Generalized Additive Models

Simon Wood

Mathematical Sciences, University of Bath, U.K.

Introduction

- We have seen how to
 - 1. turn model $y_i = f(x_i) + \epsilon_i$ into $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ and a wiggliness penalty $\boldsymbol{\beta}^{\mathsf{T}}\mathbf{S}\boldsymbol{\beta}$.
 - 2. estimate $\boldsymbol{\beta}$ given $\boldsymbol{\lambda}$ as $\hat{\boldsymbol{\beta}} = \arg \min_{\boldsymbol{\beta}} \| \mathbf{y} \mathbf{X} \boldsymbol{\beta} \|^2 + \lambda \boldsymbol{\beta}^{\mathsf{T}} \mathbf{S} \boldsymbol{\beta}$.
 - 3. estimate λ by GCV, AIC, REML etc.
 - 4. use $\beta | \boldsymbol{\lambda} \sim N(\hat{\beta}, (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{S})^{-1}\sigma^2)$ for inference.
- ...all this can be extended to models with multiple smooth terms, for exponential family response data ...

Additive Models

Consider the model

$$y_i = \mathbf{A}_i \boldsymbol{ heta} + \sum_j f_j(x_{ji}) + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2)$$

- \mathbf{A}_i is the *i*th row of the model matrix for any parametric terms, with parameter vector $\boldsymbol{\theta}$. Assume it includes an intercept.
- *f_j* is a smooth function of covariate *x_j*, which may vector valued.
- The f_j are confounded via the intercept, so that the model is only estimable under identifiability constraints on the f_j.
- The best constraints are $\sum_i f_j(x_i) = 0 \quad \forall j$.
- If f = [f(x₁), f(x₂),...] then the constraint is 1^Tf = 0, i.e. f is orthogonal to the intercept. This results in minimum width Cls for the constrained f_j.¹

¹this fact is not often appreciated in the literature

Representing the model

- Choose a basis and penalty for each f_j.
- ► Let the model matrix for f_j be **X** and let $\lambda \beta^T \mathbf{S} \beta$ be the penalty (more generally $\sum_i \lambda_j \beta^T \mathbf{S}_j \beta$).
- Reparameterize to absorb the constraint $\mathbf{1}^{\mathsf{T}}\mathbf{X} = 0$ as follows
 - 1. Form QR decompostion

$$old Q \left[egin{array}{c} {\sf R} \\ {old 0} \end{array}
ight] = {old X}^{{\sf T}} {old 1} \;\; {\sf and} \;\; {\sf partition} \;\; old Q = \left[egin{array}{c} {\sf Y} & {\sf Z} \end{array}
ight]$$

2. Setting $\boldsymbol{\beta} = \mathbf{Z} \boldsymbol{\beta}'$ then

$$\mathbf{1}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta} = \begin{bmatrix} \mathbf{R} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{Y}^{\mathsf{T}} \\ \mathbf{Z}^{\mathsf{T}} \end{bmatrix} \mathbf{Z}\boldsymbol{\beta}' = \mathbf{0}.$$

3. So set $\mathbf{X}^{[j]} = \mathbf{X}\mathbf{Z}$ and $\mathbf{S}_j = \mathbf{Z}^{\mathsf{T}}\mathbf{S}\mathbf{Z}$...the constrained model and penalty matrices for f_j .

The estimable AM

Now
$$y_i = \mathbf{A}_i \boldsymbol{\theta} + \sum_j f_j(x_{ji}) + \epsilon_i$$
 becomes $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ where
$$\mathbf{X} = [\mathbf{A} : \mathbf{X}^{[1]} : \mathbf{X}^{[2]} : \cdots]$$

and β contains θ followed by the basis coefficients for the f_j .

- After suitable padding of the S_j with zeroes the penalty becomes ∑_j λ_jβ^TS_jβ.
- $\blacktriangleright \text{ Now } \hat{\boldsymbol{\beta}} = \arg \min_{\beta} \| \mathbf{y} \mathbf{X} \boldsymbol{\beta} \|^2 + \sum_j \lambda_j \boldsymbol{\beta}^{\mathsf{T}} \mathbf{S}_j \boldsymbol{\beta}.$
- Again λ can be estimated by GCV, REML etc.

