Introducing Penalized Regression*

Simon Wood

*Reading: chapters 3 and 4 of Elements of Statistical Learning Hastie, Tibshirani and Friedman https://web.stanford.edu/hastie/ElemStatLearn/

Linear model

- Consider a linear model for data vector \mathbf{y} :

$$
\mathbf{y} \sim N\left(\mathbf{X} \boldsymbol{\beta}, \mathbf{I} \sigma^{2}\right)
$$

where model matrix \mathbf{X} is $n \times p$ while $\boldsymbol{\beta}$ and σ^{2} are parameters.

- If $n \geq p$ and \mathbf{X} full column rank then

$$
\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\operatorname{argmin}}\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|_{2}^{2}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y} .
$$

- So if $\boldsymbol{\mu} \equiv \mathbb{E}(\mathbf{y})$, the predicted values are

$$
\hat{\boldsymbol{\mu}}=\mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}=\mathbf{A} \mathbf{y}
$$

where $\mathbf{A} \equiv \mathbf{X}\left(\mathbf{X}^{\boldsymbol{\top}} \mathbf{X}\right)^{-1} \mathbf{X}^{\boldsymbol{\top}}$. Note $\mathbf{A} \mathbf{A}=\mathbf{A}$ (idempotent).

Predicted value variance as p grows

- Since $\hat{\boldsymbol{\mu}}=$ Ay and $\boldsymbol{\Sigma}_{y}=\mathbf{I} \sigma^{2}$ the covariance matrix of $\hat{\boldsymbol{\mu}}$ is

$$
\boldsymbol{\Sigma}_{\hat{\mu}}=\mathbf{A} \mathbf{I} \mathbf{A}^{\top} \sigma^{2}=\mathbf{A} \mathbf{A} \sigma^{2}=\mathbf{A} \sigma^{2} .
$$

- Also $\operatorname{tr}(\mathbf{A})=\operatorname{tr}\left\{\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{X}\right\}=p$ as $\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})$.
- So the average variance of $\hat{\mu}_{i}$ is $\sigma^{2} p / n$.
- As the number of parameters, p, increases the average predicted value variance increases until it equals $\operatorname{var}\left(y_{i}\right)=\sigma^{2}$ when $p=n$.
- If we go further so that $p>n$ then $\mathbf{X}^{\top} \mathbf{X}$ is no-longer full rank, has no inverse and so $\hat{\boldsymbol{\beta}}$ does not exist.
- But in many applications p is comparable to n or even larger e.g.
- genetic data where far more genes may be screened than patients.
- models in which each predictor has a complex relationship with the response, y, requiring many parameters per predictor.

$p>n$ and Tikhonov regularization

- A simple approach to rank deficiency of $\mathbf{X}^{\top} \mathbf{X}$ when $p>n$ is regularization, replacing $\mathbf{X}^{\top} \mathbf{X}$ by $\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}$ for some $\lambda>0$.
- Since $\mathbf{X}^{\top} \mathbf{X}$ is rank n but clearly $\boldsymbol{\beta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta} \geq 0$ for any $\boldsymbol{\beta}, \mathbf{X}^{\top} \mathbf{X}$ is positive semi-definite with at least $p-n$ zero eigenvalues.
- Hence eigenvalues $\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right) \geq \lambda$ implying that $\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}$ is strictly positive definite and hence invertible.
- So we have the regularized estimator

$$
\hat{\boldsymbol{\beta}}_{\lambda}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\top} \mathbf{y} .
$$

- Notice how this is also

$$
\hat{\boldsymbol{\beta}}_{\lambda}=\underset{\boldsymbol{\beta}}{\operatorname{argmin}}\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|_{2}^{2}+\lambda\|\boldsymbol{\beta}\|_{2}^{2}
$$

$-\lambda\|\boldsymbol{\beta}\|_{2}^{2}$ is the ' L_{2} penalty' or 'ridge penalty'.

