Generalized Additive Models

Simon Wood
Mathematical Sciences, University of Bath, U.K.

Introduction

- We have seen how to

1. turn model $y_{i}=f\left(x_{i}\right)+\epsilon_{i}$ into $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ and a wiggliness penalty $\boldsymbol{\beta}^{\mathbf{T}} \mathbf{S} \boldsymbol{\beta}$.
2. estimate $\boldsymbol{\beta}$ given $\boldsymbol{\lambda}$ as $\hat{\boldsymbol{\beta}}=\arg \min _{\boldsymbol{\beta}}\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}+\lambda \boldsymbol{\beta}^{\top} \mathbf{S} \boldsymbol{\beta}$.
3. estimate $\boldsymbol{\lambda}$ by GCV, AIC, REML etc.
4. use $\boldsymbol{\beta} \mid \boldsymbol{\lambda} \sim N\left(\hat{\boldsymbol{\beta}},\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{S}\right)^{-1} \sigma^{2}\right)$ for inference.

-all this can be extended to models with multiple smooth terms, for exponential family response data ...

Additive Models

- Consider the model

$$
y_{i}=\mathbf{A}_{i} \boldsymbol{\theta}+\sum_{j} f_{j}\left(x_{j i}\right)+\epsilon_{i}, \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

- \mathbf{A}_{i} is the $i^{\text {th }}$ row of the model matrix for any parametric terms, with parameter vector $\boldsymbol{\theta}$. Assume it includes an intercept.
- f_{j} is a smooth function of covariate x_{j}, which may vector valued.
- The f_{j} are confounded via the intercept, so that the model is only estimable under identifiability constraints on the f_{j}.
- The best constraints are $\sum_{i} f_{j}\left(x_{i}\right)=0 \quad \forall j$.
- If $\mathbf{f}=\left[f\left(x_{1}\right), f\left(x_{2}\right), \ldots\right]$ then the constraint is $\mathbf{1}^{\top} \mathbf{f}=0$, i.e. \mathbf{f} is orthogonal to the intercept. This results in minimum width Cls for the constrained $f_{j} .{ }^{1}$

[^0]
Representing the model

- Choose a basis and penalty for each f_{j}.
- Let the model matrix for f_{j} be \mathbf{X} and let $\lambda \boldsymbol{\beta}^{\top} \mathbf{S} \boldsymbol{\beta}$ be the penalty (more generally $\sum_{j} \lambda_{j} \boldsymbol{\beta}^{\top} \mathbf{S}_{j} \boldsymbol{\beta}$).
- Reparameterize to absorb the constraint $\mathbf{1}^{\top} \mathbf{X}=0$ as follows

1. Form QR decompostion

$$
\mathbf{Q}\left[\begin{array}{l}
\mathbf{R} \\
\mathbf{0}
\end{array}\right]=\mathbf{X}^{\top} \mathbf{1} \text { and partition } \mathbf{Q}=\left[\begin{array}{ll}
\mathbf{Y} & \mathbf{Z}
\end{array}\right]
$$

2. Setting $\boldsymbol{\beta}=\mathbf{Z} \boldsymbol{\beta}^{\prime}$ then

$$
\mathbf{1}^{\top} \mathbf{X} \boldsymbol{\beta}=\left[\begin{array}{ll}
\mathbf{R} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{Y}^{\top} \\
\mathbf{Z}^{\top}
\end{array}\right] \mathbf{Z} \boldsymbol{\beta}^{\prime}=0 .
$$

3. So set $\mathbf{X}^{[j]}=\mathbf{X Z}$ and $\mathbf{S}_{j}=\mathbf{Z}^{\top} \mathbf{S Z}$. . the constrained model and penalty matrices for f_{j}.

The estimable AM

- Now $y_{i}=\mathbf{A}_{i} \boldsymbol{\theta}+\sum_{j} f_{j}\left(x_{j i}\right)+\epsilon_{i}$ becomes $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ where

$$
\mathbf{X}=\left[\mathbf{A}: \mathbf{X}^{[1]}: \mathbf{X}^{[2]}: \cdots\right]
$$

and $\boldsymbol{\beta}$ contains $\boldsymbol{\theta}$ followed by the basis coefficients for the f_{j}.

- After suitable padding of the \mathbf{S}_{j} with zeroes the penalty becomes $\sum_{j} \lambda_{j} \boldsymbol{\beta}^{\top} \mathbf{S}_{j} \boldsymbol{\beta}$.
- Now $\hat{\boldsymbol{\beta}}=\arg \min _{\beta}\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}+\sum_{j} \lambda_{j} \boldsymbol{\beta}^{\top} \mathbf{S}_{j} \boldsymbol{\beta}$.
- Again $\boldsymbol{\lambda}$ can be estimated by GCV, REML etc.

Linear functional generalization

- Occasionally we may want a model that depends on an f_{j} in some way other than simple evaluation. So let $L_{i j}$ be a linear operator and consider an extended model

$$
y_{i}=\mathbf{A}_{i} \boldsymbol{\theta}+\sum_{j} L_{i j} f_{j}\left(x_{j}\right)+\epsilon_{i}
$$

e.g. $L_{i j} f_{j}=\int k_{i}(x) f_{j}(x) d x\left(k_{i}\right.$ known), or just $L_{i j} f_{j}=f\left(x_{j i}\right)$.

