
Smoothing and basis expansions

Simon Wood



Penalizing a different sort of complexity

▶ So far we have considered the case of (generalized) linear
models where we need to penalize the complexity of having too
many predictors of unknown importance.

▶ For the most part we approached this task prioritizing predictive
performance, therefore selecting the penalty parameter for
optimal predictive performance in (cross) validation.

▶ A different sort of model complexity arises when we are unsure
of the form of the relationship between a predictor and a
response. e.g. for the model

yi = f (xi) + ϵi ϵi ∼
iid

N(0, σ2)

should the unknown function, f , be smooth or wiggly?
▶ And is prediction error the only way to decide?



A simple example

▶ Here are some x – y data with a noisy non-linear relationship
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▶ A model along the lines of ‘y is some smooth function of x
observed with noise’ seems appropriate, but how smooth or
complex a function is not clear.



Bases and smoothness
▶ Let’s look further at the model

yi = f (xi) + ϵi ϵi ∼
iid

N(0, σ2)

where f is an unknown ‘smooth’ function.
▶ A practical way forward is to introduce a basis expansion

f (x) =
p∑

j=1

βjbj(x)

where the basis functions, bj(x) are chosen to have convenient
properties and the βj will have to be estimated.

▶ We also need to define ‘smooth’: e.g. a small value of∫
f ′′(x)2dx



Basis penalty smoothing

▶ To avoid bias from an overly restrictive model, we choose p to be
moderately large.

▶ But large p risks high uncertainty in our inference about f .
▶ As in the penalized linear model case, there is a bias-variance

trade-off.
▶ To control the trade-off we can use penalized estimation:

β̂ = argmin
β

∥y − Xβ∥2 + λ

∫
f ′′(x)2dx

where Xij = bj(xi) and λ ≥ 0 is a smoothing (regularization)
parameter.



The penalty is quadratic in β

▶ f (x) =
∑p

j=1 βjbj(x), so it follows that f ′′(x) =
∑p

j=1 βjb′′j (x).
▶ Defining vector d(x) where dj(x) = b′′j (x) then f ′′(x) = βTd(x).
▶ In consequence∫

f ′′(x)2dx =

∫
βTd(x)d(x)Tβdx = βTSβ

where Sij =
∫

di(x)dj(x)dx.*

▶ For some bases, Sij can be computed exactly. e.g. B-splines.
▶ So our fitting problem is now the L2 penalized

β̂ = argmin
β

∥y − Xβ∥2 + λβTSβ.

▶ Let’s see the basis-penalty smoother in action . . .

*this works for other orders of derivative in the penalty too.



Penalized B-spline basis smoothing as λ reduced



β̂, λ̂ etc.

▶ β̂ = argminβ ∥y − Xβ∥2 + λβTSβ has exactly the same form as
the ridge regression problem covered earlier, except that S
replaces I in the penalty.

▶ It follows that
1. β̂ = (XTX + λS)−1XTy.
2. The fitted values are µ̂ = Ay where A = X(XTX + λS)−1XT.
3. As before, the ordinary cross validation criterion is

OCV =
1
n

n∑
i=1

(yi − µ̂
[−i]
i )2 =

1
n

n∑
i=1

(yi − µ̂i)
2

(1 − Aii)2

▶ So we can estimate λ by OCV or the weight averaged version

GCV =
n∥y − µ̂∥2

{n − trace(A)}2



Cross validating for λ



The cross validated fit
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The Bayesian perspective

▶ As with ridge regression, we can view the smoothing penalty as
induced by a prior β ∼ N(0,S−σ2/λ)

▶ The prior here is an improper Gaussian, as the prior precision
matrix, Sλ/σ2, is not full rank†

▶ Notice also that π(β) ∝ exp{−λβTSβ/(2σ2)} – an exponential
prior on wiggliness of f .

▶ The posterior follows as before, but with S in place of I

β|y ∼ N(β̂, (XTX + λS)−1σ2)

▶ Using this with the cross validated λ̂ is a sort of Empirical Bayes
method. e.g. we can immediately obtain credible intervals for f .

†S is rank deficient by the dimension of the space of functions it does not
penalize. e.g. 2 for the cubic spline penalty.



