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mgcv, gamm4

◮ mgcv is a package supplied with R for generalized additive
modelling, including generalized additive mixed models.

◮ The main GAM fitting routine is gam.

◮ bam provides an alternative for very large datasets.

◮ The main GAMM fitting is gamm which uses PQL based on
package nlme.

◮ gamm4 is an R package available from cran.r-project.org

supplying gamm4, a version of gamm which uses lme4 for
GAMM fitting, and avoids PQL. It is really an extension
package for mgcv.

◮ The packages are loaded into R using e.g. library(mgcv).



mgcv help

◮ To get ‘overview’ help type help.start() within R and
follow the Packages link to mgcv.

◮ The help page mgcv-package is a good page to start to get
an overview.

◮ Note other overview pages such as gam.models and
gam.select.

◮ All user visible functions are documented.

◮ Once a library is loaded its help pages are accessible via, e.g.
help("gam") or ?gam.

◮ Technical references on the underlying methods are given in
?gam and via citation("mgcv").

◮ Wood (2006) Generalized additive models:an introduction

with R CRC/Taylor&Francis provides further information.



gam

◮ Use of the function gam is similar to the use of function glm,
except for the following

1. The model formula can contain smooth terms s and tensor
product smooth terms te in the linear predictor.

2. There are extra arguments controlling smoothing parameter
estimation, notably method for choosing between "REML",
"ML", "GCV.Cp" and "GACV.Cp" smoothness selection.

3. The family argument can also be Tweedie or negbin.

◮ gam returns and object of class "gam", which can be further
interrogated using method functions such as print, summary,
anova, plot, predict, residuals etc.

◮ The front end design of gam and its associated functions is
based heavily on Trevor Hastie’s original gam function for S.
The underlying model representation and numerical methods
are very different, however, being based on the penalized
regression spline methods covered in this course.



family arguments usable with gam

◮ gaussian (default) is useful for real valued response data.

◮ Gamma is useful for strictly positive real valued data. The default link is only
useful in some waiting time applications, and the log link is more often used.

◮ poisson is useful when the response is count data of some sort.

◮ binomial is used most often for binary (logistic) regression, but is applicable to
any response that is the number of successes from a known number of trials.

◮ inverse.gaussian is for strictly positive real response variables: useful for
various ‘time to event’ data.

◮ quasi does not define a full distribution, but allows inference when only the
mean variance relationship can be well approximated. quasipoisson and
quasibinomial are special cases. Not useable with likelihood based smoothness
selection.

◮ Tweedie is an alternative to quasi when var(y) = φµp , 1 < p < 2, and a full
distribution is required (for a non-negative real response).

◮ negbin is useful for overdispersed count data, but computation is slow.



Specifying models: some examples

◮ yi = f (xi ) + ǫi where ǫi ∼ N(0, σ2)

gam(y ~ s(x))

◮ log{E(yi )} = f1(xi ) + f2(zi) + f3(vi) + wi where yi ∼ Poi.

gam(y ~ s(x) + s(z) + s(v) + w,family=poisson)

◮

√

E(yi) = f1(timei , distancei ) + f2(wi ), yi ∼ gamma.

gam(y ~ te(time,distance) + s(w),

family=Gamma(link=sqrt))

uses a scale invariant tensor product smooth for f1.

◮ logit{E(yi )} = wi f1(xi , zi) + f2(vi ), yi ∼ binary.

gam(y ~ s(x,z,by=w) + s(v),family=binomial)

Here f1 is isotropic (a thin plate spline).



s term details

◮ s(x,k=20,id=2,bs="tp") is an example smooth specifier,
used in a formula. (Some) arguments are . . .

x is the covariate of the smooth (can have any name!): some
types of smooth can have several covariates (e.g. ”tp”).

bs is the type of basis-penalty smoother.
k is the basis dimension for the smooth (before imposing any

identifiability constraints).
id used to allow different smooths to be forced to use the same

basis and smoothing parameter.
sp allows the smoothing parameter to be supplied.
fx if TRUE then the term is unpenalized.
by allows specification of interactions of the smooth with a factor

or metric variable.
m specifies the penalty order for some bases.



