Linear models

Simon Wood
 Mathematical Sciences, University of Bath, U.K.

Linear models

- We have data on a response variable, y, the variability in which is believed to be partly predicted by data on some predictor variables, $x_{1}, x_{2} \ldots$
- We model this using a linear model

$$
y_{i}=\beta_{0}+x_{i 1} \beta_{1}+x_{i 2} \beta_{2}+\ldots+x_{i m} \beta_{m}+\epsilon_{i}
$$

- The parameters, β_{j}, must be estimated from data
- The random variables, ϵ_{i}, account for the variability in the response not explained by the predictors
- Assumptions: the ϵ_{i} 's have zero mean $\left(\mathbb{E}\left(\epsilon_{i}\right)=0\right)$ and constant variance σ^{2}. They are also independent: knowing the value of ϵ_{i} tells you nothing new about that value of $\epsilon_{j \neq i}$.

Linear model features

- A key difference in kind between β_{j} 's and ϵ_{i} 's is this: if a replicate data set were generated the β_{j} 's would be the same, but the ϵ_{i} 's would all be different.
- For some purposes (H_{0} testing etc.) we assume that the ϵ_{i} 's are Normally distributed.
- Why linear model?
- Because the response is a (weighted) linear combination of the parameters and the random error.
- The model can depend non-linearly on the predictors.

LM example 1

- Fitting a straight line through the origin. (e.g. simple model relating birth rate, y, and population size, x).
- Model might be:

$$
y_{i}=x_{i} \beta+\epsilon_{i} \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

- i.e.

LM examples 2

- Fitting a 'plane' to x, z, y data

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} z_{i}+\epsilon_{i} \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

- Fitting a polynomial to x, y data. e.g. the cubic

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\beta_{3} x_{i}^{3}+\epsilon_{i} \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

LM example 3

Suppose you have grouped data. A simple model might be something like

$$
\begin{equation*}
y_{i}=\beta_{j}+\epsilon_{i} \text { if } y_{i} \text { is from group } j \tag{1}
\end{equation*}
$$

LM example 3 continued

- Why is this a linear model? Define dummy variables:

$$
x_{i j}=\left\{\begin{array}{cc}
1 & \text { if } y_{i} \text { in group } j \\
0 & \text { otherwise }
\end{array}\right.
$$

then, $y_{i}=\beta_{j}+\epsilon_{i}$ if y_{i} is from group j, becomes \ldots

$$
y_{i}=x_{i 1} \beta_{1}+x_{i 2} \beta_{2}+x_{i 3} \beta_{3}+\epsilon_{i}
$$

- Variables that group data are known as factors. The group labels are known as levels. Statistical software treats such variables specially and generates corresponding dummy variables automatically.

Matrix vector form 1

- Linear model theory, and the understanding of mixed modelling extensions of linear models, requires that the linear model be written in matrix vector notation.
- To see how this works consider writing out the model,

$$
\begin{gathered}
y_{i}=\beta_{1}+x_{i} \beta_{2}+\epsilon_{i}, \quad \text { for all } i \ldots \\
y_{1}=\beta_{1}+x_{1} \beta_{2}+\epsilon_{1} \\
y_{2}=\beta_{1}+x_{2} \beta_{2}+\epsilon_{2} \\
\cdot \\
\cdot \\
\cdot \\
y_{n}=\beta_{1}+x_{n} \beta_{2}+\epsilon_{n}
\end{gathered}
$$

Matrix vector form 2

- In matrix vector form this system of equations is

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdot \\
\cdot \\
y_{n}
\end{array}\right]=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\cdot & \cdot \\
\cdot & \cdot \\
1 & x_{n}
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]+\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\cdot \\
\cdot \\
\epsilon_{n}
\end{array}\right]
$$

- Generally this is written:

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

where \mathbf{X} is known as the model matrix, and $\mathbf{X} \boldsymbol{\beta}(=\boldsymbol{\eta})$ is the linear predictor.

Identifiability

- Consider the 'balanced one-way ANOVA model':

$$
y_{i j}=\alpha+\beta_{i}+\epsilon_{i j}
$$

where $i=1 \ldots 3$ and $j=1 \ldots 2$.