Simulated toy example

- $n=40, p=50, X_{i j} \underset{\text { i.i.d. }}{\sim} U(0,1), \boldsymbol{\beta}_{1: 10} \sim U(0,1), \boldsymbol{\beta}_{11: 50}=0$.

$$
n<-40 ; p<-50
$$

$$
X<-\operatorname{matrix}(r u n i f(n * p), n, p) \quad \# \# \text { predictors }
$$

$$
m u<-X[, 1: 10] \% * \% \text { runif }(10) \text { \#\# mean response }
$$

$$
y<-m u+r n o r m(n) \quad \text { \#\# response }
$$

- The relationships in the resulting data are not very clear...

Does penalization achieve anything?

- Compute mean square error, $\operatorname{MSE}=\sum_{i=1}^{n}\left(\mu_{i}-\hat{\mu}_{i}\right)^{2} / n$, as a function of λ where $\hat{\boldsymbol{\mu}}=\mathbf{X} \hat{\boldsymbol{\beta}}_{\lambda}$.

```
mse <- lam <- 10^seq(-4,6,length=50)
for (i in 1:length(lam)) {
    b.hat <- solve(crossprod(X)+lam[i]*diag(p),t(X)%*%y)
    mu.hat <- X %*% b.hat
    mse[i] <- mean((mu-mu.hat)^2)
}
```

- Here is a plot. Dashed line is MSE for regression on $\mathrm{X}[, 1: 10]$

Choosing λ in practice

- So, with the right λ, Tikhonov regularization/ridge regression performs reasonably well in MSE terms.
- But we do not know μ for real data so can not directly optimise MSE in practice.
- We have the noisy observations $y_{i}=\mu_{i}+\epsilon_{i}$ but $\sum_{i=1}^{n}\left(y_{i}-\hat{\mu}_{i}\right)^{2}$ is minimised by $\lambda \rightarrow 0$.
- This overfitting is avoided if we measure the ability of the model to predict data to which it was not fitted.
- One such approach is leave-one-out cross validation. Let $\hat{\mu}_{i}^{[-i]}$ be the prediction of y_{i} from a model fitted to all the data except y_{i}.
- Find the λ minimizing

$$
\mathrm{OCV}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{\mu}_{i}^{[-i]}\right)^{2}
$$

Leave one out cross validation

- In the penalized case $\mathbf{A}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\top}$. It turns out that

$$
\mathrm{OCV}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{\mu}_{i}^{[-i]}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} \frac{\left(y_{i}-\hat{\mu}_{i}\right)^{2}}{\left(1-A_{i i}\right)^{2}}
$$

- So OCV is relatively cheap to compute - it only needs 1 fit, not n, for each λ. For example...

```
for (i in 1:length(lam)) {
    A <- X%*% solve(crossprod(X)+lam[i]*diag(p),t(X))
    mu.hat <- A %*% y
    ocv[i] <- mean((y-mu.hat)^2/(1-diag(A) )^2)
}
```

- Note that there are more efficient ways of structuring the OCV computation than explicitly forming \mathbf{A}^{\dagger}.

[^0]
OCV example

- Here is a plot of the OCV score against $\log \lambda$ as a black curve. The MSE and oracle MSE from the true model fit are shown too.

- The black dots show the OCV and MSE minima, and the grey dot the MSE of the OCV optimal λ.
- The noise in y_{i} relative to μ_{i} means that the OCV and MSE optima are not identical, but they are close and the OCV not far from optimal in MSE terms.

Other validation/cross validation methods

- OCV is only one possibility...

1. Generalized cross-validation (GCV) replaces the $A_{i i}$ with their average in OCV for yet greater computational efficiency and some extra invariance.
2. k-fold cross-validation divides the data into k blocks and bases cross validation on the ability to predict each block when it is omitted from the fit. $k=5$ or 10 are typical.
3. Leave-out-several cross validation leaves out and predicts a few observations at a time. For small numbers left out, efficient computation from a single fit is possible, similarly to OCV.
4. Sometimes data are simply split into a fit set and a validation set. The validation data are predicted, but never fitted.

