Smoothing and basis expansions

Simon Wood

Penalizing a different sort of complexity

- So far we have considered the case of (generalized) linear models where we need to penalize the complexity of having too many predictors of unknown importance.
- For the most part we approached this task prioritizing predictive performance, therefore selecting the penalty parameter for optimal predictive performance in (cross) validation.
- A different sort of model complexity arises when we are unsure of the form of the relationship between a predictor and a response. e.g. for the model

$$
y_{i}=f\left(x_{i}\right)+\epsilon_{i} \quad \epsilon_{i} \underset{\text { iid }}{\sim} N\left(0, \sigma^{2}\right)
$$

should the unknown function, f, be smooth or wiggly?

- And is prediction error the only way to decide?

A simple example

- Here are some $x-y$ data with a noisy non-linear relationship

- A model along the lines of ' y is some smooth function of x observed with noise' seems appropriate, but how smooth or complex a function is not clear.

Bases and smoothness

- Let's look further at the model

$$
y_{i}=f\left(x_{i}\right)+\epsilon_{i} \quad \epsilon_{i} \underset{\text { iid }}{\sim} N\left(0, \sigma^{2}\right)
$$

where f is an unknown 'smooth' function.

- A practical way forward is to introduce a basis expansion

$$
f(x)=\sum_{j=1}^{p} \beta_{j} b_{j}(x)
$$

where the basis functions, $b_{j}(x)$ are chosen to have convenient properties and the β_{j} will have to be estimated.

- We also need to define 'smooth': e.g. a small value of

$$
\int f^{\prime \prime}(x)^{2} d x
$$

Basis penalty smoothing

- To avoid bias from an overly restrictive model, we choose p to be moderately large.
- But large p risks high uncertainty in our inference about f.
- As in the penalized linear model case, there is a bias-variance trade-off.
- To control the trade-off we can use penalized estimation:

$$
\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\operatorname{argmin}}\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}+\lambda \int f^{\prime \prime}(x)^{2} d x
$$

where $X_{i j}=b_{j}\left(x_{i}\right)$ and $\lambda \geq 0$ is a smoothing (regularization) parameter.

The penalty is quadratic in $\boldsymbol{\beta}$

- $f(x)=\sum_{j=1}^{p} \beta_{j} b_{j}(x)$, so it follows that $f^{\prime \prime}(x)=\sum_{j=1}^{p} \beta_{j} b_{j}^{\prime \prime}(x)$.
- Defining vector $\mathbf{d}(x)$ where $d_{j}(x)=b_{j}^{\prime \prime}(x)$ then $f^{\prime \prime}(x)=\boldsymbol{\beta}^{\top} \mathbf{d}(x)$.
- In consequence

$$
\int f^{\prime \prime}(x)^{2} d x=\int \boldsymbol{\beta}^{\top} \mathbf{d}(x) \mathbf{d}(x)^{\top} \boldsymbol{\beta} d x=\boldsymbol{\beta}^{\top} \mathbf{S} \boldsymbol{\beta}
$$

where $S_{i j}=\int d_{i}(x) d_{j}(x) d x$.*

- For some bases, $S_{i j}$ can be computed exactly. e.g. B-splines.
- So our fitting problem is now the L_{2} penalized

$$
\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\operatorname{argmin}}\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}+\lambda \boldsymbol{\beta}^{\top} \mathbf{S} \boldsymbol{\beta} .
$$

- Let's see the basis-penalty smoother in action...

[^0]
Penalized B-spline basis smoothing as λ reduced

$\hat{\boldsymbol{\beta}}, \hat{\lambda}$ etc.

