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Generalized linear model

◮ The linear model yi = Xiβ + ǫi , ǫi ∼ N(0, σ2) can be written

µi = Xiβ yi ∼ N(µi , σ
2).

where µi = E (yi ).

◮ A Generalized linear model (GLM) extends this somewhat

g(µi ) = Xiβ yi ∼ EF(µi , φ)

◮ g is any smooth monotonic link function.
◮ EF(µi , φ) is any exponential family distribution (e.g. Normal,

gamma, Poisson, binomial, Tweedie, etc. )
◮ φ is a known or unknown scale parameter
◮ Xβ (= η) is the linear predictor



The link function, g

◮ Common link functions are log, square root and logit
(log{µi/(1 − µi )}).

◮ g acts a little bit like the data transformations used before
GLMs. However note:

◮ The link function transforms E(yi ).
◮ The link function does not transform yi itself.

◮ So, with a GLM we can transform the systematic part of a
model, without changing the distribution of the random
variability.



The exponential family

◮ A distribution is in the exponential family if its probability
(density) function can be written in a particular general form.

◮ For our purposes, what matters is that if y is from an
exponential family distributions, then we can write:

var(y) = V (µ)φ

where V is a known variance function of µ = E(y), and φ is
a scale parameter (known or unknown).

◮ Actually GLM theory can be made to work based only on
knowledge of V , without needing to know the full distribution
of y , using quasi-likelihood theory.



GLMs: scope

Generalized linear models include many familiar model types, for
example:

◮ Linear models. Identity link, normal distribution.

◮ Models for analysis of contingency tables. Log link, Poisson
distribution.

◮ Logistic regression. ‘logit’ or ‘probit’ link, binomial
distribution.



Example: AIDS in Belgium
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Example: AIDS rate model

◮ A simple model for these data might be

E(yi) = N0e
β1ti yi ∼ Poi

◮ yi is new cases in year ti ; N0 is number of new cases in 1980.
◮ Model is for exponential increase of the expected rate.
◮ Observed number of cases, follows a Poisson distribution.

◮ The model is non-linear, but taking logs yields

log (E(yi )) = log(N0) + β1ti

= β0 + β1ti , yi ∼ Poi

i.e. a GLM with a log link (β0 ≡ log(N0)).



GLM estimation

Model estimation is by maximum likelihood, via a Newton type method. e.g. for the

AIDS model the log-likelihood function looks like this . . .
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IRLS

◮ For GLMs, MLE by a Newton type method can be expressed
as an Iteratively Re-weighted Least Squares scheme. . .

◮ Initialize η̂i = g(yi ), then iterate the following steps.

1. Form pseudodata zi = g ′(µ̂i )(yi − µ̂i)/αi + η̂i and iterative
weights, wi = αi/

{

V (µ̂i )g
′(µ̂i )

2
}

.
2. Minimize the weighted sum of squares

∑

i wi(zi − Xiβ)2 w.r.t.

β to obtain a new β̂, and hence new η̂ and µ̂.

◮ αi = 1 + (yi − µ̂i )(V
′

i /Vi + g ′′

i /g ′

i ) gives Newton’s method.

◮ αi = 1 gives Fisher scoring, where the expected Hessian of the
likelihood replaces the actual Hessian in Newton’s method.

◮ Newton convergences faster. Every EF has a canonical link for
which the Newton ≡ Fisher.

◮ At convergence β̂ is the MLE (both methods!).



Distribution of β̂

◮ In the large sample limit, by MLE theory (or from the
weighted least squares),

β̂ ∼ N(β, (XTWX)−1φ).

◮ Hence, CIs for any βi can be calculated.

◮ Often φ is known. e.g. φ = 1 for Poisson or binomial.

◮ If φ is unknown, can use a Pearson estimate:

φ̂ =
∑

i

wi(zi − Xi β̂)2/(n − dim(β))

(then need to use tn−dim(β) distribution for CI’s).



Deviance

◮ It is useful to have a quantity for GLMs which behaves like the
residual sum of squares of a linear model. This is the deviance.

◮ We can write the model log likelihood, l(β), as a function of
the µ: l(µ). Then the deviance is

D = 2 {l(y) − l(µ̂)}φ

◮ It turns out that D can be evaluated without knowing φ, but
for hypothesis testing we need the scaled deviance D∗ = D/φ.
(When φ = 1, D∗ = D).



Properties of deviance

◮ The deviance reduces as the model fit improves.

◮ If the model exactly fits the data then the deviance is zero.

◮ As a rough approximation

D∗ ∼ χ2
n−dim(β)

if the model is correct. Approximation can be good in some
cases and is exact for the strictly linear model.

◮ This suggests an alternative scale parameter estimator

φ̂ = D/{n − dim(β)}.

(Since E (χ2
p) = p and D∗ = D/φ.)



Model Comparison

◮ Nested GLMs 0 and 1, with p0 and p1 parameters, can be
compared using a generalized likelihood ratio test. . .

◮ In terms of the scaled deviance, if model 0 is correct then
D∗

0 − D∗

1 ∼ χ2
p1−p0

.

