker 𝜑, which is an ideal of 𝑅.

Warning 2.2.5 Subrings are analogous to subgroups, and ideals are
analogous to normal subgroups. But whereas normal subgroups are
a special kind of subgroup, ideals are not a special kind of subring!
Subrings must contain 1, but most ideals don’t.

Exercise 2.2.6 Prove that the only subring of a ring 𝑅 that is also an
ideal is 𝑅 itself.

Given an ideal 𝐼 P 𝑅, we obtain the quotient ring or factor ring 𝑅/𝐼 and the
canonical homomorphism 𝜋𝐼 : 𝑅 → 𝑅/𝐼, which is surjective and has kernel 𝐼.

Quotient rings As explained in Honours Algebra, the quotient ring together with the canonical
homomorphism has a ‘universal property’: given any ring 𝑆 and any homomor-
phism 𝜑 : 𝑅 → 𝑆 satisfying ker 𝜑 ⊇ 𝐼, there is exactly one homomorphism
�̄� : 𝑅/𝐼 → 𝑆 such that this diagram commutes:

𝑅

𝜋𝐼
��

𝜑

!!
𝑅/𝐼

�̄�
// 𝑆.

(For a diagram to commute means that whenever there are two different paths
from one object to another, the composites along the two paths are equal. Here, it
means that 𝜑 = �̄� ◦ 𝜋𝐼 .) The first isomorphism theorem says that if 𝜑 is surjective
and has kernel equal to 𝐼 then �̄� is an isomorphism. So 𝜋𝐼 : 𝑅 → 𝑅/𝐼 is essentially
the only surjective homomorphism out of 𝑅 with kernel 𝐼.
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Digression 2.2.7 Loosely, the ideals of a ring 𝑅 correspond one-to-one with
the surjective homomorphisms out of 𝑅. This means four things:

• given an ideal 𝐼 P 𝑅, we get a surjective homomorphism out of 𝑅
(namely, 𝜋𝐼 : 𝑅 → 𝑅/𝐼);

• given a surjective homomorphism 𝜑 out of 𝑅, we get an ideal of 𝑅
(namely, ker 𝜑);

• if we start with an ideal 𝐼 of 𝑅, take its associated surjective homomor-
phism 𝜋𝐼 : 𝑅 → 𝑅/𝐼, then take its associated ideal, we end up where
we started (that is, ker(𝜋𝐼 ) = 𝐼);

• if we start with a surjective homomorphism 𝜑 : 𝑅 → 𝑆, take its asso-
ciated ideal ker 𝜑, then take its associated surjective homomorphism
𝜋ker 𝜑 : 𝑅 → 𝑅/ker 𝜑, we end up where we started (at least ‘up to iso-
morphism’, in that we have the isomorphism �̄� : 𝑅/ker 𝜑 → 𝑆 making
the triangle commute). This is the first isomorphism theorem.

Analogous stories can be told for groups and modules.

An integral domain is a ring 𝑅 such that 0𝑅 ≠ 1𝑅 and for 𝑟, 𝑟′ ∈ 𝑅,

𝑟𝑟′ = 0 ⇒ 𝑟 = 0 or 𝑟′ = 0.

Exercise 2.2.8 The trivial ring or zero ring is the one-element set
with its only possible ring structure. Show that the only ring in which
0 = 1 is the trivial ring.

Equivalently, an integral domain is a nontrivial ring in which cancellation is
valid: 𝑟𝑠 = 𝑟′𝑠 implies 𝑟 = 𝑟′ or 𝑠 = 0.

Warning 2.2.9 In an arbitrary ring, you can’t reliably cancel by
nonzero elements. For example, in the ring Z/⟨6⟩ of integers mod 6,
we have 1 × 2 = 4 × 2 but 1 ≠ 4.

Digression 2.2.10 Why is the condition 0 ≠ 1 in the definition of integral
domain?

My answer begins with a useful general point: the sum of no things should
always be interpreted as 0. (The amount you pay in a shop is the sum of the
prices of the individual things. If you buy no things, you pay £0.) This is
ultimately because 0 is the identity for addition.

Similarly, the product of no things should be interpreted as 1. One justifi-
cation is that 1 is the identity for multiplication. Another is that if we want
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laws like exp(∑ 𝑥𝑖) =
∏

exp(𝑥𝑖) to hold, and if we believe that the sum of
no things is 0, then the product of no things should be 1. Or if we want every
positive integer to be a product of primes, we’d better say that 1 is the product
of no primes. It’s a convention to let us handle trivial cases smoothly.

Now consider the following condition on a ring 𝑅: for all 𝑛 ≥ 0 and
𝑟1, . . . , 𝑟𝑛 ∈ 𝑅,

𝑟1𝑟2 · · · 𝑟𝑛 = 0 ⇒ there exists 𝑖 ∈ {1, . . . , 𝑛} such that 𝑟𝑖 = 0. (2.1)

For 𝑛 = 2, this is the main condition in the definition of integral domain.
For 𝑛 = 0, it says: if 1 = 0 then there exists 𝑖 ∈ ∅ such that 𝑟𝑖 = 0. But
any statement beginning ‘there exists 𝑖 ∈ ∅’ is false! So in the case 𝑛 = 0,
condition (2.1) states that 1 ≠ 0. Hence ‘1 ≠ 0’ is the 0-fold analogue of the
main condition.

On the other hand, if (2.1) holds for 𝑛 = 0 and 𝑛 = 2 then a simple induction
shows that it holds for all 𝑛 ≥ 0. Conclusion: an integral domain can
equivalently be defined as a ring in which (2.1) holds for all 𝑛 ≥ 0.

Let 𝑌 be a subset of a ring 𝑅. The ideal ⟨𝑌⟩ generated by 𝑌 is defined as the
intersection of all the ideals of 𝑅 containing𝑌 . You can show that any intersection
of ideals is an ideal (much as for subrings in Lemma 2.2.3). So ⟨𝑌⟩ is an ideal.
We can also characterize ⟨𝑌⟩ as the smallest ideal of 𝑅 containing 𝑌 . That is, ⟨𝑌⟩
is an ideal containing 𝑌 , and if 𝐼 is another ideal containing 𝑌 then ⟨𝑌⟩ ⊆ 𝐼.

This definition of the ideal generated by 𝑌 is top-down: we obtain ⟨𝑌⟩ as the
intersection of bigger ideals. But there is also a useful bottom-up description of
⟨𝑌⟩. Here it is when 𝑌 is finite.

Lemma 2.2.11 Let 𝑅 be a ring and let 𝑌 = {𝑟1, . . . , 𝑟𝑛} be a finite subset. Then

⟨𝑌⟩ = {𝑎1𝑟1 + · · · + 𝑎𝑛𝑟𝑛 : 𝑎1, . . . , 𝑎𝑛 ∈ 𝑅}.

Proof Write 𝐼 for the right-hand side. It is straightforward to check that 𝐼 is an
ideal of 𝑅, and it contains 𝑌 because, for instance, 𝑟1 = 1𝑟1 + 0𝑟2 + · · · + 0𝑟𝑛.

Now let 𝐽 be any ideal of 𝑅 containing 𝑌 . Let 𝑎1, . . . , 𝑎𝑛 ∈ 𝑅. For each 𝑖,
we have 𝑟𝑖 ∈ 𝐽 since 𝐽 contains 𝑌 , and so 𝑎𝑖𝑟𝑖 ∈ 𝐽 since 𝐽 is an ideal. Hence∑
𝑎𝑖𝑟𝑖 ∈ 𝐽, again since 𝐽 is an ideal. So 𝐼 ⊆ 𝐽.
Hence 𝐼 is the smallest ideal of 𝑅 containing 𝑌 , that is, 𝐼 = ⟨𝑌⟩. □

Digression 2.2.12 A similar interplay between top-down and bottom-up
appears in other parts of mathematics.

For example, in topology, the closure of a subset of a metric or topological
space is the intersection of all closed subsets containing it. In linear algebra,
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the span of a subset of a vector space is the intersection of all linear subspaces
containing it. In group theory, the subgroup generated by a subset of a group
is the intersection of all subgroups containing it.

These are all top-down definitions, but there are equivalent bottom-up defini-
tions, describing explicitly which elements belong to the subset. Sometimes
we’re lucky and those descriptions are simple. For instance, closures can
easily be described in terms of limit points, and spans are just sets of linear
combinations. But sometimes it gets more complicated. For example, the
subgroup of a group 𝐺 generated by a subset 𝑌 can be described informally
as the set of elements of 𝐺 that can be obtained from 𝑌 by taking products
and inverses, but expressing that precisely is a little bit fiddly.

It’s worth getting comfortable with the top-down style of definition, as it
works well in cases where the bottom-up approach is prohibitively compli-
cated, and we’ll need it later.

When𝑌 = {𝑟1, . . . , 𝑟𝑛}, we write ⟨𝑌⟩ as ⟨𝑟1, . . . , 𝑟𝑛⟩ rather than ⟨{𝑟1, . . . , 𝑟𝑛}⟩.
In particular, when 𝑛 = 1, Lemma 2.2.11 implies that

⟨𝑟⟩ = {𝑎𝑟 : 𝑎 ∈ 𝑅}.

Ideals of the form ⟨𝑟⟩ are called principal ideals. A principal ideal domain is
an integral domain in which every ideal is principal.

Example 2.2.13 Z is a principal ideal domain. Indeed, if 𝐼PZ then either 𝐼 = {0},
in which case 𝐼 = ⟨0⟩, or 𝐼 contains some positive integer, in which case we can
define 𝑛 to be the least positive integer in 𝐼 and use the division algorithm to show
that 𝐼 = ⟨𝑛⟩.

Exercise 2.2.14 Fill in the details of Example 2.2.13.

Let 𝑟 and 𝑠 be elements of a ring 𝑅. We say that 𝑟 divides 𝑠, and write 𝑟 | 𝑠, if
there exists 𝑎 ∈ 𝑅 such that 𝑠 = 𝑎𝑟 . This condition is equivalent to 𝑠 ∈ ⟨𝑟⟩, and to
⟨𝑠⟩ ⊆ ⟨𝑟⟩.

An element 𝑢 ∈ 𝑅 is a unit if it has a multiplicative inverse, or equivalently
if ⟨𝑢⟩ = 𝑅. The units form a group 𝑅× under multiplication. For instance,
Z× = {1,−1}.

Exercise 2.2.15 Let 𝑟 and 𝑠 be elements of an integral domain. Show
that 𝑟 | 𝑠 | 𝑟 ⇐⇒ ⟨𝑟⟩ = ⟨𝑠⟩ ⇐⇒ 𝑠 = 𝑢𝑟 for some unit 𝑢.

Elements 𝑟 and 𝑠 of a ring are coprime if for 𝑎 ∈ 𝑅,

𝑎 | 𝑟 and 𝑎 | 𝑠 ⇒ 𝑎 is a unit.
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Proposition 2.2.16 Let 𝑅 be a principal ideal domain and 𝑟, 𝑠 ∈ 𝑅. Then

𝑟 and 𝑠 are coprime ⇐⇒ 𝑎𝑟 + 𝑏𝑠 = 1 for some 𝑎, 𝑏 ∈ 𝑅.

Proof ⇒: suppose that 𝑟 and 𝑠 are coprime. Since 𝑅 is a principal ideal domain,
⟨𝑟, 𝑠⟩ = ⟨𝑢⟩ for some 𝑢 ∈ 𝑅. Since 𝑟 ∈ ⟨𝑟, 𝑠⟩ = ⟨𝑢⟩, we must have 𝑢 | 𝑟, and
similarly 𝑢 | 𝑠. But 𝑟 and 𝑠 are coprime, so 𝑢 is a unit. Hence 1 ∈ ⟨𝑢⟩ = ⟨𝑟, 𝑠⟩.
But by Lemma 2.2.11,

⟨𝑟, 𝑠⟩ = {𝑎𝑟 + 𝑏𝑠 : 𝑎, 𝑏 ∈ 𝑅},

and the result follows.
⇐: suppose that 𝑎𝑟 + 𝑏𝑠 = 1 for some 𝑎, 𝑏 ∈ 𝑅. If 𝑢 ∈ 𝑅 with 𝑢 | 𝑟 and 𝑢 | 𝑠

then 𝑢 | (𝑎𝑟 + 𝑏𝑠) = 1, so 𝑢 is a unit. Hence 𝑟 and 𝑠 are coprime. □

2.3 Fields
A field is a ring𝐾 in which 0 ≠ 1 and every nonzero element is a unit. Equivalently,
it is a ring such that 𝐾× = 𝐾 \ {0}. Every field is an integral domain.

Exercise 2.3.1 Write down all the examples of fields that you know.

As we go on, we’ll see several ways of making new fields out of old. Here’s
the simplest.

Example 2.3.2 Let 𝐾 be a field. A rational expression over 𝐾 is a ratio of two
polynomials

𝑓 (𝑡)
𝑔(𝑡) ,

where 𝑓 (𝑡), 𝑔(𝑡) ∈ 𝐾 [𝑡] with 𝑔 ≠ 0. Two such expressions, 𝑓1/𝑔1 and 𝑓2/𝑔2, are
regarded as equal if 𝑓1𝑔2 = 𝑓2𝑔1 in 𝐾 [𝑡]. So formally, a rational expression is an
equivalence class of pairs ( 𝑓 , 𝑔) under the equivalence relation in the last sentence.
The set of rational expressions over 𝐾 is denoted by 𝐾 (𝑡).

Rational expressions are added, subtracted and multiplied in the ways you’d
expect, making 𝐾 (𝑡) into a field. We will look at it more carefully in Chapter 3.

A field 𝐾 has exactly two ideals: {0} and 𝐾 . For if {0} ≠ 𝐼 P 𝐾 then 𝑢 ∈ 𝐼 for
some 𝑢 ≠ 0; but then 𝑢 is a unit, so ⟨𝑢⟩ = 𝐾 , so 𝐼 = 𝐾 .

Lemma 2.3.3 Every homomorphism between fields is injective.
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A ‘homomorphism between fields’ means a ring homomorphism.

Proof Let 𝜑 : 𝐾 → 𝐿 be a homomorphism between fields. Then ker 𝜑 P 𝐾 , so
ker 𝜑 is either {0} or 𝐾 . If ker 𝜑 = 𝐾 then 𝜑(1) = 0; but 𝜑(1) = 1 by definition
of homomorphism, so 0 = 1 in 𝐿, contradicting the assumption that 𝐿 is a field.
Hence ker 𝜑 = {0}, that is, 𝜑 is injective. □

Warning 2.3.4 With the Honours Algebra definition of homomor-
phism, Lemma 2.3.3 would be false, since the map with constant value
0 would be a homomorphism.

Exercise 2.3.5 Let 𝜑 : 𝐾 → 𝐿 be a homomorphism of fields and let
0 ≠ 𝑎 ∈ 𝐾 . Prove that 𝜑(𝑎−1) = 𝜑(𝑎)−1. Why is 𝜑(𝑎)−1 defined?

A subfield of a field 𝐾 is a subring that is a field.

Lemma 2.3.6 Let 𝜑 : 𝐾 → 𝐿 be a homomorphism between fields.

i. For any subfield 𝐾′ of 𝐾 , the image 𝜑𝐾′ is a subfield of 𝐿.

ii. For any subfield 𝐿′ of 𝐿, the preimage 𝜑−1𝐿′ is a subfield of 𝐾 .

Proof For (i), you know from Proposition 3.4.28 of Honours Algebra that 𝜑𝐾′ is
a subring of 𝐿, and you can use Exercise 2.3.5 above to show that if 0 ≠ 𝑏 ∈ 𝜑𝐾′

then 𝑏−1 ∈ 𝜑𝐾′. The proof of (ii) is similar. □

Whenever we have a collection of homomorphisms between the same pair of
fields, we get a subfield in the following way.

Definition 2.3.7 Let 𝑋 and 𝑌 be sets, and let 𝑆 ⊆ {functions 𝑋 → 𝑌 }. The
equalizer of 𝑆 is

Eq(𝑆) = {𝑥 ∈ 𝑋 : 𝑓 (𝑥) = 𝑔(𝑥) for all 𝑓 , 𝑔 ∈ 𝑆}.

In other words, it is the part of 𝑋 where all the functions in 𝑆 are equal.

Lemma 2.3.8 Let 𝐾 and 𝐿 be fields, and let 𝑆 ⊆ {homomorphisms 𝐾 → 𝐿}.
Then Eq(𝑆) is a subfield of 𝐾 .

Proof We must show that 0, 1 ∈ Eq(𝑆), that if 𝑎 ∈ Eq(𝑆) then −𝑎 ∈ Eq(𝑆) and
1/𝑎 ∈ Eq(𝑆) (for 𝑎 ≠ 0), and that if 𝑎, 𝑏 ∈ Eq(𝑆) then 𝑎 + 𝑏, 𝑎𝑏 ∈ Eq(𝑆). I will
show just the last of these, leaving the rest to you.

Suppose that 𝑎, 𝑏 ∈ Eq(𝑆). For all 𝜑, \ ∈ 𝑆, we have

𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏) = \ (𝑎)\ (𝑏) = \ (𝑎𝑏),

so 𝑎𝑏 ∈ Eq(𝑆). □
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Example 2.3.9 Let 𝐾 = 𝐿 = C. Let 𝑆 = {idC, ^}, where ^ : C → C is complex
conjugation. Then

Eq(𝑆) = {𝑧 ∈ C : 𝑧 = 𝑧} = R,
and R is indeed a subfield of C.

Next we ask: when is 1 + · · · + 1 equal to 0?
Let 𝑅 be any ring. By Example 2.2.4, there is a unique homomorphism

𝜒 : Z → 𝑅. Its kernel is an ideal of the principal ideal domain Z. Hence
ker 𝜒 = ⟨𝑛⟩ for a unique integer 𝑛 ≥ 0. This 𝑛 is called the characteristic of 𝑅,
and written as char 𝑅. So for 𝑚 ∈ Z, we have 𝑚 · 1𝑅 = 0 if and only if 𝑚 is a
multiple of char 𝑅. Or equivalently,

char 𝑅 =

{
the least 𝑛 > 0 such that 𝑛 · 1𝑅 = 0𝑅, if such an 𝑛 exists;
0, otherwise.

(2.2)

The concept of characteristic is mostly used in the case of fields.

Examples 2.3.10 i. Q, R and C all have characteristic 0.

ii. For a prime number 𝑝, we write F𝑝 for the field Z/⟨𝑝⟩ of integers modulo
𝑝. Then char F𝑝 = 𝑝.

iii. For any field 𝐾 , the field 𝐾 (𝑡) of rational expressions has the same charac-
teristic as 𝐾 .

Lemma 2.3.11 The characteristic of an integral domain is 0 or a prime number.

Proof Let 𝑅 be an integral domain and write 𝑛 = char 𝑅. Suppose that 𝑛 > 0; we
must prove that 𝑛 is prime.

Since 1 ≠ 0 in an integral domain, 𝑛 ≠ 1. (Remember that 1 is not a prime!
So that step was necessary.) Now let 𝑘, 𝑚 > 0 with 𝑘𝑚 = 𝑛. Writing 𝜒 for the
unique homomorphism Z→ 𝑅, we have

𝜒(𝑘)𝜒(𝑚) = 𝜒(𝑘𝑚) = 𝜒(𝑛) = 0,

and 𝑅 is an integral domain, so 𝜒(𝑘) = 0 or 𝜒(𝑚) = 0. WLOG, 𝜒(𝑘) = 0. But
ker 𝜒 = ⟨𝑛⟩, so 𝑛 | 𝑘 , so 𝑘 = 𝑛. Hence 𝑛 is prime. □

In particular, the characteristic of a field is always 0 or a prime. But there is
no way of mapping between fields of different characteristics:

Lemma 2.3.12 Let 𝜑 : 𝐾 → 𝐿 be a homomorphism of fields. Then char𝐾 =

char 𝐿.
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Proof Write 𝜒𝐾 and 𝜒𝐿 for the unique homomorphisms from Z to 𝐾 and 𝐿,
respectively. Since 𝜒𝐿 is the unique homomorphism Z→ 𝐿, the triangle

Z
𝜒𝐾

��

𝜒𝐿

��
𝐾 𝜑

// 𝐿

commutes. (Concretely, this says that 𝜑(𝑛 · 1𝐾) = 𝑛 · 1𝐿 for all 𝑛 ∈ Z.) Hence
ker(𝜑◦ 𝜒𝐾) = ker 𝜒𝐿 . But 𝜑 is injective by Lemma 2.3.3, so ker(𝜑◦ 𝜒𝐾) = ker 𝜒𝐾 .
Hence ker 𝜒𝐾 = ker 𝜒𝐿 , or equivalently, char𝐾 = char 𝐿. □

For example, the inclusionQ→ R is a homomorphism of fields, and both have
characteristic 0.

Exercise 2.3.13 This proof of Lemma 2.3.12 is quite abstract. Find
a more concrete proof, taking equation (2.2) as your definition of
characteristic. (You will still need the fact that 𝜑 is injective.)

The meaning of
‘𝑛 · 1’, and

Exercise 2.3.13
The prime subfield of 𝐾 is the intersection of all the subfields of 𝐾 . It is

straightforward to show that any intersection of subfields is a subfield (much as in
Lemma 2.2.3). Hence the prime subfield is a subfield. It is the smallest subfield
of 𝐾 , in the sense that any other subfield of 𝐾 contains it.

Concretely (‘bottom-up’), the prime subfield of 𝐾 is{
𝑚 · 1𝐾
𝑛 · 1𝐾

: 𝑚, 𝑛 ∈ Z with 𝑛 · 1𝐾 ≠ 0
}
.

To see this, first note that this set is a subfield of 𝐾 . It is the smallest subfield of 𝐾:
for if 𝐿 is a subfield of 𝐾 then 1𝐾 ∈ 𝐿 by definition of subfield, so 𝑚 · 1𝐾 ∈ 𝐿 for
all integers𝑚, so (𝑚 ·1𝐾)/(𝑛 ·1𝐾) ∈ 𝐿 for all integers𝑚 and 𝑛 such that 𝑛 ·1𝐾 ≠ 0.

Examples 2.3.14 i. The field Q has no proper subfields, so the prime subfield
of Q is Q itself.

ii. Let 𝑝 be a prime. The field F𝑝 has no proper subfields, so the prime subfield
of F𝑝 is F𝑝 itself.

Exercise 2.3.15 What is the prime subfield of R? Of C?

The prime subfields appearing in Examples 2.3.14 were Q and F𝑝. In fact,
these are the only prime subfields of anything:
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Lemma 2.3.16 Let 𝐾 be a field.

i. If char𝐾 = 0 then the prime subfield of 𝐾 is Q.

ii. If char𝐾 = 𝑝 > 0 then the prime subfield of 𝐾 is F𝑝.

In the statement of this lemma, as so often in mathematics, the word ‘is’ means
‘is isomorphic to’. I hope you’re comfortable with that by now.

Proof For (i), suppose that char𝐾 = 0. By definition of characteristic, 𝑛 · 1𝐾 ≠ 0
for all integers 𝑛 ≥ 0. One can check that there is a well-defined homomorphism
𝜑 : Q → 𝐾 defined by 𝑚/𝑛 ↦→ (𝑚 · 1𝐾)/(𝑛 · 1𝐾). (The check uses the fact that
𝜒 : 𝑛 ↦→ 𝑛 · 1𝐾 is a homomorphism.) Now 𝜑 is injective (being a homomorphism
of fields), so im 𝜑 � Q. But im 𝜑 is a subfield of 𝐾 , and since Q has no proper
subfields, it is the prime subfield.

For (ii), suppose that char𝐾 = 𝑝 > 0. By Lemma 2.3.11, 𝑝 is prime. The
unique homomorphism 𝜒 : Z → 𝐾 has kernel ⟨𝑝⟩, by definition. By the first
isomorphism theorem, im 𝜒 � Z/⟨𝑝⟩ = F𝑝. But im 𝜒 is a subfield of 𝐾 , and since
F𝑝 has no proper subfields, it is the prime subfield. □

Lemma 2.3.17 Every finite field has positive characteristic.

Proof By Lemma 2.3.16, a field of characteristic 0 contains a copy of Q and is
therefore infinite. □

Warning 2.3.18 There are also infinite fields of positive characteristic.
An example is the field F𝑝 (𝑡) of rational expressions over F𝑝.

Square roots usually come in pairs: how many times in your life have you
written a ± sign before a

√
? But in characteristic 2, plus and minus are the same,

so the two square roots become one. We’ll see that this pattern persists: 𝑝th roots
behave strangely in characteristic 𝑝. First, an important little lemma:

Lemma 2.3.19 Let 𝑝 be a prime and 0 < 𝑖 < 𝑝. Then 𝑝 |
(𝑝
𝑖

)
.

For example, the 7th row of Pascal’s triangle is 1, 7, 21, 35, 35, 21, 7, 1, and the
lemma predicts that 7 divides all of these numbers apart from the first and last.

Proof We have 𝑖!(𝑝 − 𝑖)!
(𝑝
𝑖

)
= 𝑝!. Now 𝑝 divides 𝑝! but not 𝑖! or (𝑝 − 𝑖)! (since

𝑝 is prime and 0 < 𝑖 < 𝑝), so 𝑝 must divide
(𝑝
𝑖

)
. □

Proposition 2.3.20 Let 𝑝 be a prime number and 𝑅 a ring of characteristic 𝑝.
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i. The function
\ : 𝑅 → 𝑅

𝑟 ↦→ 𝑟 𝑝

is a homomorphism.

ii. If 𝑅 is a field then \ is injective.

iii. If 𝑅 is a finite field then \ is an automorphism of 𝑅.

Proof For (i), certainly \ preserves multiplication and 1. To show that \ preserves
addition, let 𝑟, 𝑠 ∈ 𝑅: then by Lemma 2.3.19 and the hypothesis that char 𝑅 = 𝑝,

\ (𝑟 + 𝑠) = (𝑟 + 𝑠)𝑝 =
𝑝∑︁
𝑖=0

(
𝑝

𝑖

)
𝑟𝑖𝑠𝑝−𝑖 = 𝑟 𝑝 + 𝑠𝑝 = \ (𝑟) + \ (𝑠).

Now (ii) follows since every homomorphism between fields is injective, and (iii)
since every injection from a finite set to itself is bĳective. □

The homomorphism \ : 𝑟 ↦→ 𝑟 𝑝 is called the Frobenius map, or, in the case
of finite fields, the Frobenius automorphism.

That \ is a homomorphism is a shocker. Writing (𝑥 + 𝑦)𝑛 = 𝑥𝑛 + 𝑦𝑛 is a classic
algebra mistake. But here, it’s true!

Example 2.3.21 The Frobenius automorphism of F𝑝 = Z/⟨𝑝⟩ is not very interest-
ing. When 𝐺 is a finite group of order 𝑛, Lagrange’s theorem implies that 𝑔𝑛 = 1
for all 𝑔 ∈ 𝐺. Applying this to the multiplicative group F×𝑝 = F𝑝 \ {0} gives
𝑎𝑝−1 = 1 whenever 0 ≠ 𝑎 ∈ F𝑝. It follows that 𝑎𝑝 = 𝑎 for all 𝑎 ∈ F𝑝. That is, \ is
the identity. Everything is its own 𝑝th root!

Unfortunately, we can’t give any interesting examples of the Frobenius map
just now, because we have so few examples of fields. That will change later.

Corollary 2.3.22 Let 𝑝 be a prime number.

i. In a field of characteristic 𝑝, every element has at most one 𝑝th root.

ii. In a finite field of characteristic 𝑝, every element has exactly one 𝑝th root.

Proof Part (i) says that the Frobenius map is injective, and part (ii) says that it is
bĳective, as Proposition 2.3.20 states. □

Examples 2.3.23 i. In a field of characteristic 2, every element has at most
one square root.
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ii. In C, there are 𝑝 different 𝑝th roots of unity. But in a field of characteristic
𝑝, there is only one: 1 itself.

iii. Let 𝐾 be a field of characteristic 𝑝 and 𝑎 ∈ 𝐾 . Corollary 2.3.22(i) says that
𝑎 has at most one 𝑝th root. It may have none. For instance, you’ll show in
Exercise 3.1.13 that the element 𝑡 of F𝑝 (𝑡) has no 𝑝th root.

Here’s a construction that will let us manufacture many more examples of
fields.

An element 𝑟 of a ring 𝑅 is irreducible if 𝑟 is not 0 or a unit, and if for 𝑎, 𝑏 ∈ 𝑅,
Building blocks

𝑟 = 𝑎𝑏 ⇒ 𝑎 or 𝑏 is a unit.

For example, the irreducibles in Z are ±2,±3,±5, . . .. An element of a ring is
reducible if it is not 0, a unit, or irreducible.

Warning 2.3.24 The 0 and units of a ring count as neither reducible
nor irreducible, in much the same way that the integers 0 and 1 are
neither prime nor composite.

Exercise 2.3.25 What are the irreducible elements of a field?

Proposition 2.3.26 Let 𝑅 be a principal ideal domain and 0 ≠ 𝑟 ∈ 𝑅. Then

𝑟 is irreducible ⇐⇒ 𝑅/⟨𝑟⟩ is a field.

Proof Write 𝜋 for the canonical homomorphism 𝑅 → 𝑅/⟨𝑟⟩.
⇒: suppose that 𝑟 is irreducible. To show that 1𝑅/⟨𝑟⟩ ≠ 0𝑅/⟨𝑟⟩, note that since

𝑟 is not a unit, 1𝑅 ∉ ⟨𝑟⟩ = ker 𝜋, so

1𝑅/⟨𝑟⟩ = 𝜋(1𝑅) ≠ 0𝑅/⟨𝑟⟩ .

Next we have to show that every nonzero element of 𝑅/⟨𝑟⟩ is a unit, or
equivalently that 𝜋(𝑠) is a unit whenever 𝑠 ∈ 𝑅 with 𝑠 ∉ ⟨𝑟⟩. We have 𝑟 ∤ 𝑠,
and 𝑟 is irreducible, so 𝑟 and 𝑠 are coprime. Hence by Proposition 2.2.16 and the
assumption that 𝑅 is a principal ideal domain, we can choose 𝑎, 𝑏 ∈ 𝑅 such that

𝑎𝑟 + 𝑏𝑠 = 1𝑅 .

Applying 𝜋 to each side gives

𝜋(𝑎)𝜋(𝑟) + 𝜋(𝑏)𝜋(𝑠) = 1𝑅/⟨𝑟⟩ .
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But 𝜋(𝑟) = 0, so 𝜋(𝑏)𝜋(𝑠) = 1, so 𝜋(𝑠) is a unit.
⇐: suppose that 𝑅/⟨𝑟⟩ is a field. Then 1𝑅/⟨𝑟⟩ ≠ 0𝑅/⟨𝑟⟩, that is, 1𝑅 ∉ ker 𝜋 = ⟨𝑟⟩,

that is, 𝑟 ∤ 1𝑅. Hence 𝑟 is not a unit.
Next we have to show that if 𝑎, 𝑏 ∈ 𝑅 with 𝑟 = 𝑎𝑏 then 𝑎 or 𝑏 is a unit. We

have
0 = 𝜋(𝑟) = 𝜋(𝑎)𝜋(𝑏)

and 𝑅/⟨𝑟⟩ is an integral domain, so WLOG 𝜋(𝑎) = 0. Then 𝑎 ∈ ker 𝜋 = ⟨𝑟⟩, so
𝑎 = 𝑟𝑏′ for some 𝑏′ ∈ 𝑅. This gives

𝑟 = 𝑎𝑏 = 𝑟𝑏′𝑏.

But 𝑟 ≠ 0 by hypothesis, and 𝑅 is an integral domain, so 𝑏′𝑏 = 1. Hence 𝑏 is a
unit. □

Example 2.3.27 When 𝑛 is an integer, Z/⟨𝑛⟩ is a field if and only if 𝑛 is irreducible
(that is, ± a prime number).

Proposition 2.3.26 enables us to construct fields from irreducible ele-
ments. . . but irreducible elements of a principal ideal domain. Right now that’s
not much help, because we don’t have many examples of principal ideal domains.
But we will do soon.
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Chapter 3

Polynomials

This chapter revisits and develops some themes you met in Honours Algebra.
Before you begin, it may help you to reread Section 3.3 (Polynomials) of the
Honours Algebra notes.

Introduction to
Week 3

3.1 The ring of polynomials
You already know the definition of polynomial, but I want to make a point by
phrasing it in an unfamiliar way.
Definition 3.1.1 Let 𝑅 be a ring. A polynomial over 𝑅 is an infinite sequence
(𝑎0, 𝑎1, 𝑎2, . . .) of elements of 𝑅 such that {𝑖 : 𝑎𝑖 ≠ 0} is finite.

The set of polynomials over 𝑅 forms a ring as follows:

(𝑎0, 𝑎1, . . .) + (𝑏0, 𝑏1, . . .) = (𝑎0 + 𝑏0, 𝑎1 + 𝑏1, . . .), (3.1)
(𝑎0, 𝑎1, . . .) · (𝑏0, 𝑏1, . . .) = (𝑐0, 𝑐1, . . .) (3.2)

where 𝑐𝑘 =
∑︁

𝑖, 𝑗 : 𝑖+ 𝑗=𝑘
𝑎𝑖𝑏 𝑗 , (3.3)

the zero of the ring is (0, 0, . . .), and the multiplicative identity is (1, 0, 0, . . .).
Of course, we almost always write (𝑎0, 𝑎1, 𝑎2, . . .) as 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡

2 + · · · , or
the same with some other symbol in place of 𝑡. In that notation, formulas (3.1)
and (3.2) look like the usual formulas for addition and multiplication of polyno-
mials. Nevertheless:

Warning 3.1.2 A polynomial is not a function!
A polynomial gives rise to a function, as we’ll recall in a moment. But
a polynomial itself is a purely formal object. To emphasize this, we
sometimes call the symbol 𝑡 an indeterminate rather than a ‘variable’.
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The set of polynomials over 𝑅 is written as 𝑅[𝑡] (or 𝑅[𝑢], 𝑅[𝑥], etc.). Since
𝑅[𝑡] is itself a ring 𝑆, we can consider the ring 𝑆[𝑢] = (𝑅[𝑡]) [𝑢], usually written
as 𝑅[𝑡, 𝑢]. And then there’s 𝑅[𝑡, 𝑢, 𝑣] = (𝑅[𝑡, 𝑢]) [𝑣], and so on.

Why study
polynomials?

Polynomials are typically written as either 𝑓 or 𝑓 (𝑡), interchangeably. A
polynomial 𝑓 = (𝑎0, 𝑎1, . . .) over 𝑅 gives rise to a function

𝑅 → 𝑅

𝑟 ↦→ 𝑎0 + 𝑎1𝑟 + 𝑎2𝑟
2 + · · · .

(The sum on the right-hand side makes sense because only finitely many 𝑎𝑖s are
nonzero.) This function is usually denoted by 𝑓 too. But calling it that is slightly
dangerous, because:

Warning 3.1.3 Different polynomials can give rise to the same func-
tion. For example, consider 𝑡, 𝑡2 ∈ F2 [𝑡]. They are different polyno-
mials: going back to Definition 3.1.1, they’re alternative notation for
the sequences

(0, 1, 0, 0, . . .) and (0, 0, 1, 0, . . .),

which are plainly not the same. On the other hand, they induce the
same function F2 → F2, because 𝑎 = 𝑎2 for all (both) 𝑎 ∈ F2.

Exercise 3.1.4 Show that whenever 𝑅 is a finite nontrivial ring, it is
possible to find distinct polynomials over 𝑅 that induce the same func-
tion 𝑅 → 𝑅. (Hint: are there finitely or infinitely many polynomials
over 𝑅? Functions 𝑅 → 𝑅?)

Remark 3.1.5 In Example 2.3.2, we met the field𝐾 (𝑡) of rational expressions over
a field 𝐾 . People sometimes say ‘rational function’ to mean ‘rational expression’.
But just as for polynomials, I want to emphasize that rational expressions are not
functions. For instance, 1/(𝑡 − 1) is a totally respectable element of 𝐾 (𝑡). You
don’t have to worry about what happens ‘when 𝑡 = 1’, because 𝑡 is just a formal
symbol (a mark on a piece of paper), not a variable. And 1/(𝑡 − 1) is just a formal
expression, not a function.

The ring of polynomials has a universal property: a homomorphism from 𝑅[𝑡]
to some other ring 𝐵 is determined by its effect on scalars and on 𝑡 itself, in the
following sense.

The universal
property of 𝑅[𝑡]
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Proposition 3.1.6 (Universal property of the polynomial ring) Let 𝑅 and 𝐵 be
rings. For every homomorphism 𝜑 : 𝑅 → 𝐵 and every 𝑏 ∈ 𝐵, there is exactly one
homomorphism \ : 𝑅[𝑡] → 𝐵 such that

\ (𝑎) = 𝜑(𝑎) for all 𝑎 ∈ 𝑅, (3.4)
\ (𝑡) = 𝑏. (3.5)

On the left-hand side of (3.4), the ‘𝑎’ means the polynomial 𝑎 + 0𝑡 + 0𝑡2 + · · · .

Proof To show there is at most one such \, take any homomorphism \ : 𝑅[𝑡] → 𝐵

satisfying (3.4) and (3.5). Then for every polynomial
∑
𝑖 𝑎𝑖𝑡

𝑖 over 𝑅,

\

(∑︁
𝑖

𝑎𝑖𝑡
𝑖
)
=
∑︁
𝑖

\ (𝑎𝑖)\ (𝑡)𝑖 since \ is a homomorphism

=
∑︁
𝑖

𝜑(𝑎𝑖)𝑏𝑖 by (3.4) and (3.5).

So \ is uniquely determined.
To show there is at least one such \, define a function \ : 𝑅[𝑡] → 𝐵 by

\

(∑︁
𝑖

𝑎𝑖𝑡
𝑖
)
=
∑︁
𝑖

𝜑(𝑎𝑖)𝑏𝑖

(
∑
𝑖 𝑎𝑖𝑡

𝑖 ∈ 𝑅[𝑡]). Then \ clearly satisfies conditions (3.4) and (3.5). It remains to
check that \ is a homomorphism. I will do the worst part of this, which is to check
that \ preserves multiplication, and leave the rest to you.

So, take polynomials 𝑓 (𝑡) =
∑
𝑖 𝑎𝑖𝑡

𝑖 and 𝑔(𝑡) =
∑
𝑗 𝑏 𝑗 𝑡

𝑗 . Then 𝑓 (𝑡)𝑔(𝑡) =∑
𝑘 𝑐𝑘 𝑡

𝑘 , where 𝑐𝑘 is as defined in equation (3.3). We have

\ ( 𝑓 𝑔) = \
(∑︁
𝑘

𝑐𝑘 𝑡
𝑘
)

=
∑︁
𝑘

𝜑(𝑐𝑘 )𝑏𝑘 by definition of \

=
∑︁
𝑘

𝜑

( ∑︁
𝑖, 𝑗 : 𝑖+ 𝑗=𝑘

𝑎𝑖𝑏 𝑗

)
𝑏𝑘 by definition of 𝑐𝑘

=
∑︁
𝑘

∑︁
𝑖, 𝑗 : 𝑖+ 𝑗=𝑘

𝜑(𝑎𝑖)𝜑(𝑏 𝑗 )𝑏𝑘 since 𝜑 is a homomorphism

=
∑︁
𝑖, 𝑗

𝜑(𝑎𝑖)𝜑(𝑏 𝑗 )𝑏𝑖+ 𝑗

=

(∑︁
𝑖

𝜑(𝑎𝑖)𝑏𝑖
) (∑︁

𝑗

𝜑(𝑏 𝑗 )𝑏 𝑗
)

= \ ( 𝑓 )\ (𝑔) by definition of \. □
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Here are three uses for the universal property of the ring of polynomials. First:

Definition 3.1.7 Let 𝜑 : 𝑅 → 𝑆 be a ring homomorphism. The induced homo-
morphism

𝜑∗ : 𝑅[𝑡] → 𝑆[𝑡]
is the unique homomorphism 𝑅[𝑡] → 𝑆[𝑡] such that 𝜑∗(𝑎) = 𝜑(𝑎) for all 𝑎 ∈ 𝑅
and 𝜑∗(𝑡) = 𝑡.

The universal property guarantees that there is one and only one homomor-
phism 𝜑∗ with these properties. Concretely,

𝜑∗
(∑︁
𝑖

𝑎𝑖𝑡
𝑖
)
=
∑︁
𝑖

𝜑(𝑎𝑖)𝑡𝑖

for all
∑
𝑖 𝑎𝑖𝑡

𝑖 ∈ 𝑅[𝑡].
Second, let 𝑅 be a ring and 𝑟 ∈ 𝑅. By the universal property, there is a unique

homomorphism ev𝑟 : 𝑅[𝑡] → 𝑅 such that ev𝑟 (𝑎) = 𝑎 for all 𝑎 ∈ 𝑅 and ev𝑟 (𝑡) = 𝑟.
Concretely,

ev𝑟
(∑︁
𝑖

𝑎𝑖𝑡
𝑖
)
=
∑︁
𝑖

𝑎𝑖𝑟
𝑖

for all
∑
𝑖 𝑎𝑖𝑡

𝑖 ∈ 𝑅[𝑡]. This map ev𝑟 is called evaluation at 𝑟.
(The notation

∑
𝑎𝑖𝑡

𝑖 for what is officially (𝑎0, 𝑎1, . . .) makes it look obvious that
we can evaluate a polynomial at an element, and that this gives a homomorphism:
of course ( 𝑓 · 𝑔) (𝑟) = 𝑓 (𝑟)𝑔(𝑟), for instance! But that’s only because of the
notation: there was actually something to prove here.)

Third, let 𝑅 be a ring and 𝑐 ∈ 𝑅. For any 𝑓 (𝑡) ∈ 𝑅[𝑡], we can ‘substitute
𝑡 = 𝑢 + 𝑐’ to get a polynomial in 𝑢. What exactly does this mean? Formally, there
is a unique homomorphism \ : 𝑅[𝑡] → 𝑅[𝑢] such that \ (𝑎) = 𝑎 for all 𝑎 ∈ 𝑅 and
\ (𝑡) = 𝑢 + 𝑐. Concretely,

\

(∑︁
𝑖

𝑎𝑖𝑡
𝑖
)
=
∑︁
𝑖

𝑎𝑖 (𝑢 + 𝑐)𝑖 .

This particular substitution is invertible. Informally, the inverse is ‘substitute
𝑢 = 𝑡 − 𝑐’. Formally, there is a unique homomorphism \′ : 𝑅[𝑢] → 𝑅[𝑡] such that
\′(𝑎) = 𝑎 for all 𝑎 ∈ 𝑅 and \′(𝑢) = 𝑡 − 𝑐. These maps \ and \′ carrying out the
substitutions are inverse to each other, as you can deduce from either the universal
property or the concrete descriptions. So, the substitution maps

𝑅[𝑡]
\ //

𝑅[𝑢]
\′
oo (3.6)
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define an isomorphism between 𝑅[𝑡] and 𝑅[𝑢]. For example, since isomorphism
preserve irreducibility (and everything else that matters!), 𝑓 (𝑡) is irreducible if
and only if 𝑓 (𝑡 − 𝑐) is irreducible.

Exercise 3.1.8 What happens to everything in the previous paragraph
if we substitute 𝑡 = 𝑢2 + 𝑐 instead?

The rest of this section is about degree.

Definition 3.1.9 The degree, deg( 𝑓 ), of a nonzero polynomial 𝑓 (𝑡) =
∑
𝑎𝑖𝑡

𝑖 is
the largest 𝑛 ≥ 0 such that 𝑎𝑛 ≠ 0. By convention, deg(0) = −∞, where −∞ is a
formal symbol which we give the properties

−∞ < 𝑛, (−∞) + 𝑛 = −∞, (−∞) + (−∞) = −∞

for all integers 𝑛.

Digression 3.1.10 Defining deg(0) like this is helpful because it allows us
to make statements about all polynomials without annoying exceptions for
the zero polynomial (e.g. Lemma 3.1.11(i)).

But putting deg(0) = −∞ also makes intuitive sense. At least for polynomials
over R, the degree of a nonzero polynomial tells us how fast it grows: when 𝑥
is large, 𝑓 (𝑥) behaves roughly like 𝑥deg( 𝑓 ) . What about the zero polynomial?
Well, whether or not 𝑥 is large, 0(𝑥) = 0. And 𝑥−∞ can sensibly be interpreted
as lim𝑟→−∞ 𝑥𝑟 = 0, so it makes sense to put deg(0) = −∞.

Lemma 3.1.11 Let 𝑅 be an integral domain. Then:

i. deg( 𝑓 𝑔) = deg( 𝑓 ) + deg(𝑔) for all 𝑓 , 𝑔 ∈ 𝑅[𝑡];

ii. 𝑅[𝑡] is an integral domain.

Proof This was proved in Honours Algebra (Section 3.3). □

Example 3.1.12 For any integral domain 𝑅, the ring 𝑅[𝑡1, . . . , 𝑡𝑛] of polynomials
over 𝑅 in 𝑛 variables is also an integral domain, by Lemma 3.1.11(ii) and induction.
In particular, this is true when 𝑅 is a field.

Exercise 3.1.13 Let 𝑝 be a prime and consider the field F𝑝 (𝑡) of
rational expressions over F𝑝. Show that 𝑡 has no 𝑝th root in F𝑝 (𝑡).
(Hint: consider degrees of polynomials.)