- Dropping j for now, we can discretize $L_{i} f(x) \simeq \sum_{k} \tilde{L}_{i k} f\left(x_{k}\right)$.
- So $L_{i} f(x) \simeq \sum_{k} \tilde{L}_{i k} \tilde{\mathbf{X}}_{k} \boldsymbol{\beta}$, where $\tilde{\mathbf{X}}_{k}$ is $k^{\text {th }}$ row of model matrix evaluating $f(x)$ at the points x_{k}.
- Then the model matrix for $L_{i} f(x)$ is $\tilde{\mathbf{L}} \tilde{\mathbf{X}}$. The penalties are just those for f.
- Hence the extended model can be written in the same general form as the simple AM.

Generalized Additive Models

- Generalizing again, we have

$$
g\left(\mu_{i}\right)=\mathbf{A}_{i} \boldsymbol{\theta}+\sum_{j} L_{i j} f_{j}\left(x_{j}\right), \quad y_{i} \sim \mathrm{EF}\left(\mu_{i}, \phi\right)
$$

where g is a known smooth monotonic link function and EF an exponential family distribution.

- Set up model matrix and penalties as before.
- Estimate $\boldsymbol{\beta}$ by penalized MLE. Defining the Deviance. $D(\boldsymbol{\beta})=2\left\{I_{\max }-I(\boldsymbol{\beta})\right\}\left(I_{\max }\right.$ is saturated log likelihood $) \ldots$

$$
\hat{\boldsymbol{\beta}}=\arg \min _{\boldsymbol{\beta}} D(\boldsymbol{\beta})+\sum_{j} \lambda_{j} \boldsymbol{\beta}^{\top} \mathbf{S}_{j} \boldsymbol{\beta}
$$

- $\boldsymbol{\lambda}$ estimation is by generalizations of GCV, REML etc.

GAM computation: $\hat{\boldsymbol{\beta}} \mid \mathbf{y}$

- Penalized likelihood maximization is by Penalized IRLS.
- Initialize $\hat{\boldsymbol{\eta}}=g(\mathbf{y})$ and iterate the following to convergence.

1. Compute z_{i} and w_{i} from $\hat{\eta}_{i}$ (and $\hat{\mu}_{i}$) as for any GLM.
2. Compute a revised $\boldsymbol{\beta}$ estimate

$$
\hat{\boldsymbol{\beta}}=\arg \min _{\boldsymbol{\beta}} \sum_{i} w_{i}\left(z_{i}-\mathbf{X}_{i} \boldsymbol{\beta}\right)^{2}+\sum \lambda_{j} \boldsymbol{\beta}^{\top} \mathbf{S}_{j} \boldsymbol{\beta}
$$

and hence revised estimates $\hat{\boldsymbol{\eta}}$ and $\hat{\boldsymbol{\mu}}$.

- Newton based versions of w_{i} and z_{i} are best here, as it makes $\boldsymbol{\lambda}$ estimation easier.

EDF, $\boldsymbol{\beta} \mid \mathbf{y}$ and $\hat{\phi}$

- Let $\mathbf{S}=\sum_{j} \lambda_{j} \mathbf{S}_{j}$ and $\mathbf{W}=\operatorname{diag}\left\{E\left(w_{i}\right)\right\}$.
- The Effective Degrees of Freedom matrix becomes

$$
\mathbf{F}=\left(\mathbf{X}^{\top} \mathbf{W} \mathbf{X}+\mathbf{S}\right)^{-1} \mathbf{X}^{\top} \mathbf{W} \mathbf{X}
$$

- Then the EDF is $\operatorname{tr}(\mathbf{F})$. EDFs for individual smooths are found by summing the $F_{i i}$ values for their coefficients.
- In the $n \rightarrow \infty$ limit

$$
\boldsymbol{\beta} \mid \mathbf{y} \sim N\left(\hat{\boldsymbol{\beta}},\left(\mathbf{X}^{\top} \mathbf{W} \mathbf{X}+\mathbf{S}\right)^{-1} \phi\right)
$$

- The scale parameter can be estimated by

$$
\hat{\phi}=\sum_{i} w_{i}\left(z_{i}-\mathbf{X}_{i} \hat{\boldsymbol{\beta}}\right)^{2} /\{n-\operatorname{tr}(\mathbf{F})\} .
$$

$\boldsymbol{\lambda}$ estimation

- There are 2 basic computational strategies for $\boldsymbol{\lambda}$ selection.

1. Single iteration schemes estimate $\boldsymbol{\lambda}$ at each PIRLS iteration step, by applying GCV, REML or whatever to the working penalized linear model. This approach need not converge.
2. Nested iteration, defines a $\boldsymbol{\lambda}$ selection criterion in terms of the model deviance and optimizes it directly. Each evaluation of the criterion requires an 'inner' PIRLS to obtain $\hat{\boldsymbol{\beta}}_{\lambda}$. This converges, since a properly defined function of $\boldsymbol{\lambda}$ is optimized.

