GAMs — semi-parametric GLMs

Simon Wood Mathematical Sciences, University of Bath, U.K.

Generalized linear models, GLM

1. A GLM models a univariate response, y_i as

 $g\{\mathbb{E}(y_i)\} = \mathbf{X}_i \boldsymbol{\beta}$ where $y_i \sim \text{Exponential family}$

- 2. *g* is a known, smooth monotonic *link function*.
- 3. **X***^{<i>i*} is the ith row of a known *model matrix*, which depends on measured predictor variables (covariates).
- 4. β is an **unknown** parameter vector, estimated by MLE.
- 5. **X** β (= η) is the *linear predictor* of the model.
- 6. Class includes log-linear models, general linear regression, logistic regression,...
- 7. glm in R implements this class.

Generalized additive models, GAM

- A GAM (semi-parametric GLM) is a GLM where the linear predictor depends linearly on *unknown smooth functions*.
- 2. In general

$$g\{\mathbb{E}(y_i)\} = \mathbf{A}_i \boldsymbol{\theta} + \sum_j L_{ij} f_j$$
 where $y_i \sim \text{Exponential family}$

- 3. Parameters, θ , and smooth functions, f_j , are **unknown**.
- 4. Parametric model matrix, **A**, and linear functionals, L_{ij} , depend on predictor variables.
- 5. Examples of $L_{ij}f_j$: $f_1(x_i)$, $f_2(z_i)w_i$, $\int k_i(v)f_j(v)dv$, ...

Specifying GAMs in R with mgcv

- library(mgcv) loads a semi-parametric GLM package.
- gam(formula, family) is quite like glm.
- The family argument specifies the distribution and link function. e.g. Gamma (log).
- The response variable and linear predictor structure are specified in the model formula.
- Response and parametric terms exactly as for lm or glm.
- \blacktriangleright Smooth functions are specified by ${\tt s}$ or ${\tt te}$ terms. e.g.

$$\log\{\mathbb{E}(\mathbf{y}_i)\} = \alpha + \beta \mathbf{x}_i + f(\mathbf{z}_i), \ \mathbf{y}_i \sim \text{Gamma},$$

is specified by...

gam(y ~ x + s(z),family=Gamma(link=log))

More specification: by variables

- Smooth terms can accept a by variable argument, which allows L_{ij}f_j terms other than just f_j(x_i).
- ► e.g. $\mathbb{E}(y_i) = f_1(z_i)w_i + f_2(v_i), y_i \sim \text{Gaussian, becomes}$ gam(y ~ s(z, by=w) + f(v))
 - i.e. $f_1(x_i)$ is multiplied by w_i in the linear predictor.
- e.g. $\mathbb{E}(y_i) = f_j(x_i, z_i)$ if factor g_i is of level j, becomes

 $gam(y \sim s(x, z, by=g) + g)$

i.e. there is one smooth function for each level of factor variable g, with each y_i depending on just one of these functions.

Yet more specification: a summation convention

- s and te smooth terms accept matrix arguments and by variables to implement general L_{ij}f_j terms.
- ▶ If **X** and **L** are *n* × *p* matrices then

s (X, by=L) evaluates $L_{ij}f_j = \sum_k f(X_{ik})L_{ik}$ for all *i*.

• For example, consider data $y_i \sim \text{Poi}$ where

$$\log\{\mathbb{E}(y_i)\} = \int k_i(x)f(x)dx \simeq \frac{1}{h}\sum_{k=1}^{p}k_i(x_k)f(x_k)$$

(the x_k are evenly spaced points).

▶ Let $X_{ik} = x_k \forall i$ and $L_{ik} = k_i(x_k)/h$. The model is fit by gam(y ~ s(X, by=L), poisson)

How to estimate GAMs?

- The gam calls on the previous slides would also estimate the specified model — it's useful to have some idea how.
- We need to estimate the parameters, θ, and the smooth functions, f_j.
- This includes estimating *how smooth* the f_i are.
- To begin with we need decide on two things
 - 1. How to represent the f_j by something computable.
 - 2. How to formalize what is meant by smooth.
- ... here we'll discuss only the approach based on representing the f_j with penalized regression splines (as in R package, mgcv).