- Note that for non-Gaussian likelihoods we would usually substitute the likelihood or deviance for sums of squares.

Taking stock

- We have seen empirically that adding a simple L_{2} penalty to a regression problem can help to improve model predictive performance and even allow model fitting at all.
- Prediction error criteria such as OCV give a practical way to optimize the strength of penalization to use.
- What price has been paid for improved predictive performance?
- $\mathbb{E}\left(\hat{\boldsymbol{\beta}}_{\lambda}\right)=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\top} \mathbb{E}(\mathbf{y})=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta} \neq \boldsymbol{\beta}$.
- So $\hat{\boldsymbol{\beta}}_{\lambda}$ is biased. The penalty has led to shrinkage.
- The bias is $\mathbf{b}=\mathbb{E}\left(\hat{\boldsymbol{\beta}}_{\lambda}\right)-\boldsymbol{\beta}=-\lambda\left(\mathbf{X}^{\boldsymbol{\top}} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \boldsymbol{\beta}$ which increases with penalization.
- Good MSE performance has been obtained by trading variance for bias.

A Bayesian perspective

- A Bayesian view of regularization/penalized regression helps.
- Consider a linear model with simple Gaussian prior

$$
\mathbf{y} \sim N\left(\mathbf{X} \boldsymbol{\beta}, \mathbf{I} \sigma^{2}\right) \quad \boldsymbol{\beta} \sim N\left(\mathbf{0}, \mathbf{I} \sigma^{2} / \lambda\right)
$$

- Since $\pi(\boldsymbol{\beta} \mid \mathbf{y}) \propto \pi(\mathbf{y} \mid \boldsymbol{\beta}) \pi(\boldsymbol{\beta})$ it follows immediately that

$$
\log \pi(\boldsymbol{\beta} \mid \mathbf{y})=-\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2} /\left(2 \sigma^{2}\right)-\boldsymbol{\beta}^{\top} \boldsymbol{\beta} \lambda /\left(2 \sigma^{2}\right)+k
$$

where k is a constant not dependent on $\boldsymbol{\beta}$.

- Discarding k and multiplying by $-2 \sigma^{2}$ we have the L_{2} penalized regression problem, so $\hat{\boldsymbol{\beta}}_{\lambda}$ is clearly the posterior mode for $\boldsymbol{\beta}$.

The distribution of $\boldsymbol{\beta} \mid \mathbf{y}$

- If we are happy to treat the ridge penalty as induced by a Gaussian prior on $\boldsymbol{\beta}$ then we can also consider the posterior.
- To find the posterior of $\boldsymbol{\beta}$ we must 'complete the square'...

$$
\begin{aligned}
\log \pi(\boldsymbol{\beta} \mid \mathbf{y}) & =-\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2} /\left(2 \sigma^{2}\right)-\boldsymbol{\beta}^{\top} \boldsymbol{\beta} \lambda /\left(2 \sigma^{2}\right)+k \\
& =-\left(\mathbf{y}^{\top} \mathbf{y}+\boldsymbol{\beta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta}+\lambda \boldsymbol{\beta}^{\top} \boldsymbol{\beta}-2 \mathbf{y}^{\top} \mathbf{X} \boldsymbol{\beta}\right) /\left(2 \sigma^{2}\right)+k \\
& =-\frac{1}{2 \sigma^{2}}\left(\boldsymbol{\beta}-\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}\right)^{\top}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)\left(\boldsymbol{\beta}-\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}\right)+k^{\prime} \\
& =-\frac{1}{2 \sigma^{2}}\left(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}_{\lambda}\right)^{\top}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)\left(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}_{\lambda}\right)+k^{\prime}
\end{aligned}
$$

where $\hat{\boldsymbol{\beta}}_{\lambda}=\left(\mathbf{X}^{\boldsymbol{\top}} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\boldsymbol{\top}} \mathbf{y}$, as before.

