The magnitude of metric spaces I

Tom Leinster (Glasgow/EPSRC)

Parts joint with

Mark Meckes (Case Western)
Simon Willerton (Sheffield)

These slides are available on my web page
Background
Cardinality-like invariants

For many mathematical objects, there is a canonical notion of size.
Cardinality-like invariants

For many mathematical objects, there is a canonical notion of size.

Sets have cardinality

Vector spaces have dimension

Topological spaces have Euler characteristic

Posets have Euler characteristic

Probability spaces have entropy

Purpose of talk: introduce a new canonical notion of size...

Metric spaces have magnitude... and provide evidence that it subsumes many invariants of integral geometry.
Cardinality-like invariants

For many mathematical objects, there is a canonical notion of size.

- Sets have cardinality
- Vector spaces have dimension
Cardinality-like invariants

For many mathematical objects, there is a canonical notion of size.

Sets have cardinality
Vector spaces have dimension
Topological spaces have Euler characteristic
For many mathematical objects, there is a canonical notion of size.

- **Sets** have **cardinality**
- **Vector spaces** have **dimension**
- **Topological spaces** have **Euler characteristic**
- **Posets** have **Euler characteristic**
Cardinality-like invariants

For many mathematical objects, there is a canonical notion of size.

<table>
<thead>
<tr>
<th>Object</th>
<th>Size Invariant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets</td>
<td>cardinality</td>
</tr>
<tr>
<td>Vector spaces</td>
<td>dimension</td>
</tr>
<tr>
<td>Topological spaces</td>
<td>Euler characteristic</td>
</tr>
<tr>
<td>Posets</td>
<td>Euler characteristic</td>
</tr>
<tr>
<td>Probability spaces</td>
<td>entropy</td>
</tr>
</tbody>
</table>
Cardinality-like invariants

For many mathematical objects, there is a canonical notion of size.

- Sets have cardinality
- Vector spaces have dimension
- Topological spaces have Euler characteristic
- Posets have Euler characteristic
- Probability spaces have entropy

Purpose of talk: introduce a new canonical notion of size...
Cardinality-like invariants

For many mathematical objects, there is a canonical notion of size.

<table>
<thead>
<tr>
<th>Object</th>
<th>Size Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets</td>
<td>cardinality</td>
</tr>
<tr>
<td>Vector spaces</td>
<td>dimension</td>
</tr>
<tr>
<td>Topological spaces</td>
<td>Euler characteristic</td>
</tr>
<tr>
<td>Posets</td>
<td>Euler characteristic</td>
</tr>
<tr>
<td>Probability spaces</td>
<td>entropy</td>
</tr>
<tr>
<td>Metric spaces</td>
<td>magnitude</td>
</tr>
</tbody>
</table>

Purpose of talk: introduce a new canonical notion of size...
Cardinality-like invariants

For many mathematical objects, there is a canonical notion of size.

Sets have cardinality
Vector spaces have dimension
Topological spaces have Euler characteristic
Posets have Euler characteristic
Probability spaces have entropy

Purpose of talk: introduce a new canonical notion of size...

Metric spaces have magnitude

... and provide evidence that it subsumes many invariants of integral geometry.
Where does magnitude come from?

There is a general concept of enriched category. It includes:

• sets
• posets
• (ordinary) categories
• associative algebras
• metric spaces
• . . .

There is a general definition of the magnitude of a (suitably finite) enriched category. It includes:

• cardinality of finite sets
• Euler characteristic of posets
• . . .
• magnitude of metric spaces.
Where does magnitude come from?

There is a general concept of enriched category.
Where does magnitude come from?

There is a general concept of enriched category. It includes:

- sets
Where does magnitude come from?

There is a general concept of enriched category. It includes:

- sets
- posets
Where does magnitude come from?

There is a general concept of *enriched category*. It includes:

- sets
- posets
- (ordinary) categories
- associative algebras
- metric spaces

There is a general definition of the *magnitude* of a (suitably finite) enriched category.

- cardinality of finite sets
- Euler characteristic of posets
- ...
- magnitude of metric spaces
Where does magnitude come from?

There is a general concept of enriched category. It includes:

- sets
- posets
- (ordinary) categories
- associative algebras
- metric spaces
- . . .
Where does magnitude come from?

There is a general concept of enriched category. It includes:

- sets
- posets
- (ordinary) categories
- associative algebras
- metric spaces
Where does magnitude come from?

There is a general concept of enriched category. It includes:

- sets
- posets
- (ordinary) categories
- associative algebras
- metric spaces
- ...
- magnitude of metric spaces.
Where does magnitude come from?

There is a general concept of enriched category. It includes:

- sets
- posets
- (ordinary) categories
- associative algebras
- metric spaces
- ...

There is a general definition of the magnitude of a (suitably finite) enriched category.
Where does magnitude come from?

There is a general concept of enriched category. It includes:

- sets
- posets
- (ordinary) categories
- associative algebras
- metric spaces
- ...

There is a general definition of the magnitude of a (suitably finite) enriched category. It includes:
Where does magnitude come from?

There is a general concept of enriched category. It includes:

- sets
- posets
- (ordinary) categories
- associative algebras
- metric spaces
- ...

There is a general definition of the magnitude of a (suitably finite) enriched category. It includes:

- cardinality of finite sets
Where does magnitude come from?

There is a general concept of enriched category. It includes:

- sets
- posets
- (ordinary) categories
- associative algebras
- metric spaces
- ...

There is a general definition of the magnitude of a (suitably finite) enriched category. It includes:

- cardinality of finite sets
- Euler characteristic of posets
Where does magnitude come from?

There is a general concept of enriched category. It includes:

- sets
- posets
- (ordinary) categories
- associative algebras
- metric spaces
- ...

There is a general definition of the magnitude of a (suitably finite) enriched category. It includes:

- cardinality of finite sets
- Euler characteristic of posets
- ...
- ...
Where does magnitude come from?

There is a general concept of enriched category. It includes:

- sets
- posets
- (ordinary) categories
- associative algebras
- metric spaces
- ...

There is a general definition of the magnitude of a (suitably finite) enriched category. It includes:

- cardinality of finite sets
- Euler characteristic of posets
- ...

and
Where does magnitude come from?

There is a general concept of enriched category. It includes:

- sets
- posets
- (ordinary) categories
- associative algebras
- metric spaces
- ...

There is a general definition of the magnitude of a (suitably finite) enriched category. It includes:

- cardinality of finite sets
- Euler characteristic of posets
- ...

and

- magnitude of metric spaces.
PLAN

Today (my talk)
1. Magnitude of finite metric spaces
2. Magnitude of infinite metric spaces

Tomorrow (Simon Willerton)
Example computations
Asymptotic behaviour of magnitude
Magnitude of manifolds
PLAN

Today (my talk)

1. Magnitude of finite metric spaces
2. Magnitude of infinite metric spaces

Tomorrow (Simon Willerton)

Example computations
Asymptotic behaviour of magnitude
Magnitude of manifolds
PLAN

Today (my talk)

1. Magnitude of finite metric spaces
Today (my talk)

1. Magnitude of finite metric spaces
2. Magnitude of infinite metric spaces
PLAN

Today (my talk)

1. Magnitude of finite metric spaces
2. Magnitude of infinite metric spaces

Tomorrow (Simon Willerton)
PLAN

Today (my talk)

1. Magnitude of finite metric spaces
2. Magnitude of infinite metric spaces

Tomorrow (Simon Willerton)

Example computations
PLAN

Today (my talk)

1. Magnitude of finite metric spaces
2. Magnitude of infinite metric spaces

Tomorrow (Simon Willerton)

Example computations

Asymptotic behaviour of magnitude
PLAN

Today (my talk)

1. Magnitude of finite metric spaces
2. Magnitude of infinite metric spaces

Tomorrow (Simon Willerton)

Example computations

Asymptotic behaviour of magnitude

Magnitude of manifolds
1. Magnitude of finite metric spaces
The definition of magnitude

Let \(A = \{a_1, \ldots, a_n\} \) be a finite metric space. Write \(Z_A \) for the \(n \times n \) matrix with \((Z_A)_{ij} = e^{-d(a_i, a_j)} \in [0,1] \).

