Generalized Linear Models

Simon Wood

Mathematical Sciences, University of Bath, U.K.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Generalized linear model

▶ The linear model $y_i = \mathbf{X}_i \boldsymbol{\beta} + \epsilon_i$, $\epsilon_i \sim N(0, \sigma^2)$ can be written

$$\mu_i = \mathbf{X}_i \boldsymbol{\beta} \qquad y_i \sim N(\mu_i, \sigma^2).$$

where $\mu_i = E(y_i)$.

A Generalized linear model (GLM) extends this somewhat

$$g(\mu_i) = \mathbf{X}_i \boldsymbol{\beta} \qquad y_i \sim \mathsf{EF}(\mu_i, \phi)$$

- g is any smooth monotonic link function.
- EF(μ_i, φ) is any *exponential family distribution* (e.g. Normal, gamma, Poisson, binomial, Tweedie, etc.)
- φ is a known or unknown scale parameter
- Xeta (= η) is the linear predictor

The link function, g

- ► Common link functions are log, square root and logit (log{µ_i/(1 − µ_i)}).
- g acts a *little bit* like the data transformations used before GLMs. However note:
 - The link function transforms $\mathbb{E}(y_i)$.
 - The link function **does not** transform *y_i* itself.
- So, with a GLM we can transform the systematic part of a model, without changing the distribution of the random variability.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The exponential family

- A distribution is in the exponential family if its probability (density) function can be written in a particular general form.
- For our purposes, what matters is that if y is from an exponential family distributions, then we can write:

$$\operatorname{var}(y) = V(\mu)\phi$$

where V is a known variance function of $\mu = \mathbb{E}(y)$, and ϕ is a scale parameter (known or unknown).

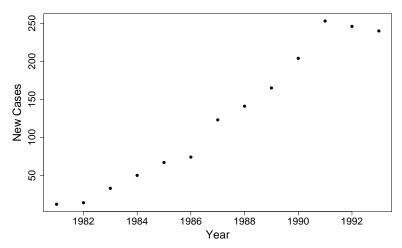
Actually GLM theory can be made to work based only on knowledge of V, without needing to know the full distribution of y, using quasi-likelihood theory. Generalized linear models include many familiar model types, for example:

- Linear models. Identity link, normal distribution.
- Models for analysis of contingency tables. Log link, Poisson distribution.

(日)

 Logistic regression. 'logit' or 'probit' link, binomial distribution.

Example: AIDS in Belgium



AIDS in Belgium

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Example: AIDS rate model

A simple model for these data might be

$$\mathbb{E}(y_i) = N_0 e^{\beta_1 t_i} \quad y_i \sim \text{Poi}$$

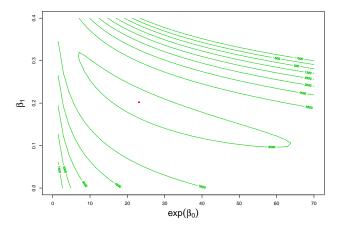
- y_i is new cases in year t_i ; N_0 is number of new cases in 1980.
- Model is for exponential increase of the expected rate.
- Observed number of cases, follows a Poisson distribution.
- The model is non-linear, but taking logs yields

$$\log (\mathbb{E}(y_i)) = \log(N_0) + \beta_1 t_i = \beta_0 + \beta_1 t_i, \qquad y_i \sim \text{Poi}$$

i.e. a GLM with a log link ($\beta_0 \equiv \log(N_0)$).

GLM estimation

Model estimation is by maximum likelihood, via a Newton type method. e.g. for the AIDS model the log-likelihood function looks like this ...



▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

IRLS

- ► For GLMs, MLE by a Newton type method can be expressed as an Iteratively Re-weighted Least Squares scheme...
- Initialize $\hat{\eta}_i = g(y_i)$, then iterate the following steps.
 - 1. Form pseudodata $z_i = g'(\hat{\mu}_i)(y_i \hat{\mu}_i)/\alpha_i + \hat{\eta}_i$ and iterative weights, $w_i = \alpha_i / \{V(\hat{\mu}_i)g'(\hat{\mu}_i)^2\}$.
 - 2. Minimize the weighted sum of squares $\sum_{i} w_i (z_i \mathbf{X}_i \beta)^2$ w.r.t. β to obtain a new $\hat{\beta}$, and hence new $\hat{\eta}$ and $\hat{\mu}$.
- $\alpha_i = 1 + (y_i \hat{\mu}_i)(V'_i/V_i + g''_i/g'_i)$ gives Newton's method.
- ▶ α_i = 1 gives *Fisher scoring*, where the expected Hessian of the likelihood replaces the actual Hessian in Newton's method.
- Newton convergences faster. Every EF has a *canonical link* for which the Newton ≡ Fisher.
- At convergence $\hat{\beta}$ is the MLE (both methods!).

