
Lecture 8

Monoidal categories

A monoidal category is a category equipped with
some kind of product—not necessarily ‘product’ in
the sense defined earlier. There are two kinds: strict
(rarer) and weak (more common).

Definition 8.1 A strict monoidal category is a
category V equipped with a functor V × V - V

and an object I ∈ V satisfying associativity and unit
axioms.

The functor is written on objects as

(X, Y ) 7−→ X ⊗ Y

and on maps as
X

X ′

f
?

,

Y

Y ′

g
?

 7−→

X ⊗ Y

X ′ ⊗ Y ′.

f ⊗ g
?
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Functoriality of ⊗ says that

(f ′ ◦ f)⊗(g′ ◦ g) = (f ′⊗g′) ◦ (f⊗g), 1X⊗1Y = 1X⊗Y

whenever these make sense. The associativity and unit
axioms are that

(X ⊗ Y )⊗ Z = X ⊗ (Y ⊗ Z), X ⊗ I = X = I ⊗X,
(f ⊗ g)⊗ h = f ⊗ (g ⊗ h), f ⊗ 1I = f = 1I ⊗ f

for all objects X, Y, Z and maps f, g, h.
This definition is unnaturally strict as it involves

equality of objects. Nevertheless, there are some sig-
nificant examples.

Example 8.2 Given n ∈ N, write n for the n-element
set {1, . . . , n} equipped with its usual ordering. Let D
be the category with object-set N and in which a map
m - n is an order-preserving map m - n; thus,
D is equivalent to the category of finite totally ordered
sets. Define ⊗ on objects by m ⊗ n = m + n and on
maps in the evident way; put I = 0. Then (D, +, 0) is
a strict monoidal category.

The category usually denoted ∆ is the full subcat-
egory of D obtained by discarding the unit object 0; it
is equivalent to the category of finite nonempty totally
ordered sets.
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Example 8.3 Any category A gives rise to a mo-
noidal category End(A). The underlying category is
[A, A], the unit object is 1A, tensor product on objects
is composition of functors, and I leave you to work out
what tensor product on maps must be.

Weak monoidal categories, being the prevalent
species, are usually just called ‘monoidal categories’.

Definition 8.4 A monoidal category is a category
V equipped with a functor ⊗ : V×V - V, an object
I ∈ V, and isomorphisms

(X⊗Y )⊗Z
αX,Y,Z

∼
- X⊗(Y⊗Z), I⊗X

λX

∼
- X, X⊗I

ρX

∼
- X

natural in X, Y, Z ∈ V (the coherence isomor-
phisms), such that the following diagrams commute
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for all W, X, Y, Z ∈ V:

(W ⊗X)⊗ (Y ⊗ Z)

((W ⊗X)⊗ Y )⊗ Z

αW⊗X,Y,Z
-

W ⊗ (X ⊗ (Y ⊗ Z))

αW,X,Y ⊗Z

-

(W ⊗ (X ⊗ Y ))⊗ Z
αW,X⊗Y,Z

-
αW,X,Y ⊗ 1Z

-

W ⊗ ((X ⊗ Y )⊗ Z)
1W ⊗ αX,Y,Z

-

(X ⊗ I)⊗ Y
αX,I,Y- X ⊗ (I ⊗ Y )

X ⊗ Y.
1X ⊗ λY�ρX ⊗ 1Y

-

Loosely, for each n ∈ N and each pair of ways of
forming the tensor product of n objects we have pre-
cisely one isomorphism from the first way to the sec-
ond. We will come back to this (8.9).

Example 8.5 A strict monoidal category can be re-
garded as a monoidal category in which all the compo-
nents of α, λ and ρ are identities. The pentagon and
the triangle then commute automatically.
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Example 8.6 Let V be a category in which all finite
products exist. Choose a particular terminal object 1,
and for each pair (X, Y ) of objects, choose a particular
product diagram

X �
πX,Y

1 X × Y
πX,Y

2 - Y.

Then there is a canonical way of defining × on maps
so that it becomes a functor V × V - V, and a
canonical way of defining natural isomorphisms α, λ,
and ρ. This defines a monoidal category.

For instance, let V = Set, make some sensible def-
inition of ordered pair, and take X × Y to be the set
of ordered pairs with its usual projections onto X and
Y ; then αX,Y,Z is the map

(X × Y )× Z - X × (Y × Z),
((x, y), z) 7−→ (x, (y, z)).

Example 8.7 Dually, any category with finite co-
products gives rise to a monoidal category.