Bases and penalties for the f_j

 Represent each *f* as a weighted sum of known basis functions, *b_k*,

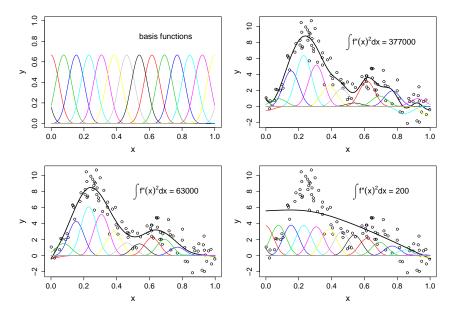
$$f(x) = \sum_{k=1}^{K} \gamma_k b_k(x)$$

Now only the γ_k are unknown.

- Spline function theory supplies good choices for the b_k.
- K is chosen large enough to be sure that $bias(\hat{f}) \ll var(\hat{f})$.
- Choose a measure of function *wiggliness* e.g.

$$\int f''(x)^2 dx = \gamma^{\mathrm{T}} \mathcal{S} \gamma$$
, where $\mathcal{S}_{ij} = \int b''_i(x) b''_j(x) dx$.

Basis & penalty example



A computable GAM

• Representing each f_i with basis functions b_{ik} we have,

$$g\{\mathbb{E}(y_i)\} = \mathbf{A}_i \boldsymbol{\theta} + \sum_j L_{ij} f_j = \mathbf{A}_i \boldsymbol{\theta} + \sum_j \sum_k \gamma_{jk} L_{ij} b_{jk} = \mathbf{X} \boldsymbol{\beta}$$

where **X** contains **A** and the $L_{ij}b_{jk}$, while β contains θ and the γ_i vectors.

- ► For notational convenience we can re-write the wiggliness penalties as $\gamma_j^T S_j \gamma_j = \beta^T S_j \beta$, where S_j is just S_j padded with extra zeroes.
- So the GAM has become a parametric GLM, with some associated penalties.
- The L_{ij} f_j are often confounded via the intercept. So the f_j are usually constrained to sum to zero, over the observed values. A reparameterization achieves this.

Estimating the model

- If the bases are large enough to be sure of avoiding bias, then MLE of the model will overfit/undersmooth.
- ... so we use maximum *penalized* likelihood estimation.

minimize
$$-2l(\beta) + \sum_{j} \lambda_{j} \beta^{\mathrm{T}} \mathbf{S}_{j} \beta$$
 w.r.t. β (1)

where / is the log likelihood.

- $\lambda_j \beta^{\mathrm{T}} \mathbf{S}_j \beta$ forces f_j to be smooth.
- *How* smooth is controlled by λ_i , which must be chosen.
- For now suppose that an angel has revealed values for λ in a dream. We'll eliminate the angel later.
- Given λ, (1) is optimized by a penalized version of the IRLS algorithm used for GLMs

Bayesian motivation

- We can be more principled about motivating (1).
- Suppose that our *prior belief* is that smooth models are more probable than wiggly ones.
- We can formalize this belief with an exponential prior on wiggliness

$$\propto exp(-rac{1}{2}\sum_j\lambda_joldsymbol{eta}^{\mathrm{T}}\mathbf{S}_joldsymbol{eta})$$

- ► ⇒ an improper Gaussian prior $\beta \sim N(\mathbf{0}, (\sum_j \lambda_j \beta^T \mathbf{S}_j \beta)^-).$
- In this case the posterior modes, β̂, of β|y are the minimizers of (1).

The distribution of β |**y**

- The Bayesian approach gives us more...
- ► For any exponential family distribution $\operatorname{var}(y_i) = \phi V(\mu_i)$ where $\mu_i = \mathbb{E}(y_i)$. Let $W_{ii}^{-1} = V(\mu_i)g'(\mu_i)^2$.
- The Bayesian approach gives the large sample result

$$oldsymbol{eta} | \mathbf{y} \sim \mathcal{N}(\hat{oldsymbol{eta}}, (\mathbf{X}^{\mathrm{T}}\mathbf{W}\mathbf{X} + \sum_{j} \lambda_{j}\mathbf{S}_{j})^{-1}\phi)$$

- This can be used to get CIs with good frequentist properties (by an argument of Nychka, 1988, JASA).
- Simulation from β|y is a very cheap way of making any further inferences required.
- mgcv uses this result for inference (e.g. ?vcov.gam).

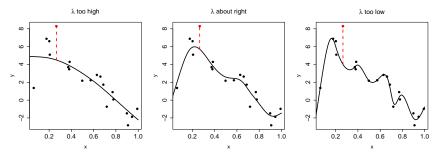
Degrees of Freedom, DoF

- Penalization reduces the freedom of the parameters to vary.
- So dim(β) is not a good measure of the DoF of a GAM.
- A better measure considers the average degree of shrinkage of the coefficients, β̂.
- Informally, suppose β̃ is the unpenalized parameter vector estimate, then approximately β̂ = Fβ̃ where
 F = (X^TWX + ∑_i λ_jS_j)⁻¹X^TWX.
- ► The F_{ii} are shrinkage factors and tr(F) = ∑_i F_{ii} is a measure of the *effective degrees of freedom* (EDF) of the model.