A weighting on \(A \) is a column vector \(w \) such that \(Z_A w = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \).

If \(A \) admits a weighting, the magnitude of \(A \) is \(|A| = w_1 + \cdots + w_n \).

Fact: This is independent of the choice of weighting.

'Usually' \(Z_A \) is invertible. Then there is exactly one weighting, and \(|A| = n \sum_{i,j=1}^n \left(Z_A^{-1} \right)_{ij} \).
The definition of magnitude

Let $A = \{a_1, \ldots, a_n\}$ be a finite metric space.

[continued on next page]
Let $A = \{a_1, \ldots, a_n\}$ be a finite metric space.

Write Z_A for the $n \times n$ matrix with

$$(Z_A)_{ij} = e^{-d(a_i, a_j)} \in [0, 1].$$
The definition of magnitude

Let \(A = \{a_1, \ldots, a_n\} \) be a finite metric space.

Write \(Z_A \) for the \(n \times n \) matrix with

\[
(Z_A)_{ij} = e^{-d(a_i, a_j)} \in [0, 1].
\]

A \textit{weighting} on \(A \) is a column vector \(w \) such that

\[
Z_A w = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}.
\]

Fact: This is independent of the choice of weighting.

'Usually' \(Z_A \) is invertible. Then there is exactly one weighting, and

\[
|A| = \sum_{i, j=1}^n (Z_A^{-1})_{ij}.
\]
The definition of magnitude

Let $A = \{a_1, \ldots, a_n\}$ be a finite metric space.

Write Z_A for the $n \times n$ matrix with

$$(Z_A)_{ij} = e^{-d(a_i, a_j)} \in [0, 1].$$

A weighting on A is a column vector w such that

$$Z_A w = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}.$$

If A admits a weighting, the magnitude of A is

$$|A| = w_1 + \cdots + w_n.$$
The definition of magnitude

Let \(A = \{a_1, \ldots, a_n\} \) be a finite metric space.

Write \(Z_A \) for the \(n \times n \) matrix with

\[
(Z_A)_{ij} = e^{-d(a_i, a_j)} \in [0, 1].
\]

A weighting on \(A \) is a column vector \(w \) such that

\[
Z_A w = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}.
\]

If \(A \) admits a weighting, the magnitude of \(A \) is

\[
|A| = w_1 + \cdots + w_n.
\]

Fact: This is independent of the choice of weighting.
The definition of magnitude

Let $A = \{a_1, \ldots, a_n\}$ be a finite metric space.

Write Z_A for the $n \times n$ matrix with

$$(Z_A)_{ij} = e^{-d(a_i, a_j)} \in [0, 1].$$

A weighting on A is a column vector w such that

$$Z_A w = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}.$$

If A admits a weighting, the magnitude of A is

$$|A| = w_1 + \cdots + w_n.$$

Fact: This is independent of the choice of weighting.

‘Usually’ Z_A is invertible.
The definition of magnitude

Let \(A = \{a_1, \ldots, a_n\} \) be a finite metric space.

Write \(Z_A \) for the \(n \times n \) matrix with

\[
(Z_A)_{ij} = e^{-d(a_i,a_j)} \in [0, 1].
\]

A weighting on \(A \) is a column vector \(w \) such that

\[
Z_A w = \begin{pmatrix}
1 \\
\vdots \\
1
\end{pmatrix}.
\]

If \(A \) admits a weighting, the magnitude of \(A \) is

\[
|A| = w_1 + \cdots + w_n.
\]

Fact: This is independent of the choice of weighting.

‘Usually’ \(Z_A \) is invertible. Then there is exactly one weighting
The definition of magnitude

Let $A = \{a_1, \ldots, a_n\}$ be a finite metric space.

Write Z_A for the $n \times n$ matrix with

$$(Z_A)_{ij} = e^{-d(a_i,a_j)} \in [0,1].$$

A weighting on A is a column vector w such that

$$Z_A w = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}.$$

If A admits a weighting, the magnitude of A is

$$|A| = w_1 + \cdots + w_n.$$

Fact: This is independent of the choice of weighting.

‘Usually’ Z_A is invertible. Then there is exactly one weighting, and

$$|A| = \sum_{i,j=1}^{n} (Z_A^{-1})_{ij}.$$
Basic examples

- $|\emptyset| = 0$ and $|\bullet| = 1$

- Let $A = (\bullet \leftarrow r \rightarrow \bullet)$. Then $Z_A = (e^{-0} e^{-r} e^{-r} e^{-0}) = (1 e^{-r} e^{-r} 1)$

- $|A| = \text{sum of all four entries of } Z_A - 1 = 1 + \tanh(r/2)$.

- If $d(a, b) = \infty$ for all $a \neq b$ then $|A| = \#A$: magnitude = cardinality.
Basic examples

- \(|\emptyset| = 0\)

- Let \(A = (\bullet \leftarrow r \rightarrow \bullet)\). Then \(Z_A = (e^{-0} e^{-r} e^{-r} e^{-0}) = (1 e^{-r} e^{-r} 1)\) and \(|A| = \text{sum of all four entries of } Z - 1\). If \(d(a, b) = \infty\) for all \(a \neq b\) then \(|A| = |A|: \text{magnitude} = \text{cardinality} \).
Basic examples

- $|\emptyset| = 0$ and $|\bullet| = 1$
Basic examples

• $|\emptyset| = 0$ and $|\bullet| = 1$
• Let $A = (\bullet \leftarrow r \rightarrow \bullet)$.
Basic examples

- \(|\emptyset| = 0\) and \(|\bullet| = 1\)
- Let \(A = (\bullet \leftarrow r \rightarrow \bullet)\). Then

\[
Z_A = \begin{pmatrix} e^{-0} & e^{-r} \\ e^{-r} & e^{-0} \end{pmatrix} = \begin{pmatrix} 1 & e^{-r} \\ e^{-r} & 1 \end{pmatrix}
\]
Basic examples

- $|\emptyset| = 0$ and $|\bullet| = 1$
- Let $A = (\bullet \leftarrow r \rightarrow \bullet)$. Then

$$Z_A = \begin{pmatrix} e^{-0} & e^{-r} \\ e^{-r} & e^{-0} \end{pmatrix} = \begin{pmatrix} 1 & e^{-r} \\ e^{-r} & 1 \end{pmatrix}$$

and

$$|A| = \text{sum of all four entries of } Z_A^{-1}$$
Basic examples

• $|\emptyset| = 0$ and $|\bullet| = 1$

• Let $A = (\bullet \leftarrow r \rightarrow \bullet)$. Then

$$Z_A = \begin{pmatrix} e^{-0} & e^{-r} \\ e^{-r} & e^{-0} \end{pmatrix} = \begin{pmatrix} 1 & e^{-r} \\ e^{-r} & 1 \end{pmatrix}$$

and

$$|A| = \text{sum of all four entries of } Z_A^{-1} = 1 + \tanh(r/2).$$
Basic examples

• $|\emptyset| = 0$ and $|\bullet| = 1$

• Let $A = (\bullet \leftarrow r \rightarrow \bullet)$. Then

$$Z_A = \begin{pmatrix} e^{-0} & e^{-r} \\ e^{-r} & e^{-0} \end{pmatrix} = \begin{pmatrix} 1 & e^{-r} \\ e^{-r} & 1 \end{pmatrix}$$

and

$$|A| = \text{sum of all four entries of } Z_A^{-1} = 1 + \tanh(r/2).$$
Basic examples