Distribution of $\hat{oldsymbol{eta}}$

 In the large sample limit, by MLE theory (or from the weighted least squares),

$$\hat{\boldsymbol{\beta}} \sim N(\boldsymbol{\beta}, (\mathbf{X}^{\mathsf{T}}\mathbf{W}\mathbf{X})^{-1}\phi).$$

- Hence, CIs for any β_i can be calculated.
- ▶ Often ϕ is known. e.g. $\phi = 1$ for Poisson or binomial.
- If ϕ is unknown, can use a *Pearson estimate*:

$$\hat{\phi} = \sum_{i} w_i (z_i - \mathbf{X}_i \hat{oldsymbol{\beta}})^2 / (n - \dim(oldsymbol{eta}))$$

(then need to use $t_{n-\dim(\beta)}$ distribution for Cl's).

Deviance

- It is useful to have a quantity for GLMs which behaves like the residual sum of squares of a linear model. This is the *deviance*.
- We can write the model log likelihood, *l*(β), as a function of the μ: *l*(μ). Then the *deviance* is

$$D = 2\left\{l(\mathbf{y}) - l(\hat{\boldsymbol{\mu}})\right\}\phi$$

 It turns out that D can be evaluated without knowing φ, but for hypothesis testing we need the scaled deviance D* = D/φ. (When φ = 1, D* = D).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Properties of deviance

- The deviance reduces as the model fit improves.
- If the model exactly fits the data then the deviance is zero.
- As a rough approximation

$$D^* \sim \chi^2_{n-\dim(\boldsymbol{\beta})}$$

if the model is correct. Approximation can be good in some cases and is exact for the strictly linear model.

This suggests an alternative scale parameter estimator

$$\hat{\phi} = D/\{n - \dim(\boldsymbol{\beta})\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(Since $E(\chi_p^2) = p$ and $D^* = D/\phi$.)

Model Comparison

- Nested GLMs 0 and 1, with p₀ and p₁ parameters, can be compared using a generalized likelihood ratio test...
- ▶ In terms of the scaled deviance, if model 0 is correct then $D_0^* D_1^* \sim \chi^2_{p_1-p_0}$.
 - 1. If $\phi = 1$ this means that under model 0: $D_0 D_1 \sim \chi^2_{p_1 p_0}$.
 - 2. If ϕ is unknown, then the GLRT leads to the approximate result that, under model 0

$$rac{(D_0-D_1)/(p_1-p_0)}{D_1/(n-p_1)}\sim F_{
ho_1-p_0,n-p_1}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

AIC can be used if we want the best model for prediction, rather than the simplest model supportable by the data.

Residuals for GLMs

- For GLMs we need to check the assumptions that the data are independent and have the assumed mean-variance relationship, and are consistent with the assumed distribution.
- From the raw residuals $\hat{\epsilon}_i = y_i \mu_i$ it is very difficult to check the mean variance relationship or distribution.
- We therefore standardize the residuals, so that they have approximately constant variance, and behave something like residuals for an ordinary linear model.