The one and only polynomial of degree −∞ is the zero polynomial. The
polynomials of degree 0 are the nonzero constants. The polynomials of degree
> 0 are, therefore, the nonconstant polynomials.
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Lemma 3.1.14 Let 𝐾 be a field. Then:

i. the units in 𝐾 [𝑡] are the nonzero constants;

ii. 𝑓 ∈ 𝐾 [𝑡] is irreducible if and only if 𝑓 is nonconstant and cannot be
expressed as a product of two nonconstant polynomials.

Proof Part (i) was also in Honours Algebra (Section 3.3), and part (ii) follows
from the general definition of irreducible element of a ring. □

3.2 Factorizing polynomials
Every nonzero integer can be expressed as a product of primes in an essentially
unique way. But the analogous statement is not true in all rings, or even all
integral domains. Some rings have elements that can’t be expressed as a product
of irreducibles at all. In other rings, factorizations into irreducibles exist but are
not unique. (By ‘not unique’ I mean more than just changing the order of the
factors or multiplying them by units.)

The big theorem of this section is that, happily, every polynomial over a field
can be factorized into irreducibles, essentially uniquely.

We begin with a result on division of polynomials from Section 3.3 of Honours
Algebra.

Proposition 3.2.1 Let 𝐾 be a field and 𝑓 , 𝑔 ∈ 𝐾 [𝑡] with 𝑔 ≠ 0. Then there is
exactly one pair of polynomials 𝑞, 𝑟 ∈ 𝐾 [𝑡] such that 𝑓 = 𝑞𝑔 + 𝑟 and deg(𝑟) <
deg(𝑔). □

We use this to prove an extremely useful fact:

Proposition 3.2.2 Let 𝐾 be a field. Then 𝐾 [𝑡] is a principal ideal domain.

Proof First, 𝐾 [𝑡] is an integral domain, by Lemma 3.1.11(ii).
Now let 𝐼 P 𝐾 [𝑡]. If 𝐼 = {0} then 𝐼 = ⟨0⟩. Otherwise, put 𝑑 = min{deg( 𝑓 ) :

0 ≠ 𝑓 ∈ 𝐼} and choose 𝑔 ∈ 𝐼 such that deg(𝑔) = 𝑑.
I claim that 𝐼 = ⟨𝑔⟩. To prove this, let 𝑓 ∈ 𝐼; we must show that 𝑔 | 𝑓 .

By Proposition 3.2.1, 𝑓 = 𝑞𝑔 + 𝑟 for some 𝑞, 𝑟 ∈ 𝐾 [𝑡] with deg(𝑟) < 𝑑. Now
𝑟 = 𝑓 − 𝑞𝑔 ∈ 𝐼 since 𝑓 , 𝑔 ∈ 𝐼, so the minimality of 𝑑 implies that 𝑟 = 0. Hence
𝑓 = 𝑞𝑔, as required. □

If you struggled with Exercise 2.2.14, that proof should give you a clue.
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Warning 3.2.3 We just saw that 𝐾 [𝑡] is a principal ideal domain, and
we saw in Example 3.1.12 that 𝐾 [𝑡1, . . . , 𝑡𝑛] is an integral domain.
But it is not a principal ideal domain if 𝑛 > 1. For example, the ideal

⟨𝑡1, 𝑡2⟩ = { 𝑓 (𝑡1, 𝑡2) ∈ Q[𝑡1, 𝑡2] : 𝑓 has constant term 0}

of Q[𝑡1, 𝑡2] is not principal.
Also, Proposition 3.2.2 really needed the hypothesis that 𝐾 is a field;
it’s not enough for it to be a principal ideal domain. For example, Z is
a principal ideal domain, but in Z[𝑡], the ideal

⟨2, 𝑡⟩ = { 𝑓 (𝑡) ∈ Z[𝑡] : the constant term of 𝑓 is even}

is not principal.

Exercise 3.2.4 Prove that the ideals in Warning 3.2.3 are indeed not
principal.

Exercise 3.2.4: a
non-principal ideal

At the end of Chapter 2, I promised I’d give you a way of manufacturing lots
of new fields. Here it is!

Corollary 3.2.5 Let 𝐾 be a field and let 0 ≠ 𝑓 ∈ 𝐾 [𝑡]. Then

𝑓 is irreducible ⇐⇒ 𝐾 [𝑡]/⟨ 𝑓 ⟩ is a field.

Proof This follows from Propositions 2.3.26 and 3.2.2. □

To make new fields using Corollary 3.2.5, we’ll need a way of knowing which
polynomials are irreducible. That’s the topic of Section 3.3. But for now, let’s
stick to our mission: proving that every polynomial factorizes into irreducibles in
an essentially unique way.

To achieve our mission, we’ll need two more lemmas.

Lemma 3.2.6 Let 𝐾 be a field and let 𝑓 (𝑡) ∈ 𝐾 [𝑡] be a nonconstant polynomial.
Then 𝑓 (𝑡) is divisible by some irreducible in 𝐾 [𝑡].

Proof Let 𝑔 be a nonconstant polynomial of smallest possible degree such that
𝑔 | 𝑓 . (For this to make sense, there must be at least one nonconstant polynomial
dividing 𝑓 , and there is: 𝑓 .) I claim that 𝑔 is irreducible. Proof: if 𝑔 = 𝑔1𝑔2 then
each 𝑔𝑖 divides 𝑓 , so by minimality of deg(𝑔), each 𝑔𝑖 has degree 0 or deg(𝑔).
They cannot both have degree deg(𝑔), since deg(𝑔1) + deg(𝑔2) = deg(𝑔) > 0. So
at least one has degree 0, which by Lemma 3.1.14(i) means that it is a unit. □
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Lemma 3.2.7 Let 𝐾 be a field and 𝑓 , 𝑔, ℎ ∈ 𝐾 [𝑡]. Suppose that 𝑓 is irreducible
and 𝑓 | 𝑔ℎ. Then 𝑓 | 𝑔 or 𝑓 | ℎ.

This behaviour is familiar in the integers: if a prime 𝑝 divides some product
𝑎𝑏, then 𝑝 | 𝑎 or 𝑝 | 𝑏. In fact, our proof works in any principal ideal domain.

Proof Suppose that 𝑓 ∤ 𝑔. Since 𝑓 is irreducible, 𝑓 and 𝑔 are coprime. Since 𝐾 [𝑡]
is a principal ideal domain, Proposition 2.2.16 implies that there are 𝑝, 𝑞 ∈ 𝐾 [𝑡]
satisfying

𝑝 𝑓 + 𝑞𝑔 = 1.

Multiplying both sides by ℎ gives

𝑝 𝑓 ℎ + 𝑞𝑔ℎ = ℎ.

But 𝑓 | 𝑝 𝑓 ℎ and 𝑓 | 𝑔ℎ, so 𝑓 | ℎ. □

Theorem 3.2.8 Let 𝐾 be a field and 0 ≠ 𝑓 ∈ 𝐾 [𝑡]. Then

𝑓 = 𝑎 𝑓1 𝑓2 · · · 𝑓𝑛

for some 𝑛 ≥ 0, 𝑎 ∈ 𝐾 and monic irreducibles 𝑓1, . . . , 𝑓𝑛 ∈ 𝐾 [𝑡]. Moreover, 𝑛
and 𝑎 are uniquely determined by 𝑓 , and 𝑓1, . . . , 𝑓𝑛 are uniquely determined
up to reordering.

In the case 𝑛 = 0, the product 𝑓1 · · · 𝑓𝑛 should be interpreted as 1 (as in
Digression 2.2.10). Monic means that the leading coefficient is 1.

Proof First we prove that such a factorization exists, by induction on deg( 𝑓 ). If
deg( 𝑓 ) = 0 then 𝑓 is a constant 𝑎 and we take 𝑛 = 0. Now suppose that deg( 𝑓 ) > 0
and assume the result for polynomials of smaller degree. By Lemma 3.2.6, there
is an irreducible 𝑔 dividing 𝑓 , and we can assume that 𝑔 is monic by dividing by
a constant if necessary. Then 𝑓 /𝑔 is a nonzero polynomial of smaller degree than
𝑓 , so by inductive hypothesis,

𝑓 /𝑔 = 𝑎ℎ1 · · · ℎ𝑚

for some 𝑎 ∈ 𝐾 and monic irreducibles ℎ1, . . . , ℎ𝑚. Rearranging gives

𝑓 = 𝑎ℎ1 · · · ℎ𝑚𝑔,

completing the induction.
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Now we prove uniqueness, again by induction on deg( 𝑓 ). If deg( 𝑓 ) = 0 then
𝑓 is a constant 𝑎 and the only possible factorization is the one with 𝑛 = 0. Now
suppose that deg( 𝑓 ) > 0, and take two factorizations

𝑎 𝑓1 · · · 𝑓𝑛 = 𝑓 = 𝑏𝑔1 · · · 𝑔𝑚 (3.7)

where 𝑎, 𝑏 ∈ 𝐾 and 𝑓𝑖, 𝑔 𝑗 are monic irreducible. Since deg( 𝑓 ) > 0, we have
𝑛, 𝑚 ≥ 1. Now 𝑓𝑛 | 𝑏𝑔1 · · · 𝑔𝑚, so by Lemma 3.2.7, 𝑓𝑛 | 𝑔 𝑗 for some 𝑗 . By
rearranging, we can assume that 𝑗 = 𝑚. But 𝑔𝑚 is also irreducible, so 𝑓𝑛 = 𝑐𝑔𝑚
for some nonzero 𝑐 ∈ 𝐾 , and both 𝑓𝑛 and 𝑔𝑚 are monic, so 𝑐 = 1. Hence 𝑓𝑛 = 𝑔𝑚.
Cancelling in (3.7) (which we can do as 𝐾 [𝑡] is an integral domain) gives

𝑎 𝑓1 · · · 𝑓𝑛−1 = 𝑏𝑔1 · · · 𝑔𝑚−1.

By inductive hypothesis, 𝑛 − 1 = 𝑚 − 1, 𝑎 = 𝑏, and the lists 𝑓1, . . . , 𝑓𝑛−1 and
𝑔1, . . . , 𝑔𝑚−1 are the same up to reordering. This completes the induction. □

One way to find an irreducible factor of a polynomial 𝑓 (𝑡) ∈ 𝐾 [𝑡] is to find a
root (an element 𝑎 ∈ 𝐾 such that 𝑓 (𝑎) = 0):

Lemma 3.2.9 Let 𝐾 be a field, 𝑓 (𝑡) ∈ 𝐾 [𝑡] and 𝑎 ∈ 𝐾 . Then

𝑓 (𝑎) = 0 ⇐⇒ (𝑡 − 𝑎) | 𝑓 (𝑡).

Proof ⇒: suppose that 𝑓 (𝑎) = 0. By Proposition 3.2.1,

𝑓 (𝑡) = (𝑡 − 𝑎)𝑞(𝑡) + 𝑟 (𝑡) (3.8)

for some 𝑞, 𝑟 ∈ 𝐾 [𝑡] with deg(𝑟) < 1. Then 𝑟 is a constant, so putting 𝑡 = 𝑎

in (3.8) gives 𝑟 = 0.
⇐: if 𝑓 (𝑡) = (𝑡 − 𝑎)𝑞(𝑡) for some polynomial 𝑞 then 𝑓 (𝑎) = 0. □

A field is algebraically closed if every nonconstant polynomial has at least one
root. For example, C is algebraically closed (the fundamental theorem of algebra).
A straightforward induction shows:

Lemma 3.2.10 Let 𝐾 be an algebraically closed field and 0 ≠ 𝑓 ∈ 𝐾 [𝑡]. Then

𝑓 (𝑡) = 𝑐(𝑡 − 𝑎1)𝑚1 · · · (𝑡 − 𝑎𝑘 )𝑚𝑘 ,

where 𝑐 is the leading coefficient of 𝑓 , and 𝑎1, . . . , 𝑎𝑘 are the distinct roots of 𝑓 in
𝐾 , and 𝑚1, . . . , 𝑚𝑘 ≥ 1. □
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3.3 Irreducible polynomials
Determining whether an integer is prime is generally hard, so it’s no surprise that
determining whether a polynomial is irreducible is hard too. This section presents
a few techniques for doing so.

Let’s begin with the simplest cases. Recall Lemma 3.1.14(ii): a polynomial
over a field is irreducible if and only if it is nonconstant (has degree > 0) and
cannot be expressed as a product of two nonconstant polynomials.

Lemma 3.3.1 Let 𝐾 be a field and 𝑓 ∈ 𝐾 [𝑡].

i. If 𝑓 is constant then 𝑓 is not irreducible.

ii. If deg( 𝑓 ) = 1 then 𝑓 is irreducible.

iii. If deg( 𝑓 ) ≥ 2 and 𝑓 has a root then 𝑓 is reducible.

iv. If deg( 𝑓 ) ∈ {2, 3} and 𝑓 has no root then 𝑓 is irreducible.

Proof Parts (i) and (ii) follow from what we just recalled, and (iii) follows
from Lemma 3.2.9. For (iv), suppose for a contradiction that 𝑓 = 𝑔ℎ with
deg(𝑔), deg(ℎ) ≥ 1. We have deg(𝑔) + deg(ℎ) ∈ {2, 3}, so without loss of gener-
ality, deg(𝑔) = 1. Also without loss of generality, 𝑔 is monic, say 𝑔(𝑡) = 𝑡 + 𝑎; but
then 𝑓 (−𝑎) = 0, a contradiction. □

Warning 3.3.2 To show a polynomial is irreducible, it’s generally
not enough to show it has no root. The converse of (iii) is false! For
instance, (𝑡2 + 1)2 ∈ Q[𝑡] has no root but is reducible.

Warning 3.3.3 Make sure you’ve digested Warning 3.3.2!
This is an extremely common mistake.

Examples 3.3.4 i. Let 𝑝 be a prime. Then 𝑓 (𝑡) = 1 + 𝑡 + · · · + 𝑡 𝑝−1 ∈ F𝑝 [𝑡] is
reducible, since 𝑓 (1) = 0.

ii. Let 𝑓 (𝑡) = 𝑡3 − 10 ∈ Q[𝑡]. Then deg( 𝑓 ) = 3 and 𝑓 has no root in Q, so 𝑓 is
irreducible by part (iv) of the lemma.

iii. Over C or any other algebraically closed field, the irreducibles are exactly
the polynomials of degree 1.
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Exercise 3.3.5 If I gave you a quadratic overQ, how would you decide
whether it was reducible or irreducible?

From now on we focus on 𝐾 = Q. Any polynomial over Q can be multiplied
by a nonzero integer to get a polynomial over Z, and that’s often a helpful move,
so we’ll look at Z[𝑡] too.

Definition 3.3.6 A polynomial over Z is primitive if its coefficients have no
common divisor except for ±1.

For example, 15 + 6𝑡 + 10𝑡2 is primitive but 15 + 6𝑡 + 30𝑡2 is not.

Lemma 3.3.7 Let 𝑓 (𝑡) ∈ Q[𝑡]. Then there exist a primitive polynomial 𝐹 (𝑡) ∈
Z[𝑡] and 𝛼 ∈ Q such that 𝑓 = 𝛼𝐹.

Proof Write 𝑓 (𝑡) = ∑
𝑖 (𝑎𝑖/𝑏𝑖)𝑡𝑖, where 𝑎𝑖 ∈ Z and 0 ≠ 𝑏𝑖 ∈ Z. Take any common

multiple 𝑏 of the 𝑏𝑖s; then writing 𝑐𝑖 = 𝑎𝑖𝑏/𝑏𝑖 ∈ Z, we have 𝑓 (𝑡) = (1/𝑏)∑ 𝑐𝑖𝑡
𝑖.

Now let 𝑐 be the greatest common divisor of the 𝑐𝑖s, put 𝑑𝑖 = 𝑐𝑖/𝑐 ∈ Z, and put
𝐹 (𝑡) = ∑

𝑑𝑖𝑡
𝑖. Then 𝐹 (𝑡) is primitive and 𝑓 (𝑡) = (𝑐/𝑏)𝐹 (𝑡). □

If the coefficients of a polynomial 𝑓 (𝑡) ∈ Q[𝑡] happen to all be integers, the
word ‘irreducible’ could mean two things: irreducibility in the ring Q[𝑡] or in the
ring Z[𝑡]. We say that 𝑓 is irreducible over Q or Z to distinguish between the two.

Suppose we have a polynomial over Z that’s irreducible over Z. In principle it
could still be reducible over Q: although there’s no nontrivial way of factorizing
it over Z, perhaps it can be factorized when you give yourself the freedom of
non-integer coefficients. But the next result tells us that you can’t.

Lemma 3.3.8 (Gauss) i. The product of two primitive polynomials over Z is
primitive.

ii. If a nonconstant polynomial over Z is irreducible over Z, it is irreducible
over Q.

Proof For (i), let 𝑓 and 𝑔 be primitive polynomials over Z. Let 𝑝 be a prime
number. (We’re going to show that 𝑝 doesn’t divide all the coefficients of 𝑓 𝑔.)
Write 𝜋 : Z → Z/𝑝Z = F𝑝 for the canonical homomorphism, which induces a
homomorphism 𝜋∗ : Z[𝑡] → F𝑝 [𝑡] as in Definition 3.1.7.

Since 𝑓 is primitive, 𝑝 does not divide all the coefficients of 𝑓 . Equivalently,
𝜋∗( 𝑓 ) ≠ 0. Similarly, 𝜋∗(𝑔) ≠ 0. But F𝑝 [𝑡] is an integral domain, so

𝜋∗( 𝑓 𝑔) = 𝜋∗( 𝑓 )𝜋∗(𝑔) ≠ 0,
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so 𝑝 does not divide all the coefficients of 𝑓 𝑔. This holds for all primes 𝑝, so 𝑓 𝑔

is primitive.
For (ii), let 𝑓 ∈ Z[𝑡] be a nonconstant polynomial irreducible over Z. Let

𝑔, ℎ ∈ Q[𝑡] with 𝑓 = 𝑔ℎ. By Lemma 3.3.7, 𝑔 = 𝛼𝐺 and ℎ = 𝛽𝐻 for some
𝛼, 𝛽 ∈ Q and primitive 𝐺, 𝐻 ∈ Z[𝑡]. Then 𝛼𝛽 = 𝑚/𝑛 for some coprime integers
𝑚 and 𝑛, giving

𝑛 𝑓 = 𝑚𝐺𝐻.

(All three of these polynomials are over Z.) Now 𝑛 divides every coefficient of
𝑛 𝑓 , hence every coefficient of 𝑚𝐺𝐻. Since 𝑚 and 𝑛 are coprime, 𝑛 divides every
coefficient of 𝐺𝐻. But 𝐺𝐻 is primitive by (i), so 𝑛 = ±1, so 𝑓 = ±𝑚𝐺𝐻. Since 𝑓
is irreducible over Z, either 𝐺 or 𝐻 is constant, so 𝑔 or ℎ is constant, as required.□

Gauss’s lemma quickly leads to a test for irreducibility. It involves taking a
polynomial over Z and reducing it mod 𝑝, for some prime 𝑝. This means applying
the map 𝜋∗ : Z[𝑡] → F𝑝 [𝑡] from the last proof. As we saw after Definition 3.1.7,
if 𝑓 (𝑡) = ∑

𝑎𝑖𝑡
𝑖 then 𝜋∗( 𝑓 ) (𝑡) =

∑
𝜋(𝑎𝑖)𝑡𝑖, where 𝜋(𝑎𝑖) is the congruence class of

𝑎𝑖 mod 𝑝. I’ll write 𝜋(𝑎) as 𝑎 and 𝜋∗( 𝑓 ) as 𝑓 . That is, 𝑓 is ‘ 𝑓 mod 𝑝’.

Proposition 3.3.9 (Mod 𝒑 method) Let 𝑓 (𝑡) = 𝑎0 + 𝑎1𝑡 + · · · + 𝑎𝑛𝑡𝑛 ∈ Z[𝑡]. If
there is some prime 𝑝 such that 𝑝 ∤ 𝑎𝑛 and 𝑓 ∈ F𝑝 [𝑡] is irreducible, then 𝑓 is
irreducible over Q.

I’ll give some examples first, then the proof.

Examples 3.3.10 i. Let’s use the mod 𝑝 method to show that 𝑓 (𝑡) = 9+ 14𝑡 −
8𝑡3 is irreducible over Q. Take 𝑝 = 7: then 𝑓 (𝑡) = 2 − 𝑡3 ∈ F7 [𝑡], so it’s
enough to show that 2− 𝑡3 is irreducible over F7. Since this has degree 3, it’s
enough to show that 𝑡3 = 2 has no solution in F7 (by Lemma 3.3.1(iv)). And
you can easily check this by computing 03, (±1)3, (±2)3 and (±3)3 mod 7.

ii. The condition in Proposition 3.3.9 that 𝑝 ∤ 𝑎𝑛 can’t be dropped. For instance,
consider 𝑓 (𝑡) = 6𝑡2 + 𝑡 and 𝑝 = 2.

Warning 3.3.11 Take 𝑓 (𝑡) as in Example 3.3.10(i), but this time take
𝑝 = 3. Then 𝑓 (𝑡) = −𝑡 + 𝑡3 ∈ F3 [𝑡], which is reducible. But that
doesn’t mean 𝑓 is reducible! The mod 𝑝 method only ever lets you
show that a polynomial is irreducible over Q, not reducible.

Proof of Proposition 3.3.9 Take a prime 𝑝 satisfying the stated conditions.
First suppose that 𝑓 is primitive. By Gauss’s lemma, it is enough to prove that

𝑓 is irreducible over Z.
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Since 𝑓 is irreducible, deg( 𝑓 ) > 0, so deg( 𝑓 ) > 0.
Let 𝑓 = 𝑔ℎ in Z[𝑡]. We have 𝑓 = 𝑔ℎ and 𝑓 is irreducible, so without loss of

generality, 𝑔 is constant. The leading coefficient of 𝑓 is the product of the leading
coefficients of 𝑔 and ℎ, and is not divisible by 𝑝, so the leading coefficient of 𝑔 is
not divisible by 𝑝. Hence deg(𝑔) = deg(𝑔). But deg(𝑔) = 0, so deg(𝑔) = 0, so
𝑔 ∈ Z[𝑡] is a constant 𝑏 ∈ Z. Finally, 𝑓 = 𝑔ℎ = 𝑏ℎ and 𝑓 is primitive, so 𝑏 = ±1,
which is a unit in Z[𝑡]. It follows that 𝑓 is irreducible over Z.

Now take an arbitrary 𝑓 satisfying the hypotheses. We have 𝑓 = 𝑐𝐹 where
𝑐 ∈ Z is the greatest common divisor of the coefficients and 𝐹 ∈ Z[𝑡] is primitive.
Then 𝑓 = 𝑐𝐹, and 𝑐 is a unit in F𝑝 because 𝑝 ∤ 𝑐. Since 𝑓 is irreducible, this
implies that 𝐹 is irreducible, and so by what we’ve just proved, 𝐹 is irreducible
over Q. But 𝑐 ≠ 0, so 𝑐 is a unit in Q, so 𝑓 = 𝑐𝐹 is also irreducible over Q. □

We finish with an irreducibility test that turns out to be surprisingly powerful.

Proposition 3.3.12 (Eisenstein’s criterion) Let 𝑓 (𝑡) = 𝑎0 + · · · + 𝑎𝑛𝑡𝑛 ∈ Z[𝑡],
with 𝑛 ≥ 1. Suppose there exists a prime 𝑝 such that:Not Einstein.

• 𝑝 ∤ 𝑎𝑛;

• 𝑝 | 𝑎𝑖 for all 𝑖 ∈ {0, . . . , 𝑛 − 1};

• 𝑝2 ∤ 𝑎0.

Then 𝑓 is irreducible over Q.

To prove this, we will use the concept of the codegree codeg( 𝑓 ) of a polynomial
𝑓 (𝑡) = ∑

𝑖 𝑎𝑖𝑡
𝑖, which is defined to be the least 𝑖 such that 𝑎𝑖 ≠ 0 (if 𝑓 ≠ 0), or as

the formal symbol ∞ if 𝑓 = 0. For polynomials 𝑓 and 𝑔 over an integral domain,

codeg( 𝑓 𝑔) = codeg( 𝑓 ) + codeg(𝑔).

Clearly codeg( 𝑓 ) ≤ deg( 𝑓 ) unless 𝑓 = 0.

Proof We may assume 𝑓 is primitive: if not, divide 𝑓 through by the greatest
common divisor of its coefficients, which does not affect their divisibility by
powers of 𝑝 or the reducibility of 𝑓 over Q. By Gauss’s lemma, it is enough to
show that 𝑓 is irreducible over Z. Let 𝑔, ℎ ∈ Z[𝑡] with 𝑓 = 𝑔ℎ. Continue to write
𝑓 (𝑡) ∈ F𝑝 [𝑡] for 𝑓 reduced mod 𝑝; then 𝑓 = 𝑔ℎ. Since

𝑝2 ∤ 𝑎0 = 𝑓 (0) = 𝑔(0)ℎ(0),

we may assume without loss of generality that 𝑝 ∤ 𝑔(0). Hence codeg(𝑔) = 0.
Also, codeg( 𝑓 ) = 𝑛, since 𝑝 divides each of 𝑎0, . . . , 𝑎𝑛−1 but not 𝑎𝑛. So

𝑛 = codeg( 𝑓 ) = codeg(𝑔) + codeg(ℎ) = codeg(ℎ) ≤ deg(ℎ) ≤ deg(ℎ), (3.9)
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giving 𝑛 ≤ deg(ℎ). But 𝑓 = 𝑔ℎ with deg( 𝑓 ) = 𝑛, so deg(ℎ) = 𝑛 and deg(𝑔) = 0.
Hence 𝑔 is constant. Since 𝑓 is primitive, 𝑔 = ±1, so 𝑔 is a unit in Z[𝑡]. □

Exercise 3.3.13 The last step in (3.9) was ‘deg(ℎ) ≤ deg(ℎ)’. Why
is that true? And when does equality hold?

Example 3.3.14 Let

𝑔(𝑡) = 2
9
𝑡5 − 5

3
𝑡4 + 𝑡3 + 1

3
∈ Q[𝑡] .

Then 𝑔 is irreducible over Q if and only if

9𝑔(𝑡) = 2𝑡5 − 15𝑡4 + 9𝑡3 + 3

is irreducible over Q, which it is by Eisenstein’s criterion with 𝑝 = 3.
Testing for

irreducibility
Exercise 3.3.15 Use Eisenstein’s criterion to show that for every
𝑛 ≥ 1, there is an irreducible polynomial over Q of degree 𝑛.

I’ll give you one more example, and it’s an important one.

Example 3.3.16 Let 𝑝 be a prime. The 𝑝th cyclotomic polynomial is

Φ𝑝 (𝑡) = 1 + 𝑡 + · · · + 𝑡 𝑝−1 =
𝑡 𝑝 − 1
𝑡 − 1

. (3.10)

I claim thatΦ𝑝 is irreducible. We can’t apply Eisenstein toΦ𝑝 as it stands, because
whichever prime we choose (whether it’s 𝑝 or another one) doesn’t divide any of
the coefficients. However, we saw on p. 38 that Φ𝑝 (𝑡) is irreducible if and only if
Φ𝑝 (𝑡 − 𝑐) is irreducible, for any 𝑐 ∈ Q. We’ll take 𝑐 = −1. We have

Φ𝑝 (𝑡 + 1) = (𝑡 + 1)𝑝 − 1
(𝑡 + 1) − 1

=
1
𝑡

𝑝∑︁
𝑖=1

(
𝑝

𝑖

)
𝑡𝑖

= 𝑝 +
(
𝑝

2

)
𝑡 + · · · +

(
𝑝

𝑝 − 1

)
𝑡 𝑝−2 + 𝑡 𝑝−1.

So Φ𝑝 (𝑡 + 1) is irreducible by Eisenstein’s criterion and Lemma 2.3.19, hence
Φ𝑝 (𝑡) is irreducible too.
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Digression 3.3.17 I defined the 𝑝th cyclotomic polynomial Φ𝑝 only when
𝑝 is prime. The definition of Φ𝑛 for general 𝑛 ≥ 1 is not the obvious
generalization of (3.10). Instead, it’s this:

Φ𝑛 (𝑡) =
∏
Z

(𝑡 − Z),

where the product runs over all primitive 𝑛th roots of unity Z . (In this
context, ‘primitive’ means that 𝑛 is the smallest number satisfying Z𝑛 = 1;
it’s a different usage from ‘primitive polynomial’.)

Many surprising things are true. It’s not obvious that the coefficients of Φ𝑛
are real, but they are. Even given that they’re real, it’s not obvious that they’re
rational, but they are. Even given that they’re rational, it’s not obvious that
they’re integers, but they are (Workshop 4, question 14). The degree of Φ𝑛
is 𝜑(𝑛), the number of integers between 1 and 𝑛 that are coprime with 𝑛
(Euler’s function). It’s also true that the polynomial Φ𝑛 is irreducible for all
𝑛, not just primes.

Some of these things are quite hard to prove, and results from Galois theory
help. We won’t get into all of this, but you can read more here.
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Chapter 4

Field extensions

Roughly speaking, an ‘extension’ of a field 𝐾 is a field 𝑀 that contains 𝐾 as a
subfield. It’s not much of an exaggeration to say that field extensions are the central
objects of Galois theory, in much the same way that vector spaces are the central
objects of linear algebra.

Introduction to
Week 4

It will be a while before it becomes truly clear why field extensions are so
important, but here are a couple of indications:

• For any polynomial 𝑓 over Q, we can take the smallest subfield 𝑀 of C that
contains all the complex roots of 𝑓 , and that’s an extension of Q.

• For any irreducible polynomial 𝑓 over a field 𝐾 , the quotient ring 𝑀 =

𝐾 [𝑡]/⟨ 𝑓 ⟩ is a field. The constant polynomials form a subfield of 𝑀 isomor-
phic to 𝐾 , so 𝑀 is an extension of 𝐾 .

It’s important to distinguish between these two types of example. The first extends
Q by all the roots of 𝑓 , whereas the second extends 𝐾 by just one root of 𝑓—as
we’ll see.

4.1 Definition and examples
Before we do anything else, we need to think about some set theory. What follows
might seem trivial, but it’s worth taking the time to get it straight.

Given a set 𝐴 and a subset 𝐵 ⊆ 𝐴, there is an inclusion function ] : 𝐵 → 𝐴

defined by ](𝑏) = 𝑏 for all 𝑏 ∈ 𝐵. (That’s a Greek letter iota.) Remember that by
definition, every function has a specified domain and codomain, so this is not the
same as the identity on 𝐵. The inclusion ] is injective.

On the other hand, given any injective function between sets, say 𝜑 : 𝑋 → 𝐴,
the image im 𝜑 is a subset of 𝐴, and there is a bĳection 𝜑′ : 𝑋 → im 𝜑 given by
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𝜑′(𝑥) = 𝜑(𝑥) (𝑥 ∈ 𝑋). Hence the set 𝑋 is isomorphic to (in bĳection with) the
subset im 𝜑 of 𝐴.

So given any subset of 𝐴, we get an injection into 𝐴, and vice versa. These
two back-and-forth processes are mutually inverse (up to isomorphism), so subsets
and injections are more or less the same thing.

Now here’s an example to show you that the concept of subset is not as clear-
cut as it might seem—at least when you look at what mathematicians actually do,
rather than what we claim we do.

• It’s common to define the set C as R2.

• Everyone treats R as a subset of C.

• But almost no one would say that R is a subset of R2. (If you think it is, and
you agree that R has an element called 6, then you must think that R2 has an
element called 6—which you probably don’t.)

So, is R a subset of C or not? In truth, while we almost always ‘know what we
mean’, the common conventions are inconsistent.

Probably you’re thinking that this all seems rather distant from ‘real mathe-
matics’. Nothing important should depend on whether R is literally a subset of C.
I agree! But the challenge is to set up the formal definitions so that we never have
to worry about irrelevant-seeming questions like this again. And the solution is to
work with injections rather than subsets.

So: we intuitively want to define an ‘extension’ of a field 𝐾 as a field 𝑀 that
contains 𝐾 as a subfield. But if we defined it that way, we’d run into the annoying
question of whether C really is an extension of R. So instead, we define an
extension of 𝐾 to be a field 𝑀 together with an injective homomorphism 𝐾 → 𝑀 .
Lemma 2.3.3 tells us that every homomorphism between fields is injective, so our
actual definition is as follows.

Definition 4.1.1 Let 𝐾 be a field. An extension of 𝐾 is a field 𝑀 together with a
homomorphism ] : 𝐾 → 𝑀 .

Often we blur the distinction between injections and subsets, speaking as if 𝐾
is literally a subfield of 𝑀 and ] is the inclusion. We then write 𝑀 : 𝐾 (read ‘𝑀
over 𝐾’) to mean that 𝑀 is an extension of 𝐾 , not bothering to mention ].

Examples 4.1.2 i. The field C, together with the inclusion ] : Q → C, is an
extension of Q. We write it as C : Q. Similarly, there are field extensions
C : R and R : Q.
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ii. Let
Q(

√
2) = {𝑎 + 𝑏

√
2 : 𝑎, 𝑏 ∈ Q}.

Then Q(
√

2) is a subring of C (easily), and in fact it’s a subfield: for if
(𝑎, 𝑏) ≠ (0, 0) then

1
𝑎 + 𝑏

√
2
=
𝑎 − 𝑏

√
2

𝑎2 − 2𝑏2

(noting that the denominators are not 0 because
√

2 is irrational). So we
have an extension C : Q(

√
2). Also, because Q ⊆ Q(

√
2), we have another

extension Q(
√

2) : Q.

iii. Write
Q(

√
2, 𝑖) = {𝑎 + 𝑏

√
2 + 𝑐𝑖 + 𝑑

√
2𝑖 : 𝑎, 𝑏, 𝑐, 𝑑 ∈ Q.}

By direct calculation or later theory (which will make it much easier),
Q(

√
2, 𝑖) is also a subfield of C, so we have extensions C : Q(

√
2, 𝑖) and

Q(
√

2, 𝑖) : Q.

iv. Let 𝐾 be a field, and consider the field 𝐾 (𝑡) of rational expressions over
𝐾 (Example 2.3.2). There is a homomorphism ] : 𝐾 → 𝐾 (𝑡) given by
](𝑎) = 𝑎/1 (𝑎 ∈ 𝐾). In other words, 𝐾 (𝑡) contains a copy of 𝐾 as the
constant rational expressions. So, we have a field extension 𝐾 (𝑡) : 𝐾 .

v. There is a homomorphism ^ : C → C defined by ^(𝑧) = 𝑧. So C together
with ^ is an extension of C! You might feel that this example obeys the letter
but not the spirit of Definition 4.1.1, but it is an example.

Exercise 4.1.3 Find two examples of fields 𝐾 such that Q ⫋ 𝐾 ⫋
Q(

√
2, 𝑖). (The symbol ⫋ means proper subset.)

Sometimes we fix a field 𝐾 and think about fields that contain it—extensions
of 𝐾 . Other times, we fix a field 𝐾 and think about fields it contains—subfields of
𝐾 . It may be that we are given a mere subset 𝑋 of 𝐾 and want to generate a subfield
from it. Recalling the top-down/bottom-up distinction of Digression 2.2.12, we
define this as follows.

Definition 4.1.4 Let𝐾 be a field and 𝑋 a subset of𝐾 . The subfield of𝐾 generated
by 𝑋 is the intersection of all the subfields of 𝐾 containing 𝑋 .

Let 𝐹 be the subfield of𝐾 generated by 𝑋 . Since any intersection of subfields is
a subfield, 𝐹 really is a subfield of 𝐾 . It contains 𝑋 . By definition of intersection,
𝐹 is the smallest subfield of 𝐾 containing 𝑋 , in the sense that any subfield of 𝐾
containing 𝑋 contains 𝐹.
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Exercise 4.1.5 Check the truth of all the statements in the previous
paragraph.

Examples 4.1.6 i. The subfield of 𝐾 generated by ∅ is the prime subfield
of 𝐾 .

ii. Let 𝐿 be the subfield of C generated by {𝑖}. I claim that

𝐿 = {𝑎 + 𝑏𝑖 : 𝑎, 𝑏 ∈ Q}.

To prove this, we have to show that 𝐿 is the smallest subfield of C containing
𝑖. First, it is a subfield of C (by an argument similar to Example 4.1.2(ii))
and it contains 0+1𝑖 = 𝑖. Now let 𝐿′ be any subfield of C containing 𝑖. Then
𝐿′ contains the prime subfield of C (by definition of prime subfield), which
is Q. So whenever 𝑎, 𝑏 ∈ Q, we have 𝑎, 𝑏, 𝑖 ∈ 𝐿′ and so 𝑎 + 𝑏𝑖 ∈ 𝐿′. Hence
𝐿 ⊆ 𝐿′, as required.

iii. A very similar argument shows that the subfield of C generated by
√

2 is
what we have been calling Q(

√
2).

Exercise 4.1.7 What is the subfield of C generated by {7/8}? By
{2 + 3𝑖}? By R ∪ {𝑖}?

We will be very interested in chains of fields

𝐾 ⊆ 𝐿 ⊆ 𝑀

in which 𝐾 and 𝑀 are regarded as fixed and 𝐿 as variable. You can think of 𝐾 as
the floor, 𝑀 as the ceiling, and 𝐿 as varying in between.

Definition 4.1.8 Let 𝑀 : 𝐾 be a field extension and 𝑌 ⊆ 𝑀 . We write 𝐾 (𝑌 ) for
the subfield of 𝑀 generated by 𝐾∪𝑌 . We call it 𝐾 with𝑌 adjoined, or the subfield
of 𝑀 generated by 𝑌 over 𝐾 .

So, 𝐾 (𝑌 ) is the smallest subfield of 𝑀 containing both 𝐾 and 𝑌 .
When 𝑌 is a finite set {𝛼1, . . . , 𝛼𝑛}, we write 𝐾 ({𝛼1, . . . , 𝛼𝑛}) as

𝐾 (𝛼1, . . . , 𝛼𝑛).

Examples 4.1.9 i. Take 𝑀 : 𝐾 to be C : Q and 𝑌 = {
√

2}. By definition,
𝐾 (𝑌 ) is the smallest subfield of C containing Q ∪ {

√
2}. But every subfield

of C contains Q: that’s what it means for Q to be the prime subfield of C.
So, 𝐾 (𝑌 ) is the smallest subfield of C containing

√
2. By Example 4.1.6(iii),

that’s exactly what we’ve been calling Q(
√

2) all along. We refer to Q(
√

2)
as ‘Q with

√
2 adjoined’.
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ii. Similarly, Q with 𝑖 adjoined is

Q(𝑖) = {𝑎 + 𝑏𝑖 : 𝑎, 𝑏 ∈ Q}
(Example 4.1.6(ii)), and Q with {

√
2, 𝑖} adjoined is the subfield denoted by

Q(
√

2, 𝑖) in Example 4.1.2(iii).

iii. Let 𝑀 be a field and 𝑋 ⊆ 𝑀 . Write 𝐾 for the prime subfield of 𝑀 . Then
𝐾 (𝑋) is the smallest subfield of 𝑀 containing 𝐾 and 𝑋 . But every subfield
of 𝑀 contains 𝐾 , by definition of prime subfield. So 𝐾 (𝑋) is the smallest
subfield of 𝑀 containing 𝑋; that is, it’s the subfield of 𝑀 generated by 𝑋 .
We already saw this argument in (i), in the case 𝑀 = C and 𝑋 = {

√
2}.

iv. Let 𝐾 be any field and let 𝑀 be the field 𝐾 (𝑡) of rational expressions over 𝐾 ,
which is an extension of 𝐾 . You might worry that there’s some ambiguity
in the notation: 𝐾 (𝑡) could either mean the field of rational expressions
over 𝐾 (as defined in Example 4.1.2(iv)) or the subfield of 𝐾 (𝑡) obtained by
adjoining the element 𝑡 of 𝐾 (𝑡) to 𝐾 (as in Definition 4.1.8).
In fact, they’re the same. In other words, the smallest subfield of 𝐾 (𝑡)
containing 𝐾 and 𝑡 is 𝐾 (𝑡) itself. Or equivalently, the only subfield of 𝐾 (𝑡)
containing 𝐾 and 𝑡 is 𝐾 (𝑡) itself. To see this, let 𝐿 be any such subfield. For
any polynomial 𝑓 (𝑡) = ∑

𝑎𝑖𝑡
𝑖 over 𝐾 , we have 𝑓 (𝑡) ∈ 𝐿, since 𝑎𝑖, 𝑡 ∈ 𝐿 and

𝐿 is closed under multiplication and addition. Hence for any polynomials
𝑓 (𝑡), 𝑔(𝑡) over 𝐾 with 𝑔(𝑡) ≠ 0, we have 𝑓 (𝑡), 𝑔(𝑡) ∈ 𝐿, so 𝑓 (𝑡)/𝑔(𝑡) ∈ 𝐿
as 𝐿 is closed under division by nonzero elements. So 𝐿 = 𝐾 (𝑡).

Warning 4.1.10 It is not true in general that
𝐾 (𝛼) = {𝑎 + 𝑏𝛼 : 𝑎, 𝑏 ∈ 𝐾} (false!) (4.1)

Examples like Q(
√

2) and Q(𝑖) do satisfy this, but that’s only because√
2 and 𝑖 satisfy quadratic equations. Certainly the right-hand side is

a subset of 𝐾 (𝛼), but in general it’s much smaller, and isn’t a subfield.
You’ve just seen an example: the field 𝐾 (𝑡) of rational expressions is
much bigger than the set {𝑎 + 𝑏𝑡 : 𝑎, 𝑏 ∈ 𝐾} of polynomials of degree
≤ 1. And that set of polynomials isn’t closed under multiplication.
Another example: let b be the real cube root of 2. You can show that
b2 cannot be expressed as 𝑎 + 𝑏b for any 𝑎, 𝑏 ∈ Q (a fact we’ll come
back to in Example 4.2.11(ii)). But b ∈ Q(b), so b2 ∈ Q(b), so (4.1)
fails in this case. In fact,

Q(b) = {𝑎 + 𝑏b + 𝑐b2 : 𝑎, 𝑏, 𝑐 ∈ Q}.
We’ll see why next week.
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Exercise 4.1.11 Let𝑀 : 𝐾 be a field extension. Show that𝐾 (𝑌∪𝑍) =
(𝐾 (𝑌 )) (𝑍) whenever𝑌, 𝑍 ⊆ 𝑀 . (For example, 𝐾 (𝛼, 𝛽) = (𝐾 (𝛼)) (𝛽)
whenever 𝛼, 𝛽 ∈ 𝑀 .)

Remark 4.1.12 For a field extension 𝑀 : 𝐾 , I’ll generally use small Greek letters
𝛼, 𝛽, . . . for elements of 𝑀 and small English letters 𝑎, 𝑏, . . . for elements of 𝐾 .

4.2 Algebraic and transcendental elements
A complex number 𝛼 is said to be ‘algebraic’ if

𝑎0 + 𝑎1𝛼 + · · · + 𝑎𝑛𝛼𝑛 = 0

for some rational numbers 𝑎𝑖, not all zero. (You may have seen this definition with
‘integer’ instead of ‘rational number’. It makes no difference, as you can always
clear the denominators.) This concept generalizes to arbitrary field extensions:

Definition 4.2.1 Let 𝑀 : 𝐾 be a field extension and 𝛼 ∈ 𝑀 . Then 𝛼 is algebraic
over 𝐾 if there exists 𝑓 ∈ 𝐾 [𝑡] such that 𝑓 (𝛼) = 0 but 𝑓 ≠ 0, and transcendental
otherwise.

Exercise 4.2.2 Show that every element of 𝐾 is algebraic over 𝐾 .

Examples 4.2.3 i. Let 𝑛 ≥ 1. Then 𝑒2𝜋𝑖/𝑛 ∈ C is algebraic over Q, since
𝑓 (𝑡) = 𝑡𝑛 − 1 is a nonzero polynomial such that 𝑓 (𝑒2𝜋𝑖/𝑛) = 0.

ii. The numbers 𝜋 and 𝑒 are both transcendental over Q. Both statements are
hard to prove (and we won’t prove them). By Exercise 4.2.2, any complex
number transcendental over Q is irrational. Proving the irrationality of 𝜋
and 𝑒 is already a challenge; proving they’re transcendental is even harder.

iii. Although 𝜋 is transcendental over Q, it is algebraic over R, since it’s an
element of R. (Again, we’re using Exercise 4.2.2.) Moral: you shouldn’t say
an element of a field is just ‘algebraic’ or ‘transcendental’; you should say
it’s ‘algebraic/transcendental over 𝐾’, specifying your 𝐾 . Or at least, you
should do this when there’s any danger of confusion.

iv. Take the field 𝐾 (𝑡) of rational expressions over a field 𝐾 . Then 𝑡 ∈ 𝐾 (𝑡) is
transcendental over 𝐾 , since 𝑓 (𝑡) = 0 ⇐⇒ 𝑓 = 0.
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The set of complex numbers algebraic over Q is written as Q. It’s a fact that Q
is a subfield of C, but this is extremely hard to prove by elementary means. Next
week I’ll show you that with a surprisingly small amount of abstract algebra, you
can transform this from a very hard problem into an easy one (Proposition 5.2.7).

So that you appreciate the miracle later, I give you this unusual exercise now.

Exercise 4.2.4 Attempt to prove any part of the statement that Q is a
subfield ofC. For example, try to show thatQ is closed under addition,
or multiplication, or reciprocals. I have no idea how to do any of these
using only our current tools, but it’s definitely worth a few minutes of
doomed effort to get a sense of the difficulties.

