Linear models

Simon Wood Mathematical Sciences, University of Bath, U.K.

Linear models

- We have data on a response variable, y, the variability in which is believed to be partly predicted by data on some predictor variables, x₁, x₂....
- We model this using a linear model

$$y_i = \beta_0 + x_{i1}\beta_1 + x_{i2}\beta_2 + \ldots + x_{im}\beta_m + \epsilon_i$$

- The *parameters*, β_i , must be estimated from data
- The random variables, \(\epsilon_i\), account for the variability in the response not explained by the predictors
- Assumptions: the ε_i's have zero mean (E(ε_i) = 0) and constant variance σ². They are also independent: knowing the value of ε_i tells you nothing new about that value of ε_{i≠i}.

Linear model features

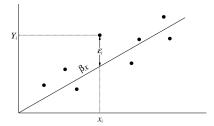
- A key difference in kind between β_j's and ε_i's is this: if a replicate data set were generated the β_j's would be the same, but the ε_i's would all be different.
- For some purposes (H_0 testing etc.) we assume that the ϵ_i 's are Normally distributed.
- ▶ Why *linear* model?
 - Because the response is a (weighted) *linear* combination of the parameters and the random error.
 - The model can depend non-linearly on the predictors.

LM example 1

- Fitting a straight line through the origin. (e.g. simple model relating birth rate, y, and population size, x).
 - Model might be:

$$y_i = x_i\beta + \epsilon_i$$
 $\epsilon_i \sim N(0, \sigma^2)$

▶ i.e.



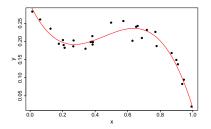
LM examples 2

► Fitting a 'plane' to *x*, *z*, *y* data

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 z_i + \epsilon_i \quad \epsilon_i \sim N(0, \sigma^2)$$

Fitting a polynomial to *x*, *y* data. e.g. the cubic

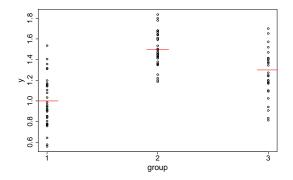
$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \epsilon_i \quad \epsilon_i \sim N(0, \sigma^2)$$



LM example 3

Suppose you have grouped data. A simple model might be something like

 $y_i = \beta_j + \epsilon_i$ if y_i is from group j (1)



LM example 3 continued

Why is this a linear model? Define dummy variables:

$$x_{ij} = \begin{cases} 1 & \text{if } y_i \text{ in group } j \\ 0 & \text{otherwise} \end{cases}$$

then, $y_i = \beta_j + \epsilon_i$ if y_i is from group *j*, becomes . . .

$$y_i = x_{i1}\beta_1 + x_{i2}\beta_2 + x_{i3}\beta_3 + \epsilon_i$$

Variables that group data are known as *factors*. The group labels are known as *levels*. Statistical software treats such variables specially and generates corresponding dummy variables automatically.

Matrix vector form 1

- Linear model theory, and the understanding of mixed modelling extensions of linear models, requires that the linear model be written in matrix vector notation.
- > To see how this works consider writing out the model,

•

$$y_i = \beta_1 + x_i \beta_2 + \epsilon_i$$
, for all $i \dots$

$$y_1 = \beta_1 + x_1\beta_2 + \epsilon_1$$

$$y_2 = \beta_1 + x_2\beta_2 + \epsilon_2$$

$$y_n = \beta_1 + x_n \beta_2 + \epsilon_n$$

Matrix vector form 2

In matrix vector form this system of equations is

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}.$$

► Generally this is written:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

where **X** is known as the *model matrix*, and **X** β (= η) is the *linear predictor*.

Identifiability

Consider the 'balanced one-way ANOVA model':

$$\mathbf{y}_{ij} = \alpha + \beta_i + \epsilon_{ij}$$

where i = 1 ... 3 and j = 1 ... 2.

In matrix-vector form...

$$\begin{bmatrix} y_{11} \\ y_{12} \\ y_{21} \\ y_{22} \\ y_{31} \\ y_{32} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} + \begin{bmatrix} \epsilon_{11} \\ \epsilon_{12} \\ \epsilon_{21} \\ \epsilon_{22} \\ \epsilon_{31} \\ \epsilon_{32} \end{bmatrix}$$

Problem! β^T = (α + k, β₁ - k, β₂ - k, β₃ - k) gives the same Xβ, for any k. X is rank deficient: there is an infinite set of best fit parameter!

Identifiability constraints

- As we have seen, models involving factors can suffer from identifiability problems.
- A sure sign of this is that the model matrix, X, is column rank deficient: some of its columns can be made up of linear combinations of the others.
- To deal with this problem, apply just enough linear constraints on the parameters that the problem goes away.
- The simplest constraint is to set just enough parameters to zero that the model becomes identifiable.