- Hence

$$
\boldsymbol{\beta} \mid \mathbf{y} \sim N\left(\hat{\boldsymbol{\beta}},\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \sigma^{2}\right)
$$

Bayes and bias-variance

- The cov. matrix of \mathbf{y} is $\mathbf{I} \sigma^{2}$ and $\hat{\boldsymbol{\beta}}_{\lambda}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$ so

$$
\boldsymbol{\Sigma}_{\hat{\boldsymbol{\beta}}}=\left(\mathbf{X}^{\boldsymbol{\top}} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\boldsymbol{\top}} \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \sigma^{2}
$$

- Recall the bias $\mathbf{b}=-\lambda\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \boldsymbol{\beta}$. According to the prior

$$
\begin{aligned}
\mathbb{E}\left(\mathbf{b b}^{\top}\right) & =\lambda^{2}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbb{E}\left(\boldsymbol{\beta} \boldsymbol{\beta}^{\top}\right)\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \\
& =\lambda \sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1}
\end{aligned}
$$

- Hence $\boldsymbol{\Sigma}_{\hat{\boldsymbol{\beta}}}+\mathbb{E}\left(\mathbf{b b}^{\top}\right)=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \sigma^{2}$.
- So the Bayesian posterior covariance matrix for $\boldsymbol{\beta}$ can be viewed as the sum of the covariance of $\hat{\boldsymbol{\beta}}$ and expected squared bias of $\hat{\boldsymbol{\beta}}$.
- The bias component increases and the variance component decreases with λ.

Other penalties

- So far we considered only the L_{2} penalty $\|\boldsymbol{\beta}\|_{2}^{2}=\sum_{i=1}^{p} \beta_{i}^{2}$.
- We could consider other L_{q} penalties $\mathcal{P}_{q}(\boldsymbol{\beta})=\sum_{i=1}^{p}\left|\beta_{i}\right|^{q}$. ${ }^{\ddagger}$
- Here is a plot of the unit contour for 2-d penalties, \mathcal{P}_{q}, with $q=100,10,3,2,1.5,1,0.5,0.2$ (working inwards).

- The limiting ' L_{0} ' penalty simply counts the non-zero $\beta_{i} \mathrm{~s}$.
${ }^{*}$ These penalties can define vector norms for $q \geq 1$, but not for $q<1$.

Basic penalty geometry

- Consider the penalized fitting problem

$$
\hat{\boldsymbol{\beta}}_{\lambda}=\underset{\boldsymbol{\beta}}{\operatorname{argmin}} D(\boldsymbol{\beta})+\lambda \mathcal{P}_{q}(\boldsymbol{\beta})
$$

where $D(\boldsymbol{\beta})$ is some fitting objective (e.g. residual sum of squares or negative log likelihood).

- Obviously $\hat{\boldsymbol{\beta}}_{\lambda}$ lies on some contour of the penalty, $\mathcal{P}_{q}(\boldsymbol{\beta})=c$.
- Equally obviously $\hat{\boldsymbol{\beta}}_{\lambda}$ must be the minimiser of $D(\boldsymbol{\beta})$ along the contour. i.e. $\hat{\boldsymbol{\beta}}_{\lambda}=\operatorname{argmin}_{\boldsymbol{\beta}} D(\boldsymbol{\beta})$ s.t. $\mathcal{P}_{q}(\boldsymbol{\beta})=c$.
- Otherwise we could reduce $D(\boldsymbol{\beta})$ while leaving $\mathcal{P}_{q}(\boldsymbol{\beta})$ unchanged and $\hat{\boldsymbol{\beta}}_{\lambda}$ could not be the optimum.

Penalties, zero coefficients, uniqueness and convexity

- Here are some penalized solutions (red dots) for $q=2,1$ and 0.45. $D(\boldsymbol{\beta})$ contours in grey, solution contour for $\mathcal{P}_{q}(\boldsymbol{\beta})$ in red.

- As q is reduced the \mathcal{P} contour develops corners at $q=1$ and then ceases to be convex, leading to the possibility of developing multiple local minima for $q<1$.
- Once the \mathcal{P} contours have corners $\hat{\beta}_{i}=0$ becomes possible.
- Unique solution if contours of D and \mathcal{P} are convex and unique.

