Functional equations

Tom Leinster*

Spring 2017

Contents

1 Warm-up 2
2 Shannon entropy 6
3 Deformed entropies 19
4 Probabilistic methods 22
5 The diversity of a biological community 31
6 The diversity of a metacommunity 44

Preamble

Hello.
Admin: email addresses; sections in outline \neq lectures; pace.
Overall plan: interested in unique characterizations of ...

There are many ways to measure diversity: long controversy.
Ideal: be able to say 'If you want your diversity measure to have properties
X, Y and Z, then it must be one of the following measures.'
Similar results have been proved for entropy, means and norms.
This is a tiny part of the field of functional equations!
One ulterior motive: for me to learn something about FEs. I'm not an expert, and towards end, this will get to edge of research (i.e. I'll be making it up as I go along).

Tools:

- native wit

[^0]- elementary real analysis
- (new!) some probabilistic methods.

One ref: Aczél and Daróczy, On Measures of Information and Their Characterizations. (Comments.) Other refs: will give as we go along.

1 Warm-up

Which functions f satisfy $f(x+y)=f(x)+f(y)$? Which functions of two variables can be separated as a product of functions of one variable?

This section is an intro to basic techniques. We may or may not need the actual results we prove.

The Cauchy functional equation

The Cauchy FE on a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is

$$
\begin{equation*}
\forall x, y \in \mathbb{R}, \quad f(x+y)=f(x)+f(y) \tag{1}
\end{equation*}
$$

There are some obvious solutions. Are they the only ones? Weak result first, to illustrate technique.

Proposition 1.1 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. TFAE (the following are equivalent):
i. f satisfies (1)
ii. there exists $c \in \mathbb{R}$ such that

$$
\forall x \in \mathbb{R}, \quad f(x)=c x .
$$

If these conditions hold then $c=f(1)$.
Proof $($ ii $) \Rightarrow$ (i) and last part: obvious.
Now assume (i). Differentiate both sides of (1) with respect to x :

$$
\forall x, y \in \mathbb{R}, \quad f^{\prime}(x+y)=f^{\prime}(x)
$$

Take $x=0$: then $f^{\prime}(y)=f^{\prime}(0)$ for all $y \in \mathbb{R}$. So f^{\prime} is constant, so there exist $c, d \in \mathbb{R}$ such that

$$
\forall x \in \mathbb{R}, \quad f(x)=c x+d
$$

Substituting back into (1) gives $d=0$, proving (ii).
'Differentiable' is a much stronger condition than necessary!
Theorem 1.2 As for Proposition 1.1, but with 'continuous' in place of 'differentiable'.

Proof Let f be a continuous function satisfying (1).

- $f(0+0)=f(0)+f(0)$, so $f(0)=0$.
- $f(x)+f(-x)=f(x+(-x))=f(0)=0$, so $f(-x)=-f(x)$. Cf. group homomorphisms.
- Next, $f(n x)=n f(x)$ for all $x \in \mathbb{R}$ and $n \in \mathbb{Z}$. For $n>0$, true by induction. For $n=0$, says $f(0)=0$. For $n<0$, have $-n>0$ and so $f(n x)=-f(-n x)=-(-n f(x))=n f(x)$.
- In particular, $f(n)=n f(1)$ for all $n \in \mathbb{Z}$.
- For $m, n \in \mathbb{Z}$ with $n \neq 0$, we have

$$
f(n \cdot m / n)=f(m)=m f(1)
$$

but also

$$
f(n \cdot m / n)=n f(m / n),
$$

so $f(m / n)=(m / n) f(1)$. Hence $f(x)=f(1) x$ for all $x \in \mathbb{Q}$.

- Now f and $x \mapsto f(1) x$ are continuous functions on \mathbb{R} agreeing on \mathbb{Q}, hence are equal.

Remarks 1.3 i. 'Continuous' can be relaxed further still. It was pointed out in class that continuity at 0 is enough. 'Measurable' is also enough (Fréchet, 'Pri la funkcia ekvacio $f(x+y)=f(x)+f(y)$ ', 1913). Even weaker: 'bounded on some set of positive measure'. But never mind! For this course, I'll be content to assume continuity.
ii. To get a 'weird' solution of Cauchy FE (i.e. not of the form $x \mapsto c x$), need existence of a non-measurable function. So, need some form of choice. So, can't really construct one.
iii. Assuming choice, weird solutions exist. Choose basis B for the vector space \mathbb{R} over \mathbb{Q}. Pick $b_{0} \neq b_{1}$ in B and a function $\phi: B \rightarrow \mathbb{R}$ such that $\phi\left(b_{0}\right)=0$ and $\phi\left(b_{1}\right)=1$. Extend to \mathbb{Q}-linear map $f: \mathbb{R} \rightarrow \mathbb{R}$. Then $f\left(b_{0}\right)=0$ with $b_{0} \neq 0$, but $f \not \equiv 0$ since $f\left(b_{1}\right)=1$. So f cannot be of the form $x \mapsto c x$. But f satisfies the Cauchy functional equation, by linearity.

Variants (got by using the group isomorphism $(\mathbb{R},+) \cong((0, \infty), 1)$ defined by \exp and \log):

Corollary 1.4 i. Let $f: \mathbb{R} \rightarrow(0, \infty)$ be a continuous function. TFAE:

- $f(x+y)=f(x) f(y)$ for all x, y
- there exists $c \in \mathbb{R}$ such that $f(x)=e^{c x}$ for all x.
ii. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a continuous function. TFAE:
- $f(x y)=f(x)+f(y)$ for all x, y
- there exists $c \in \mathbb{R}$ such that $f(x)=c \log x$ for all x.
iii. Let $f:(0, \infty) \rightarrow(0, \infty)$ be a continuous function. TFAE:
- $f(x y)=f(x) f(y)$ for all x, y
- there exists $c \in \mathbb{R}$ such that $f(x)=x^{c}$ for all x.

Proof For (i), define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=\log f(x)$. Then g is continuous and satisfies Cauchy FE, so $g(x)=c x$ for some constant c, and then $f(x)=e^{c x}$.
(ii) and (iii): similarly, putting $g(x)=f\left(e^{x}\right)$ and $g(x)=\log f\left(e^{x}\right)$.

Related:
Theorem 1.5 (Erdős?) Let $f: \mathbb{Z}^{+} \rightarrow(0, \infty)$ be a function satisfying $f(m n)=$ $f(m) f(n)$ for all $m, n \in \mathbb{Z}^{+}$. (There are loads of solutions: can freely choose $f(p)$ for every prime p. But ...) Suppose that either $f(1) \leq f(2) \leq \cdots$ or

$$
\lim _{n \rightarrow \infty} \frac{f(n+1)}{f(n)}=1
$$

Then there exists $c \in \mathbb{R}$ such that $f(n)=n^{c}$ for all n.
Proof Omitted.

Separation of variables

Note added later: we don't actually use this part anywhere later in the course.
When can a function of two variables be written as a product/sum of two functions of one variable? We'll do sums, but can convert to products as in Corollary 1.4.

Let X and Y be sets and

$$
f: X \times Y \rightarrow \mathbb{R}
$$

a function. Or can replace \mathbb{R} by any abelian group. We seek functions

$$
g: X \rightarrow \mathbb{R}, \quad h: Y \rightarrow \mathbb{R}
$$

such that

$$
\begin{equation*}
\forall x \in X, y \in Y, \quad f(x, y)=g(x)+h(y) . \tag{2}
\end{equation*}
$$

Basic questions:
A Are there any pairs of functions (g, h) satisfying (2)?
B How can we construct all such pairs?
C How many such pairs are there? Clear that if there are any, there are many, by adding/subtracting constants.

I got up to here in the first class, and was going to lecture the rest of this section in the second class, but in the end decided not to. What I actually lectured resumes at the start of Section 2. But for completeness, here's the rest of this section.

Attempt to recover g and h from f. Key insight:

$$
f(x, y)-f\left(x_{0}, y\right)=g(x)-g\left(x_{0}\right)
$$

$\left(x, x_{0} \in X, y \in Y\right)$. No h s involved!
First lemma: g and h are determined by f, up to additive constant.

Lemma 1.6 Let $g: X \rightarrow \mathbb{R}$ and $h: Y \rightarrow \mathbb{R}$ be functions. Define $f: X \times Y \rightarrow \mathbb{R}$ by (2). Let $x_{0} \in X$ and $y_{0} \in Y$.

Then there exist $c, d \in \mathbb{R}$ such that $c+d=f\left(x_{0}, y_{0}\right)$ and

$$
\begin{align*}
& g(x)=f\left(x, y_{0}\right)-c \quad \forall x \in X, \tag{3}\\
& h(y)=f\left(x_{0}, y\right)-d \quad \forall y \in Y . \tag{4}
\end{align*}
$$

Proof Put $y=y_{0}$ in (2): then

$$
g(x)=f\left(x, y_{0}\right)-c \quad \forall x \in X
$$

where $c=h\left(y_{0}\right)$. Similarly

$$
h(y)=f\left(x_{0}, y\right)-d \quad \forall y \in Y
$$

where $d=g\left(x_{0}\right)$. Now

$$
c+d=g\left(x_{0}\right)+h\left(y_{0}\right)=f\left(x_{0}, y_{0}\right)
$$

by (2).
But given f (and x_{0} and y_{0}), is every pair (g, h) of this form a solution of (2)? Not necessarily (but it's easy to say when)...

Lemma 1.7 Let $f: X \times Y \rightarrow \mathbb{R}$ be a function. Let $x_{0} \in X, y_{0} \in Y$, and $c, d \in \mathbb{R}$ with $c+d=f\left(x_{0}, y_{0}\right)$. Define $g: X \rightarrow \mathbb{R}$ by (3) and $h: Y \rightarrow \mathbb{R}$ by (4). If

$$
f\left(x, y_{0}\right)+f\left(x_{0}, y\right)=f(x, y)+f\left(x_{0}, y_{0}\right) \quad \forall x \in X, y \in Y
$$

then

$$
f(x, y)=g(x)+h(y) \quad \forall x \in X, y \in Y
$$

Proof For all $x \in X$ and $y \in Y$,

$$
g(x)+h(y)=f\left(x, y_{0}\right)+f\left(x_{0}, y\right)-c-d=f\left(x, y_{0}\right)+f\left(x_{0}, y\right)-f\left(x_{0}, y_{0}\right)
$$

etc.
Can now answer the basic questions.
Existence of decompositions (A):
Proposition 1.8 Let $f: X \times Y \rightarrow \mathbb{R}$. TFAE:
i. there exist $g: X \rightarrow \mathbb{R}$ and $h: Y \rightarrow \mathbb{R}$ such that

$$
f(x, y)=g(x)+h(y) \quad \forall x \in X, y \in Y
$$

ii. $f\left(x, y^{\prime}\right)+f\left(x^{\prime}, y\right)=f(x, y)+f\left(x^{\prime}, y^{\prime}\right)$ for all $x, x^{\prime}, y, y^{\prime}$.

Proof (i) \Rightarrow (ii): trivial.
(ii) $\Rightarrow(\mathrm{i})$: trivial if $X=\emptyset$ or $Y=\emptyset$. Otherwise, choose $x_{0} \in X$ and $y_{0} \in Y$; then use Lemma 1.7 with $c=0$ and $d=f\left(x_{0}, y_{0}\right)$.

Classification of decompositions (B):

Proposition 1.9 Let $f: X \times Y \rightarrow \mathbb{R}$ be a function satisfying the equivalent conditions of Proposition 1.8, and let $x_{0} \in X$ and $y_{0} \in Y$. Then a pair of functions $(g: X \rightarrow \mathbb{R}, h: Y \rightarrow \mathbb{R})$ satisfies (2) if and only if there exist $c, d \in \mathbb{R}$ satisfying $c+d=f\left(x_{0}, y_{0}\right)$, (3) and (4).

Proof Follows from Lemmas 1.6 and 1.7.
Number of decompositions (C) (really: dim of solution-space):
Corollary 1.10 Let $f: X \times Y \rightarrow \mathbb{R}$ with X, Y nonempty. Either there are no pairs (g, h) satisfying (2), or for any pair (g, h) satisfying (2), the set of all such pairs is the 1-dimensional space

$$
\{(g+a, h-a): a \in \mathbb{R}\}
$$

2 Shannon entropy

Recap, including Erdős theorem. No separation of variables!
The many meanings of the word entropy. Ordinary entropy, relative entropy, conditional entropy, joint entropy, cross entropy; entropy on finite and infinite spaces; quantum versions; entropy in topological dynamics; Today we stick to the very simplest kind: Shannon entropy of a probability distribution on a finite set.

Let $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ be a probability distribution on $\{1, \ldots, n\}$ (i.e. $p_{i} \geq 0$, $\sum p_{i}=1$). The (Shannon) entropy of \mathbf{p} is

$$
H(\mathbf{p})=-\sum_{i: p_{i}>0} p_{i} \log p_{i}=\sum_{i: p_{i}>0} p_{i} \log \frac{1}{p_{i}} .
$$

The sum is over all $i \in\{1, \ldots, n\}$ such that $p_{i} \neq 0$; equivalently, can sum over all $i \in\{1, \ldots, n\}$ but with the convention that $0 \log 0=0$.

Ways of thinking about entropy:

- Disorder.
- Uniformity. Will see that uniform distribution has greatest entropy among all distributions on $\{1, \ldots, n\}$.
- Expected surprise. Think of $\log \left(1 / p_{i}\right)$ as your surprise at learning that an event of probability p_{i} has occurred. The smaller p_{i} is, the more surprised you are. Then $H(\mathbf{p})$ is the expected value of the surprise: how surprised you expect to be!
- Information. Similar to expected surprise. Think of $\log \left(1 / p_{i}\right)$ as the information that you gain by observing an event of probability p_{i}. The smaller p_{i} is, the rarer the event is, so the more remarkable it is. Then $H(\mathbf{p})$ is the average amount of information per event.
- Lack of information (!). Dual viewpoints in information theory. E.g. if p represents noise, high entropy means more noise. Won't go into this.
- Genericity. In context of thermodynamics, entropy measures how generic a state a system is in. Closely related to 'lack of information'.

First properties:

- $H(\mathbf{p}) \geq 0$ for all \mathbf{p}, with equality iff $\mathbf{p}=(0, \ldots, 0,1,0, \ldots, 0)$. Least uniform distribution.
- $H(\mathbf{p}) \leq \log n$ for all \mathbf{p}, with equality iff $\mathbf{p}=(1 / n, \ldots, 1 / n)$. Most uniform distribution. Proof that $H(\mathbf{p}) \leq \log n$ uses concavity of log:

$$
H(\mathbf{p})=\sum_{i: p_{i}>0} p_{i} \log \left(\frac{1}{p_{i}}\right) \leq \log \left(\sum_{i: p_{i}>0} p_{i} \frac{1}{p_{i}}\right) \leq \log n
$$

- $H(\mathbf{p})$ is continuous in \mathbf{p}. (Uses $\lim _{x \rightarrow 0+} x \log x=0$.)

Remark 2.1 Base of logarithm usually taken to be e (for theory) or 2 (for examples and in information theory/digital communication). Changing base of logarithm scales H by constant factor-harmless!

Examples 2.2 Use $\log _{2}$ here.
i. Uniform distribution on 2^{k} elements:

$$
H\left(\frac{1}{2^{k}}, \ldots, \frac{1}{2^{k}}\right)=\log _{2}\left(2^{k}\right)=k .
$$

Interpretation: knowing results of k fair coin tosses gives k bits of information.
ii.

$$
\begin{aligned}
H\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\right) & =\frac{1}{2} \log _{2} 2+\frac{1}{4} \log _{2} 4+\frac{1}{8} \log _{2} 8+\frac{1}{8} \log _{2} 8 \\
& =\frac{1}{2} \cdot 1+\frac{1}{4} \cdot 2+\frac{1}{8} \cdot 3+\frac{1}{8} \cdot 3 \\
& =1 \frac{3}{4} .
\end{aligned}
$$

Interpretation: consider a language with alphabet $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, with frequencies $1 / 2,1 / 4,1 / 8,1 / 8$. We want to send messages encoded in binary. Compare Morse code: use short code sequences for common letters. The most efficient unambiguous code encodes a letter of frequency 2^{-k} as a binary string of length k : e.g. here, could use

$$
\mathrm{A}: 0, \quad \mathrm{~B}: 10, \quad \mathrm{C}: 110, \quad \mathrm{D}: 111 .
$$

Then code messages are unambiguous: e.g. 11010011110 can only be CBADB. Since $k=\log _{2}\left(1 / 2^{-k}\right)$, mean number of bits per letter is then $\sum_{i} p_{i} \log \left(1 / p_{i}\right)=H(\mathbf{p})=1 \frac{3}{4}$.
iii. That example was special in that all the probabilities were integer powers of 2. But... Can still make sense of this when probabilities aren't powers of 2 (Shannon's first theorem). E.g. frequency distribution $\mathbf{p}=$ $\left(p_{1}, \ldots, p_{26}\right)$ of letters in English has $H(\mathbf{p}) \approx 4$, so can encode English in about 4 bits/letter. So, it's as if English had only 16 letters, used equally often.