Example 8.8 Similarly, if k is a commutative ring
then (k-Mod,⊗, k) is a monoidal category.
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Theorem 8.9 (Coherence, Mark 1) All diagrams
commute. More exactly, all diagrams of the same gen-
eral kind as the pentagon and triangle in 8.4, built up
from copies of α, λ and ρ, commute.

Proof Omitted. 2

This tells us that the definition of monoidal category
is correct. It also guarantees that, for instance, we can
‘identify X ⊗ Z with X’ for abelian groups X, safe in
the knowledge that there is only one sensible way of
identifying the two groups.

The Coherence Theorem concerns the general the-
ory of monoidal categories, not particular monoidal
categories. For instance, we may have a monoidal cat-
egory V such that (X ⊗ Y )⊗Z = X ⊗ (Y ⊗Z) for all
objects X, Y and Z, but there is no reason why any of
the associativity isomorphisms should be the identity:
in other words, the diagrams

(X ⊗ Y )⊗ Z
αX,Y,Z-

1
- X ⊗ (Y ⊗ Z)

need not commute.
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The notions of functor and natural transformation
can be extended to monoidal categories; but in the
case of functors, there are several ways to do it.

Definition 8.10 Let V and V′ be monoidal cate-
gories. A lax monoidal functor V - V′ is a func-
tor F : V - V′ together with a map φ· : I - FI
and maps

φX,Y : FX ⊗ FY - F (X ⊗ Y )

natural in X, Y ∈ V (coherence maps), satisfying
coherence axioms. If φ· and φX,Y are all isomorphisms
then (F, φ) is called a weak monoidal functor, or
strong monoidal functor, or just a monoidal func-
tor. If φ· and φX,Y are all identities then (F, φ) is a
strict monoidal functor.

Example 8.11 The forgetful functor U : Ab -

Set becomes a lax monoidal functor (Ab,⊗, Z) -

(Set,×1) via the canonical maps

1 - UZ, UX × UY - U(X ⊗ Y ).

There is also a notion of a monoidal transfor-
mation between monoidal functors. Predictably, mo-
noidal categories V and V′ are called monoidally
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equivalent if there exist (weak) monoidal functors

V
F-�
G

V′ and invertible monoidal transformations

1
∼- G ◦F , F ◦G

∼- 1.

Theorem 8.12 (Coherence, Mark 2) Every mo-
noidal category is monoidally equivalent to some strict
monoidal category.

Proof Omitted. 2

This is stronger than Mark 1, as the property ‘all di-
agrams commute’ is invariant under monoidal equiv-
alence and holds in any strict monoidal category. It
allows us to pretend that every monoidal category
is strict, and so write W ⊗ X ⊗ Y ⊗ Z instead of
W ⊗ ((X ⊗ Y )⊗ Z).

* * *

The rest of this lecture concerns two things that
you can do with monoidal categories: enrich in them,
and take algebraic structures in them.

In homological algebra one deals with Ab-
categories, that is, categories A in which each hom-
set A(A, B) carries the structure of an abelian group
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and composition is bilinear (1.10). In topology one
often makes use of the fact that for suitable spaces
A and B (say, compactly generated Hausdorff), the
set Top(A, B) carries a natural topology. The general
idea is called ‘enrichment’; here is the most common
formalization.

Definition 8.13 Let V = (V,⊗, I) be a monoidal cat-
egory. A category enriched in V, or V-category,
A, consists of

• a collection ob(A)

• for each A, B ∈ ob(A), an object A(A, B) ∈ V

• for each A, B, C ∈ ob(A), a map

µA,B,C : A(B, C)⊗A(A, B) - A(A, C)

in V (composition)

• for each A ∈ ob(A), a map

ηA : I - A(A, A)

in V (identities)
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such that the following diagrams in V commute for all
A, B, C,D ∈ ob(A) (the associativity and identity
axioms):

A(C, D)⊗A(B, C)⊗A(A, B)

A(B, D)⊗A(A, B)

µB,C,D ⊗ 1

�
A(C, D)⊗A(A, C)

1⊗ µA,B,C

-

A(A, D)
µA,C,D�µA,B,D -

I ⊗A(A, B)

A(B, B)⊗A(A, B)

ηB ⊗ 1

�

A(A, B)

∼

?µA,B,B
-

A(A, B)⊗ I

A(A, B)⊗A(A, A)

1⊗ ηA

-

A(A, B).