Sparsity

- The L_{2} penalty shrinks the $\hat{\beta}_{i}$ towards zero, and will typically shrink most those coefficients for which the data provide little evidence that $\beta_{i} \neq 0$.
- But the penalty does not shrink any $\hat{\beta}_{i}$ exactly to zero.
- Often we would like to penalize coefficients to exactly zero, so that the corresponding effect is dropped from the model.
- For large p we would like sparse solutions with many $\hat{\beta}_{i}=0$.
- So the ' L_{0} ' penalty penalizing the number of non-zero $\hat{\beta}_{i}$ might seem ideal, but this leads to a very difficult optimization problem.
- Indeed multiple optima plague optimization for all penalties with $q<1$, as seen on the previous slide.
- But $q=1$ is special and unique: convex contours, with the corners that make $\hat{\beta}_{i}=0$ (sparsity) possible.

Computing with the L_{1} penalty

- Optimization of non-differentiable objective functions such as

$$
\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}+\lambda \mathcal{P}_{q}(\boldsymbol{\beta}) \text { where } q \leq 1
$$

is difficult, but again $q=1$ (known as the 'Lasso') is special.

- For $q=1, \hat{\boldsymbol{\beta}}_{\lambda}$ can be obtained simultaneously for all relevant λ at the $\min \left\{O\left(n p^{2}\right), O\left(n^{3}\right)\right\}$ cost of a single least squares fit.
- Note that a tempting approach is to use the form

$$
\hat{\boldsymbol{\beta}}_{\lambda}=\operatorname{argmin}_{\boldsymbol{\beta}}\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2} \text { s.t. } \sum_{i=1}^{p}\left|\beta_{i}\right| \leq c
$$

a quadratic programming problem with constraint $\mathbf{C} \boldsymbol{\beta} \leq \mathbf{1} c . \mathbf{C}$ is the $2^{p} \times p$ matrix whose rows are all combinations of 1 and -1 .

- But 2^{p} can be large + it costs more than regression, for a single c.

Piecewise linearity of the Lasso path

- Write the Lasso objective as $L=\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2} / 2+\lambda \sum_{i=1}^{p}\left|\beta_{i}\right|$
- Consider a λ_{0} at which $\hat{\beta}_{i}=0$ for all i except for $i \in A$, the active set. We are interested in decreasing λ from λ_{0}.
- To optimize L, differentiate w.r.t. the active set variables, $\boldsymbol{\beta}_{A}$

$$
\mathbf{X}_{A}^{\top}\left(\mathbf{X}_{A} \hat{\boldsymbol{\beta}}_{A}-\mathbf{y}\right)+\lambda \operatorname{sign}\left(\hat{\boldsymbol{\beta}}_{A}\right)=\mathbf{0}
$$

- Re-arranging and defining vectors \mathbf{a} and \mathbf{b} we have

$$
\hat{\boldsymbol{\beta}}_{A}=\left(\mathbf{X}_{A}^{\top} \mathbf{X}_{A}\right)^{-1} \mathbf{X}_{A}^{\top} \mathbf{y}-\lambda\left(\mathbf{X}_{A}^{\top} \mathbf{X}_{A}\right)^{-1} \operatorname{sign}\left(\hat{\boldsymbol{\beta}}_{A}\right)=\mathbf{b}-\lambda \mathbf{a}
$$

- i.e. until A changes $\hat{\boldsymbol{\beta}}_{A}$ is linear in $\lambda .{ }^{\S}$

[^1]
Lasso path active set additions

- For a variable, β_{k}, to enter the active set it must decrease L.
- If \mathbf{X}_{k} is column k of \mathbf{X}, the gradient of L w.r.t. β_{k} becomes

$$
\mathbf{X}_{k}^{\top} \mathbf{X} \boldsymbol{\beta}-\mathbf{X}_{k}^{\top} \mathbf{y}+\lambda \operatorname{sign}\left(\beta_{k}\right)
$$