- In matrix-vector form...

$$
\left[\begin{array}{l}
y_{11} \\
y_{12} \\
y_{21} \\
y_{22} \\
y_{31} \\
y_{32}
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\alpha \\
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right]+\left[\begin{array}{l}
\epsilon_{11} \\
\epsilon_{12} \\
\epsilon_{21} \\
\epsilon_{22} \\
\epsilon_{31} \\
\epsilon_{32}
\end{array}\right]
$$

- Problem! $\boldsymbol{\beta}^{\mathrm{T}}=\left(\alpha+k, \beta_{1}-k, \beta_{2}-k, \beta_{3}-k\right)$ gives the same $\mathbf{X} \boldsymbol{\beta}$, for any k. \mathbf{X} is rank deficient: there is an infinite set of best fit parameter!

Identifiability constraints

- As we have seen, models involving factors can suffer from identifiability problems.
- A sure sign of this is that the model matrix, \mathbf{X}, is column rank deficient: some of its columns can be made up of linear combinations of the others.
- To deal with this problem, apply just enough linear constraints on the parameters that the problem goes away.
- The simplest constraint is to set just enough parameters to zero that the model becomes identifiable.

Identifiability constraints

- For the 1-way ANOVA model we might set $\beta_{1}=0$, so:

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\alpha \\
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\alpha \\
\beta_{2} \\
\beta_{3}
\end{array}\right]
$$

- The reduced $\mathbf{X} \boldsymbol{\beta}$ can match any value of the unreduced version, given the right choice of parameter values.
- Note also that the right hand \mathbf{X} has full column rank.
- Imposition of constraints is automatic in modelling software, but interpretation requires awareness of it, and that there are many alternative constraints possible.

LM theory

- So, for any linear model, we have $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ where $\epsilon \sim N\left(\mathbf{0}, \mathbf{I} \sigma^{2}\right)$, and \mathbf{X} is full rank $n \times p$.
- This implies a log likelihood ${ }^{1}$

$$
I\left(\boldsymbol{\beta}, \sigma^{2}\right)=-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}
$$

- Hence the maximum likelihood estimates of β are

$$
\hat{\boldsymbol{\beta}}=\arg \min _{\beta}\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}
$$

i.e. the least squares estimates of β.

- Formally $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y}$ (never used for computation!).
- $\|\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}}\|^{2}$ is known as the residual sum of squares.
${ }^{1}\|\mathbf{v}\|^{2}=\mathbf{v}^{\mathrm{T}} \mathbf{v}$ i.e. the squared Euclidian length of \mathbf{v}

LM inference

- Standard likelihood results give $\hat{\boldsymbol{\beta}} \sim N\left(\boldsymbol{\beta},\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \sigma^{2}\right)$, but this result is exact in this case, not just approximate.
- Similarly the GLRT result is exact. Let \mathbf{X}_{0} be the $n \times p_{0}$ null model matrix (nested in \mathbf{X}), then if the null model is correct

$$
\frac{\left\|\mathbf{y}-\mathbf{X}_{0} \hat{\boldsymbol{\beta}}_{0}\right\|^{2}-\|\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}}\|^{2}}{\sigma^{2}} \sim \chi_{p-p_{0}}^{2}
$$

- ... but unfortunately these general MLE results are only exact if σ^{2} is known, which is unusual.
- $\hat{\sigma}^{2}=\|\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}}\|^{2} /(n-p)$ is unbiased (but is not the MLE).
- It turns out that exact results can be obtained even when $\hat{\sigma}^{2}$ is used in place of σ^{2}.

LM inference 2

- Suppose that that $\hat{\sigma}_{\hat{\beta}_{i}}^{2}$ is the estimated variance of $\hat{\beta}_{i}$ as read from the $i^{\text {th }}$ leading diagonal element of $\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \hat{\sigma}^{2}$.
- An exact result can be used for inference about β_{i}

$$
\frac{\hat{\beta}_{i}-\beta_{i}}{\hat{\sigma}_{\hat{\beta}_{i}}} \sim t_{n-p}
$$

- Similarly, for model comparison, under the null model

$$
\frac{\left(\left\|\mathbf{y}-\mathbf{X}_{0} \hat{\boldsymbol{\beta}}_{0}\right\|^{2}-\|\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}}\|^{2}\right) /\left(p-p_{0}\right)}{\hat{\sigma}^{2}} \sim F_{p-p_{0}, n-p}
$$

is an exact result to use for hypothesis testing.