Linear functional generalization

Occasionally we may want a model that depends on an f_j in some way other than simple evaluation. So let L_{ij} be a linear operator and consider an extended model

$$y_i = \mathbf{A}_i \boldsymbol{ heta} + \sum_j L_{ij} f_j(x_j) + \epsilon_i$$

e.g. $L_{ij}f_j = \int k_i(x)f_j(x)dx$ (k_i known), or just $L_{ij}f_j = f(x_{ji})$.

- Dropping *j* for now, we can discretize $L_i f(x) \simeq \sum_k \tilde{L}_{ik} f(x_k)$.
- ▶ So $L_i f(x) \simeq \sum_k \tilde{L}_{ik} \tilde{\mathbf{X}}_k \beta$, where $\tilde{\mathbf{X}}_k$ is k^{th} row of model matrix evaluating f(x) at the points x_k .
- Then the model matrix for L_if(x) is LX. The penalties are just those for f.
- Hence the extended model can be written in the same general form as the simple AM.

Generalized Additive Models

Generalizing again, we have

$$m{g}(\mu_i) = m{A}_i m{ heta} + \sum_j L_{ij} f_j(x_j), \quad y_i \sim \mathsf{EF}(\mu_i, \phi)$$

where g is a known smooth monotonic link function and EF an exponential family distribution.

Set up model matrix and penalties as before.

► Estimate β by penalized MLE. Defining the Deviance. D(β) = 2{l_{max} − l(β)} (l_{max} is saturated log likelihood)...

$$\hat{oldsymbol{eta}} = rg\min_{oldsymbol{eta}} D(oldsymbol{eta}) + \sum_j \lambda_j oldsymbol{eta}^{\mathsf{T}} \mathbf{S}_j oldsymbol{eta}$$

• λ estimation is by generalizations of GCV, REML etc.

GAM computation: $\hat{\boldsymbol{\beta}}|\mathbf{y}$

Penalized likelihood maximization is by Penalized IRLS.

- Initialize $\hat{\eta} = g(\mathbf{y})$ and iterate the following to convergence.
 - 1. Compute z_i and w_i from $\hat{\eta}_i$ (and $\hat{\mu}_i$) as for any GLM.
 - 2. Compute a revised β estimate

$$\hat{\boldsymbol{eta}} = rg\min_{\boldsymbol{eta}} \sum_{i} w_i (z_i - \mathbf{X}_i \boldsymbol{eta})^2 + \sum \lambda_j \boldsymbol{eta}^\mathsf{T} \mathbf{S}_j \boldsymbol{eta}$$

and hence revised estimates $\hat{\eta}$ and $\hat{\mu}$.

Newton based versions of w_i and z_i are best here, as it makes λ estimation easier.

EDF, $\boldsymbol{\beta}|\mathbf{y}$ and $\hat{\phi}$

- Let $\mathbf{S} = \sum_{j} \lambda_j \mathbf{S}_j$ and $\mathbf{W} = \text{diag}\{E(w_i)\}$.
- The Effective Degrees of Freedom matrix becomes

$$\mathbf{F} = (\mathbf{X}^\mathsf{T} \mathbf{W} \mathbf{X} + \mathbf{S})^{-1} \mathbf{X}^\mathsf{T} \mathbf{W} \mathbf{X}$$

- Then the EDF is tr(F). EDFs for individual smooths are found by summing the F_{ii} values for their coefficients.
- ▶ In the $n \to \infty$ limit

$$oldsymbol{eta}|\mathbf{y}\sim oldsymbol{\mathcal{N}}(\hat{oldsymbol{eta}},(\mathbf{X}^\mathsf{T}\mathbf{W}\mathbf{X}+\mathbf{S})^{-1}\phi)$$

The scale parameter can be estimated by

$$\hat{\phi} = \sum_{i} w_i (z_i - \mathbf{X}_i \hat{\beta})^2 / \{n - \operatorname{tr}(\mathbf{F})\}.$$

$oldsymbol{\lambda}$ estimation

- There are 2 basic computational strategies for λ selection.
 - 1. Single iteration schemes estimate λ at each PIRLS iteration step, by applying GCV, REML or whatever to the working penalized linear model. This approach need not converge.
 - 2. Nested iteration, defines a λ selection criterion in terms of the model deviance and optimizes it directly. Each evaluation of the criterion requires an 'inner' PIRLS to obtain $\hat{\beta}_{\lambda}$. This converges, since a properly defined function of λ is optimized.
- The second option is usually preferable on grounds of reliability, but the first option can be made very memory efficient with very large datasets.
- The first option simply uses the smoothness selection criteria for the linear model case, but the second requires that these be extended...