• $|\emptyset| = 0$ and $|\bullet| = 1$

• Let $A = (\bullet \leftarrow r \rightarrow \bullet)$. Then

$$Z_A = \begin{pmatrix} e^{-0} & e^{-r} \\ e^{-r} & e^{-0} \end{pmatrix} = \begin{pmatrix} 1 & e^{-r} \\ e^{-r} & 1 \end{pmatrix}$$

and

$$|A| = \text{sum of all four entries of } Z_A^{-1} = 1 + \tanh(r/2).$$

• If $d(a, b) = \infty$ for all $a \neq b$
Basic examples

• $|\emptyset| = 0$ and $|\bullet| = 1$
• Let $A = (\bullet \leftarrow r \rightarrow \bullet)$. Then

$$Z_A = \begin{pmatrix} e^{-0} & e^{-r} \\ e^{-r} & e^{-0} \end{pmatrix} = \begin{pmatrix} 1 & e^{-r} \\ e^{-r} & 1 \end{pmatrix}$$

and

$$|A| = \text{sum of all four entries of } Z_A^{-1} = 1 + \tanh(r/2).$$

• If $d(a, b) = \infty$ for all $a \neq b$ then $|A| = \#A$
Basic examples

• $|\emptyset| = 0$ and $|\bullet| = 1$

• Let $A = (\bullet \leftarrow r \rightarrow \bullet)$. Then

$$Z_A = \begin{pmatrix} e^{-0} & e^{-r} \\ e^{-r} & e^{-0} \end{pmatrix} = \begin{pmatrix} 1 & e^{-r} \\ e^{-r} & 1 \end{pmatrix}$$

and

$$|A| = \text{sum of all four entries of } Z_A^{-1} = 1 + \tanh(r/2).$$

• If $d(a, b) = \infty$ for all $a \neq b$ then $|A| = \#A$: magnitude = cardinality.
The magnitude function of a space

Magnitude assigns to each metric space not just a number, but a function. For \(t > 0 \), write \(tA \) for \(A \) scaled up by a factor of \(t \):

\[
d_{tA}(a, b) = t d(a, b).
\]

The magnitude function of a metric space \(A \) is the partially-defined function \((0, \infty) \to \mathbb{R} \) \(t \mapsto |tA| \). E.g.:

The magnitude function of \(A = (\bullet ← 1 → \bullet) \) is

\[
\begin{align*}
|tA| & = 0 & \quad & t < 1 \\
& = 1 + \tanh\left(\frac{t}{2}\right) & \quad & t \geq 1
\end{align*}
\]
The magnitude function of a space

Magnitude assigns to each metric space not just a *number*, but a *function*.

For $t > 0$, write tA for A scaled up by a factor of t:

$$d_{tA}(a, b) = td(a, b).$$

The magnitude function of a metric space A is the partially-defined function $(0, \infty) \to \mathbb{R}$:

$$t \mapsto |tA|.$$

E.g.: the magnitude function of $A = (\bullet \leftarrow 1 \rightarrow \bullet)$ is

$$|tA| = t + \tanh\left(\frac{t}{2}\right).$$
The magnitude function of a space

Magnitude assigns to each metric space not just a *number*, but a *function*. For $t > 0$, write tA for A scaled up by a factor of t:

$$d_{tA}(a, b) = td(a, b).$$
The magnitude function of a space

Magnitude assigns to each metric space not just a *number*, but a *function*. For $t > 0$, write tA for A scaled up by a factor of t:

$$d_{tA}(a, b) = td(a, b).$$

The *magnitude function* of a metric space A is the partially-defined function

$$(0, \infty) \to \mathbb{R}
\begin{align*}
t &\mapsto |tA|.
\end{align*}$$
The magnitude function of a space

Magnitude assigns to each metric space not just a number, but a function. For $t > 0$, write tA for A scaled up by a factor of t:

$$d_{tA}(a, b) = td(a, b).$$

The magnitude function of a metric space A is the partially-defined function

$$(0, \infty) \rightarrow \mathbb{R}$$

$t \mapsto |tA|$.

E.g.: the magnitude function of $A = (\bullet \leftarrow 1 \rightarrow \bullet)$ is
The magnitude function of a space

Magnitude assigns to each metric space not just a \textit{number}, but a \textit{function}.
For $t > 0$, write tA for A scaled up by a factor of t:

$$d_{tA}(a, b) = td(a, b).$$

The \textbf{magnitude function} of a metric space A is the partially-defined function

$$\begin{align*}
(0, \infty) &\to \mathbb{R} \\
\quad t &\mapsto |tA|.
\end{align*}$$

E.g.: the magnitude function of $A = (\bullet \leftarrow 1 \rightarrow \bullet)$ is

$$1 + \tanh(t/2)$$
The magnitude function of a space

The magnitude function of A is the partially-defined function

$$(0, \infty) \rightarrow \mathbb{R}$$

$t \mapsto |tA|.$

Theorem

Let A be a finite metric space.

Then:

• The magnitude function of A has only finitely many singularities
• For $t \gg 0$, the magnitude function of A is strictly increasing
• $\lim_{t \to \infty} |tA| = \#A.$
The magnitude function of a space

The magnitude function of A is the partially-defined function

$$(0, \infty) \to \mathbb{R}$$

$t \mapsto |tA|$.

Theorem

Let A be a finite metric space.
The magnitude function of a space

The magnitude function of A is the partially-defined function

\[(0, \infty) \rightarrow \mathbb{R} \]
\[t \mapsto |tA|.\]

Theorem

Let A be a finite metric space. Then:

- The magnitude function of A has only finitely many singularities
The magnitude function of a space

The magnitude function of A is the partially-defined function

$$(0, \infty) \rightarrow \mathbb{R}$$

$t \mapsto |tA|$.

Theorem

Let A be a finite metric space. Then:

- The magnitude function of A has only finitely many singularities
- For $t \gg 0$, the magnitude function of A is strictly increasing
The magnitude function of a space

The magnitude function of A is the partially-defined function

$$(0, \infty) \rightarrow \mathbb{R}$$

$t \mapsto |tA|.$

Theorem

Let A be a finite metric space. Then:

- The magnitude function of A has only finitely many singularities
- For $t \gg 0$, the magnitude function of A is strictly increasing
- $\lim_{t \rightarrow \infty} |tA| = \#A$.

The magnitude function of a space

The magnitude function of A is the partially-defined function

$$(0, \infty) \to \mathbb{R} \quad t \mapsto |tA|.$$

Warning example:
Let A be the 5-point space given by the shortest-path metric on the graph opposite.
The magnitude function of a space

The magnitude function of A is the partially-defined function

$$(0, \infty) \to \mathbb{R}$$

$t \mapsto |tA|$.

Warning example:
Let A be the 5-point space given by the shortest-path metric on the graph opposite.

![Graph](graph.png)
The magnitude function of a space

The magnitude function of A is the partially-defined function

$$(0, \infty) \rightarrow \mathbb{R}$$

$t \mapsto |tA|$.

Warning example:
Let A be the 5-point space given by the shortest-path metric on the graph opposite.
The magnitude function of a space

The magnitude function of A is the partially-defined function

$$(0, \infty) \rightarrow \mathbb{R}$$

$t \mapsto |tA|.$

Warning example:
Let A be the 5-point space given by the shortest-path metric on the graph opposite.
The magnitude function of a space

The magnitude function of A is the partially-defined function

$$(0, \infty) \to \mathbb{R} \quad \quad t \mapsto |tA|.$$

Warning example:
Let A be the 5-point space given by the shortest-path metric on the graph opposite.
The magnitude function of a space

The magnitude function of A is the partially-defined function

$$(0, \infty) \rightarrow \mathbb{R}$$

$t \mapsto |tA|$.

Warning example:

Let A be the 5-point space given by the shortest-path metric on the graph opposite.
The magnitude function of a space

The magnitude function of A is the partially-defined function

$$(0, \infty) \rightarrow \mathbb{R}$$

$t \mapsto |tA|$.

Warning example:
Let A be the 5-point space given by the shortest-path metric on the graph opposite.
The magnitude function of a space

The magnitude function of A is the partially-defined function

$$(0, \infty) \rightarrow \mathbb{R}$$

t $\mapsto |tA|.$

Warning example:

Let A be the 5-point space given by the shortest-path metric on the graph opposite.

- $|tA| > \#A$
- $|tA|$ decreasing
- $|tA|$ undefined
- $|tA| < 0$; $\emptyset \subset tA$ but $|\emptyset| > |tA|$
Positive definite spaces

Roughly, these are the spaces for which ‘surprising’ behaviour does \textit{not} occur.
Positive definite spaces

Roughly, these are the spaces for which ‘surprising’ behaviour does not occur.