- must be negative if $\beta_{k}>0$ and positive if $\beta_{k}<0$ to decrease L.
- Hence if $\left|\mathbf{X}_{k}^{\top}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})\right| \leq \lambda$ then β_{k} stays inactive at zero ${ }^{\text {II }}$.
- So as λ decreases, A changes as soon as one of this system is true

$$
\mathbf{X}_{\bar{A}}^{\top}\left(\mathbf{y}-\mathbf{X}_{A} \hat{\boldsymbol{\beta}}_{A}\right)= \pm \lambda \mathbf{1}
$$

- Substituting $\hat{\boldsymbol{\beta}}_{A}=\mathbf{b}-\lambda \mathbf{a}$, and defining \mathbf{c} and \mathbf{d} this becomes

$$
\mathbf{X}_{\bar{A}}^{\top}\left(\mathbf{y}-\mathbf{X}_{A} \mathbf{b}\right)+\lambda\left(\mathbf{X}_{\bar{A}}^{\top} \mathbf{X}_{A} \mathbf{a} \pm 1\right)=\mathbf{0} \text { or } \mathbf{c}+\lambda(\mathbf{d} \pm 1)=\mathbf{0}
$$

- i.e. next addition is at $\lambda^{+}=\max _{<\lambda_{0}}\left\{-c_{i} /\left(d_{i} \pm 1\right)\right\}$.

[^2]
Lasso path deletions and algorithm

- Alternatively as λ is decreased the next change could be an active $\hat{\beta}_{k}$ hitting zero. Since $\hat{\boldsymbol{\beta}}_{A}=\mathbf{b}-\lambda$ a this occurs the first time that one of the system $\mathbf{b}-\lambda \mathbf{a}=\mathbf{0}$ is true.
- i.e. the next deletion (if any) occurs at $\lambda^{-}=\max _{<\lambda_{0}}\left(b_{i} / a_{i}\right)^{11}$.
- So as λ decreases the next A change depends on which of λ^{+}or λ^{-}is larger.
- Defining $\mathbf{s}=\operatorname{sign}(\boldsymbol{\beta})$, the algorithm is:

1. Find highest λ at which first variable is active, initializing A and s, then repeat...
2. Find next λ (downwards) at which A changes, store it and corresponding $\hat{\boldsymbol{\beta}}$ and update A and \mathbf{s}.

- $\left(\mathbf{X}_{A}^{\top} \mathbf{X}_{A}\right)^{-1}$ looks costly, but by cheaply updating the Cholesky factor of $\mathbf{X}_{A}^{\top} \mathbf{X}_{A}$ on each A change, the cost is only $O\left(p_{A}^{2}\right)$ per step.

[^3]
The Lasso path

- It's easy to code the algorithm in R - here it is applied to the earlier simulated example...

Plotting the Lasso path

- The path is only piecewise linear in λ, but is often plotted as piecewise linear against transformations of λ for convenience...

Lasso practicalities

- Since real covariates (columns of \mathbf{X}) may not be on similar scales, it is usual to standardize them to have zero mean and constant (e.g. unit) variance.
- Whether this really makes the coefficients comparable in a way that justifies adding their magnitudes in the penalty is unclear!
- Any model intercept is certainly different in kind (e.g. its dummy covariate has 0 variance), so rather than include an intercept, it is usual to simply subtract its mean from y.
- To select λ we can divide the data into fit and test sets and optimize prediction error on the test set.
- Note that when $p \gg n$ the $O\left(n^{3}\right)$ computational cost of Lasso is much cheaper than the $O\left(n p^{2}\right)$ cost of ridge regression.

A practical Lasso example

- Hastie et al.** provide an example of predicting log Prostate Specific Antigen from 8 predictors, based on 97 patients' data.

${ }^{* *}$ Hastie, Tibshirani and Friedman (2009) Elements of Statistical Learning https://web.stanford.edu/~hastie/ElemStatLearn/

Prostate Lasso path

- Having standardized the variables ${ }^{\dagger \dagger}$, let's follow Hastie et al. and use the first 67 patients for fit data. The Lasso path is here...