- $\hat{\boldsymbol{\beta}}=\operatorname{argmin}_{\boldsymbol{\beta}}\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}+\lambda \boldsymbol{\beta}^{\top} \mathbf{S} \boldsymbol{\beta}$ has exactly the same form as the ridge regression problem covered earlier, except that \mathbf{S} replaces I in the penalty.
- It follows that

1. $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{S}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$.
2. The fitted values are $\hat{\boldsymbol{\mu}}=\mathbf{A y}$ where $\mathbf{A}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{S}\right)^{-\mathbf{1}} \mathbf{X}^{\top}$.
3. As before, the ordinary cross validation criterion is

$$
\mathrm{OCV}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{\mu}_{i}^{[-i]}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} \frac{\left(y_{i}-\hat{\mu}_{i}\right)^{2}}{\left(1-A_{i i}\right)^{2}}
$$

- So we can estimate λ by OCV or the weight averaged version

$$
\mathrm{GCV}=\frac{n\|\mathbf{y}-\hat{\boldsymbol{\mu}}\|^{2}}{\{n-\operatorname{trace}(\mathbf{A})\}^{2}}
$$

Cross validating for λ

The cross validated fit

The Bayesian perspective

- As with ridge regression, we can view the smoothing penalty as induced by a prior $\boldsymbol{\beta} \sim N\left(\mathbf{0}, \mathbf{S}^{-} \sigma^{2} / \lambda\right)$
- The prior here is an improper Gaussian, as the prior precision matrix, $\mathbf{S} \lambda / \sigma^{2}$, is not full rank ${ }^{\dagger}$
- Notice also that $\pi(\boldsymbol{\beta}) \propto \exp \left\{-\lambda \boldsymbol{\beta}^{\mathrm{T}} \mathbf{S} \boldsymbol{\beta} /\left(2 \sigma^{2}\right)\right\}-$ an exponential prior on wiggliness of f.
- The posterior follows as before, but with \mathbf{S} in place of \mathbf{I}

$$
\boldsymbol{\beta} \mid \mathbf{y} \sim N\left(\hat{\boldsymbol{\beta}},\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{S}\right)^{-1} \sigma^{2}\right)
$$

- Using this with the cross validated $\hat{\lambda}$ is a sort of Empirical Bayes method. e.g. we can immediately obtain credible intervals for f.

[^1]
95\% Bayesian Credible Interval

- If $\hat{f}\left(x_{i}\right)=\tilde{\mathbf{x}}^{\top} \hat{\boldsymbol{\beta}}$ then $\operatorname{var}\left\{\hat{f}\left(x_{i}\right)\right\}=\tilde{\mathbf{x}}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{S}\right)^{-1} \tilde{\mathbf{x}} \sigma^{2}$, so \ldots

Estimating λ from the marginal likelihood

- Formulation in terms of Bayesian smoothing priors raises the possibility of taking a fully Bayesian approach to inference about λ, or of estimating λ to maximise the marginal likelihood.
- Here we will concentrate on maximising the marginal likelihood

$$
\pi(\mathbf{y} \mid \lambda)=\int \pi(\mathbf{y} \mid \boldsymbol{\beta}) \pi(\boldsymbol{\beta} \mid \lambda) d \boldsymbol{\beta}
$$

- At first sight this is not as intuitive as the cross validation approaches to λ choice, but actually it does something quite intuitive...

ML λ estimation is intuitive

- Look at the marginal likelihood expression again $\pi(\mathbf{y} \mid \lambda)=\int \pi(\mathbf{y} \mid \boldsymbol{\beta}) \pi(\boldsymbol{\beta} \mid \lambda) d \boldsymbol{\beta}-\mathrm{it}$ is the average likelihood of random draws from the prior.
- So by maximizing it we choose λ to maximise the average likelihood of draws from the prior.

- In each panel the curves are randomly drawn from $\pi(\boldsymbol{\beta} \mid \lambda)$ (but centred) and the green ones have likelihood above a threshold.