95% Bayesian Credible Interval

▶ If f̂ (xi) = x̃Tβ̂ then var{f̂ (xi)} = x̃T(XTX + λS)−1x̃σ2, so . . .
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Estimating λ from the marginal likelihood

▶ Formulation in terms of Bayesian smoothing priors raises the
possibility of taking a fully Bayesian approach to inference about
λ, or of estimating λ to maximise the marginal likelihood.

▶ Here we will concentrate on maximising the marginal likelihood

π(y|λ) =
∫

π(y|β)π(β|λ)dβ

▶ At first sight this is not as intuitive as the cross validation
approaches to λ choice, but actually it does something quite
intuitive. . .



ML λ estimation is intuitive

▶ Look at the marginal likelihood expression again
π(y|λ) =

∫
π(y|β)π(β|λ)dβ — it is the average likelihood of

random draws from the prior.
▶ So by maximizing it we choose λ to maximise the average

likelihood of draws from the prior.
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▶ In each panel the curves are randomly drawn from π(β|λ) (but
centred) and the green ones have likelihood above a threshold.



ML computation

▶ Rather than integrating to find π(y|λ) we can use the identity

π(y|λ) = π(y|β̂)π(β̂|λ)/π(β̂|y, λ),

i.e. log π(y|λ) = log π(y|β̂) + log π(β̂|λ)− log π(β̂|y, λ).
▶ All the π(·) are Gaussian, and plugging them in, in turn, yields‡

2 log π(y|λ) = −∥y − Xβ̂∥2 + λβ̂TSβ̂
σ2 + log |λS/σ2|+

− log |XTX/σ2 + λS/σ2| − n log(2πσ2)

— note the additional indirect dependence on λ via β̂.
▶ log π(y|λ) can be (numerically) optimized w.r.t. λ and σ2 to

estimate these. It is also sometimes referred to as REML.

‡|B|+ is the product of the positive eigenvalues of B.



ML versus Cross Validation

▶ The marginal likelihood typically has a more pronounced
optimum than cross validation criteria, and less chance of
developing multiple optima, as these simulations show. . .
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▶ In consequence it is less prone to occasional severe
undersmoothing.



Effective degrees of Freedom

▶ To optimize λ, differentiate 2 log π(y|λ) w.r.t. λ and set to zero§

−β̂TSβ̂/σ2 + tr(S−S/λ)− tr{(XTX + λS)−1S/σ2} = 0

▶ To optimize σ2, differentiate 2 log π(y|λ) w.r.t. σ2 and set to
zero. Noting the preceding equality this yields

∥y − Xβ̂∥2/σ2 + tr{(XTX + λS)−1XTX} − n = 0

▶ So σ̂2 = ∥y − Xβ̂∥2/[n − tr{(XTX + λS)−1XTX}] suggesting
treating tr{(XTX + λS)−1XTX} as the Effective Degrees of
Freedom of the smooth model.

▶ The EDF varies smoothly from p at λ = 0 to the rank deficiency
of S as λ → ∞. This corresponds to the previous example
smooth varying from something very wiggly to a straight line fit.

§note: the derivatives of ∥y−Xβ∥2 +λβTSβ w.r.t. β are zero at β̂, by definition.



Effective Degrees of Freedom and shrinkage

▶ Without penalization the coefficient estimates would be
β̃ = (XTX)−1XTy.

▶ With penalization they are β̂ = (XTX + λS)−1XTy.
▶ So β̂ = (XTX + λS)−1XTXβ̃.
▶ Hence the leading diagonal elements of (XTX + λS)−1XTX are

∂β̂i/∂β̃i and can be thought of as shrinkage factors.
▶ So when we sum them up to get the EDF, the result is p× the

average shrinkage factor.
▶ Note that tr{(XTX + λS)−1XTX} = tr{X(XTX + λS)−1XT},

from general properties of the trace.
▶ For the last example smooth plotted the EDF was almost exactly

11 (but generally there is no reason for it to be integer).