[^4]
Prostate Lasso path - choosing λ

- λ can be chosen to minimise the mean squared error in predicting lpsa using the test set.

... red is for test, black for fit, blue is at minimum test error.
- Note that the predicted values are piecewise linear in λ, making computation cheap and easy.

Lasso with other loss functions

- The preceding Lasso path algorithm is elegant and exact, but does not generalize beyond least squares/quadratic loss.
- For example suppose that we want to model binary data using the negative log likelihood as the loss.
- If we don't need the exact Lasso path for all λ, but are happy to simply evaluate at a finite number of λ values then a very efficient and simple coordinate descent algorithm is effective.
- Coordinate descent updates $\hat{\boldsymbol{\beta}}$ iteratively, updating each $\hat{\beta}_{i}$ in turn while holding the the rest of $\hat{\boldsymbol{\beta}}$ constant, to improve the fitting objective (or possibly leave if unchanged if $\hat{\beta}_{i}=0$).
- Since each update is one dimensional they are very cheap, which offsets the fact that many steps may be needed.

Lasso coordinate descent

- Let $D(\boldsymbol{\beta})$ be a general Loss (preferably with convex contours), e.g. a negative log likelihood for binary data. β_{0} is an intercept.
- The Lasso objective becomes $D(\boldsymbol{\beta})+\lambda \sum_{i=1}^{p}\left|\beta_{i}\right|$.
- As before, for β_{i} to move from zero we require

$$
\left.\frac{\partial D}{\partial \beta_{i}}\right|_{\beta_{i}=0}+\lambda \operatorname{sign}\left(\beta_{i}\right)
$$

to be positive for $\beta_{i}<0$ and negative for $\beta_{i}>0$.

- Therefore, for $i>0$, if $\left|\partial D / \partial \beta_{i}\right|_{0} \mid \leq \lambda$ then $\hat{\beta}_{i}=0$ and otherwise $\operatorname{sign}\left(\hat{\beta}_{i}\right)=-\operatorname{sign}\left(\partial D /\left.\partial \beta_{i}\right|_{0}\right)$
- If $\left|\partial D / \partial \beta_{i}\right|_{0} \mid>\lambda$ we can update $\hat{\beta}_{i}$ by taking the Newton step

$$
\Delta \beta_{i}=-\left(\frac{\partial^{2} D}{\partial \beta_{i}^{2}}\right)^{-1}\left(\frac{\partial D}{\partial \beta_{i}}+\lambda \operatorname{sign}\left(\beta_{i}\right)\right)
$$

Lasso coordinate descent practicalities

- β_{0} is never constrained to zero, or penalized (computationally it is as if we set $\operatorname{sign}\left(\beta_{0}\right)=0$).
- All preceding derivatives are evaluated at the current $\hat{\boldsymbol{\beta}}$, except where stated that β_{i} is set to zero.
- To guarantee convergence we must check that the step from $\hat{\beta}_{i}$ to $\hat{\beta}_{i}+\Delta \beta_{i}$ decreased the penalized loss, halving $\Delta \beta_{i}$ until it does.
- Let $\hat{\boldsymbol{\eta}}=\mathbf{X} \hat{\boldsymbol{\beta}}$. Note that each β_{i} update requires an $O(n)$ update $\hat{\boldsymbol{\eta}} \rightarrow \hat{\boldsymbol{\eta}}+\mathbf{X}[, i] \Delta \beta_{i}$, rather than an $O(n p)$ formation of $\mathbf{X} \hat{\boldsymbol{\beta}}$.
- Hence each cycle through the coefficient updates has $O(n p)$ cost, and it typically takes a few cycles to converge. Contrast this to standard logistic regression, which takes several $O\left(n p^{2}\right)$ steps.

Binary Lasso example

- Here are data from another Hastie et al example, on predicting coronary heart disease in a South African case control study...