Smooth classes

◮ Built in smooth classes (i.e. options for the bs argument of s)
are:

"cr" a penalized cubic regression spline (”cc” for cyclic version).
"ps" Eilers and Marx style P-splines (”cp” for cyclic).
"ad" adaptive smoothers based on ”ps”.
"tp" Optimal low rank approximation to thin plate spline, any

dimension and permissable penalty order is possible.

◮ In addition the "re" class implements simple random effects.
For example s(x,z,bs="re") specifies a random effect Zb

where b ∼ N(0, Iσ2
b). Z is given by model.matrix(~x:z-1).

This approach is slow for large numbers od random effects,
however.

◮ New classes can be added. See ?smooth.construct



Tensor product smoothing in mgcv

◮ Tensor product smooths are constructed automatically from
marginal smooths of lower dimension. The resulting smooth
has a penalty for each marginal basis.

◮ mgcv can construct tensor product smooths from any single

penalty smooths useable with s terms.

◮ te terms within the model formula invoke this construction.
For example:

◮ te(x,z,v,bs="ps",k=5) creates a tensor product smooth of
x, z and v using rank 5 P-spline marginals: the resulting
smooth has 3 penalties and basis dimension 125.

◮ te(x,z,t,bs=c("tp","cr"),d=c(2,1),k=(20,5)) creates
a tensor product of an isotropic 2-D TPS with a 1-D smooth
in time. The result is isotropic in x,z, has 2 penalties and a
basis dimension of 100. This sort of smooth would be
appropriate for a location-time interaction.



Simple data example

◮ To illustrate the basics of gam, consider a very simple dataset
relating the timber volume of cherry trees to their height and
trunk girth.

Girth

65 70 75 80 85

8
12

16
20

65
75

85

Height

8 10 12 14 16 18 20 10 20 30 40 50 60 70

10
30

50
70

Volume



trees initial gam fit

◮ A possible model is

log(µi ) = f1(Heighti )+f2(Girthi), Volumei ∼ Gamma(µi , φ)

◮ Using rank 10 thin plate regression splines as the smoothers. . .

library(mgcv)

ct1 <- gam(Volume ~ s(Height) + s(Girth),

family=Gamma(link=log),data=trees)

estimates the model with default GCV smoothness selection.

◮ The results are stored in class "gam" object ct1.

◮ For the full contents of a "gam" object see ?gamObject



print.gam

◮ Typing ct1 causes R to pass ct1 to the print method
function.

◮ For class "gam" object ct1 this means printing by print.gam.
> ct1

Family: Gamma

Link function: log

Formula:

Volume ~ s(Height) + s(Girth)

Estimated degrees of freedom:

1.0000 2.4222 total = 4.422254

GCV score: 0.008082356

◮ Notice how the EDFs for each term and the GCV score are
reported.



plot.gam

◮ par(mfrow=c(1,2))

plot(ct1,residuals=TRUE,pch=19) ## calls plot.gam
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◮ partial residuals for fj are weighted working residuals from PIRLS added to f̂j .

Systematic departure from fj indicates a problem.

◮ Rug plot shows values of predictors.

◮ EDF for term reported in y axis lable.

◮ 95% Bayesian CIs shown (constraint causes vanishing CI on left).



Basic model checking: gam.check

◮ > gam.check(ct1) ## note QQ beefed up for next mgcv version

## smoothness selection convergence info omitted
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◮ Deviance residuals are used: often approximately normal.

◮ Plots are utterly useless for binary data!



residuals

◮ Other residual plots should be examined. e.g.
plot(fitted(ct1),residuals(ct1))

plot(trees$Height,residuals(ct1))
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◮ . . . OK, but possibly the short trees are less variable than
Gamma is suggesting.