The Influence Matrix

- Let $\mu_{i}=E\left(y_{i}\right)$. Clearly $\hat{\mu}=\mathbf{X} \hat{\boldsymbol{\beta}}$, and hence $\hat{\mu}=\mathbf{X}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y}$.
- $\mathbf{A}=\mathbf{X}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}}$ is the influence matrix or hat matrix.
- The leading diagonal elements of \mathbf{A} are a measure of how influential individual data points are in the model fit.
- A also has some interesting properties

$$
\text { 1. } \mathbf{A} \mathbf{A}=\mathbf{X}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{X}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}}=\mathbf{X}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}}=\mathbf{A} .
$$

2. $\operatorname{tr}(\mathbf{A})=\operatorname{tr}\left(\mathbf{X}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}}\right)=\operatorname{tr}\left(\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{X}\right)=\operatorname{tr}\left(\mathbf{I}_{p}\right)=p$.
3. Clearly $\partial \hat{\mu}_{i} / \partial \boldsymbol{y}_{i}=A_{i j}$.

LM checking

- The residuals are $\hat{\epsilon}_{i}=y_{i}-\hat{\mu}_{i}$.
- If the model fits they should be approximately i.i.d $N\left(0, \sigma^{2}\right)$.
- The exact distribution can be obtained from the fact that $\hat{\boldsymbol{\epsilon}}=(\mathbf{I}-\mathbf{A}) \mathbf{y} \ldots$

$$
\hat{\boldsymbol{\epsilon}} \sim N\left(\mathbf{0},(\mathbf{I}-\mathbf{A}) \sigma^{2}\right)
$$

This can be used to standardize the residuals to have exactly constant variance, if the ϵ_{i} have constant variance.

- Residuals are plotted to check that they

1. have constant variance, rather than variance varying with μ_{i} or some predictor.
2. are independent, rather than varying with μ_{i} or some predictor, or being serially correlated w.r.t to some predictor.
3. are approximately normally distributed.

Stable $\hat{\boldsymbol{\beta}}$ computation

- Can QR decompose X

$$
\mathbf{X}=\mathbf{Q}\left[\begin{array}{l}
\mathbf{R} \\
\mathbf{0}
\end{array}\right]=\mathbf{Q}_{1} \mathbf{R}
$$

- \mathbf{Q} is $\perp . \mathbf{Q}_{1}$ is its first p columns. \mathbf{R} is $p \times p$ upper triangular.
- Hence for any vector, $\mathbf{v},\|\mathbf{Q v}\|^{2}=\|\mathbf{v}\|^{2}$, so

$$
\begin{aligned}
\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2} & =\left\|\mathbf{Q}^{\mathrm{T}} \mathbf{y}-\mathbf{Q}^{\mathrm{T}} \mathbf{X} \boldsymbol{\beta}\right\|^{2}=\left\|\mathbf{Q}^{\mathrm{T}} \mathbf{y}-\left[\begin{array}{c}
\mathbf{R} \\
\mathbf{0}
\end{array}\right] \boldsymbol{\beta}\right\|^{2} \\
& =\left\|\mathbf{Q}_{1}^{\mathrm{T}} \mathbf{y}-\mathbf{R} \boldsymbol{\beta}\right\|^{2}+\left\|\mathbf{Q}_{2}^{\mathrm{T}} \mathbf{y}\right\|^{2}
\end{aligned}
$$

- Since $\left\|\mathbf{Q}_{2}^{\mathrm{T}} \mathbf{y}\right\|^{2}$ does not depend on $\boldsymbol{\beta}$ then

$$
\hat{\boldsymbol{\beta}}=\mathbf{R}^{-1} \mathbf{Q}_{1}^{\mathrm{T}} \mathbf{y}
$$

Linear models in R

- R has extensive facilities for linear modelling.
- The main linear model fitting function is 1 m .
- The basic approach is:

1. The model structure is specified using a model formula, supplied to lm.
2. 1 m fits the model, dealing with identifiability constraints, model matrix construction and fitting internally, and returns a fitted model object.
3. The fitted model object is interrogated using methods functions to e.g. extract model summaries, perform F-ratio testing, produce residual plots, extract estimates etc.