Identifiability constraints

For the 1-way ANOVA model we might set $\beta_1 = 0$, so:

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta_2 \\ \beta_3 \end{bmatrix}$$

- ► The reduced Xβ can match any value of the unreduced version, given the right choice of parameter values.
- ▶ Note also that the right hand **X** has full column rank.
- Imposition of constraints is automatic in modelling software, but interpretation requires awareness of it, and that there are many alternative constraints possible.

LM theory

- So, for any linear model, we have y = Xβ + ε where ε ∼ N(0, Iσ²), and X is full rank n × p.
- This implies a log likelihood¹

$$I(\boldsymbol{\beta}, \sigma^2) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$

• Hence the maximum likelihood estimates of β are

$$\hat{oldsymbol{eta}} = rg\min_{eta} \| \mathbf{y} - \mathbf{X} oldsymbol{eta} \|^2$$

i.e. the *least squares estimates* of β .

- Formally $\hat{\beta} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$ (never used for computation!).
- $\|\mathbf{y} \mathbf{X}\hat{\beta}\|^2$ is known as the *residual sum of squares*.

$$||\mathbf{v}||^2 = \mathbf{v}^T \mathbf{v}$$
 i.e. the squared Euclidian length of \mathbf{v}

LM inference

- Standard likelihood results give β̂ ~ N(β, (X^TX)⁻¹σ²), but this result is exact in this case, not just approximate.
- Similarly the GLRT result is exact. Let X₀ be the n × p₀ null model matrix (nested in X), then if the null model is correct

$$\frac{\|\mathbf{y} - \mathbf{X}_0 \hat{\beta}_0\|^2 - \|\mathbf{y} - \mathbf{X} \hat{\beta}\|^2}{\sigma^2} \sim \chi^2_{\rho - \rho_0}$$

- ... but unfortunately these general MLE results are only exact if σ² is known, which is unusual.
- $\hat{\sigma}^2 = \|\mathbf{y} \mathbf{X}\hat{\beta}\|^2/(n-p)$ is unbiased (but is not the MLE).
- ▶ It turns out that exact results can be obtained even when $\hat{\sigma}^2$ is used in place of σ^2 .

LM inference 2

- Suppose that that
 <sup>
 ²</sup>_{β_i} is the estimated variance of ^β_i as read from the *i*th leading diagonal element of (**X**^T**X**)⁻¹².
- An exact result can be used for inference about β_i

$$rac{\hat{eta}_{\it i}-eta_{\it i}}{\hat{\sigma}_{\hat{eta}_{\it i}}}\sim t_{\it n-p}$$

Similarly, for model comparison, under the null model

$$\frac{(\|\mathbf{y}-\mathbf{X}_0\hat{\beta}_0\|^2-\|\mathbf{y}-\mathbf{X}\hat{\beta}\|^2)/(p-p_0)}{\hat{\sigma}^2}\sim F_{p-p_0,n-p}$$

is an exact result to use for hypothesis testing.

The Influence Matrix

- ► Let $\mu_i = E(y_i)$. Clearly $\hat{\mu} = \mathbf{X}\hat{\beta}$, and hence $\hat{\mu} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$.
- $\mathbf{A} = \mathbf{X}(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}$ is the *influence matrix* or *hat matrix*.
- The leading diagonal elements of A are a measure of how influential individual data points are in the model fit.
- A also has some interesting properties
 - 1. $\mathbf{A}\mathbf{A} = \mathbf{X}(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{X}(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}} = \mathbf{X}(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}} = \mathbf{A}.$
 - 2. $\operatorname{tr}(\mathbf{A}) = \operatorname{tr}(\mathbf{X}(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}) = \operatorname{tr}((\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{X}) = \operatorname{tr}(\mathbf{I}_{\rho}) = \rho.$
 - 3. Clearly $\partial \hat{\mu}_i / \partial y_i = A_{ii}$.

LM checking

- The *residuals* are $\hat{\epsilon}_i = \mathbf{y}_i \hat{\mu}_i$.
- If the model fits they should be approximately i.i.d $N(0, \sigma^2)$.
- The exact distribution can be obtained from the fact that $\hat{\epsilon} = (\mathbf{I} \mathbf{A})\mathbf{y}...$

$$\hat{m{\epsilon}} \sim N(m{0}, (m{I} - m{A})\sigma^2)$$

This can be used to standardize the residuals to have exactly constant variance, if the ϵ_i have constant variance.