◮ Alternatives for residual argument type are "deviance"

(default), "pearson","scaled.pearson","working" and
(the unstandardized) "response".



Checking basis dimensions k

◮ Can simply increase suspect k and see if fit measures
change. . .
> gam(Volume~s(Height)+s(Girth,k=20),

+ family=Gamma(link=log),data=trees)

Family: Gamma

Link function: log

Formula:

Volume ~ s(Height) + s(Girth, k = 20) ## increase k from 10 to 20

Estimated degrees of freedom:

1.0000 2.4248 total = 4.424817

GCV score: 0.008083182

◮ . . . no evidence for change in fit.

◮ Note that a 20 dimensional basis includes a larger space of
EDF 2.5 functions, than a 10 dimensional basis. . .



Cheaper k check

◮ Refitting complex models with increased k can be costly.
◮ A cheaper alternative is to check the adequacy of k by

checking for unmodelled pattern in the residuals. . .
> rsd <- residuals(ct1,type="deviance")

> gam(rsd~s(Girth,k=20)-1,data=trees,select=TRUE)

Family: gaussian

Link function: identity

Formula:

rsd ~ s(Girth, k = 20) - 1

Estimated degrees of freedom:

4.839e-09 total = 4.839038e-09

GCV score: 0.005940881

◮ . . . no signal detected ⇒ k large enough for Girth! (select
allows 0 model to be selected, -1 suppresses intercept).



Is smoothness selection robust?

◮ To check robustness of smoothness selection, fit with an
alternative smoothness selection criterion. e.g.
> ct1 <- gam(Volume~s(Height)+s(Girth),

+ family=Gamma(link=log),data=trees,method="ML")

> ct1

...

Formula:

Volume ~ s(Height) + s(Girth)

Estimated degrees of freedom:

1.0000 2.5097 total = 4.509708

ML score: 69.64346

◮ . . . EDFs much the same.

◮ A very different criterion is best (i.e. "ML" or "REML" versus
"GCV.Cp" or "GACV.Cp").

◮ Remember:likelihood based methods tend to be more robust.



summary.gam

◮ Once checking suggests that the model is acceptable, then we
can proceed to more formal inference. e.g.

◮ > summary(ct1)

...

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.27568 0.01493 219.4 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Approximate significance of smooth terms:

edf Ref.df F p-value

s(Height) 1.00 1.000 31.04 7.04e-06 ***

s(Girth) 2.51 3.150 211.93 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

R-sq.(adj) = 0.974 Deviance explained = 97.8%

ML score = 69.643 Scale est. = 0.0069092 n = 31



anova.gam

◮ If you must have p-values, then anova is better for any model
containing factor variables
> anova(ct1)

Family: Gamma

Link function: log

Formula:

Volume ~ s(Height) + s(Girth)

Approximate significance of smooth terms:

edf Ref.df F p-value

s(Height) 1.00 1.00 31.04 7.04e-06

s(Girth) 2.51 3.15 211.93 < 2e-16



β̂: coef and vcov

◮ The estimated coefficients, β̂, and the Bayesian covariance
matrix for β|y. . .
> b <- coef(ct1) ## estimated coefficients

> V <- vcov(ct1) ## Bayesian cov matrix

> b[1:4] ## first 4 coefs

(Intercept) s(Height).1 s(Height).2 s(Height).3

3.275684e+00 -1.449735e-07 1.936084e-07 -8.372687e-08

> V[1:4,1:4]

(Intercept) s(Height).1 s(Height).2 s(Height).3

(Intercept) 2.228777e-04 1.938385e-23 -5.369032e-23 7.371339e-24

s(Height).1 1.938385e-23 1.172984e-08 1.944762e-09 -1.629145e-09

s(Height).2 -5.369032e-23 1.944762e-09 2.797615e-08 -6.769112e-09

s(Height).3 7.371339e-24 -1.629145e-09 -6.769112e-09 3.914123e-09

◮ vcov(ct1,freq=TRUE) extracts the frequentist covariance
matrix for β̂.