Will now explain a more subtle property of entropy. Begin with example.
Example 2.3 Flip a coin. If it's heads, roll a die. If it's tails, draw from a pack of cards. So final outcome is either a number between 1 and 6 or a card. There are $6+52=58$ possible final outcomes, with probabilities as shown (assuming everything unbiased):

How much information do you expect to get from observing the outcome?

- You know result of coin flip, giving $H(1 / 2,1 / 2)=1$ bit of info.
- With probability $1 / 2$, you know result of die roll: $H(1 / 6, \ldots, 1 / 6)=\log _{2} 6$ bits of info.
- With probability $1 / 2$, you know result of card draw: $H(1 / 52, \ldots, 1 / 52)=$ $\log _{2} 52$ bits.

In total:

$$
1+\frac{1}{2} \log _{2} 6+\frac{1}{2} \log _{2} 52
$$

bits of info. This suggests

$$
H(\underbrace{\frac{1}{12}, \ldots, \frac{1}{12}}_{6}, \underbrace{\frac{1}{104}, \ldots, \frac{1}{104}}_{52})=1+\frac{1}{2} \log _{2} 6+\frac{1}{2} \log _{2} 52 .
$$

Can check true! Now formulate general rule.

The chain rule Write

$$
\Delta_{n}=\{\text { probability distributions on }\{1, \ldots, n\}\}
$$

Geometrically, this is a simplex of dimension $n-1$. Given

$$
\mathbf{w} \in \Delta_{n}, \quad \mathbf{p}^{1} \in \Delta_{k_{1}}, \ldots, \mathbf{p}^{n} \in \Delta_{k_{n}},
$$

get composite distribution

$$
\mathbf{w} \circ\left(\mathbf{p}^{1}, \ldots, \mathbf{p}^{n}\right)=\left(w_{1} p_{1}^{1}, \ldots, w_{1} p_{k_{1}}^{1}, \ldots, w_{n} p_{1}^{n}, \ldots, w_{n} p_{k_{n}}^{n}\right) \in \Delta_{k_{1}+\cdots+k_{n}}
$$

(For cognoscenti: this defines an operad structure on the simplices.)
Easy calculation ${ }^{1}$ proves chain rule:

$$
H\left(\mathbf{w} \circ\left(\mathbf{p}^{1}, \ldots, \mathbf{p}^{n}\right)\right)=H(\mathbf{w})+\sum_{i=1}^{n} w_{i} H\left(\mathbf{p}^{i}\right) .
$$

Special case: $\mathbf{p}^{1}=\cdots=\mathbf{p}^{n}$. For $\mathbf{w} \in \Delta_{n}$ and $\mathbf{p} \in \Delta_{m}$, write

$$
\mathbf{w} \otimes \mathbf{p}=\mathbf{w} \circ(\underbrace{\mathbf{p}, \ldots, \mathbf{p}}_{n})=\left(w_{1} p_{1}, \ldots, w_{1} p_{m}, \ldots, w_{n} p_{1}, \ldots, w_{n} p_{m}\right) \in \Delta_{n m} .
$$

This is joint probability distribution if the two things are independent. Then chain rule implies multiplicativity:

$$
H(\mathbf{w} \otimes \mathbf{p})=H(\mathbf{w})+H(\mathbf{p}) .
$$

Interpretation: information from two independent observations is sum of information from each.

Where are the functional equations?
For each $n \geq 1$, have function $H: \Delta_{n} \rightarrow \mathbb{R}^{+}=[0, \infty)$. Faddeev ${ }^{2}$ showed:

Theorem 2.4 (Faddeev, 1956) Take functions $\left(I: \Delta_{n} \rightarrow \mathbb{R}^{+}\right)_{n \geq 1}$. TFAE:

i. the functions I are continuous and satisfy the chain rule;
ii. $I=c H$ for some $c \in \mathbb{R}^{+}$.

That is: up to a constant factor, Shannon entropy is uniquely characterized by continuity and chain rule.

Should we be disappointed to get scalar multiples of H, not H itself? No: recall that different scalar multiples correspond to different choices of the base for log.

Rest of this section: proof of Faddeev's theorem.
Certainly (ii) \Rightarrow (i). Now take I satisfying (i).
Write $\mathbf{u}_{n}=(1 / n, \ldots, 1 / n) \in \Delta_{n}$. Strategy: think about the sequence $\left(I\left(\mathbf{u}_{n}\right)\right)_{n \geq 1}$. It should be $(c \log n)_{n \geq 1}$ for some constant c.

[^1]Lemma 2.5 i. $I\left(\mathbf{u}_{m n}\right)=I\left(\mathbf{u}_{m}\right)+I\left(\mathbf{u}_{n}\right)$ for all $m, n \geq 1$.
ii. $I\left(\mathbf{u}_{1}\right)=0$.

Proof For (i), $\mathbf{u}_{m n}=\mathbf{u}_{m} \otimes \mathbf{u}_{n}$, so

$$
I\left(\mathbf{u}_{m n}\right)=I\left(\mathbf{u}_{m} \otimes \mathbf{u}_{n}\right)=I\left(\mathbf{u}_{m}\right)+I\left(\mathbf{u}_{n}\right)
$$

(by multiplicativity). For (ii), take $m=n=1$ in (i).
Theorem 1.5 (Erdős) would now tell us that $I\left(\mathbf{u}_{n}\right)=c \log n$ for some constant c (putting $f(n)=\exp \left(I\left(\mathbf{u}_{n}\right)\right)$). But to conclude that, we need one of the two alternative hypotheses of Theorem 1.5 to be satisfied. We prove the second one, on limits. This takes some effort.

Lemma 2.6 $I(1,0)=0$.
Proof We compute $I(1,0,0)$ in two ways. First,

$$
I(1,0,0)=I\left((1,0) \circ\left((1,0), \mathbf{u}_{1}\right)\right)=I(1,0)+1 \cdot I(1,0)+0 \cdot I\left(\mathbf{u}_{1}\right)=2 I(1,0) .
$$

Second,

$$
I(1,0,0)=I\left((1,0) \circ\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)\right)=I(1,0)+1 \cdot I\left(\mathbf{u}_{1}\right)+0 \cdot I\left(\mathbf{u}_{2}\right)=I(1,0)
$$

since $I\left(\mathbf{u}_{1}\right)=0$. Hence $I(1,0)=0$.
To use Erdős, need $I\left(\mathbf{u}_{n+1}\right)-I\left(\mathbf{u}_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Can nearly prove that:
Lemma 2.7 $I\left(\mathbf{u}_{n+1}\right)-\frac{n}{n+1} I\left(\mathbf{u}_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
Proof We have

$$
\mathbf{u}_{n+1}=\left(\frac{n}{n+1}, \frac{1}{n}\right) \circ\left(\mathbf{u}_{n}, \mathbf{u}_{1}\right),
$$

so by the chain rule and $I\left(\mathbf{u}_{1}\right)=0$,

$$
I\left(\mathbf{u}_{n+1}\right)=I\left(\frac{n}{n+1}, \frac{1}{n}\right)+\frac{n}{n+1} I\left(\mathbf{u}_{n}\right)
$$

So

$$
I\left(\mathbf{u}_{n+1}\right)-\frac{n}{n+1} I\left(\mathbf{u}_{n}\right)=I\left(\frac{n}{n+1}, \frac{1}{n+1}\right) \rightarrow I(1,0)=0
$$

as $n \rightarrow \infty$, by continuity and Lemma 2.6.
To improve this to $I\left(\mathbf{u}_{n+1}\right)-I\left(\mathbf{u}_{n}\right) \rightarrow 0$, use a general result that has nothing to do with entropy:

Lemma 2.8 Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence in \mathbb{R} such that $a_{n+1}-\frac{n}{n+1} a_{n} \rightarrow 0$ as $n \rightarrow \infty$. Then $a_{n+1}-a_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Proof Omitted; uses Cesàro convergence. ${ }^{3}$
Although I omitted this proof in class, I'll include it here. I'll follow the argument in Feinstein, The Foundations of Information Theory, around p. 7.

[^2]It is enough to prove that $a_{n} /(n+1) \rightarrow 0$ as $n \rightarrow \infty$. Write $b_{1}=a_{1}$ and $b_{n}=a_{n}-\frac{n-1}{n} a_{n-1}$ for $n \geq 2$. Then $n a_{n}=n b_{n}+(n-1) a_{n-1}$ for all $n \geq 2$, so

$$
n a_{n}=n b_{n}+(n-1) b_{n-1}+\cdots+1 b_{1}
$$

for all $n \geq 1$. Dividing through by $n(n+1)$ gives

$$
\frac{a_{n}}{n+1}=\frac{1}{2} \cdot \operatorname{mean}(b_{1}, b_{2}, b_{2}, b_{3}, b_{3}, b_{3}, \ldots, \underbrace{b_{n}, \ldots, b_{n}}_{n}) .
$$

Since $b_{n} \rightarrow 0$ as $n \rightarrow \infty$, the sequence

$$
b_{1}, b_{2}, b_{2}, b_{3}, b_{3}, b_{3}, \ldots, \underbrace{b_{n}, \ldots, b_{n}}_{n}, \ldots
$$

also converges to 0 . Now a general result of Cesàro states that if a sequence $\left(x_{r}\right)$ converges to ℓ then the sequence $\left(\bar{x}_{r}\right)$ also converges to ℓ, where $\bar{x}_{r}=$ $\left(x_{1}+\cdots+x_{r}\right) / r$. Applying this to the sequence above implies that

$$
\operatorname{mean}(b_{1}, b_{2}, b_{2}, b_{3}, b_{3}, b_{3}, \ldots, \underbrace{b_{n}, \ldots, b_{n}}_{n}) \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Hence $a_{n} /(n+1) \rightarrow 0$ as $n \rightarrow \infty$, as required.
We can now deduce what $I\left(\mathbf{u}_{n}\right)$ is:
Lemma 2.9 There exists $c \in \mathbb{R}^{+}$such that $I\left(\mathbf{u}_{n}\right)=c \log n$ for all $n \geq 1$.
Proof We have $I\left(\mathbf{u}_{m n}\right)=I\left(\mathbf{u}_{m}\right)+I\left(\mathbf{u}_{n}\right)$, and by last two lemmas,

$$
I\left(\mathbf{u}_{n+1}\right)-I\left(\mathbf{u}_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty .
$$

So can apply Erdős's theorem (1.5) with $f(n)=\exp \left(I\left(\mathbf{u}_{n}\right)\right)$ to get $f(n)=n^{c}$ for some constant $c \in \mathbb{R}$. So $I\left(\mathbf{u}_{n}\right)=c \log n$, and $c \geq 0$ since I maps into \mathbb{R}^{+}

We now know that $I=c H$ on the uniform distributions \mathbf{u}_{n}. It might seem like we still have a mountain to climb to get to $I=c H$ for all distributions. But in fact, it's easy.
Lemma 2.10 $I(\mathbf{p})=c H(\mathbf{p})$ whenever p_{1}, \ldots, p_{n} are rational and nonzero.

Proof Write

$$
\mathbf{p}=\left(\frac{k_{1}}{k}, \ldots, \frac{k_{n}}{k}\right)
$$

where k_{1}, \ldots, k_{n} are positive integers and $k=k_{1}+\cdots+k_{n}$. Then

$$
\mathbf{p} \circ\left(\mathbf{u}_{k_{1}}, \ldots, \mathbf{u}_{k_{n}}\right)=\mathbf{u}_{k}
$$

Since I satisfies the chain rule and $I\left(\mathbf{u}_{r}\right)=c H\left(\mathbf{u}_{r}\right)$ for all r,

$$
I(\mathbf{p})+\sum_{i=1}^{n} p_{i} \cdot c H\left(\mathbf{u}_{k_{i}}\right)=c H\left(\mathbf{u}_{k}\right) .
$$

But since $c H$ also satisfies the chain rule,

$$
c H(\mathbf{p})+\sum_{i=1}^{n} p_{i} \cdot c H\left(\mathbf{u}_{k_{i}}\right)=c H\left(\mathbf{u}_{k}\right),
$$

giving the result.

Theorem 2.4 follows by continuity.

Recap of last time: Δ_{n}, H, chain rule.
Information is a slippery concept to reason about. One day it seems intuitively clear that the distribution $(0.5,0.5)$ is 'more informative' than $(0.9,0.1)$, and the next day your intuition says the opposite. So to make things concrete, it's useful to concentrate on one particular framework: coding.

Slogan:
Entropy is average number of bits/symbol in an optimal encoding.
Consider language with alphabet $\mathrm{A}, \mathrm{B}, \ldots$, used with frequencies $p_{1}, p_{2}, \ldots, p_{n}$. Want to encode efficiently in binary.

- Revisit Example 2.2(ii).
- In general: if p_{1}, \ldots, p_{n} are all powers of 2 , there is an unambiguous encoding where i th letter is encoded as string of length $\log _{2}\left(1 / p_{i}\right)$. So mean bits/symbol $=\sum_{i} p_{i} \log _{2}\left(1 / p_{i}\right)=H(\mathbf{p})$.
- Shannon's first theorem: for any $\mathbf{p} \in \Delta_{n}$, in any unambiguous encoding, mean bits/symbol $\geq H(\mathbf{p})$; moreover, if you're clever, can do it in $<$ $H(\mathbf{p})+\varepsilon$ for any $\varepsilon>0$.
- When p_{i} s aren't powers of 2 , do this by using blocks of symbols rather than individual symbols.

Chain rule: how many bits/symbol on average to encode French, including accents?

We need

$$
\underbrace{3.8}_{\text {actual letters }}+\underbrace{(0.05 \times 1.5+0.02 \times 0+0.03 \times 1+\cdots+0.004 \times 0)}_{\text {bits for accents }}
$$

bits/symbol. (Convention: letters are a, b, c, ...; symbols are a, à, â, b, c, ç, $\ldots .$.$) By the chain rule, this is equal to the entropy of the composite distribution$

$$
\left(0.05 \times \frac{1}{2}, 0.05 \times \frac{1}{4}, 0.05 \times \frac{1}{4}, 0.02 \times 1, \ldots, 0.004 \times 1\right)
$$

Relative entropy

Let $\mathbf{p}, \mathbf{r} \in \Delta_{n}$. The entropy of \mathbf{p} relative to \mathbf{r} is

$$
H(\mathbf{p} \| \mathbf{r})=\sum_{i: p_{i}>0} p_{i} \log \left(\frac{p_{i}}{r_{i}}\right) .
$$

Also called Kullback-Leibler divergence, relative information, or information gain.

First properties:

- $H(\mathbf{p} \| \mathbf{r}) \geq 0$. Not obvious, as $\log \left(p_{i} / r_{i}\right)$ is sometimes positive and sometimes negative. For since log is concave,

$$
H(\mathbf{p} \| \mathbf{r})=-\sum_{i: p_{i}>0} p_{i} \log \left(\frac{r_{i}}{p_{i}}\right) \geq-\log \left(\sum_{i: p_{i}>0} p_{i} \frac{r_{i}}{p_{i}}\right) \geq-\log 1=0
$$

- $H(\mathbf{p} \| \mathbf{r})=0$ if and only if $\mathbf{p}=\mathbf{r}$. Evidence so far suggests relative entropy is something like a distance. That's wrong in that it's not a metric, but it's not too terribly wrong. Will come back to this.
- $H(\mathbf{p} \| \mathbf{r})$ can be arbitrarily large (even for fixed n). E.g.

$$
H((1 / 2,1 / 2) \|(t, 1-t)) \rightarrow \infty \text { as } t \rightarrow \infty
$$

and in fact $H(\mathbf{p} \| \mathbf{r})=\infty$ if $p_{i}>0=r_{i}$ for some i.

- Write

$$
\mathbf{u}_{n}=(1 / n, \ldots, 1 / n) \in \Delta_{n}
$$

Then

$$
H\left(\mathbf{p} \| \mathbf{u}_{n}\right)=\log n-H(\mathbf{p})
$$

So entropy is pretty much a special case of relative entropy.

- $H(\mathbf{p} \| \mathbf{r}) \neq H(\mathbf{r} \| \mathbf{p})$. E.g.

$$
\begin{aligned}
& H\left(\mathbf{u}_{2} \|(0,1)\right)=\infty \\
& H\left((0,1) \| \mathbf{u}_{2}\right)=\log 2-H((0,1))=\log 2
\end{aligned}
$$

Will come back to this too.

Coding interpretation Convenient fiction: for each 'language' \mathbf{p}, there is an encoding for \mathbf{p} using $\log \left(1 / p_{i}\right)$ bits for the i th symbol, hence with mean bits/symbol $=H(\mathbf{p})$ exactly. Call this 'machine \mathbf{p} '.