Definition

A finite metric space A is positive definite if its matrix Z_A is positive definite.
Positive definite spaces

Roughly, these are the spaces for which ‘surprising’ behaviour does not occur.

Definition

A finite metric space A is positive definite if its matrix Z_A is positive definite.

Positive definite \Rightarrow invertible, so then $|A|$ is defined.
Positive definite spaces

Roughly, these are the spaces for which ‘surprising’ behaviour does not occur.

Definition

A finite metric space A is positive definite if its matrix Z_A is positive definite.

Positive definite \implies invertible, so then $|A|$ is defined.

Theorem

Let $A = \{a_1, \ldots, a_n\}$ be a positive definite metric space.
Positive definite spaces

Roughly, these are the spaces for which ‘surprising’ behaviour does not occur.

Definition

A finite metric space A is positive definite if its matrix Z_A is positive definite.

Positive definite \Rightarrow invertible, so then $|A|$ is defined.

Theorem

Let $A = \{a_1, \ldots, a_n\}$ be a positive definite metric space. Then:

- $|A| \geq 0$
Positive definite spaces

Roughly, these are the spaces for which ‘surprising’ behaviour does not occur.

Definition

A finite metric space A is **positive definite** if its matrix Z_A is positive definite.

Positive definite \Rightarrow invertible, so then $|A|$ is defined.

Theorem

Let $A = \{a_1, \ldots, a_n\}$ be a positive definite metric space. Then:

- $|A| \geq 0$
- every subspace $B \subseteq A$ is positive definite, and $|B| \leq |A|$
Positive definite spaces

Roughly, these are the spaces for which ‘surprising’ behaviour does not occur.

Definition

A finite metric space A is positive definite if its matrix Z_A is positive definite.

Positive definite \Rightarrow invertible, so then $|A|$ is defined.

Theorem

Let $A = \{a_1, \ldots, a_n\}$ be a positive definite metric space. Then:

- $|A| \geq 0$
- every subspace $B \subseteq A$ is positive definite, and $|B| \leq |A|$
- $|A| = \sup_{v \in \mathbb{R}^n \setminus \{0\}} \frac{(\sum v_i)^2}{v^t Z_A v}$.
Subsets of \mathbb{R}^N

Theorem
Every finite subset of \mathbb{R}^N is positive definite.

In particular, every finite subset of \mathbb{R}^N has well-defined magnitude.

Outline of proof:

• Reduce to showing that the Fourier transform of $x \mapsto e^{-\|x\|}$ is everywhere positive.
• Use known formula for this Fourier transform.

More generally, write ℓ^N_p for \mathbb{R}^N with the ℓ^p metric.

Theorem (Meckes)
Let $p \leq 2$. Then every finite subset of ℓ^N_p is positive definite.
Subsets of \mathbb{R}^N

Theorem

Every finite subset of \mathbb{R}^N is positive definite.
Subsets of \mathbb{R}^N

Theorem

Every finite subset of \mathbb{R}^N is positive definite.

In particular, every finite subset of \mathbb{R}^N has well-defined magnitude.
Subsets of \mathbb{R}^N

Theorem

Every finite subset of \mathbb{R}^N is positive definite.
In particular, every finite subset of \mathbb{R}^N has well-defined magnitude.

Outline of proof:
Subsets of \mathbb{R}^N

Theorem

Every finite subset of \mathbb{R}^N is positive definite.

In particular, every finite subset of \mathbb{R}^N has well-defined magnitude.

Outline of proof:

- Reduce to showing that the Fourier transform of $x \mapsto e^{-\|x\|}$ is everywhere positive.
Subsets of \mathbb{R}^N

Theorem

Every finite subset of \mathbb{R}^N is positive definite.

In particular, every finite subset of \mathbb{R}^N has well-defined magnitude.

Outline of proof:

- Reduce to showing that the Fourier transform of $x \mapsto e^{-\|x\|}$ is everywhere positive
- Use known formula for this Fourier transform.
Subsets of \mathbb{R}^N

Theorem

Every finite subset of \mathbb{R}^N is positive definite.

In particular, every finite subset of \mathbb{R}^N has well-defined magnitude.

Outline of proof:

- Reduce to showing that the Fourier transform of $x \mapsto e^{-\|x\|}$ is everywhere positive.
- Use known formula for this Fourier transform.

More generally, write ℓ_p^N for \mathbb{R}^N with the ℓ^p metric.
Subsets of \mathbb{R}^N

Theorem

Every finite subset of \mathbb{R}^N is positive definite.

In particular, every finite subset of \mathbb{R}^N has well-defined magnitude.

Outline of proof:

- Reduce to showing that the Fourier transform of $x \mapsto e^{-\|x\|}$ is everywhere positive
- Use known formula for this Fourier transform.

More generally, write ℓ^N_p for \mathbb{R}^N with the ℓ^p metric.

Theorem (Meckes)

Let $p \leq 2$. Then every finite subset of ℓ^N_p is positive definite.
Digression: diversity and entropy

There is a definition of the entropy of a probability distribution on a finite set. There is also a definition of the entropy of a probability distribution on a finite metric space, taking the metric into account. This is important in theoretical ecology:

- points represent species
- distances represent differences (e.g. genetic) between species
- probabilities represent relative frequencies of species
- entropy measures biological diversity.

Maximum diversity/entropy problem:

Given a list of species, which frequency distribution maximizes the diversity?

The solution is given in terms of weightings and magnitude. Magnitude can be understood as something like maximum entropy.
Digression: diversity and entropy

There is a definition of the entropy of a probability distribution on a finite set.
Digression: diversity and entropy

There is a definition of the entropy of a probability distribution on a finite set.

There is also a definition of the entropy of a probability distribution on a finite metric space, taking the metric into account.

• points represent species
• distances represent differences (e.g. genetic) between species
• probabilities represent relative frequencies of species
• entropy measures biological diversity.

Maximum diversity/entropy problem:
Given a list of species, which frequency distribution maximizes the diversity?

The solution is given in terms of weightings and magnitude.

Magnitude can be understood as something like maximum entropy.
Digression: diversity and entropy

There is a definition of the entropy of a probability distribution on a finite set.

There is also a definition of the entropy of a probability distribution on a finite metric space, taking the metric into account.

This is important in theoretical ecology:
Digression: diversity and entropy

There is a definition of the entropy of a probability distribution on a finite set. There is also a definition of the entropy of a probability distribution on a finite metric space, taking the metric into account.

This is important in theoretical ecology:

- points represent species
Digression: diversity and entropy

There is a definition of the entropy of a probability distribution on a finite set. There is also a definition of the entropy of a probability distribution on a finite metric space, taking the metric into account.

This is important in theoretical ecology:

- points represent species
- distances represent differences (e.g. genetic) between species
Digression: diversity and entropy

There is a definition of the entropy of a probability distribution on a finite set. There is also a definition of the entropy of a probability distribution on a finite metric space, taking the metric into account.

This is important in theoretical ecology:

- points represent species
- distances represent differences (e.g. genetic) between species
- probabilities represent relative frequencies of species

Maximum diversity/entropy problem:
Given a list of species, which frequency distribution maximizes the diversity?

The solution is given in terms of weightings and magnitude.

Magnitude can be understood as something like maximum entropy.
Digression: diversity and entropy

There is a definition of the entropy of a probability distribution on a finite set. There is also a definition of the entropy of a probability distribution on a finite metric space, taking the metric into account.

This is important in theoretical ecology:

- points represent species
- distances represent differences (e.g. genetic) between species
- probabilities represent relative frequencies of species
- entropy measures biological diversity.

Maximum diversity/entropy problem:
Given a list of species, which frequency distribution maximizes the diversity?

The solution is given in terms of weightings and magnitude.

Magnitude can be understood as something like maximum entropy.
Digression: diversity and entropy

There is a definition of the entropy of a probability distribution on a finite set. There is also a definition of the entropy of a probability distribution on a finite metric space, taking the metric into account.