ML computation

- Rather than integrating to find $\pi(\mathbf{y} \mid \lambda)$ we can use the identity

$$
\pi(\mathbf{y} \mid \lambda)=\pi(\mathbf{y} \mid \hat{\boldsymbol{\beta}}) \pi(\hat{\boldsymbol{\beta}} \mid \lambda) / \pi(\hat{\boldsymbol{\beta}} \mid \mathbf{y}, \lambda)
$$

i.e. $\log \pi(\mathbf{y} \mid \lambda)=\log \pi(\mathbf{y} \mid \hat{\boldsymbol{\beta}})+\log \pi(\hat{\boldsymbol{\beta}} \mid \lambda)-\log \pi(\hat{\boldsymbol{\beta}} \mid \mathbf{y}, \lambda)$.

- All the $\pi(\cdot)$ are Gaussian, and plugging them in, in turn, yields ${ }^{\ddagger}$

$$
\begin{aligned}
2 \log \pi(\mathbf{y} \mid \lambda)=- & \frac{\|\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}}\|^{2}+\lambda \hat{\boldsymbol{\beta}}^{\top} \mathbf{S} \hat{\boldsymbol{\beta}}}{\sigma^{2}}+\log \left|\lambda \mathbf{S} / \sigma^{2}\right|_{+} \\
& -\log \left|\mathbf{X}^{\top} \mathbf{X} / \sigma^{2}+\lambda \mathbf{S} / \sigma^{2}\right|-n \log \left(2 \pi \sigma^{2}\right)
\end{aligned}
$$

— note the additional indirect dependence on λ via $\hat{\boldsymbol{\beta}}$.

- $\log \pi(\mathbf{y} \mid \lambda)$ can be (numerically) optimized w.r.t. λ and σ^{2} to estimate these. It is also sometimes referred to as REML.

[^2]
ML versus Cross Validation

- The marginal likelihood typically has a more pronounced optimum than cross validation criteria, and less chance of developing multiple optima, as these simulations show...

- In consequence it is less prone to occasional severe undersmoothing.

Effective degrees of Freedom

- To optimize λ, differentiate $2 \log \pi(\mathbf{y} \mid \lambda)$ w.r.t. λ and set to zero ${ }^{\S}$

$$
-\hat{\boldsymbol{\beta}}^{\top} \mathbf{S} \hat{\boldsymbol{\beta}} / \sigma^{2}+\operatorname{tr}\left(\mathbf{S}^{-} \mathbf{S} / \lambda\right)-\operatorname{tr}\left\{\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{S}\right)^{-1} \mathbf{S} / \sigma^{2}\right\}=0
$$

- To optimize σ^{2}, differentiate $2 \log \pi(\mathbf{y} \mid \lambda)$ w.r.t. σ^{2} and set to zero. Noting the preceding equality this yields

$$
\|\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}}\|^{2} / \sigma^{2}+\operatorname{tr}\left\{\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{S}\right)^{-1} \mathbf{X}^{\top} \mathbf{X}\right\}-n=0
$$

- So $\hat{\sigma}^{2}=\|\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}}\|^{2} /\left[n-\operatorname{tr}\left\{\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{S}\right)^{-1} \mathbf{X}^{\top} \mathbf{X}\right\}\right]$ suggesting treating $\operatorname{tr}\left\{\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{S}\right)^{-1} \mathbf{X}^{\top} \mathbf{X}\right\}$ as the Effective Degrees of Freedom of the smooth model.
- The EDF varies smoothly from p at $\lambda=0$ to the rank deficiency of \mathbf{S} as $\lambda \rightarrow \infty$. This corresponds to the previous example smooth varying from something very wiggly to a straight line fit.

[^3]
Effective Degrees of Freedom and shrinkage

- Without penalization the coefficient estimates would be $\tilde{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$.
- With penalization they are $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{S}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$.
- So $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{S}\right)^{-1} \mathbf{X}^{\top} \mathbf{X} \tilde{\boldsymbol{\beta}}$.
- Hence the leading diagonal elements of $\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{S}\right)^{-1} \mathbf{X}^{\top} \mathbf{X}$ are $\partial \hat{\beta}_{i} / \partial \tilde{\beta}_{i}$ and can be thought of as shrinkage factors.
- So when we sum them up to get the EDF, the result is $p \times$ the average shrinkage factor.
- Note that $\operatorname{tr}\left\{\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{S}\right)^{-1} \mathbf{X}^{\top} \mathbf{X}\right\}=\operatorname{tr}\left\{\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{S}\right)^{-1} \mathbf{X}^{\top}\right\}$, from general properties of the trace.
- For the last example smooth plotted the EDF was almost exactly 11 (but generally there is no reason for it to be integer).