We have

$$
\begin{aligned}
H(\mathbf{p} \| \mathbf{r})= & \sum p_{i} \log \left(\frac{1}{r_{i}}\right)-\sum p_{i} \log \left(\frac{1}{p_{i}}\right) \\
= & (\text { bits/symbol to encode language } \mathbf{p} \text { using machine } \mathbf{r}) \\
& -(\text { bits } / \text { symbol to encode language } \mathbf{p} \text { using machine } \mathbf{p})
\end{aligned}
$$

So relative entropy is the number of extra bits needed if you use the wrong machine. Or: penalty you pay for using the wrong machine. Explains why $H(\mathbf{p} \| \mathbf{r}) \geq 0$ with equality if $\mathbf{p}=\mathbf{r}$.

If $r_{i}=0$ then in machine \mathbf{r}, the i th symbol has an infinitely long code word. Or if you like: if $r_{i}=2^{-1000}$ then its code word has length 1000 . So if also $p_{i}>0$ then for language \mathbf{p} encoded using machine \mathbf{r}, average bits/symbol $=\infty$. This explains why $H(\mathbf{p} \| \mathbf{r})=\infty$.

Taking $\mathbf{r}=\mathbf{u}_{n}$,

$$
H\left(\mathbf{p} \| \mathbf{u}_{n}\right)=\log n-H(\mathbf{p}) \leq \log n
$$

Explanation: in machine \mathbf{u}_{n}, every symbol is encoded with $\log n$ bits, so the average extra bits/symbol caused by using machine \mathbf{u}_{n} instead of machine \mathbf{p} is $\leq \log n$.

Now a couple of slightly more esoteric comments, pointing in different mathematical directions (both away from functional equations). Tune out if you want...

Measure-theoretic perspective Slogan:

All entropy is relative.

Attempt to generalize definition of entropy from probability measures on finite sets to arbitrary probability measures μ : want to say $H(\mu)=-\int \log (\mu) d \mu$, but this makes no sense!

Note that the finite definition $H(p)=-\sum p_{i} \log p_{i}$ implicitly refers to counting measure...

However, can generalize relative entropy. Given measures μ and ν on measurable space X, define

$$
H(\mu \| \nu)=\int_{X} \log \left(\frac{d \mu}{d \nu}\right) d \mu
$$

where $\frac{d \mu}{d \nu}$ is Radon-Nikodym derivative. This makes sense and is the right definition.

People do talk about the entropy of probability distributions on \mathbb{R}^{n}. For instance, the entropy of a probability density function f on \mathbb{R} is usually defined as $H(f)=-\int_{\mathbb{R}} f(x) \log f(x) d x$, and it's an important result that among all density functions on \mathbb{R} with a given mean and variance, the one with the maximal entropy is the normal distribution. (This is related to the central limit theorem.) But here we're implicitly using Lebesgue measure λ on \mathbb{R}; so there are two measures in play, λ and $f \lambda$, and $H(f)=H(f \lambda \| \lambda)$.

Local behaviour of relative entropy Take two close-together distributions $\mathbf{p}, \mathbf{p}+\boldsymbol{\delta} \in \Delta_{n}$. (So $\boldsymbol{\delta}=\left(\delta_{1}, \ldots, \delta_{n}\right)$ with $\sum \delta_{i}=0$.) Taylor expansion gives

$$
H(\mathbf{p}+\boldsymbol{\delta} \| \mathbf{p}) \approx \frac{1}{2} \sum \frac{1}{p_{i}} \delta_{i}^{2}
$$

for $\boldsymbol{\delta}$ small. Precisely:

$$
H(\mathbf{p}+\boldsymbol{\delta} \| \mathbf{p})=\frac{1}{2} \sum \frac{1}{p_{i}} \delta_{i}^{2}+O\left(\|\boldsymbol{\delta}\|^{3}\right) \text { as } \boldsymbol{\delta} \rightarrow \mathbf{0} .
$$

(Here $\|\cdot\|$ is any norm on \mathbb{R}^{n}. It doesn't matter which, as they're all equivalent.) So:

Locally, $H(-\|-)$ is like a squared distance.
In particular, locally (to second order) it's symmetric.
The square root of relative entropy is not a metric on Δ_{n} : not symmetric and fails triangle inequality. (E.g. put $\mathbf{p}=(0.9,0.1), \mathbf{q}=(0.2,0.8), \mathbf{r}=(0.1,0.9)$. Then $\sqrt{H(\mathbf{p} \| \mathbf{q})}+\sqrt{H(\mathbf{q} \| \mathbf{r})}<\sqrt{H(\mathbf{p} \| \mathbf{r})}$.) But using it as a 'local distance' leads to important things, e.g. Fisher information (statistics), the Jeffreys prior (Bayesian statistics), and the whole subject of information geometry.

Next week: a unique characterization of relative entropy.

Recap: entropy as mean bits/symbol in optimal encoding; definition of relative entropy; relative entropy as extra cost of using wrong machine.

Write

$$
A_{n}=\left\{(\mathbf{p}, \mathbf{r}) \in \Delta_{n} \times \Delta_{n}: r_{i}=0 \Longrightarrow p_{i}=0\right\}
$$

So $H(\mathbf{p} \| \mathbf{r})<\infty \Longleftrightarrow(\mathbf{p}, \mathbf{r}) \in A_{n}$. (Secretly, A stands for 'absolutely continuous'.) Then for each $n \geq 1$, we have the function

$$
H(-\|-): A_{n} \rightarrow \mathbb{R}^{+}
$$

Properties:

Measurability $H(-\|-)$ is measurable. If you don't know what that means, ignore: very mild condition. Every function that anyone has ever written down a formula for, or ever will, is measurable.

Permutation-invariance E.g. $H\left(\left(p_{1}, p_{2}, p_{3}\right) \|\left(r_{1}, r_{2}, r_{3}\right)\right)=H\left(\left(p_{2}, p_{3}, p_{1}\right) \|\right.$ $\left.\left(r_{2}, r_{3}, r_{1}\right)\right)$. It's that kind of symmetry, not the kind where you swap \mathbf{p} and \mathbf{r}.

Vanishing $H(\mathbf{p} \| \mathbf{p})=0$ for all \mathbf{p}. Remember: $H(\mathbf{p} \| \mathbf{r})$ is extra cost of using machine \mathbf{r} (instead of machine \mathbf{p}) to encode language \mathbf{p}.

Chain rule For all

$$
(\mathbf{w}, \widetilde{\mathbf{w}}) \in A_{n}, \quad\left(\mathbf{p}^{1}, \widetilde{\mathbf{p}}^{1}\right) \in A_{k_{1}}, \ldots, \quad\left(\mathbf{p}^{n}, \widetilde{\mathbf{p}}^{n}\right) \in A_{k_{n}}
$$

we have

$$
H\left(\mathbf{w} \circ\left(\mathbf{p}^{1}, \ldots, \mathbf{p}^{n}\right) \| \widetilde{\mathbf{w}} \circ\left(\widetilde{\mathbf{p}}^{1}, \ldots, \widetilde{\mathbf{p}}^{n}\right)\right)=H(\mathbf{w} \| \widetilde{\mathbf{w}})+\sum_{i=1}^{n} w_{i} H\left(\mathbf{p}^{i} \| \widetilde{\mathbf{p}}^{i}\right)
$$

To understand chain rule for relative entropy:
Example 2.11 Recall the letter/accent tree from last time.
Swiss French and Canadian French are written using the same alphabet and accents, but with slightly different words, hence different frequencies of letters and accents.

Consider Swiss French and Canadian French:

$$
\begin{aligned}
& \mathbf{w} \in \Delta_{26}: \text { frequencies of letters in Swiss } \\
& \widetilde{\mathbf{w}} \in \Delta_{26}: \text { frequencies of letters in Canadian }
\end{aligned}
$$

and then

$$
\begin{aligned}
& \mathbf{p}^{1} \in \Delta_{3}: \text { frequencies of accents on ' } a \text { ' in Swiss } \\
& \widetilde{\mathbf{p}}^{1} \in \Delta_{3} \text { : frequencies of accents on ' } a \text { ' in Canadian } \\
& \quad \vdots \\
& \mathbf{p}^{26} \in \Delta_{1} \text { : frequencies of accents on ' } z \text { ' in Swiss } \\
& \widetilde{\mathbf{p}}^{26} \in \Delta_{1} \text { : frequencies of accents on ' } z \text { ' in Canadian. }
\end{aligned}
$$

So
$\mathbf{w} \circ\left(\mathbf{p}^{1}, \ldots, \mathbf{p}^{26}\right)=$ frequency distribution of all symbols in Swiss
$\widetilde{\mathbf{w}} \circ\left(\widetilde{\mathbf{p}}^{1}, \ldots, \widetilde{\mathbf{p}}^{26}\right)=$ frequency distribution of all symbols in Canadian where 'symbol' means a letter with (or without) an accent.

Now encode Swiss using Canadian machine. How much extra does it cost (in mean bits/symbol) compared to encoding Swiss using Swiss machine?
mean extra cost per symbol $=$

$$
\text { mean extra cost per letter }+ \text { mean extra cost per accent. }
$$

And that's the chain rule. Coefficient in sum is w_{i}, not \widetilde{w}_{i}, because it's Swiss we're encoding.

Clearly any scalar multiple of relative entropy also has these four properties (measurability, permutation-invariance, vanishing, chain rule).

Theorem 2.12 Take functions $\left(I(-\|-): A_{n} \rightarrow \mathbb{R}^{+}\right)_{n \geq 1}$. TFAE:
i. the functions I satisfy measurability, permutation-invariance, vanishing and the chain rule;
ii. $I(-\|-)=c H(-\|-)$ for some $c \in \mathbb{R}^{+}$.

It's hard to believe that Theorem 2.12 is new; it could have been proved in the 1950s. However, I haven't found it in the literature. The proof that follows is inspired by work of Baez and Fritz, who in turn built on and corrected work of Petz. Cf. Baez and Fritz (arXiv:1402.3067) and Petz (cited by B\&F).

Take $I(-\|-)$ satisfying (i). Define $L:(0,1] \rightarrow \mathbb{R}^{+}$by

$$
L(\alpha)=I((1,0) \|(\alpha, 1-\alpha)) .
$$

Note $((1,0),(\alpha, 1-\alpha)) \in A_{2}$, so RHS is defined. If $I=H$ then $L(\alpha)=-\log \alpha$.
Lemma 2.13 Let $(\mathbf{p}, \mathbf{r}) \in A_{n}$ with $p_{k+1}=\cdots=p_{n}=0$, where $1 \leq k \leq n$. Then $r_{1}+\cdots+r_{k}>0$, and

$$
I(\mathbf{p} \| \mathbf{r})=L\left(r_{1}+\cdots+r_{k}\right)+I\left(\mathbf{p}^{\prime} \| \mathbf{r}^{\prime}\right)
$$

where

$$
\mathbf{p}^{\prime}=\left(p_{1}, \ldots, p_{k}\right), \quad \mathbf{r}^{\prime}=\frac{\left(r_{1}, \ldots, r_{k}\right)}{r_{1}+\cdots+r_{k}}
$$

Proof Case $k=n$ trivial; suppose $k<n$.
Since \mathbf{p} is a probability distribution with $p_{i}=0$ for all $i>k$, there is some $i \leq k$ such that $p_{i}>0$, and then $r_{i}>0$ since $(\mathbf{p}, \mathbf{r}) \in A_{n}$. Hence $r_{1}+\cdots+r_{k}>0$. By definition of operadic composition,

$$
I(\mathbf{p} \| \mathbf{r})=I\left((1,0) \circ\left(\mathbf{p}^{\prime}, \mathbf{r}^{\prime \prime}\right) \|\left(r_{1}+\cdots+r_{k}, r_{k+1}+\cdots+r_{n}\right) \circ\left(\mathbf{r}^{\prime}, \mathbf{r}^{\prime \prime}\right)\right)
$$

where $\mathbf{r}^{\prime \prime}$ is the normalization of $\left(r_{k+1}, \ldots, r_{n}\right)$ if $r_{k+1}+\cdots+r_{n}>0$, or is chosen arbitrarily in Δ_{n-k} otherwise. (The set Δ_{n-k} is nonempty since $k<n$.) By chain rule, this is equal to

$$
L\left(r_{1}+\cdots+r_{k}\right)+1 \cdot I\left(\mathbf{p}^{\prime} \| \mathbf{r}^{\prime}\right)+0 \cdot I\left(\mathbf{r}^{\prime \prime} \| \mathbf{r}^{\prime \prime}\right)
$$

and result follows. In order to use the chain rule, we needed to know that various pairs were in A_{2}, A_{k}, etc.; that's easily checked.

Lemma $2.14 L(\alpha \beta)=L(\alpha)+L(\beta)$ for all $\alpha, \beta \in(0,1]$.
Proof Consider

$$
x:=I((1,0,0) \|(\alpha \beta, \alpha(1-\beta), 1-\alpha))
$$

On one hand, Lemma 2.13 with $k=1$ gives

$$
x=L(\alpha \beta)+I((1) \|(1))=L(\alpha \beta)
$$

On other, Lemma 2.13 with $k=2$ gives

$$
x=L(\alpha)+I((1,0) \|(\beta, 1-\beta))=L(\alpha)+L(\beta)
$$

Result follows.
Lemma 2.15 There is a unique constant $c \in \mathbb{R}^{+}$such that $L(\alpha)=-c \log \alpha$ for all $\alpha \in(0,1]$.

Proof Follows from Lemma 2.14 and measurability, as in Cor 1.4. That corollary was stated under the hypothesis of continuity, but measurability would have been enough.

Now we come to a clever part of Baez and Fritz's argument.
Lemma 2.16 Let $(\mathbf{p}, \mathbf{r}) \in A_{n}$ and suppose that $p_{i}>0$ for all i. Then $I(\mathbf{p} \| \mathbf{r})=$ $c H(\mathbf{p} \| \mathbf{r})$.

Proof We have $(\mathbf{p}, \mathbf{r}) \in A_{n}$, so $r_{i}>0$ for all i. So can choose $\alpha \in(0,1]$ such that $r_{i}-\alpha p_{i} \geq 0$ for all i.

We will compute the (well-defined) number

$$
x:=I((p_{1}, \ldots, p_{n}, \underbrace{0, \ldots, 0}_{n}) \|\left(\alpha p_{1}, \ldots, \alpha p_{n}, r_{1}-\alpha p_{1}, \ldots, r_{n}-\alpha p_{n}\right))
$$

in two ways. First, by Lemma 2.13 and the vanishing property,

$$
x=L(\alpha)+I(\mathbf{p} \| \mathbf{p})=-c \log \alpha
$$

Second, by symmetry and then the chain rule,

$$
\begin{aligned}
x & =I\left(\left(p_{1}, 0, \ldots, p_{n}, 0\right) \|\left(\alpha p_{1}, r_{1}-\alpha p_{1}, \ldots, p_{n}, r_{n}-\alpha p_{n}\right)\right) \\
& =I\left(\mathbf{p} \circ((1,0), \ldots,(1,0)) \| \mathbf{r} \circ\left(\left(\alpha \frac{p_{1}}{r_{1}}, 1-\alpha \frac{p_{1}}{r_{1}}\right), \ldots,\left(\alpha \frac{p_{n}}{r_{n}}, 1-\alpha \frac{p_{n}}{r_{n}}\right)\right)\right) \\
& =I(\mathbf{p} \| \mathbf{r})+\sum_{i=1}^{n} p_{i} L\left(\alpha \frac{p_{i}}{r_{i}}\right) \\
& =I(\mathbf{p} \| \mathbf{r})-c \log \alpha-c H(\mathbf{p} \| \mathbf{r}) .
\end{aligned}
$$

Comparing the two expressions for x gives the result.
Proof of Theorem 2.12 Let $(\mathbf{p}, \mathbf{r}) \in A_{n}$. By symmetry, can assume

$$
p_{1}>0, \ldots, p_{k}>0, p_{k+1}=0, \ldots, p_{n}=0
$$

where $1 \leq k \leq n$. Writing $R=r_{1}+\cdots+r_{k}$,

$$
\begin{array}{rlr}
I(\mathbf{p} \| \mathbf{r}) & =L(R)+I\left(\left(p_{1}, \ldots, p_{k}\right) \| \frac{1}{R}\left(r_{1}, \ldots, r_{k}\right)\right) \quad \text { by Lemma } 2.13 \\
& =-c \log R+c H\left(\left(p_{1}, \ldots, p_{k}\right) \| \frac{1}{R}\left(r_{1}, \ldots, r_{k}\right)\right) \quad \text { by Lemmas } 2.15 \text { and 2.16. }
\end{array}
$$

This holds for all $I(-\|-)$ satisfying the four conditions; in particular, it holds for $c H(-\|-)$. Hence $I(\mathbf{p} \| \mathbf{r})=c H(\mathbf{p} \| \mathbf{r})$.