Deviance based λ selection criteria

• Mallows' C_p / UBRE generalizes to

$${\mathcal V}_{{\sf a}} = D(\hat{oldsymbol{eta}}_{\lambda}) + 2\phi {\sf tr}({\sf F}_{\lambda})$$

► GCV generalizes to

$$\mathcal{V}_{g} = nD(\hat{oldsymbol{eta}}_{\lambda})/\{n - \mathrm{tr}(\mathbf{F})\}^{2}$$

Laplace approximate (negative twice) REML is

$$\begin{aligned} \mathcal{V}_{r} &= \frac{D(\hat{\beta}) + \hat{\beta}^{\mathsf{T}} \mathbf{S} \hat{\beta}}{\phi} - 2l_{s}(\phi) \\ &+ (\log |\mathbf{X}^{\mathsf{T}} \mathbf{W} \mathbf{X} + \mathbf{S}| - \log |\mathbf{S}|_{+}) - M_{p} \log(2\pi\phi). \end{aligned}$$

Nested iteration computational strategy

- Optimization wrt ρ = log λ is by Newton's method, using analytic derivatives.
- For each trial λ used by Newton's method...
 - 1. Re-parameterize for maximum numerical stability in computing $\hat{\beta}$ and terms like log $|\mathbf{S}|_+$.
 - 2. Compute $\hat{\beta}$ by PIRLS (full Newton version).
 - 3. Calculate derivatives of $\hat{\beta}$ wrt ρ by implicit differentiation.
 - 4. Evaluate the λ selection criterion and its derivatives wrt ho
- ... after which all the ingredients are in place for Newton's method to propose a new λ value.
- As usual with Newton's method, some step halving may be needed, and the Hessian will have to be peturbed if it is not positive definite.

One last generalization: GAMM

A generalized additive mixed model has the form

$$g(\mu_i) = \mathbf{A}_i \mathbf{ heta} + \sum_j L_{ij} f_j(x_j) + \mathbf{Z} \mathbf{b}, \ \mathbf{b} \sim N(\mathbf{0}, \psi), \ y_i \sim \mathsf{EF}(\mu_i, \phi)$$

- ... actually this is not much different to a GAM. The random effects term **Zb** is just like a smooth with penalty $\mathbf{b}^{\mathsf{T}} \psi^{-1} \mathbf{b}$.
- If ψ^{-1} can be written in the form $\sum_k \lambda_k \mathbf{S}_k$ then the GAMM can be treated *exactly* like a GAM. (gam).
- Alternatively, using the mixed model representation of the smooths, the GAMM can be written in standard GLMM form and estimated as a GLMM. (gamm/gamm4).
- The latter option is often preferable when there are many random effects, and the former when there are fewer.

Inference for GAMMs

- For many GAMMs we are interested in making inferences about the smooths, but are using the other random effects to model 'nuisance' randomness.
- In this case we often want to use the large sample result

$$oldsymbol{eta}|\mathbf{y}\sim oldsymbol{\mathcal{N}}(\hat{oldsymbol{eta}},(\mathbf{X}^{\mathsf{T}} ilde{\mathbf{W}}\mathbf{X}+\mathbf{S})^{-1}\phi)$$

for inference, where $\tilde{\mathbf{W}}^{-1} = \mathbf{W}^{-1} + \mathbf{Z}^{\mathsf{T}} \boldsymbol{\psi} \mathbf{Z} / \phi$.

- The point here is that inference about the smooths and other fixed effects takes account of the uncertainty induced by both random effects and residual variability.

Summary

- ► A GAM is simply a GLM in which the linear predictor partly depends linearly on some unknown smooth functions.
- GAMs are estimated by a penalized version of the method used to fit GLMs.
- An extra criterion has to be optimized to find the smoothing parameters.
- A GAMM is simply a GLMM in which the linear predictor partly depends linearly on some unknown smooth functions.
- From the mixed model representation of smooths, GAMMs can be estimated as GAMs or GLMMs.
- Inference for GAMs and GAMMs is really Bayesian, but without any need to simulate.