Example

- If this is all a bit abstract, here is a penalized spline smoother with marginal likelihood λ estimation and 95% Bayesian credible interval applied to separating weather from climate in the global temperature series (from the last IPCC report) ...

Why spline bases?

- In introducing penalized basis expansions, B-splines were chosen for their 'convenient properties'. Why exactly?
- To answer this imagine physically representing f by a flexible strip (e.g. of wood) attached to the data with vertical springs.
- Now consider what happens if the stiffness of the strip is varied:

Splines

- The strip (known as a spline) adopts the position minimising the sum of its bending energy and the energy stored in the springs.
- Mathematically ${ }^{\text {II }}$ that is

$$
\begin{equation*}
\hat{f}=\underset{f}{\operatorname{argmin}} \sum_{i=1}^{n}\left\{y_{i}-f\left(x_{i}\right)\right\}^{2}+\lambda \int f^{\prime \prime}(x)^{2} d x \tag{1}
\end{equation*}
$$

- Notice that the optimization is over all smooth functions - no basis is being assumed up front.
- In other words: we decide what we mean by 'fitting the data' and what we mean by 'smooth' and seek the function optimizing a weighted sum of lack of fit and lack of smoothness.
- It turns out that the solution to (1) can be represented with an n dimensional basis of known functions (independent of λ).

[^4]
Large deformations

- Obviously once we have defined the spline mathematically we don't need to restrict ourselves to the small deformation regime used in formulating the spline objective...

- The basis of piecewise cubic polynomials between adjacent $x_{i} \mathrm{~s}$, continuous to $2^{\text {nd }}$ derivative, is correct for (1) by an integration by parts argument. But consider a more general construction.

Spline objective to basis: some background

- Consider a Hilbert space of real valued functions, f, on some domain τ (e.g. $[0,1]$).
- It is a reproducing kernel Hilbert space, \mathcal{H}, if evaluation is bounded. i.e. $\exists M$ s.t. $|f(t)| \leq M \mid f \|_{\mathcal{H}}$.
- Then the Riesz representation thm says that there is a function $R_{t} \in \mathcal{H}$ s.t. $f(t)=\left\langle R_{t}, f\right\rangle$.
- Now consider $R_{t}(u)$ as a function of $t: R(t, u)$

$$
\left\langle R_{t}, R_{s}\right\rangle=R(t, s)
$$

— so $R(t, s)$ is known as reproducing kernel of \mathcal{H}.

- Actually, to every positive definite function $R(t, s)$ corresponds a unique r.k.h.s.

Smoothing and RKHS

- RKHS are quite useful for constructing smooth models, to see why consider finding \hat{f} to minimize

$$
\sum_{i}\left\{y_{i}-f\left(t_{i}\right)\right\}^{2}+\lambda \int f^{\prime \prime}(t)^{2} d t
$$

- Let \mathcal{H} have $\langle f, g\rangle=\int g^{\prime \prime}(t) f^{\prime \prime}(t) d t$.
- Let \mathcal{H}_{0} denote the RKHS of functions for which $\int f^{\prime \prime}(t)^{2} d t=0$, with finite basis $\phi_{1}(t), \phi_{2}(t)$, say.
- Spline problem seeks $\hat{f} \in \mathcal{H}_{0} \oplus \mathcal{H}$ to minimize

$$
\sum_{i}\left\{y_{i}-f\left(t_{i}\right)\right\}^{2}+\lambda\|P f\|_{\mathcal{H}}^{2}
$$

where P is the projection into \mathcal{H}.