Digression 4.2.5 The field Q is, in fact, algebraically closed, as you’ll see
in Workshop 3, question 8. So you might ask whether it’s possible for every
field 𝐾 to build an algebraically closed field containing 𝐾 . It turns out
that it is. Better still, there is a unique ‘smallest’ algebraically closed field
containing 𝐾 , called its algebraic closure 𝐾 . For example, the algebraic
closure of Q is Q. We won’t have time to do algebraic closure properly, but
you can read about it in most Galois theory texts.

Let 𝑀 : 𝐾 be a field extension and 𝛼 ∈ 𝑀 . An annihilating polynomial of 𝛼
is a polynomial 𝑓 ∈ 𝐾 [𝑡] such that 𝑓 (𝛼) = 0. So, 𝛼 is algebraic if and only if it
has some nonzero annihilating polynomial.

It is natural to ask not only whether 𝛼 is annihilated by some nonzero polyno-
mial, but which polynomials annihilate it. The situation is pleasantly simple:

Lemma 4.2.6 Let 𝑀 : 𝐾 be a field extension and 𝛼 ∈ 𝑀 . Then there is a
polynomial 𝑚(𝑡) ∈ 𝐾 [𝑡] such that

⟨𝑚⟩ = {annihilating polynomials of 𝛼 over 𝐾}. (4.2)

If 𝛼 is transcendental over 𝐾 then 𝑚 = 0. If 𝛼 is algebraic over 𝐾 then there is a
unique monic polynomial 𝑚 satisfying (4.2).

Proof By the universal property of polynomial rings (Proposition 3.1.6), there is
a unique homomorphism

\ : 𝐾 [𝑡] → 𝑀

such that \ (𝑎) = 𝑎 for all 𝑎 ∈ 𝐾 and \ (𝑡) = 𝛼. (Here we’re taking the ‘𝜑’ of
Proposition 3.1.6 to be the inclusion 𝐾 → 𝑀 .) Then

\

(∑︁
𝑎𝑖𝑡

𝑖
)
=
∑︁

𝑎𝑖𝛼
𝑖
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for all
∑
𝑎𝑖𝑡

𝑖 ∈ 𝐾 [𝑡], so

ker \ = {annihilating polynomials of 𝛼 over 𝐾}.

But ker \ is an ideal of the principal ideal domain 𝐾 [𝑡] (using Proposition 3.2.2),
so ker \ = ⟨𝑚⟩ for some 𝑚 ∈ 𝐾 [𝑡].

If 𝛼 is transcendental then ker \ = {0}, so 𝑚 = 0.
If 𝛼 is algebraic then 𝑚 ≠ 0. Multiplying a polynomial by a nonzero constant

does not change the ideal it generates (by Exercise 2.2.15 and Lemma 3.1.14(i)),
so we can assume that 𝑚 is monic. It remains to prove that 𝑚 is the only monic
polynomial such that ⟨𝑚⟩ = ker \. If 𝑚 is another monic polynomial such that
⟨𝑚⟩ = ker \ then 𝑚 = 𝑐𝑚 for some nonzero constant 𝑐 (again by Exercise 2.2.15
and Lemma 3.1.14(i)), and both are monic, so 𝑐 = 1 and 𝑚 = 𝑚. □

Definition 4.2.7 Let𝑀 : 𝐾 be a field extension and let 𝛼 ∈ 𝑀 be algebraic over 𝐾 .
The minimal polynomial of 𝛼 is the unique monic polynomial 𝑚 satisfying (4.2).

Warning 4.2.8 We do not define the minimal polynomial of a tran-
scendental element. So for an arbitrary field extension 𝑀 : 𝐾 , some
elements of 𝑀 may have no minimal polynomial.

Exercise 4.2.9 What is the minimal polynomial of an element of 𝐾?

This is an important definition, so we give some equivalent conditions.

Lemma 4.2.10 Let 𝑀 : 𝐾 be a field extension, let 𝛼 ∈ 𝑀 be algebraic over 𝐾 ,
and let 𝑚 ∈ 𝐾 [𝑡] be a monic polynomial. The following are equivalent:

i. 𝑚 is the minimal polynomial of 𝛼 over 𝐾;

ii. 𝑚(𝛼) = 0, and 𝑚 | 𝑓 for all annihilating polynomials 𝑓 of 𝛼 over 𝐾;

iii. 𝑚(𝛼) = 0, and deg(𝑚) ≤ deg( 𝑓 ) for all nonzero annihilating polynomials
𝑓 of 𝛼 over 𝐾;

iv. 𝑚(𝛼) = 0 and 𝑚 is irreducible over 𝐾 .

Part (iii) says the minimal polynomial is a monic annihilating polynomial of
least degree.
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Proof (i)⇒(ii) follows from the definition of minimal polynomial.
(ii)⇒(iii) because if 𝑚 | 𝑓 ≠ 0 then deg(𝑚) ≤ deg( 𝑓 ).
(iii)⇒(iv): assume (iii). First,𝑚 is not constant: for if𝑚 is constant then𝑚 = 1

(since 𝑚 is monic); but 𝑚(𝛼) = 0, so 1 = 0 in 𝐾 , a contradiction. Next, suppose
that 𝑚 = 𝑓 𝑔 for some 𝑓 , 𝑔 ∈ 𝐾 [𝑡]. Then 0 = 𝑚(𝛼) = 𝑓 (𝛼)𝑔(𝛼), so without loss
of generality, 𝑓 (𝛼) = 0. By (iii), deg( 𝑓 ) ≥ deg(𝑚), so deg( 𝑓 ) = deg(𝑚) and
deg(𝑔) = 0. This proves (iv).

(iv)⇒(i): assume (iv), and write 𝑚𝛼 for the minimal polynomial of 𝛼. We
have 𝑚𝛼 | 𝑚 by definition of 𝑚𝛼 and since 𝑚(𝛼) = 0. But 𝑚 is irreducible and 𝑚𝛼
is not constant, so 𝑚 is a nonzero constant multiple of 𝑚𝛼. Since both are monic,
𝑚 = 𝑚𝛼, proving (i). □

Examples 4.2.11 i. The minimal polynomial of
√

2 over Q is 𝑡2 − 2. There
are several ways to see this.
One argument: 𝑡2 − 2 is a monic annihilating polynomial of

√
2, and no

nonzero polynomial of degree ≤ 1 overQ annihilates
√

2 since it is irrational.
Then use Lemma 4.2.10(iii).
Another: 𝑡2 − 2 is an irreducible monic annihilating polynomial. It is
irreducible because 𝑡2 − 2 has degree 2 and has no rational roots (using
Lemma 3.3.1(iv)). Then use Lemma 4.2.10(iv).

ii. The minimal polynomial of 3√2 over Q is 𝑡3 − 2. This will follow from
Lemma 4.2.10(iv) as long as 𝑡3 − 2 is irreducible, which you can show using
either Lemma 3.3.1(iv) or Eisenstein.
But unlike in (i), it’s not so easy to show directly that 𝑡3−2 is the annihilating
polynomial of least degree. Try proving with your bare hands that 3√2
satisfies no quadratic equation over Q, i.e. that the equation

3√2
2
= 𝑎

3√2 + 𝑏

has no solution for 𝑎, 𝑏 ∈ Q. It’s not impossible, but it’s a mess. (You
naturally begin by cubing both sides, but look what happens next. . . ) So
the theory really gets us something here.

Two traps iii. Let 𝑝 be a prime number, and put 𝜔 = 𝑒2𝜋𝑖/𝑝 ∈ C. Then 𝜔 is a root of 𝑡 𝑝 −1,
but that is not the minimal polynomial of 𝜔, since it is reducible:

𝑡 𝑝 − 1 = (𝑡 − 1)𝑚(𝑡)

where
𝑚(𝑡) = 𝑡 𝑝−1 + · · · + 𝑡 + 1.

Since𝜔𝑝−1 = 0 but𝜔−1 ≠ 0, we must have𝑚(𝜔) = 0. By Example 3.3.16,
𝑚 is irreducible over Q. Hence 𝑚 is the minimal polynomial of 𝜔 over Q.
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4.3 Simple extensions
Suppose I give you a field 𝐾 and a nonconstant polynomial 𝑓 over 𝐾 . Can you
find an extension of 𝐾 containing a root of 𝑓 ?

If 𝐾 = Q, it’s easy. The fundamental theorem of algebra guarantees that 𝑓
has a root 𝛼 in C, so you can take your extension to be C. Or, if you’re feeling
economical, you can take Q(𝛼) as your extension, that being the smallest subfield
of C containing your root 𝛼.

But what if 𝐾 is not Q?
It’s a bit like this. Say you want to go rock-climbing. If you live next to

Arthur’s Seat, no problem: just walk out of your door and get started. There’s a
ready-made solution. But if you live in the middle of the fields in the Netherlands,
you’re going to have to build your own climbing wall.

When 𝐾 = Q, we have a ready-made algebraically closed field C containing
𝐾 , so it’s easy to find an extension of 𝐾 containing a root of 𝑓 . For a general 𝐾 ,
it’s not so easy. We’re going to have to build an extension of our own. But it’s not
so hard either!

Rather than taking a general polynomial 𝑓 , we will just consider irreducibles.
That’s fine, because Theorem 3.2.8 guarantees that 𝑓 has some irreducible factor
𝑚, and any root of 𝑚 is automatically a root of 𝑓 . We will also restrict to monic
irreducibles, which makes no real difference to anything.

So, we have a field 𝐾 and a monic irreducible polynomial 𝑚 ∈ 𝐾 [𝑡]. We are
trying to construct an extension 𝑀 of 𝐾 and an element 𝛼 ∈ 𝑀 such that𝑚(𝛼) = 0.
By Lemma 4.2.10, 𝑚 will then be the minimal polynomial of 𝛼.

This construction can be done as follows. By Corollary 3.2.5, the quotient
𝐾 [𝑡]/⟨𝑚⟩ is a field. We have ring homomorphisms

𝐾 → 𝐾 [𝑡] 𝜋−→ 𝐾 [𝑡]/⟨𝑚⟩, (4.3)

where the first homomorphism sends 𝑎 ∈ 𝐾 to the constant polynomial 𝑎 ∈ 𝐾 [𝑡]
and 𝜋 is the canonical homomorphism. Their composite is a homomorphism of
fields 𝐾 → 𝐾 [𝑡]/⟨𝑚⟩. So, we have a field extension

(
𝐾 [𝑡]/⟨𝑚⟩

)
: 𝐾 . And one of

the elements of 𝐾 [𝑡]/⟨𝑚⟩ is 𝜋(𝑡), which I will call 𝛼.
For a polynomial

∑
𝑎𝑖𝑡

𝑖 ∈ 𝐾 [𝑡],

𝜋

(∑︁
𝑖

𝑎𝑖𝑡
𝑖

)
=
∑︁
𝑖

𝑎𝑖𝛼
𝑖 . (4.4)

Since 𝜋 is surjective, every element of 𝐾 [𝑡]/⟨𝑚⟩ is of the form
∑
𝑎𝑖𝛼

𝑖. You can
think of 𝐾 [𝑡]/⟨𝑚⟩ as the ring of polynomials over 𝐾 , but with two polynomials
seen as equal if they differ by a multiple of 𝑚. (Compare how you think of Z/⟨𝑝⟩.)
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Part (i) of the following lemma says that𝛼 is a root of𝑚, and that if we’re looking
for an extension of 𝐾 containing a root of 𝑚, then 𝐾 [𝑡]/⟨𝑚⟩ is an economical
choice: it’s no bigger than it needs to be.

Part (ii) answers an analogous but easier question: what if we start with a field
𝐾 and want to extend it by an element that satisfies no nonzero polynomial over
𝐾?
Lemma 4.3.1 Let 𝐾 be a field.

i. Let 𝑚 ∈ 𝐾 [𝑡] be monic and irreducible. Write 𝛼 ∈ 𝐾 [𝑡]/⟨𝑚⟩ for the image
of 𝑡 under the canonical homomorphism 𝐾 [𝑡] → 𝐾 [𝑡]/⟨𝑚⟩. Then 𝛼 has
minimal polynomial 𝑚 over 𝐾 , and 𝐾 [𝑡]/⟨𝑚⟩ is generated by 𝛼 over 𝐾 .

ii. The element 𝑡 of the field 𝐾 (𝑡) of rational expressions over 𝐾 is transcen-
dental over 𝐾 , and 𝐾 (𝑡) is generated by 𝑡 over 𝐾 .

In part (i), we are viewing 𝐾 [𝑡]/⟨𝑚⟩ as an extension of 𝐾 , as in (4.3).
Proof For (i), write 𝑀 = 𝐾 [𝑡]/⟨𝑚⟩. Equation (4.4) implies that the set of
annihilating polynomials of 𝛼 over 𝐾 is ker 𝜋, which is ⟨𝑚⟩. So 𝑚 is by definition
the minimal polynomial of 𝛼 over 𝐾 .

Any subfield 𝐿 of 𝑀 containing 𝐾 and 𝛼 contains every polynomial in 𝛼 over
𝐾 , so 𝐿 = 𝑀 . Hence 𝑀 is generated by 𝛼 over 𝐾 .

For (ii), we have already seen that 𝑡 is transcendental over 𝐾 (Exam-
ple 4.2.3(iv)).

Let 𝐿 be a subfield of 𝐾 (𝑡) containing 𝐾 and 𝑡. Then any polynomials
𝑓 , 𝑔 ∈ 𝐾 [𝑡] are in 𝐿, so if 𝑔 ≠ 0 then 𝑓 /𝑔 ∈ 𝐿. Hence 𝐿 = 𝑀 , and 𝑀 is
generated by 𝑡 over 𝐾 . □

So far, we’ve seen that given a monic irreducible polynomial 𝑚 over a field 𝐾 ,
we can build an extension of 𝐾 containing a root of 𝑚. In fact, there are many
such extensions. For instance:
Example 4.3.2 If 𝐾 = Q and 𝑚(𝑡) = 𝑡2 −2 then all three of the extensionsQ(

√
2),

R and C contain a root of 𝑚.

But 𝐾 [𝑡]/⟨𝑚⟩ is the canonical or minimal choice. In fact, 𝐾 [𝑡]/⟨𝑚⟩ has a
universal property. To express it, we need a definition.
Definition 4.3.3 Let𝐾 be a field, and let ] : 𝐾 → 𝑀 and ]′ : 𝐾 → 𝑀′ be extensions
of 𝐾 . A homomorphism 𝜑 : 𝑀 → 𝑀′ is said to be a homomorphism over 𝐾 if

𝑀
𝜑 // 𝑀′

𝐾

]

``

]′

>>

commutes.
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For the triangle to commute means that 𝜑(](𝑎)) = ]′(𝑎) for all 𝑎 ∈ 𝐾 . Very
often, the homomorphisms ] and ]′ are thought of as inclusions, and we write both
](𝑎) and ]′(𝑎) as just 𝑎. Then for 𝜑 to be a homomorphism over 𝐾 means that
𝜑(𝑎) = 𝑎 for all 𝑎 ∈ 𝐾 .

Example 4.3.4 Define ^ : C → C by ^(𝑧) = 𝑧. Then ^ is a homomorphism, and
it is a homomorphism over R since 𝑎 = 𝑎 for all 𝑎 ∈ R.

Exercise 4.3.5 Let 𝑀 : 𝐾 and 𝐿 : 𝐾 be field extensions, and let
𝜑 : 𝑀 → 𝐿 be a homomorphism over 𝐾 . Show that if 𝛼 ∈ 𝑀

has minimal polynomial 𝑚 over 𝐾 then 𝜑(𝛼) ∈ 𝐿 also has minimal
polynomial 𝑚 over 𝐾 .

Here’s an extremely useful lemma about homomorphisms over a field.

Lemma 4.3.6 Let 𝑀 and 𝑀′ be extensions of a field 𝐾 , and let 𝜑, 𝜓 : 𝑀 → 𝑀′

be homomorphisms over 𝐾 . Let 𝑌 be a subset of 𝑀 such that 𝑀 = 𝐾 (𝑌 ). If
𝜑(𝛼) = 𝜓(𝛼) for all 𝛼 ∈ 𝑌 then 𝜑 = 𝜓.

Proof We have 𝜑(𝑎) = 𝑎 = 𝜓(𝑎) for all 𝑎 ∈ 𝐾 , since 𝜑 and 𝜓 are homomorphisms
over 𝐾 . But we are assuming that 𝜑(𝛼) = 𝜓(𝛼) for all 𝛼 ∈ 𝑌 , so 𝐾 ∪𝑌 is a subset
of the equalizer Eq{𝜑, 𝜓} (Definition 2.3.7). Hence by Lemma 2.3.8, Eq{𝜑, 𝜓}
is a subfield of 𝑀 containing 𝐾 ∪ 𝑌 . But 𝐾 (𝑌 ) is the smallest subfield of 𝑀
containing 𝐾 ∪ 𝑌 , so Eq{𝜑, 𝜓} = 𝐾 (𝑌 ) = 𝑀 . Hence 𝜑 = 𝜓. □

Now we can formulate the universal property of 𝐾 [𝑡]/⟨𝑚⟩, and similarly that
of 𝐾 (𝑡).

Proposition 4.3.7 (Universal properties of 𝑲[𝒕]/⟨𝒎⟩ and 𝑲(𝒕)) Let 𝐾 be a
field.

i. Let 𝑚 ∈ 𝐾 [𝑡] be monic and irreducible, let 𝐿 : 𝐾 be an extension of 𝐾 ,
and let 𝛽 ∈ 𝐿 with minimal polynomial 𝑚. Write 𝛼 for the image of 𝑡 under
the canonical homomorphism 𝐾 [𝑡] → 𝐾 [𝑡]/⟨𝑚⟩. Then there is exactly one
homomorphism 𝜑 : 𝐾 [𝑡]/⟨𝑚⟩ → 𝐿 over 𝐾 such that 𝜑(𝛼) = 𝛽.

ii. Let 𝐿 : 𝐾 be an extension of 𝐾 , and let 𝛽 ∈ 𝐿 be transcendental. Then there
is exactly one homomorphism 𝜑 : 𝐾 (𝑡) → 𝐿 over 𝐾 such that 𝜑(𝑡) = 𝛽.
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Diagram for (i):
𝛽

𝛼
(

33

𝐿

𝐾 [𝑡]/⟨𝑚⟩
𝜑

33

𝐾

cc

FF

I’ve drawn 𝐿 higher than 𝐾 [𝑡]/⟨𝑚⟩ to convey the idea that 𝐿 may be bigger. Before
I give the proof, here’s an example.

Example 4.3.8 Let 𝐾 = Q and 𝑚(𝑡) = 𝑡2 − 2. Let 𝐿 = C and let 𝛽 = −
√

2 ∈ C.
Proposition 4.3.7(i) tells us that there is a unique field homomorphism

𝜑 : Q[𝑡]/⟨𝑡2 − 2⟩ → C

over Q mapping the equivalence class of 𝑡 to −
√

2.

Proof of Proposition 4.3.7 For (i), first we show there is at least one homo-
morphism 𝜑 : 𝐾 [𝑡]/⟨𝑚⟩ → 𝐿 over 𝐾 such that 𝜑(𝛼) = 𝛽. By the universal
property of polynomial rings (Proposition 3.1.6), there is exactly one homomor-
phism \ : 𝐾 [𝑡] → 𝐿 such that \ (𝑎) = 𝑎 for all 𝑎 ∈ 𝐾 and \ (𝑡) = 𝛽. Then
\ (𝑚(𝑡)) = 𝑚(𝛽) = 0, so ⟨𝑚⟩ ⊆ ker \. Hence by the universal property of quo-
tients (p. 22), there is exactly one homomorphism 𝜑 : 𝐾 [𝑡]/⟨𝑚⟩ → 𝐿 such that

𝐾 [𝑡]
𝜋

��

\

$$
𝐾 [𝑡]/⟨𝑚⟩ 𝜑

// 𝐿

commutes. Then 𝜑 is a homomorphism over 𝐾 , since for all 𝑎 ∈ 𝐾 we have

𝜑(𝑎) = 𝜑(𝜋(𝑎)) = \ (𝑎) = 𝑎.

Moreover,
𝜑(𝛼) = 𝜑(𝜋(𝑡)) = \ (𝑡) = 𝛽,

so 𝜑(𝛼) = 𝛽.
Now we show there is at most one homomorphism 𝐾 [𝑡]/⟨𝑚⟩ → 𝐿 over 𝐾

such that 𝛼 ↦→ 𝛽. Let 𝜑 and 𝜑′ be two such. Then 𝜑(𝛼) = 𝜑′(𝛼), and 𝛼 generates
𝐾 [𝑡]/⟨𝑚⟩ over 𝐾 (Lemma 4.3.1(i)), so 𝜑 = 𝜑′ by Lemma 4.3.6.

For (ii), first we show there is at least one homomorphism 𝜑 : 𝐾 (𝑡) → 𝐿 over
𝐾 such that 𝜑(𝑡) = 𝛽. Every element of 𝐾 (𝑡) can be represented as 𝑓 /𝑔 where
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𝑓 , 𝑔 ∈ 𝐾 [𝑡] with 𝑔 ≠ 0. Since 𝛽 is transcendental over 𝐾 , we have 𝑔(𝛽) ≠ 0,
and so 𝑓 (𝛽)/𝑔(𝛽) is a well-defined element of 𝐿. One can check that this gives a
well-defined homomorphism

𝜑 : 𝐾 (𝑡) → 𝐿

𝑓 (𝑡)
𝑔(𝑡) ↦→ 𝑓 (𝛽)

𝑔(𝛽) .

Evidently 𝜑 is a homomorphism over 𝐾 (that is, 𝜑(𝑎) = 𝑎 for all 𝑎 ∈ 𝐾), and
evidently 𝜑(𝑡) = 𝛽.

The proof that there is at most one homomorphism 𝐾 (𝑡) → 𝐿 over 𝐾 such that
𝑡 ↦→ 𝛽 is similar to the uniqueness proof in part (i). □

Exercise 4.3.9 Fill in the details of the last paragraph of that proof.

We know now that for a monic irreducible polynomial 𝑚 over 𝐾 , the extension
𝐾 [𝑡]/⟨𝑚⟩ contains a root of 𝑚 and is generated by that root. As we’re about to
see, Proposition 4.3.7 implies that 𝐾 [𝑡]/⟨𝑚⟩ is the only extension of 𝐾 with this
property. But the word ‘only’ has to be interpreted in an up-to-isomorphism sense
(as you’re used to from statements like ‘there is only one group of order 5’). The
appropriate notion of isomorphism is as follows.

Let 𝑀 and 𝑀′ be extensions of a field 𝐾 . A homomorphism 𝜑 : 𝑀 → 𝑀′ is
an isomorphism over 𝐾 if it is a homomorphism over 𝐾 and an isomorphism of
fields. (You can check that 𝜑−1 is then also a homomorphism over 𝐾 .) If such a 𝜑
exists, we say that 𝑀 and 𝑀′ are isomorphic over 𝐾 .

Warning 4.3.10 Let 𝑀 and 𝑀′ be extensions of a field 𝐾 . It can
happen that 𝑀 and 𝑀′ are isomorphic, but not isomorphic over 𝐾 .
In other words, just because it’s possible to find an isomorphism
𝜑 : 𝑀 → 𝑀′, it doesn’t mean you can find one making the triangle in
Definition 4.3.3 commute. Workshop 3, question 16 leads you through
a counterexample.

Corollary 4.3.11 Let 𝐾 be a field.

i. Let 𝑚 ∈ 𝐾 [𝑡] be monic and irreducible, let 𝐿 : 𝐾 be an extension of 𝐾 ,
and let 𝛽 ∈ 𝐿 with minimal polynomial 𝑚 and with 𝐿 = 𝐾 (𝛽). Write 𝛼
for the image of 𝑡 under the canonical homomorphism 𝐾 [𝑡] → 𝐾 [𝑡]/⟨𝑚⟩.
Then there is exactly one isomorphism 𝜑 : 𝐾 [𝑡]/⟨𝑚⟩ → 𝐿 over 𝐾 such that
𝜑(𝛼) = 𝛽.

62



ii. Let 𝐿 : 𝐾 be an extension of 𝐾 , and let 𝛽 ∈ 𝐿 be transcendental with
𝐿 = 𝐾 (𝛽). Then there is exactly one isomorphism 𝜑 : 𝐾 (𝑡) → 𝐿 over 𝐾
such that 𝜑(𝑡) = 𝛽.

(Spot the differences between this corollary and Proposition 4.3.7. . . )

Proof For (i), Proposition 4.3.7(i) implies that there is a unique homomorphism
𝜑 : 𝐾 [𝑡]/⟨𝑚⟩ → 𝐿 over 𝐾 such that 𝜑(𝛼) = 𝛽. So we only have to show that 𝜑
is an isomorphism. Since homomorphisms of fields are injective, we need only
show that 𝜑 is surjective. Now by Lemma 2.3.6(i), im 𝜑 is a subfield of 𝐿, and it
contains both 𝐾 (since 𝜑 is a homomorphism over 𝐾) and 𝛽 (since 𝜑(𝛼) = 𝛽). But
𝐿 = 𝐾 (𝛽), so im 𝜑 = 𝐿.

The proof of (ii) is similar. □

Examples 4.3.12 i. Let 𝑚 be a monic irreducible polynomial over Q. Choose
a complex root 𝛽 of 𝑚. Then the subfield Q(𝛽) of C is an extension of Q
generated by 𝛽. So by Corollary 4.3.11(i), Q[𝑡]/⟨𝑚⟩ � Q(𝛽).

ii. Let 𝛽 be a transcendental complex number. Then by Corollary 4.3.11(ii),
the field Q(𝑡) of rational expressions is isomorphic to Q(𝛽) ⊆ C.

Field extensions generated by a single element have a special name.

Definition 4.3.13 A field extension 𝑀 : 𝐾 is simple if there exists 𝛼 ∈ 𝑀 such
that 𝑀 = 𝐾 (𝛼).

Examples 4.3.14 i. Surprisingly many extensions are simple. For instance,
Q(

√
2,
√

3) : Q is a simple extension (despite appearances), because in fact
Q(

√
2,
√

3) = Q(
√

2 +
√

3).

ii. 𝐾 (𝑡) : 𝐾 is simple, where 𝐾 (𝑡) is the field of rational expressions over 𝐾 .

Exercise 4.3.15 Prove that Q(
√

2,
√

3) = Q(
√

2 +
√

3). Hint: begin
by finding (

√
2 +

√
3)3.

We’ve now shown that simple extensions can be classified completely:How to understand
simple algebraic

extensions Theorem 4.3.16 (Classification of simple extensions) Let 𝐾 be a field.

i. Let 𝑚 ∈ 𝐾 [𝑡] be a monic irreducible polynomial. Then there exist an
extension 𝑀 : 𝐾 and an algebraic element 𝛼 ∈ 𝑀 such that 𝑀 = 𝐾 (𝛼)
and 𝛼 has minimal polynomial 𝑚 over 𝐾 .
Moreover, if (𝑀, 𝛼) and (𝑀′, 𝛼′) are two such pairs, there is exactly
one isomorphism 𝜑 : 𝑀 → 𝑀′ over 𝐾 such that 𝜑(𝛼) = 𝛼′.
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ii. There exist an extension 𝑀 : 𝐾 and a transcendental element 𝛼 ∈ 𝑀

such that 𝑀 = 𝐾 (𝛼).
Moreover, if (𝑀, 𝛼) and (𝑀′, 𝛼′) are two such pairs, there is exactly
one isomorphism 𝜑 : 𝑀 → 𝑀′ over 𝐾 such that 𝜑(𝛼) = 𝛼′.

Proof For (i), we can take 𝑀 = 𝐾 [𝑡]/⟨𝑚⟩ and 𝛼 to be the image of 𝑡 under
the canonical homomorphism 𝐾 [𝑡] → 𝑀 . Lemma 4.3.1(i) implies that 𝛼 has
minimal polynomial 𝑚 over 𝐾 and that 𝑀 = 𝐾 (𝛼), and Corollary 4.3.11(i) gives
‘Moreover’.

Part (ii) follows from Lemma 4.3.1(ii) and Corollary 4.3.11(ii) in the same
way. □

Conclusion: given any field 𝐾 (not necessarily Q!) and any monic irreducible
𝑚(𝑡) ∈ 𝐾 [𝑡], we can say the words ‘adjoin to𝐾 a root 𝛼 of𝑚’, and this unambigu-
ously defines an extension 𝐾 (𝛼) : 𝐾 . (At least, unambiguously up to isomorphism
over 𝐾—but who could want more?) Similarly, we can unambiguously adjoin to
𝐾 a transcendental element.

Examples 4.3.17 i. Let 𝐾 be any field not containing a square root of 2. Then
𝑡2 − 2 is irreducible over 𝐾 . So we can adjoin to 𝐾 a root of 𝑡2 − 2, giving
an extension 𝐾 (

√
2) : 𝐾 .

We have already seen this example many times when 𝐾 = Q, in which case
𝐾 (

√
2) can be seen as a subfield of C. But the construction works for any

𝐾 . For instance, 2 has no square root in F3, so there is an extension F3(
√

2)
of F3. It can be constructed as F3 [𝑡]/⟨𝑡2 − 2⟩.

ii. The polynomial 𝑚(𝑡) = 1 + 𝑡 + 𝑡2 is irreducible over F2, so we may adjoin to
F2 a root 𝛼 of 𝑚. Then F2(𝛼) = F2 [𝑡]/⟨1 + 𝑡 + 𝑡2⟩.

Exercise 4.3.18 How many elements does the field F3(
√

2) have?
What about F2(𝛼), where 𝛼 is a root of 1 + 𝑡 + 𝑡2?

Warning 4.3.19 Take 𝐾 = Q and 𝑚(𝑡) = 𝑡3 − 2, which is irreducible.
Write 𝛼1, 𝛼2, 𝛼3 for the roots of 𝑚 in C. Then Q(𝛼1), Q(𝛼2) and
Q(𝛼3) are all different as subsets of C. For example, one of the 𝛼𝑖
is the real cube root of 2 (say 𝛼1), which implies that Q(𝛼1) ⊆ R,
whereas the other two are not real, so Q(𝛼𝑖) ⊈ R for 𝑖 ≠ 1. However,
Q(𝛼1) : Q, Q(𝛼2) : Q and Q(𝛼3) : Q are all isomorphic as abstract
field extensions of Q. This follows from Theorem 4.3.16, since all the
𝛼𝑖 have the same minimal polynomial, 𝑚.
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You’re already very familiar with this kind of situation in other
branches of algebra. For instance, in linear algebra, take three vectors
v1, v2, v3 in R2, none a scalar multiple of any other. Then span(v1),
span(v2) and span(v3) are all different as subsets of R2, but they are all
isomorphic as abstract vector spaces (since they’re all 1-dimensional).
A similar example could be given with a group containing several sub-
groups that are all isomorphic.

You’ve seen that Galois theory involves aspects of group theory and ring theory.
In the next chapter, you’ll see how linear algebra enters the picture too.
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Chapter 5

Degree

We’ve seen that if you adjoin to Q a square root of 2, then each element of the
resulting field can be specified using two rational numbers, 𝑎 and 𝑏:

Q(
√

2) =
{
𝑎 + 𝑏

√
2 : 𝑎, 𝑏 ∈ Q

}
.

I also mentioned that if you adjoin toQ a cube root of 2, then it takes three rational
numbers to specify each element of the resulting field:

Introduction to
Week 5 Q( 3√2) =

{
𝑎 + 𝑏 3√2 + 𝑐 3√2

2
: 𝑎, 𝑏, 𝑐 ∈ Q

}
(Warning 4.1.10). This might lead us to suspect that Q( 3√2) : Q is in some sense
a ‘bigger’ extension than Q(

√
2) : Q.

The first thing we’ll do in this chapter is to make this intuition rigorous. We’ll
define the ‘degree’ of an extension and see that Q(

√
2) : Q and Q( 3√2) : Q have

degrees 2 and 3, respectively.
The concept of degree is incredibly useful, and not only in Galois theory.

In fact, I’ll show you how it can be used to solve three problems that remained
unsolved for literally millennia, since the time of the ancient Greeks.

5.1 The degree of an extension
Let 𝑀 : 𝐾 be a field extension. Then 𝑀 is a vector space over 𝐾 in a natural way.
Addition and subtraction in the vector space 𝑀 are the same as in the field 𝑀 .
Scalar multiplication in the vector space is just multiplication of elements of 𝑀 by
elements of 𝐾 , which makes sense because 𝐾 is embedded as a subfield of 𝑀 .

This little observation is amazingly useful. It is an excellent illustration of a
powerful mathematical technique: forgetting. When we view 𝑀 as a vector space
over 𝐾 rather than a field extension of 𝐾 , we are forgetting how to multiply together
elements of 𝑀 that aren’t in 𝐾 .
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Definition 5.1.1 The degree [𝑀 : 𝐾] of a field extension 𝑀 : 𝐾 is the dimension
of 𝑀 as a vector space over 𝐾 .

If 𝑀 is a finite-dimensional vector space over 𝐾 , it’s clear what this means. If
𝑀 is infinite-dimensional over 𝐾 , we write [𝑀 : 𝐾] = ∞, where ∞ is a formal
symbol which we give the properties

𝑛 < ∞, 𝑛 · ∞ = ∞ (𝑛 ≥ 1), ∞ · ∞ = ∞

for integers 𝑛. An extension 𝑀 : 𝐾 is finite if [𝑀 : 𝐾] < ∞.

Digression 5.1.2 You know that whenever 𝑉 is a finite-dimensional vector
space, (i) there exists a basis of 𝑉 , and (ii) there is a bĳection between any
two bases. This makes it possible to define the dimension of a vector space
as the number of elements in a basis. In fact, both (i) and (ii) are true for
every vector space, not just the finite-dimensional ones. So we can define
the dimension of an arbitrary vector space as the ‘number’ of elements in a
basis, where now ‘number’ means cardinal, i.e. isomorphism class of sets.

We could interpret Definition 5.1.1 using this general definition of dimension.
For instance, suppose we had one field extension 𝑀 : 𝐾 such that 𝑀 had a
countably infinite basis over 𝐾 , and another, 𝑀 ′ : 𝐾 , such that 𝑀 ′ had an
uncountably infinite basis over 𝐾 . Then [𝑀 : 𝐾] and [𝑀 ′ : 𝐾] would be
different.

However, we’ll lump all the infinite-dimensional extensions together and say
that their degrees are all ∞. We’ll mostly be dealing with finite extensions
anyway, and won’t need to distinguish between sizes of ∞. It’s a bit like the
difference between a house that costs a million pounds and a house that costs
ten million: although the difference is vast, most of us would lump them
together in a single category called ‘unaffordable’.

Examples 5.1.3 i. Every field 𝑀 contains at least one nonzero element,
namely, 1. So [𝑀 : 𝐾] ≥ 1 for every field extension 𝑀 : 𝐾 .
If 𝑀 = 𝐾 then {1} is a basis, so [𝑀 : 𝐾] = 1. On the other hand, if
[𝑀 : 𝐾] = 1 then the one-element linearly independent set {1} must be a
basis, which implies that every element of 𝑀 is equal to 𝑎 · 1 = 𝑎 for some
𝑎 ∈ 𝐾 , and so 𝑀 = 𝐾 . Hence

[𝑀 : 𝐾] = 1 ⇐⇒ 𝑀 = 𝐾.

ii. Every element of C is equal to 𝑥 + 𝑦𝑖 for a unique pair (𝑥, 𝑦) of elements of
R. That is, {1, 𝑖} is a basis of C over R. Hence [C : R] = 2.
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iii. Let 𝐾 be a field and 𝐾 (𝑡) the field of rational expressions over 𝐾 . Then
1, 𝑡, 𝑡2, . . . are linearly independent over 𝐾 , so [𝐾 (𝑡) : 𝐾] = ∞.

Warning 5.1.4 The degree [𝐾 : 𝐾] of 𝐾 over itself is 1, not 0.
Degrees of extensions are never 0. See Example 5.1.3(i).

Theorem 5.1.5 Let 𝐾 (𝛼) : 𝐾 be a simple extension.

i. Suppose that 𝛼 is algebraic over 𝐾 . Write 𝑚 ∈ 𝐾 [𝑡] for the minimal
polynomial of 𝛼 and 𝑛 = deg(𝑚). Then

1, 𝛼, . . . , 𝛼𝑛−1

is a basis of 𝐾 (𝛼) over 𝐾 . In particular, [𝐾 (𝛼) : 𝐾] = deg(𝑚).

ii. Suppose that 𝛼 is transcendental over 𝐾 . Then 1, 𝛼, 𝛼2, . . . are linearly
independent over 𝐾 . In particular, [𝐾 (𝛼) : 𝐾] = ∞.

Proof For (i), to show that 1, 𝛼, . . . , 𝛼𝑛−1 is a basis of 𝐾 (𝛼) over 𝐾 , we will
show that every element of 𝐾 (𝛼) can be expressed as a 𝐾-linear combination of
1, 𝛼, . . . , 𝛼𝑛−1 in a unique way.

By Lemma 4.3.1(i) and Theorem 4.3.16(i), we might as well take 𝐾 (𝛼) =

𝐾 [𝑡]/⟨𝑚⟩ and 𝛼 = 𝜋(𝑡), where 𝜋 : 𝐾 [𝑡] → 𝐾 [𝑡]/⟨𝑚⟩ is the canonical homomor-
phism.

Since 𝜋 is surjective, every element of𝐾 (𝛼) is equal to 𝜋( 𝑓 ) for some 𝑓 ∈ 𝐾 [𝑡].
By Proposition 3.2.1, there are unique 𝑞, 𝑟 ∈ 𝐾 [𝑡] such that 𝑓 = 𝑞𝑚 + 𝑟 and
deg(𝑟) < 𝑛. In particular, there is a unique polynomial 𝑟 ∈ 𝐾 [𝑡] such that
𝑓 − 𝑟 ∈ ⟨𝑚⟩ and deg(𝑟) < 𝑛. Equivalently, there are unique 𝑎0, . . . , 𝑎𝑛−1 ∈ 𝐾 such
that

𝑓 (𝑡) −
(
𝑎0 + 𝑎1𝑡 + · · · + 𝑎𝑛−1𝑡

𝑛−1) ∈ ⟨𝑚⟩.
Equivalently, there are unique 𝑎0, . . . , 𝑎𝑛−1 ∈ 𝐾 such that

𝜋( 𝑓 ) = 𝜋
(
𝑎0 + 𝑎1𝑡 + · · · + 𝑎𝑛−1𝑡

𝑛−1) .
Equivalently (since 𝜋(𝑡) = 𝛼), there are unique 𝑎0, . . . , 𝑎𝑛−1 ∈ 𝐾 such that

𝜋( 𝑓 ) = 𝑎0 + 𝑎1𝛼 + · · · 𝑎𝑛−1𝛼
𝑛−1,

as required.
For (ii), Theorem 4.3.16(ii) implies that 𝐾 (𝛼) is isomorphic over 𝐾 to the field

𝐾 (𝑡) of rational expressions. The result now follows from Example 5.1.3(iii). □
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Examples 5.1.6 i. Let 𝛼 ∈ C be an algebraic number over Q whose minimal
polynomial is quadratic. Then by Theorem 5.1.5(i),

Q(𝛼) = {𝑎 + 𝑏𝛼 : 𝑎, 𝑏 ∈ Q}.

We’ve already seen this in many examples, such as 𝛼 =
√

2 and 𝛼 = 𝑖.

ii. Let 𝑝 be a prime. We saw in Example 4.2.11(iii) that 𝑒2𝜋𝑖/𝑝 has minimal
polynomial 1+𝑡+· · ·+𝑡 𝑝−1. This has degree 𝑝−1, so [Q(𝑒2𝜋𝑖/𝑝) : Q] = 𝑝−1.

Warning 5.1.7 For a prime 𝑝, the degree of 𝑒2𝜋𝑖/𝑝 over Q is 𝑝 − 1,
not 𝑝!

Example 5.1.8 Apart from finite fields of the form F𝑝, the simplest finite field
is F2(𝛼), where 𝛼 is a root of the irreducible polynomial 1 + 𝑡 + 𝑡2 over F2
(Example 4.3.17(ii)). By Theorem 5.1.5(i),

F2(𝛼) = {𝑎 + 𝑏𝛼 : 𝑎, 𝑏 ∈ F2} = {0, 1, 𝛼, 1 + 𝛼}.

Since 1 + 𝛼 + 𝛼2 = 0 and F2(𝛼) has characteristic 2,

𝛼2 = 1 + 𝛼, (1 + 𝛼)2 = 𝛼.

So the Frobenius automorphism of F2(𝛼) interchanges 𝛼 and 1 + 𝛼. Like all
automorphisms, it fixes 0 and 1.

Exercise 5.1.9 Write out the addition and multiplication tables of
F2(𝛼).

Theorem 5.1.5(i) implies that when 𝛼 ∈ 𝑀 is algebraic over 𝐾 , with minimal
polynomial of degree 𝑛, the subset {𝑎0 + 𝑎1𝛼 + · · · + 𝑎𝑛−1𝛼

𝑛−1 : 𝑎𝑖 ∈ 𝐾} is a
subfield of 𝑀 . This isn’t particularly obvious: for instance, why is it closed under
taking reciprocals? But it’s true.

For a field extension 𝑀 : 𝐾 and 𝛼 ∈ 𝑀 , the degree of 𝛼 over 𝐾 is [𝐾 (𝛼) : 𝐾].
We write it as deg𝐾 (𝛼). Theorem 5.1.5 immediately implies:

Corollary 5.1.10 Let 𝑀 : 𝐾 be a field extension and 𝛼 ∈ 𝑀 . Then

deg𝐾 (𝛼) < ∞ ⇐⇒ 𝛼 is algebraic over 𝐾. □

If 𝛼 is algebraic over 𝐾 then by Theorem 5.1.5(i), the degree of 𝛼 over 𝐾 is the
degree of the minimal polynomial of 𝛼 over 𝐾 .
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𝑀

𝐿
𝐾

𝛽

[𝐿 (𝛽):𝐿]
[𝐾 (𝛽):𝐾]

Figure 5.1: Visualization of Corollary 5.1.12 (not to be taken too seriously).

Example 5.1.11 Let b be the real cube root of 2. By Example 4.2.11(ii), the
minimal polynomial of b over Q is 𝑡3 − 2, so degQ(b) = 3. It follows that
Q(b) ≠ {𝑎 + 𝑏b : 𝑎, 𝑏 ∈ Q}, since otherwise the two-element set {1, b} would
span the three-dimensional vector space Q(b). So we have another proof that
22/3 cannot be written as a Q-linear combination of 1 and 21/3. As observed in
Example 4.2.11(ii), this is messy to prove directly.

Theorem 5.1.5 is powerful. Here are two more of its corollaries.

Corollary 5.1.12 Let 𝑀 : 𝐿 : 𝐾 be field extensions and 𝛽 ∈ 𝑀 . Then [𝐿 (𝛽) :
𝐿] ≤ [𝐾 (𝛽) : 𝐾].

Informally, I think of Corollary 5.1.12 as in Figure 5.1. The degree of 𝛽 over
𝐾 measures how far 𝛽 is from being in 𝐾 . Since 𝐿 contains 𝐾 , it might be that 𝛽 is
closer to 𝐿 than to 𝐾 (i.e. [𝐿 (𝛽) : 𝐿] < [𝐾 (𝛽) : 𝐾]), and it’s certainly no further
away.

Proof If [𝐾 (𝛽) : 𝐾] = ∞ then the inequality is clear. Otherwise, 𝛽 is algebraic
over 𝐾 (by Corollary 5.1.10), with minimal polynomial 𝑚 ∈ 𝐾 [𝑡], say. Then 𝑚 is
an annihilating polynomial for 𝛽 over 𝐿, so the minimal polynomial of 𝛽 over 𝐿
has degree ≤ deg(𝑚). The result follows from Theorem 5.1.5(i). □

Exercise 5.1.13 Give an example to show that the inequality in Corol-
lary 5.1.12 can be strict. Your example can be as trivial as you like.

Corollary 5.1.14 Let 𝑀 : 𝐾 be a field extension. Let 𝛼1, . . . , 𝛼𝑛 ∈ 𝑀 , with 𝛼𝑖
algebraic over 𝐾 of degree 𝑑𝑖. Then every element 𝛼 ∈ 𝐾 (𝛼1, . . . , 𝛼𝑛) can be
expressed as a polynomial in 𝛼1, . . . , 𝛼𝑛 over 𝐾 . More exactly,

𝛼 =
∑︁

𝑟1,...,𝑟𝑛

𝑐𝑟1,...,𝑟𝑛𝛼
𝑟1
1 · · · 𝛼𝑟𝑛𝑛

for some 𝑐𝑟1,...,𝑟𝑛 ∈ 𝐾 , where 𝑟𝑖 ranges over 0, . . . , 𝑑𝑖 − 1.
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For example, here’s what this says in the case 𝑛 = 2. Let 𝑀 : 𝐾 be a field
extension, and take algebraic elements 𝛼1, 𝛼2 of 𝑀 . Write 𝑑1 and 𝑑2 for their
degrees over 𝐾 . Then every element of 𝐾 (𝛼1, 𝛼2) is equal to

𝑑1−1∑︁
𝑟=0

𝑑2−1∑︁
𝑠=0

𝑐𝑟𝑠𝛼
𝑟
1𝛼

𝑠
2

for some coefficients 𝑐𝑟𝑠 ∈ 𝐾 . A fundamental point in the proof is that a polynomial
in two variables can be seen as a polynomial in one variable whose coefficients are
themselves polynomials in one variable, and similarly for more than two variables.

Proof When 𝑛 = 0, this is trivial. Now let 𝑛 ≥ 1 and suppose inductively that the
result holds for 𝑛 − 1. Let

𝛼 ∈ 𝐾 (𝛼1, . . . , 𝛼𝑛) =
(
𝐾 (𝛼1, . . . , 𝛼𝑛−1)

)
(𝛼𝑛).

By Theorem 5.1.5(i) applied to the extension (𝐾 (𝛼1, . . . , 𝛼𝑛−1)) (𝛼𝑛) :
𝐾 (𝛼1, . . . , 𝛼𝑛−1), noting that deg𝐾 (𝛼1,...,𝛼𝑛−1) (𝛼𝑛) ≤ deg𝐾 (𝛼𝑛) = 𝑑𝑛, we have

𝛼 =

𝑑𝑛−1∑︁
𝑟=0

𝑐𝑟𝛼
𝑟
𝑛 (5.1)

for some 𝑐0, . . . , 𝑐𝑑𝑛−1 ∈ 𝐾 (𝛼1, . . . , 𝛼𝑛−1). By inductive hypothesis, for each 𝑟 we
have

𝑐𝑟 =
∑︁

𝑟1,...,𝑟𝑛−1

𝑐𝑟1,...,𝑟𝑛−1,𝑟𝛼
𝑟1
1 · · · 𝛼𝑟𝑛−1

𝑛−1 (5.2)

for some 𝑐𝑟1,...,𝑟𝑛−1,𝑟 ∈ 𝐾 , where 𝑟𝑖 ranges over 0, . . . , 𝑑𝑖 − 1. Substituting (5.2)
into (5.1) completes the induction. □

Example 5.1.15 Back in Example 4.1.9(ii), I claimed that

Q(
√

2, 𝑖) = {𝑎 + 𝑏
√

2 + 𝑐𝑖 + 𝑑
√

2𝑖 : 𝑎, 𝑏, 𝑐, 𝑑 ∈ Q}.

Corollary 5.1.14 applied to Q(
√

2, 𝑖) : Q proves this, since degQ(
√

2) = degQ(𝑖) =
2.

Exercise 5.1.16 Let 𝑀 : 𝐾 be a field extension and 𝛼 a transcen-
dental element of 𝑀 . Can every element of 𝐾 (𝛼) be represented as a
polynomial in 𝛼 over 𝐾?

For extensions obtained by adjoining several elements, the following result is
invaluable.
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Theorem 5.1.17 (Tower law) Let 𝑀 : 𝐿 : 𝐾 be field extensions.

i. If (𝛼𝑖)𝑖∈𝐼 is a basis of 𝐿 over 𝐾 and (𝛽 𝑗 ) 𝑗∈𝐽 is a basis of 𝑀 over 𝐿, then
(𝛼𝑖𝛽 𝑗 )(𝑖, 𝑗)∈𝐼×𝐽 is a basis of 𝑀 over 𝐾 .

ii. 𝑀 : 𝐾 is finite ⇐⇒ 𝑀 : 𝐿 and 𝐿 : 𝐾 are finite.

iii. [𝑀 : 𝐾] = [𝑀 : 𝐿] [𝐿 : 𝐾].

The sets 𝐼 and 𝐽 here could be infinite. I’ll say that a family (𝑎𝑖)𝑖∈𝐼 of elements
of a field is finitely supported if the set {𝑖 ∈ 𝐼 : 𝑎𝑖 ≠ 0} is finite.

Proof To prove (i), we show that (𝛼𝑖𝛽 𝑗 )(𝑖, 𝑗)∈𝐼×𝐽 is a linearly independent spanning
set of 𝑀 over 𝐾 .

For linear independence, let (𝑐𝑖 𝑗 )(𝑖, 𝑗)∈𝐼×𝐽 be a finitely supported family of ele-
ments of𝐾 such that

∑
𝑖, 𝑗 𝑐𝑖 𝑗𝛼𝑖𝛽 𝑗 = 0. Then

∑
𝑗 (
∑
𝑖 𝑐𝑖 𝑗𝛼𝑖)𝛽 𝑗 = 0, with

∑
𝑖 𝑐𝑖 𝑗𝛼𝑖 ∈ 𝐿

for each 𝑗 ∈ 𝐽. Since (𝛽 𝑗 ) 𝑗∈𝐽 is linearly independent over 𝐿, we have
∑
𝑖 𝑐𝑖 𝑗𝛼𝑖 = 0

for each 𝑗 ∈ 𝐽. But (𝛼𝑖)𝑖∈𝐼 is linearly independent over 𝐾 , so 𝑐𝑖 𝑗 = 0 for each 𝑖 ∈ 𝐼
and 𝑗 ∈ 𝐽.

To show (𝛼𝑖𝛽 𝑗 )(𝑖, 𝑗)∈𝐼×𝐽 spans𝑀 over𝐾 , let 𝑒 ∈ 𝑀 . Since (𝛽 𝑗 ) 𝑗∈𝐽 spans𝑀 over
𝐿, we have 𝑒 =

∑
𝑗 𝑑 𝑗 𝛽 𝑗 for some finitely supported family (𝑑 𝑗 ) 𝑗∈𝐽 of elements of

𝐿. Since (𝛼𝑖)𝑖∈𝐼 spans 𝐿 over 𝐾 , for each 𝑗 ∈ 𝐽 we have 𝑑 𝑗 =
∑
𝑖 𝑐𝑖 𝑗𝛼𝑖 for some

finitely supported family (𝑐𝑖 𝑗 )𝑖∈𝐼 of 𝐾 . Hence 𝑒 =
∑
𝑖, 𝑗 𝑐𝑖 𝑗𝛼𝑖𝛽 𝑗 , as required.

Parts (ii) and (iii) follow. □

Example 5.1.18 What is [Q(
√

2,
√

3) : Q]? The tower law gives[
Q(

√
2,
√

3) : Q
]
=
[
Q(

√
2,
√

3) : Q(
√

2)
] [
Q(

√
2) : Q

]
= 2

[
Q(

√
2,
√

3) : Q(
√

2)
]
.

Now on the one hand,[
Q(

√
2,
√

3) : Q(
√

2)
]
≤

[
Q(

√
3) : Q

]
= 2

by Corollary 5.1.12. On the other,
√

3 ∉ Q(
√

2), so Q(
√

2,
√

3) ≠ Q(
√

2), so
[Q(

√
2,
√

3) : Q(
√

2)] > 1 by Example 5.1.3(i). So [Q(
√

2,
√

3) : Q(
√

2)] = 2,
giving the answer: [Q(

√
2,
√

3) : Q] = 4.
By the same argument as in Example 5.1.15, {1,

√
2,
√

3,
√

6} spansQ(
√

2,
√

3)
over Q. But we have just shown that Q(

√
2,
√

3) has dimension 4 over Q. Hence
this spanning set is a basis. That is, for every element 𝛼 ∈ Q(

√
2,
√

3), there is one
and only one 4-tuple (𝑎, 𝑏, 𝑐, 𝑑) of rational numbers such that

𝛼 = 𝑎 + 𝑏
√

2 + 𝑐
√

3 + 𝑑
√

6.
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Corollary 5.1.19 Let 𝑀 : 𝐿′ : 𝐿 : 𝐾 be field extensions. If 𝑀 : 𝐾 is finite then
[𝐿′ : 𝐿] divides [𝑀 : 𝐾].

Proof By the tower law twice, [𝑀 : 𝐾] = [𝑀 : 𝐿′] [𝐿′ : 𝐿] [𝐿 : 𝐾]. □

That result might remind you of Lagrange’s theorem on group orders. The
resemblance is no coincidence, as we’ll see.

Exercise 5.1.20 Show that a field extension whose degree is a prime
number must be simple.

That result might remind you of the fact that a group of prime order must be
cyclic, and that’s no coincidence either!

A second corollary of the tower law:

Corollary 5.1.21 Let 𝑀 : 𝐾 be a field extension and 𝛼1, . . . , 𝛼𝑛 ∈ 𝑀 . Then

[𝐾 (𝛼1, . . . , 𝛼𝑛) : 𝐾] ≤ [𝐾 (𝛼1) : 𝐾] · · · [𝐾 (𝛼𝑛) : 𝐾] .

Proof By the tower law and then Corollary 5.1.12,

[𝐾 (𝛼1, . . . , 𝛼𝑛) : 𝐾]
= [𝐾 (𝛼1, . . . , 𝛼𝑛) : 𝐾 (𝛼1, . . . , 𝛼𝑛−1)] · · · [𝐾 (𝛼1, 𝛼2) : 𝐾 (𝛼1)] [𝐾 (𝛼1) : 𝐾]
≤ [𝐾 (𝛼𝑛) : 𝐾] · · · [𝐾 (𝛼2) : 𝐾] [𝐾 (𝛼1) : 𝐾] . □

Example 5.1.22 What is [Q(121/4, 61/15) : Q]? You can check (hint, hint)
that degQ(121/4) = 4 and degQ(61/15) = 15. So by Corollary 5.1.19,
[Q(121/4, 61/15) : Q] is divisible by 4 and 15. But also, Corollary 5.1.21 im-
plies that [Q(121/4, 61/15) : Q] ≤ 4 × 15 = 60. Since 4 and 15 are coprime, the
answer is 60.

Exercise 5.1.23 Generalize Example 5.1.22. In other words, what
general result does the argument of Example 5.1.22 prove, not involv-
ing the particular numbers chosen there?

5.2 Algebraic extensions
We defined a field extension 𝑀 : 𝐾 to be finite if [𝑀 : 𝐾] < ∞, that is, 𝑀 is
finite-dimensional as a vector space over 𝐾 . Here are two related conditions.
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algebraic finitely
generated

finite

Figure 5.2: Finiteness conditions on a field extension

Definition 5.2.1 A field extension 𝑀 : 𝐾 is finitely generated if 𝑀 = 𝐾 (𝑌 ) for
some finite subset 𝑌 ⊆ 𝑀 .

Definition 5.2.2 A field extension 𝑀 : 𝐾 is algebraic if every element of 𝑀 is
algebraic over 𝐾 .

Recall from Corollary 5.1.10 that 𝛼 is algebraic over 𝐾 if and only if 𝐾 (𝛼) : 𝐾
is finite. So for a field extension to be algebraic is also a kind of finiteness condition.

Examples 5.2.3 i. For any field 𝐾 , the extension 𝐾 (𝑡) : 𝐾 is finitely generated
(take the ‘𝑌 ’ above to be {𝑡}) but not finite, by Corollary 5.1.10.

ii. In Section 4.2 you met the setQ of complex numbers algebraic overQ. We’ll
very soon prove that it’s a subfield of C. It is algebraic over Q, by definition.
But you’ll show in Workshop 3, question 13 that it is not finite over Q.

Our three finiteness conditions are related as follows (Figure 5.2).

Proposition 5.2.4 The following conditions on a field extension 𝑀 : 𝐾 are equiv-
alent:

i. 𝑀 : 𝐾 is finite;

ii. 𝑀 : 𝐾 is finitely generated and algebraic;

iii. 𝑀 = 𝐾 (𝛼1, . . . , 𝛼𝑛) for some finite set {𝛼1, . . . , 𝛼𝑛} of elements of 𝑀 alge-
braic over 𝐾 .

Proof (i)⇒(ii): suppose that 𝑀 : 𝐾 is finite.
To show that 𝑀 : 𝐾 is finitely generated, take a basis 𝛼1, . . . , 𝛼𝑛 of 𝑀 over

𝐾 . Every subfield 𝐿 of 𝑀 containing 𝐾 is a 𝐾-linear subspace of 𝑀 , so if
𝛼1, . . . , 𝛼𝑛 ∈ 𝐿 then 𝐿 = 𝑀 . This proves that the only subfield of 𝑀 containing
𝐾 ∪ {𝛼1, . . . , 𝛼𝑛} is 𝑀 itself; that is, 𝑀 = 𝐾 (𝛼1, . . . , 𝛼𝑛). So 𝑀 : 𝐾 is finitely
generated.
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To show that 𝑀 : 𝐾 is algebraic, let 𝛼 ∈ 𝑀 . Then by part (ii) of the tower law
(Theorem 5.1.17), 𝐾 (𝛼) : 𝐾 is finite, so by Corollary 5.1.10, 𝛼 is algebraic over
𝐾 .

(ii)⇒(iii) is immediate from the definitions.
(iii)⇒(i): suppose that 𝑀 = 𝐾 (𝛼1, . . . , 𝛼𝑛) for some 𝛼𝑖 ∈ 𝑀 algebraic over 𝐾 .

Then
[𝑀 : 𝐾] ≤ [𝐾 (𝛼1) : 𝐾] · · · [𝐾 (𝛼𝑛) : 𝐾]

by Corollary 5.1.21. For each 𝑖, we have [𝐾 (𝛼𝑖) : 𝐾] < ∞ since 𝛼𝑖 is algebraic
over 𝐾 (using Corollary 5.1.10 again). So [𝑀 : 𝐾] < ∞. □

We already saw that when 𝑀 = 𝐾 (𝛼1, . . . , 𝛼𝑛) with each 𝛼𝑖 algebraic, every
element of 𝑀 is a polynomial in 𝛼1, . . . , 𝛼𝑛 (Corollary 5.1.14). So for any finite
extension 𝑀 : 𝐾 , there is some finite set of elements such that everything in 𝑀
can be expressed as a polynomial over 𝐾 in these elements.

Exercise 5.2.5 Let 𝑀 : 𝐾 be a field extension and 𝐾 ⊆ 𝐿 ⊆ 𝑀 . In
the proof of Proposition 5.2.4, I said that if 𝐿 is a subfield of 𝑀 then
𝐿 is a 𝐾-linear subspace of 𝑀 . Why is that true? And is the converse
also true? Give a proof or a counterexample.

Corollary 5.2.6 Let𝐾 (𝛼) : 𝐾 be a simple extension. The following are equivalent:

i. 𝐾 (𝛼) : 𝐾 is finite;

ii. 𝐾 (𝛼) : 𝐾 is algebraic;

iii. 𝛼 is algebraic over 𝐾 .

Proof (i)⇒(ii) follows from (i)⇒(ii) of Proposition 5.2.4.
(ii)⇒(iii) is immediate from the definitions.
(iii)⇒(i) follows from (iii)⇒(i) of Proposition 5.2.4. □

Here’s a spectacular application of Corollary 5.2.6.

Proposition 5.2.7 Q is a subfield of C.

Proof By Corollary 5.2.6,

Q = {𝛼 ∈ C : [Q(𝛼) : Q] < ∞}.

For all 𝛼, 𝛽 ∈ Q,

[Q(𝛼, 𝛽) : Q] ≤ [Q(𝛼) : Q] [Q(𝛽) : Q] < ∞
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by Corollary 5.1.21. Now 𝛼 + 𝛽 ∈ Q(𝛼, 𝛽), so Q(𝛼 + 𝛽) ⊆ Q(𝛼, 𝛽), so

[Q(𝛼 + 𝛽) : Q] ≤ [Q(𝛼, 𝛽) : Q] < ∞,

giving 𝛼 + 𝛽 ∈ Q. Similarly, 𝛼 · 𝛽 ∈ Q. For all 𝛼 ∈ Q,

[Q(−𝛼) : Q] = [Q(𝛼) : Q] < ∞,

giving −𝛼 ∈ Q. Similarly, 1/𝛼 ∈ Q (if 𝛼 ≠ 0). And clearly 0, 1 ∈ Q. □

If you did Exercise 4.2.4, you’ll appreciate how hard that result is to prove from
first principles, and how amazing it is that the proof above is so clean and simple.

Exercise 5.2.8 Let 𝑀 : 𝐾 be a field extension, and write 𝐿 for the
set of elements of 𝑀 algebraic over 𝐾 . By imitating the proof of
Proposition 5.2.7, prove that 𝐿 is a subfield of 𝑀 .

5.3 Ruler and compass constructions
This section is a truly wonderful application of the algebra we’ve developed so far.
Using it, we will solve problems that lay unsolved for thousands of years.

The arguments here have a lot in common with those we’ll use in Chapter 9
for the problem of solving polynomials by radicals. It’s well worth getting used to
these arguments now, since the polynomial problem involves some extra subtleties
that will need your full attention then. In other words, treat this as a warm-up.

The ancient Greeks developed planar geometry to an extraordinary degree,
discovering how to perform a very wide range of constructions using only ruler
and compasses. But there were three particular constructions that they couldn’t
figure out how to do using only these instruments:

• Trisect the angle: given an angle \, construct the angle \/3.

• Duplicate the cube: given a length, construct a new length whose cube is
twice the cube of the original. That is, given two points distance 𝐿 apart,
construct two points distance 3√2𝐿 apart.

• Square the circle: given a circle, construct a square with the same area.
That is, given two points distance 𝐿 apart, construct two points distance√
𝜋𝐿 apart.

The challenge of finding constructions lay unanswered for millennia. And it
wasn’t for lack of attention. My Galois theory lecture notes from when I was an
undergraduate contain the following words:
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Thomas Hobbes claimed to have solved these. John Wallis disagreed.
A 17th century pamphlet war ensued.

Twitter users may conclude that human nature has not changed.
It turns out that the reason why no one could find a way to do these constructions

is that they’re impossible. We’ll prove it using field theory.
In order to prove that you can’t do these things using ruler and compasses, it’s

necessary to know that you can do certain other things using ruler and compasses.
I’ll take some simple constructions for granted (but there’s a video if you want the

Ruler and compass
constructions

details).

Digression 5.3.1 The standard phrase is ‘ruler and compass constructions’,
but it’s slightly misleading. A ruler has distance markings on it, whereas
for the problems of ancient Greece, you’re supposed to use only a ‘straight
edge’: a ruler without markings (and no, you’re not allowed to mark it). As
Stewart explains (Section 7.1), with a marked or markable straight edge, you
can solve all three problems. Also, for what it’s worth, an instrument for
drawing circles is strictly speaking a pair of compasses. But like everyone
else, we’ll say ‘ruler and compass’—

—when we really mean ‘straight edge and compasses’—

The problems as stated above are maybe not quite precise; let’s formalize them.
Starting from a subset Σ of the plane, our instruments allow the following

constructions:

• given two distinct points 𝐴, 𝐵 of Σ, draw the (infinite) line through 𝐴 and 𝐵;

• given two distinct points 𝐴, 𝐵 of Σ, draw the circle with centre 𝐴 passing
through 𝐵.

A point in the plane is immediately constructible from Σ if it is a point of
intersection between two distinct lines, or two distinct circles, or a line and a
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circle, of the form above. A point 𝐶 in the plane is constructible from Σ if
there is a finite sequence 𝐶1, . . . , 𝐶𝑛 = 𝐶 of points such that 𝐶𝑖 is immediately
constructible from Σ ∪ {𝐶1, . . . , 𝐶𝑖−1} for each 𝑖. Broadly, the question is: which
points are constructible from which?

The key idea of the solution is that when you’re doing Greek-style geometry,
then in terms of coordinates, you’re repeatedly solving linear or quadratic equa-
tions. (The Greeks didn’t use coordinates, but we will.) This is because equations
of lines and circles are linear or quadratic.

For instance, suppose we start with the points (0, 0) and (1, 0). Draw the circle
with centre (0, 0) passing through (1, 0), and vice versa. The intersection points
of the two circles are (1/2,±

√
3/2), where the square root came from solving a

quadratic. If we do further ruler and compass constructions, we might end up with
coordinates like

√︁√
2 +

√
3. But we can never get coordinates like 3√2, because

where would a cube root come from? We’re only solving quadratics here.
To translate this idea into field terms, we make the following definition. Take

a subfield 𝐾 ⊆ R. We say that the extension 𝐾 : Q is iterated quadratic if there
is some finite sequence of subfields

Q = 𝐾0 ⊆ 𝐾1 ⊆ · · · ⊆ 𝐾𝑛 = 𝐾

such that [𝐾𝑖 : 𝐾𝑖−1] = 2 for all 𝑖 ∈ {1, . . . , 𝑛}.

Example 5.3.2 Q
(√︁√

2 +
√

3
)

is an iterated quadratic extension of Q, because we
have a chain of subfields

Q ⊆ Q
(√

2
)
⊆ Q

(√
2,
√

3
)
= Q

(√
2 +

√
3
)
⊆ Q

(√︃√
2 +

√
3
)

where each has degree 2 over the last. (For the equality, see Exercise 4.3.15.)

There is an iterated quadratic extension of Q containing
√︁√

2 +
√

3, and by
the same argument, there is one containing

√︁√
5 +

√
7. Is there one containing

both? We will prove a general result guaranteeing that there is. The following
terminology will be useful.

Definition 5.3.3 Let 𝐿 and 𝐿′ be subfields of a field 𝑀 . The compositum 𝐿𝐿′ of
𝐿 and 𝐿′ is the subfield of 𝑀 generated by 𝐿 ∪ 𝐿′.

That is, 𝐿𝐿′ is the smallest subfield of 𝑀 containing both 𝐿 and 𝐿′. In the
notation of Definition 4.1.8, we could also write 𝐿𝐿′ as either 𝐿 (𝐿′) or 𝐿′(𝐿).

Example 5.3.4 The compositum of the subfields Q(
√

2) and Q(
√

3) of R is
Q(

√
2,
√

3).
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Warning 5.3.5 Despite the notation,

𝐿𝐿′ ≠ {𝛼𝛼′ : 𝛼 ∈ 𝐿, 𝛼′ ∈ 𝐿′}.

But it is true that 𝐿𝐿′ is the subfield of 𝑀 generated by the right-hand
side. (Why?)

To show that any two iterated quadratic extensions of Q can be merged into
one, we first consider extensions of degree 2.

Lemma 5.3.6 Let 𝑀 : 𝐾 be a field extension and let 𝐿, 𝐿′ be subfields of 𝑀
containing 𝐾 . If [𝐿 : 𝐾] = 2 then [𝐿𝐿′ : 𝐿′] ∈ {1, 2}.𝑀

𝐿𝐿′

𝐿 𝐿′

𝐾

Actually, it is true more generally that [𝐿𝐿′ : 𝐿′] ≤ [𝐿 : 𝐾] (Workshop 3,
question 18), but we will not need this fact.

Proof Choose some 𝛽 ∈ 𝐿 \ 𝐾 . By applying the tower law to 𝐿 : 𝐾 (𝛽) : 𝐾 and
using the hypothesis that [𝐿 : 𝐾] = 2, we see that 𝐾 (𝛽) = 𝐿.

Next we show that 𝐿𝐿′ = 𝐿′(𝛽). Certainly 𝐿′(𝛽) ⊆ 𝐿𝐿′, since 𝐿′ ⊆ 𝐿𝐿′ and
𝛽 ∈ 𝐿 ⊆ 𝐿𝐿′. Conversely, 𝐿′(𝛽) is a subfield of 𝑀 that contains both 𝐾 (𝛽) = 𝐿
and 𝐿′, so it contains 𝐿𝐿′. Hence 𝐿𝐿′ = 𝐿′(𝛽), as claimed.

It follows that [𝐿𝐿′ : 𝐿′] = [𝐿′(𝛽) : 𝐿′] ≤ [𝐾 (𝛽) : 𝐾] = 2, where the
inequality comes from Corollary 5.1.12. □

Exercise 5.3.7 Find an example of Lemma 5.3.6 where [𝐿𝐿′ : 𝐿′] = 2,
and another where [𝐿𝐿′ : 𝐿′] = 1.

Lemma 5.3.8 Let 𝐾 and 𝐿 be subfields of R such that the extensions 𝐾 : Q and
𝐿 : Q are iterated quadratic. Then there is some subfield 𝑀 of R such that the
extension 𝑀 : Q is iterated quadratic and 𝐾, 𝐿 ⊆ 𝑀 .

Proof Take subfields

Q = 𝐾0 ⊆ 𝐾1 ⊆ · · · ⊆ 𝐾𝑛 = 𝐾 ⊆ R, Q = 𝐿0 ⊆ 𝐿1 ⊆ · · · ⊆ 𝐿𝑚 = 𝐿 ⊆ R

with [𝐾𝑖 : 𝐾𝑖−1] = 2 = [𝐿 𝑗 : 𝐿 𝑗−1] for all 𝑖, 𝑗 . Consider the chain of subfields

Q = 𝐾0 ⊆ 𝐾1 ⊆ · · · ⊆ 𝐾𝑛 = 𝐾 = 𝐾𝐿0 ⊆ 𝐾𝐿1 ⊆ · · · ⊆ 𝐾𝐿𝑚 = 𝐾𝐿 (5.3)

of R. It is enough to show that 𝐾𝐿 is an iterated quadratic extension of 𝐾 .
In the chain (5.3), [𝐾𝑖 : 𝐾𝑖−1] = 2 for all 𝑖. Moreover, for each 𝑗 we have

[𝐿 𝑗 : 𝐿 𝑗−1] = 2, so Lemma 5.3.6 implies that [𝐾𝐿 𝑗 : 𝐾𝐿 𝑗−1] ∈ {1, 2} (taking the
‘𝐾’ of that lemma to be 𝐿 𝑗−1). Hence in (5.3), all the successive degrees are 1
or 2. An extension of degree 1 is an equality, so by ignoring repeats, we see that
𝐾𝐿 : Q is an iterated quadratic extension. □
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The general theory of ruler and compass constructibility starts with any set
Σ ⊆ R2 of given points. But for simplicity, we will stick to the case where Σ

consists of just two points, and we’ll choose our coordinate axes so that they
have coordinates (0, 0) and (1, 0). This will still enable us to solve the notorious
problems of ancient Greece.

Proposition 5.3.9 Let (𝑥, 𝑦) ∈ R2. If (𝑥, 𝑦) is constructible from {(0, 0), (1, 0)}
then there is an iterated quadratic extension of Q containing 𝑥 and 𝑦.

Proof Suppose that (𝑥, 𝑦) is constructible from {(0, 0), (1, 0)} in 𝑛 steps. If 𝑛 = 0
then (𝑥, 𝑦) is (0, 0) or (1, 0), so 𝑥, 𝑦 ∈ Q, and Q is trivially an iterated quadratic
extension of Q.

Now let 𝑛 ≥ 1. Suppose inductively that each coordinate of each point
constructible from {(0, 0), (1, 0)} in < 𝑛 steps lies in some iterated quadratic
extension of Q. By definition, (𝑥, 𝑦) is an intersection point of two distinct
lines/circles through points constructible in < 𝑛 steps. By inductive hypothesis,
each coordinate of each of those points lies in some iterated quadratic extension of
Q, so by Lemma 5.3.8, there is an iterated quadratic extension 𝐿 of Q containing
all the points’ coordinates. The coefficients in the equations of the lines/circles
then also lie in 𝐿.

We now show that deg𝐿 (𝑥) ∈ {1, 2}.
If (𝑥, 𝑦) is the intersection point of two distinct lines, then 𝑥 and 𝑦 satisfy two

linearly independent equations

𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0,
𝑎′𝑥 + 𝑏′𝑦 + 𝑐′ = 0

with 𝑎, 𝑏, 𝑐, 𝑎′, 𝑏′, 𝑐′ ∈ 𝐿. Solving gives 𝑥 ∈ 𝐿. (In more detail, 𝑥 is a rational
function of 𝑎, 𝑏, . . .—write it down if you want!—and so 𝑥 ∈ 𝐿.)

If (𝑥, 𝑦) is an intersection point of a line and a circle, then

𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0,
𝑥2 + 𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 0

with 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ 𝐿. If 𝑏 = 0 then 𝑎 ≠ 0 and 𝑥 = −𝑐/𝑎 ∈ 𝐿. Otherwise, we
can eliminate 𝑦 to give a quadratic over 𝐿 satisfied by 𝑥, so that deg𝐿 (𝑥) ∈ {1, 2}.

If (𝑥, 𝑦) is an intersection point of two circles, then

𝑥2 + 𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 0,
𝑥2 + 𝑦2 + 𝑑′𝑥 + 𝑒′𝑦 + 𝑓 ′ = 0

with 𝑑, 𝑒, 𝑓 , 𝑑′, 𝑒′, 𝑓 ′ ∈ 𝐿. Subtracting, we reduce to the case of a line and a circle,
again giving deg𝐿 (𝑥) ∈ {1, 2}.
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(0, 0) (1, 0)

(𝑥, 𝑦)

Figure 5.3: The impossibility of trisecting 60◦.

Hence deg𝐿 (𝑥) ∈ {1, 2}. If deg𝐿 (𝑥) = 1 then 𝑥 ∈ 𝐿, and 𝐿 is an iterated
quadratic extension of Q. If deg𝐿 (𝑥) = 2, i.e. [𝐿 (𝑥) : 𝐿] = 2, then 𝐿 (𝑥) is an
iterated quadratic extension of Q. In either case, 𝑥 lies in some iterated quadratic
extension of Q. The same is true of 𝑦. Hence by Lemma 5.3.8, there is an iterated
quadratic extension of Q containing 𝑥 and 𝑦. This completes the induction. □

Theorem 5.3.10 Let (𝑥, 𝑦) ∈ R2. If (𝑥, 𝑦) is constructible from {(0, 0), (1, 0)}
then 𝑥 and 𝑦 are algebraic over Q, and their degrees over Q are powers of 2.

Proof By Proposition 5.3.9, there is an iterated quadratic extension 𝑀 of Q with
𝑥 ∈ 𝑀 . Then [𝑀 : Q] = 2𝑛 for some 𝑛 ≥ 0, by the tower law. But then
degQ(𝑥) = [Q(𝑥) : Q] divides 2𝑛 by Corollary 5.1.19, and is therefore a power of
2. And similarly for 𝑦. □

Now we solve the problems of ancient Greece.

Proposition 5.3.11 The angle cannot be trisected by ruler and compass.

Proof Suppose it can be. Construct an equilateral triangle with (0, 0) and (1, 0)
as two of its vertices (which can be done by ruler and compass; Figure 5.3).
Trisect the angle of the triangle at (0, 0). Plot the point (𝑥, 𝑦) where the trisector
meets the circle with centre (0, 0) through (1, 0). Then 𝑥 = cos(𝜋/9), so by
Theorem 5.3.10, degQ(cos(𝜋/9)) is a power of 2. But you showed in Assignment 2
that degQ(cos(𝜋/9)) = 3, a contradiction. □

Proposition 5.3.12 The cube cannot be duplicated by ruler and compass.

Proof Suppose it can be. Since (0, 0) and (1, 0) are distance 1 apart, we can
construct from them two points 𝐴 and 𝐵 distance 3√2 apart. From 𝐴 and 𝐵 we can
construct, using ruler and compass, the point ( 3√2, 0). So degQ(

3√2) is a power of
2, by Theorem 5.3.10. But degQ(

3√2) = 3 by Example 5.1.11, a contradiction. □
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Proposition 5.3.13 The circle cannot be squared by ruler and compass.

This one is the most outrageously impossible, yet the hardest to prove.

Proof Suppose it can be. Since the circle with centre (0, 0) through (1, 0) has
area 𝜋, we can construct by ruler and compass a square with side-length

√
𝜋,

and from that, we can construct by ruler and compass the point (
√
𝜋, 0). So by

Theorem 5.3.10,
√
𝜋 is algebraic over Q with degree a power of 2. Since Q is a

subfield of C, it follows that 𝜋 is algebraic over Q. But it is a (hard) theorem that
𝜋 is transcendental over Q. □

Digression 5.3.14 Stewart has a nice alternative approach to all this, in his
Chapter 7. He treats the plane as the complex plane, and he shows that the
set of all points in C constructible from 0 and 1 is a subfield. In fact, it is the
smallest subfield of C closed under taking square roots. He calls it Qpy, the
‘Pythagorean closure’ of Q. It can also be described as the set of complex
numbers contained in some iterated quadratic extension of Q.

There is one more famous ruler and compass problem: for which integers 𝑛 is
the regular 𝑛-sided polygon constructible, starting from just a pair of points in the
plane?

The answer has to do with Fermat primes, which are prime numbers of the
form 2𝑢 + 1 for some 𝑢 ≥ 1. A little exercise in number theory shows that if 2𝑢 + 1
is prime then 𝑢 must itself be a power of 2. The only known Fermat primes are

220 + 1 = 3, 221 + 1 = 5, 222 + 1 = 17, 223 + 1 = 257, 224 + 1 = 65537.

Whether there are any others is a longstanding open question. In any case, it can
be shown that the regular 𝑛-sided polygon is constructible if and only if

𝑛 = 2𝑟 𝑝1 · · · 𝑝𝑘

for some 𝑟, 𝑘 ≥ 0 and distinct Fermat primes 𝑝1, . . . , 𝑝𝑘 .
We will not do the proof, but it involves cyclotomic polynomials. A glimpse

of the connection: let 𝑝 be a prime such that the regular 𝑝-sided polygon is
constructible. Consider the regular 𝑝-sided polygon inscribed in the unit circle
in C, with one of its vertices at 1. Then another vertex is at 𝑒2𝜋𝑖/𝑝, and from
constructibility, it follows that degQ(𝑒2𝜋𝑖/𝑝) is a power of 2. But we saw in
Example 5.1.6(ii) that degQ(𝑒2𝜋𝑖/𝑝) = 𝑝 − 1. So 𝑝 − 1 is a power of 2, that is,
𝑝 is a Fermat prime. Field theory, number theory and Euclidean geometry come
together!
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Chapter 6

Splitting fields

In Chapter 1, we met a definition of the symmetry group of a polynomial over Q.
It was phrased in terms of conjugate tuples, it was possibly a little mysterious, and
it was definitely difficult to work with (e.g. we couldn’t compute the symmetry
group of 1 + 𝑡 + 𝑡2 + 𝑡3 + 𝑡4).

Introduction to
Week 6

In this chapter, we’re going to give a different but equivalent definition of the
symmetry group of a polynomial. It’s a two-step process:

1. We show how every polynomial 𝑓 over 𝐾 gives rise to an extension of 𝐾 ,
called the ‘splitting field’ of 𝑓 .

2. We show how every field extension has a symmetry group.

The symmetry group, or ‘Galois group’, of a polynomial is then defined to be the
symmetry group of its splitting field extension.

How does these two steps work?

1. When 𝐾 = Q, the splitting field of 𝑓 is the smallest subfield of C containing
all the complex roots of 𝑓 . For a general field 𝐾 , it’s constructed by adding
the roots of 𝑓 one at a time, using simple extensions, until we obtain an
extension of 𝐾 in which 𝑓 splits into linear factors.

2. The symmetry group of a field extension 𝑀 : 𝐾 is defined as the group of
automorphisms of 𝑀 over 𝐾 . This is the same idea you’ve seen many times
before, for symmetry groups of other mathematical objects.

Why bother? Why not define the symmetry group of 𝑓 directly, as in Chapter 1?

• Because this strategy works over every field 𝐾 , not just Q.

• Because there are field extensions that do not arise from a polynomial, and
their symmetry groups are sometimes important. For example, an important
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structure in number theory, somewhat mysterious to this day, is the symmetry
group of the algebraic numbers Q over Q.

• Because using abstract algebra means you can cut down on explicit calcu-
lations with polynomials. (By way of analogy, you’ve seen how abstract
linear algebra with vector spaces and linear maps allows you to cut down on
calculations with matrices.) It also reveals connections with other parts of
mathematics.

6.1 Extending homomorphisms
In your degree so far, you’ll have picked up the general principle that for many
kinds of mathematical object (such as groups, rings, fields, vector spaces, modules,
metric spaces, topological spaces, measure spaces, . . . ), it’s important to consider
the appropriate notion of mapping between them (such as homomorphisms, linear
maps, continuous maps, . . . ). And since Chapter 4, you’ve known that the basic
objects of Galois theory are field extensions.

So it’s no surprise that sooner or later, we have to think about mappings from
one field extension to another. That moment is now. We’ll need what’s in this
section in order to establish fundamental facts about splitting fields.

When we think about a field extension 𝑀 : 𝐾 , we generally regard the field
𝐾 as our starting point and 𝑀 as a field that extends it. Similarly, we might start
with a homomorphism 𝜓 : 𝐾 → 𝐾′ between fields, together with extensions 𝑀 of
𝐾 and 𝑀′ of 𝐾′, and look for a homomorphism 𝑀 → 𝑀′ that extends 𝜓. The
language is as follows.

Definition 6.1.1 Let ] : 𝐾 → 𝑀 and ]′ : 𝐾′ → 𝑀′ be field extensions. Let
𝜓 : 𝐾 → 𝐾′ be a homomorphism of fields. A homomorphism 𝜑 : 𝑀 → 𝑀′

extends 𝜓 if the square
Extension problems 𝑀

𝜑 // 𝑀′

𝐾

]

OO

𝜓
// 𝐾′

]′

OO

commutes (𝜑 ◦ ] = ]′ ◦ 𝜓).

Here I’ve used the strict definition of a field extension as a homomorphism ]

of fields (Definition 4.1.1). Most of the time we view 𝐾 as a subset of 𝑀 and 𝐾′

as a subset of 𝑀′, with ] and ]′ being the inclusions. In that case, for 𝜑 to extend
𝜓 just means that

𝜑(𝑎) = 𝜓(𝑎) for all 𝑎 ∈ 𝐾.
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Examples 6.1.2 i. Let 𝑀 and 𝑀′ be two extensions of a field 𝐾 . For a
homomorphism 𝜑 : 𝑀 → 𝑀′ to extend id𝐾 means that 𝜑 is a homomorphism
over 𝐾 .

ii. The conjugation homomorphism C→ C extends the conjugation homomor-
phism Q(𝑖) → Q(𝑖).

The basic questions about extending homomorphisms are: given the two field
extensions and the homomorphism 𝜓, is there some 𝜑 that extends 𝜓? If so, how
many extensions 𝜑 are there?

We’ll get to these questions later. In this section, we simply prove two general
results about extensions of field homomorphisms.

Recall that any ring homomorphism 𝜓 : 𝑅 → 𝑆 induces a homomorphism
𝜓∗ : 𝑅[𝑡] → 𝑆[𝑡] (Definition 3.1.7). To reduce clutter, I’ll write 𝜓∗( 𝑓 ) as 𝜓∗ 𝑓 .

Explanation of
Lemma 6.1.3 Lemma 6.1.3 Let 𝑀 : 𝐾 and 𝑀′ : 𝐾′ be field extensions, let 𝜓 : 𝐾 → 𝐾′ be

a homomorphism, and let 𝜑 : 𝑀 → 𝑀′ be a homomorphism extending 𝜓. Let
𝛼 ∈ 𝑀 and 𝑓 (𝑡) ∈ 𝐾 [𝑡]. Then𝛼 𝑀

𝜑 // 𝑀 ′ 𝜑(𝛼)

𝑓 𝐾
𝜓
//

OO

𝐾 ′ 𝜓∗ 𝑓

OO

𝑓 (𝛼) = 0 ⇐⇒ (𝜓∗ 𝑓 ) (𝜑(𝛼)) = 0.

Proof Write 𝑓 (𝑡) = ∑
𝑖 𝑎𝑖𝑡

𝑖, where 𝑎𝑖 ∈ 𝐾 . Then (𝜓∗ 𝑓 ) (𝑡) =
∑
𝑖 𝜓(𝑎𝑖)𝑡𝑖 ∈ 𝐾′[𝑡],

so
(𝜓∗ 𝑓 ) (𝜑(𝛼)) =

∑︁
𝑖

𝜓(𝑎𝑖)𝜑(𝛼)𝑖 =
∑︁
𝑖

𝜑(𝑎𝑖)𝜑(𝛼)𝑖 = 𝜑( 𝑓 (𝛼)),

where the second equality holds because 𝜑 extends 𝜓. Since 𝜑 is injective
(Lemma 2.3.3), the result follows. □

Example 6.1.4 Let 𝑀 and 𝑀′ be extensions of a field 𝐾 , and let 𝜑 : 𝑀 → 𝑀′ be a
homomorphism over 𝐾 . Then the annihilating polynomials of an element 𝛼 ∈ 𝑀
are the same as those of 𝜑(𝛼). This is the case 𝜓 = id𝐾 of Lemma 6.1.3.

Exercise 6.1.5 Show that if a ring homomorphism 𝜓 is injective then
so is 𝜓∗, and if 𝜓 is an isomorphism then so is 𝜓∗.

An isomorphism between fields, rings, groups, vector spaces, etc., can be
understood as simply a renaming of the elements. For example, if I tell you that
the ring 𝑅 is left Noetherian but not right Artinian, and that 𝑆 is isomorphic to 𝑅,
then you can deduce that 𝑆 is left Noetherian but not right Artinian without having
the slightest idea what those words mean. Just as long as they don’t depend on the
names of the elements of the ring concerned (which such definitions never do),
you’re fine.
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Proposition 6.1.6 Let 𝜓 : 𝐾 → 𝐾′ be an isomorphism of fields. Let 𝐾 (𝛼) : 𝐾 be
a simple extension where 𝛼 has minimal polynomial 𝑚 over 𝐾 , and let 𝐾′(𝛼′) : 𝐾′

be a simple extension where 𝛼′ has minimal polynomial 𝜓∗𝑚 over 𝐾′. Then
there is exactly one isomorphism 𝜑 : 𝐾 (𝛼) → 𝐾′(𝛼′) that extends 𝜓 and satisfies
𝜑(𝛼) = 𝛼′.

Diagram:
𝐾 (𝛼) 𝜑

�
// 𝐾′(𝛼′)

𝐾

OO

𝜓

� // 𝐾′

OO

We often use a dotted arrow to denote a map whose existence is part of the
conclusion of a theorem.

Proof View 𝐾′(𝛼′) as an extension of 𝐾 via the composite homomorphism
𝐾

𝜓
−→ 𝐾′ → 𝐾′(𝛼′). Then the minimal polynomial of 𝛼′ over 𝐾 is 𝑚. (If

this isn’t intuitively clear to you, think of the isomorphism 𝜓 as renaming.) Hence
by the classification of simple extensions, Theorem 4.3.16, there is exactly one
isomorphism 𝜑 : 𝐾 (𝛼) → 𝐾′(𝛼′) over𝐾 such that 𝜑(𝛼) = 𝛼′. The result follows.□

6.2 Existence and uniqueness of splitting fields
Let 𝑓 be a polynomial over a field 𝐾 . Informally, a splitting field for 𝑓 is an
extension of 𝐾 where 𝑓 has all its roots, and which is no bigger than it needs to be.

Warning 6.2.1 If 𝑓 is irreducible, we know how to create an extension
of𝐾 where 𝑓 has at least one root: take the simple extension𝐾 [𝑡]/⟨ 𝑓 ⟩,
in which the equivalence class of 𝑡 is a root of 𝑓 (Lemma 4.3.1(i)).
But 𝐾 [𝑡]/⟨ 𝑓 ⟩ is not usually a splitting field for 𝑓 . For example, take
𝐾 = Q and 𝑓 (𝑡) = 𝑡3 − 2, as in Warning 4.3.19. Write b for the real
cube root of 2. (Half the counterexamples in Galois theory involve the
real cube root of 2.) ThenQ[𝑡]/⟨ 𝑓 ⟩ is isomorphic to the subfieldQ(b)
of R, which only contains one root of 𝑓 : the other two are non-real,
hence not in Q(b).

Definition 6.2.2 Let 𝑓 be a polynomial over a field 𝑀 . Then 𝑓 splits in 𝑀 if

𝑓 (𝑡) = 𝛽(𝑡 − 𝛼1) · · · (𝑡 − 𝛼𝑛)

for some 𝑛 ≥ 0 and 𝛽, 𝛼1, . . . , 𝛼𝑛 ∈ 𝑀 .
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Equivalently, 𝑓 splits in 𝑀 if all its irreducible factors in 𝑀 [𝑡] are linear.

Examples 6.2.3 i. A field 𝑀 is algebraically closed if and only if every poly-
nomial over 𝑀 splits in 𝑀 .

ii. Let 𝑓 (𝑡) = 𝑡4 − 4𝑡2 − 5. Then 𝑓 splits in Q(𝑖,
√

5), since

𝑓 (𝑡) = (𝑡2 + 1) (𝑡2 − 5)
= (𝑡 − 𝑖) (𝑡 + 𝑖) (𝑡 −

√
5) (𝑡 +

√
5).

But 𝑓 does not split in Q(𝑖), as its factorization into irreducibles in Q(𝑖) [𝑡]
is

𝑓 (𝑡) = (𝑡 − 𝑖) (𝑡 + 𝑖) (𝑡2 − 5),
which contains a nonlinear factor.

Warning 6.2.4 As Example 6.2.3(ii) shows, a polynomial over
𝑀 may have one root or even several roots in𝑀 , but still not split in𝑀 .

Example 6.2.5 Let 𝑀 = F2(𝛼), where 𝛼 is a root of 𝑓 (𝑡) = 1 + 𝑡 + 𝑡2, as in
Example 4.3.17(ii). We have

𝑓 (1 + 𝛼) = 1 + (1 + 𝛼) + (1 + 2𝛼 + 𝛼2) = 1 + 𝛼 + 𝛼2 = 0,

so 𝑓 has two distinct roots in 𝑀 , giving

𝑓 (𝑡) = (𝑡 − 𝛼) (𝑡 − (1 + 𝛼))

in 𝑀 [𝑡]. Hence 𝑓 splits in 𝑀 .
In this example, adjoining one root of 𝑓 gave us a second root for free. But

this doesn’t typically happen (Warning 6.2.1).

Definition 6.2.6 Let 𝑓 be a nonzero polynomial over a field 𝐾 . A splitting field
of 𝑓 over 𝐾 is an extension 𝑀 of 𝐾 such that:

i. 𝑓 splits in 𝑀;

ii. 𝑀 = 𝐾 (𝛼1, . . . , 𝛼𝑛), where 𝛼1, . . . , 𝛼𝑛 are the roots of 𝑓 in 𝑀 .