- Residuals are plotted to check that they
 - 1. have constant variance, rather than variance varying with μ_i or some predictor.
 - are independent, rather than varying with μ_i or some predictor, or being serially correlated w.r.t to some predictor.
 - 3. are approximately normally distributed.

Stable $\hat{\beta}$ computation

Can QR decompose X

$$\mathbf{X} = \mathbf{Q} \begin{bmatrix} \mathbf{R} \\ \mathbf{0} \end{bmatrix} = \mathbf{Q}_1 \mathbf{R}$$

▶ **Q** is \perp . **Q**₁ is its first *p* columns. **R** is *p* × *p* upper triangular.

• Hence for any vector, \mathbf{v} , $\|\mathbf{Q}\mathbf{v}\|^2 = \|\mathbf{v}\|^2$, so

$$\begin{aligned} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 &= \|\mathbf{Q}^{\mathrm{T}}\mathbf{y} - \mathbf{Q}^{\mathrm{T}}\mathbf{X}\boldsymbol{\beta}\|^2 = \|\mathbf{Q}^{\mathrm{T}}\mathbf{y} - \begin{bmatrix} \mathbf{R} \\ \mathbf{0} \end{bmatrix}\boldsymbol{\beta} \|^2 \\ &= \|\mathbf{Q}_1^{\mathrm{T}}\mathbf{y} - \mathbf{R}\boldsymbol{\beta}\|^2 + \|\mathbf{Q}_2^{\mathrm{T}}\mathbf{y}\|^2 \end{aligned}$$

Since $\|\mathbf{Q}_2^T\mathbf{y}\|^2$ does not depend on β then

$$\hat{\boldsymbol{eta}} = \mathbf{R}^{-1} \mathbf{Q}_1^{\mathrm{T}} \mathbf{y}$$

Linear models in R

- R has extensive facilities for linear modelling.
- ► The main linear model fitting function is lm.
- The basic approach is:
 - 1. The model structure is specified using a *model formula*, supplied to lm.
 - 2. 1m fits the model, dealing with identifiability constraints, model matrix construction and fitting internally, and returns a *fitted model object*.
 - 3. The fitted model object is interrogated using *methods functions* to e.g. extract model summaries, perform F-ratio testing, produce residual plots, extract estimates etc.
- This basic approach is the same for linear models, generalized linear models, generalized linear mixed models, generalized additive models, etc.

Model matrices in R

- In R a model matrix, X, is usually set up automatically, using a model formula. Usually this is done 'behind the scenes' when a modelling function is used, but for now we'll look at the process explicitly.
- ► As an example consider data frame hubble in the library gamair. This contains Velocities, y, and Distances, x of 24 galaxies (relative to us).
- We might try modelling these data with a straight line y_i = β₀ + β₁x_i + ε_i. The model formula y ~ x would set this up. The variable to the left of ~ specifies the *response variable*, whereas everything to the right of ~ specifies the *linear predictor/model matrix*.
- Let's try it...

model.matrix

library(gamair);data(hubble)			
mod	el.matrix(y´	~x,data=hubb	le)
	(Intercept)	Х	
1	1	2.00	
2	1	9.16	
3	1	16.14	
•			

- model.matrix actually ignores the response in the formula. Note that the data argument tells it where to find the variables referred to in the formula.
- By default a constant is included in the linear predictor, unless a -1 is added to the formula. suppose that we want a quadratic model and no constant term...

model.matrix(y~x+I(x^2)-1, data=hubble)

More model.matrix

PlantGrowth contains data on plant weight under 2 growth treatments and a control. A possible model...

 $w_i = \alpha + \beta_j$ if plant *i* is from group *j*

model.matrix treated group as a factor variable and has automatically imposed identifiability constraints.

Factor variables in R

- How did model.matrix 'know' how to treat group?
- Because the variable group has been assigned a class factor. This means that each unique value of group is treated as the label identifying a group (i.e. as the level of a factor).
- Type PlantGrowth\$group and notice how the levels of group are printed last.
- To declare a variable to be a factor one uses something like:

Model formulae in general

Consider y $\tilde{a} \star b + x : z + I(v^2) -1$

- + means and. i.e. c+d means that the linear predictor depends on c and d.
- x: z mean the interaction of x and z.
- a*b is short for a + b + a:b.
- I (v²) means that the linear predictor depends on v². The identity function I () simply returns its evaluated argument, thereby returning the usual meaning to arithmetic operations within the formula.
- ▶ -1 means that the linear predictor has **no constant**.