- This basic approach is the same for linear models, generalized linear models, generalized linear mixed models, generalized additive models, etc.

Model matrices in R

- In R a model matrix, \mathbf{X}, is usually set up automatically, using a model formula. Usually this is done 'behind the scenes' when a modelling function is used, but for now we'll look at the process explicitly.
- As an example consider data frame hubble in the library gamair. This contains Velocities, y, and Distances, x of 24 galaxies (relative to us).
- We might try modelling these data with a straight line $\mathrm{y}_{i}=\beta_{0}+\beta_{1} \mathrm{x}_{i}+\epsilon_{i}$. The model formula $\mathrm{y} \sim \mathrm{x}$ would set this up. The variable to the left of \sim specifies the response variable, whereas everything to the right of \sim specifies the linear predictor/model matrix.
- Let's try it. . .
- library (gamair) ; data(hubble) model.matrix($\mathrm{y}^{\sim} \mathrm{x}$, data=hubble)

	(Intercept)	x
1	1	2.00
2	1	9.16
3	1	16.14
.	.	.
.	.	.

- model.matrix actually ignores the response in the formula. Note that the data argument tells it where to find the variables referred to in the formula.
- By default a constant is included in the linear predictor, unless a -1 is added to the formula. suppose that we want a quadratic model and no constant term...

$$
\text { model.matrix }\left(y^{\sim} x+I\left(x^{\wedge} 2\right)-1\right. \text {, data=hubble) }
$$

More model.matrix

- Plant Growth contains data on plant weight under 2 growth treatments and a control. A possible model...

$$
w_{i}=\alpha+\beta_{j} \text { if plant } i \text { is from group } j
$$

- model.matrix(weight~group, data=PlantGrowth)

	(Intercept)	grouptrt1	grouptrt2
1	1	0	0
2	1	0	0
.	.	.	.
10	1	0	0
11	1	1	0
12	1	1	0
.	.	.	.

- model.matrix treated group as a factor variable and has automatically imposed identifiability constraints.

Factor variables in R

- How did model.matrix 'know' how to treat group?
- Because the variable group has been assigned a class factor. This means that each unique value of group is treated as the label identifying a group (i.e. as the level of a factor).
- Type Plant Growth\$group and notice how the levels of group are printed last.
- To declare a variable to be a factor one uses something like:

$$
\begin{aligned}
& x<-c(1,1,1, " a ", " a ", 1, " c ", " c ", " a ") \\
& x<-\operatorname{factor}(x)
\end{aligned}
$$

Model formulae in general

Consider y ~ $\mathrm{a} * \mathrm{~b}+\mathrm{x}: \mathrm{z}+\mathrm{I}\left(\mathrm{v}^{\wedge} 2\right)-1$

- + means and. i.e. c+d means that the linear predictor depends on c and d.
- $\mathrm{x}: \mathrm{z}$ mean the interaction of x and z .
- $\mathrm{a} * \mathrm{~b}$ is short for $\mathrm{a}+\mathrm{b}+\mathrm{a}: \mathrm{b}$.
- I ($\mathrm{v}^{\wedge} 2$) means that the linear predictor depends on v^{2}. The identity function I () simply returns its evaluated argument, thereby returning the usual meaning to arithmetic operations within the formula.
- -1 means that the linear predictor has no constant.

lm in R

- Within R, linear models are fitted using lm().
- The model to fit is specified using a 'model formula'.
- The data to fit are best supplied in a 'data frame'.
- The function returns a 'fitted model object'.
- For example, the model

$$
y_{i}=\beta_{0}+x_{i} \beta_{1}+z_{i} \beta_{2}+\epsilon_{i}
$$

would be estimated with a command like
$\bmod .1<-\operatorname{lm}(\mathrm{y} \sim \mathrm{x}+\mathrm{z}$, dat)

- $y \sim x+z$ is the model formula.
- dat is a 'data frame' containing the variables referred to in the formula.
- The object returned by lm has been assigned to an object, mod.1.