Exercise 6.2.7 Show that (ii) can equivalently be replaced by: ‘if 𝐿
is a subfield of 𝑀 containing 𝐾 , and 𝑓 splits in 𝐿, then 𝐿 = 𝑀’.
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Examples 6.2.8 i. Let 0 ≠ 𝑓 ∈ Q[𝑡]. Write 𝛼1, . . . , 𝛼𝑛 for the complex roots
of 𝑓 . Then Q(𝛼1, . . . , 𝛼𝑛), the smallest subfield of C containing 𝛼1, . . . , 𝛼𝑛,
is a splitting field of 𝑓 over Q.
Splitting fields over Q are easy because we have a ready-made algebraically
closed field containing Q, namely, C.

ii. If a polynomial 𝑓 ∈ 𝐾 [𝑡] splits in 𝐾 then 𝐾 itself is a splitting field of 𝑓
over 𝐾 . For instance, since C is algebraically closed, it is a splitting field of
every nonzero polynomial over C.

iii. Let 𝑓 (𝑡) = 𝑡3 − 2 ∈ Q[𝑡]. Its complex roots are b, 𝜔b and 𝜔2b, where b is
the real cube root of 2 and 𝜔 = 𝑒2𝜋𝑖/3. Hence a splitting field of 𝑓 over Q is

Q(b, 𝜔b, 𝜔2b) = Q(b, 𝜔).

Now degQ(b) = 3 as 𝑓 is irreducible, and degQ(𝜔) = 2 as 𝜔 has minimal
polynomial 1+ 𝑡 + 𝑡2. By an argument like that in Example 5.1.22, it follows
that [Q(b, 𝜔) : Q] = 6. On the other hand, [Q(b) : Q] = 3. So again, the
extension we get by adjoining all the roots of 𝑓 is bigger than the one we get
by adjoining just one root of 𝑓 .

iv. Take 𝑓 (𝑡) = 1 + 𝑡 + 𝑡2 ∈ F2 [𝑡], as in Example 6.2.5. By Theorem 5.1.5(i),
{1, 𝛼} is a basis of F2(𝛼) over F2, so

F2(𝛼) = {0, 1, 𝛼, 1 + 𝛼}
= F2 ∪ {the roots of 𝑓 in F2(𝛼)}.

Hence F2(𝛼) is a splitting field of 𝑓 over F2.

Exercise 6.2.9 In Example 6.2.8(iii), I said that Q(b, 𝜔b, 𝜔2b) =

Q(b, 𝜔). Why is that true?

Our mission for the rest of this section is to show that every nonzero polynomial
𝑓 has exactly one splitting field. So that’s actually two tasks: first, show that 𝑓 has
at least one splitting field, then, show that 𝑓 has only one splitting field. The first
task is easy, and in fact we prove a little bit more:

Lemma 6.2.10 Let 𝑓 ≠ 0 be a polynomial over a field 𝐾 . Then there exists a
splitting field 𝑀 of 𝑓 over 𝐾 such that [𝑀 : 𝐾] ≤ deg( 𝑓 )!.

Proof We prove this by induction on deg( 𝑓 ), for all fields 𝐾 simultaneously.
If deg( 𝑓 ) = 0 then 𝐾 is a splitting field of 𝑓 over 𝐾 , and the result holds

trivially.
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Now suppose that deg( 𝑓 ) ≥ 1. We may choose an irreducible factor 𝑚 of
𝑓 . By Theorem 4.3.16, there is an extension 𝐾 (𝛼) of 𝐾 with 𝑚(𝛼) = 0. Then
(𝑡 − 𝛼) | 𝑓 (𝑡) in 𝐾 (𝛼) [𝑡], giving a polynomial 𝑔(𝑡) = 𝑓 (𝑡)/(𝑡 − 𝛼) over 𝐾 (𝛼).

We have deg(𝑔) = deg( 𝑓 ) − 1, so by inductive hypothesis, there is a splitting
field 𝑀 of 𝑔 over 𝐾 (𝛼) with [𝑀 : 𝐾 (𝛼)] ≤ deg(𝑔)!. Then 𝑀 is a splitting field of
𝑓 over 𝐾 . (Check that you understand why.) Also, by the tower law,

[𝑀 : 𝐾] = [𝑀 : 𝐾 (𝛼)] [𝐾 (𝛼) : 𝐾] ≤ (deg( 𝑓 ) − 1)! · deg(𝑚) ≤ deg( 𝑓 )!,

completing the induction. □

Proving that every polynomial has only one splitting field is harder. As ever,
‘only one’ has to be understood up to isomorphism: after all, if you’re given a
splitting field, you can always rename its elements to get an isomorphic copy that’s
not literally identical to the original one. But isomorphism is all that matters.

Our proof of the uniqueness of splitting fields depends on the following result,
which will also be useful for other purposes as we head towards the fundamental
theorem of Galois theory.

Proposition 6.2.11 Let𝜓 : 𝐾 → 𝐾′ be an isomorphism of fields, let 0 ≠ 𝑓 ∈ 𝐾 [𝑡],
let 𝑀 be a splitting field of 𝑓 over 𝐾 , and let 𝑀′ be a splitting field of 𝜓∗ 𝑓 over
𝐾′. Then:

i. there exists an isomorphism 𝜑 : 𝑀 → 𝑀′ extending 𝜓;𝑀
𝜑 // 𝑀 ′

𝑓 𝐾
𝜓
//

OO

𝐾 ′ 𝜓∗ 𝑓

OO

ii. there are at most [𝑀 : 𝐾] such extensions 𝜑.

We’ll often use this result in the case where 𝐾′ = 𝐾 and 𝜓 = id𝐾 . (What does
it say then?)

Proof We prove both statements by induction on deg( 𝑓 ). If deg( 𝑓 ) = 0 then both
field extensions are trivial, so there is exactly one isomorphism 𝜑 extending 𝜓.

Now suppose that deg( 𝑓 ) ≥ 1. We can choose a monic irreducible factor 𝑚 of
𝑓 . Then𝑚 splits in 𝑀 since 𝑓 does and𝑚 | 𝑓 ; choose a root 𝛼 ∈ 𝑀 of𝑚. We have
𝑓 (𝛼) = 0, so (𝑡 − 𝛼) | 𝑓 (𝑡) in 𝐾 (𝛼) [𝑡], giving a polynomial 𝑔(𝑡) = 𝑓 (𝑡)/(𝑡 − 𝛼)
over 𝐾 (𝛼). Then 𝑀 is a splitting field of 𝑔 over 𝐾 (𝛼), and deg(𝑔) = deg( 𝑓 ) − 1.

Also, 𝜓∗𝑚 splits in 𝑀′ since 𝜓∗ 𝑓 does and 𝜓∗𝑚 | 𝜓∗ 𝑓 . Write 𝛼′1, . . . , 𝛼
′
𝑠 for

the distinct roots of 𝜓∗𝑚 in 𝑀′. Note that

1 ≤ 𝑠 ≤ deg(𝜓∗𝑚) = deg(𝑚). (6.1)

Since 𝜓∗ is an isomorphism, 𝜓∗𝑚 is monic and irreducible, and is therefore theCounting
isomorphisms: the

proof of
Proposition 6.2.11

minimal polynomial of 𝛼′
𝑗

for each 𝑗 ∈ {1, . . . , 𝑠}. Hence by Proposition 6.1.6,
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for each 𝑗 , there is a unique isomorphism \ 𝑗 : 𝐾 (𝛼) → 𝐾′(𝛼′
𝑗
) that extends 𝜓 and

satisfies \ 𝑗 (𝛼) = 𝛼′𝑗 . (See diagram below.)
For each 𝑗 ∈ {1, . . . , 𝑠}, we have a polynomial

\ 𝑗∗(𝑔) =
\ 𝑗∗( 𝑓 )

\ 𝑗∗(𝑡 − 𝛼)
=

𝜓∗ 𝑓

𝑡 − 𝛼′
𝑗

over 𝐾′(𝛼′
𝑗
), and 𝑀′ is a splitting field of 𝜓∗ 𝑓 over 𝐾′, so 𝑀′ is also a splitting

field of \ 𝑗∗(𝑔) over 𝐾′(𝛼′
𝑗
).

To prove that there is at least one isomorphism 𝜑 extending 𝜓, choose any
𝑗 ∈ {1, . . . , 𝑠} (as we may since 𝑠 ≥ 1). By applying the inductive hypothesis to
𝑔 and \ 𝑗 , there is an isomorphism 𝜑 extending \ 𝑗 :

𝑀
𝜑 // 𝑀′

𝐾 (𝛼)

OO

\ 𝑗 // 𝐾′(𝛼′
𝑗
)

OO

𝐾

OO

𝜓
// 𝐾′

OO

But then 𝜑 also extends 𝜓, as required.
To prove there are at most [𝑀 : 𝐾] isomorphisms 𝜑 : 𝑀 → 𝑀′ extending

𝜓, first note that any such 𝜑 satisfies (𝜓∗𝑚) (𝜑(𝛼)) = 0 (by Lemma 6.1.3), so
𝜑(𝛼) = 𝛼′

𝑗
for some 𝑗 ∈ {1, . . . , 𝑠}. Hence

(number of isos 𝜑 extending 𝜓) =
𝑠∑︁
𝑗=1

(number of isos 𝜑 extending 𝜓 such that 𝜑(𝛼) = 𝛼′𝑗 ).

If 𝜑 extends𝜓 then 𝜑𝐾 = 𝜓𝐾 = 𝐾′, and if also 𝜑(𝛼) = 𝛼′
𝑗
then 𝜑(𝐾 (𝛼)) = 𝐾′(𝛼′

𝑗
).

Since homomorphisms of fields are injective, 𝜑 then restricts to an isomorphism
𝐾 (𝛼) → 𝐾′(𝛼′

𝑗
) satisfying 𝛼 ↦→ 𝛼′

𝑗
. By the uniqueness part of Proposition 6.1.6,

this restricted isomorphism must be \ 𝑗 . Thus, 𝜑 extends \ 𝑗 . Hence

(number of isos 𝜑 extending 𝜓) =
𝑠∑︁
𝑗=1

(number of isos 𝜑 extending \ 𝑗 ).

For each 𝑗 , the number of isomorphisms 𝜑 extending \ 𝑗 is ≤ [𝑀 : 𝐾 (𝛼)], by
inductive hypothesis. So, using the tower law and (6.1),

(number of isos 𝜑 extending 𝜓) ≤ 𝑠 · [𝑀 : 𝐾 (𝛼)] = 𝑠 · [𝑀 : 𝐾]
deg(𝑚) ≤ [𝑀 : 𝐾],

completing the induction. □
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Exercise 6.2.12 Why does the proof of Proposition 6.2.11 not show
that there are exactly [𝑀 : 𝐾] isomorphisms 𝜑 extending 𝜓? How
could you strengthen the hypotheses in order to obtain that conclusion?
(The second question is a bit harder, and we’ll see the answer next
week.)

This brings us to the foundational result on splitting fields. Recall that an
automorphism of an object 𝑋 is an isomorphism 𝑋 → 𝑋 .

Theorem 6.2.13 Let 𝑓 be a nonzero polynomial over a field 𝐾 . Then:

i. there exists a splitting field of 𝑓 over 𝐾;

ii. any two splitting fields of 𝑓 are isomorphic over 𝐾;

iii. when 𝑀 is a splitting field of 𝑓 over 𝐾 ,

(number of automorphisms of 𝑀 over 𝐾) ≤ [𝑀 : 𝐾] ≤ deg( 𝑓 )!.

Proof Part (i) is immediate from Lemma 6.2.10, and part (ii) follows from Propo-
sition 6.2.11 by taking 𝐾′ = 𝐾 and 𝜓 = id𝐾 . The first inequality in (iii) follows
from Proposition 6.2.11 by taking 𝐾′ = 𝐾 , 𝑀′ = 𝑀 and 𝜓 = id𝐾 , and the second
follows from Lemma 6.2.10. □

Up to now we have been saying ‘a’ splitting field. Parts (i) and (ii) of Theo-
rem 6.2.13 give us the right to speak of the splitting field of a given polynomial 𝑓
over a given field 𝐾 . We write it as SF𝐾 ( 𝑓 ).

We finish with a left over lemma that will be useful later.

Lemma 6.2.14 i. Let 𝑀 : 𝑆 : 𝐾 be field extensions, 0 ≠ 𝑓 ∈ 𝐾 [𝑡], and
𝑌 ⊆ 𝑀 . Suppose that 𝑆 is the splitting field of 𝑓 over 𝐾 . Then 𝑆(𝑌 ) is the
splitting field of 𝑓 over 𝐾 (𝑌 ).

ii. Let 𝑓 ≠ 0 be a polynomial over a field 𝐾 , and let 𝐿 be a subfield of SF𝐾 ( 𝑓 )
containing 𝐾 (so that SF𝐾 ( 𝑓 ) : 𝐿 : 𝐾). Then SF𝐾 ( 𝑓 ) is the splitting field of
𝑓 over 𝐿.

Proof For (i), 𝑓 splits in 𝑆, hence in 𝑆(𝑌 ). Writing 𝑋 for the set of roots of 𝑓
in 𝑆, we have 𝑆 = 𝐾 (𝑋) and so 𝑆(𝑌 ) = 𝐾 (𝑋) (𝑌 ) = 𝐾 (𝑋 ∪ 𝑌 ) = 𝐾 (𝑌 ) (𝑋); that
is, 𝑆(𝑌 ) is generated over 𝐾 (𝑌 ) by 𝑋 . This proves (i), and (ii) follows by taking
𝑀 = SF𝐾 ( 𝑓 ) and 𝑌 = 𝐿. □
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6.3 The Galois group
Before you get stuck into this section, you may want to review Section 2.1, espe-
cially the parts about homomorphisms 𝐺 → Sym(𝑋). We’ll need all of it.

What gives Galois theory its special flavour is the use of groups to study fields
and polynomials. Here is the central definition.

Definition 6.3.1 The Galois group Gal(𝑀 : 𝐾) of a field extension 𝑀 : 𝐾 is the
group of automorphisms of 𝑀 over 𝐾 , with composition as the group operation.

Exercise 6.3.2 Check that this really does define a group.

In other words, an element of Gal(𝑀 : 𝐾) is an isomorphism \ : 𝑀 → 𝑀 such
that \ (𝑎) = 𝑎 for all 𝑎 ∈ 𝐾 .

Examples 6.3.3 i. What is Gal(C : R)? Certainly the identity is an auto-
morphism of C over R. So is complex conjugation ^, as implicitly shown
in the first proof of Lemma 1.1.2. So {id, ^} ⊆ Gal(C : R). I claim that
Gal(C : R) has no other elements. For let \ ∈ Gal(C : R). Then

(\ (𝑖))2 = \ (𝑖2) = \ (−1) = −\ (1) = −1

as \ is a homomorphism, so \ (𝑖) = ±𝑖. If \ (𝑖) = 𝑖 then \ = id, by
Lemma 4.3.6 and the fact that C = R(𝑖). Similarly, if \ (𝑖) = −𝑖 then \ = ^.
So Gal(C : R) = {id, ^} � 𝐶2.

ii. Let b be the real cube root of 2. For each \ ∈ Gal(Q(b) : Q), we have

(\ (b))3 = \ (b3) = \ (2) = 2

and \ (b) ∈ Q(b) ⊆ R, so \ (b) = b. It follows from Lemma 4.3.6 that \ = id.
Hence Gal(Q(b) : Q) is trivial.

Exercise 6.3.4 Prove that Gal(Q(𝑒2𝜋𝑖/3) : Q) = {id, ^}, where ^(𝑧) =
𝑧. (Hint: imitate Example 6.3.3(i).)

The Galois group of a polynomial is defined to be the Galois group of its
splitting field extension:

Definition 6.3.5 Let 𝑓 be a nonzero polynomial over a field 𝐾 . The Galois group
Gal𝐾 ( 𝑓 ) of 𝑓 over 𝐾 is Gal(SF𝐾 ( 𝑓 ) : 𝐾).
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So the definitions fit together like this:

polynomial ↦−→ field extension ↦−→ group.

We will soon prove that Definition 6.3.5 is equivalent to the definition of Galois
group in Chapter 1, where we went straight from polynomials to groups.

Theorem 6.2.13(iii) says that

| Gal𝐾 ( 𝑓 ) | ≤ [SF𝐾 ( 𝑓 ) : 𝐾] ≤ deg( 𝑓 )!. (6.2)

In particular, Gal𝐾 ( 𝑓 ) is always a finite group.
Examples 6.3.6 i. If 𝑓 ∈ 𝐾 [𝑡] splits in 𝐾 then SF𝐾 ( 𝑓 ) = 𝐾 (Exam-

ple 6.2.8(ii)), so Gal𝐾 ( 𝑓 ) is trivial. In particular, the Galois group of
any polynomial over an algebraically closed field is trivial.

ii. GalQ(𝑡2 + 1) = Gal(Q(𝑖) : Q) = {id, ^} � 𝐶2, where ^ is complex conju-
gation on Q(𝑖). The second equality is proved by the same argument as in
Example 6.3.3(i), replacing C : R by Q(𝑖) : Q.

iii. Generally, let 𝑓 ∈ Q[𝑡]. We can view SFQ( 𝑓 ) as the subfield of C generated
by the complex roots of 𝑓 , and if 𝛼 ∈ C is a root of 𝑓 then so is 𝛼. Hence
complex conjugation, as an automorphism ofC, restricts to an automorphism
^ of SFQ( 𝑓 ).
If all the complex roots of 𝑓 are real then ^ = id ∈ GalQ( 𝑓 ). Otherwise, ^
is an element of GalQ( 𝑓 ) of order 2.

Calculating the
Galois group with
bare hands, part 1

Calculating the
Galois group with
bare hands, part 2

iv. Let 𝑓 (𝑡) = (𝑡2 + 1) (𝑡2 − 2). Then GalQ( 𝑓 ) is the group of automorphisms
of Q(𝑖,

√
2) over Q. Similar arguments to those in Examples 6.3.3 show that

every \ ∈ GalQ( 𝑓 ) must satisfy \ (𝑖) = ±𝑖 and \ (
√

2) = ±
√

2, and that the
two choices of sign determine \ completely. And one can show that all four
choices are possible, so that | GalQ( 𝑓 ) | = 4. There are two groups of order
four, 𝐶4 and 𝐶2 × 𝐶2. But each element of GalQ( 𝑓 ) has order 1 or 2, so
GalQ( 𝑓 ) is not 𝐶4, so GalQ( 𝑓 ) � 𝐶2 × 𝐶2.
I’ve been sketchy with the details here, because it’s not really sensible to try
to calculate Galois groups until we have a few more tools at our disposal.
We start to assemble them now.

By definition, Gal𝐾 ( 𝑓 ) acts on SF𝐾 ( 𝑓 ) (Example 2.1.2(ii)). The action is

(\, 𝛼) ↦→ \ (𝛼)
(\ ∈ Gal𝐾 ( 𝑓 ), 𝛼 ∈ SF𝐾 ( 𝑓 )). In the examples so far, we’ve seen that if 𝛼 is a root
of 𝑓 then so is \ (𝛼) for every \ ∈ Gal𝐾 ( 𝑓 ). This is true in general: the action
of Gal𝐾 ( 𝑓 ) on SF𝐾 ( 𝑓 ) restricts to an action on the set of roots. In a slogan: the
Galois group permutes the roots.
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Lemma 6.3.7 Let 𝑓 be a nonzero polynomial over a field 𝐾 . Then the action of
Gal𝐾 ( 𝑓 ) on SF𝐾 ( 𝑓 ) restricts to an action on the set of roots of 𝑓 in SF𝐾 ( 𝑓 ).

Terminology: given a group𝐺 acting on a set 𝑋 and a subset 𝐴 ⊆ 𝑋 , the action
restricts to 𝐴 if 𝑔𝑎 ∈ 𝐴 for all 𝑔 ∈ 𝐺 and 𝑎 ∈ 𝐴.

Proof We have to show that if \ ∈ Gal𝐾 ( 𝑓 ) and 𝛼 is a root of 𝑓 in SF𝐾 ( 𝑓 ) then
\ (𝛼) is also a root. This follows from Example 6.1.4. □

The action of the
Galois group

Better still, the Galois group acts faithfully on the roots:

Lemma 6.3.8 Let 𝑓 be a nonzero polynomial over a field 𝐾 . Then the action of
Gal𝐾 ( 𝑓 ) on the roots of 𝑓 is faithful.

Proof Write 𝑋 for the set of roots of 𝑓 in SF𝐾 ( 𝑓 ). Then SF𝐾 ( 𝑓 ) = 𝐾 (𝑋). Hence
by Lemma 4.3.6, if \ ∈ Gal𝐾 ( 𝑓 ) with \ (𝑥) = 𝑥 for all 𝑥 ∈ 𝑋 , then \ = id. □

In other words, an element of the Galois group of 𝑓 is completely determined
by how it permutes the roots of 𝑓 . So you can view elements of the Galois group
as being permutations of the roots.

However, not every permutation of the roots belongs to the Galois group.
To understand the situation, recall Remark 2.1.13, which tells us the following.
Suppose that 𝑓 ∈ 𝐾 [𝑡] has distinct roots 𝛼1, . . . , 𝛼𝑘 in its splitting field. For each
\ ∈ Gal𝐾 ( 𝑓 ), there is a permutation 𝜎\ ∈ 𝑆𝑘 defined by

\ (𝛼𝑖) = 𝛼𝜎\ (𝑖)

(𝑖 ∈ {1, . . . , 𝑘}). Then Gal𝐾 ( 𝑓 ) is isomorphic to the subgroup {𝜎\ : \ ∈ Gal𝐾 ( 𝑓 )}
of 𝑆𝑘 (and this is indeed a subgroup). The isomorphism is given by \ ↦→ 𝜎\ .

All this talk of the Galois group as a subgroup of 𝑆𝑘 may have set your antennae
tingling. Back in Chapter 1, we provisionally defined the Galois group to be a
certain subgroup of 𝑆𝑘 (Definition 1.2.1). We can now show that the two definitions
are equivalent.

That definition was in terms of conjugacy. Let’s now make the concept of
conjugacy official, also generalizing from Q to an arbitrary field.

Definition 6.3.9 Let𝑀 : 𝐾 be a field extension, let 𝑘 ≥ 0, and let (𝛼1, . . . , 𝛼𝑘 ) and
(𝛼′1, . . . , 𝛼

′
𝑘
) be 𝑘-tuples of elements of 𝑀 . Then (𝛼1, . . . , 𝛼𝑘 ) and (𝛼′1, . . . , 𝛼

′
𝑘
)

are conjugate over 𝐾 if for all 𝑝 ∈ 𝐾 [𝑡1, . . . , 𝑡𝑘 ],

𝑝(𝛼1, . . . , 𝛼𝑘 ) = 0 ⇐⇒ 𝑝(𝛼′1, . . . , 𝛼
′
𝑘 ) = 0.

In the case 𝑘 = 1, we omit the brackets and say that 𝛼 and 𝛼′ are conjugate to mean
that (𝛼) and (𝛼′) are.
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We now show that the two definitions of the Galois group of 𝑓 are equivalent.

Proposition 6.3.10 Let 𝑓 be a nonzero polynomial over a field 𝐾 , with distinct
roots 𝛼1, . . . , 𝛼𝑘 in SF𝐾 ( 𝑓 ). Then

{𝜎 ∈ 𝑆𝑘 : (𝛼1, . . . , 𝛼𝑘 ) and (𝛼𝜎(1) , . . . , 𝛼𝜎(𝑘)) are conjugate over 𝐾} (6.3)

is a subgroup of 𝑆𝑘 isomorphic to Gal𝐾 ( 𝑓 ).

Proof As above, each \ ∈ Gal𝐾 ( 𝑓 ) gives rise to a permutation 𝜎\ ∈ 𝑆𝑘 , defined
by \ (𝛼𝑖) = 𝛼𝜎\ (𝑖) . For the purposes of this proof, let us say that a permutation
𝜎 ∈ 𝑆𝑘 is ‘good’ if it belongs to the set (6.3). By Remark 2.1.13, it suffices to
show that a permutation 𝜎 is good if and only if 𝜎 = 𝜎\ for some \ ∈ Gal𝐾 ( 𝑓 ).

First suppose that 𝜎 = 𝜎\ for some \ ∈ Gal𝐾 ( 𝑓 ). For every 𝑝 ∈ 𝐾 [𝑡1, . . . , 𝑡𝑘 ],

𝑝(𝛼𝜎(1) , . . . , 𝛼𝜎(𝑘)) = 𝑝(\ (𝛼1), . . . , \ (𝛼𝑘 )) = \ (𝑝(𝛼1, . . . , 𝛼𝑘 )),

where the first equality is by definition of 𝜎\ and the second is because \ is a
homomorphism over 𝐾 . But \ is an isomorphism, so it follows that

𝑝(𝛼𝜎(1) , . . . , 𝛼𝜎(𝑘)) = 0 ⇐⇒ 𝑝(𝛼1, . . . , 𝛼𝑘 ) = 0.

Hence 𝜎 is good.
Conversely, suppose that 𝜎 is good. By Corollary 5.1.14, every element of

SF𝐾 ( 𝑓 ) can be expressed as 𝑝(𝛼1, . . . , 𝛼𝑘 ) for some 𝑝 ∈ 𝐾 [𝑡1, . . . , 𝑡𝑘 ]. Now for
𝑝, 𝑞 ∈ 𝐾 [𝑡1, . . . , 𝑡𝑘 ], we have

𝑝(𝛼1, . . . , 𝛼𝑘 ) = 𝑞(𝛼1, . . . , 𝛼𝑘 ) ⇐⇒ 𝑝(𝛼𝜎(1) , . . . , 𝛼𝜎(𝑘)) = 𝑞(𝛼𝜎(1) , . . . , 𝛼𝜎(𝑘))

(by applying Definition 6.3.9 of conjugacy with 𝑝 − 𝑞 as the ‘𝑝’). So there is a
well-defined, injective function \ : SF𝐾 ( 𝑓 ) → SF𝐾 ( 𝑓 ) satisfying

\ (𝑝(𝛼1, . . . , 𝛼𝑘 )) = 𝑝(𝛼𝜎(1) , . . . , 𝛼𝜎(𝑘)) (6.4)

for all 𝑝 ∈ 𝐾 [𝑡1, . . . , 𝑡𝑘 ]. Moreover, \ is surjective because 𝜎 is a permutation,
and \ (𝑎) = 𝑎 for all 𝑎 ∈ 𝐾 (by taking 𝑝 = 𝑎 in (6.4)), and \ (𝛼𝑖) = 𝛼𝜎(𝑖) for all
𝑖 (by taking 𝑝 = 𝑡𝑖 in (6.4)). You can check that \ is a homomorphism of fields.
Hence \ ∈ Gal𝐾 ( 𝑓 ) with 𝜎\ = 𝜎, as required. □

Exercise 6.3.11 I skipped two small bits in that proof: ‘\ is surjective
because 𝜎 is a permutation’ (why?), and ‘You can check that \ is a
homomorphism of fields’. Fill in the gaps.
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It’s important in Galois theory to be able to move between fields. For example,
you might start with a polynomial whose coefficients belong to one field 𝐾 , but
later decide to interpret the coefficients as belonging to some larger field 𝐿. Here’s
what happens to the Galois group when you do that.

Corollary 6.3.12 Let 𝐿 : 𝐾 be a field extension and 0 ≠ 𝑓 ∈ 𝐾 [𝑡]. Then Gal𝐿 ( 𝑓 )
is isomorphic to a subgroup of Gal𝐾 ( 𝑓 ).

Proof This follows from Proposition 6.3.10 together with the observation that if
two 𝑘-tuples are conjugate over 𝐿, they are conjugate over 𝐾 . □

Example 6.3.13 Let’s find the Galois group of 𝑓 (𝑡) = (𝑡2 + 1) (𝑡2 − 2) over Q, R
and C in turn.

In Example 6.3.6(iv), we saw that GalQ( 𝑓 ) � 𝐶2 × 𝐶2.
Since both roots of 𝑡2 − 2 are real, SFR( 𝑓 ) = SFR(𝑡2 + 1) = C. So GalR( 𝑓 ) =

Gal(C : R) � 𝐶2, where the last step is by Example 6.3.3(i).
Finally, GalC( 𝑓 ) is trivial since C is algebraically closed (Example 6.3.6(i)).
So as Corollary 6.3.12 predicts, GalC( 𝑓 ) is isomorphic to a subgroup of

GalR( 𝑓 ), which is isomorphic to a subgroup of GalQ( 𝑓 ).

Corollary 6.3.14 Let 𝑓 be a nonzero polynomial over a field 𝐾 , with 𝑘 distinct
roots in SF𝐾 ( 𝑓 ). Then |Gal𝐾 ( 𝑓 ) | divides 𝑘!.

Proof By Proposition 6.3.10, Gal𝐾 ( 𝑓 ) is isomorphic to a subgroup of 𝑆𝑘 , which
has 𝑘! elements. The result follows from Lagrange’s theorem. □

The inequalities (6.2) already gave us | Gal𝐾 ( 𝑓 ) | ≤ deg( 𝑓 )!. Corollary 6.3.14
improves on this in two respects. First, it implies that | Gal𝐾 ( 𝑓 ) | ≤ 𝑘!. It’s always
the case that 𝑘 ≤ deg( 𝑓 ) in all cases, and 𝑘 < deg( 𝑓 ) if 𝑓 has repeated roots in its
splitting field. A trivial example: if 𝑓 (𝑡) = 𝑡2 then 𝑘 = 1 and deg( 𝑓 ) = 2. Second,
it tells us that | Gal𝐾 ( 𝑓 ) | is not only less than or equal to 𝑘!, but a factor of it.

Galois theory is about the interplay between field extensions and groups. In
the next chapter, we’ll see that just as every field extension gives rise to a group
of automorphisms (its Galois group), every group of automorphisms gives rise to
a field extension. We’ll also go deeper into the different types of field extension:
normal extensions (the mirror image of normal subgroups) and separable exten-
sions (which have to do with repeated roots). All of that will lead us towards the
fundamental theorem of Galois theory.
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Chapter 7

Preparation for the fundamental
theorem

Very roughly, the fundamental theorem of Galois theory says that you can tell a
lot about a field extension by looking at its Galois group. A bit more specifically,

Introduction to
Week 7

it says that the subgroups and quotients of Gal(𝑀 : 𝐾), and their orders, give
us information about the subfields of 𝑀 containing 𝐾 , and their degrees. For
example, one part of the fundamental theorem is that

[𝑀 : 𝐾] = | Gal(𝑀 : 𝐾) |.

The theorem doesn’t hold for all extensions, just those that are ‘nice enough’.
Crucially, this includes splitting field extensions SFQ( 𝑓 ) : Q of polynomials 𝑓

over Q—the starting point of classical Galois theory.
Let’s dip our toes into the water by thinking about why it might be true that

[𝑀 : 𝐾] = | Gal(𝑀 : 𝐾) |, at least for extensions that are nice enough.
The easiest nontrivial extensions are the simple algebraic extensions, 𝑀 =

𝐾 (𝛼). Write 𝑚 for the minimal polynomial of 𝛼 over 𝐾 and 𝛼1, 𝛼2, . . . , 𝛼𝑠 for
the distinct roots of 𝑚 in 𝑀 . For every element 𝜑 of Gal(𝑀 : 𝐾), we have
𝑚(𝜑(𝛼)) = 0 by Example 6.1.4, and so 𝜑(𝛼) = 𝛼 𝑗 for some 𝑗 ∈ {1, . . . , 𝑠}. On
the other hand, for each 𝑗 ∈ {1, . . . , 𝑠}, there is exactly one 𝜑 ∈ Gal(𝑀 : 𝐾) such
that 𝜑(𝛼) = 𝛼 𝑗 , by Proposition 6.1.6. So | Gal(𝑀 : 𝐾) | = 𝑠.

On the other hand, [𝑀 : 𝐾] = deg(𝑚). So [𝑀 : 𝐾] = | Gal(𝑀 : 𝐾) | if and
only if deg(𝑚) is equal to 𝑠, the number of distinct roots of 𝑚 in 𝑀 . Certainly
𝑠 ≤ deg(𝑚). But are 𝑠 and deg(𝑚) equal?

There are two reasons why they might not be. First, 𝑚 might not split in 𝑀 .
For instance, if 𝐾 = Q and 𝛼 =

3√2 then 𝑚(𝑡) = 𝑡3 − 2, which has only one root in
Q( 3√2), so | Gal(Q( 3√2) : Q) | = 1 < 3 = deg(𝑚). An algebraic extension is called
‘normal’ if this problem doesn’t occur, that is, if the minimal polynomial of every
element does split. That’s what Section 7.1 is about.
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Second, we might have 𝑠 < deg(𝑚) because some of the roots of 𝑚 in 𝑀 are
repeated. If they are, the number 𝑠 of distinct roots will be less then deg(𝑚). An
algebraic extension is called ‘separable’ if this problem doesn’t occur, that is, if the
minimal polynomial of every element has no repeated roots in its splitting field.
That’s what Section 7.2 is about.

If we take any finite extension 𝑀 : 𝐾 (not necessarily simple) that is both
normal and separable, then it is indeed true that | Gal(𝑀 : 𝐾) | = [𝑀 : 𝐾]. And in
fact, these conditions are enough to make the whole fundamental theorem work,
as we’ll see next week.

I hesitated before putting normality and separability into the same chapter,
because you should think of them in quite different ways:

• Normality has a clear conceptual meaning, and its importance was recog-
nized by Galois himself. Despite the name, most field extensions aren’t
normal. Normality isn’t something to be taken for granted.

• In contrast, Galois never considered separability, because it holds automat-
ically over Q (his focus), and in fact over any field of characteristic 0, as
well as any finite field. It takes some work to find an extension that isn’t
separable. You can view separability as more of a technicality.

There’s one more concept in this chapter: the ‘fixed field’ of a group of
automorphisms (Section 7.3). Every Galois theory text I’ve seen contains at least
one proof that makes you ask ‘how did anyone think of that?’ I would argue that
the proof of Theorem 7.3.3 is the one and only truly ingenious argument in this
course: maybe not the hardest, but the most ingenious. This is not a compliment.

7.1 Normality
Definition 7.1.1 An algebraic field extension 𝑀 : 𝐾 is normal if for all 𝛼 ∈ 𝑀 ,
the minimal polynomial of 𝛼 splits in 𝑀 .

We also say 𝑀 is normal over 𝐾 to mean that 𝑀 : 𝐾 is normal.

Lemma 7.1.2 Let 𝑀 : 𝐾 be an algebraic extension. Then 𝑀 : 𝐾 is normal if and
only if every irreducible polynomial over 𝐾 either has no roots in 𝑀 or splits in 𝑀 .

Put another way, normality means that any irreducible polynomial over 𝐾 with
at least one root in 𝑀 has all its roots in 𝑀 .

Proof Suppose that 𝑀 : 𝐾 is normal, and let 𝑓 be an irreducible polynomial over
𝐾 . If 𝑓 has a root 𝛼 in 𝑀 then the minimal polynomial of 𝛼 is 𝑓 /𝑐, where 𝑐 ∈ 𝐾
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is the leading coefficient of 𝑓 . Since 𝑀 : 𝐾 is normal, 𝑓 /𝑐 splits in 𝑀 , so 𝑓 does
too.

Conversely, suppose that every irreducible polynomial over 𝐾 either has no
roots in 𝑀 or splits in 𝑀 . Let 𝛼 ∈ 𝑀 . Then the minimal polynomial of 𝛼 has at
least one root in 𝑀 (namely, 𝛼), so it splits in 𝑀 . □

Examples 7.1.3 i. Let b =
3√2 ∈ R, and consider Q(b) : Q. The minimal

polynomial of b over Q is 𝑡3 − 2, whose roots in C are b ∈ R and 𝜔b, 𝜔2b ∈
C \ R, where 𝜔 = 𝑒2𝜋𝑖/3. Since Q(b) ⊆ R, the minimal polynomial 𝑡3 − 2
does not split in Q(b). Hence Q(b) is not normal over Q.
Alternatively, using the equivalent condition in Lemma 7.1.2, Q(b) : Q is
not normal because 𝑡3 −2 is an irreducible polynomial overQ that has a root
in Q(b) but does not split there.
One way to think about the non-normality of Q(b) : Q is as follows. The
three roots of 𝑡3 − 2 are conjugate (‘indistinguishable’) over Q, since they
have the same minimal polynomial. But if they’re indistinguishable, it

What does it mean
to be normal?

would be strange for an extension to contain some but not all of them—that
would be making a distinction between elements that are supposed to be
indistinguishable. In this sense, Q(b) : Q is ‘abnormal’.

ii. Let 𝑓 be a nonzero polynomial over a field 𝐾 . Then SF𝐾 ( 𝑓 ) : 𝐾 is always
normal, as we shall see (Theorem 7.1.5).

iii. Every extension of degree 2 is normal (just as, in group theory, every
subgroup of index 2 is normal). You’ll be asked to show this in Workshop 4,
question 4, but you also know enough to prove it now.

Exercise 7.1.4 What happens if you drop the word ‘irreducible’ from
Lemma 7.1.2? Is it still true?

Normality of field extensions is intimately related to normality of subgroups,
and conjugacy in field extensions is also related to conjugacy in groups. (The
video ‘What does it mean to be normal?’ explains both kinds of normality and
conjugacy in intuitive terms.)

Here’s the first of our two theorems about normal extensions. It describes
which extensions arise as splitting field extensions.

Theorem 7.1.5 Let 𝑀 : 𝐾 be a field extension. Then

𝑀 = SF𝐾 ( 𝑓 ) for some nonzero 𝑓 ∈ 𝐾 [𝑡] ⇐⇒ 𝑀 : 𝐾 is finite and normal.
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SF𝑀 (𝑚)

𝑀 = 𝐾 (𝛼1, . . . , 𝛼𝑛)
𝜑

�
// 𝐾 (𝛼1, . . . , 𝛼𝑛, Y)

OO

𝐾 (𝛿) �

\
//

OO

𝐾 (Y)

OO

𝐾

gg 77

Figure 7.1: Maps used in the proof that splitting field extensions are normal.

Proof For ⇐, suppose that 𝑀 : 𝐾 is finite and normal. By finiteness, there is a
basis𝛼1, . . . , 𝛼𝑛 of𝑀 over𝐾 , and each𝛼𝑖 is algebraic over𝐾 (by Proposition 5.2.4).
For each 𝑖, let 𝑚𝑖 be the minimal polynomial of 𝛼𝑖 over 𝐾; then by normality, 𝑚𝑖
splits in 𝑀 . Hence 𝑓 = 𝑚1𝑚2 · · ·𝑚𝑛 ∈ 𝐾 [𝑡] splits in 𝑀 . The set of roots of 𝑓 in
𝑀 contains {𝛼1, . . . , 𝛼𝑛}, and 𝑀 = 𝐾 (𝛼1, . . . , 𝛼𝑛), so 𝑀 is generated over 𝐾 by
the set of roots of 𝑓 in 𝑀 . Thus, 𝑀 is a splitting field of 𝑓 over 𝐾 .

For ⇒, take a nonzero 𝑓 ∈ 𝐾 [𝑡] such that 𝑀 = SF𝐾 ( 𝑓 ). Write 𝛼1, . . . , 𝛼𝑛 for
the roots of 𝑓 in 𝑀 . Then 𝑀 = 𝐾 (𝛼1, . . . , 𝛼𝑛). Each 𝛼𝑖 is algebraic over 𝐾 (since
𝑓 ≠ 0), so by Proposition 5.2.4, 𝑀 : 𝐾 is finite.

We now show that 𝑀 : 𝐾 is normal, which is the most substantial part of the
proof (Figure 7.1). Let 𝛿 ∈ 𝑀 , with minimal polynomial 𝑚 ∈ 𝐾 [𝑡]. Certainly 𝑚
splits in SF𝑀 (𝑚), so to show that 𝑚 splits in 𝑀 , it is enough to show that every
root Y of 𝑚 in SF𝑀 (𝑚) lies in 𝑀 .Splitting field

extensions are
normal

Since 𝑚 is a monic irreducible annihilating polynomial of Y over 𝐾 , it is
the minimal polynomial of Y over 𝐾 . Hence by Theorem 4.3.16, there is an
isomorphism \ : 𝐾 (𝛿) → 𝐾 (Y) over 𝐾 such that \ (𝛿) = Y. Now observe that:

• 𝑀 = SF𝐾 (𝛿) ( 𝑓 ), by Lemma 6.2.14(ii);

• 𝐾 (𝛼1, . . . , 𝛼𝑛, Y) = SF𝐾 (Y) ( 𝑓 ), by Lemma 6.2.14(i);

• \∗ 𝑓 = 𝑓 , since 𝑓 ∈ 𝐾 [𝑡] and \ is a homomorphism over 𝐾 .

So we can apply Proposition 6.2.11, which implies that there is an isomorphism
𝜑 : 𝑀 → 𝐾 (𝛼1, . . . , 𝛼𝑛, Y) extending \. It is an isomorphism over 𝐾 , since \ is.

Since 𝛿 ∈ 𝐾 (𝛼1, . . . , 𝛼𝑛) and 𝜑 is a homomorphism over 𝐾 , we have 𝜑(𝛿) ∈
𝐾 (𝜑(𝛼1), . . . , 𝜑(𝛼𝑛)). Now 𝜑(𝛿) = \ (𝛿) = Y, so Y ∈ 𝐾 (𝜑(𝛼1), . . . , 𝜑(𝛼𝑛)).
Moreover, for each 𝑖 we have 𝑓 (𝜑(𝛼𝑖)) = 0 (by Example 6.1.4) and so 𝜑(𝛼𝑖) ∈
{𝛼1, . . . , 𝛼𝑛}. Hence Y ∈ 𝐾 (𝛼1, . . . , 𝛼𝑛) = 𝑀 , as required. □
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Corollary 7.1.6 Let 𝑀 : 𝐿 : 𝐾 be field extensions. If 𝑀 : 𝐾 is finite and normal
then so is 𝑀 : 𝐿.

Proof Follows from Theorem 7.1.5 and Lemma 6.2.14(ii). □

Warning 7.1.7 It does not follow that 𝐿 : 𝐾 is normal. For instance,
consider Q( 3√2, 𝑒2𝜋𝑖/3) : Q( 3√2) : Q. The first field is the splitting
field of 𝑡3 − 2 over Q, and therefore normal over Q, but Q( 3√2) is not
(Example 7.1.3(i)).

Theorem 7.1.5 is the first of two theorems about normality. The second is to
do with the action of the Galois group of an extension.

Warning 7.1.8 By definition, the Galois group Gal(𝑀 : 𝐾) of an
extension 𝑀 : 𝐾 acts on 𝑀 . But if 𝑀 is the splitting field of some
polynomial 𝑓 over 𝐾 then the action of Gal(𝑀 : 𝐾) on 𝑀 restricts to
an action on the roots of 𝑓 (a finite set), as we saw in Section 6.3. So
there are two actions of the Galois group in play, one the restriction of
the other. Both are important.

When a group acts on a set, a basic question is: what are the orbits? For
Gal(𝑀 : 𝐾) acting on 𝑀 , the answer is: the conjugacy classes of 𝑀 over 𝐾 . Or at
least, that’s the case when 𝑀 : 𝐾 is finite and normal:
Proposition 7.1.9 Let 𝑀 : 𝐾 be a finite normal extension and 𝛼, 𝛼′ ∈ 𝑀 . Then

𝛼 and 𝛼′ are conjugate over 𝐾 ⇐⇒ 𝛼′ = 𝜑(𝛼) for some 𝜑 ∈ Gal(𝑀 : 𝐾).
Proof For ⇐, let 𝜑 ∈ Gal(𝑀 : 𝐾) with 𝛼′ = 𝜑(𝛼). Then 𝛼 and 𝛼′ are conjugate
over 𝐾 , by Example 6.1.4.

For ⇒, suppose that 𝛼 and 𝛼′ are conjugate over 𝐾 . Since 𝑀 : 𝐾 is finite,
both are algebraic over 𝐾 , and since they are conjugate over 𝐾 , they have the same
minimal polynomial 𝑚 ∈ 𝐾 [𝑡]. By Theorem 4.3.16, there is an isomorphism
\ : 𝐾 (𝛼) → 𝐾 (𝛼′) over 𝐾 such that \ (𝛼) = 𝛼′ (see diagram below).

By Theorem 7.1.5, 𝑀 is the splitting field of some polynomial 𝑓 over𝐾 . Hence
𝑀 is also the splitting field of 𝑓 over both 𝐾 (𝛼) and 𝐾 (𝛼′), by Lemma 6.2.14(ii).
Moreover, \∗ 𝑓 = 𝑓 since \ is a homomorphism over 𝐾 and 𝑓 is a polynomial over
𝐾 . So by Proposition 6.2.11(i), there is an automorphism 𝜑 of 𝑀 extending \:

𝑀
𝜑

�
// 𝑀

𝐾 (𝛼) �

\
//

OO

𝐾 (𝛼′)

OO

𝐾

bb <<
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Then 𝜑 ∈ Gal(𝑀 : 𝐾) with 𝜑(𝛼) = \ (𝛼) = 𝛼′, as required. □

Example 7.1.10 Consider the finite normal extension C : R. Let 𝛼, 𝛼′ ∈ C.
Lemma 1.1.2 states that 𝛼 and 𝛼′ are conjugate over R if and only if 𝛼′ is either
𝛼 or 𝛼. Example 6.3.3(i) states that Gal(C : R) = {id, ^}, where ^ is complex
conjugation. This confirms Proposition 7.1.9 in the case C : R.