The smoothing parameters λ

◮ We can extract the λi estimates, and, for RE/ML smoothness
selection, the covariance matrix of the log λi estimates.
> ct1$sp

s(Height) s(Girth)

5.838785e+04 2.164997e-01

> sp.vcov(ct1)

[,1] [,2] [,3]

[1,] 3.596675e+04 -0.1227099 0.008221598

[2,] -1.227099e-01 1.4489860 0.103279838

[3,] 8.221598e-03 0.1032798 0.071741386

◮ Alternatively, extract information as (root) variance
components . . .
> gam.vcomp(ct1)

Standard deviations and 0.95 confidence intervals:

std.dev lower upper

s(Height) 1.175867e-05 2.267390e-86 6.098041e+75

s(Girth) 1.748033e-02 5.683986e-03 5.375839e-02

scale 7.969330e-02 6.129519e-02 1.036137e-01

Rank: 3/3



Predicting at new covariate values: predict.gam

◮ predict(ct1) returns the linear predictor corresponding to
the original data.

◮ predict.gam’s main use is to predict from the model, given
new values for the predictor variables. . .
> ## create dataframe of new values...

> pd <- data.frame(Height=c(75,80),Girth=c(12,13))

> predict(ct1,newdata=pd)

1 2

3.101496 3.340104 ## model predictions (linear predictor scale)

◮ predict has several useful arguments. e.g.
> predict(ct1,newdata=pd,se=TRUE)

$fit

1 2

3.101496 3.340104

$se.fit

1 2

0.02057014 0.02453761



More predict.gam

◮ Predictions can also be returned by model term. . .
> predict(ct1,newdata=pd,se=TRUE,type="terms")

$fit

s(Height) s(Girth)

1 -0.01616144 -0.1580258499

2 0.06464663 -0.0002267264

$se.fit

s(Height) s(Girth)

1 0.002901765 0.01407485

2 0.011603897 0.01617026

attr(,"constant")

(Intercept)

3.275684

◮ . . . or on the response scale: predict(ct1,pd,type="response").



Linear prediction matrices: lpmatrix

◮ predict.gam can return the matrix mapping the estimated
coefficients to the linear predictor. e.g.
> Xp <- predict(ct1,newdata=pd,type="lpmatrix")

> Xp%*%coef(ct1) ## result same as predict(ct1,pd)

[,1]

1 3.101496

2 3.340104

> Xp%*%vcov(ct1)%*%t(Xp) ## Bayesian cov matrix for predictions.

1 2

1 0.0004231306 0.0003617439

2 0.0003617439 0.0006020943

◮ Obviously predict(ct1,type="lpmatrix") returns the original
model matrix used for fitting (take a look at the code for
model.matrix.gam sometime).

◮ Linear predictor matrices are the key to inference about any

quantity that can be predicted by the model. More later.



More visualization: customizing plot.gam

◮ plot.gam has quite a few options. Here are three examples

1. The component-wise CIs have good coverage, except when
smooths are close to straight lines. A solution is to include the
uncertainty in the intercept when plotting.

2. Each smooth can have its own y axis scale.
3. Some people like their confidence regions to be shaded. . .

par(mfrow=c(1,2))

plot(ct1,shade=TRUE,seWithMean=TRUE,scale=0)
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More visualization: vis.gam

◮ Sometimes it is helpful to see how the linear predictor or
expected response would vary with 2 predictors, if all the
others were held fixed at some value. vis.gam allows this.