Remark 2.17 Assuming permutation-invariance, the chain rule is equivalent to a very special case:

$$
\begin{aligned}
H\left(\left(t w_{1},(1-t) w_{1}, w_{2}, \ldots, w_{n}\right) \|\right. & \left.\left(\widetilde{t} \widetilde{w}_{1},(1-\widetilde{t}) \widetilde{w}_{1}, \widetilde{w}_{2}, \ldots, \widetilde{w}_{n}\right)\right) \\
& =H(\mathbf{w} \| \widetilde{\mathbf{w}})+w_{1} H((t, 1-t) \|(\widetilde{t}, 1-\widetilde{t}))
\end{aligned}
$$

for all $(\mathbf{w}, \widetilde{\mathbf{w}}) \in A_{n}$ and $((t, 1-t),(\widetilde{t}, 1-\widetilde{t})) \in A_{2}$. (Proof: induction.)

Next week: I'll introduce a family of 'deformations' or 'quantum versions' of entropy and relative entropy. This turns out to be important if we want a balanced perspective on what biodiversity is.

Recap: formulas for entropy and relative entropy (in both $\log (1 /$ something $)$ and $-\log$ (something) forms); chain rules for both.

Remark 2.18 I need to make explicit something we've been using implicitly for a while.

Let $\mathbf{p} \in \Delta_{n}$ and $\mathbf{r} \in \Delta_{m}$. Then we get a new distribution

$$
\begin{gathered}
\mathbf{p} \otimes \mathbf{r}=\left(p_{1} r_{1}, \ldots, p_{1} r_{m},\right. \\
\vdots \\
\\
\left.\quad p_{n} r_{1}, \ldots, p_{n} r_{m}\right) \\
= \\
\mathbf{p} \circ(\underbrace{(\mathbf{r}, \ldots, \mathbf{r}}_{n}) \\
\in \Delta_{n m} .
\end{gathered}
$$

Probabilistically, this is the joint distribution of independent random variables distributed according to \mathbf{p} and \mathbf{r}.

A special case of the chain rule for entropy:

$$
H(\mathbf{p} \otimes \mathbf{r})=H(\mathbf{p})+H(\mathbf{r})
$$

and similarly for relative entropy:

$$
H(\mathbf{p} \otimes \mathbf{r} \| \widetilde{\mathbf{p}} \otimes \widetilde{\mathbf{r}})=H(\mathbf{p} \| \widetilde{\mathbf{p}})+H(\mathbf{r} \| \widetilde{\mathbf{r}})
$$

(So H and $H(-\|-)$ are log-like; like a higher version of Cauchy's functional equation.)

3 Deformed entropies

Shannon entropy is just a single member of a one-parameter family of entropies. In fact, there are two different one-parameter families of entropies, both containing Shannon entropy as a member. In some sense, these two families of entropies are equivalent, but they have different flavours.

I'll talk about both families: surprise entropies in this section, then Rényi entropies when we come to measures of diversity later on.

Definition 3.1 Let $q \in[0, \infty)$. The q-logarithm $\ln _{q}:(0, \infty) \rightarrow \mathbb{R}$ is defined by

$$
\ln _{q}(x)= \begin{cases}\frac{x^{1-q}-1}{1-q} & \text { if } q \neq 1 \\ \ln (x) & \text { if } q=1\end{cases}
$$

Notation: log vs. \ln.
Then $\ln _{q}(x)$ is continuous in q (proof: l'Hôpital's rule). Warning:

$$
\ln _{q}(x y) \neq \ln _{q}(x)+\ln _{q}(y), \quad \ln _{q}(1 / x) \neq-\ln _{q}(x)
$$

First one inevitable: we already showed that scalar multiples of actual logarithm are the only continuous functions that convert multiplication into addition. In fact, there's quite a neat formula for $\ln _{q}(x y)$ in terms of $\ln _{q}(x), \ln _{q}(y)$ and q : exercise!

For a probability $p \in[0,1]$, can view

$$
\ln _{q}(1 / p)
$$

as one's 'surprise' at witnessing an event with probability p. (Decreasing in p; takes value 0 at $p=1$.)

Definition 3.2 Let $q \in[0, \infty)$. The surprise entropy of order q of $\mathbf{p} \in \Delta_{n}$ is

$$
S_{q}(\mathbf{p})=\sum_{i: p_{i}>0} p_{i} \ln _{q}\left(1 / p_{i}\right)= \begin{cases}\frac{1}{1-q}\left(\sum p_{i}^{q}-1\right) & \text { if } q \neq 1 \\ \sum p_{i} \ln \left(1 / p_{i}\right) & \text { if } q=1\end{cases}
$$

Interpretation: $S_{q}(\mathbf{p})$ is the expected surprise of an event drawn from \mathbf{p}.
Usually called 'Tsallis entropies', because Tsallis discovered them in physics in 1988, after Havrda and Charvat discovered and developed them in information theory in 1967, and after Vajda (1968), Daróczy (1970) and Sharma and Mittal (1975) developed them further, and after Patil and Taillie used them as measures of biodiversity in 1982.

Tsallis says the parameter q can be interpreted as the 'degree of nonextensivity'. When we come to diversity measures, I'll give another interpretation.

Special cases:

- $S_{0}(\mathbf{p})=\left|\left\{i: p_{i}>0\right\}\right|-1$
- $S_{2}(\mathbf{p})=1-\sum_{i} p_{i}^{2}=$ probability that two random elements of $\{1, \ldots, n\}$ (chosen according to \mathbf{p}) are different.

Properties of S_{q} (for fixed q):

- Permutation-invariance, e.g. $S_{q}\left(p_{2}, p_{3}, p_{1}\right)=S_{q}\left(p_{1}, p_{2}, p_{3}\right)$.
- q-chain rule:

$$
S_{q}\left(\mathbf{w} \circ\left(\mathbf{p}^{1}, \ldots, \mathbf{p}^{n}\right)\right)=S_{q}(\mathbf{w})+\sum_{i: w_{i}>0} w_{i}^{q} S_{q}\left(\mathbf{p}^{i}\right) .
$$

- q-multiplicativity: as special case of chain rule,

$$
S_{q}(\mathbf{w} \otimes \mathbf{p})=S_{q}(\mathbf{w})+\left(\sum_{i} w_{i}^{q}\right) S_{q}(\mathbf{p})
$$

Theorem 3.3 Let $q \in[0, \infty) \backslash\{1\}$. Let $\left(I: \Delta_{n} \rightarrow \mathbb{R}^{+}\right)_{n \geq 1}$ be functions. TFAE:
i. I is permutation-invariant and q-multiplicative in sense above;
ii. $I=c S_{q}$ for some $c \in \mathbb{R}^{+}$.

No regularity condition needed! And don't need full chain rule-just a special case, multiplicativity.

Following proof is extracted from Aczél and Daróczy's book (Theorem 6.3.9), but they make it look way more complicated. The key point is that the multiplicativity property is not symmetric.

Proof $(\mathrm{ii}) \Rightarrow$ (i) easy. Assume (i). By permutation-invariance,

$$
I(\mathbf{p} \otimes \mathbf{r})=I(\mathbf{r} \otimes \mathbf{p})
$$

for all $\mathbf{p} \in \Delta_{n}$ and $\mathbf{r} \in \Delta_{m}$. So by q-multiplicativity,

$$
I(\mathbf{p})+\left(\sum p_{i}^{q}\right) I(\mathbf{r})=I(\mathbf{r})+\left(\sum r_{i}^{q}\right) I(\mathbf{p})
$$

hence

$$
\left(1-\sum r_{i}^{q}\right) I(\mathbf{p})=\left(1-\sum p_{i}^{q}\right) I(\mathbf{r})
$$

Now want to get the $\mathbf{p s}$ on one side and the $\mathbf{r s}$ on the other, to deduce that $I(\mathbf{p})$ is proportional to $1-\sum p_{i}^{q}$. But need to be careful about division by zero. Take $\mathbf{r}=\mathbf{u}_{2}=(1 / 2,1 / 2)$: then

$$
\left(1-2^{1-q}\right) I(\mathbf{p})=\left(1-\sum p_{i}^{q}\right) I\left(\mathbf{u}_{2}\right)
$$

for all \mathbf{p}. But $q \neq 1$, so $1-2^{1-q} \neq 0$. So $I=c S_{q}$ where $c=I\left(\mathbf{u}_{2}\right) \frac{1-q}{2^{1-q}-1}$.
Relative entropy generalizes easily too, i.e. extends all along the family from the point $q=1$. Only ticklish point is $\ln _{q}(1 / x)$ vs. $-\ln _{q}(x)$.

Definition 3.4 Let $q \in[0, \infty)$. For $\mathbf{p}, \mathbf{r} \in \Delta_{n}$, the relative surprise entropy of order q is

$$
S_{q}(\mathbf{p} \| \mathbf{r})=-\sum_{i: p_{i}>0} p_{i} \ln _{q}\left(\frac{r_{i}}{p_{i}}\right)= \begin{cases}\frac{1}{1-q}\left(1-\sum p_{i}^{q} r_{i}^{1-q}\right) & \text { if } q \neq 1 \\ \sum p_{i} \log \left(\frac{p_{i}}{r_{i}}\right) & \text { if } q=1\end{cases}
$$

Properties:

- Permutation-invariance (as in case $q=1$).
- q-chain rule:

$$
S_{q}\left(\mathbf{w} \circ\left(\mathbf{p}^{1}, \ldots, \mathbf{p}^{n}\right) \| \widetilde{\mathbf{w}} \circ\left(\widetilde{\mathbf{p}}^{1}, \ldots, \widetilde{\mathbf{p}}^{n}\right)\right)=S_{q}(\mathbf{w} \| \widetilde{\mathbf{w}})+\sum_{i: w_{i}>0} w_{i}^{q} \widetilde{w}_{i}^{1-q} S_{q}\left(\mathbf{p}^{i} \| \widetilde{\mathbf{p}}^{i}\right)
$$

- q-multiplicativity: as special case of chain rule,

$$
S_{q}(\mathbf{w} \otimes \mathbf{p} \| \widetilde{\mathbf{w}} \otimes \widetilde{\mathbf{p}})=S_{q}(\mathbf{w} \| \widetilde{\mathbf{w}})+\left(\sum_{i: w_{i}>0} w_{i}^{q} \widetilde{w}_{i}^{1-q}\right) S_{q}(\mathbf{p} \| \widetilde{\mathbf{p}})
$$

Again, there's a ludicrously simple characterization theorem that needs no regularity condition. Nor does it need the vanishing condition of Theorem 2.12.

Recall notation:

$$
A_{n}=\left\{(\mathbf{p}, \mathbf{r}) \in \Delta_{n} \times \Delta_{n}: r_{i}=0 \Longrightarrow p_{i}=0\right\} .
$$

Then $S_{q}(\mathbf{p} \| \mathbf{r})<\infty \Longleftrightarrow(\mathbf{p}, \mathbf{r}) \in A_{n}$.
Theorem 3.5 Let $q \in[0, \infty) \backslash\{1\}$. Let $\left(I(-\|-): A_{n} \rightarrow \mathbb{R}^{+}\right)_{n \geq 1}$ be functions. TFAE:
i. $I(-\|-)$ is permutation-invariant and q-multiplicative in sense above;
ii. $I(-\|-)=c S_{q}(-\|-)$ for some $c \in \mathbb{R}^{+}$.

Proof (ii) \Rightarrow (i) easy. Assume (i). By permutation-invariance,

$$
I(\mathbf{p} \otimes \mathbf{r} \| \widetilde{\mathbf{p}} \otimes \widetilde{\mathbf{r}})=I(\mathbf{r} \otimes \mathbf{p} \| \widetilde{\mathbf{r}} \otimes \widetilde{\mathbf{p}})
$$

for all $(\mathbf{p}, \widetilde{\mathbf{p}}) \in A_{n}$ and $(\mathbf{r}, \widetilde{\mathbf{r}}) \in A_{m}$. So by q-multiplicativity,

$$
I(\mathbf{p} \| \widetilde{\mathbf{p}})+\left(\sum p_{i}^{q} \widetilde{p}_{i}^{1-q}\right) I(\mathbf{r} \| \widetilde{\mathbf{r}})=I(\mathbf{r} \| \widetilde{\mathbf{r}})+\left(\sum r_{i}^{q} \widetilde{r}_{i}^{1-q}\right) I(\mathbf{p} \| \widetilde{\mathbf{p}})
$$

hence

$$
\left(1-\sum r_{i}^{q} \widetilde{r}_{i}^{1-q}\right) I(\mathbf{p} \| \widetilde{\mathbf{p}})=\left(1-\sum p_{i}^{q} \widetilde{p}_{i}^{1-q}\right) I(\mathbf{r} \| \widetilde{\mathbf{r}})
$$

Take $\mathbf{r}=(1,0)$ and $\widetilde{\mathbf{r}}=\mathbf{u}_{2}$: then

$$
\left(1-2^{q-1}\right) I(\mathbf{p} \| \widetilde{\mathbf{p}})=I\left((1,0) \| \mathbf{u}_{2}\right)\left(1-\sum p_{i}^{q} \tilde{p}_{i}^{1-q}\right)
$$

for all $(\mathbf{p}, \widetilde{\mathbf{p}}) \in A_{n}$. But $q \neq 1$, so $1-2^{q-1} \neq 0$. So $I(-\|-)=c S_{q}(-\|-)$ where $c=I\left((1,0) \| \mathbf{u}_{2}\right) \frac{1-q}{2^{1-q}-1}$.

Next week: how to use probability theory to solve functional equations.

4 Probabilistic methods

How to use probability theory to solve functional equations.
References: Aubrun and Nechita, arXiv:1102.2618, S.R.S. Varadhan, Large deviations.

Preview I want to make this broadly accessible, so I need to spend some time explaining the background before I can show how to actually solve functional equations using probability theory. We won't reach the punchline until next time. But to give the rough idea...

Functional equations have no stochastic element to them. So how could probability theory possibly help to solve them?

Basic idea: use probability theory to replace complicated, exact formulas by simple, approximate formulas.

Sometimes, an approximation is all you need.
E.g. (very simple example) multiply out the expression

$$
(x+y)^{1000}=(x+y)(x+y) \cdots(x+y)
$$

What terms do we obtain?

- Exact but complicated answer: every term is of the form $x^{i} y^{j}$ with $0 \leq$ $i \leq 1000$ and $i+j=1000$, and this term occurs $1000!/ i!j!$ times.
- Simple but approximate answer: most terms are of the form $x^{i} y^{j}$ where i and j are about 500. (Flip a fair coin 1000 times, and you'll usually get about 500 heads.)

Use probability theory to get descriptions like second. (Different tools of probability theory allow us to be give more or less specific meanings to 'mostly' and 'about', depending on how good an approximation we need.)

Aubrun and Nechita used this method to characterize the p-norms. Can also use their method to characterize means, diversity measures, etc.

We'll need two pieces of background: basic result on large deviations, basic result on convex duality, then how they come together.

Cramér's large deviation theorem

Let X_{1}, X_{2}, \ldots be independent identically distributed (IID) real random variables. Write

$$
\bar{X}_{r}=\frac{1}{r}\left(X_{1}+\cdots+X_{r}\right)
$$

(also a random variable). Fix $x \in \mathbb{R}$, and consider behaviour of $\mathbb{P}\left(\bar{X}_{r} \geq x\right)$ for large r.

- Law of large numbers gives

$$
\operatorname{Pr}\left(\bar{X}_{r} \geq x\right) \rightarrow \begin{cases}1 & \text { if } x<\mathbb{E}(X) \\ 0 & \text { if } x>\mathbb{E}(X)\end{cases}
$$

where X is distributed identically to X_{1}, X_{2}, \ldots But could ask for more fine-grained information: how fast does $\mathbb{P}\left(\bar{X}_{r} \geq x\right)$ converge?

- Central limit theorem: \bar{X}_{r} is roughly normal for each individual large r.
- Large deviation theory is orthogonal to CLT and tells us rate of convergence of $\mathbb{P}\left(\bar{X}_{r} \geq x\right)$ as $r \rightarrow \infty$.

Rough result: there is a constant $k(x)$ such that for large r,

$$
\mathbb{P}\left(\bar{X}_{r} \geq x\right) \approx k(x)^{r}
$$

If $x<\mathbb{E}(X)$ then $k(x)=1$. Focus on $x>\mathbb{E}(X)$; then $k(x)<1$ and $\mathbb{P}\left(\bar{X}_{r} \geq x\right)$ decays exponentially with r.

Theorem 4.1 (Cramér) The limit

$$
\lim _{r \rightarrow \infty} \mathbb{P}\left(\bar{X}_{r} \geq x\right)^{1 / r}
$$

exists and (we even have a formula!) is equal to

$$
\inf _{\lambda \geq 0} \frac{\mathbb{E}\left(e^{\lambda X}\right)}{e^{\lambda x}}
$$

This is a standard result. Nice short proof: Cerf and Petit, arXiv:1002.3496. C\&P state it without any kind of hypothesis on finiteness of moments; is that correct?