Proposition 7.1.9 is about the action of Gal(𝑀 : 𝐾) on the whole field 𝑀 , but
it has a powerful corollary involving the action of the Galois group on just the
roots of an irreducible polynomial 𝑓 , in the case 𝑀 = SF𝐾 ( 𝑓 ):
Corollary 7.1.11 Let 𝑓 be an irreducible polynomial over a field 𝐾 . Then the
action of Gal𝐾 ( 𝑓 ) on the roots of 𝑓 in SF𝐾 ( 𝑓 ) is transitive.

Recall what transitive means, for an action of a group 𝐺 on a set 𝑋: for all
𝑥, 𝑥′ ∈ 𝑋 , there exists 𝑔 ∈ 𝐺 such that 𝑔𝑥 = 𝑥′.
Proof Since 𝑓 is irreducible, the roots of 𝑓 in SF𝐾 ( 𝑓 ) all have the same minimal
polynomial, namely, 𝑓 divided by its leading coefficient. So they are all conjugate
over 𝐾 . Since SF𝐾 ( 𝑓 ) : 𝐾 is finite and normal (by Theorem 7.1.5), the result
follows from Proposition 7.1.9. □

Exercise 7.1.12 Show by example that Corollary 7.1.11 becomes false
if you drop the word ‘irreducible’.

Example 7.1.13 Let 𝑓 (𝑡) = 1 + 𝑡 + · · · + 𝑡 𝑝−1 ∈ Q[𝑡], where 𝑝 is prime. Since
(1 − 𝑡) 𝑓 (𝑡) = 1 − 𝑡 𝑝, the roots of 𝑓 in C are 𝜔, 𝜔2, . . . , 𝜔𝑝−1, where 𝜔 = 𝑒2𝜋𝑖/𝑝.
By Example 3.3.16, 𝑓 is irreducible over Q. Hence by Corollary 7.1.11, for each
𝑖 ∈ {1, . . . , 𝑝 − 1}, there is some 𝜑 ∈ GalQ( 𝑓 ) such that 𝜑(𝜔) = 𝜔𝑖.

This is spectacular! Until now, we’ve been unable to prove such things without
a huge amount of explicit checking, which, moreover, only works on a case-by-case
basis. For example, if you watched the video ‘Calculating Galois groups with bare
hands, part 2’, you’ll have seen how much tedious calculation went into the single
case 𝑝 = 5, 𝑖 = 2:
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But the theorems we’ve proved make all this unnecessary.
In fact, for each 𝑖 ∈ {1, . . . , 𝑝 − 1}, there’s exactly one element 𝜑𝑖 of GalQ( 𝑓 )

such that 𝜑𝑖 (𝜔) = 𝜔𝑖. For since SFQ( 𝑓 ) = Q(𝜔), two elements of GalQ( 𝑓 ) that
take the same value on 𝜔 must be equal. Hence

GalQ( 𝑓 ) = {𝜑1, . . . , 𝜑𝑝−1}.

In fact, GalQ( 𝑓 ) � 𝐶𝑝−1 (Workshop 4, question 13).

Example 7.1.14 Let’s calculate 𝐺 = GalQ(𝑡3 − 2). Since 𝑡3 − 2 has 3 distinct
roots in C, it has 3 distinct roots in its splitting field. By Proposition 6.3.10, 𝐺 is
isomorphic to a subgroup of 𝑆3. Now𝐺 acts transitively on the 3 roots, so it has at
least 3 elements, so it is isomorphic to either 𝐴3 or 𝑆3. Since two of the roots are
non-real complex conjugates, one of the elements of 𝐺 is complex conjugation,
which has order 2 (Example 6.3.6(iii)). Hence 2 divides |𝐺 |, forcing 𝐺 � 𝑆3.

We now show how a normal field extension gives rise to a normal subgroup.
Whenever in life you meet a normal subgroup, you should immediately want to
form the quotient, so we do that too.

Theorem 7.1.15 Let 𝑀 : 𝐿 : 𝐾 be field extensions with 𝑀 : 𝐾 finite and
normal.

i. 𝐿 : 𝐾 is a normal extension ⇐⇒ 𝜑𝐿 = 𝐿 for all 𝜑 ∈ Gal(𝑀 : 𝐾).

ii. If 𝐿 : 𝐾 is a normal extension then Gal(𝑀 : 𝐿) is a normal subgroup of
Gal(𝑀 : 𝐾) and

Gal(𝑀 : 𝐾)
Gal(𝑀 : 𝐿) � Gal(𝐿 : 𝐾).

Before the proof, here’s some context and explanation.
Part (i) answers the question implicit in Warning 7.1.7: we know from Corol-

lary 7.1.6 that 𝑀 : 𝐿 is normal, but when is 𝐿 : 𝐾 normal? The notation 𝜑𝐿
means {𝜑(𝛼) : 𝛼 ∈ 𝐿}. For 𝜑𝐿 to be equal to 𝐿 means that 𝜑 fixes 𝐿 as a set (in
other words, permutes it within itself), not that 𝜑 fixes each element of 𝐿.

In part (ii), it’s true for all𝑀 : 𝐿 : 𝐾 that Gal(𝑀 : 𝐿) is a subset of Gal(𝑀 : 𝐾),
since

Gal(𝑀 : 𝐿) = {automorphisms 𝜑 of 𝑀 such that 𝜑(𝛼) = 𝛼 for all 𝛼 ∈ 𝐿}
⊆ {automorphisms 𝜑 of 𝑀 such that 𝜑(𝛼) = 𝛼 for all 𝛼 ∈ 𝐾}
= Gal(𝑀 : 𝐾).

And it’s always true that Gal(𝑀 : 𝐿) is a subgroup of Gal(𝑀 : 𝐾), as you can
easily check. But part (ii) tells us something much more substantial: it’s a normal
subgroup when 𝐿 : 𝐾 is a normal extension.
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Proof of Theorem 7.1.15 For (i), first suppose that 𝐿 is normal over 𝐾 , and let
𝜑 ∈ Gal(𝑀 : 𝐾). For all 𝛼 ∈ 𝐿, Proposition 7.1.9 implies that 𝛼 and 𝜑(𝛼) are
conjugate over 𝐾 , so they have the same minimal polynomial, so 𝜑(𝛼) ∈ 𝐿 by
normality. Hence 𝜑𝐿 ⊆ 𝐿. The same argument with 𝜑−1 in place of 𝜑 gives
𝜑−1𝐿 ⊆ 𝐿, and applying 𝜑 to each side then gives 𝐿 ⊆ 𝜑𝐿. So 𝜑𝐿 = 𝐿.

Conversely, suppose that 𝜑𝐿 = 𝐿 for all 𝜑 ∈ Gal(𝑀 : 𝐾). Let 𝛼 ∈ 𝐿 with
minimal polynomial 𝑚. Since 𝑀 : 𝐾 is normal, 𝑚 splits in 𝑀 . Each root 𝛼′ of
𝑚 in 𝑀 is conjugate to 𝛼 over 𝐾 , so by Proposition 7.1.9, 𝛼′ = 𝜑(𝛼) for some
𝜑 ∈ Gal(𝑀 : 𝐾), giving 𝛼′ ∈ 𝜑𝐿 = 𝐿. Hence 𝑚 splits in 𝐿 and 𝐿 : 𝐾 is normal.

For (ii), suppose that 𝐿 : 𝐾 is normal. To prove that Gal(𝑀 : 𝐿) is a normal
subgroup of Gal(𝑀 : 𝐾), let 𝜑 ∈ Gal(𝑀 : 𝐾) and \ ∈ Gal(𝑀 : 𝐿). We show that
𝜑−1\𝜑 ∈ Gal(𝑀 : 𝐿), or equivalently,

𝜑−1\𝜑(𝛼) = 𝛼 for all 𝛼 ∈ 𝐿,

or equivalently,
\𝜑(𝛼) = 𝜑(𝛼) for all 𝛼 ∈ 𝐿.

But by (i), 𝜑(𝛼) ∈ 𝐿 for all 𝛼 ∈ 𝐿, so \ (𝜑(𝛼)) = 𝜑(𝛼) since \ ∈ Gal(𝑀 : 𝐿).
This completes the proof that Gal(𝑀 : 𝐿) P Gal(𝑀 : 𝐾).

Finally, we prove the statement on quotients (still supposing that 𝐿 : 𝐾 is a
normal extension). Every automorphism 𝜑 of 𝑀 over 𝐾 satisfies 𝜑𝐿 = 𝐿 (by (i)),
and therefore restricts to an automorphism �̂� of 𝐿. The function

a : Gal(𝑀 : 𝐾) → Gal(𝐿 : 𝐾)
𝜑 ↦→ �̂�

is a group homomorphism, since it preserves composition. Its kernel is Gal(𝑀 :
𝐿), by definition. If we can prove that a is surjective then the last part of the
theorem will follow from the first isomorphism theorem.

To prove that a is surjective, we must show that each automorphism 𝜓 of 𝐿
over 𝐾 extends to an automorphism 𝜑 of 𝑀:

𝑀
𝜑

�
// 𝑀

𝐿
�

𝜓
//

OO

𝐿

OO

𝐾

`` >>

The argument is similar to the second half of the proof of Proposition 7.1.9. By
Theorem 7.1.5, 𝑀 is the splitting field of some 𝑓 ∈ 𝐾 [𝑡]. Then 𝑀 is also the
splittting field of 𝑓 over 𝐿. Also, 𝜓∗ 𝑓 = 𝑓 since 𝜓 is a homomorphism over 𝐾 and
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𝑓 is a polynomial over 𝐾 . So by Proposition 6.2.11(i), there is an automorphism
𝜑 of 𝑀 extending 𝜓, as required. □

Example 7.1.16 Take 𝑀 : 𝐿 : 𝐾 to be

Q
(
b, 𝜔

)
: Q(𝜔) : Q,

where b = 3√2 and𝜔 = 𝑒2𝜋𝑖/3. As you will recognize by now,Q(b, 𝜔) is the splitting
field of 𝑡3 − 2 over Q, so it is a finite normal extension of Q by Theorem 7.1.5.

Also,Q(𝜔) is the splitting field of 𝑡2+𝑡+1 overQ, so it too is a normal extension
ofQ. Part (i) of Theorem 7.1.15 implies that every element of GalQ(𝑡3−2) restricts
to an automorphism of Q(𝜔).

Part (ii) implies that

Gal
(
Q
(
b, 𝜔

)
: Q(𝜔)

)
P Gal

(
Q
(
b, 𝜔

)
: Q

)
and that

Gal
(
Q
(
b, 𝜔

)
: Q

)
Gal

(
Q
(
b, 𝜔

)
: Q(𝜔)

) � Gal(Q(𝜔) : Q). (7.1)

What does this say explicitly? We showed in Example 7.1.14 that Gal(Q(b, 𝜔) :
Q) � 𝑆3. That is, each element of the Galois group permutes the three roots

b, 𝜔b, 𝜔2b

of 𝑡3−2, and all six permutations are realized by some element of the Galois group.
An element of Gal(Q(b, 𝜔) : Q) that fixes 𝜔 is determined by which of the three
roots b is mapped to, so Gal(Q(b, 𝜔) : Q(𝜔)) � 𝐴3. Finally, Gal(Q(𝜔) : Q) � 𝐶2
by Example 7.1.13. So in this case, the isomorphism (7.1) states that

𝑆3
𝐴3
� 𝐶2.

Exercise 7.1.17 Draw a diagram showing the three roots of 𝑡3 −2 and
the elements of 𝐻 = Gal(Q(b, 𝜔) : Q(𝜔)) acting on them. There is
a simple geometric description of the elements of Gal(Q(b, 𝜔) : Q)
that belong to the subgroup 𝐻. What is it?

7.2 Separability
Theorem 6.2.13 implies that | Gal(𝑀 : 𝐾) | ≤ [𝑀 : 𝐾] whenever 𝑀 : 𝐾 is a
splitting field extension. Why is this an inequality, not an equality? The answer
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can be traced back to the proof of Proposition 6.2.11 on extension of isomorphisms.
There, we had an irreducible polynomial called𝜓∗𝑚, and we wrote 𝑠 for the number
of distinct roots of 𝜓∗𝑚 in its splitting field. Ultimately, the source of the inequality
was the fact that 𝑠 ≤ deg(𝜓∗𝑚).

But is this last inequality actually an equality? That is, does an irreducible
polynomial of degree 𝑑 always have 𝑑 distinct roots in its splitting field? Certainly
it has 𝑑 roots when counted with multiplicity. But there will be fewer than 𝑑

distinct roots if any of the roots are repeated (have multiplicity ≥ 2). The question
is whether this can ever happen.

Formally, for a polynomial 𝑓 (𝑡) ∈ 𝐾 [𝑡] and a root 𝛼 of 𝑓 in some extension
𝑀 of 𝐾 , we say that 𝛼 is a repeated root if (𝑡 − 𝛼)2 | 𝑓 (𝑡) in 𝑀 [𝑡].

Exercise 7.2.1 Try to find an example of an irreducible polynomial
of degree 𝑑 with fewer than 𝑑 distinct roots in its splitting field. Or
if you can’t, see if you can prove that this is impossible over Q: that
is, an irreducible over Q has no repeated roots in C. Both are quite
hard, but ten minutes spent trying may help you to appreciate what’s
to come.

Definition 7.2.2 An irreducible polynomial over a field is separable if it has no
repeated roots in its splitting field.

Equivalently, an irreducible polynomial 𝑓 ∈ 𝐾 [𝑡] is separable if it splits into
distinct linear factors in SF𝐾 ( 𝑓 ):

𝑓 (𝑡) = 𝑎(𝑡 − 𝛼1) · · · (𝑡 − 𝛼𝑛)

for some 𝑎 ∈ 𝐾 and distinct 𝛼1, . . . , 𝛼𝑛 ∈ SF𝐾 ( 𝑓 ). Put another way, an irreducible
𝑓 is separable if and only if it has deg( 𝑓 ) distinct roots in its splitting field.

Example 7.2.3 𝑡3 − 2 ∈ Q[𝑡] is separable, since it has 3 distinct roots in C, hence
in its splitting field.

Example 7.2.4 This is an example of an irreducible polynomial that’s inseparable.
It’s a little bit complicated, but it’s the simplest example there is.

Let 𝑝 be a prime number. We will consider the field 𝐾 = F𝑝 (𝑢) of rational
expressions over F𝑝 in an indeterminate (variable symbol) 𝑢. Put 𝑓 (𝑡) = 𝑡 𝑝 − 𝑢 ∈
𝐾 [𝑡]. We will show that 𝑓 is an inseparable irreducible polynomial.

By definition, 𝑓 has at least one root 𝛼 in its splitting field. But the roots of 𝑓
are the 𝑝th roots of 𝑢, and in fields of characteristic 𝑝, each element has at most
one 𝑝th root (Corollary 2.3.22(i)). So 𝛼 is the only root of 𝑓 in SF𝐾 ( 𝑓 ), despite 𝑓
having degree 𝑝 > 1. Alternatively, we can argue like this:

𝑓 (𝑡) = 𝑡 𝑝 − 𝑢 = 𝑡 𝑝 − 𝛼𝑝 = (𝑡 − 𝛼)𝑝,
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where the last step comes from the Frobenius map of SF𝐾 ( 𝑓 ) being a homomor-
phism (Proposition 2.3.20(i)).

We now show that 𝑓 is irreducible over 𝐾 . Suppose it is reducible. The unique
factorization of 𝑓 into irreducible polynomials over SF𝐾 ( 𝑓 ) is 𝑓 (𝑡) = (𝑡 − 𝛼)𝑝, so
any nontrivial factorization of 𝑓 in 𝐾 [𝑡] is of the form

𝑓 (𝑡) = (𝑡 − 𝛼)𝑖 (𝑡 − 𝛼)𝑝−𝑖

where 0 < 𝑖 < 𝑝 and both factors belong to 𝐾 [𝑡]. The coefficient of 𝑡𝑖−1 in (𝑡 −𝛼)𝑖
is −𝑖𝛼, so −𝑖𝛼 ∈ 𝐾 . But 𝑖 is invertible in 𝐾 , so 𝛼 ∈ 𝐾 . Hence 𝑢 has a 𝑝th root in
𝐾 = F𝑝 (𝑢), contradicting Exercise 3.1.13.

Warning 7.2.5 Definition 7.2.2 is only a definition of separability
for irreducible polynomials. There is a definition of separability for
arbitrary polynomials, but it’s not simply Definition 7.2.2 with the
word ‘irreducible’ deleted. We won’t need it, but here it is: an
arbitrary polynomial is called separable if each of its irreducible factors
is separable. So 𝑡2 is separable, even though it has a repeated root.

In real analysis, we can test whether a root is repeated by asking whether the
derivative is 0 there:

Over an arbitrary field, there’s no general definition of the derivative of a func-
tion, as there’s no meaningful notion of limit. But even without limits, we can
differentiate polynomials in the following sense.

Definition 7.2.6 Let 𝐾 be a field and let 𝑓 (𝑡) =
∑𝑛
𝑖=0 𝑎𝑖𝑡

𝑖 ∈ 𝐾 [𝑡]. The formal
derivative of 𝑓 is

(𝐷 𝑓 ) (𝑡) =
𝑛∑︁
𝑖=1
𝑖𝑎𝑖𝑡

𝑖−1 ∈ 𝐾 [𝑡] .

We use 𝐷 𝑓 rather than 𝑓 ′ to remind ourselves not to take the familiar properties
of differentiation for granted. Nevertheless, the usual basic laws hold:

Lemma 7.2.7 Let 𝐾 be a field. Then

𝐷 ( 𝑓 + 𝑔) = 𝐷 𝑓 + 𝐷𝑔, 𝐷 ( 𝑓 𝑔) = 𝑓 · 𝐷𝑔 + 𝐷 𝑓 · 𝑔, 𝐷𝑎 = 0

for all 𝑓 , 𝑔 ∈ 𝐾 [𝑡] and 𝑎 ∈ 𝐾 . □
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Exercise 7.2.8 Check one or two of the properties in Lemma 7.2.7.

The real analysis test for repetition of roots has an algebraic analogue:

Lemma 7.2.9 Let 𝑓 be a nonzero polynomial over a field 𝐾 . The following are
equivalent:

i. 𝑓 has a repeated root in SF𝐾 ( 𝑓 );

ii. 𝑓 and 𝐷 𝑓 have a common root in SF𝐾 ( 𝑓 );

iii. 𝑓 and 𝐷 𝑓 have a nonconstant common factor in 𝐾 [𝑡].

Proof (i)⇒(ii): suppose that 𝑓 has a repeated root 𝛼 in SF𝐾 ( 𝑓 ). Then 𝑓 (𝑡) =

(𝑡 − 𝛼)2𝑔(𝑡) for some 𝑔(𝑡) ∈ (SF𝐾 ( 𝑓 )) [𝑡]. Hence

(𝐷 𝑓 ) (𝑡) = (𝑡 − 𝛼)
{
2𝑔(𝑡) + (𝑡 − 𝛼) · (𝐷𝑔) (𝑡)

}
,

so 𝛼 is a common root of 𝑓 and 𝐷 𝑓 in SF𝐾 ( 𝑓 ).
(ii)⇒(iii): suppose that 𝑓 and 𝐷 𝑓 have a common root 𝛼 in SF𝐾 ( 𝑓 ). Then 𝛼

is algebraic over 𝐾 (since 𝑓 ≠ 0), and the minimal polynomial of 𝛼 over 𝐾 is then
a nonconstant common factor of 𝑓 and 𝐷 𝑓 in 𝐾 [𝑡].

(iii)⇒(ii): if 𝑓 and 𝐷 𝑓 have a nonconstant common factor 𝑔 then 𝑔 splits in
SF𝐾 ( 𝑓 ), and any root of 𝑔 in SF𝐾 ( 𝑓 ) is a common root of 𝑓 and 𝐷 𝑓 .

(ii)⇒(i): suppose that 𝑓 and 𝐷 𝑓 have a common root 𝛼 ∈ SF𝐾 ( 𝑓 ). Then
𝑓 (𝑡) = (𝑡 − 𝛼)𝑔(𝑡) for some 𝑔 ∈ (SF𝐾 ( 𝑓 )) [𝑡], giving

(𝐷 𝑓 ) (𝑡) = 𝑔(𝑡) + (𝑡 − 𝛼) · (𝐷𝑔) (𝑡).

But (𝐷 𝑓 ) (𝛼) = 0, so 𝑔(𝛼) = 0, so 𝑔(𝑡) = (𝑡 − 𝛼)ℎ(𝑡) for some ℎ ∈ (SF𝐾 ( 𝑓 )) [𝑡].
Hence 𝑓 (𝑡) = (𝑡 − 𝛼)2ℎ(𝑡), and 𝛼 is a repeated root of 𝑓 in its splitting field. □

The point of Lemma 7.2.9 is that condition (iii) allows us to test for repetition
of roots in SF𝐾 ( 𝑓 ) without ever leaving 𝐾 [𝑡], or even knowing what SF𝐾 ( 𝑓 ) is.

Proposition 7.2.10 Let 𝑓 be an irreducible polynomial over a field. Then 𝑓 is
inseparable if and only if 𝐷 𝑓 = 0.

Proof This follows from (i) ⇐⇒ (iii) in Lemma 7.2.9. Since 𝑓 is irreducible,
𝑓 and 𝐷 𝑓 have a nonconstant common factor if and only if 𝑓 divides 𝐷 𝑓 ; but
deg(𝐷 𝑓 ) < deg( 𝑓 ), so 𝑓 | 𝐷 𝑓 if and only if 𝐷 𝑓 = 0. □

Corollary 7.2.11 Let 𝐾 be a field.
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i. If char𝐾 = 0 then every irreducible polynomial over 𝐾 is separable.

ii. If char𝐾 = 𝑝 > 0 then an irreducible polynomial 𝑓 ∈ 𝐾 [𝑡] is inseparable if
and only if

𝑓 (𝑡) = 𝑏0 + 𝑏1𝑡
𝑝 + · · · + 𝑏𝑟 𝑡𝑟 𝑝

for some 𝑏0, . . . , 𝑏𝑟 ∈ 𝐾 .

In other words, the only irreducible polynomials that are inseparable are the
polynomials in 𝑡 𝑝 in characteristic 𝑝. Inevitably, Example 7.2.4 is of this form.

Proof Let 𝑓 (𝑡) = ∑
𝑎𝑖𝑡

𝑖 be an irreducible polynomial. Then 𝑓 is inseparable if
and only if 𝐷 𝑓 = 0, if and only if 𝑖𝑎𝑖 = 0 for all 𝑖 ≥ 1. If char𝐾 = 0, this implies
that 𝑎𝑖 = 0 for all 𝑖 ≥ 1, so 𝑓 is constant, which contradicts 𝑓 being irreducible. If
char𝐾 = 𝑝, then 𝑖𝑎𝑖 = 0 for all 𝑖 ≥ 1 is equivalent to 𝑎𝑖 = 0 whenever 𝑝 ∤ 𝑖. □

Remark 7.2.12 In the final chapter we will show that every irreducible polynomial
over a finite field is separable. So, it is only over infinite fields of characteristic 𝑝
that you have to worry about inseparability.

We now build up to showing that | Gal(𝑀 : 𝐾) | = [𝑀 : 𝐾] whenever 𝑀 : 𝐾
is a finite normal extension in which the minimal polynomial of every element of
𝑀 is separable. First, some terminology:

Definition 7.2.13 Let 𝑀 : 𝐾 be an algebraic extension. An element of 𝑀 is
separable over 𝐾 if its minimal polynomial over 𝐾 is separable. The extension
𝑀 : 𝐾 is separable if every element of 𝑀 is separable over 𝐾 .

Examples 7.2.14 i. Every algebraic extension of fields of characteristic 0 is
separable, by Corollary 7.2.11.

ii. Every algebraic extension of a finite field is separable, by Remark 7.2.12.

iii. The splitting field of 𝑡 𝑝 − 𝑢 over F𝑝 (𝑢) is inseparable. Indeed, the element
denoted by 𝛼 in Example 7.2.4 is inseparable over F𝑝 (𝑢), since its minimal
polynomial is the inseparable polynomial 𝑡 𝑝 − 𝑢.

Exercise 7.2.15 Let 𝑀 : 𝐿 : 𝐾 be field extensions. Show that if
𝑀 : 𝐾 is algebraic then so are 𝑀 : 𝐿 and 𝐿 : 𝐾 .

Lemma 7.2.16 Let 𝑀 : 𝐿 : 𝐾 be field extensions, with 𝑀 : 𝐾 algebraic. If 𝑀 : 𝐾
is separable then so are 𝑀 : 𝐿 and 𝐿 : 𝐾 .
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Proof Both 𝑀 : 𝐿 and 𝐿 : 𝐾 are algebraic by Exercise 7.2.15, so it does make
sense to ask whether they are separable. (We only defined what it means for an
algebraic extension to be separable.) That 𝐿 : 𝐾 is separable is immediate from the
definition. To show that 𝑀 : 𝐿 is separable, let 𝛼 ∈ 𝑀 . Write 𝑚𝐿 and 𝑚𝐾 for the
minimal polynomials of 𝛼 over 𝐿 and 𝐾 , respectively. Then 𝑚𝐾 is an annihilating
polynomial of 𝛼 over 𝐿, so 𝑚𝐿 | 𝑚𝐾 in 𝐿 [𝑡]. Since 𝑀 : 𝐾 is separable, 𝑚𝐾
splits into distinct linear factors in SF𝐾 (𝑚𝐾). Since 𝑚𝐿 | 𝑚𝐾 , so does 𝑚𝐿 . Hence
𝑚𝐿 ∈ 𝐿 [𝑡] is separable, so 𝛼 is separable over 𝐿. □

As hinted in the introduction to this section, we will prove that | Gal(𝑀 : 𝐾) | =
[𝑀 : 𝐾] by refining Proposition 6.2.11.

Proposition 7.2.17 Let𝜓 : 𝐾 → 𝐾′ be an isomorphism of fields, let 0 ≠ 𝑓 ∈ 𝐾 [𝑡],
let 𝑀 be a splitting field of 𝑓 over 𝐾 , and let 𝑀′ be a splitting field of 𝜓∗ 𝑓 over 𝐾′.𝑀

𝜑 // 𝑀 ′

𝑓 𝐾
𝜓
//

OO

𝐾 ′ 𝜓∗ 𝑓

OO
Suppose that the extension 𝑀′ : 𝐾′ is separable. Then there are exactly [𝑀 : 𝐾]
isomorphisms 𝜑 : 𝑀 → 𝑀′ extending 𝜓.

Proof This is almost the same as the proof of Proposition 6.2.11, but with the
inequality 𝑠 ≤ deg(𝜓∗𝑚) replaced by an equality, which holds by separability. For
the inductive hypothesis to go through, we need the extension 𝑀′ : 𝐾′(𝛼′

𝑗
) to be

separable, and this follows from the separability of 𝑀′ : 𝐾′ by Lemma 7.2.16. □

Theorem 7.2.18 | Gal(𝑀 : 𝐾) | = [𝑀 : 𝐾] for every finite normal separable
extension 𝑀 : 𝐾 .

Proof By Theorem 7.1.5, 𝑀 = SF𝐾 ( 𝑓 ) for some 𝑓 ∈ 𝐾 [𝑡]. The result follows
from Proposition 7.2.17, taking 𝑀′ = 𝑀 , 𝐾′ = 𝐾 , and 𝜓 = id𝐾 . □

Examples 7.2.19 i. | Gal𝐾 ( 𝑓 ) | = [SF𝐾 ( 𝑓 ) : 𝐾] for any nonzero polynomial
𝑓 over a field 𝐾 of characteristic 0.
For instance, if 𝑓 (𝑡) = 𝑡3 − 2 then [SFQ( 𝑓 ) : Q] = 6 by a similar argument
to Example 5.1.22, using that SFQ( 𝑓 ) contains elements of degree 2 and 3
over Q. Hence | GalQ( 𝑓 ) | = 6. But GalQ( 𝑓 ) embeds into 𝑆3 by Proposi-
tion 6.3.10, so GalQ( 𝑓 ) � 𝑆3. We already proved this in Example 7.1.16,
by a different argument.

ii. Consider 𝐾 = F𝑝 (𝑢) and 𝑀 = SF𝐾 (𝑡 𝑝 − 𝑢). With notation as in Exam-
ple 7.2.4, we have 𝑀 = 𝐾 (𝛼), so [𝑀 : 𝐾] = deg𝐾 (𝛼) = 𝑝. On the other
hand, | Gal(𝑀 : 𝐾) | = 1 by Corollary 6.3.14. So Theorem 7.2.18 fails if we
drop the separability hypothesis.
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Digression 7.2.20 With some effort, one can show that in any algebraic
extension 𝑀 : 𝐾 , the separable elements form a subfield of 𝑀 . (See Stewart,
Theorem 17.22.) It follows that a finite extension 𝐾 (𝛼1, . . . , 𝛼𝑛) : 𝐾 is
separable if and only if each 𝛼𝑖 is. Hence a splitting field extension SF𝐾 ( 𝑓 ) :
𝐾 is separable if and only if every root of 𝑓 is separable in SF𝐾 ( 𝑓 ), which
itself is equivalent to 𝑓 being separable in the sense of Warning 7.2.5.

So: SF𝐾 ( 𝑓 ) is separable over 𝐾 if and only if 𝑓 is separable over 𝐾 . Thus,
the different meanings of ‘separable’ interact nicely.

Digression 7.2.21 It’s a stunning fact that every finite separable extension
is simple. This is called the theorem of the primitive element. For instance,
whenever 𝛼1, . . . , 𝛼𝑛 are complex numbers algebraic over Q, there is some
𝛼 ∈ C (a ‘primitive element’) such that Q(𝛼1, . . . , 𝛼𝑛) = Q(𝛼). We saw one
case of this in Example 4.3.14(i): Q(

√
2,
√

3) = Q(
√

2 +
√

3).
The theorem of the primitive element was at the heart of most early accounts
of Galois theory, and is used in many modern treatments too, but not this
one.

7.3 Fixed fields
Write Aut(𝑀) for the group of automorphisms of a field 𝑀 . Then Aut(𝑀) acts
naturally on 𝑀 (Example 2.1.2(ii)). Given a subset 𝑆 of Aut(𝑀), we can consider
the set Fix(𝑆) of elements of 𝑀 fixed by 𝑆 (Definition 2.1.14).

Lemma 7.3.1 Fix(𝑆) is a subfield of 𝑀 , for any 𝑆 ⊆ Aut(𝑀).

Proof Fix(𝑆) is the equalizer Eq(𝑆 ∪ {id𝑀}), which is a subfield of 𝑀 by
Lemma 2.3.8. □

For this reason, we call Fix(𝑆) the fixed field of 𝑆.

Exercise 7.3.2 Using Lemma 7.3.1, show that every automorphism
of a field is an automorphism over its prime subfield. In other words,
Aut(𝑀) = Gal(𝑀 : 𝐾) whenever 𝑀 is a field with prime subfield 𝐾 .

Here’s the big, ingenious, result about fixed fields. It will play a crucial part in
the proof of the fundamental theorem of Galois theory.
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Theorem 7.3.3 Let 𝑀 be a field and 𝐻 a finite subgroup of Aut(𝑀). Then
[𝑀 : Fix(𝐻)] ≤ |𝐻 |.

So the smaller |𝐻 | is, the smaller [𝑀 : Fix(𝐻)] must be, which means that
Fix(𝐻) must be bigger. In other words, the smaller |𝐻 | is, the more of 𝑀 must be
fixed by 𝐻.

Proof Write 𝑛 = |𝐻 |. It is enough to prove that any 𝑛 + 1 elements 𝛼0, . . . , 𝛼𝑛 of
𝑀 are linearly dependent over Fix(𝐻).

Write

𝑊 =
{
(𝑥0, . . . , 𝑥𝑛) ∈ 𝑀𝑛+1 : 𝑥0\ (𝛼0) + · · · + 𝑥𝑛\ (𝛼𝑛) = 0 for all \ ∈ 𝐻

}
.

Then𝑊 is defined by 𝑛 homogeneous linear equations in 𝑛 + 1 variables, so it is a
The size of fixed

fields
nontrivial 𝑀-linear subspace of 𝑀𝑛+1.

Claim: Let (𝑥0, . . . , 𝑥𝑛) ∈ 𝑊 and 𝜑 ∈ 𝐻. Then (𝜑(𝑥0), . . . , 𝜑(𝑥𝑛)) ∈ 𝑊 .
Proof: For all \ ∈ 𝐻, we have

𝑥0(𝜑−1 ◦ \) (𝛼0) + · · · + 𝑥𝑛 (𝜑−1 ◦ \) (𝛼𝑛) = 0,

since 𝜑−1 ◦ \ ∈ 𝐻. Applying 𝜑 to both sides gives that for all \ ∈ 𝐻,

𝜑(𝑥0)\ (𝛼0) + · · · + 𝜑(𝑥𝑛)\ (𝛼𝑛) = 0,

proving the claim.
Define the length of a nonzero vector x = (𝑥0, . . . , 𝑥𝑛) to be the unique number

ℓ ∈ {0, . . . , 𝑛} such that 𝑥ℓ ≠ 0 but 𝑥ℓ+1 = · · · = 𝑥𝑛 = 0. Since 𝑊 is nontrivial,
we can choose an element x of 𝑊 of minimal length, ℓ. Since 𝑊 is closed under
scalar multiplication by 𝑀 , we may assume that 𝑥ℓ = 1. Thus, x is of the form
(𝑥0, . . . , 𝑥ℓ−1, 1, 0, . . . , 0). Since x is a nonzero element of 𝑊 of minimal length,
the only element of𝑊 of the form (𝑦0, . . . , 𝑦ℓ−1, 0, 0, . . . , 0) is 0.

We now show that 𝑥𝑖 ∈ Fix(𝐻) for all 𝑖. Let 𝜑 ∈ 𝐻. By the claim,
(𝜑(𝑥0), . . . , 𝜑(𝑥𝑛)) ∈ 𝑊 . Put

y = (𝜑(𝑥0) − 𝑥0, . . . , 𝜑(𝑥𝑛) − 𝑥𝑛).

Since𝑊 is a linear subspace, y ∈ 𝑊 . Now 𝜑(𝑥𝑖) − 𝑥𝑖 = 𝜑(0) − 0 = 0 for all 𝑖 > ℓ
and 𝜑(𝑥ℓ) − 𝑥ℓ = 𝜑(1) − 1 = 0, so by the last sentence of the previous paragraph,
y = 0. In other words, 𝜑(𝑥𝑖) = 𝑥𝑖 for all 𝑖. This holds for all 𝜑 ∈ 𝐻, so 𝑥𝑖 ∈ Fix(𝐻)
for all 𝑖.

We have shown that 𝑊 contains a nonzero vector x ∈ Fix(𝐻)𝑛+1. But taking
\ = id in the definition of 𝑊 gives

∑
𝑥𝑖𝛼𝑖 = 0. Hence 𝛼0, . . . , 𝛼𝑛 are linearly

dependent over Fix(𝐻). □
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Example 7.3.4 Write ^ : C → C for complex conjugation. Then 𝐻 = {id, ^} is
a subgroup of Aut(C), and Theorem 7.3.3 predicts that [C : Fix(𝐻)] ≤ 2. Since
Fix(𝐻) = R, this is true.

Exercise 7.3.5 Find another example of Theorem 7.3.3.

Digression 7.3.6 In fact, Theorem 7.3.3 is an equality: [𝑀 : Fix(𝐻)] =

|𝐻 |. This is proved directly in many Galois theory books (e.g. Stewart,
Theorem 10.5). In our approach, it will be a consequence of the fundamental
theorem of Galois theory rather than a step on the way to proving it.

The reverse inequality, [𝑀 : Fix(𝐻)] ≥ |𝐻 |, is closely related to the result
called ‘linear independence of characters’. (A good reference is Lang, Al-
gebra, 3rd edition, Theorem 4.1.) Another instance of linear independence
of characters is that the functions 𝑥 ↦→ 𝑒2𝜋𝑖𝑛𝑥 (𝑛 ∈ Z) on R are linearly
independent, a fundamental fact in the theory of Fourier series.

We finish by adding a further connecting strand between the concepts of normal
extension and normal subgroup, complementary to the strands in Theorem 7.1.15.

Proposition 7.3.7 Let 𝑀 : 𝐾 be a finite normal extension and 𝐻 a normal sub-
group of Gal(𝑀 : 𝐾). Then Fix(𝐻) is a normal extension of 𝐾 .

Proof Since every element of 𝐻 is an automorphism over 𝐾 , the subfield Fix(𝐻)
of 𝑀 contains 𝐾 . For each 𝜑 ∈ Gal(𝑀 : 𝐾), we have

𝜑 Fix(𝐻) = Fix(𝜑𝐻𝜑−1) = Fix(𝐻),

where the first equality holds by Lemma 2.1.15 and the second because𝐻 is normal
in Gal(𝑀 : 𝐾). Hence by Theorem 7.1.15(i), Fix(𝐻) : 𝐾 is a normal extension.□

The stage is now set for the central result of the course: the fundamental
theorem of Galois theory.
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Chapter 8

The fundamental theorem of Galois
theory

We’ve been building up to this moment all semester. Let’s do it!
Introduction to

Week 8

8.1 Introducing the Galois correspondence
Let 𝑀 : 𝐾 be a field extension, with 𝐾 viewed as a subfield of 𝑀 , as usual.

An intermediate field of 𝑀 : 𝐾 is a subfield of 𝑀 containing 𝐾 . Write

F = {intermediate fields of 𝑀 : 𝐾}.
For 𝐿 ∈ F , we draw diagrams like this:

𝑀

𝐿

𝐾,

with the bigger fields higher up.
Also write

G = {subgroups of Gal(𝑀 : 𝐾)}.
For 𝐻 ∈ G , we draw diagrams like this:

1

𝐻

Gal(𝑀 : 𝐾).
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Here 1 denotes the trivial subgroup and the bigger groups are lower down. It will
become clear soon why we’re using opposite conventions.

For 𝐿 ∈ F , the group Gal(𝑀 : 𝐿) consists of all automorphisms 𝜑 of 𝑀 that
fix each element of 𝐿. Since 𝐾 ⊆ 𝐿, any such 𝜑 certainly fixes each element of 𝐾 .
Hence Gal(𝑀 : 𝐿) is a subgroup of Gal(𝑀 : 𝐾). This process defines a function

Gal(𝑀 : −) : F → G
𝐿 ↦→ Gal(𝑀 : 𝐿).

In the expression Gal(𝑀 : −), the symbol − should be seen as a blank space into
which arguments can be inserted.

Warning 8.1.1 The group we’re associating with 𝐿 is Gal(𝑀 : 𝐿),
not Gal(𝐿 : 𝐾)! Both groups matter, but only one is a subgroup of
Gal(𝑀 : 𝐾), which is what we’re interested in here.
We showed just now that Gal(𝑀 : 𝐿) is a subgroup of Gal(𝑀 : 𝐾).
If you wanted to show that Gal(𝐿 : 𝐾) is (isomorphic to) a subgroup
of Gal(𝑀 : 𝐾)—which it isn’t—then you’d probably do it by trying
to prove that every automorphism of 𝐿 over 𝐾 extends uniquely to 𝑀 .
And that’s false. For instance, when 𝐿 = 𝐾 , the identity on 𝐿 typically
has many extensions to 𝑀: they’re the elements of Gal(𝑀 : 𝐾).
Although Gal(𝐿 : 𝐾) isn’t a subgroup of Gal(𝑀 : 𝐾), it is a quotient
of it, at least when both extensions are finite and normal. We saw this
in Theorem 7.1.15, and we’ll come back to it in Section 8.2.

In the other direction, for𝐻 ∈ G , the subfield Fix(𝐻) of𝑀 contains 𝐾 . Indeed,
𝐻 ⊆ Gal(𝑀 : 𝐾), and by definition, every element of Gal(𝑀 : 𝐾) fixes every
element of 𝐾 , so Fix(𝐻) ⊇ 𝐾 . Hence Fix(𝐻) is an intermediate field of 𝑀 : 𝐾 .
This process defines a function

Fix : G → F
𝐻 ↦→ Fix(𝐻).

We have now defined functions

F
Gal(𝑀:−) // G .

Fix
oo

The fundamental theorem of Galois theory tells us how these functions behave:
how the concepts of Galois group and fixed field interact. It will bring together
most of the big results we’ve proved so far, and will assume that the extension is
finite, normal and separable. But first, let’s say the simple things that are true for
all extensions:
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𝑀

𝐿2

𝐿1

𝐾

1

Gal(𝑀 : 𝐿2)

Gal(𝑀 : 𝐿1)

Gal(𝑀 : 𝐾)

Figure 8.1: The function 𝐿 ↦→ Gal(𝑀 : 𝐿) is order-reversing (Lemma 8.1.2(i)).

Lemma 8.1.2 Let 𝑀 : 𝐾 be a field extension, and define F and G as above.

i. For 𝐿1, 𝐿2 ∈ F ,

𝐿1 ⊆ 𝐿2 ⇒ Gal(𝑀 : 𝐿1) ⊇ Gal(𝑀 : 𝐿2)

(Figure 8.1). For 𝐻1, 𝐻2 ∈ G ,

𝐻1 ⊆ 𝐻2 ⇒ Fix(𝐻1) ⊇ Fix(𝐻2).

ii. For 𝐿 ∈ F and 𝐻 ∈ G ,

𝐿 ⊆ Fix(𝐻) ⇐⇒ 𝐻 ⊆ Gal(𝑀 : 𝐿).

iii. For all 𝐿 ∈ F ,
𝐿 ⊆ Fix(Gal(𝑀 : 𝐿)).

For all 𝐻 ∈ G ,
𝐻 ⊆ Gal(𝑀 : Fix(𝐻)).

Warning 8.1.3 In part (i), the functions Gal(𝑀 : −) and Fix reverse
inclusions. The bigger you make 𝐿, the smaller you make Gal(𝑀 : 𝐿),
because it gets harder for an automorphism to fix everything in 𝐿. And
the bigger you make 𝐻, the smaller you make Fix(𝐻), because it gets
harder for an element of 𝑀 to be fixed by everything in 𝐻. That’s why
the field and group diagrams are opposite ways up.
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Proof (i): I leave the first half as an exercise. For the second, suppose that
𝐻1 ⊆ 𝐻2, and let 𝛼 ∈ Fix(𝐻2). Then \ (𝛼) = 𝛼 for all \ ∈ 𝐻2, so \ (𝛼) = 𝛼 for all
\ ∈ 𝐻1, so 𝛼 ∈ Fix(𝐻1).

(ii): both sides are equivalent to the statement that \ (𝛼) = 𝛼 for all \ ∈ 𝐻 and
𝛼 ∈ 𝐿.

(iii): the first statement follows from the ⇐ direction of (ii) by taking 𝐻 =

Gal(𝑀 : 𝐿), and the second follows from the ⇒ direction of (ii) by taking
𝐿 = Fix(𝐻). (Or, they can be proved directly.) □

Exercise 8.1.4 Prove the first half of Lemma 8.1.2(i).

Exercise 8.1.5 Draw a diagram like Figure 8.1 for the second half of
Lemma 8.1.2(i).

Digression 8.1.6 If you’ve done some algebraic geometry, the formal struc-
ture of Lemma 8.1.2 might seem familiar. Given a field 𝐾 and a natural
number 𝑛, we can form the set F of subsets of 𝐾𝑛 and the set G of ideals of
𝐾 [𝑡1, . . . , 𝑡𝑛], and there are functions F ⇄ G defined by taking the annihi-
lating ideal of a subset of 𝐾𝑛 and the zero-set of an ideal of 𝐾 [𝑡1, . . . , 𝑡𝑛].
The analogue of Lemma 8.1.2 holds.

In general, a pair of ordered sets F and G equipped with functions F ⇄ G
satisfying the properties in Lemma 8.1.2 is called a Galois connection. This
in turn is a special case of the category-theoretic notion of adjoint functors.

The functions

F
Gal(𝑀:−) // G .

Fix
oo

are called the Galois correspondence for 𝑀 : 𝐾 . This terminology is mostly used
in the case where the functions are mutually inverse, meaning that

𝐿 = Fix(Gal(𝑀 : 𝐿)), 𝐻 = Gal(𝑀 : Fix(𝐻))

for all 𝐿 ∈ F and 𝐻 ∈ G . We saw in Lemma 8.1.2(iii) that in both cases, the
left-hand side is a subset of the right-hand side. But they are not always equal:

Example 8.1.7 Let 𝑀 : 𝐾 be Q( 3√2) : Q. Since [𝑀 : 𝐾] is 3, which is a
prime number, the tower law implies that there are no nontrivial intermediate
fields: F = {𝑀, 𝐾}. We saw in Example 6.3.3(ii) that Gal(𝑀 : 𝐾) is trivial,
so G = {Gal(𝑀 : 𝐾)}. Hence F has two elements and G has only one. This

117



makes it impossible for there to be mutually inverse functions between F and G .
Specifically, what goes wrong is that

Fix
(
Gal

(
Q
( 3√2

)
: Q

) )
= Fix

({
id
Q( 3√2)

})
= Q

( 3√2
)
≠ Q.

Exercise 8.1.8 Let 𝑝 be a prime number, let 𝐾 = F𝑝 (𝑢), and let 𝑀 be
the splitting field of 𝑡 𝑝 −𝑢 over 𝐾 , as in Examples 7.2.4 and 7.2.19(ii).
Prove that Gal(𝑀 : −) and Fix are not mutually inverse.