Estimating the smoothing parameters, λ

- We need to estimate the appropriate degree of smoothing,
 i.e. λ.
- This involves
 - 1. Deciding on a statistical approach to take.
 - 2. Producing a computational method to implement it.
- There are 3 main statistical approaches
 - 1. Choose λ to minimize error in predicting new data.
 - 2. Treat smooths as random effects, following the Bayesian smoothing model, and estimate the λ_j as variance parameters using a marginal likelihood approach.
 - 3. Go fully Bayesian by completing the Bayesian model with a prior on λ (requires simulation and not pursued here).

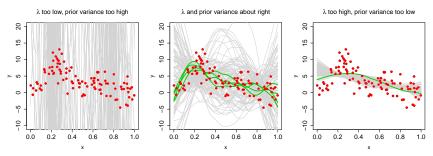
A prediction error criterion: cross validation



- 1. Choose λ to try to minimize the error predicting new data.
- 2. Minimize the average error in predicting single datapoints *omitted* from the fit. Each datum left out once in average.
- 3. Invariant version is Generalized Cross Validation, GCV:

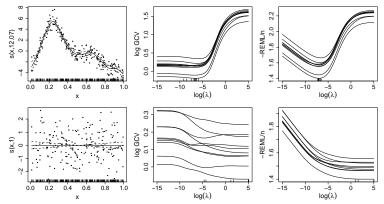
$$\mathcal{V}_{g}(\lambda) = rac{\mathit{I}_{max} - \mathit{I}(\hat{eta}_{\lambda})}{(\mathit{n} - \mathit{EDF}_{\lambda})^2}$$

Marginal likelihood based smoothness selection



- 1. Choose λ to maximize the average likelihood of random draws from the prior implied by λ .
- 2. If λ too low, then almost all draws are too variable to have high likelihood. If λ too high, then draws all underfit and have low likelihood. The right λ maximizes the proportion of draws close enough to data to give high likelihood.
- 3. Formally, maximize e.g. $\mathcal{V}_r(\lambda) = \log \int f(\mathbf{y}|\beta) f_{\lambda}(\beta) d\beta$.

Prediction error vs. likelihood λ estimation



- 1. Pictures show GCV and REML scores for different replicates from same truth.
- 2. Compared to REML, GCV penalizes overfit only weakly, and so tends to undersmooth.

Computational strategies for smoothness selection

- 1. Single iteration. Use an *approximate* \mathcal{V} to re-estimate λ at each step of the PIRLS iteration used to find $\hat{\beta}$.
- 2. Nested iteration. Optimize \mathcal{V} w.r.t. λ by a Newton method, with each trial λ requiring a full PIRLS iteration to find $\hat{\beta}_{\lambda}$.
- 1 need not converge and is often no cheaper than 2.
- > 2 is *much* harder to implement efficiently.
- In mgcv, 1 is known as performance iteration, and 2 is outer iteration.
 - gam defaults to 2 (see method and optimizer arguments).
 - gamm (mixed GAMs) and bam (large datasets) use 1.

Summary

- A semi-parametric GLM has a linear predictor depending linearly on unknown smooth functions of covariates.
- Representing these functions with intermediate rank linear basis expansions recovers an over-parameterized GLM.
- Maximum *penalized* likelihood estimation of this GLM avoids overfit by penalizing function wiggliness.
- It uses penalized iteratively reweighted least squares.
- The degree of penalization is chosen by REML, GCV etc.
- Viewing the fitting penalties as being induced by priors on function wiggliness, provides a justification for PMLE and implies a posterior distribution for the model coefficients which gives good frequentist inference.

Bibliography

- Most of the what has been discussed here is somehow based on the work of Grace Wahba, see, e.g. Wahba (1990) Spline models of observational data. SIAM.
- The notion of a GAM and the software interface that is gam and associated functions is due to Hastie and Tibshirani, see Hastie and Tibshirani (1990) Generalized Additive Models Chapman and Hall.
- Chong Gu developed the first computational method for multiple smoothing parameter selection, in 1992. See e.g. Gu (2002) *Smoothing Spline ANOVA*. Springer.
- Wood (2006) Generalized Additive Models: An introduction with R. CRC. provides more detail on the framework given here.