This is important in theoretical ecology:

- points represent species
- distances represent differences (e.g. genetic) between species
- probabilities represent relative frequencies of species
- entropy measures biological diversity.

Maximum diversity/entropy problem:
Given a list of species, which frequency distribution maximizes the diversity?
Digression: diversity and entropy

There is a definition of the entropy of a probability distribution on a finite set. There is also a definition of the entropy of a probability distribution on a finite metric space, taking the metric into account.

This is important in theoretical ecology:

- points represent species
- distances represent differences (e.g. genetic) between species
- probabilities represent relative frequencies of species
- entropy measures biological diversity.

Maximum diversity/entropy problem:
Given a list of species, which frequency distribution maximizes the diversity?

The solution is given in terms of weightings and magnitude.
Digression: diversity and entropy

There is a definition of the entropy of a probability distribution on a finite set. There is also a definition of the entropy of a probability distribution on a finite metric space, taking the metric into account.

This is important in theoretical ecology:

- points represent species
- distances represent differences (e.g. genetic) between species
- probabilities represent relative frequencies of species
- entropy measures biological diversity.

Maximum diversity/entropy problem:
Given a list of species, which frequency distribution maximizes the diversity?

The solution is given in terms of weightings and magnitude.

Magnitude can be understood as something like maximum entropy.
2. Magnitude of infinite metric spaces
Idea: Define magnitude of infinite spaces via finite approximations. This works best if we stay in the world of positive definite spaces.

Definition: A metric space is positive definite if every finite subspace is positive definite.

Example: \mathbb{R}^N is positive definite.

Definition: Let A be a compact, positive definite metric space. The magnitude of A is $|A| = \sup\{|B|: B \text{ is a finite subset of } A\} \in [0, \infty]$. (These definitions are consistent with the definitions for finite spaces.)
From finite to infinite spaces

Idea: Define magnitude of infinite spaces via finite approximations.
Idea: Define magnitude of infinite spaces via finite approximations. This works best if we stay in the world of positive definite spaces.
From finite to infinite spaces

Idea: Define magnitude of infinite spaces via finite approximations. This works best if we stay in the world of positive definite spaces.

Definition
A metric space is positive definite if every finite subspace is positive definite.
From finite to infinite spaces

Idea: Define magnitude of infinite spaces via finite approximations. This works best if we stay in the world of positive definite spaces.

Definition
A metric space is **positive definite** if every finite subspace is positive definite.

E.g.: \mathbb{R}^N is positive definite.
From finite to infinite spaces

Idea: Define magnitude of infinite spaces via finite approximations. This works best if we stay in the world of positive definite spaces.

Definition
A metric space is **positive definite** if every finite subspace is positive definite.

E.g.: \mathbb{R}^N is positive definite.

Definition
Let A be a compact, positive definite metric space.
From finite to infinite spaces

Idea: Define magnitude of infinite spaces via finite approximations. This works best if we stay in the world of positive definite spaces.

Definition
A metric space is **positive definite** if every finite subspace is positive definite.

E.g.: \mathbb{R}^N is positive definite.

Definition
Let A be a compact, positive definite metric space. The **magnitude** of A is

$$|A| = \sup\{|B| : B \text{ is a finite subset of } A\} \in [0, \infty].$$
From finite to infinite spaces

Idea: Define magnitude of infinite spaces via finite approximations. This works best if we stay in the world of positive definite spaces.

Definition

A metric space is positive definite if every finite subspace is positive definite.

E.g.: \(\mathbb{R}^N \) is positive definite.

Definition

Let \(A \) be a compact, positive definite metric space. The magnitude of \(A \) is

\[
|A| = \sup \{|B| : B \text{ is a finite subset of } A\} \in [0, \infty].
\]

(These definitions are consistent with the definitions for finite spaces.)
From finite to infinite spaces (digression)

Alternative idea: Instead of using finite approximations, work directly with measures on the space.

A weight measure on a compact metric space A is a signed Borel measure w such that

$$\int_{A} e^{-d(a,b)} \, dw(b) = 1.$$

If a weight measure exists, the measure magnitude of A is $w(A)$.

Meckes has theorems stating that the two approaches give the same answers, in so far as measure magnitude is defined.

But the measure approach currently has some limitations. So in what follows, we use the finite-approximation definition of magnitude.
From finite to infinite spaces (digression)

Alternative idea: Instead of using finite approximations, work directly with measures on the space.
Alternative idea: Instead of using finite approximations, work directly with measures on the space.

A weight measure on a compact metric space A is a signed Borel measure w such that

$$\text{for all } a \in A, \quad \int_A e^{-d(a,b)} \, dw(b) = 1.$$
Alternative idea: Instead of using finite approximations, work directly with measures on the space.

A weight measure on a compact metric space A is a signed Borel measure w such that

$$\text{for all } a \in A, \quad \int_{A} e^{-d(a,b)} \, dw(b) = 1.$$

If a weight measure exists, the measure magnitude of A is $w(A)$.
Alternative idea: Instead of using finite approximations, work directly with measures on the space.

A weight measure on a compact metric space A is a signed Borel measure w such that

$$\int_A e^{-d(a,b)} \, dw(b) = 1.$$

If a weight measure exists, the measure magnitude of A is $w(A)$. Meckes has theorems stating that the two approaches give the same answers, *in so far as* measure magnitude is defined.
Alternative idea: Instead of using finite approximations, work directly with measures on the space.

A weight measure on a compact metric space A is a signed Borel measure w such that

$$\text{for all } a \in A, \int_A e^{-d(a,b)} \, dw(b) = 1.$$

If a weight measure exists, the measure magnitude of A is $w(A)$. Meckes has theorems stating that the two approaches give the same answers, \textit{in so far as} measure magnitude is defined.

But the measure approach currently has some limitations.
Alternative idea: Instead of using finite approximations, work directly with measures on the space.

A weight measure on a compact metric space A is a signed Borel measure w such that
\[
\text{for all } a \in A, \quad \int_{A} e^{-d(a,b)} \, dw(b) = 1.
\]

If a weight measure exists, the measure magnitude of A is $w(A)$.

Meckes has theorems stating that the two approaches give the same answers, \textit{in so far as} measure magnitude is defined.

But the measure approach currently has some limitations. So in what follows, we use the finite-approximation definition of magnitude.
Theorem

Let \(L \geq 0 \). Let \((A_k)\) be a sequence of finite subsets of \(\mathbb{R} \) such that

\[
\lim_{k \to \infty} A_k = [0, L]
\]

in the Hausdorff topology.

Then

\[
\lim_{k \to \infty} |A_k| = 1 + \frac{1}{2}L.
\]

Hence

\[
|[0, L]| = 1 + \frac{1}{2}L,
\]

and \([0, L]\) has magnitude function \(t \mapsto |[0, tL]| = |[0, tL]| = 1 + \frac{1}{2}L \cdot t \).

Magnitude comes from enriched category theory. . . but produces geometric invariants.
Line segments

Theorem

Let $L \geq 0$. Let (A_k) be a sequence of finite subsets of \mathbb{R} such that

$$\lim_{k \to \infty} A_k = [0, L]$$

in the Hausdorff topology.