If Gal(𝑀 : −) and Fix are mutually inverse then they set up a one-to-one
correspondence between the set F of intermediate fields of 𝑀 : 𝐾 and the set G
of subgroups of Gal(𝑀 : 𝐾). The fundamental theorem of Galois theory tells us
that this dream comes true when 𝑀 : 𝐾 is finite, normal and separable. And it
tells us more besides.

8.2 The theorem
The moment has come.

Theorem 8.2.1 (Fundamental theorem of Galois theory) Let 𝑀 : 𝐾 be a
finite normal separable extension. Write

F = {intermediate fields of 𝑀 : 𝐾},
G = {subgroups of Gal(𝑀 : 𝐾)}.

i. The functions F
Gal(𝑀:−) //G

Fix
oo are mutually inverse.

ii. | Gal(𝑀 : 𝐿) | = [𝑀 : 𝐿] for all 𝐿 ∈ F , and [𝑀 : Fix(𝐻)] = |𝐻 | for
all 𝐻 ∈ G .

iii. Let 𝐿 ∈ F . Then

𝐿 is a normal extension of 𝐾
⇐⇒ Gal(𝑀 : 𝐿) is a normal subgroup of Gal(𝑀 : 𝐾),

and in that case,

Gal(𝑀 : 𝐾)
Gal(𝑀 : 𝐿) � Gal(𝐿 : 𝐾).
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Proof First note that for each 𝐿 ∈ F , the extension 𝑀 : 𝐿 is finite and normal (by
Corollary 7.1.6) and separable (by Lemma 7.2.16). Also, the group Gal(𝑀 : 𝐾)
is finite (by Theorem 7.2.18), so every subgroup is finite too.

We prove (i) and (ii) together. First let 𝐻 ∈ G . We have

|𝐻 | ≤ | Gal(𝑀 : Fix(𝐻)) | = [𝑀 : Fix(𝐻)] ≤ |𝐻 |, (8.1)

where the first inequality holds because𝐻 ⊆ Gal(𝑀 : Fix(𝐻)) (Lemma 8.1.2(iii)),
the equality follows from Theorem 7.2.18 (since 𝑀 : Fix(𝐻) is finite, normal and
separable), and the second inequality follows from Theorem 7.3.3 (since 𝐻 is
finite). So equality holds throughout (8.1), giving

𝐻 = Gal(𝑀 : Fix(𝐻)), [𝑀 : Fix(𝐻)] = |𝐻 |.

Now let 𝐿 ∈ F . We have

[𝑀 : Fix(Gal(𝑀 : 𝐿))] = | Gal(𝑀 : 𝐿) | = [𝑀 : 𝐿],

where the first equality follows from the previous paragraph by taking𝐻 = Gal(𝑀 :
𝐿), and the second follows from Theorem 7.2.18. But 𝐿 ⊆ Fix(Gal(𝑀 : 𝐿)) by
Lemma 8.1.2(iii), so 𝐿 = Fix(Gal(𝑀 : 𝐿)) by Workshop 3, question 3. This
completes the proof of (i) and (ii).

We have already proved most of (iii) as Theorem 7.1.15(ii). It only remains to
show that whenever 𝐿 is an intermediate field such that Gal(𝑀 : 𝐿) is a normal
subgroup of Gal(𝑀 : 𝐾), then 𝐿 is a normal extension of 𝐾 . By Proposition 7.3.7,
Fix(Gal(𝑀 : 𝐿)) : 𝐾 is normal. But by (i), Fix(Gal(𝑀 : 𝐿)) = 𝐿, so 𝐿 : 𝐾 is
normal, as required. □

The fundamental theorem of Galois theory is about field extensions that are
finite, normal and separable. Let’s take a moment to think about what those
conditions mean.

An extension 𝑀 : 𝐾 is finite and normal if and only if 𝑀 is the splitting field
of some polynomial over 𝐾 (Theorem 7.1.5). So, the theorem can be understood
as a result about splitting fields of polynomials.

Not every splitting field extension is separable (Example 7.2.14(iii)). However,
we know of two settings where separability is guaranteed. The first is fields of
characteristic zero (Example 7.2.14(i)). The most important of these is Q, which
is our focus in this chapter: we’ll consider examples in which 𝑀 : 𝐾 is the splitting
field extension of a polynomial over 𝐾 = Q. The second is where the fields are
finite (Example 7.2.14(ii)). We’ll come to finite fields in the final chapter.
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Digression 8.2.2 Normality and separability are core requirements of Galois
theory, but there are extensions of the fundamental theorem (well beyond this
course) in which the finiteness condition on 𝑀 : 𝐾 is relaxed.

The first level of relaxation replaces ‘finite’ by ‘algebraic’. Then Gal(𝑀 : 𝐾)
is no longer a finite group, but it does acquire an interesting topology. One
example is where 𝑀 is the algebraic closure 𝐾 of 𝐾 , and Gal(𝐾 : 𝐾) is called
the absolute Galois group of 𝐾 (at least when char𝐾 = 0). It contains all
splitting fields of polynomials over𝐾 , so to study it is to study all polynomials
over 𝐾 at once.

Going further, we can even drop the condition that the extension is algebraic.
In this realm, we need the notion of ‘transcendence degree’, which counts
how many algebraically independent elements can be found in the extension.
You may have met this if you’re taking Algebraic Geometry.

You’ll want to see some examples! Section 8.3 is devoted to a single example
of the fundamental theorem, showing every aspect of the theorem in all its glory.
I’ll give a couple of simpler examples in a moment, but before that, it’s helpful to
review some of what we did earlier:

Remark 8.2.3 When working out the details of the Galois correspondence for a
polynomial 𝑓 ∈ 𝐾 [𝑡], it’s not only the fundamental theorem that’s useful. Some
of our earlier results also come in handy, such as the following.

i. Lemmas 6.3.7 and 6.3.8 state that Gal𝐾 ( 𝑓 ) acts faithfully on the set of roots
of 𝑓 in SF𝐾 ( 𝑓 ). That is, an element of the Galois group can be understood
as a permutation of the roots.

ii. Corollary 6.3.14 states that | Gal𝐾 ( 𝑓 ) | divides 𝑘!, where 𝑘 is the number of
distinct roots of 𝑓 in its splitting field.

iii. Let 𝛼 and 𝛽 be roots of 𝑓 in SF𝐾 ( 𝑓 ). Then there is an element of the Galois
group mapping 𝛼 to 𝛽 if and only if 𝛼 and 𝛽 are conjugate over 𝐾 (have the
same minimal polynomial). This follows from Proposition 7.1.9.

iv. In particular, when 𝑓 is irreducible, the action of the Galois group on the
roots is transitive (Corollary 7.1.11). See Example 7.1.13 for an illustration
of the power of this principle.

Example 8.2.4 Let 𝑀 : 𝐾 be a normal separable extension of prime degree 𝑝. By
the fundamental theorem, | Gal(𝑀 : 𝐾) | = [𝑀 : 𝐾] = 𝑝. Every group of prime
order is cyclic, so Gal(𝑀 : 𝐾) � 𝐶𝑝. By the tower law, 𝑀 : 𝐾 has no nontrivial
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intermediate fields, and by Lagrange’s theorem, Gal(𝑀 : 𝐾) has no nontrivial
subgroups. So F = {𝑀, 𝐾} and G = {1,Gal(𝑀 : 𝐾)}:

𝑀 1

𝐾 Gal(𝑀 : 𝐾)

Both 𝑀 and 𝐾 are normal extensions of 𝐾 , and both 1 and Gal(𝑀 : 𝐾) are normal
subgroups of Gal(𝑀 : 𝐾).

Example 8.2.5 Let 𝑓 (𝑡) = (𝑡2 + 1) (𝑡2 − 2) ∈ Q[𝑡]. Put 𝑀 = SFQ( 𝑓 ) = Q(
√

2, 𝑖)
and 𝐺 = Gal(𝑀 : 𝐾) = GalQ( 𝑓 ). Then 𝑀 : 𝐾 is a finite normal separable
extension, so the fundamental theorem applies. We already calculated 𝐺 in a
sketchy way in Example 6.3.6(iv). Let’s do it again in full, using what we now
know.

First,

[𝑀 : 𝐾] =
[
Q
(√

2, 𝑖
)

: Q
(√

2
) ] [
Q
(√

2
)

: Q
]
= 2 × 2 = 4

(much as in Example 5.1.18).
Now consider how 𝐺 acts on the set {±

√
2,±𝑖} of roots of 𝑓 . The conjugacy

class of
√

2 is {
√

2,−
√

2}, so for each 𝜑 ∈ 𝐺 we have 𝜑(
√

2) = ±
√

2. Similarly,
𝜑(𝑖) = ±𝑖 for each 𝜑 ∈ 𝐺. The two choices of sign determine 𝜑 entirely, so
|𝐺 | ≤ 4. But by the fundamental theorem, |𝐺 | = [𝑀 : 𝐾] = 4, so each of the four
possibilities does in fact occur. So 𝐺 = {id, 𝜑+−, 𝜑−+, 𝜑−−}, where

𝜑+−
(√

2
)
=
√

2, 𝜑−+
(√

2
)
= −

√
2, 𝜑−−

(√
2
)
= −

√
2,

𝜑+−(𝑖) = −𝑖, 𝜑−+(𝑖) = 𝑖, 𝜑−−(𝑖) = −𝑖.

The only two groups of order 4 are 𝐶4 and 𝐶2 × 𝐶2, and each element of 𝐺 has
order 1 or 2, so 𝐺 � 𝐶2 × 𝐶2.

The subgroups of 𝐺 are

1

⟨𝜑+−⟩ ⟨𝜑−+⟩ ⟨𝜑−−⟩

𝐺

(8.2)

where lines indicate inclusions. Here ⟨𝜑+−⟩ is the subgroup generated by 𝜑+−,
which is {id, 𝜑+−}, and similarly for 𝜑−+ and 𝜑−−.
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What are the fixed fields of these subgroups? The fundamental theorem implies
that Fix(𝐺) = Q. Also, 𝜑+−(

√
2) =

√
2, so Q(

√
2) ⊆ Fix(⟨𝜑+−⟩). But[

Q
(√

2, 𝑖
)

: Q
(√

2
) ]

= 2 = |⟨𝜑+−⟩| =
[
Q
(√

2, 𝑖
)

: Fix(⟨𝜑+−⟩)
]

(where the last step is by the fundamental theorem), so Q(
√

2) = Fix(⟨𝜑+−⟩).
Let’s reflect for a moment on the argument in the last paragraph, because it’s

one you’ll need to master. We have a subgroup𝐻 of Gal(𝑀 : 𝐾) (here, 𝐻 = ⟨𝜑+−⟩)
and we want to find its fixed field. We do this in three steps:

• First, we spot some elements 𝛼1, . . . , 𝛼𝑟 fixed by 𝐻. (Here, 𝑟 = 1 and
𝛼1 =

√
2.) It follows that 𝐾 (𝛼1, . . . , 𝛼𝑟) ⊆ Fix(𝐻).

• Next, we check that [𝑀 : 𝐾 (𝛼1, . . . , 𝛼𝑟)] = |𝐻 |. If they’re not equal, that
means we didn’t spot enough elements fixed by 𝐻.

• Finally, we apply a standard argument:

[𝑀 : 𝐾 (𝛼1, . . . , 𝛼𝑟)] = |𝐻 | = [𝑀 : Fix(𝐻)]

(using the fundamental theorem), so by the tower law,

[Fix(𝐻) : 𝐾 (𝛼1, . . . , 𝛼𝑟)] =
[𝑀 : 𝐾 (𝛼1, . . . , 𝛼𝑟)]

[𝑀 : Fix(𝐻)] = 1,

giving Fix(𝐻) = 𝐾 (𝛼1, . . . , 𝛼𝑟).

The strategy is similar to one you’ve met in linear algebra: to prove that two
subspaces of a vector space are equal, show that one is a subspace of the other and
that they have the same dimension.

Similar arguments apply to 𝜑−+ and 𝜑−−, so the fixed fields of the groups in
diagram (8.2) are

Q
(√

2, 𝑖
)

Q
(√

2
)

Q(𝑖) Q
(√

2𝑖
)

Q

(8.3)

Equivalently, the groups in (8.2) are the Galois groups of Q(
√

2, 𝑖) over the fields
in (8.3). For instance, Gal(Q(

√
2, 𝑖) : Q(𝑖)) = ⟨𝜑−+⟩.

Since the overall Galois group 𝐺 � 𝐶2 × 𝐶2 is abelian, every subgroup is
normal. Hence all the extensions in diagram (8.3) are normal too.
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Exercise 8.2.6 In this particular example, one can also see more
directly that all the extensions in (8.3) are normal. How?

Like any big theorem, the fundamental theorem of Galois theory has some
important corollaries. Here’s one.

Corollary 8.2.7 Let 𝑀 : 𝐾 be a finite normal separable extension. Then for every
𝛼 ∈ 𝑀 \ 𝐾 , there is some automorphism 𝜑 of 𝑀 over 𝐾 such that 𝜑(𝛼) ≠ 𝛼.

Proof Theorem 8.2.1(i) implies that Fix(Gal(𝑀 : 𝐾)) = 𝐾 . Now 𝛼 ∉ 𝐾 , so
𝛼 ∉ Fix(Gal(𝑀 : 𝐾)), which is what had to be proved. □

Example 8.2.8 For any 𝑓 ∈ Q[𝑡] and irrational 𝛼 ∈ SFQ( 𝑓 ), there is some
𝜑 ∈ GalQ( 𝑓 ) that does not fix 𝛼. This is clear if 𝛼 ∉ R, as we can take 𝜑 to be
complex conjugation restricted to SFQ( 𝑓 ). But it is not so obvious otherwise.

8.3 A specific example
Chapter 13 of Stewart’s book opens with these words:

The extension that we discuss is a favourite with writers on Galois
theory, because of its archetypal quality. A simpler example would
be too small to illustrate the theory adequately, and anything more
complicated would be unwieldy. The example is the Galois group of
the splitting field of 𝑡4 − 2 over Q.

We go through the same example here. My presentation of it is different from
Stewart’s, so you can consult his book if anything that follows is unclear.

Write 𝑓 (𝑡) = 𝑡4 − 2 ∈ Q[𝑡], which is irreducible by Eisenstein’s criterion.
Write 𝐺 = GalQ( 𝑓 ).

Splitting field Write b for the unique real positive root of 𝑓 . Then the roots of
𝑓 are ±b and ±b𝑖 (Figure 8.2). So SFQ( 𝑓 ) = Q(b, b𝑖) = Q(b, 𝑖). We have

[Q(b, 𝑖) : Q] = [Q(b, 𝑖) : Q(b)] [Q(b) : Q] = 2 × 4 = 8,

where the first factor is 2 because Q(b) ⊆ R and the second factor is 4 because 𝑓
is the minimal polynomial of b over Q (being irreducible). By the fundamental
theorem, |𝐺 | = 8.
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𝜌

^b−b

b𝑖

−b𝑖

Figure 8.2: The roots of 𝑓 , and the effects on them of 𝜌, ^ ∈ GalQ( 𝑓 ).

Galois group We now look for the 8 elements of the Galois group. We’ll use
the principle that if 𝜑, \ ∈ 𝐺 with 𝜑(b) = \ (b) and 𝜑(𝑖) = \ (𝑖) then 𝜑 = \ (by
Lemma 4.3.6).

Complex conjugation on C restricts to a nontrivial automorphism ^ of Q(b, 𝑖)
over Q, giving an element ^ ∈ 𝐺 of order 2.

I now claim that 𝐺 has an element 𝜌 satisfying 𝜌(b) = b𝑖 and 𝜌(𝑖) = 𝑖. In that
case, 𝜌 will act on the roots of 𝑓 as follows:

b ↦→ b𝑖 ↦→ −b ↦→ −b𝑖 ↦→ b

(Figure 8.2). This element 𝜌 will have order 4.
Proof of claim: since 𝑓 is irreducible, 𝐺 acts transitively on the roots of 𝑓 in

SFQ( 𝑓 ), so there is some 𝜑 ∈ 𝐺 such that 𝜑(b) = b𝑖. The conjugacy class of 𝑖
over Q is {±𝑖}, so 𝜑(𝑖) = ±𝑖. If 𝜑(𝑖) = 𝑖 then we can take 𝜌 = 𝜑. If 𝜑(𝑖) = −𝑖 then

(𝜑 ◦ ^) (b) = 𝜑(b) = b𝑖, (𝜑 ◦ ^) (𝑖) = 𝜑(−𝑖) = −𝜑(𝑖) = 𝑖,

so we can take 𝜌 = 𝜑 ◦ ^.
(From now on, I will usually omit the ◦ sign and write things like 𝜑^ instead. Of

course, juxtaposition is also used to mean multiplication, as in b𝑖. But confusion
shouldn’t arise: automorphisms are composed and numbers are multiplied.)

Figure 8.2 might make us wonder if 𝐺 is the dihedral group 𝐷4, the symmetry
group of the square. We will see that it is.

Warning 8.3.1 The symmetry group of a regular 𝑛-sided polygon has
2𝑛 elements: 𝑛 rotations and 𝑛 reflections. Some authors call it 𝐷𝑛

and others call it 𝐷2𝑛. I will call it 𝐷𝑛, as in the Group Theory course.

If 𝐺 � 𝐷4, we should have ^𝜌 = 𝜌−1^. (This is one of the defining equations
of the dihedral group; you saw it in Example 3.2.12 of Group Theory.) Let’s check
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𝜑 ∈ 𝐺 𝜑(b) 𝜑(𝑖) 𝜑(b𝑖) order geometric description
(see Warning 8.3.2)

id b 𝑖 b𝑖 1 identity
𝜌 b𝑖 𝑖 −b 4 rotation by 𝜋/2
𝜌2 −b 𝑖 −b𝑖 2 rotation by 𝜋

𝜌3 = 𝜌−1 −b𝑖 𝑖 b 4 rotation by −𝜋/2
^ b −𝑖 −b𝑖 2 reflection in real axis

^𝜌 = 𝜌−1^ −b𝑖 −𝑖 −b 2 reflection in axis through 1 − 𝑖
^𝜌2 = 𝜌2^ −b −𝑖 b𝑖 2 reflection in imaginary axis
^𝜌−1 = 𝜌^ b𝑖 −𝑖 b 2 reflection in axis through 1 + 𝑖

Figure 8.3: The Galois group of 𝑡4 − 2 over Q.

this. We have

^𝜌(b) = b𝑖 = −b𝑖, 𝜌−1^(b) = 𝜌−1(b) = −b𝑖,
^𝜌(𝑖) = ^(𝑖) = −𝑖, 𝜌−1^(𝑖) = 𝜌−1(−𝑖) = −𝑖,

so ^𝜌 and 𝜌−1^ are equal on b and 𝑖, so ^𝜌 = 𝜌−1^. It follows that ^𝜌𝑟 = 𝜌−𝑟^ for
all 𝑟 ∈ Z.

Figure 8.3 shows the effect of 8 elements of 𝐺 on b, 𝑖 and b𝑖. Since no two
of them have the same effect on both b and 𝑖, they are all distinct elements of 𝐺.
Since |𝐺 | = 8, they are the only elements of 𝐺. So 𝐺 � 𝐷4.

Warning 8.3.2 The ‘geometric description’ in Figure 8.3 applies only
to the roots, not the whole of the splitting field Q(b, 𝑖). For example,
𝜌2 is rotation by 𝜋 on the set of roots, but it is not rotation by 𝜋 on the
rest of Q(b, 𝑖): it fixes each element of Q, for instance.

Subgroups of the Galois group Since |𝐺 | = 8, any nontrivial proper subgroup
of 𝐺 has order 2 or 4. Let’s look in turn at subgroups of order 2 and 4, also
determining which ones are normal. This is pure group theory, with no mention
of fields.

• The subgroups of order 2 are of the form ⟨𝜑⟩ = {id, 𝜑} where 𝜑 ∈ 𝐺 has
order 2. So, they are

⟨𝜌2⟩, ⟨^⟩, ⟨^𝜌⟩, ⟨^𝜌2⟩, ⟨^𝜌−1⟩.

If you watched the video ‘What does it mean to be normal?’, you may be
able to guess which of these subgroups are normal in𝐺, the symmetry group
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of the square. It should be those that can be specified without referring to
particular vertices or edges of the square. So, just the first should be normal.
Let’s check.
We know that ^𝜌2 = 𝜌2^, so 𝜌2 commutes with both ^ and 𝜌, which generate
𝐺. Hence 𝜌2 is in the centre of 𝐺 (commutes with everything in 𝐺). It
follows that ⟨𝜌2⟩ is a normal subgroup of 𝐺. On the other hand, for each
𝑟 ∈ Z, the subgroup ⟨^𝜌𝑟⟩ is not normal, since

𝜌(^𝜌𝑟)𝜌−1 = (𝜌^)𝜌𝑟−1 = (^𝜌−1)𝜌𝑟−1 = ^𝜌𝑟−2 ∉ ⟨^𝜌𝑟⟩.

• The subgroups of 𝐺 of order 4 are isomorphic to either 𝐶4 or 𝐶2 ×𝐶2, since
these are the only groups of order 4.
The only elements of 𝐺 of order 4 are 𝜌±1, so the only subgroup of 𝐺
isomorphic to 𝐶4 is ⟨𝜌⟩ = {id, 𝜌, 𝜌2, 𝜌3 = 𝜌−1}.
Now consider subgroups 𝐻 of 𝐺 isomorphic to 𝐶2 × 𝐶2.

Exercise 8.3.3 Show that every such 𝐻 must contain 𝜌2. (Hint:
think geometrically.)

We have 𝜌2 ∈ 𝐻, and both other nonidentity elements of 𝐻 have order 2, so
they are of the form ^𝜌𝑟 for some 𝑟 ∈ Z. The two such subgroups 𝐻 are

⟨^, 𝜌2⟩ = {id, ^, 𝜌2, ^𝜌2},
⟨^𝜌, 𝜌2⟩ = {id, ^𝜌, 𝜌2, ^𝜌−1}.

Finally, any subgroup of index 2 of any group is normal, so all the subgroups
of 𝐺 of order 4 are normal.

Hence the subgroup structure of 𝐺 � 𝐷4 is as follows, where a box around a
subgroup means that it is normal in 𝐺.

1 order 1

⟨^⟩ ⟨^𝜌2⟩ ⟨𝜌2⟩ ⟨^𝜌⟩ ⟨^𝜌−1⟩ order 2

⟨^, 𝜌2⟩ � 𝐶2 × 𝐶2 ⟨𝜌⟩ � 𝐶4 ⟨^𝜌, 𝜌2⟩ � 𝐶2 × 𝐶2 order 4

𝐺 = ⟨^, 𝜌⟩ � 𝐷4 order 8
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Fixed fields We now find Fix(𝐻) for each 𝐻 ∈ G , again considering the sub-
groups of orders 2 and 4 in turn. We’ll use the same three-step strategy as in
Example 8.2.5.

• Order 2: take Fix⟨^⟩ (officially Fix(⟨^⟩), but let’s drop the brackets). We
have ^(b) = b, so b ∈ Fix⟨^⟩, so Q(b) ⊆ Fix⟨^⟩. But [Q(b, 𝑖) : Q(b)] = 2,
and by the fundamental theorem, [Q(b, 𝑖) : Fix⟨^⟩] = |⟨^⟩| = 2, so Fix⟨^⟩ =
Q(b).
The same argument shows that for any 𝜑 ∈ 𝐺 of order 2, if we can spot
some 𝛼 ∈ Q(b, 𝑖) such that 𝜑(𝛼) = 𝛼 and [Q(b, 𝑖) : Q(𝛼)] ≤ 2, then

Finding fixed fields Fix⟨𝜑⟩ = Q(𝛼). For 𝜑 = ^𝜌2, we can take 𝛼 = b𝑖 (by Figure 8.3). We have
degQ(b𝑖) = 4 since b𝑖 is a root of 𝑓 , so [Q(b𝑖) : Q] = 4, or equivalently,
[Q(b, 𝑖) : Q(b𝑖)] = 2. Hence Fix⟨^𝜌2⟩ = Q(b𝑖).

Exercise 8.3.4 I took a small liberty in the sentence beginning
‘The same argument’, because it included an inequality but the
previous argument didn’t. Prove the statement made in that sen-
tence.

It is maybe not so easy to spot an 𝛼 for ^𝜌, but the geometric description
in Figure 8.3 suggests taking 𝛼 = b (1 − 𝑖). And indeed, one can check that
^𝜌 fixes b (1 − 𝑖). One can also check that b (1 − 𝑖) is not the root of any
nonzero quadratic over Q, so degQ(b (1 − 𝑖)) is ≥ 4 (since it divides 8), so
[Q(b, 𝑖) : Q(b (1− 𝑖))] ≤ 8/4 = 2. Hence Fix⟨^𝜌⟩ = Q(b (1− 𝑖)). Similarly,
Fix⟨^𝜌−1⟩ = Q(b (1 + 𝑖)).
Finally,

𝜌2(b2) = (𝜌2(b))2 = (−b)2 = b2, 𝜌2(𝑖) = 𝑖,
so Q(b2, 𝑖) ⊆ Fix⟨𝜌2⟩. But [Q(b, 𝑖) : Q(b2, 𝑖)] = 2, so Fix⟨𝜌2⟩ = Q(b2, 𝑖).

• Order 4: for 𝐻 = ⟨^, 𝜌2⟩, note that b2 is fixed by both ^ and 𝜌2, so
b2 ∈ Fix(𝐻), so Q(b2) ⊆ Fix(𝐻). But b2 ∉ Q, so [Q(b2) : Q] ≥ 2, so
[Q(b, 𝑖) : Q(b2)] ≤ 4. The fundamental theorem guarantees that

[Q(b, 𝑖) : Fix(𝐻)] = |𝐻 | = 4,

so Fix(𝐻) = Q(b2).
The same argument applies to the other two subgroups 𝐻 of order 4: if
we can spot an element 𝛼 ∈ Q(b, 𝑖) \ Q fixed by the generators of 𝐻, then
Fix(𝐻) = Q(𝛼). This gives Fix⟨𝜌⟩ = Q(𝑖) and Fix⟨^𝜌, 𝜌2⟩ = Q(b2𝑖).
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In summary, the fixed fields of the subgroups of 𝐺 are as follows.

Q(b, 𝑖) degree 1

Q(b) Q(b𝑖) Q(b2, 𝑖) Q(b (1 − 𝑖)) Q(b (1 + 𝑖)) degree 2

Q(b2) Q(𝑖) Q(b2𝑖) degree 4

Q degree 8

On the right, ‘degree’ means the degree of Q(b, 𝑖) over the subfield concerned,
not the degree over Q. The fundamental theorem implies that the Galois group of
Q(b, 𝑖) over each intermediate field is the subgroup of 𝐺 in the same position in
the earlier diagram. For example, Gal(Q(b, 𝑖) : Q(b2, 𝑖)) = ⟨𝜌2⟩. It also implies
that the intermediate fields that are normal over Q are the boxed ones.

Quotients Finally, the fundamental theorem tells us that
Gal(Q(b, 𝑖) : Q)
Gal(Q(b, 𝑖) : 𝐿) � Gal(𝐿 : Q)

whenever 𝐿 is an intermediate field normal over Q.
For 𝐿 = Q(b2, 𝑖), this gives

𝐺/⟨𝜌2⟩ � Gal(Q(b2, 𝑖) : Q). (8.4)

The left-hand side is the quotient of 𝐷4 by a subgroup isomorphic to 𝐶2. It has
order 4, but it has no element of order 4: for the only elements of 𝐺 of order 4
are 𝜌±1, whose images in 𝐺/⟨𝜌2⟩ have order 2. Hence 𝐺/⟨𝜌2⟩ � 𝐶2 × 𝐶2. On
the other hand, Q(b2, 𝑖) is the splitting field over Q of (𝑡2 − 2) (𝑡2 + 1), which by
Example 8.2.5 has Galois group 𝐶2 × 𝐶2. This confirms the isomorphism (8.4).

The other three intermediate fields normal over Q, I leave to you:Normal subgroups
and normal
extensions Exercise 8.3.5 Choose one ofQ(b2),Q(𝑖) orQ(b2𝑖), and do the same

for it as I just did for Q(b2, 𝑖).

As you’ve now seen, it can take quite some time to work through a partic-
ular example of the Galois correspondence. You’ll get practice at doing this in
workshops.

Beyond examples, there are at least two other uses of the fundamental theorem.
The first is to resolve the old question on solvability of polynomials by radicals,
which we met back in Chapter 1. The second is to work out the structure of finite
fields. We will carry out these two missions in the remaining two weeks.
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Chapter 9

Solvability by radicals

We began this course with a notorious old problem: can every polynomial be
solved by radicals? Theorem 1.3.5 gave the answer and more: not only is it
impossible to find a general formula that does it, but we can tell which specific
polynomials can be solved by radicals.

Introduction to
Week 9

Theorem 1.3.5 states that a polynomial overQ is solvable by radicals if and only
if it has the right kind of Galois group—a solvable one. In degree 5 and higher,
there are polynomials that have the wrong kind of group. These polynomials are
not, therefore, solvable by radicals.

We’ll prove one half of this ‘if and only if’ statement: if 𝑓 is solvable by
radicals then GalQ( 𝑓 ) is solvable. This is the half that’s needed to show that some
polynomials are not solvable by radicals. The proof of the other direction is in
Chapter 18 of Stewart’s book, but we won’t do it.

If you’re taking Algebraic Topology, you’ll already be familiar with the idea
that groups can be used to solve problems that seem to have nothing to do with
groups. You have a problem about some objects (such as topological spaces or
field extensions), you associate groups with those objects (maybe their fundamental
groups or their Galois groups), you translate your original problem into a problem
about groups, and you solve that instead. For example, the question of whether R2

and R3 are homeomorphic is quite difficult using only general topology; but using
algebraic topology, we can answer ‘no’ by noticing that the fundamental group of
R2 with a point removed is not isomorphic to the fundamental group of R3 with a
point removed. In much the same way, we’ll answer a difficult question about field
extensions by converting it into a question about groups.

For this chapter, you’ll need what you know about solvable groups. At a
minimum, you’ll need the definition, the fact that any quotient of a solvable group
is solvable, and the fact that 𝑆5 is not solvable.
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9.1 Radicals
We speak of square roots, cube roots, and so on, but we also speak about roots
of polynomials. To distinguish between these two related usages, we will use the
word radical for square roots etc. (Radical comes from the Latin for root. A
radish is a root, and a change is radical if it gets to the root of the matter.)

Back in Chapter 1, I said that a complex number is called radical if ‘it can be
obtained from the rationals using only the usual arithmetic operations [addition,
subtraction, multiplication and division] and 𝑘th roots [for 𝑘 ≥ 1]’. As an example,
I said that

1
2 + 3

√︁
7√2 − 2√7

4

√︂
6 + 5

√︃
2
3

(9.1)

is radical, whichever square root, cube root, etc., we choose (p. 12). Let’s now
make this definition precise.

The first point is that the notation 𝑛
√
𝑧 or 𝑧1/𝑛 is highly dangerous:

Warning 9.1.1 Let 𝑧 be a complex number and 𝑛 ≥ 2. Then there
is no single number called 𝑛

√
𝑧 or 𝑧1/𝑛. There are 𝑛 elements 𝛼 of C

such that 𝛼𝑛 = 𝑧. So, the notation 𝑛
√
𝑧 or 𝑧1/𝑛 makes no sense if it is

intended to denote a single complex number. It is simply invalid.
When 𝑧 belongs to the set R+ of nonnegative reals, the convention is
that 𝑛

√
𝑧 or 𝑧1/𝑛 denotes the unique 𝛼 ∈ R+ such that 𝛼𝑛 = 𝑧. There is

also a widespread convention that when 𝑧 is a negative real and 𝑛 is
odd, 𝑛

√
𝑧 or 𝑧1/𝑛 denotes the unique real 𝛼 such that 𝛼𝑛 = 𝑧. In these

cases, there is a sensible and systematic way of choosing one of the
𝑛th roots of 𝑧. But for a general 𝑧 and 𝑛, there is not.
Complex analysis has a lot to say about different choices of 𝑛th roots.
But we don’t need to go into that. We simply treat all the 𝑛th roots of 𝑧
on an equal footing, not attempting to pick out any of them as special.

With this warning in mind, we define the radical numbers without using no-
tation like 𝑛

√
𝑧 or 𝑧1/𝑛. It is a ‘top-down’ definition, in the sense of Section 2.2.

Loosely, it says that the radical numbers form the smallest subfield of C closed
under taking square roots, cube roots, etc.

Definition 9.1.2 Let Qrad be the smallest subfield of C such that for 𝛼 ∈ C,
The definition of
radical number 𝛼𝑛 ∈ Qrad for some 𝑛 ≥ 1 ⇒ 𝛼 ∈ Qrad. (9.2)

A complex number is radical if it belongs to Qrad.

130



So any rational number is radical; any 𝑛th root of a radical number is radical;
the sum, product, difference or quotient of radical numbers is radical; and there
are no more radical numbers than can be obtained by those rules.

For the definition ofQrad to make sense, we need there to be a smallest subfield
of C with the property (9.2). This will be true as long as the intersection of any
family of subfields of C satisfying (9.2) is again a subfield of C satisfying (9.2):
for then Qrad is the intersection of all subfields of C satisfying (9.2).

Exercise 9.1.3 Check that the intersection of any family of subfields
ofC satisfying (9.2) is again a subfield ofC satisfying (9.2). (That any
intersection of subfields is a subfield is a fact we met back on p. 29;
the new aspect is (9.2).)

Example 9.1.4 Consider again the expression (9.1). It’s not quite as random as
it looks. I chose it so that the various radicals are covered by one of the two
conventions mentioned in Warning 9.1.1: they’re all 𝑛th roots of positive reals
except for 3

√︁
7√2 − 2√7, which is an odd root of a negative real. Let 𝑧 be the

number (9.1), choosing the radicals according to those conventions.
I claim that 𝑧 is radical, or equivalently that 𝑧 belongs to every subfield 𝐾 of C

satisfying (9.2).
First, Q ⊆ 𝐾 since Q is the prime subfield of C. So 2/3 ∈ 𝐾 , and so 5

√︁
2/3 ∈ 𝐾

by (9.2). Also, 6 ∈ 𝐾 and 𝐾 is a field, so 6 + 5
√︁

2/3 ∈ 𝐾 . But then by (9.2) again,
the denominator of (9.1) is in 𝐾 . A similar argument shows that the numerator is
in 𝐾 . Hence 𝑧 ∈ 𝐾 .

Definition 9.1.5 A nonzero polynomial over Q is solvable by radicals if all of its
complex roots are radical.

The simplest nontrivial example of a polynomial solvable by radicals is some-
thing of the form 𝑡𝑛 − 𝑎, where 𝑎 ∈ Q. The theorem we’re heading for is that
any polynomial solvable by radicals has solvable Galois group, and if that’s true
then the group GalQ(𝑡𝑛 − 𝑎) must be solvable. Let’s consider that group now. The
results we prove about it will form part of the proof of the big theorem.

We begin with the case 𝑎 = 1.

Lemma 9.1.6 For all 𝑛 ≥ 1, the group GalQ(𝑡𝑛 − 1) is abelian.

Proof Write 𝜔 = 𝑒2𝜋𝑖/𝑛. The complex roots of 𝑡𝑛 − 1 are 1, 𝜔, . . . , 𝜔𝑛−1, so
SFQ(𝑡𝑛 − 1) = Q(𝜔).

Let 𝜑, \ ∈ GalQ(𝑡𝑛 − 1). Since 𝜑 permutes the roots of 𝑡𝑛 − 1, we have
𝜑(𝜔) = 𝜔𝑖 for some 𝑖 ∈ Z. Similarly, \ (𝜔) = 𝜔 𝑗 for some 𝑗 ∈ Z. Hence

(𝜑 ◦ \) (𝜔) = 𝜑(𝜔 𝑗 ) = 𝜑(𝜔) 𝑗 = 𝜔𝑖 𝑗 ,
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and similarly (\ ◦ 𝜑) (𝜔) = 𝜔𝑖 𝑗 . So (𝜑 ◦ \) (𝜔) = (\ ◦ 𝜑) (𝜔). Since SFQ(𝑡𝑛 − 1) =
Q(𝜔), it follows that \ ◦ 𝜑 = 𝜑 ◦ \. □

Exercise 9.1.7 In the last sentence of that proof, how exactly does it
‘follow’?

Much more can be said about the Galois group of 𝑡𝑛 − 1, and you’ll see a bit
more in workshops. But this is all we need for our purposes.

Now that we’ve considered 𝑡𝑛 − 1, let’s do 𝑡𝑛 − 𝑎 for an arbitrary 𝑎.

Lemma 9.1.8 Let 𝐾 be a field and 𝑛 ≥ 1. Suppose that 𝑡𝑛 − 1 splits in 𝐾 . Then
Gal𝐾 (𝑡𝑛 − 𝑎) is abelian for all 𝑎 ∈ 𝐾 .

The hypothesis that 𝑡𝑛 − 1 splits in 𝐾 might seem so restrictive as to make
this lemma useless. For instance, it doesn’t hold in Q or even R (for 𝑛 > 2).
Nevertheless, this turns out to be the key lemma in the whole story of solvability
by radicals.

Proof If 𝑎 = 0 then Gal𝐾 (𝑡𝑛 − 𝑎) is trivial; suppose otherwise.
Choose a root b of 𝑡𝑛 − 𝑎 in SF𝐾 (𝑡𝑛 − 𝑎). For any other root a, we have

(a/b)𝑛 = 𝑎/𝑎 = 1 (valid since 𝑎 ≠ 0), and 𝑡𝑛 − 1 splits in 𝐾 , so a/b ∈ 𝐾 .
It follows that SF𝐾 (𝑡𝑛 − 𝑎) = 𝐾 (b). Moreover, given 𝜑, \ ∈ Gal𝐾 (𝑡𝑛 − 𝑎), we

have 𝜑(b)/b ∈ 𝐾 (since 𝜑(b) is a root of 𝑡𝑛 − 𝑎), so

(\ ◦ 𝜑) (b) = \
(
𝜑(b)
b

· b
)
=
𝜑(b)
b

· \ (b) = 𝜑(b)\ (b)
b

.

Similarly, (𝜑◦\) (b) = 𝜑(b)\ (b)/b, so (\◦𝜑) (b) = (𝜑◦\) (b). Since SF𝐾 (𝑡𝑛−𝑎) =
𝐾 (b), it follows that 𝜑 ◦ \ = \ ◦ 𝜑. □

Warning 9.1.9 For 𝑎 ∈ Q, the Galois group of 𝑡𝑛 − 𝑎 over Q is
not usually abelian. For instance, we saw in Example 7.1.14 that
GalQ(𝑡3 − 2) is the nonabelian group 𝑆3.

Exercise 9.1.10 What does the proof of Lemma 9.1.8 tell you about
the eigenvectors and eigenvalues of the elements of Gal𝐾 (𝑡𝑛 − 𝑎)?

Exercise 9.1.11 Use Lemmas 9.1.6 and 9.1.8 to show that GalQ(𝑡𝑛−𝑎)
is solvable for all 𝑎 ∈ Q.
This is harder than most of these exercises, but I recommend it as a
way of getting into the right frame of mind for the theory that’s coming
in Section 9.2.
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Digression 9.1.12 We’re only going to do the theory of solvability by
radicals over Q. It can be done over any field, but Q has two special features.
First, Q can be embedded in an algebraically closed field that we know very
well: C. This makes some things easier. Second, charQ = 0. For fields of
characteristic 𝑝, there are extra complications (Stewart, Section 17.6).

9.2 Solvable polynomials have solvable groups
Here we’ll prove that every polynomial over Q that is solvable by radicals has
solvable Galois group.

You know by now that in Galois theory, we tend not to jump straight from
polynomials to groups. We go via the intermediate stage of field extensions, as in
the diagram

polynomial ↦−→ field extension ↦−→ group

that I first drew after the definition of Gal𝐾 ( 𝑓 ) (p. 93). That is, we understand
polynomials through their splitting field extensions.

So it shouldn’t be a surprise that we do the same here, defining a notion of
‘solvable extension’ and showing (roughly speaking) that

solvable polynomial ↦−→ solvable extension ↦−→ solvable group.

In other words, we’ll define ‘solvable extension’ in such a way that (i) if 𝑓 ∈ Q[𝑡]
is a polynomial solvable by radicals then SFQ( 𝑓 ) : Q is a solvable extension, and
(ii) if 𝑀 : 𝐾 is a solvable extension then Gal(𝑀 : 𝐾) is a solvable group. Hence
if 𝑓 is solvable by radicals then GalQ( 𝑓 ) is solvable—the result we’re aiming for.Solvable

polynomials have
solvable groups:

a map
Definition 9.2.1 Let 𝑀 : 𝐾 be a finite normal separable extension. Then 𝑀 : 𝐾
is solvable (or 𝑀 is solvable over 𝐾) if there exist 𝑟 ≥ 0 and intermediate fields

𝐾 = 𝐿0 ⊆ 𝐿1 ⊆ · · · ⊆ 𝐿𝑟 = 𝑀

such that 𝐿𝑖 : 𝐿𝑖−1 is normal and Gal(𝐿𝑖 : 𝐿𝑖−1) is abelian for each 𝑖 ∈ {1, . . . , 𝑟}.

Exercise 9.2.2 Let 𝑁 : 𝑀 : 𝐾 be extensions, with 𝑁 : 𝑀 , 𝑀 : 𝐾 and
𝑁 : 𝐾 all finite, normal and separable. Show that if 𝑁 : 𝑀 and 𝑀 : 𝐾
are solvable then so is 𝑁 : 𝐾 .

We will focus on subfields of C, where separability is automatic (Exam-
ple 7.2.14(i)).
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Example 9.2.3 Let 𝑎 ∈ Q and 𝑛 ≥ 1. Then SFQ(𝑡𝑛 − 𝑎) : Q is a finite normal
separable extension, being a splitting field extension over Q. I claim that it is
solvable.

Proof: if 𝑎 = 0 then SFQ(𝑡𝑛 − 𝑎) = Q, and Q : Q is solvable (taking 𝑟 = 0 and
𝐿0 = Q in Definition 9.2.1). Now assume that 𝑎 ≠ 0. Choose a complex root b of
𝑡𝑛 − 𝑎 and write 𝜔 = 𝑒2𝜋𝑖/𝑛. Then the complex roots of 𝑡𝑛 − 𝑎 are

b, 𝜔b, . . . , 𝜔𝑛−1b.

So SFQ(𝑡𝑛 − 𝑎) contains (𝜔𝑖b)/b = 𝜔𝑖 for all 𝑖, and so 𝑡𝑛 − 1 splits in SFQ(𝑡𝑛 − 𝑎).
Hence

Q ⊆ SFQ(𝑡𝑛 − 1) ⊆ SFQ(𝑡𝑛 − 𝑎).
Now SFQ(𝑡𝑛 − 1) : Q is normal (being a splitting field extension) and has abelian
Galois group by Lemma 9.1.6. Also SFQ(𝑡𝑛−𝑎) : SFQ(𝑡𝑛−1) is normal (being the
splitting field extension of 𝑡𝑛 − 𝑎 over SFQ(𝑡𝑛 − 1), by Lemma 6.2.14(ii)), and has
abelian Galois group by Lemma 9.1.8. So SFQ(𝑡𝑛 − 𝑎) : Q is a solvable extension,
as claimed.

The definition of solvable extension bears a striking resemblance to the defini-
tion of solvable group. Indeed:

Lemma 9.2.4 Let 𝑀 : 𝐾 be a finite normal separable extension. Then

𝑀 : 𝐾 is solvable ⇐⇒ Gal(𝑀 : 𝐾) is solvable.

Proof We will only need the ⇒ direction, and that is all I prove here. For the
converse, see the workshop questions.

Suppose that 𝑀 : 𝐾 is solvable. Then there are intermediate fields

𝐾 = 𝐿0 ⊆ 𝐿1 ⊆ · · · ⊆ 𝐿𝑟 = 𝑀

such that each extension 𝐿𝑖 : 𝐿𝑖−1 is normal with abelian Galois group. For
each 𝑖 ∈ {1, . . . , 𝑟}, the extension 𝑀 : 𝐿𝑖−1 is finite, normal and separable (by
Corollary 7.1.6 and Lemma 7.2.16), so we can apply the fundamental theorem of
Galois theory to it. Since 𝐿𝑖 : 𝐿𝑖−1 is a normal extension, Gal(𝑀 : 𝐿𝑖) is a normal
subgroup of Gal(𝑀 : 𝐿𝑖−1) and

Gal(𝑀 : 𝐿𝑖−1)
Gal(𝑀 : 𝐿𝑖)

� Gal(𝐿𝑖 : 𝐿𝑖−1).

By hypothesis, the right-hand side is abelian, so the left-hand side is too. So the
sequence of subgroups

Gal(𝑀 : 𝐾) = Gal(𝑀 : 𝐿0) ⊇ Gal(𝑀 : 𝐿1) ⊇ · · · ⊇ Gal(𝑀 : 𝐿𝑟) = 1

exhibits Gal(𝑀 : 𝐾) as a solvable group. □
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Exercise 9.2.5 Prove the ⇐ direction of Lemma 9.2.4. It’s a very
similar argument to the proof of ⇒.

According to the story I’m telling, solvability by radicals of a polynomial
should correspond to solvability of its splitting field extension. Thus, the subfields
of C that are solvable over Q should be exactly the splitting fields SFQ( 𝑓 ) of
polynomials 𝑓 that are solvable by radicals. (This is indeed true, though we won’t
entirely prove it.) Now if 𝑓 , 𝑔 ∈ Q[𝑡] are both solvable by radicals then so is 𝑓 𝑔,
and SFQ( 𝑓 𝑔) is a solvable extension of Q containing both SFQ( 𝑓 ) and SFQ(𝑔).
So it should be the case that for any two subfields of C solvable over Q, there is
some larger subfield, also solvable over Q, containing both.