Remarks 4.2 i. $\mathbb{E}\left(e^{\lambda X}\right)$ is by definition the moment generating function (MGF) $m_{X}(\lambda)$ of X. For all the standard distributions, the MGF is known and easy to look up, so this inf on the RHS is easy to compute. E.g. dead easy for normal distribution.
ii. The limit is equal to

$$
\begin{cases}1 & \text { if } x \leq \mathbb{E}(X) \\ \inf _{\lambda \in \mathbb{R}} \frac{\mathbb{E}\left(e^{\lambda x}\right)}{e^{\lambda x}} & \text { if } x \geq \mathbb{E}(X) .\end{cases}
$$

Not too hard to deduce.
Example 4.3 Let $c_{1}, \ldots, c_{n} \in \mathbb{R}$. Let X, X_{1}, X_{2}, \ldots take values c_{1}, \ldots, c_{n} with probability $1 / n$ each. (If some c_{i} s are same, increase probabilities accordingly: e.g. for $7,7,8$, our random variables take value 7 with probability $2 / 3$ and 8 with probability $1 / 3$.) Then:

- For $x \in \mathbb{R}$,

$$
\mathbb{P}\left(\bar{X}_{r} \geq x\right)=\frac{1}{n^{r}}\left|\left\{\left(i_{1}, \ldots, i_{r}\right): c_{i_{1}}+\cdots+c_{i_{r}} \geq r x\right\}\right| .
$$

- For $\lambda \in \mathbb{R}$,

$$
\mathbb{E}\left(e^{\lambda x}\right)=\frac{1}{n}\left(e^{c_{1} \lambda}+\cdots+e^{c_{n} \lambda}\right)
$$

- So by Cramér, for $x \in \mathbb{R}$,

$$
\lim _{r \rightarrow \infty}\left|\left\{\left(i_{1}, \ldots, i_{r}\right): c_{i_{1}}+\cdots+c_{i_{r}} \geq r x\right\}\right|^{1 / r}=\inf _{\lambda \geq 0} \frac{e^{c_{1} \lambda}+\cdots+e^{c_{n} \lambda}}{e^{x \lambda}}
$$

So, we've used probability theory to say something nontrivial about a completely deterministic situation.

To get further, need a second tool: convex duality.

Convex duality

Let $f: \mathbb{R} \rightarrow[-\infty, \infty]$ be a function. Its convex conjugate or LegendreFenchel transform is the function $f^{*}: \mathbb{R} \rightarrow[-\infty, \infty]$ defined by

$$
f^{*}(\lambda)=\sup _{x \in \mathbb{R}}(\lambda x-f(x)) .
$$

Can show f^{*} is convex, hence the name.

If f is differentiable, then f^{*} describes y-intercept of tangent line as a function of its gradient.

In proper generality, f is a function on a real vector space and f^{*} is a function on its dual space. In even more proper generality, there's a nice paper by Simon Willerton exhibiting this transform as a special case of a general categorical construction (arXiv:1501.03791).

Example 4.4 If $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are differentiable convex functions with $f^{\prime}=$ $\left(g^{\prime}\right)^{-1}$ then $g=f^{*}$ and $f=g^{*}$. (E.g. true if $f(x)=x^{p} / p$ and $g(x)=x^{q} / q$ with $1 / p+1 / q=1$-'conjugate exponents'.)

Theorem 4.5 (Fenchel-Moreau) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex then $f^{* *}=f$.
Since conjugate of anything is convex, can only possibly have $f^{* *}=f$ if f is convex. So this is best possible result.

Back to large deviations

Cramér's theorem secretly involves a convex conjugate. Let's see how.
Take IID real random variables X, X_{1}, X_{2}, \ldots as before. For $x \geq \mathbb{E}(X)$, Cramér says

$$
\lim _{r \rightarrow \infty} \mathbb{P}\left(\bar{X}_{r} \geq x\right)^{1 / r}=\inf _{\lambda \in \mathbb{R}} \frac{m_{X}(\lambda)}{e^{\lambda x}}
$$

where $m_{X}(\lambda)=\mathbb{E}\left(e^{\lambda X}\right)$, i.e. (taking logs)

$$
\begin{aligned}
\lim _{r \rightarrow \infty} \frac{1}{r} \log \mathbb{P}\left(\bar{X}_{r} \geq x\right) & =\inf _{\lambda \in \mathbb{R}}\left(\log m_{X}(\lambda)-\lambda x\right) \\
& =-\sup _{\lambda \in \mathbb{R}}\left(\lambda x-\log m_{X}(\lambda)\right) \\
& =-\left(\log m_{X}\right)^{*}(x)
\end{aligned}
$$

or equivalently

$$
\left(\log m_{X}\right)^{*}(x)=-\lim _{r \rightarrow \infty} \frac{1}{r} \log \mathbb{P}\left(\bar{X}_{r} \geq x\right)
$$

Now some hand-waving. Ignoring fact that this only holds for $x \geq \mathbb{E}(X)$, take conjugate of each side. Then for all $\lambda \geq 0$ (a restriction we need to make the hand-waving work),

$$
\left(\log m_{X}\right)^{* *}(\lambda)=\sup _{x \in \mathbb{R}}\left(\lambda x+\lim _{r \rightarrow \infty} \frac{1}{r} \log \mathbb{P}\left(\bar{X}_{r} \geq x\right)\right)
$$

It's a general fact that $\log m_{X}$ (called the cumulant generating function) is convex. Hence $\left(\log m_{X}\right)^{* *}=\log m_{X}$ by Fenchel-Moreau. So (taking exponentials)

$$
m_{X}(\lambda)=\sup _{x \in \mathbb{R}} \lim _{r \rightarrow \infty}\left(e^{\lambda x} \mathbb{P}\left(\bar{X}_{r} \geq x\right)^{1 / r}\right)
$$

This really is true. It's a general formula for the moment generating function.
To make the hand-waving respectable: the full formula is

$$
\left(\log m_{X}\right)^{*}(x)= \begin{cases}\lim _{r \rightarrow \infty}-\frac{1}{r} \log \mathbb{P}\left(\bar{X}_{r} \geq x\right) & \text { if } x \geq \mathbb{E}(X) \\ \lim _{r \rightarrow \infty}-\frac{1}{r} \log \mathbb{P}\left(\bar{X}_{r} \leq x\right) & \text { if } x \leq \mathbb{E}(X)\end{cases}
$$

Can prove this by applying Cramér to $-X$ and $-x$. Then can use it to get the formula above for $\left(\log m_{X}\right)^{* *}(\lambda)$ when $\lambda \geq 0$.

We'll use a variant:
Theorem 4.6 (Dual Cramér) For any IID X, X_{1}, X_{2}, \ldots, for all $\lambda \geq 0$,

$$
m_{X}(\lambda)=\sup _{x \in \mathbb{R}} \sup _{r \geq 1}\left(e^{\lambda x} \mathbb{P}\left(\bar{X}_{r} \geq x\right)^{1 / r}\right)
$$

Proof See Cerf and Petit, who use it to prove Cramér.
This is the result we'll use (not Cramér's theorem itself). Now let's apply it.

Example 4.7 As before, let $c_{1}, \ldots, c_{n} \in \mathbb{R}$ and consider uniform distribution on c_{1}, \ldots, c_{n}. Dual Cramér gives

$$
e^{c_{1} \lambda}+\cdots+e^{c_{n} \lambda}=\sup _{x \in \mathbb{R}, r \geq 1}\left(e^{\lambda x}\left|\left\{\left(i_{1}, \ldots, i_{r}\right): c_{i_{1}}+\cdots+c_{i_{r}} \geq r x\right\}\right|^{1 / r}\right)
$$

for all $\lambda \geq 0$.
Remember the background to all this: Aubrun and Nechita used large deviation theory to prove a unique characterization of the p-norms. Since the left-hand side here is a sum of powers (think $\lambda=p$), we can now begin to see the connection.

Next time: we'll exploit this expression for sums of powers. We'll use it to prove a theorem that pins down what's so special about the p-norms, and another theorem saying what's so special about power means.

Last time: Cramér's theorem and its convex dual. Crucial result: Example 4.7.

Today: we'll use this to give a unique characterization of the p-norms.
I like theorems arising from 'mathematical anthropology'. You observe some group of mathematicians and notice that they seem to place great importance on some particular object: for instance, algebraic topologists are always talking about simplicial sets, representation theorists place great emphasis on characters, certain kinds of analyst make common use of the Fourier transform, and other analysts often talk about the p-norms.

Then you can ask: why do they attach such importance to that object, not something slightly different? Is it the only object that enjoys the properties it enjoys? If not, why do they use the object they use and not some other object enjoying those properties? (Are they missing a trick?) And if it is the only object with those properties, we should be able to prove it!

We'll do this now for the p-norms, which are very standard in analysis.
Following theorem and proof are from Aubrun and Nechita, arXiv:1102.2618. I believe they were the pioneers of this probabilistic method for solving functional equations. See also Tricki, 'The tensor power trick'.

Notation: for a set I (which will always be finite for us), write

$$
\mathbb{R}^{I}=\{\text { functions } I \rightarrow \mathbb{R}\}=\left\{\text { families }\left(x_{i}\right)_{i \in I} \text { of reals }\right\}
$$

E.g. $\mathbb{R}^{\{1, \ldots, n\}}=\mathbb{R}^{n}$. In some sense we might as well only use \mathbb{R}^{n}, because every \mathbb{R}^{I} is isomorphic to \mathbb{R}^{n}. But the notation will be smoother if we allow arbitrary finite sets.

Definition 4.8 Let I be a set. A norm on \mathbb{R}^{I} is a function $\mathbb{R}^{I} \rightarrow \mathbb{R}^{+}$, written $\mathrm{x} \mapsto\|\mathrm{x}\|$, satisfying:
i. $\|\mathrm{x}\|=0 \Longleftrightarrow \mathrm{x}=0$;
ii. $\|c \mathbf{x}\|=|c|\|\mathbf{x}\|$ for all $c \in \mathbb{R}, \mathbf{x} \in \mathbb{R}^{I}$;
iii. $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.

There are many norms, but the following family comes up more often than any other.

Example 4.9 Let I be any finite set and $p \in[1, \infty]$. The p-norm $\|\cdot\|_{p}$ on \mathbb{R}^{I} is defined for $\mathbf{x}=\left(x_{i}\right)_{i \in I} \in \mathbb{R}^{I}$ by

$$
\|\mathbf{x}\|_{p}= \begin{cases}\left(\sum_{i \in I}\left|x_{i}\right|^{p}\right)^{1 / p} & \text { if } p<\infty \\ \max _{i \in I}\left|x_{i}\right| & \text { if } p=\infty\end{cases}
$$

Then $\|\mathbf{x}\|_{\infty}=\lim _{p \rightarrow \infty}\|\mathbf{x}\|_{p}$.
Aubrun and Nechita prove and use following result, which they don't quite make explicit:

Proposition 4.10 For $p \in[1, \infty)$ and $\mathbf{x} \in(0, \infty)^{n}$,

$$
\|\mathbf{x}\|_{p}=\sup _{u>0, r \geq 1}\left(u \cdot\left|\left\{\left(i_{1}, \ldots, i_{r}\right): x_{i_{1}} \cdots x_{i_{r}} \geq u^{r}\right\}\right|^{1 / r p}\right) .
$$

Proof In Example 4.7, put $c_{i}=\log x_{i}$ and $\lambda=p$. Also substitute $u=e^{x}$, noting that the letter x now means something else. Then

$$
x_{1}^{p}+\cdots+x_{n}^{p}=\sup _{u>0, r \geq 1}\left(u^{p} \cdot\left|\left\{\left(i_{1}, \ldots, i_{r}\right): x_{i_{1}} \cdots x_{i_{r}} \geq u^{r}\right\}\right|^{1 / r}\right)
$$

Then take p th root of each side
Fix $p \in[1, \infty]$. For each finite set I, have the p-norm on \mathbb{R}^{I}. These enjoy some special properties. Special properties of the p-norms:

- We have

$$
\begin{equation*}
\left\|\left(x_{3}, x_{2}, x_{1}\right)\right\|_{p}=\left\|\left(x_{1}, x_{2}, x_{3}\right)\right\|_{p} \tag{5}
\end{equation*}
$$

(etc.) and

$$
\begin{equation*}
\left\|\left(x_{1}, x_{2}, x_{3}, 0\right)\right\|_{p}=\left\|\left(x_{1}, x_{2}, x_{3}\right)\right\|_{p} \tag{6}
\end{equation*}
$$

(etc). Generally, any injection $f: I \rightarrow J$ induces a map $f_{*}: \mathbb{R}^{I} \rightarrow \mathbb{R}^{J}$, defined by relabelling according to f and padding out with zeros, i.e.

$$
\left(f_{*} \mathbf{x}\right)_{j}= \begin{cases}x_{i} & \text { if } j=f(i) \text { for some } i \in I \\ 0 & \text { otherwise }\end{cases}
$$

$\left(\mathbf{x} \in \mathbb{R}^{I}, j \in J\right)$. Then

$$
\begin{equation*}
\left\|f_{*} \mathbf{x}\right\|_{p}=\|\mathbf{x}\|_{p} \tag{7}
\end{equation*}
$$

for all injections $f: I \rightarrow J$ and $\mathbf{x} \in \mathbb{R}^{I}$. For permutations f of $\{1, \ldots, n\}$, (7) gives equations such as (5); for inclusion $\{1, \ldots, n\} \hookrightarrow\{1, \ldots, n, n+1\}$, (7) gives equations such as (6).

- For $A, B, x, y, z \in \mathbb{R}$, we have

$$
\|(A x, A y, A z, B x, B y, B z)\|_{p}=\|(A, B)\|_{p}\|(x, y, z)\|_{p}
$$

(etc). Generally, for $\mathbf{x}=\left(x_{i}\right)_{i \in I} \in \mathbb{R}^{I}$ and $\mathbf{y} \in \mathbb{R}^{J}$, define

$$
\mathbf{x} \otimes \mathbf{y}=\left(x_{i} y_{j}\right)_{i \in I, j \in J} \in \mathbb{R}^{I \times J}
$$

(If you identify $\mathbb{R}^{I} \otimes \mathbb{R}^{J}$ with $\mathbb{R}^{I \times J}$, as you can for finite sets, then $\mathbf{x} \otimes \mathbf{y}$ means what you think.) Then

$$
\begin{equation*}
\|\mathbf{x} \otimes \mathbf{y}\|_{p}=\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{p} \tag{8}
\end{equation*}
$$

for all finite sets I and $J, \mathbf{x} \in \mathbb{R}^{I}$, and $\mathbf{y} \in \mathbb{R}^{J}$.
That's all!
Definition 4.11 A system of norms consists of a norm $\|\cdot\|$ on \mathbb{R}^{I} for each finite set I, satisfying (7). This just guarantees that the norms on \mathbb{R}^{I}, for different sets I, hang together nicely. It is multiplicative if (8) holds. That's the crucial property of the p-norms.

Example 4.12 For each $p \in[1, \infty]$, the p-norm $\|\cdot\|_{p}$ is a multiplicative system of norms.

Theorem 4.13 (Aubrun and Nechita) Every multiplicative system of norms is equal to $\|\cdot\|_{p}$ for some $p \in[1, \infty]$.

Rest of today: prove this.
Let $\|\cdot\|$ be a multiplicative system of norms.

Step 1: elementary results

Lemma 4.14 Let I be a finite set and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{I}$.
i. If $y_{i}= \pm x_{i}$ for each $i \in I$ then $\|\mathbf{x}\|=\|\mathbf{y}\|$.
ii. If $y_{i}=\left|x_{i}\right|$ for each $i \in I$ then $\|\mathbf{x}\|=\|\mathbf{y}\|$.
iii. If $0 \leq x_{i} \leq y_{i}$ for each $i \in I$ then $\|\mathbf{x}\| \leq\|\mathbf{y}\|$.

Proof Omitted in class, but here it is.
i. $\mathbf{x} \otimes(1,-1)$ is a permutation of $\mathbf{y} \otimes(1,-1)$, so

$$
\|\mathbf{x} \otimes(1,-1)\|=\|\mathbf{y} \otimes(1,-1)\|
$$

or equivalently

$$
\|\mathbf{x}\|\|(1,-1)\|=\|\mathbf{y}\|\|(1,-1)\|
$$

and so $\|\mathbf{x}\|=\|\mathbf{y}\|$.
ii. Immediate from last part.
iii. For each $\mathbf{a} \in\{1,-1\}^{I}$, have vector $\left(a_{i} y_{i}\right)_{i \in I} \in \mathbb{R}^{I}$. Let S be the set of such vectors. So if I has n elements then S has 2^{n} elements. Then the convex hull of S is $\prod_{i \in I}\left[-y_{i}, y_{i}\right]$, which contains \mathbf{x} :

But every vector in S has norm $\|\mathbf{y}\|$ (by first part), so $\|\mathbf{x}\| \leq\|\mathbf{y}\|$ by triangle inequality.