Example CO_{2} and Global temperature

- CO_{2} is p.p.m. measured at Siple station Antarctica.
- Temperatures are mean global anomalies (from 1961-1990 mean).
- Try temp $_{i}=\beta_{0}+\beta_{1} \mathrm{CO}_{i}+\epsilon_{i}$.

CO_{2} continued

- If data are in data frame gw then fit as follows.

```
> gw.mod1<-lm(temp~ co2,data=gw)
> gw.modl
```

Call:
$\operatorname{lm}($ formula $=$ temp $\sim \operatorname{co2}$, data $=g w)$
Coefficients:

(Intercept)	$c o 2$
-2.83996	0.00872

- Suggests an increase of 0.0087 C for each extra p.p.m. CO_{2}, but we need to check model assumptions...

Model checking with plot (gw.mod1)

- Some default residual plots are produced by plot (gw.mod1).

- There is a trend in the mean of the residuals, violating independence.
- The QQ plot is close to a straight line, so normality is OK.
- The residual magnitudes seem consistent with constant variance.
- The 42nd observation has a very high influence on the results.

Revising the CO_{2} model

- Naively, we might add a CO_{2}^{2} term to the model, but this is not very physical. A better model would recognize inter year correlation in mean temperature. e.g. assuming data are in time order,

$$
\operatorname{temp}_{i}=\beta_{0}+\beta_{1} \operatorname{CO}_{i}+\beta_{2} \text { temp }_{i-1}+\epsilon_{i}
$$

- Note that we are not assuming that the the ϵ_{i} are measurement errors: rather they represent 'unexplained variability in the mean temperature'.

Fit the revised model

```
n <- nrow (gw)
gw. mod2<-lm(temp [2:n] ~co2[2:n] +temp [1:(n-1)], data=gw)
plot(gw.mod2)
```


... this is much better. All assumptions look OK now.

Hypothesis testing

- Is there formal evidence that the revised model is better than the initial model?
- Can test this by using the anova method for lm models to perform an F-ratio test.

```
> gw.mod0<-lm(temp[2:n] ~co2[2:n],data=gw) # must fit same data!
> anova(gw.mod0,gw.mod2)
Analysis of Variance Table
Model 1: temp[2:n] ~ co2[2:n]
Model 2: temp[2:n] ~ co2[2:n] + temp[1:(n - 1)]
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 39 0.48759
2 38 0.42501 1 0.06258 5.5957 0.02321 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Final CO_{2} model

- So we reject the null hypothesis that the simple model is correct.
- Now examine the fitted full model
$>$ summary (gw.mod2)

```
Coefficients:
```


CO_{2} follow up

- We would probably go on to obtain confidence intervals for parameters. e.g. for β_{1} the ' CO_{2} effect'

```
> b1 <- .005896; cb <- qt(.975,df=38)*.001715
```

> c(b1-cb,b1+cb)
[1] 0.0024241640 .009367836

- i.e. each extra p.p.m. CO_{2} seems to be associated with a global mean temperature rise of between . 0024 and .0094 Celsius.
- Note the importance of checking the model assumptions: failing to do this can lead to the use of inadequate models and lead to completely invalid conclusions.

Summary

- Linear models can all be written $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon} \sim N\left(\mathbf{0}, \mathbf{l} \sigma^{2}\right)$
- The parameters $\boldsymbol{\beta}$ are estimated by minimizing $\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}$ w.r.t. $\boldsymbol{\beta}$.
- The formal expression for the estimates is $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y}$.
- $\hat{\sigma}^{2}=\|\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}}\|^{2} /(n-\operatorname{dim}(\boldsymbol{\beta}))$
$-\hat{\boldsymbol{\beta}} \sim N\left(\boldsymbol{\beta},\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \sigma^{2}\right)$.
- Model comparison/ hypothesis testing is done using F-ratio tests.
- Models must be checked by careful examination of the residuals $\hat{\boldsymbol{\epsilon}}=\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}}$.