Binary Lasso example

- Again the predictors are centred and standardized to unit variance (sdl is systolic blood pressure and ldl cholesterol measurement)
- It makes no sense to center a binary response, chd, and anyway the intercept, β_{0}, removes any need to.
- The negative log likelihood (to within an additive constant) is

$$
D=\sum_{i} \log \left(1+e_{i}^{\eta}\right)-y_{i} \eta_{i}
$$

where $\boldsymbol{\eta}=\mathbf{X} \boldsymbol{\beta}$ (\mathbf{X} augmented with a unit 'intercept' column).

- The coordinate descent algorithm is easily programmed in R following the preceding recipe.

Binary Lasso heart disease results

- Here is the Lasso path, evaluated at 100 evenly space λ values.

λ choice and uncertainty

- Statistical properties of the Lasso are less straightforward than L_{2} penalized ridge regression, in part because of the very sparsity inducing properties that make L_{1} penalization attractive.
- A simple approach to investigating estimator uncertainty is to non-parametrically bootstrap. That is to simulate the process of repeatedly sampling replicate data sets and re-estimating the model, by re-sampling the data in the original dataset.
- Specifically we re-sample n rows of data from the original (n row) dataset, with replacement.
- Model estimation then proceeds for each replicate, with the resulting variability in estimates approximating the sampling variability in $\hat{\boldsymbol{\beta}}$.
- We can select λ to minimise the average loss when predicting the data not included in each bootstrap sample, from the model fitted to that sample.

Practical Lasso bootstrap

- If lagd is a function for binary Lasso fitting, and lob evaluates the corresponding loss, the following R loop performs the bootstrapping, given appropriate arrays, lam, bs and lcv

```
for (b in 1:nb) { ## BS loop
    ii <- sample(1:n,n,replace=TRUE) ## BS indices
    Xb <- X[ii,];yb <- y[ii] ## BS fit data
    Xv <- X[-ii,];yv <- y[-ii] ## BS test data
    for (i in 1:m) { ## loop over lambda values
        fit <- lagd(yb,Xb,lam[i]) ## Lasso fit
        bs[b,,i] <- fit$beta ## store beta
        lcv[i] <- lcv[i] + lob(fit$beta, beta,yv,Xv)/nb
    }
}
```

- It's now easy to plot the cross validated loss, 1 cv , against the λ values in lam, and to use the replicated $\hat{\boldsymbol{\beta}}$ vectors in bs to examine estimator uncertainty.

Lasso bootstrap path uncertainty

- The path and parameter estimate variability is quite high for the heart disease data...

λ choice etc.

- Here is the plot of bootstrap cross validated loss against λ, suggesting $\hat{\lambda} \simeq 9$.

- With the corresponding standard deviations and medians for $\hat{\boldsymbol{\beta}}$

```
> diag(vcov(glm(y~X,family=binomial())))^.5 ## unpenalized logistic regression
(Intercept) Xsbp Xtobacco Xldl Xfamhist Xobesity Xalcohol Xage
    0.12013 
> apply(bs[,,10],2,sd)
    0.12953 0.07955 0.12594 0.12984 0.09182 
> apply(bs[,,10],2,median)
    -0.80316 0.08956 0.26862 0.27685
> coef(glm(y~X,family=binomial()))) ## unpenalized logistic regression
    -0.8453 0.1181 0.3653 0.3827 0.4634 -0.1456 0.0148
```


[^0]: \dagger diagA $<-\operatorname{colSums}(t(X) * \operatorname{solve}(\operatorname{crossprod}(X)+\operatorname{lam}[i] * \operatorname{diag}(p), t(X))$ would be a start.

[^1]: ${ }^{\S}$ Notice how for $\operatorname{sign}\left(\boldsymbol{\beta}_{A}\right)$ to change some $\hat{\beta}_{i}$ must pass through zero, but at zero it has left the active set.

[^2]: ${ }^{I}$ but when a β_{k} is added, its sign is that of $\mathbf{X}_{k}^{\top}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})$.

[^3]: "In finite precision computational practice it is necessary to exclude entries that were added to A at the previous step here

[^4]: ${ }^{\dagger \dagger}$ See ? scale in R.