Step 2: finding p Write

$$
\mathbf{1}_{n}=(1, \ldots, 1) \in \mathbb{R}^{n}
$$

(Thought: $\left\|\mathbf{1}_{n}\right\|_{p}=n^{1 / p}$.) Then

$$
\left\|\mathbf{1}_{m n}\right\|=\left\|\mathbf{1}_{m} \otimes \mathbf{1}_{n}\right\|=\left\|\mathbf{1}_{m}\right\|\left\|\mathbf{1}_{n}\right\|
$$

by multiplicativity, and

$$
\left\|\mathbf{1}_{n}\right\|=\|(\underbrace{1, \ldots, 1}_{n}, 0)\| \leq\left\|\mathbf{1}_{n+1}\right\|
$$

by Lemma 4.14 (iii), so by Theorem 1.5 , there exists $c \geq 0$ such that $\left\|\mathbf{1}_{n}\right\|=n^{c}$ for all $n \geq 0$. By triangle inequality, $\left\|\mathbf{1}_{m+n}\right\| \leq\left\|\mathbf{1}_{m}\right\|+\left\|\mathbf{1}_{n}\right\|$, which implies $c \in[0,1]$. Put $p=1 / c \in[1, \infty]$. Then $\left\|\mathbf{1}_{n}\right\|=n^{1 / p}=\left\|\mathbf{1}_{n}\right\|_{p}$.

Step 3: the case $p=\infty$ If $p=\infty$, easy to show $\|\cdot\|=\|\cdot\|_{\infty}$. (Omitted in class, but here it is.) Let $p=\infty$, that is, $c=0$. By Lemma 4.14, enough to prove $\|\mathbf{x}\|=\|\mathbf{x}\|_{\infty}$ for all $\mathbf{x} \in \mathbb{R}^{n}$ such that $x_{i} \geq 0$ for all i. Choose j such that $x_{j}=\|\mathbf{x}\|_{\infty}$. Using Lemma 4.14(iii),

$$
\|\mathbf{x}\| \leq\left\|\left(x_{j}, \ldots, x_{j}\right)\right\|=x_{j}\left\|\mathbf{1}_{n}\right\|=x_{j}=\|\mathbf{x}\|_{\infty}
$$

On the other hand, using Lemma 4.14(iii) again,

$$
\|\mathbf{x}\| \geq\left\|\left(0, \ldots, 0, x_{j}, 0, \ldots, 0\right)\right\|=\left\|\left(x_{j}\right)\right\|=x_{j}\left\|\mathbf{1}_{1}\right\|=x_{j}=\|\mathbf{x}\|_{\infty}
$$

So $x_{j}=\|\mathbf{x}\|_{\infty}$, as required. Now assume $p<\infty$.

Step 4: exploiting Cramér By Lemma 4.14(ii), enough to prove $\|\mathbf{x}\|=\|\mathbf{x}\|_{p}$ for each $\mathbf{x} \in \mathbb{R}^{n}$ such that $x_{i}>0$ for all i. (Assume this from now on.) For $\mathbf{w} \in \mathbb{R}^{J}$ and $t \in \mathbb{R}$, write

$$
N(\mathbf{w}, t)=\left|\left\{j \in J: w_{j} \geq t\right\}\right|
$$

For $r \geq 1$, write

$$
\mathbf{x}^{\otimes r}=\mathbf{x} \otimes \cdots \otimes \mathbf{x} \in \mathbb{R}^{n^{r}}
$$

Then Proposition 4.10 states that

$$
\|\mathbf{x}\|_{p}=\sup _{u>0, r \geq 1} u \cdot N\left(\mathbf{x}^{\otimes r}, u^{r}\right)^{1 / r p}
$$

or equivalently

$$
\begin{equation*}
\|\mathbf{x}\|_{p}=\sup _{u>0, r \geq 1}\|(\underbrace{u^{r}, \ldots, u^{r}}_{N\left(\mathbf{x}^{\otimes r}, u^{r}\right)})\|^{1 / r} . \tag{9}
\end{equation*}
$$

Will use this to show $\|\mathbf{x}\| \geq\|\mathbf{x}\|_{p}$, then $\|\mathbf{x}\| \leq\|\mathbf{x}\|_{p}$.
Step 5: the lower bound First show $\|\mathbf{x}\| \geq\|\mathbf{x}\|_{p}$. By (9), enough to show that for each $u>0$ and $r \geq 1$,

$$
\|\mathbf{x}\| \geq\|(\underbrace{u^{r}, \ldots, u^{r}}_{N\left(\mathbf{x}^{\otimes r}, u^{r}\right)})\|^{1 / r} .
$$

By multiplicativity, this is equivalent to

$$
\left\|\mathbf{x}^{\otimes r}\right\| \geq\|(\underbrace{u^{r}, \ldots, u^{r}}_{N\left(\mathbf{x}^{\otimes r}, u^{r}\right)})\| .
$$

But this is clear, since by Lemma 4.14(iii),

$$
\left\|\mathbf{x}^{\otimes r}\right\| \geq \|(\underbrace{\underbrace{u^{r}, \ldots, u^{r}}_{N\left(\mathbf{x}^{\otimes r}, u^{r}\right)}, 0, \ldots, 0)}_{n^{r}}\|=\|(\underbrace{u^{r}, \ldots, u^{r}}_{N\left(\mathbf{x}^{\otimes r}, u^{r}\right)}) \| .
$$

Step 6: the upper bound Now prove $\|\mathbf{x}\| \leq \theta\|\mathbf{x}\|_{p}$ for each $\theta>1$. Since $\min _{i} x_{i}>0$, can choose u_{0}, \ldots, u_{d} such that

$$
\min _{i} x_{i}=u_{0}<u_{1}<\cdots<u_{d}=\max _{i} x_{i}
$$

and $u_{k} / u_{k-1}<\theta$ for all $k \in\{1, \ldots, d\}$.
For each $r \geq 1$, define $\mathbf{y}_{r} \in \mathbb{R}^{n^{r}}$ to be $\mathbf{x}^{\otimes r}$ with each coordinate rounded up to the next one in the set $\left\{u_{1}^{r}, \ldots, u_{d}^{r}\right\}$. Then $\mathbf{x}^{\otimes r} \leq \mathbf{y}_{r}$ coordinatewise, giving

$$
\begin{aligned}
\left\|\mathbf{x}^{\otimes r}\right\| & \leq\left\|\mathbf{y}_{r}\right\| \\
& =\left\|\left(u_{1}^{r}, \ldots, u_{1}^{r}, \ldots, u_{d}^{r}, \ldots, u_{d}^{r}\right)\right\|
\end{aligned}
$$

where the number of terms u_{k}^{r} is $\leq N\left(\mathbf{x}^{\otimes r}, u_{k-1}^{r}\right)$. So

$$
\begin{aligned}
\left\|\mathbf{x}^{\otimes r}\right\| & \leq \sum_{k=1}^{d}\|(\underbrace{u_{k}^{r}, \ldots, u_{k}^{r}}_{\leq N\left(\mathbf{x}^{\otimes r}, u_{k-1}^{r}\right) \text { terms }})\| \\
& \leq d \max _{1 \leq k \leq d}\|(\underbrace{u_{k}^{r}, \ldots, u_{k}^{r}}_{\leq N\left(\mathbf{x}^{\otimes r}, u_{k-1}^{r}\right)})\| \\
& \leq d \theta^{r} \max _{1 \leq k \leq d}\|(\underbrace{u_{k-1}^{r}, \ldots, u_{k-1}^{r}}_{\leq N\left(\mathbf{x}^{\otimes r}, u_{k-1}^{r}\right)})\| \\
& \leq d \theta^{r}\|\mathbf{x}\|_{p}^{r}
\end{aligned}
$$

by (9). Hence $\|\mathbf{x}\|=\left\|\mathbf{x}^{\otimes r}\right\|^{1 / r} \leq d^{1 / r} \theta\|\mathbf{x}\|_{p}$. Letting $r \rightarrow \infty$, get $\|\mathbf{x}\| \leq \theta\|\mathbf{x}\|_{p}$. True for all $\theta>1$, so $\|\mathbf{x}\| \leq\|\mathbf{x}\|_{p}$, completing the proof of Theorem 4.13.

Next week: how to measure biological diversity, and how diversity measures are related to norms, means and entropy.

5 The diversity of a biological community

Recap: $\Delta_{n}, \otimes, H, S_{q}$.
Intro: 50 years of debate; conceptual problem, not just practical or statistical.

Diversity based on relative abundance

Model a biological community as a finite probability distribution $\mathbf{p}=$ $\left(p_{1}, \ldots, p_{n}\right)$, where n denotes number of species and p_{i} denotes relative abundance (frequency) of i th species.

Basic problem What should we mean by the 'diversity' of a community?
E.g. consider two communities, A and B. Which is more diverse?

A: more species

B: better balance

Definition 5.1 Let $q \in[0, \infty]$. The Hill number (or diversity) of order q of \mathbf{p} is defined for $q \neq 1, \infty$ by

$$
D_{q}(\mathbf{p})=\left(\sum_{i: p_{i}>0} p_{i}^{q}\right)^{\frac{1}{1-q}}
$$

and for $q=1, \infty$ by taking limits, which gives

$$
D_{1}(\mathbf{p})=\frac{1}{p_{1}^{p_{1}} p_{2}^{p_{2}} \cdots p_{n}^{p_{n}}}, \quad D_{\infty}(\mathbf{p})=\frac{1}{\max _{i} p_{i}}
$$

Special cases:

- $D_{0}(\mathbf{p})$ is species richness, i.e. number of species present. Most common meaning of 'diversity' in both general media and ecological literature.
- $D_{1}(\mathbf{p})=\exp \left(H_{1}(\mathbf{p})\right)$. Doesn't depend on choice of base for logarithm.
- $D_{2}(\mathbf{p})=1 / \sum p_{i}^{2}$. Keep choosing pairs of individuals from community (with replacement). Then $D_{2}(\mathbf{p})$ is expected number of trials before you find two of same species.
- $D_{\infty}(\mathbf{p})$ depends only on most common species. Low if there's one highly dominant species.

The parameter q controls emphasis on rare species (low q : more emphasis). The diversity profile of the community is the graph of $D_{q}(\mathbf{p})$ against q. E.g.
for communities A and B above:

Always decreasing and continuous, for reasons we'll come back to.
Properties of Hill numbers: let $q \in[0, \infty]$.

- D_{q} is an effective number: writing $\mathbf{u}_{n}=(1 / n, \ldots, 1 / n)$,

$$
D_{q}\left(\mathbf{u}_{n}\right)=n
$$

So if $D_{q}(\mathbf{p})=17.2$, interpret as: our community is slightly more diverse than a community of 17 equally abundant species.
Reason to use D_{q} and not $\log D_{q}$ (e.g. D_{1} rather than Shannon entropy $H)$. Following an argument of Lou Jost: imagine a continent with a million equally common species. A plague strikes, entirely killing 99% of the species and leaving the remaining 1% unchanged. For any of the $D_{q} \mathrm{~s}$, the diversity drops by 99%, as it should. But the Shannon entropy drops by only 33%, which is completely misleading!

- $D_{q}(\mathbf{p})$ has maximum value n, achieved when $\mathbf{p}=\mathbf{u}_{n}$, and minimum value 1 , achieved when $\mathbf{p}=(0, \ldots, 0,1,0, \ldots, 0)$.
- Replication principle: take two islands of same size, each with distribution \mathbf{p}, but with completely disjoint species. Then diversity of whole is $2 D_{q}(\mathbf{p})$.

Means To put this in context, helpful to think about means
Definition 5.2 Let $\mathbf{p} \in \Delta_{n}$ and $\mathbf{x} \in\left(\mathbb{R}^{+}\right)^{n}$. Let $t \in[-\infty, \infty]$. The power mean of x, weighted by \mathbf{p}, of order t, is given by

$$
M_{t}(\mathbf{p}, \mathbf{x})=\left(\sum_{i: p_{i}>0} p_{i} x_{i}^{t}\right)^{1 / t}
$$

$(t \neq 0, \pm \infty)$ and in remaining cases by taking limits:

$$
M_{-\infty}(\mathbf{p}, \mathbf{x})=\min _{i: p_{i}>0} x_{i}, \quad M_{0}(\mathbf{p}, \mathbf{x})=\prod_{i} x_{i}^{p_{i}}, \quad M_{-\infty}(\mathbf{p}, \mathbf{x})=\min _{i: p_{i}>0} x_{i}
$$

Proposition 5.3 Let $\mathbf{p} \in \Delta_{n}$ and $\mathbf{x} \in\left(\mathbb{R}^{+}\right)^{n}$. Then $M_{t}(\mathbf{p}, \mathbf{x})$ is (non-strictly) increasing and continuous in $t \in[-\infty, \infty]$.

Proof See e.g. Hardy, Littlewood and Pólya's book Inequalities, Theorem 16
E.g. $M_{0}\left(\mathbf{u}_{n}, \mathbf{x}\right) \leq M_{1}\left(\mathbf{u}_{n}, \mathbf{x}\right)$: inequality of arithmetic and geometric means.

Remark 5.4 There are many unique characterization theorems for means (omitted!). E.g. can use fact that for $t \geq 1$,

$$
M_{t}\left(\mathbf{u}_{n}, \mathbf{x}\right)=n^{-1 / p}\|\mathbf{x}\|_{t}
$$

to turn Aubrun and Nechita's characterization of the p-norms into a characterization of the power means.

Write $1 / \mathbf{p}=\left(1 / p_{1}, \ldots, 1 / p_{n}\right)$. Then

$$
D_{q}(\mathbf{p})=M_{1-q}(\mathbf{p}, 1 / \mathbf{p}) .
$$

Interpretation: $1 / p_{i}$ measures rarity of i th species. So $D_{q}(\mathbf{p})$ is average rarity. Result above implies diversity profiles are decreasing and continuous.

Rényi entropies

Definition 5.5 Let $\mathbf{p} \in \Delta_{n}$ and $q \in[0, \infty]$. The Rényi entropy of \mathbf{p} of order q is

$$
H_{q}(\mathbf{p})=\log D_{q}(\mathbf{p})
$$

Hill used Rényi's work, which was earlier.
E.g. $H_{1}=H$.

The Rényi entropy $H_{q}(\mathbf{p})$ and surprise entropy $S_{q}(\mathbf{p})$ are both invertible functions of $\sum_{i} p_{i}^{q}$, hence of each other. So they convey the same information, presented differently. Rényi entropy has some advantages over surprise entropy:

- $D_{q}=\exp H_{q}$ is an effective number.
- Clean upper bound (namely, n) whereas upper bound for surprise entropy is something messy.
- True multiplicativity (unlike S_{q}):

$$
H_{q}(\mathbf{p} \otimes \mathbf{r})=H_{q}(\mathbf{p})+H_{q}(\mathbf{r})
$$

or equivalently $D_{q}(\mathbf{p} \otimes \mathbf{r})=D_{q}(\mathbf{p}) D_{q}(\mathbf{r})$; taking $\mathbf{r}=\mathbf{u}_{2}$ gives replication principle.
Q. Every linear combination of $H_{q} \mathrm{~s}$ is multiplicative in this sense. Every 'infinite linear combination', i.e. integral, is too. Are these the only ones?

Back to diversity Important feature of D_{q} is modularity, as follows. Take n islands of varying sizes, sharing no species. Then the diversity of their union depends only on the diversities and relative sizes of the islands - not on their internal structure.

That is: write $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right) \in \Delta_{n}$ for the relative sizes of the islands. Write $\mathbf{p}^{i}=\left(p_{1}^{1}, \ldots, p_{k_{1}}^{1}\right)$ for the relative abundances of the species on island i. Then the species distribution for the whole community is

$$
\mathbf{w} \circ\left(\mathbf{p}^{1}, \ldots, \mathbf{p}^{n}\right)
$$

and modularity says that $D_{q}\left(\mathbf{w} \circ\left(\mathbf{p}^{1}, \ldots, \mathbf{p}^{n}\right)\right)$ depends only on \mathbf{w}, $D_{q}\left(\mathbf{p}^{1}\right), \ldots, D_{q}\left(\mathbf{p}^{n}\right)$, not on $\mathbf{p}^{1}, \ldots, \mathbf{p}^{n}$ themselves. Specifically:

$$
\begin{equation*}
D_{q}\left(\mathbf{w} \circ\left(\mathbf{p}^{1}, \ldots, \mathbf{p}^{n}\right)\right)=D_{q}(\mathbf{w}) \cdot M_{1-q}\left(\mathbf{w}^{(q)},\left(D_{q}\left(\mathbf{p}^{1}\right), \ldots, D_{q}\left(\mathbf{p}^{n}\right)\right)\right) \tag{10}
\end{equation*}
$$

where $\mathbf{w}^{(q)}$ is the escort distribution

$$
\mathbf{w}^{(q)}=\frac{\left(w_{1}^{q}, \ldots, w_{n}^{q}\right)}{w_{1}^{q}+\cdots+w_{n}^{q}}
$$

In terminology of a few weeks ago, this is a 'chain rule'. Disadvantage of Rényi form over surprise form: chain rule is less obvious.