Magnitude comes from enriched category theory. . . but produces geometric invariants.
Line segments

Theorem

Let $L \geq 0$. Let (A_k) be a sequence of finite subsets of \mathbb{R} such that

$$\lim_{k \to \infty} A_k = [0, L]$$

in the Hausdorff topology. Then

$$\lim_{k \to \infty} |A_k| =$$
Line segments

Theorem

Let \(L \geq 0 \). Let \((A_k)\) be a sequence of finite subsets of \(\mathbb{R} \) such that

\[
\lim_{k \to \infty} A_k = [0, L]
\]

in the Hausdorff topology. Then

\[
\lim_{k \to \infty} |A_k| = 1 + \frac{1}{2} L.
\]
Line segments

Theorem

Let \(L \geq 0 \). Let \((A_k)\) be a sequence of finite subsets of \(\mathbb{R} \) such that

\[
\lim_{k \to \infty} A_k = [0, L]
\]

in the Hausdorff topology. Then

\[
\lim_{k \to \infty} |A_k| = 1 + \frac{1}{2} L.
\]

Hence \(|[0, L]| = 1 + \frac{1}{2} L\)
Theorem

Let $L \geq 0$. Let (A_k) be a sequence of finite subsets of \mathbb{R} such that

$$\lim_{k \to \infty} A_k = [0, L]$$

in the Hausdorff topology. Then

$$\lim_{k \to \infty} |A_k| = 1 + \frac{1}{2} L.$$

Hence $|[0, L]| = 1 + \frac{1}{2} L$, and $[0, L]$ has magnitude function

$$t \mapsto |t[0, L]| = |[0, tL]| = 1 + \frac{1}{2} L \cdot t$$
Line segments

Theorem

Let $L \geq 0$. Let (A_k) be a sequence of finite subsets of \mathbb{R} such that

$$\lim_{k \to \infty} A_k = [0, L]$$

in the Hausdorff topology. Then

$$\lim_{k \to \infty} |A_k| = 1 + \frac{1}{2}L.$$

Hence $|[0, L]| = 1 + \frac{1}{2}L$, and $[0, L]$ has magnitude function

$$t \mapsto |t[0, L]| = |[0, tL]| = 1 + \frac{1}{2}L \cdot t$$

Euler characteristic

Magnitude comes from enriched category theory. . . but produces geometric invariants.
Line segments

Theorem

Let $L \geq 0$. Let (A_k) be a sequence of finite subsets of \mathbb{R} such that

$$\lim_{k \to \infty} A_k = [0, L]$$

in the Hausdorff topology. Then

$$\lim_{k \to \infty} |A_k| = 1 + \frac{1}{2} L.$$

Hence $|[0, L]| = 1 + \frac{1}{2} L$, and $[0, L]$ has magnitude function

$$t \mapsto |t[0, L]| = |[0, tL]| = 1 + \frac{1}{2} L \cdot t.$$
Line segments

Theorem

Let $L \geq 0$. Let (A_k) be a sequence of finite subsets of \mathbb{R} such that

$$
\lim_{k \to \infty} A_k = [0, L]
$$

in the Hausdorff topology. Then

$$
\lim_{k \to \infty} |A_k| = 1 + \frac{1}{2} L.
$$

Hence $|[0, L]| = 1 + \frac{1}{2} L$, and $[0, L]$ has magnitude function

$$
t \mapsto |t[0, L]| = |[0, tL]| = 1 + \frac{1}{2} L \cdot t^1
$$
Line segments

Theorem

Let \(L \geq 0 \). Let \((A_k)\) be a sequence of finite subsets of \(\mathbb{R} \) such that

\[
\lim_{k \to \infty} A_k = [0, L]
\]

in the Hausdorff topology. Then

\[
\lim_{k \to \infty} |A_k| = 1 + \frac{1}{2}L.
\]

Hence \(|[0, L]| = 1 + \frac{1}{2}L\), and \([0, L]\) has magnitude function

\[
t \mapsto |t[0, L]| = |[0, tL]| = 1 + \frac{1}{2}L \cdot t^1
\]

Euler characteristic
dimension
length
Line segments

Theorem

Let $L \geq 0$. Let (A_k) be a sequence of finite subsets of \mathbb{R} such that

$$\lim_{k \to \infty} A_k = [0, L]$$

in the Hausdorff topology. Then

$$\lim_{k \to \infty} |A_k| = 1 + \frac{1}{2} L.$$

Hence $|[0, L]| = 1 + \frac{1}{2} L$, and $[0, L]$ has magnitude function

$$t \mapsto |t[0, L]| = |[0, tL]| = 1 + \frac{1}{2} |L| \cdot t^1$$

Magnitude comes from enriched category theory...
Line segments

Theorem

Let $L \geq 0$. Let (A_k) be a sequence of finite subsets of \mathbb{R} such that

$$\lim_{k \to \infty} A_k = [0, L]$$

in the Hausdorff topology. Then

$$\lim_{k \to \infty} |A_k| = 1 + \frac{1}{2} L.$$

Hence $|[0, L]| = 1 + \frac{1}{2} L$, and $[0, L]$ has magnitude function

$$t \mapsto |t[0, L]| = |[0, tL]| = 1 + \frac{1}{2} L \cdot t.$$

Magnitude comes from enriched category theory... but produces geometric invariants.
Let A and B be metric spaces. Write $A \otimes B$ for their 'ℓ^1-product': the set of points is $A \times B$, and $d_{A \otimes B}((a, b), (a', b')) = d_A(a, a') + d_B(b, b')$.

E.g.: a cuboid $[0, L_1] \times \cdots \times [0, L_N] \subset \ell^N$, with the subspace metric, is $[0, L_1] \otimes \cdots \otimes [0, L_N]$ as an abstract metric space.
Let A and B be metric spaces. Write $A \otimes B$ for their ‘ℓ^1-product’: the set of points is $A \times B$, and

$$d_{A \otimes B}((a, b), (a', b')) = d_A(a, a') + d_B(b, b').$$
Let A and B be metric spaces. Write $A \otimes B$ for their ‘ℓ^1-product’: the set of points is $A \times B$, and

$$d_{A \otimes B}((a, b), (a', b')) = d_A(a, a') + d_B(b, b').$$

E.g.: a cuboid $[0, L_1] \times \cdots \times [0, L_N] \subset \ell^N_1$, with the subspace metric, is

$$[0, L_1] \otimes \cdots \otimes [0, L_N]$$

as an abstract metric space.
Let A and B be metric spaces. Write $A \otimes B$ for their ‘ℓ^1-product’: the set of points is $A \times B$, and

$$d_{A \otimes B}((a, b), (a', b')) = d_A(a, a') + d_B(b, b').$$

E.g.: a cuboid $[0, L_1] \times \cdots \times [0, L_N] \subset \ell^N_1$, with the subspace metric, is

$$[0, L_1] \otimes \cdots \otimes [0, L_N]$$

as an abstract metric space.

Lemma

$|A \otimes B| = |A| \cdot |B|$.
Cuboids

Can now calculate magnitude function of $[0, L_1] \times [0, L_2] \subset \ell^2_1$.
Cuboids

Can now calculate magnitude function of \([0, L_1] \times [0, L_2] \subset \ell^2_1\): it is

\[
t \mapsto |t([0, L_1] \otimes [0, L_2])|
\]
Cuboids

Can now calculate magnitude function of $[0, L_1] \times [0, L_2] \subset \ell_1^2$: it is

$$t \mapsto |t([0, L_1] \otimes [0, L_2])| = |[0, tL_1] \otimes [0, tL_2]|$$
Cuboids

Can now calculate magnitude function of $[0, L_1] \times [0, L_2] \subset \ell_1^2$: it is

\[
t \mapsto |t([0, L_1] \otimes [0, L_2])| = |[0, tL_1] \otimes [0, tL_2]|
\]

\[
= |[0, tL_1]| \cdot |[0, tL_2]|
\]
Cuboids

Can now calculate magnitude function of $[0, L_1] \times [0, L_2] \subset \ell_1^2$: it is

\[
t \mapsto |t([0, L_1] \otimes [0, L_2])| = |[0, tL_1] \otimes [0, tL_2]|
\]
\[
= |[0, tL_1]| \cdot |[0, tL_2]|
\]
\[
= (1 + \frac{1}{2}L_1 t) \cdot (1 + \frac{1}{2}L_2 t)
\]
Cuboids

Can now calculate magnitude function of $[0, L_1] \times [0, L_2] \subset \ell^2_1$: it is

\[t \mapsto |t ([0, L_1] \otimes [0, L_2])| = |[0, tL_1] \otimes [0, tL_2]| \]
\[= |[0, tL_1]| \cdot |[0, tL_2]| \]
\[= (1 + \frac{1}{2} L_1 t) \cdot (1 + \frac{1}{2} L_2 t) \]
\[= 1 + \frac{1}{2} (L_1 + L_2) t + \frac{1}{4} L_1 L_2 t^2 \]
Cuboids