$\operatorname{lm} in R$

- Within R, linear models are fitted using lm().
 - The model to fit is specified using a 'model formula'.
 - The data to fit are best supplied in a 'data frame'.
 - The function returns a 'fitted model object'.
- ► For example, the model

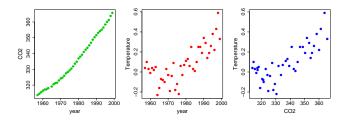
$$y_i = \beta_0 + x_i\beta_1 + z_i\beta_2 + \epsilon_i$$

would be estimated with a command like

mod.1 < - lm(y ~ x + z , dat)

- y = x + z is the model formula.
- dat is a 'data frame' containing the variables referred to in the formula.
- The object returned by lm has been assigned to an object, mod.1.

Example CO₂ and Global temperature



- ▶ CO₂ is p.p.m. measured at Siple station Antarctica.
- Temperatures are mean global anomalies (from 1961-1990 mean).

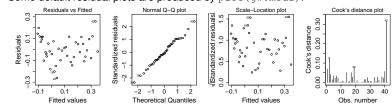
• Try temp_i =
$$\beta_0 + \beta_1 \text{CO2}_i + \epsilon_i$$
.

CO₂ continued

If data are in data frame gw then fit as follows.

 Suggests an increase of 0.0087 C for each extra p.p.m. CO₂, but we need to check model assumptions...

Model checking with plot (gw.mod1)



Some default residual plots are produced by plot (gw.mod1).

- There is a trend in the mean of the residuals, violating **independence**.
- The QQ plot is close to a straight line, so normality is OK.
- The residual magnitudes seem consistent with constant variance.
- The 42nd observation has a very high influence on the results.

Revising the CO₂ model

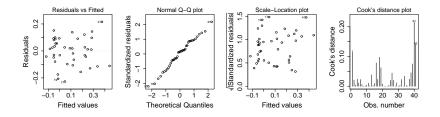
Naively, we might add a CO²₂ term to the model, but this is not very physical. A better model would recognize inter year correlation in mean temperature. e.g. assuming data are in time order,

$$temp_i = \beta_0 + \beta_1 CO2_i + \beta_2 temp_{i-1} + \epsilon_i.$$

Note that we are **not** assuming that the the \(\epsilon_i\) are measurement errors: rather they represent 'unexplained variability in the mean temperature'.

Fit the revised model

```
n <- nrow(gw)
gw.mod2<-lm(temp[2:n]~co2[2:n]+temp[1:(n-1)],data=gw)
plot(gw.mod2)</pre>
```



... this is much better. All assumptions look OK now.

Hypothesis testing

Is there formal evidence that the revised model is better than the initial model?

Can test this by using the anova method for lm models to perform an F-ratio test.

```
> gw.mod0<-lm(temp[2:n]~co2[2:n],data=gw) # must fit same data!
> anova(gw.mod0,gw.mod2)
Analysis of Variance Table
Model 1: temp[2:n] ~ co2[2:n]
Model 2: temp[2:n] ~ co2[2:n] + temp[1:(n - 1)]
Res.Df RSS Df Sum of Sq F Pr(>F)
1 39 0.48759
2 38 0.42501 1 0.06258 5.5957 0.02321 *
----
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Final CO₂ model

- So we reject the null hypothesis that the simple model is correct.
- Now examine the fitted full model

Residual standard error: 0.1058 on 38 degrees of freedom Multiple R-Squared: 0.6694, Adjusted R-squared: 0.652 F-statistic: 38.47 on 2 and 38 DF, p-value: 7.37e-10

CO₂ follow up

We would probably go on to obtain confidence intervals for parameters. e.g. for β₁ the 'CO₂ effect'

```
> b1 <- .005896; cb <- qt(.975,df=38)*.001715
> c(b1-cb,b1+cb)
[1] 0.002424164 0.009367836
```

- i.e. each extra p.p.m. CO₂ seems to be associated with a global mean temperature rise of between .0024 and .0094 Celsius.
- Note the importance of checking the model assumptions: failing to do this can lead to the use of inadequate models and lead to completely invalid conclusions.

Summary

- Linear models can all be written $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon} \sim N(\mathbf{0}, \mathbf{I}\sigma^2)$
- The parameters β are estimated by minimizing $\|\mathbf{y} \mathbf{X}\beta\|^2$ w.r.t. β .
- The formal expression for the estimates is $\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$.

$$\hat{\sigma}^2 = \|\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|^2 / (n - \dim(\boldsymbol{\beta}))$$

- $\blacktriangleright \hat{\boldsymbol{\beta}} \sim N(\boldsymbol{\beta}, (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\sigma^2).$
- Model comparison/ hypothesis testing is done using F-ratio tests.
- Models must be checked by careful examination of the residuals $\hat{\epsilon} = \mathbf{y} \mathbf{X}\hat{\beta}$.