I didn't write up the following remarks and theorem in class, although I said something about them out loud.

Remarks 5.6 i. The terminology 'escort distribution' is taken from thermodynamics, in which we see expressions such as

$$
\frac{\left(e^{-\beta E_{1}}, \ldots, e^{-\beta E_{n}}\right)}{Z(\beta)}
$$

where $Z(\beta)=e^{-\beta E_{1}}+\cdots+e^{-\beta E_{n}}$ is the partition function for energies E_{i} at inverse temperature β.
ii. The function $(q, \mathbf{w}) \mapsto \mathbf{w}^{(q)}$ is the scalar multiplication of a real vector space structure on the simplex Δ_{n} (or actually its interior): see 'How the simplex is a vector space', n-Category Café, 11 June 2016.

It's a theorem that the Hill numbers are the only diversity measures satisfying the chain rule (10), at least for $q \neq 0,1, \infty$. Maybe not very useful, as why would anyone ask for this chain rule? Anyway, here's the result:

Theorem 5.7 Let $q \in(0,1) \cup(1, \infty)$. Let $\left(D: \Delta_{n} \rightarrow[1, \infty)\right)_{n \geq 1}$ be a sequence of functions. TFAE:
i. D is continuous, symmetric, and satisfies the q-chain rule (10);
ii. $D=D_{q}$ or $D \equiv 1$.

Proof Omitted. As far as I know, this result doesn't exist in the literature. I'd be happy to explain the proof to anyone interested.

Next week: we incorporate similarity between species into our model. This not only improves biological accuracy; it also leads to interesting new mathematics.

Recap: crude model of community as probability distribution; definition of $M_{t}(\mathbf{p}, \mathbf{x})$, of $D_{q}(\mathbf{p})$ as $M_{1-q}(\mathbf{p}, 1 / \mathbf{p})$ (diversity as average rarity, with $1 / \mathbf{p}$ defined coordinatewise) and explicit form, and $H_{q}(\mathbf{p})=\log D_{q}(\mathbf{p})$.

Similarity-sensitive diversity

Ref: Leinster and Cobbold, Ecology, 2012.
Model: community of n species, with:

- relative abundances $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in \Delta_{n}$;
- for each i, j, a similarity coefficient $Z_{i j} \in[0,1]$, giving matrix $Z=\left(Z_{i j}\right)$. Assume $Z_{i i}=1$ for all i.
Examples 5.8 i. $Z=I$: then different species have nothing in common (naive model).
ii. $Z_{i j}=$ percentage genetic similarity between species i and j.
iii. Or measure similarity phylogenetically, taxonomically, morphologically, ...
iv. Given metric d on $\{1, \ldots, n\}$, put $Z_{i j}=e^{-d(i, j)}$.
v. (Non-biological?) Given reflexive graph with vertices $1, \ldots, n$, put

$$
Z_{i j}= \begin{cases}1 & \text { if there is an edge between } i \text { and } j \\ 0 & \text { otherwise. }\end{cases}
$$

Reflexive means that there is an edge from each vertex to itself.
Viewing p as a column vector, we have

$$
(Z \mathbf{p})_{i}=\sum_{j} Z_{i j} p_{j}
$$

-'ordinariness' of species i within our community. It's the expected similarity between an individual of species i and an individual chosen from the community at random. So $1 /(Z \mathbf{p})_{i}$ is 'specialness'.

Previously, defined diversity $D_{q}(\mathbf{p})$ as average rarity, where rarity is $1 / p_{i}$. That was ignoring inter-species similarities-in effect, using naive model $Z=I$. Now replace $1 / p_{i}$ by specialness $1 /(Z \mathbf{p})_{i}$, which is a kind of rarity that takes into account the proximity of other species.
Definition 5.9 Let $q \in[0, \infty]$. The diversity of order q of the community is

$$
D_{q}^{Z}(\mathbf{p})=M_{1-q}(\mathbf{p}, 1 / Z \mathbf{p})= \begin{cases}\left(\sum_{i: p_{i}>0} p_{i}(Z \mathbf{p})_{i}^{q-1}\right)^{1 /(1-q)} & \text { if } q \neq 1, \infty \\ 1 / \prod_{i}(Z \mathbf{p})_{i}^{p_{i}} & \text { if } q=1 \\ 1 / \max _{i: p_{i}>0}(Z \mathbf{p})_{i} & \text { if } q=\infty\end{cases}
$$

Examples 5.10 i. Naive model $Z=I$: have $D_{q}^{I}(\mathbf{p})=D_{q}(\mathbf{p})$. So the classical quantities $D_{q}(\mathbf{p})$-the exponentials of Shannon entropy etc.have a big problem: they implicitly assume that different species have nothing in common. This is of course nonsense.
ii. $D_{2}^{Z}(\mathbf{p})=1 / \sum_{i, j} p_{i} Z_{i j} p_{j}$. This is the reciprocal of expected similarity between a randomly-chosen pair of individuals. You can measure this even in situations (e.g. microbial) where you don't have a species classification at all. Something similar can be done for all integers $q \geq 2$.
iii. Generally: incorporating similarity can change judgement on when one community is more diverse than another. See our paper for examples. Broad idea: it may be that one community initially looks more diverse, but all the diversity is within a group of species that are highly similar, in which case it's really not so diverse after all.

Properties of D_{q}^{Z}, for each fixed q (and here I'll skip some obvious ones):

- Splitting a species into two identical species doesn't change the diversity. Mathematically: add a new column to the matrix identical to the last one, and a new row identical to the last one. Also split p_{n} as a sum of two probabilities however you like.
Consequence: by continuity, splitting a species into two highly similar species causes only a slight increase in diversity. This is sensible, logical behaviour. Species classifications can be somewhat arbitrary and changeable.
- Modularity: take m islands, such that species on different islands are distinct and totally dissimilar. Then the diversity of the whole depends only on the diversities d_{i} and relative sizes w_{i} of the islands. ('Relative' means $\sum w_{i}=1$.) The important thing here is the functional relationship just stated. But I'll also give the actual formula. Explicitly, the diversity of the whole is

$$
\begin{equation*}
\left(\sum_{i: w_{i}>0} w_{i}^{q} d_{i}^{1-q}\right)^{1 /(1-q)} \tag{11}
\end{equation*}
$$

$(q \neq 1, \infty)$ and similar formula for $q=1, \infty$. This is a kind of chain rule.

- Replication: if the m islands have the same diversity d and the same size, the overall diversity is $m d$.
- Monotonicity: increasing similarities decreases diversity. In particular, $D_{q}^{Z}(\mathbf{p}) \leq D_{q}^{I}(\mathbf{p})$. Interpretation: if a measure knows nothing of the commonalities between species, it will evaluate the community as more diverse than it really is. The naive model overestimates diversity.
- Range: diversity is between 1 and n. Minimum occurs when only one species is present. Come back to maximization in a minute.
Remark 5.11 Do these properties (plus some obvious ones) uniquely characterize the diversity measures D_{q}^{Z} ? No! The problem is that Z isn't really pinned down... Come back to this next time, when we'll pass to a more general setting that makes life simpler.

Digression: entropy viewpoint Define

$$
H_{q}^{Z}(\mathbf{p})=\log D_{q}^{Z}(\mathbf{p})
$$

-'similarity-sensitive Rényi entropy'. Gives (for each q) a notion of the entropy of a distribution on a metric space (or graph).

Examples $5.12 \quad$ i. H_{q}^{I} is usual Rényi entropy H_{q}. Taking $Z=I$ corrresponds to metric with $d(i, j)=\infty$ for all $i \neq j$.
ii. When $q=1$, get a metric or similarity-sensitive version of Shannon entropy:

$$
H_{q}^{1}(\mathbf{p})=-\sum_{i: p_{i}>0} p_{i} \log (Z \mathbf{p})_{i} .
$$

Maximizing diversity Suppose we fix a list of species and can control their relative abundances. What relative abundance distribution would we choose in order to maximize the diversity, and what is the value of that maximum diversity?

Or more mathematically: fix a finite metric space. Which probability distribution(s) maximize the diversity (or equivalently entropy), and what is the value of the maximum diversity?

Fix q and a similarity matrix Z. Questions:
A Which distribution(s) p maximize $D_{q}^{Z}(\mathbf{p})$?
B What is the maximum diversity, $\sup _{\mathbf{p} \in \Delta_{n}} D_{q}^{Z}(\mathbf{p})$?
Examples 5.13 i. For $Z=I$, maximum diversity is n (for any q), achieved when $\mathbf{p}=\mathbf{u}_{n}$ (uniform distribution).
ii. Take two very similar species and one quite different species:

Maximizing distribution should be close to $(0.25,0.25,0.5)$.
Recall that even in the case $Z=I$, different values of q give different judgements on which communities are more diverse than which others. They rank distributions \mathbf{p} differently. So: In principle, the answers to both \mathbf{A} and \mathbf{B} depend on q. But:

Theorem 5.14 (with Mark Meckes) Let Z be a symmetric similarity matrix. Then:

A There is a distribution \mathbf{p} that maximizes $D_{q}^{Z}(\mathbf{p})$ for all $q \in[0, \infty]$ simultaneously.
$\mathbf{B} \sup _{\mathbf{p}} D_{q}^{Z}(\mathbf{p})$ is independent of $q \in[0, \infty]$.
Proof Omitted; Leinster and Meckes, arXiv:1512.06314.

So, there is a best of all possible worlds.
Remarks 5.15 i. For $Z=I$, trivial: example above.
ii. Can define the maximum diversity of a similarity matrix Z to be $\sup _{\mathbf{p}} D_{q}^{Z}(\mathbf{p})$ (which is independent of q). So we've got a real invariant of similarity matrices. It's something new!
iii. In particular, can define the maximum diversity of a finite metric space to be the maximum diversity of $\left(e^{-d(i, j)}\right)_{i, j}$. Closely related to another real invariant, magnitude, which is geometrically meaningful.
iv. For graphs (with Z as above), the maximum diversity is equal to the independence number (dual of clique number). A set of vertices in a graph is independent if no two of them are linked by an edge; the independence number of a graph is the maximum cardinality of an independent set of vertices.
v. There is an algorithm for calculating maximum diversity and all maximizing distributions. It takes 2^{n} steps. Assuming $\mathrm{P} \neq \mathrm{NP}$, there is no polynomial-time algorithm. This is known for independence numbers of graphs, so it follows for maximum diversity generally.
vi. Any distribution \mathbf{p} that maximizes $D_{q}^{Z}(\mathbf{p})$ for one $q>0$ actually maximizes $D_{q}^{Z}(\mathbf{p})$ for all $q \in[0, \infty]$. (Not obvious, but in the paper with Meckes.)

Next time: I'll describe a more general family of measures and prove that in a certain sense, it is the only sensible way of assigning a value to a collection of things. I don't presuppose that this 'value' is any kind of diversity, nor that there is anything ecological about the setting. But it turns out that it's closely related to the diversity measures that we just met, and that it's especially interesting to interpret these 'value' measures in an ecological setting.

Value

Recap: power means, $D_{q}(\mathbf{p})=M_{1-q}(\mathbf{p}, 1 / \mathbf{p})$, similarity matrices, $D_{q}^{Z}(\mathbf{p})=$ $M_{1-q}(\mathbf{p}, 1 / Z \mathbf{p})$, modularity formula $\left(\sum w_{i}^{q} d_{i}^{1-q}\right)^{1 /(1-q)}$.

Today we'll look at a very general notion of the 'value' of a collection of objects. We'll see:

- That a few apparently mild requirements almost completely pin down what 'value' must mean. This is a big functional equation theorem-in my mind the climax of the course!
- That these measures of value encompass all the biodiversity measures that we've met before (as well as other important things such as the p-norms).

Set-up Consider a finite set $\{1, \ldots, n\}$ together with:

- for each element i, a probability $p_{i} \in[0,1]$
- for each element i, a 'value' $v_{i} \in(0, \infty)$.

Probabilities as proportions.
Examples 5.16 i. Elements are species in some community, $p_{i}=$ relative abundance of i th species in community, $v_{i}=1$ for all i.
ii. Can also imagine assigning monetary value to each species, e.g. revenue from ecotourism or whatever.
iii. Same elements and same \mathbf{p}, but (given a similarity matrix Z) put

$$
v_{i}=\frac{p_{i}}{(Z \mathbf{p})_{i}}=\frac{p_{i}}{p_{i}+\sum_{j: j \neq i} Z_{i j} p_{j}} \leq 1
$$

Highest value when species is unusual in community. Note that v_{i} depends on \mathbf{p} here; conceptually, value depends on context.
iv. Take community partitioned into n subcommunities (sites). Let p_{i} be relative size of i th subcommunity and let v_{i} be the value of the i th subcommunity (in any given sense, e.g. those above).

Basic question Given proportions and values of individual elements, how can we assign a value to the whole set? What is the value of the whole in terms of the values of the parts?

To answer this question is to give a sequence of functions

$$
\sigma: \Delta_{n} \times(0, \infty)^{n} \rightarrow(0, \infty)
$$

($n \geq 1$). Here $\sigma(\mathbf{p}, \mathbf{v})$ is the value of the whole set.

The value functions σ_{q} For each $q \in[-\infty, \infty]$, define

$$
\sigma_{q}: \Delta_{n} \times(0, \infty)^{n} \rightarrow(0, \infty)
$$

by

$$
\begin{aligned}
\sigma_{q}(\mathbf{p}, \mathbf{v}) & =M_{1-q}(\mathbf{p}, \mathbf{v} / \mathbf{p}) \\
& = \begin{cases}\left(\sum p_{i}^{q} v_{i}^{1-q}\right)^{1 /(1-q)} & \text { if } q \neq 1, \pm \infty \\
\prod\left(v_{i} / p_{i}\right)^{p_{i}} & \text { if } q=1, \\
\max v_{i} / p_{i} & \text { if } q=-\infty \\
\min v_{i} / p_{i} & \text { if } q=\infty\end{cases}
\end{aligned}
$$

$\left(\mathbf{p} \in \Delta_{n}, \mathbf{v} \in(0, \infty)^{n}\right)$, where the sum, product, max and min are over all i such that $p_{i}>0$. (If $p_{i}=0$ then we appear to have the problem of v_{i} / p_{i} being undefined, but it's OK: the definition of M_{1-q} only involves those i such that $p_{i}>0$.)

Example 5.17 The case $q=0$:

$$
\sigma_{0}(\mathbf{p}, \mathbf{v})=\sum_{i: p_{i}>0} v_{i}
$$

Just add up the values. It's the most obvious way to aggregate the individual values into a single overall value, but not the only way! And it ignores the probabilities, except for asking whether or not $p_{i}=0$.

Remarks 5.18 i. To explain the formula for σ_{q}, take community of k individuals divided into n species, say with k_{i} individuals of species i. So $p_{i}=k_{i} / k$. If i th species has value v_{i} then (after a little calculation)

$$
\sigma_{q}(\mathbf{p}, \mathbf{v})=k \cdot M_{1-q}\left(\mathbf{p},\left(v_{1} / k_{1}, \ldots, v_{n} / k_{n}\right)\right) .
$$

Can interpret v_{i} / k_{i} as value per individual of species i. So this says $\sigma_{q}(\mathbf{p}, \mathbf{v})=$ number of individuals \times average value per individual.
ii. Consider special case of uniform distribution on our set. We have $\sigma_{q}\left(\mathbf{u}_{n}, \mathbf{v}\right)=$ const $\cdot\|\mathbf{v}\|_{1-q}$ for $q \leq 0$. So get p-norms as special case.
iii. σ_{q} is very closely related to Rényi relative entropy.

Examples $5.19 \quad$ i. If $v_{i}=1$ for all i then

$$
\sigma_{q}(\mathbf{p}, \mathbf{v})=M_{1-q}(\mathbf{p}, 1 / \mathbf{p})=D_{q}(\mathbf{p})
$$

-Hill number of order q (diversity in naive model; exponential of Rényi entropy of order q).
ii. More generally, if $v_{i}=p_{i} /(Z \mathbf{p})_{i}$ then $\sigma_{q}(\mathbf{p}, \mathbf{v})=D_{q}^{Z}(\mathbf{p})$: similaritysensitive diversity.
iii. Take community divided into n subcommunities, such that species in different subcommunities are completely dissimilar. Let

$$
v_{i}=D_{q}^{Z}(i \text { th subcommunity })
$$

Then

$$
D_{q}^{Z}(\text { whole community })=\sigma_{q}(\mathbf{p}, \mathbf{v})
$$

That's exactly the earlier modularity formula (11).