∼

? µA,A,B�

Example 8.14 A category enriched in (Set,×, 1) is
just an ordinary (locally small) category.

Example 8.15 A category enriched in (Ab,⊗, Z) is
what is usually called an Ab-category; for instance,
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k-Mod is an Ab-category for any commutative ring
k.

Almost all the concepts and results of ordinary cat-
egory theory can be extended to the V-enriched con-
text, assuming that V is symmetric monoidal closed
and has all limits and colimits. Symmetric means
that V comes equipped with an isomorphism γX,Y :
X ⊗ Y - Y ⊗X for each X, Y ∈ V, satisfying nat-
urality and coherence axioms. Closed means that for
each Y ∈ V, the functor − ⊗ Y : V - V has a left
adjoint, written [Y,−]; then

V(X ⊗ Y, Z) ∼= V(X, [Y, Z])

naturally in X, Y, Z ∈ V.

Example 8.16 If V is a cartesian closed category
then (V,×, 1) is symmetric monoidal closed, defining
the symmetry maps in the obvious way.

Example 8.17 (Ab,⊗, Z) is symmetric monoidal
closed: the symmetric structure is obvious, and [Y, Z]
is the abelian group of homomorphisms from Y to Z.
Also, Ab has all limits and colimits. So almost every-
thing in category theory has an Ab-enriched analogue.
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‘Internal algebraic structures’ are algebraic struc-
tures whose underlying object may not be a set. For
instance, let V be any monoidal category. A monoid
in V consists of an object X ∈ V together with maps

m : X ⊗X - X, e : I - X

such that certain diagrams expressing the associativity
and unit axioms commute. (Compare 8.13 and 7.1.)

Example 8.18 A monoid in (Set,×, 1) is a monoid
in the ordinary sense.

Example 8.19 A monoid in (Ab,⊗, Z) consists of
an abelian group X together with a bilinear map
m : X × X - X and an element e of X satisfy-
ing associativity and unit axioms: in other words, a
ring.

Example 8.20 Similarly, a monoid in k-Mod is just
a k-algebra.

Only a limited range of algebraic structures can be
defined inside an arbitrary monoidal category V. But if
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the monoidal structure comes from ordinary (categor-
ical) product on V (Example 8.6) then we can define
all types of algebraic structure: groups, rings, Lie alge-
bras, k-modules, . . . . For instance, if V is a category
with finite products then a group in V is an object
X ∈ V together with maps

m : X×X - X, i : X - X, e : 1 - X

satisfying commutative diagrams expressing the group
axioms. The associativity and unit axioms are as for
monoids. To express the inverse axiom ‘x−1 · x = 1’,
write ! for the unique map X - 1 and ∆ for the
diagonal map (1X , 1X) : X - X × X; then the
axiom is that

X ×X
i× 1

- X ×X

X

∆
-

X

m
-

1

e

-

!
-

commutes.
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Example 8.21 A group in Set is a group. A group in
Top is a topological group. A group in the category
of smooth manifolds is a Lie group. A group in the
category of algebraic varieties is an algebraic group.

Digression 8.22 At this point, the standard remark
is that it is impossible to define ‘group’ in an arbitrary
monoidal category, since there is no analogue in an ar-
bitrary monoidal category of the maps ! : X - 1
and ∆ : X - X × X used in the definition above.
But this is misleading: assuming only that our monoi-
dal category V is symmetric, it is in fact possible to
define ‘group in V’.

Thus, a Hopf algebra in a symmetric monoidal
category V is an object X equipped with maps

m : X ⊗X - X, e : I - X,
δ : X - X ⊗X, ε : X - I,

i : X - X

such that certain diagrams commute. A Hopf algebra
in k-Mod is what is usually called a Hopf algebra over
k; an example is the group algebra kG of any group
G, where m and e give kG its usual multiplication and
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unit, and for any g ∈ G we have

δ(g) = g ⊗ g, ε(g) = 1, i(g) = g−1.

It turns out that a Hopf algebra in Set is precisely a
group. So Hopf algebras, or ‘quantum groups’ as they
are sometimes called, generalize the concept of group.

Exercises

8.23 Let V be a symmetric monoidal closed category.
There is a contravariant functor ( )∗ : Vop - V de-
fined by X∗ = [X, I]. Exhibit a natural transforma-
tion α : 1V

- ( )∗∗; thus, α is to have components
X - X∗∗. Show by example that α need not be a
natural isomorphism.

8.24 Let V be a category with finite products. Write
down the definition of complex vector space in V.
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