Can now calculate magnitude function of \([0, L_1] \times [0, L_2] \subset \ell^2_1\): it is

\[
t \mapsto |t([0, L_1] \otimes [0, L_2])| = |[0, tL_1] \otimes [0, tL_2]| = |[0, tL_1]| \cdot |[0, tL_2]| = (1 + \frac{1}{2}L_1 t) \cdot (1 + \frac{1}{2}L_2 t) = 1 + \frac{1}{2}(L_1 + L_2) t + \frac{1}{4} L_1 L_2 t^2
\]

Euler characteristic
Can now calculate magnitude function of \([0, L_1] \times [0, L_2] \subset \ell^2_1\): it is

\[
t \mapsto |t (\[0, L_1] \otimes [0, L_2])| = |\[0, tL_1] \otimes [0, tL_2]| = |[0, tL_1]| \cdot |[0, tL_2]| = (1 + \frac{1}{2} L_1 t) \cdot (1 + \frac{1}{2} L_2 t) = 1 + \frac{1}{2} (L_1 + L_2) t + \frac{1}{4} L_1 L_2 t^2
\]
Cuboids

Can now calculate magnitude function of $[0, L_1] \times [0, L_2] \subset \ell_1^2$: it is

$$t \mapsto |t([0, L_1] \otimes [0, L_2])| = |[0, tL_1] \otimes [0, tL_2]|$$

$$= |[0, tL_1]| \cdot |[0, tL_2]|$$

$$= \left(1 + \frac{1}{2} L_1 t\right) \cdot \left(1 + \frac{1}{2} L_2 t\right)$$

$$= 1 + \frac{1}{2} (L_1 + L_2) t + \frac{1}{4} L_1 L_2 t^2$$

Euler characteristic, semiperimeter, area
Cuboids

Can now calculate magnitude function of \([0, L_1] \times [0, L_2] \subset \ell^2_1\): it is

\[
t \mapsto |t([0, L_1] \otimes [0, L_2])| = |[0, tL_1] \otimes [0, tL_2]|
\]

\[
= |[0, tL_1]| \cdot |[0, tL_2]|
\]

\[
= (1 + \frac{1}{2}L_1 t) \cdot (1 + \frac{1}{2}L_2 t)
\]

\[
= 1 + \frac{1}{2}(L_1 + L_2)t + \frac{1}{4}L_1 L_2 t^2
\]

Euler characteristic semiperimeter area dimension
Cuboids

Can now calculate magnitude function of $[0, L_1] \times [0, L_2] \subset \ell_1^2$: it is

$$t \mapsto |t([0, L_1] \otimes [0, L_2])| = |[0, tL_1] \otimes [0, tL_2]|$$

$$= |[0, tL_1]| \cdot |[0, tL_2]|$$

$$= (1 + \frac{1}{2}L_1 t) \cdot (1 + \frac{1}{2}L_2 t)$$

$$= 1 + \frac{1}{2}(L_1 + L_2) t + \frac{1}{4}L_1 L_2 t^2$$

In general, the magnitude function of the cuboid

$A = [0, L_1] \times \cdots \times [0, L_N] \subset \ell_1^N$
Cuboids

Can now calculate magnitude function of \([0, L_1] \times [0, L_2] \subset \ell^2_1\): it is

\[
t \mapsto |t([0, L_1] \otimes [0, L_2])| = |[0, tL_1] \otimes [0, tL_2]|
\]
\[
= |[0, tL_1]| \cdot |[0, tL_2]|
\]
\[
= (1 + \frac{1}{2} L_1 t) \cdot (1 + \frac{1}{2} L_2 t)
\]
\[
= 1 + \frac{1}{2} (L_1 + L_2) t + \frac{1}{4} L_1 L_2 t^2
\]

In general, the magnitude function of the cuboid
\(A = [0, L_1] \times \cdots \times [0, L_N] \subset \ell^N_1\) is

\[
t \mapsto \sum_{i=0}^{N} 2^{-i} \mu_i(A) t^i
\]

where \(\mu_i\) is \(i\)-dimensional intrinsic volume.
We know: the magnitude function of a cuboid $A \subset \mathbb{R}^n$ is $t \mapsto \sum_{i=0}^{2n} t^i \mu_i(A)$.

Lesson: For this particular class of spaces, the magnitude function encodes many important invariants:

- all the intrinsic volumes
- the dimension.

Conjectural principle: The same is true for a much larger class of spaces, including convex subsets of \mathbb{R}^n with the Euclidean metric.
We know: the magnitude function of a cuboid \(A \subset \ell^N_1 \) is

\[
t \mapsto \sum_{i=0}^{N} 2^{-i} \mu_i(A) t^i.
\]
We know: the magnitude function of a cuboid $A \subset \ell_1^N$ is

$$t \mapsto \sum_{i=0}^{N} 2^{-i} \mu_i(A) t^i.$$

Lesson: For this particular class of spaces, the magnitude function encodes many important invariants:
We know: the magnitude function of a cuboid $A \subset \ell_1^N$ is

$$ t \mapsto \sum_{i=0}^{N} 2^{-i} \mu_i(A) t^i. $$

Lesson: For this particular class of spaces, the magnitude function encodes many important invariants:

- all the intrinsic volumes
Pause for reflection

We know: the magnitude function of a cuboid $A \subset \ell_1^N$ is

$$t \mapsto \sum_{i=0}^{N} 2^{-i} \mu_i(A) t^i.$$

Lesson: For this particular class of spaces, the magnitude function encodes many important invariants:

- all the intrinsic volumes
- the dimension.
We know: the magnitude function of a cuboid $A \subset \ell_1^N$ is

$$t \mapsto \sum_{i=0}^{N} 2^{-i} \mu_i(A) t^i.$$

Lesson: For this particular class of spaces, the magnitude function encodes many important invariants:

- all the intrinsic volumes
- the dimension.

Conjectural principle: The same is true for a much larger class of spaces
We know: the magnitude function of a cuboid $A \subset \ell^N_1$ is

$$t \mapsto \sum_{i=0}^{N} 2^{-i} \mu_i(A) t^i.$$

Lesson: For this particular class of spaces, the magnitude function encodes many important invariants:

- all the intrinsic volumes
- the dimension.

Conjectural principle: The same is true for a much larger class of spaces, including convex subsets of \mathbb{R}^N with the Euclidean metric.
Dimension

Example of this principle:
Dimension

Example of this principle:
For a metric space A, define

$$\dim(A) = \text{growth}(t \mapsto |tA|)$$
Dimension

Example of this principle:
For a metric space A, define

$$\dim(A) = \text{growth}(t \mapsto |tA|)$$

where the \textit{growth} of a function $f : (0, \infty) \to \mathbb{R}$ is defined by

$$\text{growth}(f) = \inf \{ \nu \in \mathbb{R} : \frac{f(t)}{t^\nu} \text{ is bounded for } t \gg 0 \}.$$
Dimension

Example of this principle:
For a metric space A, define

$$\dim(A) = \text{growth}(t \mapsto |tA|)$$

where the *growth* of a function $f : (0, \infty) \to \mathbb{R}$ is defined by

$$\text{growth}(f) = \inf \left\{ \nu \in \mathbb{R} : \frac{f(t)}{t^\nu} \text{ is bounded for } t \gg 0 \right\}.$$

E.g.: for nondegenerate cuboids $A \subset \ell_1^N$, we have $\dim(A) = N$.

Theorem

Let A be a compact subset of \mathbb{R}^N, with Euclidean metric. Then

$$\dim(A) \leq N$$

with equality if A has nonzero Lebesgue measure.
Example of this principle:
For a metric space A, define

$$\dim(A) = \text{growth}(t \mapsto |tA|)$$

where the growth of a function $f : (0, \infty) \to \mathbb{R}$ is defined by

$$\text{growth}(f) = \inf \{ \nu \in \mathbb{R} : \frac{f(t)}{t^\nu} \text{ is bounded for } t \gg 0 \}.$$

E.g.: for nondegenerate cuboids $A \subset \ell_1^N$, we have $\dim(A) = N$.