Example

▶ If this is all a bit abstract, here is a penalized spline smoother
with marginal likelihood λ estimation and 95% Bayesian
credible interval applied to separating weather from climate in
the global temperature series (from the last IPCC report) . . .
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Why spline bases?
▶ In introducing penalized basis expansions, B-splines were

chosen for their ‘convenient properties’. Why exactly?
▶ To answer this imagine physically representing f by a flexible

strip (e.g. of wood) attached to the data with vertical springs.
▶ Now consider what happens if the stiffness of the strip is varied:



Splines

▶ The strip (known as a spline) adopts the position minimising the
sum of its bending energy and the energy stored in the springs.

▶ Mathematically¶ that is

f̂ = argmin
f

n∑
i=1

{yi − f (xi)}2 + λ

∫
f ′′(x)2dx (1)

▶ Notice that the optimization is over all smooth functions — no
basis is being assumed up front.

▶ In other words: we decide what we mean by ‘fitting the data’ and
what we mean by ‘smooth’ and seek the function optimizing a
weighted sum of lack of fit and lack of smoothness.

▶ It turns out that the solution to (1) can be represented with an n
dimensional basis of known functions (independent of λ).

¶there is some idealisation here: the spline deformation is assumed small, and we
use special vertical extension mathematical springs with zero energy at zero length.



Large deformations

▶ Obviously once we have defined the spline mathematically we
don’t need to restrict ourselves to the small deformation regime
used in formulating the spline objective. . .

▶ The basis of piecewise cubic polynomials between adjacent xis,
continuous to 2nd derivative, is correct for (1) by an integration
by parts argument. But consider a more general construction.



Spline objective to basis: some background

▶ Consider a Hilbert space of real valued functions, f , on some
domain τ (e.g. [0, 1]).

▶ It is a reproducing kernel Hilbert space, H, if evaluation is
bounded. i.e. ∃M s.t. |f (t)| ≤ M∥f∥H.

▶ Then the Riesz representation thm says that there is a function
Rt ∈ H s.t. f (t) = ⟨Rt, f ⟩.

▶ Now consider Rt(u) as a function of t: R(t, u)

⟨Rt,Rs⟩ = R(t, s)

— so R(t, s) is known as reproducing kernel of H.
▶ Actually, to every positive definite function R(t, s) corresponds a

unique r.k.h.s.



Smoothing and RKHS

▶ RKHS are quite useful for constructing smooth models, to see
why consider finding f̂ to minimize∑

i

{yi − f (ti)}2 + λ

∫
f ′′(t)2dt.

▶ Let H have ⟨f , g⟩ =
∫

g′′(t)f ′′(t)dt.
▶ Let H0 denote the RKHS of functions for which

∫
f ′′(t)2dt = 0,

with finite basis ϕ1(t), ϕ2(t), say.
▶ Spline problem seeks f̂ ∈ H0 ⊕H to minimize∑

i

{yi − f (ti)}2 + λ∥Pf∥2
H.

where P is the projection into H.



Smoothing basis and reproducing kernels

▶ f̂ (t) =
∑n

i=1 ciRti(t) +
∑2

i=1 diϕi(t). Why?
▶ Suppose minimizer were f̃ = f̂ + η where η ∈ H and η ⊥ f̂ :

1. η(ti) = ⟨Rti , η⟩ = 0.
2. ∥Pf̃∥2

H = ∥Pf̂∥2
H + ∥η∥2

H which is minimized when η = 0.

▶ . . . obviously this argument is rather general.
▶ So if Eij = ⟨Rti ,Rtj⟩ and Tij = ϕj(ti) then we seek ĉ and d̂ to

minimize
∥y − Td − Ec∥2

2 + λcTEc.

▶ RKHS approach is elegant and general, but at O(n3) cost.



Other spline basis properties

▶ Obviously any invertible linear combination of spline basis
functions defines a valid basis, we are free to choose.

▶ The B-splines used earlier are one such choice: they have good
numerical stability and compact support, meaning that they are
zero, apart from over some finite portion of the real line. This
leads to sparse X matrices, for example.

▶ Another important property of splines is good approximation
theoretic properties.

▶ Suppose we use a cubic spline basis to interpolate observations
of a smooth function g(x) spaced at most h apart on the x axis.
Then |g(x)− f̂ (x)| = O(h4).

▶ Typically h ∝ n−1 where n is number of observations. O(n−4) is
a rather high rate!



Reduced rank smoothing bases

▶ The full spline bases have dimension n. In many applications this
leads to O(n3) computational cost. Is it really necessary?

