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Statistical models

I Statistical model

A mathematical cartoon of how some data, y,
might have been generated

I The model depends on some unknowns, θ, usually
parameters.

I Key features of a statistical model. Given θ

1. the model can be used to simulate data that are like y.
2. in principle the model determines fθ(y), the pdf of y.



Statistical Inference

I Learn about unknown θ from observed data y.
I 4 main questions.

1. What value of θ is most consistent with y?
2. What range of values of θ are consistent with y?
3. Is some specified value of θ, or restriction on θ, consistent

with y?
4. Are any values of the θ consistent with y?

I Answers to these questions are provided by
1. Point estimation.
2. Interval estimation.
3. Hypothesis testing (more generally model selection).
4. Model checking.



2 approaches to inference

I There are two main approaches to inference. We will need
both.

I Maximum likelihood estimation.
I θ are treated as fixed states of nature, about which we want

to learn.
I Use the notion that θ values are ‘likely’ if they make y

appear ‘probable’.
I Bayesian inference.

I The unknowns, θ, are treated as random variables.
I Our knowledge of θ, described by a pdf, is updated using y.



Likelihood

I The log pdf of y evaluated at the observed y, considered
as a function of θ, is the log likelihood function l(θ).

I i.e. l(θ) = log fθ(y) where y is the actual observed data.
I Values of θ have relatively high log likelihood if they make

the observed data appear relatively probable.
I Parameter values that are plausible given the data should

have relatively high log likelihood.
I Notice that l(θ) is defined using the marginal distribution of

the observed data y, only.



Maximum Likelihood Estimation

I The maximum likelihood estimate (MLE) of θ is

θ̂ = arg max
θ

l(θ)

I θ̂ is the value of θ ‘most consistent’ with the data.
I In general θ̂ is found by numerical optimization.



Interval estimation

I How would θ̂ vary under repeated sampling of the data, y?
I Treating y as random and considering the estimator θ̂, then

as n = dim(y) →∞

θ̂ ∼ N
(
θtrue, Î−1

)
where Î = − ∂2l

∂θ∂θT

I Mild regularity conditions apply! The expected information
can be substituted.

I Confidence intervals for the elements of θ can be obtained
directly from this result.



Hypothesis testing

I Consider testing H0 : r(θ) = 0 for p dimensional function r .
I Define

θ̂0 = arg max
θ

l(θ) subject to r(θ) = 0

I Under repeated re-sampling of y, then in the limit n →∞

2{l(θ̂)− l(θ̂0)} ∼ χ2
p

if H0 is true. Otherwise 2{l(θ̂)− l(θ̂0)} > χ2
p.

I A test based on this result is known as a generalized
likelihood ratio test (GLRT).

I The test can be used to compare nested models.
I Note that the GLRT result breaks down if H0 restricts θ to

an edge of the feasible parameter space.



Model comparison by AIC

I The log likelihood ratio used in the GLRT measures the
discrepancy between two models.

I Ideally we would like to select the model which has the
minimum discrepancy from the truth.

I Let ft(y) be the true pdf of y. The Kullback-Leibler distance
is the expected log likelihood ratio of model and truth

K (fθ̂, ft) =

∫
{log ft(y)− log fθ̂(y)}ft(y)dy

I Selecting the model that minimizes an estimate of K ,
amounts to selecting the model that minimizes

AIC = −2l(θ̂) + 2dim(θ).



Random effects

I In many models y’s distribution depends on unobserved
random variables, z, and only fθ(y, z) is straightforward.

I Variables like z are known as random effects (unless they
are simply ‘missing data’ from the observation of y).

I To obtain a likelihood we need

fθ(y) =

∫
fθ(y, z)dz

. . . which is often intractable.
I Common solutions. . .

1. If Ez|y log fθ(z, y) is tractable, then the EM algorithm allows
l(θ) = log fθ(y) to be maximized without evaluating log fθ(y).

2. Alternatively, the integral can be approximated.



Laplace approximation

I Let ẑ denote the maximizer of fθ(y, z) for a given y.
I Let

∇2
z log fθ =

∂2 log fθ(y, z)

∂z∂zT

∣∣∣∣
ẑ

I Then by Taylor’s theorem

log fθ(y, z) ' log fθ(y, ẑ) + (z− ẑ)T∇2
z log fθ(z− ẑ)/2

⇒ fθ(y, z) ' fθ(y, ẑ)e−
1
2 (z−ẑ)T(−∇2

z log fθ)(z−ẑ)

⇒ fθ(y) ' fθ(y, ẑ)
(2π)dim(z)/2

√
| − ∇2

z log fθ|
since a MVN pdf integrates to 1.



Model checking

I Does the model fit at all?
I If it does not, then all the preceding theory is useless.
I All model checking amounts to looking for evidence that

the observed data do not come from the pdf specified by
the model.

I i.e. we look for evidence that

y � fθ̂(y).

I Formal goodness of fit testing is sometimes useful, but
won’t indicate how a model fails.

I Graphical checks are often helpful, as they can help to
pin-point the way in which a model fails.



Bayesian inference

I If your target of inference is a random variable, then you
are being Bayesian.

I We must specify a prior distribution θ ∼ f (θ) as part of
modelling process.

I The prior is updated using the observed y via Bayes rule.
I Bayes rule is a re-arrangement of f (θ, y) = f (y, θ)

f (θ|y)f (y) = f (y|θ)f (θ)

⇒ f (θ|y) = f (y|θ)f (θ)/f (y)

I f (y) is usually intractable, but it is a constant, so . . .
1. Sometimes the form of f (θ|y) can be recognised from

f (y|θ)f (θ).
2. It is possible to simulate from f (θ|y) without knowing f (y).



The MLE Bayesian connection

I Suppose we use improper uniform priors f (θ) = constant.
I Then f (θ|y) ∝ f (y|θ). i.e. the posterior distribution, f (θ|y)

is directly proportional to the likelihood, f (y|θ).
I So the most probable value of θ according to the posterior

will be the MLE, θ̂.
I Actually, as the sample size n →∞ the likelihood

dominates any prior that is non-zero over all the parameter
space. Hence the posterior modes → θ̂.

I Furthermore f (θ|y) → k exp{−(θ − θ̂)TI(θ − θ̂)/2} as
n →∞ for any regular posterior about which y is
informative, by Taylor’s theorem.

I i.e. in the large sample limit θ|y ∼ N(θ̂, I−1).



Linear predictor regression models

I In this course we will consider only statistical models in
which we want to model observations of a response
variable, y , using some predictor variables that accompany
each observation.

I We will consider only the case in which E(yi) is completely
determined by a single variable ηi , which depends flexibly
on the predictor variables, but only linearly on the model
parameters and any random effects.

I ηi is known as a linear predictor.
I We will further assume that given ηi the yi are independent.
I Inference with these models uses the preceding theory, but

numerical estimation, model specification and checking are
greatly facilitated by the special structure.