The following pair of lemmas proves this. They use the notion of compositum
(Definition 5.3.3).

Lemma 9.2.6 Let 𝑀 : 𝐾 be a field extension and let 𝐿 and 𝐿′ be intermediate
fields.𝑀

𝐿𝐿′

𝐿 𝐿′

𝐾

i. If 𝐿 : 𝐾 and 𝐿′ : 𝐾 are finite and normal, then so is 𝐿𝐿′ : 𝐾 .

ii. If 𝐿 : 𝐾 is finite and normal, then so is 𝐿𝐿′ : 𝐿′.

iii. If 𝐿 : 𝐾 is finite and normal with abelian Galois group, then so is 𝐿𝐿′ : 𝐿′.

Proof For (i), we have 𝐿 = SF𝐾 ( 𝑓 ) and 𝐿′ = SF𝐾 ( 𝑓 ′) for some 𝑓 , 𝑓 ′ ∈ 𝐾 [𝑡].
Now 𝐿𝐿′ is the subfield of 𝑀 generated by 𝐿 ∪ 𝐿′, or equivalently by the roots of
𝑓 and 𝑓 ′. So 𝐿𝐿′ = SF𝐾 ( 𝑓 𝑓 ′), which is finite and normal over 𝐾 .

For (ii), we have 𝐿 = SF𝐾 ( 𝑓 ) for some 𝑓 ∈ 𝐾 [𝑡]. Then 𝐿𝐿′ = SF𝐿′ ( 𝑓 )
by Lemma 6.2.14(i) (with 𝑆 = 𝐿 and 𝑌 = 𝐿′), so 𝐿𝐿′ is finite and normal over
𝐿′. Now Gal(𝐿𝐿′ : 𝐿′) = Gal𝐿′ ( 𝑓 ), which by Corollary 6.3.12 is isomorphic to
a subgroup of Gal𝐾 ( 𝑓 ) = Gal(𝐿 : 𝐾). So if Gal(𝐿 : 𝐾) is abelian then so is
Gal(𝐿𝐿′ : 𝐿′), proving (iii). □

Lemma 9.2.7 Let 𝐿 and 𝑀 be subfields of C such that the extensions 𝐿 : Q and
𝑀 : Q are finite, normal and solvable. Then there is some subfield 𝑁 of C such
that 𝑁 : Q is finite, normal and solvable and 𝐿, 𝑀 ⊆ 𝑁 .

Both the statement and the proof of this lemma should remind you of
Lemma 5.3.8 on ruler and compass constructions.

Proof Take subfields

Q = 𝐿0 ⊆ · · · ⊆ 𝐿𝑟 = 𝐿, Q = 𝑀0 ⊆ · · · ⊆ 𝑀𝑠 = 𝑀
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such that 𝐿𝑖 : 𝐿𝑖−1 is normal with abelian Galois group for each 𝑖, and similarly
for 𝑀 𝑗 : 𝑀 𝑗−1. There is a chain of subfields

Q = 𝐿0 ⊆ · · · ⊆ 𝐿𝑟 = 𝐿 = 𝐿𝑀0 ⊆ · · · ⊆ 𝐿𝑀𝑠 = 𝐿𝑀 (9.3)

of C. Put 𝑁 = 𝐿𝑀 . Certainly 𝐿, 𝑀 ⊆ 𝑁 . We show that 𝑁 : Q is finite, normal
and solvable.

That 𝑁 : Q is finite and normal follows from Lemma 9.2.6(i).
To see that 𝑁 : Q is solvable, we show that each successive extension in (9.3)

is normal with abelian Galois group. For those to the left of 𝐿, this is immediate.
For those to the right, let 𝑗 ∈ {1, . . . , 𝑠}. Since 𝑀 𝑗 : 𝑀 𝑗−1 is finite and normal
with abelian Galois group, so is 𝐿𝑀 𝑗 : 𝐿𝑀 𝑗−1 by Lemma 9.2.6(iii). □

The set of radical numbers is a subfield of C closed under taking 𝑛th roots. So
if the story I’m telling is right, the set of complex numbers that can be reached
from Q by solvable extensions should also be a subfield of C closed under taking
𝑛th roots. That’s an informal description of our next two results. Write

Qsol = {𝛼 ∈ C : 𝛼 ∈ 𝐿 for some subfield 𝐿 ⊆ C that is finite, normal and solvable
over Q}.

Lemma 9.2.8 Qsol is a subfield of C.

Proof This is similar to the proof that the algebraic numbers form a subfield of
C (Proposition 5.2.7). Let 𝛼, 𝛽 ∈ Qsol. Then 𝛼 ∈ 𝐿 and 𝛽 ∈ 𝑀 for some 𝐿, 𝑀
that are finite, normal and solvable over Q. By Lemma 9.2.7, 𝛼, 𝛽 ∈ 𝑁 for some
𝑁 that is finite, normal and solvable over Q. Then 𝛼 + 𝛽 ∈ 𝑁 , so 𝛼 + 𝛽 ∈ Qsol,
and similarly 𝛼 · 𝛽 ∈ Qsol. This shows that Qsol is closed under addition and
multiplication. The other parts of the proof (negatives, reciprocals, 0 and 1) are
straightforward. □

Lemma 9.2.9 Let 𝛼 ∈ C and 𝑛 ≥ 1. If 𝛼𝑛 ∈ Qsol then 𝛼 ∈ Qsol.

The proof (below) is slightly subtle. Here’s why.
Let 𝐿 be a subfield of C that’s finite, normal and solvable over Q, and take

𝛼 ∈ C and 𝑛 ≥ 1 such that 𝛼𝑛 ∈ 𝐿. To find some larger 𝑀 that contains 𝛼 itself and
is also solvable over Q, we could try putting 𝑀 = SF𝐿 (𝑡𝑛 − 𝛼𝑛). But the problem
is that 𝑀 : Q is not in general normal. And normality is part of the definition of
Qsol, ultimately because it’s essential if we want to use the fundamental theorem
of Galois theory. The basic problem is this:
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Warning 9.2.10 A normal extension of a normal extension is not in
general normal, just as a normal subgroup of a normal subgroup is not
in general normal.

An example should clarify.

Example 9.2.11 Put 𝛼 =
4√2 and 𝑛 = 2. We have 𝛼2 =

√
2 ∈ Q(

√
2), and

Q(
√

2) : Q is finite, normal and solvable (since its Galois group is the abelian
group 𝐶2), so 𝛼2 ∈ Qsol. Hence, according to Lemma 9.2.9, 𝛼 =

4√2 should be
contained in some finite normal solvable extension 𝑀 of Q.

How can we find such an 𝑀? We can’t take 𝑀 = SFQ(√2) (𝑡
2 −

√
2), since this

is Q( 4√2), which is not normal over Q (for the same reason that Q( 3√2) isn’t).
To find a bigger 𝑀 , still finite and solvable over Q but also normal, we have

to adjoin a square root not just of
√

2 but also of its conjugate, −
√

2. This is the
crucial point: the whole idea of normality is that conjugates are treated equally.
(Normal behaviour means that anything you do for one element, you do for all
its conjugates.) The result is Q( 4√2, 𝑖) = SFQ(𝑡4 − 2), which is indeed a finite,
solvable and normal extension of Q containing 4√2.

Proof of Lemma 9.2.9 Write 𝑎 = 𝛼𝑛 ∈ Qsol. Choose a subfield 𝐾 of C such that
𝑎 ∈ 𝐾 and 𝐾 : Q is finite, normal and solvable.

Step 1: enlarge 𝐾 to a field in which 𝑡𝑛 − 1 splits. Put 𝐿 = SF𝐾 (𝑡𝑛 − 1) ⊆ C.
Since 𝐾 : Q is finite and normal, 𝐾 = SFQ( 𝑓 ) for some nonzero 𝑓 ∈ Q[𝑡], and

then 𝐿 = SFQ
(
(𝑡𝑛 − 1) 𝑓 (𝑡)

)
. Hence 𝐿 : Q is finite and normal. The Galois group

of 𝐿 : 𝐾 is Gal𝐾 (𝑡𝑛 − 1), which is isomorphic to a subgroup of GalQ(𝑡𝑛 − 1) (by
Corollary 6.3.12), which is abelian (by Lemma 9.1.6). Hence 𝐿 : 𝐾 is a normal
extension with abelian Galois group. Also, 𝐾 : Q is solvable. It follows from the
definition of solvable extension that 𝐿 : Q is solvable.

In summary, 𝐿 is a subfield of C such that 𝑎 ∈ 𝐿 and 𝐿 : Q is finite, normal
and solvable, and, moreover, 𝑡𝑛 − 1 splits in 𝐿. We now forget about 𝐾 .

Step 2: adjoin the 𝑛th roots of the conjugates of 𝑎. Write 𝑚 ∈ Q[𝑡] for the
minimal polynomial of 𝑎 over Q, and put 𝑀 = SF𝐿 (𝑚(𝑡𝑛)) ⊆ C. Then 𝛼 ∈ 𝑀 , as
𝑚(𝛼𝑛) = 𝑚(𝑎) = 0. We show that 𝑀 : Q is finite, normal and solvable.

Since 𝐿 : Q is finite and normal, 𝐿 = SFQ(𝑔) for some nonzero 𝑔 ∈ Q[𝑡].
Then 𝑀 = SFQ(𝑔(𝑡)𝑚(𝑡𝑛)), so 𝑀 : Q is finite and normal. Moreover, 𝑀 : 𝐿 is
finite and normal, being a splitting field extension.

Now to show that 𝑀 : Q is solvable, it is enough to show that 𝑀 : 𝐿 is solvable,
by Exercise 9.2.2. Since 𝐿 : Q is normal and 𝑚 ∈ Q[𝑡] is the minimal polynomial
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of 𝑎 ∈ 𝐿, it follows by definition of normality that 𝑚 splits in 𝐿, say

𝑚(𝑡) =
𝑟∏
𝑖=1

(𝑡 − 𝑎𝑖)

(𝑎𝑖 ∈ 𝐿). Define subfields 𝐿0 ⊆ · · · ⊆ 𝐿𝑟 of C by

𝐿0 = 𝐿

𝐿1 = SF𝐿0 (𝑡𝑛 − 𝑎1)
𝐿2 = SF𝐿1 (𝑡𝑛 − 𝑎2)
...

𝐿𝑟 = SF𝐿𝑟−1 (𝑡𝑛 − 𝑎𝑟).

Then
𝐿𝑖 = 𝐿

({
𝛽 ∈ 𝑀 : 𝛽𝑛 ∈ {𝑎1, . . . , 𝑎𝑖}

})
.

In particular, 𝐿𝑟 = 𝑀 . For each 𝑖 ∈ {1, . . . , 𝑠}, the extension 𝐿𝑖 : 𝐿𝑖−1 is finite
and normal (being a splitting field extension), and its Galois group is abelian (by
Lemma 9.1.8 and the fact that 𝑡𝑛 − 1 splits in 𝐿 ⊆ 𝐿𝑖−1). So 𝑀 : 𝐿 is solvable. □

Now we can relate the set Qrad of radical numbers, defined in terms of basic
arithmetic operations, to the set Qsol, defined in terms of field extensions.

Proposition 9.2.12 Qrad ⊆ Qsol. That is, every radical number is contained in
some subfield of C that is a finite, normal, solvable extension of Q.

In fact, Qrad and Qsol are equal, but we won’t prove this.

Proof By Lemmas 9.2.8 and 9.2.9, Qsol is a subfield of C such that 𝛼𝑛 ∈ Qsol ⇒
𝛼 ∈ Qsol. The result follows from the definition of Qrad. □

This brings us to the main result of this chapter. Notice that it doesn’t mention
field extensions: it goes straight from polynomials to groups.

Theorem 9.2.13 Let 0 ≠ 𝑓 ∈ Q[𝑡]. If the polynomial 𝑓 is solvable by radicals
then the group GalQ( 𝑓 ) is solvable.

Proof Suppose that 𝑓 is solvable by radicals. Write 𝛼1, . . . , 𝛼𝑛 ∈ C for its roots.
For each 𝑖, we have 𝛼𝑖 ∈ Qrad (by definition of solvability by radicals), hence
𝛼𝑖 ∈ Qsol (by Proposition 9.2.12). So each of 𝛼1, . . . , 𝛼𝑛 is contained in some
subfield of C that is finite, normal and solvable over Q. By Lemma 9.2.7, there is
some subfield 𝑀 of C that is finite, normal and solvable over Q and contains all of
𝛼1, . . . , 𝛼𝑛. Then Q(𝛼1, . . . , 𝛼𝑛) ⊆ 𝑀; that is, SFQ( 𝑓 ) ⊆ 𝑀 .
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By Lemma 9.2.4, Gal(𝑀 : Q) is solvable. Now SFQ( 𝑓 ) : Q is normal, so
by the fundamental theorem of Galois theory, Gal(SFQ( 𝑓 ) : Q) is a quotient of
Gal(𝑀 : Q). But Gal(SFQ( 𝑓 ) : Q) = GalQ( 𝑓 ), and a quotient of a solvable group
is solvable, so GalQ( 𝑓 ) is solvable. □

Examples 9.2.14 i. For 𝑎 ∈ Q and 𝑛 ≥ 1, the polynomial 𝑡𝑛 − 𝑎 is solvable by
radicals, so the group GalQ(𝑡𝑛−𝑎) is solvable. You may already have proved
this in Exercise 9.1.11. It also follows from Example 9.2.3 and Lemma 9.2.4.

ii. Let 𝑎1, . . . , 𝑎𝑘 ∈ Q and 𝑛1, . . . , 𝑛𝑘 ≥ 1. Each of the polynomials 𝑡𝑛𝑖 − 𝑎𝑖 is
solvable by radicals, so their product is too. Hence GalQ

(∏
𝑖 (𝑡𝑛𝑖 − 𝑎𝑖)

)
is a

solvable group.

Theorem 9.2.13 is most sensational in its contrapositive form: if GalQ( 𝑓 ) is not
solvable then 𝑓 is not solvable by radicals. That’s the subject of the next section.

Digression 9.2.15 The converse of Theorem 9.2.13 is also true: if GalQ( 𝑓 )
is solvable then 𝑓 is solvable by radicals. You can even unwind the proof
to obtain an explicit formula for the solving the quartic by radicals (Stewart,
Chapter 18).

For this, we have to deduce properties of a field extension from assumptions
about its Galois group. A solvable group is built up from abelian groups,
and every finite abelian group is a direct sum of cyclic groups. The key
step in proving the converse of Theorem 9.2.13 has come to be known as
‘Hilbert’s Theorem 90’ (Stewart’s Theorem 18.18), which gives information
about field extensions whose Galois groups are cyclic.

Digression 9.2.16 The proof of Theorem 9.2.13 might not have ended quite
how you expected. Given my explanations earlier in the chapter, you might
justifiably have imagined we were going to show that when the polynomial
𝑓 is solvable by radicals, the extension SFQ( 𝑓 ) : Q is solvable. That’s not
what we did. We showed that SFQ( 𝑓 ) is contained in some larger subfield
𝑀 such that 𝑀 : Q is solvable, then used that to prove the solvability of the
group GalQ( 𝑓 ).
But all is right with the world: SFQ( 𝑓 ) : Q is a solvable extension. Indeed, its
Galois group GalQ( 𝑓 ) is solvable, so Lemma 9.2.4 implies that SFQ( 𝑓 ) : Q
is solvable too.

9.3 An unsolvable polynomial
Here we give a specific example of a polynomial over Q that is not solvable by
radicals. By Theorem 9.2.13, our task is to construct a polynomial whose Galois
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group is not solvable. The smallest non-solvable group is 𝐴5 (of order 60). Our
polynomial has Galois group 𝑆5 (of order 120), which is also non-solvable.

Finding Galois groups is hard, and we will use a whole box of tools and tricks,
from Cauchy’s theorem on groups to Rolle’s theorem on differentiable functions.

First we prove a useful general fact on the order of Galois groups.

Lemma 9.3.1 Let 𝑓 be an irreducible polynomial over a field 𝐾 , with SF𝐾 ( 𝑓 ) : 𝐾
separable. Then deg( 𝑓 ) divides | Gal𝐾 ( 𝑓 ) |.

Proof Let 𝛼 be a root of 𝑓 in SF𝐾 ( 𝑓 ). By irreducibility, deg( 𝑓 ) = [𝐾 (𝛼) : 𝐾],
which divides [SF𝐾 ( 𝑓 ) : 𝐾] by the tower law, which is equal to | Gal𝐾 ( 𝑓 ) | by
Theorem 7.2.18 (using separability). □

Next, we need some results about the symmetric group 𝑆𝑛. I assume you know
that 𝑆𝑛 is generated by the ‘adjacent transpositions’ (12), (23), . . . , (𝑛−1 𝑛). This
may have been proved in Fundamentals of Pure Mathematics, and as the Group
Theory notes say (p. 58):

This is intuitively clear: suppose you have 𝑛 people lined up and you
want them to switch into a different order. To put them in the order
you want them, it’s clearly enough to have people move up and down
the line; and each time a person moves one place, they switch places
with the person next to them.

Here’s a different way of generating 𝑆𝑛.

Lemma 9.3.2 For 𝑛 ≥ 2, the symmetric group 𝑆𝑛 is generated by (12) and
(12 . . . 𝑛).

Proof We have
(12 . . . 𝑛) (12) (12 . . . 𝑛)−1 = (23),

either by direct calculation or the general fact that 𝜎(𝑎1 . . . 𝑎𝑘 )𝜎−1 =

(𝜎(𝑎1) . . . 𝜎(𝑎𝑘 )) for any 𝜎 ∈ 𝑆𝑛 and cycle (𝑎1 . . . 𝑎𝑘 ). So any subgroup 𝐻

of 𝑆𝑛 containing (12) and (12 . . . 𝑛) also contains (23). By the same argument, 𝐻
also contains (34), . . . , (𝑛 − 1 𝑛). But the adjacent transpositions generate 𝑆𝑛, so
𝐻 = 𝑆𝑛. □

Lemma 9.3.3 Let 𝑝 be a prime number, and let 𝑓 ∈ Q[𝑡] be an irreducible
polynomial of degree 𝑝 with exactly 𝑝 − 2 real roots. Then GalQ( 𝑓 ) � 𝑆𝑝.

Proof Since charQ = 0 and 𝑓 is irreducible, 𝑓 is separable and therefore has 𝑝
distinct roots in C. By Proposition 6.3.10, the action of GalQ( 𝑓 ) on the roots of
𝑓 in C defines an isomorphism between GalQ( 𝑓 ) and a subgroup 𝐻 of 𝑆𝑝. Since
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Figure 9.1: The function 𝑥 ↦→ 𝑥5 − 6𝑥 + 3.

𝑓 is irreducible, 𝑝 divides | GalQ( 𝑓 ) | = |𝐻 | (by Lemma 9.3.1). So by Cauchy’s
theorem, 𝐻 has an element 𝜎 of order 𝑝. Then 𝜎 is a 𝑝-cycle, since these are the
only elements of 𝑆𝑝 of order 𝑝.

The complex conjugate of any root of 𝑓 is also a root of 𝑓 , so complex
conjugation restricts to an automorphism of SFQ( 𝑓 ) over Q. Exactly two of the
roots of 𝑓 are non-real; complex conjugation transposes them and fixes the rest.
So 𝐻 contains a transposition 𝜏.

Without loss of generality, 𝜏 = (12). Since 𝜎 is a 𝑝-cycle, 𝜎𝑟 (1) = 2 for
some 𝑟 ∈ {1, . . . , 𝑝 − 1}. Since 𝑝 is prime, 𝜎𝑟 also has order 𝑝, so it is a 𝑝-cycle.
Now without loss of generality, 𝜎𝑟 = (123 . . . 𝑝). So (12), (12 . . . 𝑝) ∈ 𝐻, forcing
𝐻 = 𝑆𝑝 by Lemma 9.3.2. Hence GalQ( 𝑓 ) � 𝑆𝑝. □

Exercise 9.3.4 Explain why, in the last paragraph, 𝜎𝑟 has order 𝑝.

Theorem 9.3.5 Not every polynomial over Q of degree 5 is solvable by radi-
cals.

Proof We show that 𝑓 (𝑡) = 𝑡5 − 6𝑡 + 3 satisfies the conditions of Lemma 9.3.3.
Then GalQ( 𝑓 ) is 𝑆5, which is not solvable, so by Theorem 9.2.13, 𝑓 is not solvable
by radicals.

Evidently deg( 𝑓 ) is the prime number 5, and 𝑓 is irreducible by Eisenstein’s
criterion with prime 3. It remains to prove that 𝑓 has exactly 3 real roots. This is
where we use some analysis, considering 𝑓 as a function R→ R (Figure 9.1).

We have

lim
𝑥→−∞

𝑓 (𝑥) = −∞, 𝑓 (0) > 0, 𝑓 (1) < 0, lim
𝑥→∞

𝑓 (𝑥) = ∞,

and 𝑓 is continuous on R, so by the intermediate value theorem, 𝑓 has at least 3
real roots. On the other hand, 𝑓 ′(𝑥) = 5𝑥4 − 6 has only 2 real roots (± 4

√︁
6/5), so
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by Rolle’s theorem, 𝑓 has at most 3 real roots. Hence 𝑓 has exactly 3 real roots,
as required. □

Exercise 9.3.6 Prove that for every 𝑛 ≥ 5, there is some polynomial
of degree 𝑛 that is not solvable by radicals.

Example 9.3.7 There are also quintics with Galois group 𝐴5. These are not
solvable by radicals, since 𝐴5 is not a solvable group. One example, although we
won’t prove it, is 𝑡5 + 20𝑡 + 16.

Digression 9.3.8 We now know that some polynomials 𝑓 over Q are not
solvable by radicals, which means that not all their complex roots are radical.

Could it be that some of the roots are radical and others are not? Yes: simply
take a polynomial 𝑔 that is not solvable by radicals and put 𝑓 (𝑡) = 𝑡𝑔(𝑡).
Then the roots of 𝑓 are 0 (which is radical) together with the roots of 𝑔
(which are not all radical).

But what if 𝑓 is irreducible? In that case, either all the roots of 𝑓 are radical
or none of them are. This follows from the fact that the extension Qrad : Q is
normal, which we will not prove.

Digression 9.3.9 There are many similarities between the theory of con-
structibility of points by ruler and compass and the theory of solvability of
polynomials by radicals. In both cases, the challenge is to construct some
things (points in the plane or roots of polynomials) using only certain tools
(ruler and compass or a machine for taking 𝑛th roots). In both cases, there
were difficult questions of constructibility that remained open for a very long
time, and in both cases, they were solved by field theory.

The solutions have something in common too. For the geometry problem,
we used iterated quadratic extensions, and for the polynomial problem, we
used solvable extensions, which could reasonably be called iterated abelian
extensions. For the geometry problem, we showed that the coordinates of any
point constructible by ruler and compass satisfy a certain condition on their
degree over Q (Theorem 5.3.10); for the polynomial problem, we showed
that any polynomial solvable by radicals satisfies a certain condition on its
Galois group over Q. There are other similarities: compare Lemmas 5.3.8
and 9.2.7, for example, and maybe you can find more similarities still.

We have now used the fundamental theorem of Galois theory to solve a major
problem about Q. What else can we do with it?

The fundamental theorem is about separable extensions. Our two main sources
of separable extensions are:
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• fields of characteristic 0 such asQ (Example 7.2.14(i)), which we’ve explored
extensively already;

• finite fields (Example 7.2.14(ii)), which we’ve barely touched.

In the next and final chapter, we’ll use the fundamental theorem and other results
we’ve proved to explore the world of finite fields. In contrast to the intricately
complicated world of finite groups, finite fields are almost shockingly simple.

143



Chapter 10

Finite fields

This chapter is dessert. Through this semester, we’ve developed a lot of sophisti-
cated theory for general fields. All of it works for finite fields, but becomes much
simpler there. It’s a miniature world in which life is sweet. For example:

Introduction to
Week 10 • If we want to apply the fundamental theorem of Galois theory to a field

extension 𝑀 : 𝐾 , we first have to ask whether it is finite, and whether it is
normal, and whether it is separable. When 𝑀 and 𝐾 are finite fields, all
three conditions are automatic.

• There are many fields of different kinds, and to classify them all would be a
near-impossible task. But for finite fields, the classification is very simple.
We know exactly what finite fields there are.

• The Galois correspondence for arbitrary field extensions can also be compli-
cated. But again, it’s simple when the fields are finite. Their Galois groups
are very easy (they’re all cyclic), we know what their subgroups are, and it’s
easy to describe all the subfields of any given finite field.

So although the world of finite fields is not trivial, there’s a lot about it that’s
surprisingly straightforward.

We’ve already encountered two aspects of finite fields that may seem counter-
intuitive. First, they always have positive characteristic, which means they satisfy
some equation like 1+ · · · +1 = 0 (Lemma 2.3.17). Second, any element of a finite
field of characteristic 𝑝 has precisely one 𝑝th root (Corollary 2.3.22(ii)), making
finite fields quite unlike C, R or Q. But the behaviour of 𝑝th roots and 𝑝th powers
is fundamental to all of finite fields’ nice properties.
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10.1 Classification of finite fields
If you try to write down a formula for the number of groups or rings with a given
number of elements, you’ll find that it’s hard and the results are quite strange. For
instance, more than 99% of the first 50 billion groups have order 1024.

But fields turn out to be much, much easier. We’ll obtain a complete classifi-
cation of finite fields in the next two pages.

The order of a finite field 𝑀 is its cardinality, or number of elements, |𝑀 |.

Lemma 10.1.1 Let 𝑀 be a finite field. Then char𝑀 is a prime number 𝑝, and
|𝑀 | = 𝑝𝑛 where 𝑛 = [𝑀 : F𝑝] ≥ 1.

In particular, the order of a finite field is a prime power.

Proof By Lemmas 2.3.11 and 2.3.17, char𝑀 is a prime number 𝑝. By
Lemma 2.3.16, 𝑀 has prime subfield F𝑝. Since 𝑀 is finite, 1 ≤ [𝑀 : F𝑝] < ∞;
write 𝑛 = [𝑀 : F𝑝]. As a vector space over F𝑝, then, 𝑀 is 𝑛-dimensional and so
isomorphic to F𝑛𝑝. But |F𝑛𝑝 | = |F𝑝 |𝑛 = 𝑝𝑛, so |𝑀 | = 𝑝𝑛. □

Example 10.1.2 There is no field of order 6, since 6 is not a prime power.

Warning 10.1.3 Order and degree mean different things. For in-
stance, if the order of a field is 9, then its degree over its prime
subfield F3 is 2.

Lemma 10.1.1 prompts two questions:

• Given a prime power 𝑝𝑛, is there some field of order 𝑝𝑛?

• If so, how many are there?

To answer them, we need to use the Frobenius automorphism \ of a finite field
(Proposition 2.3.20).

Exercise 10.1.4 Work out the values of the Frobenius automorphism
on the field F3(

√
2), which you first met in Exercise 4.3.18.

The answer to the first of these two questions is yes:

Lemma 10.1.5 Let 𝑝 be a prime number and 𝑛 ≥ 1. Then the splitting field of
𝑡 𝑝
𝑛 − 𝑡 over F𝑝 has order 𝑝𝑛.
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Proof Put 𝑓 (𝑡) = 𝑡 𝑝
𝑛 − 𝑡 ∈ F𝑝 [𝑡] and 𝑀 = SFF𝑝 ( 𝑓 ). Then 𝐷 𝑓 = −1 (since

𝑛 ≥ 1), so by (i)⇒(ii) of Lemma 7.2.9, 𝑓 has no repeated roots in 𝑀 . Hence 𝑀
has at least 𝑝𝑛 elements.

Write \ for the Frobenius map of 𝑀 and \𝑛 = \ ◦ · · · ◦ \. Then \𝑛 (𝛼) = 𝛼𝑝𝑛

for all 𝛼, so the set 𝐿 of roots of 𝑓 in 𝑀 is Fix{\𝑛}. Since \ is a homomorphism,
Lemma 7.3.1 implies that 𝐿 is a subfield of 𝑀 . Hence by definition of splitting
field, 𝐿 = 𝑀; that is, every element of 𝑀 is a root of 𝑓 . And since deg( 𝑓 ) = 𝑝𝑛,
it follows that 𝑀 has at most 𝑝𝑛 elements. □

As for the second question, there is exactly one field of each prime power order.
To show this, we need a lemma.

Lemma 10.1.6 Let 𝑀 be a finite field of order 𝑞. Then 𝛼𝑞 = 𝛼 for all 𝛼 ∈ 𝑀 .

The proof uses the same argument as in Example 2.3.21.

Proof The multiplicative group 𝑀× = 𝑀 \ {0} has order 𝑞 − 1, so Lagrange’s
theorem implies that𝛼𝑞−1 = 1 for all𝛼 ∈ 𝑀×. Hence𝛼𝑞 = 𝛼whenever 0 ≠ 𝛼 ∈ 𝑀 ,
and clearly the equation holds for 𝛼 = 0 too. □

Exercise 10.1.7 Verify directly that 𝛽4 = 𝛽 for all 𝛽 in the 4-element
field F2(𝛼) of Example 5.1.8.

Lemma 10.1.8 Every finite field of order 𝑞 is a splitting field of 𝑡𝑞 − 𝑡 over F𝑝.

Proof Let 𝑀 be a field of order 𝑞. By Lemma 10.1.1, 𝑞 = 𝑝𝑛 for some prime 𝑝
and 𝑛 ≥ 1, and char𝑀 = 𝑝. Hence 𝑀 has prime subfield F𝑝. By Lemma 10.1.6,
every element of 𝑀 is a root of 𝑓 (𝑡) = 𝑡 𝑝𝑛 − 𝑡. So 𝑓 has |𝑀 | distinct roots in 𝑀;
but |𝑀 | = 𝑝𝑛 = deg( 𝑓 ), so 𝑓 splits in 𝑀 . The set of roots of 𝑓 in 𝑀 generates 𝑀 ,
since it is equal to 𝑀 . Hence 𝑀 is a splitting field of 𝑓 . □

Together, these results completely classify the finite fields.

Theorem 10.1.9 (Classification of finite fields) i. Every finite field has
order 𝑝𝑛 for some prime 𝑝 and integer 𝑛 ≥ 1.

ii. For each prime 𝑝 and integer 𝑛 ≥ 1, there is exactly one field of order
𝑝𝑛, up to isomorphism. It has characteristic 𝑝 and is a splitting field for
𝑡 𝑝
𝑛 − 𝑡 over F𝑝.

Proof This is immediate from the results above together with the uniqueness of
splitting fields (Theorem 6.2.13(ii)). □

When 𝑞 > 1 is a prime power, we write F𝑞 for the one and only field of order 𝑞.
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Warning 10.1.10 F𝑞 is not Z/⟨𝑞⟩ unless 𝑞 is a prime. It can’t be,
becauseZ/⟨𝑞⟩ is not a field (Example 2.3.27). To my knowledge, there
is no description of F𝑞 simpler than the splitting field description.

We now know exactly how many finite fields there are of each order. But
generally in algebra, it’s important to think not just about the objects (such as vector
spaces, groups, modules, rings, fields, . . . ), but also the maps (homomorphisms)
between objects. So now that we’ve counted the finite fields, it’s natural to try
to count the homomorphisms between finite fields. Field homomorphisms are
injective, so this boils down to counting subfields and automorphisms. Galois
theory is very well equipped to do that! We’ll come to this in the final section. But
first, we look at another way in which finite fields are very simple.

10.2 Multiplicative structure
The multiplicative group 𝐾× of a finite field 𝐾 is as easy as can be:

Proposition 10.2.1 For an arbitrary field 𝐾 , every finite subgroup of 𝐾× is cyclic.
In particular, if 𝐾 is finite then 𝐾× is cyclic.

The multiplicative
group of a finite

field is cyclic
Proof This was Theorem 5.1.13 and Corollary 5.1.14 of Group Theory. □

Example 10.2.2 In examples earlier in the course, we frequently used the 𝑛th root
of unity 𝜔 = 𝑒2𝜋𝑖/𝑛 ∈ C, which has the property that every other 𝑛th root of unity
is a power of 𝜔.

Can we find an analogue of 𝜔 in an arbitrary field 𝐾? It’s not obvious how
to generalize the formula 𝑒2𝜋𝑖/𝑛, since the exponential is a concept from complex
analysis. But Proposition 10.2.1 solves our problem. For 𝑛 ≥ 1, put

𝑈𝑛 (𝐾) = {𝛼 ∈ 𝐾 : 𝛼𝑛 = 1}.

Then𝑈𝑛 (𝐾) is a subgroup of 𝐾×, and is finite since its elements are roots of 𝑡𝑛−1.
So by Proposition 10.2.1, 𝑈𝑛 (𝐾) is cyclic. Let 𝜔 be a generator of 𝑈𝑛 (𝐾). Then
every 𝑛th root of unity in 𝐾 is a power of 𝜔, which is what we were aiming for.

Note, however, that 𝑈𝑛 (𝐾) may have fewer than 𝑛 elements, or equivalently,
the order of 𝜔 may be less than 𝑛. For instance, if char𝐾 = 𝑝 then𝑈𝑝 (𝐾) is trivial
and 𝜔 = 1, by Example 2.3.23(ii).

Exercise 10.2.3 Let 𝐾 be a field and let 𝐻 be a finite subgroup of 𝐾×

of order 𝑛. Prove that 𝐻 ⊆ 𝑈𝑛 (𝐾).
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Example 10.2.4 The group F×𝑝 is cyclic, for any prime 𝑝. This means that there
is some 𝜔 ∈ {1, . . . , 𝑝 − 1} such that 𝜔, 𝜔2, . . . runs through all elements of
{1, . . . , 𝑝 − 1} when taken mod 𝑝. In number theory, such an 𝜔 is called a
primitive root mod 𝑝 (another usage of the word ‘primitive’). For instance, you
can check that 3 is a primitive root mod 7, but 2 is not, since 23 ≡ 1 (mod 7).

Finding the primitive roots mod 𝑝 is one aspect of finite fields that is not trivial.

Corollary 10.2.5 Every extension of one finite field over another is simple.

Proof Let 𝑀 : 𝐾 be an extension with 𝑀 finite. By Proposition 10.2.1, the group
𝑀× is generated by some element 𝛼 ∈ 𝑀×. Then 𝑀 = 𝐾 (𝛼). □

This is yet another pleasant aspect of finite fields.

Exercise 10.2.6 In the proof of Corollary 10.2.5, once we know that
the group 𝑀× is generated by 𝛼, how does it follow that 𝑀 = 𝐾 (𝛼)?

Digression 10.2.7 In Digression 7.2.21, I mentioned the theorem of the
primitive element: every finite separable extension 𝑀 : 𝐾 is simple. One of
the standard proofs involves splitting into two cases, according to whether
𝑀 is finite or infinite. We’ve just done the finite case.

Corollary 10.2.8 For every prime number 𝑝 and integer 𝑛 ≥ 1, there exists an
irreducible polynomial over F𝑝 of degree 𝑛.

Proof The field F𝑝𝑛 has prime subfield F𝑝. By Corollary 10.2.5, the extension
F𝑝𝑛 : F𝑝 is simple, say F𝑝𝑛 = F𝑝 (𝛼). The minimal polynomial of 𝛼 over F𝑝 is
irreducible of degree [F𝑝 (𝛼) : F𝑝] = [F𝑝𝑛 : F𝑝] = 𝑛. □

This is not obvious. For example, can you find an irreducible polynomial of
degree 100 over F31?

10.3 Galois groups for finite fields
Here we work out the Galois correspondence for F𝑝𝑛 : F𝑝.

Warning 10.3.1 The term ‘finite field extension’ means an exten-
sion 𝑀 : 𝐾 that’s finite in the sense defined on p. 67: 𝑀 is finite-
dimensional as a vector space over 𝐾 . It doesn’t mean that 𝑀 and 𝐾
are finite fields. But the safest policy is to avoid this term entirely.

The three hypotheses of the fundamental theorem of Galois theory are always
satisfied when both fields in the extension are finite:
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Lemma 10.3.2 Let 𝑀 : 𝐾 be a field extension.

i. If 𝐾 is finite then 𝑀 : 𝐾 is separable.

ii. If 𝑀 is also finite then 𝑀 : 𝐾 is finite and normal.

Proof For (i), we show that every irreducible polynomial 𝑓 over 𝐾 is separable.
Write 𝑝 = char𝐾 > 0, and suppose for a contradiction that 𝑓 is inseparable. By
Corollary 7.2.11,

𝑓 (𝑡) = 𝑏0 + 𝑏1𝑡
𝑝 + · · · + 𝑏𝑟 𝑡𝑟 𝑝

for some 𝑏0, . . . , 𝑏𝑟 ∈ 𝐾 . For each 𝑖, there is a (unique) 𝑝th root 𝑐𝑖 of 𝑏𝑖 in 𝐾 , by
Corollary 2.3.22(ii). Then

𝑓 (𝑡) = 𝑐𝑝0 + 𝑐𝑝1 𝑡
𝑝 + · · · + 𝑐𝑝𝑟 𝑡𝑟 𝑝 .

But by Proposition 2.3.20(i), the function 𝑔 ↦→ 𝑔𝑝 is a homomorphism 𝐾 [𝑡] →
𝐾 [𝑡], so

𝑓 (𝑡) = (𝑐0 + 𝑐1𝑡 + · · · + 𝑐𝑟 𝑡𝑟)𝑝 .
This contradicts 𝑓 being irreducible.

For (ii), suppose that 𝑀 is finite. Write 𝑝 = char𝑀 > 0. By Theorem 10.1.9,
𝑀 is a splitting field over F𝑝, so by Lemma 6.2.14(ii), it is also a splitting field
over 𝐾 . Hence 𝑀 : 𝐾 is finite and normal, by Theorem 7.1.5. □

Part (i) fulfils the promise made in Remark 7.2.12 and Example 7.2.14(ii), and
the lemma as a whole lets us use the fundamental theorem freely in the world
of finite fields. We now work out the Galois correspondence for the extension
F𝑝𝑛 : F𝑝 of an arbitrary finite field over its prime subfield.

Proposition 10.3.3 Let 𝑝 be a prime and 𝑛 ≥ 1. Then Gal(F𝑝𝑛 : F𝑝) is cyclic of
order 𝑛, generated by the Frobenius automorphism of F𝑝𝑛 .

By an earlier workshop question, Gal(F𝑝𝑛 : F𝑝) is the group of all automor-
phisms of F𝑝𝑛 .

Proof Write \ for the Frobenius automorphism of F𝑝𝑛 ; then \ ∈ Gal(F𝑝𝑛 : F𝑝).
First we calculate the order of \. By Lemma 10.1.6, 𝛼𝑝𝑛 = 𝛼 for all 𝛼 ∈ F𝑝𝑛 , or
equivalently, \𝑛 = id. If 𝑚 is a positive integer such that \𝑚 = id then 𝛼𝑝𝑚 = 𝛼 for
all 𝛼 ∈ F𝑝𝑛 , so the polynomial 𝑡 𝑝𝑚 − 𝑡 has 𝑝𝑛 roots in F𝑝𝑛 , so 𝑝𝑛 ≤ 𝑝𝑚, so 𝑛 ≤ 𝑚.
Hence \ has order 𝑛.

On the other hand, [F𝑝𝑛 : F𝑝] = 𝑛, so by the fundamental theorem of Galois
theory, | Gal(F𝑝𝑛 : F𝑝) | = 𝑛. The result follows. □
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Exercise 10.3.4 What is the fixed field of ⟨\⟩ ⊆ Gal(F𝑝𝑛 : F𝑝)?

In Fundamentals of Pure Mathematics or Group Theory, you presumably saw
that the cyclic group of order 𝑛 has exactly one subgroup of order 𝑘 for each divisor
𝑘 of 𝑛. (And by Lagrange’s theorem, there are no subgroups of other orders.)

Exercise 10.3.5 Refresh your memory by proving this fact about
subgroups of cyclic groups.

In the case at hand, Gal(F𝑝𝑛 : F𝑝) = ⟨\⟩ � 𝐶𝑛, and when 𝑘 | 𝑛, the unique
subgroup of order 𝑘 is ⟨\𝑛/𝑘⟩.
Proposition 10.3.6 Let 𝑝 be a prime and 𝑛 ≥ 1. Then F𝑝𝑛 has exactly one subfield
of order 𝑝𝑚 for each divisor 𝑚 of 𝑛, and no others. It is{

𝛼 ∈ F𝑝𝑛 : 𝛼𝑝
𝑚

= 𝛼
}
.

Proof The subfields of F𝑝𝑛 are the intermediate fields of F𝑝𝑛 : F𝑝, which by the
fundamental theorem of Galois theory are precisely the fixed fields Fix(𝐻) of
subgroups 𝐻 of Gal(F𝑝𝑛 : F𝑝). Any such 𝐻 is of the form ⟨\𝑛/𝑘⟩ with 𝑘 | 𝑛, and

Fix⟨\𝑛/𝑘⟩ =
{
𝛼 ∈ F𝑝𝑛 : 𝛼𝑝

𝑛/𝑘
= 𝛼

}
.

The tower law and the fundamental theorem give

[Fix⟨\𝑛/𝑘⟩ : F𝑝] =
[F𝑝𝑛 : F𝑝]

[F𝑝𝑛 : Fix⟨\𝑛/𝑘⟩]
=

𝑛

|⟨\𝑛/𝑘⟩|
=
𝑛

𝑘
,

so | Fix⟨\𝑛/𝑘⟩| = 𝑝𝑛/𝑘 . As 𝑘 runs through the divisors of 𝑛, the quotient 𝑛/𝑘 also
runs through the divisors of 𝑛, so putting 𝑚 = 𝑛/𝑘 gives the result. □

Warning 10.3.7 The subfields of F𝑝𝑛 are of the form F𝑝𝑚 where 𝑚
divides 𝑛, not 𝑚 ≤ 𝑛. For instance, F8 has no subfield isomorphic to
F4 (that is, no 4-element subfield), since 8 = 23, 4 = 22, and 2 ∤ 3.

Let 𝑚 be a divisor of 𝑛. By Proposition 10.3.6, F𝑝𝑛 has exactly one subfield
isomorphic to F𝑝𝑚 . We can therefore speak of the extension F𝑝𝑛 : F𝑝𝑚 without
ambiguity. Since F𝑝𝑚 = Fix⟨\𝑚⟩ (by Proposition 10.3.6) and ⟨\𝑚⟩ � 𝐶𝑛/𝑚, it
follows from the fundamental theorem that

Gal(F𝑝𝑛 : F𝑝𝑚) � 𝐶𝑛/𝑚 . (10.1)

So in working out the Galois correspondence for F𝑝𝑛 : F𝑝, we have accidentally de-
rived the Galois group of a completely arbitrary extension of finite fields. Another
way to phrase (10.1) is:
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Proposition 10.3.8 Let𝑀 : 𝐾 be a field extension with𝑀 finite. Then Gal(𝑀 : 𝐾)
is cyclic of order [𝑀 : 𝐾]. □

In the Galois correspondence for F𝑝𝑛 : F𝑝, all the extensions and subgroups
involved are normal, either by Lemma 10.3.2 or because cyclic groups are abelian.
For 𝑚 | 𝑛, the isomorphism

Gal(F𝑝𝑛 : F𝑝)
Gal(F𝑝𝑛 : F𝑝𝑚)

� Gal(F𝑝𝑚 : F𝑝)

supplied by the fundamental theorem amounts to

𝐶𝑛

𝐶𝑛/𝑚
� 𝐶𝑚 .

Alternatively, substituting 𝑘 = 𝑛/𝑚, this is 𝐶𝑛/𝐶𝑘 � 𝐶𝑛/𝑘 .

Example 10.3.9 Consider the Galois correspondence for F𝑝12 : F𝑝, where 𝑝 is
any prime. Writing \ for the Frobenius automorphism of F𝑝12 , the subgroups of
𝐺 = Gal(F𝑝12 : F𝑝) are

⟨\12⟩ � 𝐶1 � 1 order 1

⟨\6⟩ � 𝐶2 order 2
⟨\4⟩ � 𝐶3 order 3

⟨\3⟩ � 𝐶4 order 4
⟨\2⟩ � 𝐶6 order 6

𝐺 = ⟨\⟩ � 𝐶12 order 12

Their fixed fields are

F𝑝12 degree 1

F𝑝6 degree 2
F𝑝4 degree 3

F𝑝3 degree 4
F𝑝2 degree 6

F𝑝 degree 12
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Here, ‘degree’ means the degree of F𝑝12 over the subfield, and (for instance) the
subfield of F𝑝12 called F𝑝4 is {

𝛼 ∈ F𝑝12 : 𝛼𝑝
4
= 𝛼

}
.

The Galois group Gal(F𝑝12 : F𝑝4) is ⟨\4⟩ � 𝐶3, and similarly for the other subfields.

Exercise 10.3.10 What do the diagrams of Example 10.3.9 look like
for 𝑝8 in place of 𝑝12? What about 𝑝432? (Be systematic!)

Ordered sets In the workshop, you’ll be asked to work through the Galois correspondence
for an arbitrary extension F𝑝𝑛 : F𝑝𝑚 of finite fields, but there’s not much more to
do: almost all the work is contained in the case 𝑚 = 1 that we have just done.

∗ ∗ ∗
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