Properties The following properties are satisfied by $\sigma=\sigma_{q}$ for each $q \in$ $[-\infty, \infty]$. Start with most significant.
i. Homogeneity: $\sigma(\mathbf{p}, c \mathbf{v})=c \sigma(\mathbf{p}, \mathbf{v})$ for all $c>0$. Interpretation: $\sigma(p, \mathbf{v})$ is measured in same units as v_{1}, \ldots, v_{n}. E.g. if v_{i} are in kg then so is $\sigma(\mathbf{p}, \mathbf{v})$. A switch to grams would multiply both by 1000 .
ii. Increasing: if $v_{i} \leq v_{i}^{\prime}$ for all i then $\sigma(\mathbf{p}, \mathbf{v}) \leq \sigma\left(\mathbf{p}, \mathbf{v}^{\prime}\right)$ for all i. Idea: the values of the parts make a positive contribution to the value of the whole.
iii. Effective number: $\sigma(\mathbf{u}_{n},(\underbrace{1, \ldots, 1}_{n}))=n$ for all $n \geq 1$. Assuming homogeneity, an equivalent statement is $\sigma\left(\mathbf{u}_{n},(v, \ldots, v)\right)=n v$ for all n and v. Interpretation: if n equal-sized elements each have value v then value of whole set is $n v$.
iv. Modularity: Suppose each element of our set is itself divided into 'subelements', each with an assigned probability and value:

Can compute value of whole either by ignoring the intermediate level or by computing the value of each element first, then the whole. These give the same result (a basic logical requirement!):
$\sigma\left(\mathbf{w} \circ\left(\mathbf{p}^{1}, \ldots, \mathbf{p}^{n}\right),\left(v_{1}^{1}, \ldots, v_{k_{1}}^{1}, \ldots, v_{1}^{n}, \ldots, v_{k_{n}}^{n}\right)\right)=\sigma\left(\mathbf{w},\left(\sigma\left(\mathbf{p}^{1}, \mathbf{v}^{1}\right), \ldots, \sigma\left(\mathbf{p}^{n}, \mathbf{v}^{n}\right)\right)\right)$
for all $\mathbf{w} \in \Delta_{n}, \mathbf{p}^{1} \in \Delta_{k_{1}}, \ldots, \mathbf{p}^{n} \in \Delta_{k_{n}}$ and all $v_{j}^{i}>0$, writing $\mathbf{v}^{i}=$ $\left(v_{1}^{i}, \ldots, v_{k_{i}}^{i}\right)$.
(An important point is that in this equation, the value of each sub-elements is taken to be the same whether we're considering it as part of its parent element or as part of the whole set.)
v. Continuity in $\mathbf{p}\left(p_{i}>0\right)$: for each $\mathbf{v}, \sigma(\mathbf{p}, \mathbf{v})$ is a continuous function of \mathbf{p} when $p_{1}, \ldots, p_{n}>0$. Geometrically, that's continuity on the interior of the simplex Δ_{n}. The functions σ_{q} aren't all continuous at the boundary of the simplex; for instance, σ_{0} isn't (example above). Sometimes we want to use presence-absence data, i.e. make a sharp distinction between $p_{i}=0$ and $p_{i} \neq 0$. Species richness $\left(q=0, v_{i} \equiv 1\right)$ does this.
vi. Absent elements count for nothing: in other words, if $p_{n}=0$ then $\sigma\left(\left(p_{1}, \ldots, p_{n}\right),\left(v_{1}, \ldots, v_{n}\right)\right)=\sigma\left(\left(p_{1}, \ldots, p_{n-1}\right),\left(v_{1}, \ldots, v_{n-1}\right)\right)$.
vii. Symmetry or permutation-invariance: e.g. $\sigma\left(\left(p_{1}, p_{2}, p_{3}\right),\left(v_{1}, v_{2}, v_{3}\right)\right)=$ $\sigma\left(\left(p_{3}, p_{1}, p_{2}\right),\left(v_{3}, v_{1}, v_{2}\right)\right)$. It doesn't matter what order you list the elements in.

And now a big result:
Theorem 5.20 Let $\left(\sigma:(0, \infty)^{n} \rightarrow(0, \infty)\right)_{n \geq 1}$ be a sequence of functions. TFAE:

- σ satisfies properties (i)-(vii) above;
- $\sigma=\sigma_{q}$ for some $q \in[-\infty, \infty]$.

Proof is long: about 15 pages. But not so bad. If I'd known the proof when I started the course, I'd have chosen topics differently so that by the time we reached this point, we'd have done all the necessary preparatory results.

Outline of proof:

- Functional equation characterizing q-logarithms (for unspecified q). I.e. a theorem saying that a function f satisfies certain properties if and only if $f=\ln _{q}$ for some $q \in \mathbb{R}$.
- Classical theory of 'quasiarithmetic' means, i.e. those of the form

$$
\operatorname{mean}\left(x_{1}, \ldots, x_{n}\right)=\phi^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right)\right)
$$

for some invertible transformation ϕ.

- A (new?) theorem on means: a sequence of functions $\left(M:(0, \infty)^{n} \rightarrow\right.$ $(0, \infty))_{n \geq 1}$ satisfies certain properties if and only if M is the unweighted power mean of order t, for some $t \in[-\infty, \infty]$.
- Given a sequence of functions σ satisfying (i)-(vii), define $M(\mathbf{x})=$ $\frac{1}{n} \sigma\left(\mathbf{u}_{n}, \mathbf{x}\right)$.
- The properties of σ translate to properties of M, so by the theorem above, $M=M_{1-q}$ for some q.
- Then $\sigma\left(\mathbf{u}_{n}, \mathbf{v}\right)=n M_{1-q}\left(\mathbf{u}_{n}, \mathbf{v}\right)=\sigma_{q}\left(\mathbf{u}_{n}, \mathbf{v}\right)$. This proves that σ is equal to σ_{q} when the probability distribution is uniform.
- Deduce that $\sigma(\mathbf{p}, \mathbf{v})=\sigma_{q}(\mathbf{p}, \mathbf{v})$ for all \mathbf{p}, using further assumed properties of σ. (An intermediate step here is the case when \mathbf{p} is rational, much as in the proof of Faddeev's theorem on Shannon entropy).

Next time: when a community is partitioned into subcommunities (e.g. geographic sites), we may want to ask which subcommunities contribute the most to the diversity, or whether the diversity of the whole community can be attributed more to variation within the subcommunities or variation between them. These are obviously important issues in conservation, for instance. But is there a sensible way of making these questions precise?

6 The diversity of a metacommunity

Previously, we looked at how to quantify the diversity of a single community, maybe taking into account the varying similarities between species. We saw that this was closely related to entropy, and called it the 'effective number of species'. A diversity of 8.2 means that your community is slightly more diverse than a community of eight equally abundant, completely dissimilar species.

General context: a metacommunity (large ecological community) divided into communities (e.g. geographical regions). Traditional terminology:

- α-diversity: average diversity of the individual communities.
- β-diversity: diversity between the communities, i.e. how much they vary from each other.
- γ-diversity: diversity of the whole metacommunity (global).

These terms are imprecise; many specific proposals have been made for defining them. It's not clear that you can sensibly partition diversity into within-community/between-community components like this. Probably the initial efforts to do this were inspired by ANOVA (analysis of variance, in statistics); variance and diversity are both measures of variation or spread. But then the notions of α-, β - and γ-diversity acquired their own independent standing.

This week: largely based on Reeve et al. (arXiv:1404.6520), which provides non-traditional and highly flexible, sensitive approach to metacommunity diversity. It introduces 14 measures. They have different meanings for conservation etc. We'll consider about half of them. It allows for varying q (i.e. varying emphasis on rare/common species or communities) and varying Z (i.e. varying similarities between species). But to keep things simple, we'll work entirely in the case $Z=I$ (distinct species assumed to be completely dissimilar) and $q=1$ (the best-understood value, corresponding to Shannon rather than Rényi etc. entropies).

Information-theoretically: there are various entropy measures for a pair of distributions (relative, cross, joint, conditional, mutual information, ...). Crucial distinction: are the distributions on the same set or different sets?

I'll explain these various entropy measures both abstractly and in terms of biological diversity.

Today is a sort of overview of various aspects of entropy and diversity, leading beyond the scope of this course.

Two distributions on the same set

Already seen that given probability distributions \mathbf{r}, \mathbf{p} on the same finite set $\{1, \ldots, S\}$, get relative entropy

$$
H(\mathbf{r} \| \mathbf{p})=\sum_{i: p_{i}>0} r_{i} \log \frac{r_{i}}{p_{i}}
$$

There's also cross entropy, which I won't talk about.
Now let:

- $\{1, \ldots, S\}$ be the set of species in the metacommunity;
- \mathbf{p} be the species distribution for the metacommunity;
- \mathbf{r} be the species distribution for some smaller community.

We're already used to the idea that diversity is the exponential of entropy. So let's consider

$$
\exp H(\mathbf{r} \| \mathbf{p})=\prod\left(\frac{r_{i}}{p_{i}}\right)^{r_{i}}
$$

This is called $\bar{\beta}$ in Reeve et al., and measures how unusual or atypical the community is relative the metacommunity:

- Maximum value is $1 / w$, where $w \in[0,1]$ is the size of the community relative to the metacommunity. (To prove this: $p_{i} \geq w r_{i}$, so $r_{i} / p_{i} \leq 1 / w$.) Attained when the species in the community occur nowhere else in the metacommunity.
- Minimum value is 1 , attained when $\mathbf{r}=\mathbf{p}$. (Then the community is an absolutely typical sample of the metacommunity.)

Two distributions on different sets: classical viewpoint

Take random variables X on a finite set Ξ and Y on a finite set Ω, perhaps not independent. So have a random variable (X, Y) on $\Xi \times \Omega$ and X and Y are known as its marginals. For $x \in \Xi$, abbreviate $\mathbb{P}(X=x)$ as $\mathbb{P}(x)$, and similarly $\mathbb{P}(X=x, Y=y)$ as $\mathbb{P}(x, y)$, etc.

We have:

- $H(X)=\sum_{x \in \Xi} \mathbb{P}(x) \log \frac{1}{\mathbb{P}(x)}$, entropy of X;
- $H(Y)$, similarly;
- $H(X, Y)=\sum_{x \in \Xi, y \in \Omega} \mathbb{P}(x, y) \log \frac{1}{\mathbb{P}(x, y)}$, joint entropy of X and Y. (Not really a new definition; it's just the entropy of the random variable (X, Y).)

Highly suggestive diagram:

Inspires these definitions:

- Conditional entropy:

$$
H(X \mid Y)=H(X, Y)-H(Y)=\sum_{x, y} \mathbb{P}(x, y) \log \frac{1}{\mathbb{P}(x \mid y)}
$$

The appearance of the conditional probability here begins to suggest why it's called conditional entropy. A stronger reason is that

$$
H(X \mid Y)=\sum_{y} \mathbb{P}(y) H(X \mid Y=y)
$$

where $(X \mid Y=y)$ is the random variable X conditioned on $Y=y$.

- $H(Y \mid X)$ similarly.

- Mutual information:

$$
\begin{aligned}
I(X ; Y) & =H(X)+H(Y)-H(X, Y) \\
& =H(X)-H(X \mid Y) \\
& =H(Y)-H(Y \mid X) \\
& =\sum_{x, y} \mathbb{P}(x, y) \log \frac{\mathbb{P}(x, y)}{\mathbb{P}(x) \mathbb{P}(y)}=I(Y ; X) .
\end{aligned}
$$

Can interpret $I(X ; Y)$ as the amount of information about X you expect to gain from Y :

$$
I(X ; Y)=\sum_{y} \mathbb{P}(y) H((X \mid Y=y) \| X)
$$

From this point of view, it's nontrivial that $I(X ; Y)$ is symmetric in X and Y.
All these quantities are ≥ 0, with $I(X ; Y)=0$ iff X and Y are independent.
The Venn diagram isn't just an analogy; it refers to a particular example:
Example 6.1 Let U and V be finite subsets of some set. Choose a subset Z of $U \cup V$ uniformly at random, and put

$$
X=Z \cap U, \quad Y=Z \cap V
$$

Then X is a subset of U chosen uniformly at random, and similarly Y. Hence, taking logs to base 2 :

$$
\begin{aligned}
H(X) & =|U|, & H(Y) & =|V|, & H(X, Y) & =|U \cup V|, \\
H(X \mid Y) & =|U \backslash V|, & H(Y \mid X) & =|V \backslash U|, & I(X ; Y) & =|U \cap V| .
\end{aligned}
$$

Two distributions on different sets: diversity viewpoint

Take a metacommunity divided into N communities, containing organisms drawn from a list of S species. Write $P_{i j}$ for the relative abundance of species i in community j (where 'relative' means relative to the whole metacommunity).

I'll always use i for species and j for communities. So $\sum_{i, j} P_{i j}=1$, and have matrix

$$
\begin{gathered}
P=\left(\begin{array}{ccc}
P_{11} & \cdots & P_{1 N} \\
\vdots & & \vdots \\
P_{S 1} & \cdots & P_{S N}
\end{array}\right) \quad \text { species } \\
\text { communities }
\end{gathered}
$$

Then overall species distribution is

$$
\mathbf{p}=\left(\begin{array}{c}
p_{1} \\
\vdots \\
p_{S}
\end{array}\right), \quad p_{i}=\sum_{j} P_{i j}
$$

and relative sizes of communities are given by

$$
\mathbf{w}=\left(w_{1}, \ldots, w_{N}\right), \quad w_{j}=\sum_{i} P_{i j} .
$$

Now let X be the random variable for species (with distribution \mathbf{p}) and Y the RV for communities (with distribution \mathbf{w}), so that joint distribution is P.

Now let's go through the Venn diagram (table on next page), again following the pattern that when we're interested in diversity rather than entropy, we take an exponential. Summary:

A

Quantity	Name in Reeve et al.	Formula	Description	Range	Maximized when	Minimized when
$\exp H(X)$	$G=D_{1}(\mathbf{p})$	$\prod_{i} p^{2}$	Eff num species in metacomm (ignoring division into comms)	$[1, S]$	Species in metacommunity are balanced	Only one species present
$\exp H(Y)$	$D_{1}(\mathbf{w})$	$\prod_{j} w_{j}^{-w_{j}}$	Eff num communities (ignoring division into species)	$[1, N]$	Communities equal size	Only one comm
$\exp H(X, Y)$	A	$\prod_{i, j} P_{i j}^{-P_{i j}}$	Eff num of (species, comm) pairs	$[1, N S]$	Comms are all balanced and equal size	Single species \& single comm
$\exp H(X \mid Y)$	\bar{A}	$\prod_{i, j} w_{j}^{P_{i j}} P_{i j}^{-P_{i j}}$	Average eff num of species per community	$[1, S]$	Comms are all balanced	Each comm has only one species
$\exp H(Y \mid X)$	R	A / G	Redundancy of communities	$[1, N]$	Comms have same size and same composition	Comms share no species
$\exp I(X ; Y)$	\bar{B}	G / \bar{A}	Eff num of distinct comms	$[1, N]$	Comms share no species and are same size	Comms have same composition

Balanced means all species present and in equal abundance.
Each of these measures detects something different about the metacommunity. For instar

- $\bar{A}=\exp H(X \mid Y)$ is high when each community is highly diverse, but it may be that the communities are all diverse in the same
way, in which case losing some of them will do no damage to the overall diversity of the metacommunity.
- The 'redundancy' $R=\exp H(Y \mid X)$ measures the extent to which communities can be lost without affecting the overall diversity;
it is greatest when the communities are all identical.
- In the other direction, \bar{B} can be understood as the effective number of completely distinct communities: it has value N when there
are N equal-sized communities that have no species in common.

Directions we could now go in:

- Analyse the properties of these measures. Some can be explained in terms of 'value' (last week).
- Seek unique characterization theorems for these measures. This connects to the characterization theorem for value (Theorem 5.20).
- Look at measures of individual communities from Reeve et al. (like $\bar{\beta}$ above). E.g. for conservation, might want to identify communities that are particularly diverse, or are particularly unlike rest of metacommunity, or unusually rich in species that are rare in the metacommunity. A community might have none, some or all of these qualities. The measures in Reeve et al. can pick out these qualities individually.
- Vary the parameter q (here set to 1) to control emphasis on rare/common species.
- Introduce a matrix Z to reflect the varying similarities between species.

Much of this is done in Reeve et al. But for us, this is the end!

Enormous thanks to all the participants in this seminar course for your questions, contributions and encouragement.

[^0]: *School of Mathematics, University of Edinburgh; Tom.Leinster@ed.ac.uk. Last edited on 8 May 2017

[^1]: ${ }^{1}$ This is completely straightforward, but can be made even more transparent by first observing that the function $f(x)=-x \log x$ is a 'nonlinear derivation', i.e. $f(x y)=x f(y)+f(x) y$. In fact, $-x \log x$ is the only measurable function F with this property (up to a constant factor), since if we put $g(x)=F(x) / x$ then $g(x y)=g(y)+g(x)$ and so $g(x) \propto \log x$.
 ${ }^{2}$ Dmitry Faddeev, father of the physicist Ludvig Faddeev.

[^2]: ${ }^{3}$ Xīlíng Zhāng pointed out that this is also a consequence of Stolz's lemma-or as Wikipedia calls it, the Stolz-Cesàro theorem.