◮ vis.gam(ct1,theta=30,ticktype="detailed")

vis.gam(ct1,theta=-45,ticktype="detailed",se=2)

vis.gam(ct1,plot.type="contour")
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Alternative tree models

◮ Would a 2D smooth of Height and Girth be better?
> ct2 <- gam(Volume~s(Height,Girth,k=25),

+ family=Gamma(link=log),data=trees,method="ML")

> ct2

...

Estimated degrees of freedom:

4.3815 total = 5.381507

ML score: 71.01151

> AIC(ct1,ct2)

df AIC

ct1 5.509708 142.8381

ct2 6.381507 147.0865

◮ . . . apparently not. Model has more degrees of freedom for a
lower marginal likelihood, and the AIC is worse than before.

◮ But an isotropic smooth is not really appropriate here.



A tensor product smooth for trees

◮ > ct2 <- gam(Volume~te(Height,Girth),

+ family=Gamma(link=log),data=trees,method="ML")

> ct1;ct2

...

Estimated degrees of freedom:

1.0000 2.5097 total = 4.509708

ML score: 69.64346

...

Estimated degrees of freedom:

3 total = 4.000024

ML score: 66.71353

> AIC(ct1,ct2)

df AIC

ct1 5.509708 142.8381

ct2 5.000024 143.4271

> 2*66.71353+10 ## "AIC" ct2

[1] 143.4271

> 2*69.64346+8 ## "AIC" ct1

[1] 147.2869

◮ . . . this is weird . . .



Which AIC is correct?

◮ AIC(ct1,ct2) selects the additive model, ct1. But ct1 has
lower marginal likelihood and more degrees of freedom,
implying a higher AIC. Consider the two AIC computations. . .

1. AIC(ct1,ct2) is based on the log likelihood of β̂ treated as
fixed effects, but with the model EDF in place of dim(β).

2. Alternatively, base AIC on the marginal likelihood of the fixed
parameters of the model with the random effect components
of the smooths integrated out. Then the appropriate degrees
of freedom is the number of fixed effects.

◮ Why do the 2 give different answers and which is ‘right’?

◮ The difference lies in the model assumed. For option 1, we are
being Bayesian, and would expect broadly the same smooths
on resampling of the data. For option 2 we are implicitly
being fully frequentist and assuming that the smooths would
look completely different on resampling.

◮ So, use option 2 if really believe its model. I don’t.



Other alternative models

◮ Having rejected a 2D smooth model, let’s consider a couple of
simple alternatives, based on discretizing Height.
trees$Hclass <- factor(floor(trees$Height/10)-5,

labels=c("Small","Medium","Large"))

ct3 <- gam(Volume~s(Girth)+Hclass,

family=Gamma(link=log),data=trees,method="ML")

par(mfrow=c(1,2))

plot(ct3,all.terms=TRUE)
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◮ Again AIC etc, suggest that this is no improvement.



A random effect for Height

◮ Finally try log µi = f (Girthi ) + bk if tree i is in height class
k. The bk are i.i.d. N(0, σ2

b) and Volumei ∼ Gamma(µi , φ).
> ct4 <- gam(Volume~s(Girth)+s(Hclass,bs="re"),

+ family=Gamma(link=log),data=trees,method="ML")

> ct4

...

Estimated degrees of freedom:

2.4876 1.6294 total = 5.117026

ML score: 79.12945

> gam.vcomp(ct4)

Standard deviations and 0.95 confidence intervals:

std.dev lower upper

s(Girth) 0.02108980 0.00615994 0.0722052

s(Hclass) 0.07889864 0.02726095 0.2283484

scale 0.09911287 0.07492786 0.1311042

◮ Again AIC etc suggest that this is a worse model.



Summary

◮ gam is like glm, but with extra facilities to allow smooth
functions of covariates in the linear predictor.

◮ Residual checking is as for a GLM, but plot.gam plots the
smooths, not residual plots.

◮ Additional model checking should check the smoothing basis
dimension choice, and the reasonableness of the smoothness
selection.

◮ Sometimes model selection is similar to model selection for
ordinary GLMs.