- The second option is usually preferable on grounds of reliability, but the first option can be made very memory efficient with very large datasets.
- The first option simply uses the smoothness selection criteria for the linear model case, but the second requires that these be extended...

Deviance based $\boldsymbol{\lambda}$ selection criteria

- Mallows' C_{p} / UBRE generalizes to

$$
\mathcal{V}_{a}=D\left(\hat{\boldsymbol{\beta}}_{\lambda}\right)+2 \phi \operatorname{tr}\left(\mathbf{F}_{\lambda}\right)
$$

- GCV generalizes to

$$
\mathcal{V}_{g}=n D\left(\hat{\boldsymbol{\beta}}_{\lambda}\right) /\{n-\operatorname{tr}(\mathbf{F})\}^{2}
$$

- Laplace approximate (negative twice) REML is

$$
\begin{aligned}
\mathcal{V}_{r}= & \frac{D(\hat{\boldsymbol{\beta}})+\hat{\boldsymbol{\beta}}^{\top} \mathbf{S} \hat{\boldsymbol{\beta}}}{\phi}-2 I_{s}(\phi) \\
& +\left(\log \left|\mathbf{X}^{\top} \mathbf{W} \mathbf{X}+\mathbf{S}\right|-\log |\mathbf{S}|_{+}\right)-M_{p} \log (2 \pi \phi)
\end{aligned}
$$

Nested iteration computational strategy

- Optimization wrt $\rho=\log \boldsymbol{\lambda}$ is by Newton's method, using analytic derivatives.
- For each trial $\boldsymbol{\lambda}$ used by Newton's method...

1. Re-parameterize for maximum numerical stability in computing $\hat{\boldsymbol{\beta}}$ and terms like $\log |\mathbf{S}|_{+}$.
2. Compute $\hat{\boldsymbol{\beta}}$ by PIRLS (full Newton version).
3. Calculate derivatives of $\hat{\boldsymbol{\beta}}$ wrt $\boldsymbol{\rho}$ by implicit differentiation.
4. Evaluate the $\boldsymbol{\lambda}$ selection criterion and its derivatives wrt ρ

-after which all the ingredients are in place for Newton's method to propose a new $\boldsymbol{\lambda}$ value.
- As usual with Newton's method, some step halving may be needed, and the Hessian will have to be peturbed if it is not positive definite.

One last generalization: GAMM

- A generalized additive mixed model has the form

$$
g\left(\mu_{i}\right)=\mathbf{A}_{i} \boldsymbol{\theta}+\sum_{j} L_{i j} f_{j}\left(x_{j}\right)+\mathbf{Z} \mathbf{b}, \quad \mathbf{b} \sim N(\mathbf{0}, \psi), \quad y_{i} \sim \operatorname{EF}\left(\mu_{i}, \phi\right)
$$

- ... actually this is not much different to a GAM. The random effects term $\mathbf{Z b}$ is just like a smooth with penalty $\mathbf{b}^{\top} \boldsymbol{\psi}^{-1} \mathbf{b}$.
- If $\boldsymbol{\psi}^{-1}$ can be written in the form $\sum_{k} \lambda_{k} \mathbf{S}_{k}$ then the GAMM can be treated exactly like a GAM. (gam).
- Alternatively, using the mixed model representation of the smooths, the GAMM can be written in standard GLMM form and estimated as a GLMM. (gamm/gamm4).
- The latter option is often preferable when there are many random effects, and the former when there are fewer.

Inference for GAMMs

- For many GAMMs we are interested in making inferences about the smooths, but are using the other random effects to model 'nuisance' randomness.
- In this case we often want to use the large sample result

$$
\boldsymbol{\beta} \mid \mathbf{y} \sim N\left(\hat{\boldsymbol{\beta}},\left(\mathbf{X}^{\top} \tilde{\mathbf{W}} \mathbf{X}+\mathbf{S}\right)^{-1} \phi\right)
$$

for inference, where $\tilde{\mathbf{W}}^{-1}=\mathbf{W}^{-1}+\mathbf{Z}^{\top} \psi \mathbf{Z} / \phi$.

- The point here is that inference about the smooths and other fixed effects takes account of the uncertainty induced by both random effects and residual variability.
- Note that \tilde{W} usually has exploitable sparse structure, so that its inverse is not too expensive.

Summary

- A GAM is simply a GLM in which the linear predictor partly depends linearly on some unknown smooth functions.
- GAMs are estimated by a penalized version of the method used to fit GLMs.
- An extra criterion has to be optimized to find the smoothing parameters.
- A GAMM is simply a GLMM in which the linear predictor partly depends linearly on some unknown smooth functions.
- From the mixed model representation of smooths, GAMMs can be estimated as GAMs or GLMMs.
- Inference for GAMs and GAMMs is really Bayesian, but without any need to simulate.

[^0]: ${ }^{1}$ this fact is not often appreciated in the literature