Smoothing basis and reproducing kernels

- $\hat{f}(t)=\sum_{i=1}^{n} c_{i} R_{t_{i}}(t)+\sum_{i=1}^{2} d_{i} \phi_{i}(t)$. Why?
- Suppose minimizer were $\tilde{f}=\hat{f}+\eta$ where $\eta \in \mathcal{H}$ and $\eta \perp \hat{f}$:

1. $\eta\left(t_{i}\right)=\left\langle R_{t_{i}}, \eta\right\rangle=0$.
2. $\|P \tilde{f}\|_{\mathcal{H}}^{2}=\|P \hat{f}\|_{\mathcal{H}}^{2}+\|\eta\|_{\mathcal{H}}^{2}$ which is minimized when $\eta=0$.

- ... obviously this argument is rather general.
- So if $E_{i j}=\left\langle R_{t_{i}}, R_{t_{j}}\right\rangle$ and $T_{i j}=\phi_{j}\left(t_{i}\right)$ then we seek \hat{c} and \hat{d} to minimize

$$
\|y-T d-E c\|_{2}^{2}+\lambda c^{\top} E c
$$

- RKHS approach is elegant and general, but at $O\left(n^{3}\right)$ cost.

Other spline basis properties

- Obviously any invertible linear combination of spline basis functions defines a valid basis, we are free to choose.
- The B-splines used earlier are one such choice: they have good numerical stability and compact support, meaning that they are zero, apart from over some finite portion of the real line. This leads to sparse \mathbf{X} matrices, for example.
- Another important property of splines is good approximation theoretic properties.
- Suppose we use a cubic spline basis to interpolate observations of a smooth function $g(x)$ spaced at most h apart on the x axis. Then $|g(x)-\hat{f}(x)|=O\left(h^{4}\right)$.
- Typically $h \propto n^{-1}$ where n is number of observations. $O\left(n^{-4}\right)$ is a rather high rate!

Reduced rank smoothing bases

- The full spline bases have dimension n. In many applications this leads to $O\left(n^{3}\right)$ computational cost. Is it really necessary?
- We could use a spline basis constructed for a size $p<n$ set of nicely spaced data ('knots') to model the whole size n dataset".
- In the unpenalized cubic spline basis case this entails an approximation error/bias of $O\left(p^{-4}\right)$.
- The standard deviation of such a fit is the $O(\sqrt{p / n})$ of regression.
- So to minimize MSE asymptotically we need $p \propto n^{1 / 9}$.
- In the penalized case $p \propto n^{1 / 5}$ is about right. Clearly $p=n$ is indeed statistically wasteful.
- In practice we either choose p points to use for basis construction, or use rank p eigen-approximations.

[^5]
Sum to zero constraints

- Often it is useful to include a smooth function $f(x)$ in a larger model that already includes an intercept, α.
- Identifiability problem! We can not estimate α and $f(x)$ without a constraint.
- $\alpha=0$ doesn't help if we want to add in another smooth function.
- A better option is to constrain $f(x)$ with a sum-to-zero constraint

$$
\sum_{i=1}^{n} f\left(x_{i}\right)=0 \Rightarrow \mathbf{1}^{\top} \mathbf{X} \boldsymbol{\beta}=0
$$

- An obvious way to meet the right hand version is to subtract its mean from each column of \mathbf{X} (there are alternatives of course).
- No change in f 's shape: we just shift basis functions up or down.
- But it leaves the centred \mathbf{X} rank deficient by one, as its intercept component has been eliminated. To restore full rank, drop the least variable column** of the centred \mathbf{X} (+ associated parameter).

[^6]
Multi-dimensional smooths

- The obvious way to generalize from one dimensional smoothing to multidimensional is to base splines on a multidimensional analogue of 1D spline penalties.
- Thin plate splines do that with an isotropic penalty:

$$
\lambda \int f_{x x}^{2}+2 f_{x z}^{2}+f_{z z}^{2} d x d z \quad(2 \mathrm{D} \text { second order example })
$$

- Different dimensions and orders of derivative are also possible.

Other geometries

- ... are possible. A thin plate spline on the sphere for example.

Smooth interactions

- If the arguments of a smooth measure different types of quantities (e.g. distance and time) then it makes no sense to treat them isotropically as a thin plate spline does.
- We don't know what their relative scaling should be ${ }^{\dagger \dagger}$.
- But scale invariant smooth interactions can be constructed by combining 1D splines.
- The trick is to apply the usual statistical notion of an interaction between variables, x and z, say. In particular

1. The effect of z is itself dependent on x.
2. i.e. the parameters for the z effect vary with x.

- Given basis expansions for the smooth effects $f_{z}(z)$ and $f_{x}(x)$ this idea is easily applied to smooths.
- Simply let the coefficients of f_{z} be smooth functions of $x \ldots$

[^7]
Tensor product basis construction

Tensor product penalties

- To avoid relative scaling assumptions, we need a separate penalty with its own smoothing parameter for each covariate direction.
- For example, sum up the spline penalties for the red curves and the green curves separately.

Mathematical formulation of tensor product smooths

- Let $b_{z j}(z)$ and $b_{x i}(x)$ be the basis functions for f_{z} and f_{x} with penalty matrices \mathbf{S}_{x} and \mathbf{S}_{z}. The marginal smoothers.
- The tensor product basis construction shown above gives:

$$
f(x, z)=\sum_{i} \sum_{j} \beta_{i j} b_{z j}(z) b_{x i}(x)
$$

- With double penalties

$$
\boldsymbol{\beta}^{\top} \mathbf{I} \otimes \mathbf{S}_{z} \boldsymbol{\beta} \text { and } \boldsymbol{\beta}^{\top} \mathbf{S}_{x} \otimes \mathbf{I} \boldsymbol{\beta}
$$

- The construction generalizes to any number of marginals and multi-dimensional marginals.
- Can start from any marginal bases \& penalties (including mixtures of types).

Smooth ANOVA

- Sometimes people like to separate a multi-dimensional smooth into main effects and interactions. e.g.

$$
f_{x}(x)+f_{z}(z)+f_{x z}(x, z)
$$

- For identifiability we must exclude the basis for functions $f_{x}(x)+f_{z}(z)$ from the basis for $f_{x z}(x, z)$.
- Easily done using exactly the mechanism used in parametric statistical models: apply sum-to-zero identifiability constraints to the marginal bases used to construct $f_{x z}(x, z)$.
- The constraint removes the constant function from the basis for f_{x}, so that its product with the basis for f_{z} does not include a copy of the f_{z} basis (and vice versa).

Isotropy versus scale invariance

- Smooth fits to data. In the bottom row the x variable has been divided by 5 before fitting. TPS is drastically affected by the scaling and the tensor product smooth not at all.

Isotropic Thin Plate Spline

Tensor Product Spline

[^0]: *this works for other orders of derivative in the penalty too.

[^1]: ${ }^{\dagger} \mathbf{S}$ is rank deficient by the dimension of the space of functions it does not penalize. e.g. 2 for the cubic spline penalty.

[^2]: ${ }^{\dagger}|\mathbf{B}|_{+}$is the product of the positive eigenvalues of \mathbf{B}.

[^3]: ${ }^{\S}$ note: the derivatives of $\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}+\lambda \boldsymbol{\beta}^{\top} \mathbf{S} \boldsymbol{\beta}$ w.r.t. $\boldsymbol{\beta}$ are zero at $\hat{\boldsymbol{\beta}}$, by definition.

[^4]: ${ }^{\text {II }}$ there is some idealisation here: the spline deformation is assumed small, and we use special vertical extension mathematical springs with zero energy at zero length.

[^5]: "which is what was done in the preceding examples!

[^6]: **the 'least variable' part enhances numerical stability and ensures we never leave in a 0 column.

[^7]: ${ }^{\dagger \dagger}$ doing something arbitrary like scaling to the unit square assumes we do know.