▶ We could use a spline basis constructed for a size p < n set of
nicely spaced data (‘knots’) to model the whole size n dataset||.

▶ In the unpenalized cubic spline basis case this entails an
approximation error/bias of O(p−4).

▶ The standard deviation of such a fit is the O(
√

p/n) of
regression.

▶ So to minimize MSE asymptotically we need p ∝ n1/9.
▶ In the penalized case p ∝ n1/5 is about right. Clearly p = n is

indeed statistically wasteful.
▶ In practice we either choose p points to use for basis

construction, or use rank p eigen-approximations.

||which is what was done in the preceding examples!



Sum to zero constraints
▶ Often it is useful to include a smooth function f (x) in a larger

model that already includes an intercept, α.
▶ Identifiability problem! We can not estimate α and f (x) without

a constraint.
▶ α = 0 doesn’t help if we want to add in another smooth function.
▶ A better option is to constrain f (x) with a sum-to-zero constraint∑n

i=1 f (xi) = 0 ⇒ 1TXβ = 0

▶ An obvious way to meet the right hand version is to subtract its
mean from each column of X (there are alternatives of course).

▶ No change in f ’s shape: we just shift basis functions up or down.
▶ But it leaves the centred X rank deficient by one, as its intercept

component has been eliminated. To restore full rank, drop the
least variable column** of the centred X (+ associated
parameter).

**the ‘least variable’ part enhances numerical stability and ensures we never leave
in a 0 column.



Multi-dimensional smooths

▶ The obvious way to generalize from one dimensional smoothing
to multidimensional is to base splines on a multidimensional
analogue of 1D spline penalties.

▶ Thin plate splines do that with an isotropic penalty:

λ

∫
f 2
xx + 2f 2

xz + f 2
zzdxdz (2D second order example)

▶ Different dimensions and orders of derivative are also possible.



Other geometries

▶ . . . are possible. A thin plate spline on the sphere for example.



Smooth interactions

▶ If the arguments of a smooth measure different types of
quantities (e.g. distance and time) then it makes no sense to treat
them isotropically as a thin plate spline does.

▶ We don’t know what their relative scaling should be††.
▶ But scale invariant smooth interactions can be constructed by

combining 1D splines.
▶ The trick is to apply the usual statistical notion of an interaction

between variables, x and z, say. In particular
1. The effect of z is itself dependent on x.
2. i.e. the parameters for the z effect vary with x.

▶ Given basis expansions for the smooth effects fz(z) and fx(x) this
idea is easily applied to smooths.

▶ Simply let the coefficients of fz be smooth functions of x. . .

††doing something arbitrary like scaling to the unit square assumes we do know.



Tensor product basis construction



Tensor product penalties

▶ To avoid relative scaling assumptions, we need a separate penalty
with its own smoothing parameter for each covariate direction.

▶ For example, sum up the spline penalties for the red curves and
the green curves separately.
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Mathematical formulation of tensor product smooths

▶ Let bzj(z) and bxi(x) be the basis functions for fz and fx with
penalty matrices Sx and Sz. The marginal smoothers.

▶ The tensor product basis construction shown above gives:

f (x, z) =
∑

i

∑
j
βijbzj(z)bxi(x)

▶ With double penalties

βTI ⊗ Szβ and βTSx ⊗ Iβ

▶ The construction generalizes to any number of marginals and
multi-dimensional marginals.

▶ Can start from any marginal bases & penalties (including
mixtures of types).



Smooth ANOVA

▶ Sometimes people like to separate a multi-dimensional smooth
into main effects and interactions. e.g.

fx(x) + fz(z) + fxz(x, z)

▶ For identifiability we must exclude the basis for functions
fx(x) + fz(z) from the basis for fxz(x, z).

▶ Easily done using exactly the mechanism used in parametric
statistical models: apply sum-to-zero identifiability constraints to
the marginal bases used to construct fxz(x, z).

▶ The constraint removes the constant function from the basis for
fx, so that its product with the basis for fz does not include a copy
of the fz basis (and vice versa).



Isotropy versus scale invariance
▶ Smooth fits to data. In the bottom row the x variable has been

divided by 5 before fitting. TPS is drastically affected by the
scaling and the tensor product smooth not at all.
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