1. If φ = 1 this means that under model 0: D0 − D1 ∼ χ2
p1−p0

.
2. If φ is unknown, then the GLRT leads to the approximate

result that, under model 0

(D0 − D1)/(p1 − p0)

D1/(n − p1)
∼ Fp1−p0,n−p1 .

◮ AIC can be used if we want the best model for prediction,
rather than the simplest model supportable by the data.



Residuals for GLMs

◮ For GLMs we need to check the assumptions that the data are
independent and have the assumed mean-variance

relationship, and are consistent with the assumed
distribution.

◮ From the raw residuals ǫ̂i = yi − µi it is very difficult to check
the mean variance relationship or distribution.

◮ We therefore standardize the residuals, so that they have
approximately constant variance, and behave something like
residuals for an ordinary linear model.



Pearson residuals

◮ Pearson residuals are obtained by dividing the raw residuals by
their scaled standard deviation, according to the model

ǫp
i =

yi − µ̂i
√

V (µ̂i)

◮ Hence, if the model mean variance relationship is OK, the
variability of these residuals should appear to be fairly
constant, when they are plotted against fitted values or
predictors.

◮ Pearson residuals are still skewed, if the distribution is skewed.



Deviance residuals

◮ For a linear model the residual sum of squares is the sum of
the squared residuals.

◮ For a GLM the deviance can be written as the sum of
deviances for each datum:

D =
∑

di

◮ Since the deviance is supposed to behave a bit like the RSS,
then by analogy we can view

√
di as a residual.

◮ Specifically ǫd
i = sign(yi − µi)

√
d i , behave quite like residuals

from a linear model.



glm in R

GLMs are fitted using glm, which functions much like lm

◮ A model formula specifies the response variable on the left,
and the structure of the linear predictor on the right.

◮ A data argument is usually supplied, containing the variables
referred to by the formula.

◮ glm returns a fitted model object.

But we must now specify a distribution and link.

◮ The family argument achieves this.

◮ e.g. glm(...,family=poisson(link=log)) would fit a
model with a log link assuming a Poisson response variable.



AIDS model example

belg.aids <- data.frame(cases=c(12,14,33,50,67,74,123,

141,165,204,253,246,240),year=1:13)

am1 <- glm(cases ~ year,data=belg.aids,

family=poisson(link=log))

plot(am1)
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. . . clear trend in the residual mean + some overly influential
points.



AIDS model example II

Try a quadratic time dependence?

am2 <- glm(cases ~ year+I(year^2),data=belg.aids,

family=poisson(link=log))

plot(am2)
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. . . much better.



AIDS example III

Now, examine the fitted model, first with the default print method

> am2

Call: glm(formula=cases~year+I(year^2),

family=poisson(link=log),data=belg.aids)

Coefficients:

(Intercept) year I(year^2)

1.90146 0.55600 -0.02135

Degrees of Freedom: 12 Total (i.e. Null); 10 Residual

Null Deviance: 872.2

Residual Deviance: 9.24 AIC: 96.92



summary.glm (edited)

> summary(am2)

...

Deviance Residuals:

Min 1Q Median 3Q Max

-1.45903 -0.64491 0.08927 0.67117 1.54596

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.901459 0.186877 10.175 < 2e-16 ***

year 0.556003 0.045780 12.145 < 2e-16 ***

I(year^2) -0.021346 0.002659 -8.029 9.82e-16 ***

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 872.2058 on 12 degrees of freedom

Residual deviance: 9.2402 on 10 degrees of freedom

AIC: 96.924



Hypothesis testing

We can also use a GLRT/ analysis of deviance to test the null
hypothesis that am1 is correct, against the alternative that am2 is
. . .

> anova(am1,am2,test="Chisq") ## NOT doing ANOVA!

Analysis of Deviance Table

Model 1: cases ~ year

Model 2: cases ~ year + I(year^2)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 11 80.686

2 10 9.240 1 71.446 2.849e-17

. . . very strong evidence against am1.



Further model improvement?

Would a cubic term be an improvement?

> ## NOT doing ANOVA!

Analysis of Deviance Table

Model 1: cases ~ year + I(year^2)

Model 2: cases ~ year + I(year^2) + I(year^3)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 10 9.2402

2 9 9.0081 1 0.2321 0.6300

. . . no evidence that it would.



AIC comparison

> AIC(am1,am2,am3)

df AIC

am1 2 166.36982

am2 3 96.92358

am3 4 98.69148

So, both hypothesis testing and AIC agree that the quadratic
model, am2 is the most appropriate.



predict

◮ predict method functions are the standard way of obtaining
predictions from a fitted model object.

◮ The predictor variable values at which to predict are supplied
in a newdata dataframe. If absent the values used for fitting
are employed.

◮ The following predicts from am2, with standard errors.
year <- seq(1,13,length=100)

fv <- predict(am2,newdata=data.frame(year=year),se=TRUE)

Now we can plot the data, fitted curve, and standard error
bands:
plot(belg.aids$year+1980,belg.aids$cases) # data

lines(year+1980,exp(fv$fit),col=2) # fit

lines(year+1980,exp(fv$fit+2*fv$se),col=3) # upper c.l.

lines(year+1980,exp(fv$fit-2*fv$se),col=3) # lower c.l.



Fitted AIDS model
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