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Linear models

I We have data on a response variable, y , the variability in
which is believed to be partly predicted by data on some
predictor variables, x1, x2 . . ..

I We model this using a linear model

yi = β0 + xi1β1 + xi2β2 + . . . + ximβm + εi

I The parameters, βj , must be estimated from data
I The random variables, εi , account for the variability in the

response not explained by the predictors
I Assumptions: the εi ’s have zero mean (E(εi) = 0) and

constant variance σ2. They are also independent: knowing
the value of εi tells you nothing new about that value of εj 6=i .



Linear model features

I A key difference in kind between βj ’s and εi ’s is this: if a
replicate data set were generated the βj ’s would be the
same, but the εi ’s would all be different.

I For some purposes (H0 testing etc.) we assume that the
εi ’s are Normally distributed.

I Why linear model?
I Because the response is a (weighted) linear combination of

the parameters and the random error.
I The model can depend non-linearly on the predictors.



LM example 1

I Fitting a straight line through the origin. (e.g. simple model
relating birth rate, y , and population size, x).

I Model might be:

yi = xiβ + εi εi ∼ N(0, σ2)

I i.e.

βx

εi

Yi

xi



LM examples 2

I Fitting a ‘plane’ to x , z, y data

yi = β0 + β1xi + β2zi + εi εi ∼ N(0, σ2)

I Fitting a polynomial to x , y data. e.g. the cubic

yi = β0 + β1xi + β2x2
i + β3x3

i + εi εi ∼ N(0, σ2)
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LM example 3

Suppose you have grouped data. A simple model might be
something like

yi = βj + εi if yi is from group j (1)
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LM example 3 continued

I Why is this a linear model? Define dummy variables:

xij =

{
1 if yi in group j
0 otherwise

then, yi = βj + εi if yi is from group j , becomes . . .

yi = xi1β1 + xi2β2 + xi3β3 + εi

I Variables that group data are known as factors. The group
labels are known as levels. Statistical software treats such
variables specially and generates corresponding dummy
variables automatically.



Matrix vector form 1

I Linear model theory, and the understanding of mixed
modelling extensions of linear models, requires that the
linear model be written in matrix vector notation.

I To see how this works consider writing out the model,

yi = β1 + xiβ2 + εi , for all i . . .

y1 = β1 + x1β2 + ε1

y2 = β1 + x2β2 + ε2

. .

. .

yn = β1 + xnβ2 + εn



Matrix vector form 2

I In matrix vector form this system of equations is



y1
y2
.
.

yn




=




1 x1
1 x2
. .
. .
1 xn




[
β1
β2

]
+




ε1
ε2
.
.
εn




.

I Generally this is written:

y = Xβ + ε

where X is known as the model matrix, and Xβ (= η) is the
linear predictor.



Identifiability

I Consider the ‘balanced one-way ANOVA model’:

yij = α + βi + εij

where i = 1 . . . 3 and j = 1 . . . 2.
I In matrix-vector form. . .




y11
y12
y21
y22
y31
y32




=




1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1







α
β1
β2
β3


 +




ε11
ε12
ε21
ε22
ε31
ε32




I Problem! βT = (α + k , β1 − k , β2 − k , β3 − k) gives the
same Xβ, for any k . X is rank deficient: there is an infinite
set of best fit parameter!



Identifiability constraints

I As we have seen, models involving factors can suffer from
identifiability problems.

I A sure sign of this is that the model matrix, X, is column
rank deficient: some of its columns can be made up of
linear combinations of the others.

I To deal with this problem, apply just enough linear
constraints on the parameters that the problem goes away.

I The simplest constraint is to set just enough parameters to
zero that the model becomes identifiable.



Identifiability constraints

I For the 1-way ANOVA model we might set β1 = 0, so:



1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1







α
β1
β2
β3


 −→




1 0 0
1 0 0
1 1 0
1 1 0
1 0 1
1 0 1







α
β2
β3




I The reduced Xβ can match any value of the unreduced
version, given the right choice of parameter values.

I Note also that the right hand X has full column rank.
I Imposition of constraints is automatic in modelling

software, but interpretation requires awareness of it, and
that there are many alternative constraints possible.



LM theory

I So, for any linear model, we have y = Xβ + ε where
ε ∼ N(0, Iσ2), and X is full rank n × p.

I This implies a log likelihood1

l(β, σ2) = −n
2

log(2πσ2)− 1
2σ2 ‖y− Xβ‖2

I Hence the maximum likelihood estimates of β are

β̂ = arg min
β
‖y− Xβ‖2

i.e. the least squares estimates of β.
I Formally β̂ = (XTX)−1XTy (never used for computation!).
I ‖y− Xβ̂‖2 is known as the residual sum of squares.

1‖v‖2 = vTv i.e. the squared Euclidian length of v



LM inference

I Standard likelihood results give β̂ ∼ N(β, (XTX)−1σ2), but
this result is exact in this case, not just approximate.

I Similarly the GLRT result is exact. Let X0 be the n× p0 null
model matrix (nested in X), then if the null model is correct

‖y− X0β̂0‖2 − ‖y− Xβ̂‖2

σ2 ∼ χ2
p−p0

I . . . but unfortunately these general MLE results are only
exact if σ2 is known, which is unusual.

I σ̂2 = ‖y− Xβ̂‖2/(n − p) is unbiased (but is not the MLE).
I It turns out that exact results can be obtained even when

σ̂2 is used in place of σ2.



LM inference 2

I Suppose that that σ̂2
β̂i

is the estimated variance of β̂i as

read from the i th leading diagonal element of (XTX)−1σ̂2.
I An exact result can be used for inference about βi

β̂i − βi

σ̂β̂i

∼ tn−p

I Similarly, for model comparison, under the null model

(‖y− X0β̂0‖2 − ‖y− Xβ̂‖2)/(p − p0)

σ̂2 ∼ Fp−p0,n−p

is an exact result to use for hypothesis testing.



The Influence Matrix

I Let µi = E(yi). Clearly µ̂ = Xβ̂, and hence
µ̂ = X(XTX)−1XTy.

I A = X(XTX)−1XT is the influence matrix or hat matrix.
I The leading diagonal elements of A are a measure of how

influential individual data points are in the model fit.
I A also has some interesting properties

1. AA = X(XTX)−1XTX(XTX)−1XT = X(XTX)−1XT = A.
2. tr(A) = tr(X(XTX)−1XT) = tr((XTX)−1XTX) = tr(Ip) = p.
3. Clearly ∂µ̂i/∂yi = Aii .



LM checking

I The residuals are ε̂i = yi − µ̂i .
I If the model fits they should be approximately i.i.d N(0, σ2).
I The exact distribution can be obtained from the fact that

ε̂ = (I− A)y. . .
ε̂ ∼ N(0, (I− A)σ2)

This can be used to standardize the residuals to have
exactly constant variance, if the εi have constant variance.

I Residuals are plotted to check that they
1. have constant variance, rather than variance varying with µi

or some predictor.
2. are independent, rather than varying with µi or some

predictor, or being serially correlated w.r.t to some predictor.
3. are approximately normally distributed.



Stable β̂ computation

I Can QR decompose X

X = Q
[

R
0

]
= Q1R

I Q is ⊥. Q1 is its first p columns. R is p× p upper triangular.
I Hence for any vector, v, ‖Qv‖2 = ‖v‖2, so

‖y− Xβ‖2 = ‖QTy−QTXβ‖2 =

∥∥∥∥QTy−
[

R
0

]
β

∥∥∥∥
2

= ‖QT
1y− Rβ‖2 + ‖QT

2y‖2

I Since ‖QT
2y‖2 does not depend on β then

β̂ = R−1QT
1y



Linear models in R

I R has extensive facilities for linear modelling.
I The main linear model fitting function is lm.
I The basic approach is:

1. The model structure is specified using a model formula,
supplied to lm.

2. lm fits the model, dealing with identifiability constraints,
model matrix construction and fitting internally, and returns
a fitted model object.

3. The fitted model object is interrogated using methods
functions to e.g. extract model summaries, perform F-ratio
testing, produce residual plots, extract estimates etc.

I This basic approach is the same for linear models,
generalized linear models, generalized linear mixed
models, generalized additive models, etc.



Model matrices in R

I In R a model matrix, X, is usually set up automatically,
using a model formula. Usually this is done ‘behind the
scenes’ when a modelling function is used, but for now
we’ll look at the process explicitly.

I As an example consider data frame hubble in the library
gamair. This contains Velocities, y, and Distances, x of
24 galaxies (relative to us).

I We might try modelling these data with a straight line
yi = β0 + β1xi + εi . The model formula y ∼ x would set
this up. The variable to the left of ∼ specifies the response
variable, whereas everything to the right of ∼ specifies the
linear predictor/model matrix.

I Let’s try it. . .



model.matrix

I library(gamair);data(hubble)
model.matrix(y˜x,data=hubble)

(Intercept) x
1 1 2.00
2 1 9.16
3 1 16.14
. . .
. . .

I model.matrix actually ignores the response in the
formula. Note that the data argument tells it where to find
the variables referred to in the formula.

I By default a constant is included in the linear predictor,
unless a -1 is added to the formula. suppose that we want
a quadratic model and no constant term. . .
model.matrix(y˜x+I(xˆ2)-1,data=hubble)



More model.matrix

I PlantGrowth contains data on plant weight under 2
growth treatments and a control. A possible model. . .

wi = α + βj if plant i is from group j

I model.matrix(weight˜group,data=PlantGrowth)
(Intercept) grouptrt1 grouptrt2

1 1 0 0
2 1 0 0
. . . .
10 1 0 0
11 1 1 0
12 1 1 0
. . . .

I model.matrix treated group as a factor variable and
has automatically imposed identifiability constraints.



Factor variables in R

I How did model.matrix ‘know’ how to treat group?
I Because the variable group has been assigned a class
factor. This means that each unique value of group is
treated as the label identifying a group (i.e. as the level of a
factor).

I Type PlantGrowth$group and notice how the levels of
group are printed last.

I To declare a variable to be a factor one uses something
like:
x <- c(1,1,1,"a","a",1,"c","c","a")
x <- factor(x)



Model formulae in general

Consider y ˜ a*b + x:z + I(vˆ2) -1

I + means and. i.e. c+d means that the linear predictor
depends on c and d.

I x:z mean the interaction of x and z.
I a*b is short for a + b + a:b.
I I(vˆ2) means that the linear predictor depends on v2.

The identity function I() simply returns its evaluated
argument, thereby returning the usual meaning to
arithmetic operations within the formula.

I -1 means that the linear predictor has no constant.



lm in R

I Within R, linear models are fitted using lm().
I The model to fit is specified using a ‘model formula’.
I The data to fit are best supplied in a ‘data frame’.
I The function returns a ‘fitted model object’.

I For example, the model

yi = β0 + xiβ1 + ziβ2 + εi

would be estimated with a command like
mod.1 <- lm(y ˜ x + z , dat)

I y ˜ x + z is the model formula.
I dat is a ‘data frame’ containing the variables referred to in

the formula.
I The object returned by lm has been assigned to an object,
mod.1.



Example CO2 and Global temperature
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I CO2 is p.p.m. measured at Siple station Antarctica.
I Temperatures are mean global anomalies (from 1961-1990

mean).
I Try tempi = β0 + β1C02i + εi .



CO2 continued

I If data are in data frame gw then fit as follows.
> gw.mod1<-lm(temp˜co2,data=gw)
> gw.mod1

Call:
lm(formula = temp ˜ co2, data = gw)

Coefficients:
(Intercept) co2

-2.83996 0.00872

I Suggests an increase of 0.0087 C for each extra p.p.m.
CO2, but we need to check model assumptions. . .



Model checking with plot(gw.mod1)

I Some default residual plots are produced by plot(gw.mod1).
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I There is a trend in the mean of the residuals, violating independence.
I The QQ plot is close to a straight line, so normality is OK.
I The residual magnitudes seem consistent with constant variance.

I The 42nd observation has a very high influence on the results.



Revising the CO2 model

I Naively, we might add a CO2
2 term to the model, but this is

not very physical. A better model would recognize inter
year correlation in mean temperature. e.g. assuming data
are in time order,

tempi = β0 + β1C02i + β2tempi−1 + εi .

I Note that we are not assuming that the the εi are
measurement errors: rather they represent ‘unexplained
variability in the mean temperature’.



Fit the revised model

n <- nrow(gw)
gw.mod2<-lm(temp[2:n]˜co2[2:n]+temp[1:(n-1)],data=gw)
plot(gw.mod2)
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. . . this is much better. All assumptions look OK now.



Hypothesis testing

I Is there formal evidence that the revised model is better
than the initial model?

I Can test this by using the anova method for lm models to
perform an F-ratio test.
> gw.mod0<-lm(temp[2:n]˜co2[2:n],data=gw) # must fit same data!
> anova(gw.mod0,gw.mod2)
Analysis of Variance Table

Model 1: temp[2:n] ˜ co2[2:n]
Model 2: temp[2:n] ˜ co2[2:n] + temp[1:(n - 1)]
Res.Df RSS Df Sum of Sq F Pr(>F)

1 39 0.48759
2 38 0.42501 1 0.06258 5.5957 0.02321 *
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1



Final CO2 model

I So we reject the null hypothesis that the simple model is
correct.

I Now examine the fitted full model
> summary(gw.mod2)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.919990 0.568855 -3.375 0.00171 **
co2[2:n] 0.005896 0.001715 3.437 0.00144 **
temp[1:(n - 1)] 0.347253 0.146798 2.366 0.02321 *
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.1058 on 38 degrees of freedom
Multiple R-Squared: 0.6694, Adjusted R-squared: 0.652
F-statistic: 38.47 on 2 and 38 DF, p-value: 7.37e-10



CO2 follow up

I We would probably go on to obtain confidence intervals for
parameters. e.g. for β1 the ‘CO2 effect’
> b1 <- .005896; cb <- qt(.975,df=38)*.001715
> c(b1-cb,b1+cb)
[1] 0.002424164 0.009367836

I i.e. each extra p.p.m. CO2 seems to be associated with a
global mean temperature rise of between .0024 and .0094
Celsius.

I Note the importance of checking the model assumptions:
failing to do this can lead to the use of inadequate models
and lead to completely invalid conclusions.



Summary

I Linear models can all be written y = Xβ + ε, where ε ∼ N(0, Iσ2)

I The parameters β are estimated by minimizing ‖y− Xβ‖2 w.r.t. β.
I The formal expression for the estimates is β̂ = (XTX)−1XTy.
I σ̂2 = ‖y− Xβ̂‖2/(n − dim(β))

I β̂ ∼ N(β, (XTX)−1σ2).
I Model comparison/ hypothesis testing is done using F-ratio tests.
I Models must be checked by careful examination of the residuals ε̂ = y− Xβ̂.