Theorem

Let A be a compact subset of \mathbb{R}^N, with Euclidean metric.
Dimension

Example of this principle:
For a metric space A, define

\[\dim(A) = \text{growth}(t \mapsto |tA|) \]

where the \textit{growth} of a function $f : (0, \infty) \to \mathbb{R}$ is defined by

\[\text{growth}(f) = \inf \{ \nu \in \mathbb{R} : \frac{f(t)}{t^\nu} \text{ is bounded for } t \gg 0 \}. \]

E.g.: for nondegenerate cuboids $A \subset \ell_1^N$, we have $\dim(A) = N$.

Theorem

Let A be a compact subset of \mathbb{R}^N, with Euclidean metric. Then

\[\dim(A) \leq N \]
Dimension

Example of this principle:
For a metric space A, define

$$\dim(A) = \text{growth}(t \mapsto |tA|)$$

where the *growth* of a function $f : (0, \infty) \to \mathbb{R}$ is defined by

$$\text{growth}(f) = \inf \{ \nu \in \mathbb{R} : \frac{f(t)}{t^\nu} \text{ is bounded for } t \gg 0 \}.$$

E.g.: for nondegenerate cuboids $A \subset \ell_1^N$, we have $\dim(A) = N$.

Theorem

Let A be a compact subset of \mathbb{R}^N, with Euclidean metric. Then

$$\dim(A) \leq N$$

with equality if A has nonzero Lebesgue measure.
The Convex Conjecture

Let A be a compact, convex subset of \mathbb{R}^N, with Euclidean metric.

Then $|A| = \sum_{i=0}^{N} \frac{1}{i!} \omega_i \mu_i(A)$

where ω_i is the volume of the unit i-ball.

If this is true then A has magnitude function $t \mapsto \sum_{i=0}^{N} \frac{1}{i!} \omega_i \mu_i(A) \cdot t^i$.

The Convex Conjecture

Conjecture

Let A be a compact, convex subset of \mathbb{R}^N, with Euclidean metric.
The Convex Conjecture

Conjecture

Let A be a compact, convex subset of \mathbb{R}^N, with Euclidean metric. Then

$$|A| = \sum_{i=0}^{N} 1 \cdot \omega_i \mu_i(A)\cdot t_i.$$
The Convex Conjecture

Conjecture

Let A be a compact, convex subset of \mathbb{R}^N, with Euclidean metric. Then

$$|A| = \sum_{i=0}^{N} \frac{1}{i!\omega_i} \mu_i(A)$$

where ω_i is the volume of the unit i-ball.
The Convex Conjecture

Conjecture

Let A be a compact, convex subset of \mathbb{R}^N, with Euclidean metric. Then

$$|A| = \sum_{i=0}^{N} \frac{1}{i! \omega_i} \mu_i(A)$$

where ω_i is the volume of the unit i-ball.

If this is true then A has magnitude function $t \mapsto \sum_{i=0}^{N} \frac{1}{i! \omega_i} \mu_i(A) \cdot t^i$.
The Convex Conjecture

Conjecture

Let A be a compact, convex subset of \mathbb{R}^N, with Euclidean metric. Then

$$|A| = \sum_{i=0}^{N} \frac{1}{i!\omega_i} \mu_i(A)$$

where ω_i is the volume of the unit i-ball.

If this is true then A has magnitude function $t \mapsto \sum_{i=0}^{N} \frac{1}{i!\omega_i} \mu_i(A) \cdot t^i$.

So, all of the intrinsic volumes of a convex set (as well as the dimension) can be extracted from its magnitude function.
The Convex Conjecture

Conjecture

Let A be a compact, convex subset of \mathbb{R}^N, with Euclidean metric. Then

$$|A| = \sum_{i=0}^{N} \frac{1}{i! \omega_i} \mu_i(A)$$

where ω_i is the volume of the unit i-ball.

If this is true then A has magnitude function $t \mapsto \sum_{i=0}^{N} \frac{1}{i! \omega_i} \mu_i(A) \cdot t^i$.

Evidence for the conjecture:

- We know that the magnitude function of A has growth N
The Convex Conjecture

Conjecture

Let A be a compact, convex subset of \mathbb{R}^N, with Euclidean metric. Then

$$|A| = \sum_{i=0}^{N} \frac{1}{i! \omega_i} \mu_i(A)$$

where ω_i is the volume of the unit i-ball.

If this is true then A has magnitude function $t \mapsto \sum_{i=0}^{N} \frac{1}{i! \omega_i} \mu_i(A) \cdot t^i$.

Evidence for the conjecture:

- We know that the magnitude function of A has growth N
- Theorem: $|A| \geq \frac{1}{N! \omega_n} \mu_n(A)$ for all compact $A \subset \mathbb{R}^N$
The Convex Conjecture

Conjecture

Let A be a compact, convex subset of \mathbb{R}^N, with Euclidean metric. Then

$$|A| = \sum_{i=0}^{N} \frac{1}{i!\omega_i} \mu_i(A)$$

where ω_i is the volume of the unit i-ball.

If this is true then A has magnitude function $t \mapsto \sum_{i=0}^{N} \frac{1}{i!\omega_i} \mu_i(A) \cdot t^i$.

Evidence for the conjecture:

- We know that the magnitude function of A has growth N
- Theorem: $|A| \geq \frac{1}{N!\omega_N} \mu_N(A)$ for all compact $A \subset \mathbb{R}^N$
- A heuristic argument suggests that the top coefficient is right
The Convex Conjecture

Conjecture

Let A be a compact, convex subset of \mathbb{R}^N, with Euclidean metric. Then

$$|A| = \sum_{i=0}^{N} \frac{1}{i!\omega_i} \mu_i(A)$$

where ω_i is the volume of the unit i-ball.

If this is true then A has magnitude function $t \mapsto \sum_{i=0}^{N} \frac{1}{i!\omega_i} \mu_i(A) \cdot t^i$.

Evidence for the conjecture:

- We know that the magnitude function of A has growth N
- Theorem: $|A| \geq \frac{1}{N!\omega_N} \mu_N(A)$ for all compact $A \subset \mathbb{R}^N$
- A heuristic argument suggests that the top coefficient is right
- An analogous conjecture holds for many subsets of ℓ_1^N, including cuboids
The Convex Conjecture

Conjecture

Let A be a compact, convex subset of \mathbb{R}^N, with Euclidean metric. Then

$$|A| = \sum_{i=0}^{N} \frac{1}{i!\omega_i} \mu_i(A)$$

where ω_i is the volume of the unit i-ball.

If this is true then A has magnitude function $t \mapsto \sum_{i=0}^{N} \frac{1}{i!\omega_i} \mu_i(A) \cdot t^i$.

Evidence for the conjecture:

- We know that the magnitude function of A has growth N
- Theorem: $|A| \geq \frac{1}{N!\omega_N} \mu_N(A)$ for all compact $A \subset \mathbb{R}^N$
- A heuristic argument suggests that the top coefficient is right
- An analogous conjecture holds for many subsets of ℓ_1^N, including cuboids
- Numerical computations support the conjecture.
Summary

Magnitude is a canonical invariant of metric spaces. It appears to subsume the most important invariants of integral geometry. A conjecture states this precisely for convex subsets of \mathbb{R}^N. We would like someone here to prove it.

Tomorrow: Magnitude contains more than just known invariants.
Magnitude is a canonical invariant of metric spaces
Magnitude is a canonical invariant of metric spaces

Magnitude appears to subsume the most important invariants of integral geometry
Summary

Magnitude is a canonical invariant of metric spaces

Magnitude appears to subsume the most important invariants of integral geometry

A conjecture states this precisely for convex subsets of \mathbb{R}^N
Summary

Magnitude is a canonical invariant of metric spaces

Magnitude appears to subsume the most important invariants of integral geometry

A conjecture states this precisely for convex subsets of \mathbb{R}^N

We would like someone here to prove it.
Summary

Magnitude is a canonical invariant of metric spaces

Magnitude appears to subsume the most important invariants of integral geometry

A conjecture states this precisely for convex subsets of \mathbb{R}^N

We would like someone here to prove it.

Tomorrow:

Magnitude contains more than just known invariants