(日)

Pearson residuals

 Pearson residuals are obtained by dividing the raw residuals by their scaled standard deviation, according to the model

$$\epsilon_i^p = \frac{y_i - \hat{\mu}_i}{\sqrt{V(\hat{\mu}_i)}}$$

- Hence, if the model mean variance relationship is OK, the variability of these residuals should appear to be fairly constant, when they are plotted against fitted values or predictors.
- Pearson residuals are still skewed, if the distribution is skewed.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Deviance residuals

- For a linear model the residual sum of squares is the sum of the squared residuals.
- For a GLM the deviance can be written as the sum of deviances for each datum:

$$D=\sum d_i$$

- Since the deviance is supposed to behave a bit like the RSS, then by analogy we can view $\sqrt{d_i}$ as a residual.
- Specifically $\epsilon_i^d = \operatorname{sign}(y_i \mu_i)\sqrt{d_i}$, behave quite like residuals from a linear model.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

glm in R

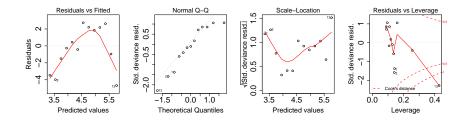
 GLMs are fitted using glm, which functions much like lm

- ► A model formula specifies the response variable on the left, and the structure of the linear predictor on the right.
- A data argument is usually supplied, containing the variables referred to by the formula.
- glm returns a fitted model object.

But we must now specify a distribution and link.

- The family argument achieves this.
- e.g. glm(...,family=poisson(link=log)) would fit a model with a log link assuming a Poisson response variable.

AIDS model example

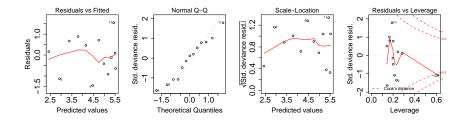


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 \dots clear trend in the residual mean + some overly influential points.

AIDS model example II

Try a quadratic time dependence?



э

... much better.

AIDS example III

Now, examine the fitted model, first with the default print method

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

> am2

```
Call: glm(formula=cases~year+I(year^2),
family=poisson(link=log),data=belg.aids)
```

Coefficients: (Intercept) year I(year^2) 1.90146 0.55600 -0.02135 Degrees of Freedom: 12 Total (i.e. Null); 10 Residual Null Deviance: 872.2 Residual Deviance: 9.24 AIC: 96.92

summary.glm (edited)

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 872.2058 on 12 degrees of freedom Residual deviance: 9.2402 on 10 degrees of freedom AIC: 96.924

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Hypothesis testing

We can also use a GLRT/ analysis of deviance to test the null hypothesis that am1 is correct, against the alternative that am2 is \dots

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

> anova(am1,am2,test="Chisq") ## NOT doing ANOVA! Analysis of Deviance Table

Model 1: cases ~ year Model 2: cases ~ year + I(year^2) Resid. Df Resid. Dev Df Deviance P(>|Chi|) 1 11 80.686 2 10 9.240 1 71.446 2.849e-17

... very strong evidence against am1.

Further model improvement?

Would a cubic term be an improvement?

> ## NOT doing ANOVA! Analysis of Deviance Table Model 1: cases ~ year + I(year^2) Model 2: cases ~ year + I(year^2) + I(year^3) Resid. Df Resid. Dev Df Deviance P(>|Chi|) 1 10 9.2402 2 9 9.0081 1 0.2321 0.6300

(日)

... no evidence that it would.

AIC comparison

So, both hypothesis testing and AIC agree that the quadratic model, am2 is the most appropriate.

(日)

predict

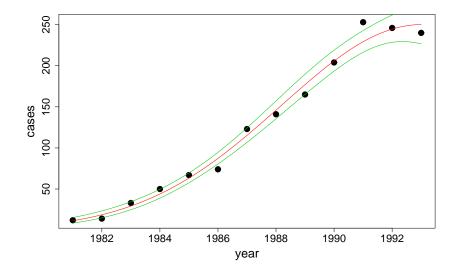
- predict method functions are the standard way of obtaining predictions from a fitted model object.
- The predictor variable values at which to predict are supplied in a newdata dataframe. If absent the values used for fitting are employed.
- The following predicts from am2, with standard errors. year <- seq(1,13,length=100) function (comparison of the sequence) comparison of the sequence of the

```
fv <- predict(am2,newdata=data.frame(year=year),se=TRUE)</pre>
```

Now we can plot the data, fitted curve, and standard error bands:

```
plot(belg.aids$year+1980,belg.aids$cases)  # data
lines(year+1980,exp(fv$fit),col=2)  # fit
lines(year+1980,exp(fv$fit+2*fv$se),col=3)  # upper c.l.
lines(year+1980,exp(fv$fit-2*fv$se),col=3)  # lower c.l.
```

Fitted AIDS model



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで