
Checking, Selecting & Predicting with GAMs

Simon Wood
Mathematical Sciences, University of Bath, U.K.

Model checking

I Since a GAM is just a penalized GLM, residual plots
should be checked, exactly as for a GLM.

I The distribution of scaled residuals should be examined,
marginally, and plotted against covariates and fitted values.
residuals(model) extracts residuals.

I gam.check(model) produces simple residual plots, and
summary λ estimation convergence information.

I plot(model,residuals=TRUE) plots smooth terms
with partial residuals overlaid.

I The basis dimension choices should be checked,
especially if the EDF for a term is close to the basis
dimension, or partial residuals seem to show lack of fit. An
informal check smooths the deviance residuals w.r.t. the
covariate of the smooth in question using an increased
dimension. See ?choose.k for more information.

Visualization

I plot.gam (invoked by plot(model)) plots 1 and 2
dimensional smooths against predictor variables, with
Bayesian confidence intervals.

I vis.gam (invoked with vis.gam(model)) plots the linear
predictor or response against any two predictors, while
holding the others fixed at user supplied values.

I Other plots have to be produced using predict.gam
(invoked with predict(model)) and R graphics
functions.

Simple checking example

> b<-gam(y˜s(x0)+s(x1,x2,k=40)+s(x3)+s(x4),
family=poisson,data=dat,method="REML")

> gam.check(b)

Method: REML Optimizer: outer newton
full convergence after 8 iterations.
Gradient range [-0.0001167555,3.321004e-05]
(score 855.362 & scale 1).
Hessian positive definite, eigenvalue range
[9.66288e-05,10.52249].

gam.check(b) plot

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

0.5 1.0 1.5 2.0 2.5

−
3

−
2

−
1

0
1

2

Resids vs. linear pred.

linear predictor

re
si

du
al

s

Histogram of residuals

Residuals

F
re

qu
en

cy

−3 −2 −1 0 1 2

0
20

40
60

80

2 4 6 8 10 12 14

0
5

10
15

20

Response vs. Fitted Values

Fitted Values

R
es

po
ns

e

plot(b)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

x0

s(
x0

,2
.9

2)

 −0.5

 −0.5

 −
0.

5

 0

 0

 0.5

 1

s(x1,x2,27.39)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

 −0.5

 −
0.

5

 −0.5

 0

 0

 0.5

 1

−1se

 −1

 −1

 −0.5

 −0.5

 0

 0.5

 0.5

 1

+1se

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

x3

s(
x3

,1
)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

x4

s(
x4

,1
)

vis.gam(b,view=c("x1","x2"))

x1 x2

linear predictor

Model selection

I The greater part of model selection is performed by the λ
estimation method.

I But λj →∞ does not generally imply fj → 0, so term
inclusion/exclusion decisions are still left.

I There are a couple of obvious strategies . . .
1. Give each smooth an extra penalty, penalizing its ‘fixed

effect’ component. Then if all the λj for a term →∞, the
terms goes to zero.

2. Use backward or forward selection as with a GLM, based
on AIC of GCV scores, or approximate p-values for terms.

I gam(...,select=TRUE) implements 1. summary or
AIC can be used to obtain p-values, or AIC values for 2.

I As always try to start with a reasonable model that doesn’t
simply ‘include everything’.

Simple selection example
Continuing on from previous example, backwards selection
could be based on. . .

> summary(b)
...
Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.20892 0.02893 41.78 <2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Approximate significance of smooth terms:
edf Ref.df F p-value

s(x0) 2.922 2.922 5.396 0.00135 **
s(x1,x2) 27.386 27.386 10.461 < 2e-16 ***
s(x3) 1.000 1.000 0.113 0.73698
s(x4) 1.000 1.000 0.109 0.74122

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

R-sq.(adj) = 0.591 Deviance explained = 55.3%
REML score = 855.36 Scale est. = 1 n = 400

Selection via extra penalties

Giving each smooth an extra penalty on its fixed effect
component (penalty null space) . . .

> b<-gam(y˜s(x0)+s(x1,x2,k=40)+s(x3)+s(x4),
family=poisson,data=dat,
method="ML",select=TRUE)

> plot(b,pages=1)

. . . results in . . .

Model with full selection

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

x0

s(
x0

,2
.3

7)

 −0.5

 −0.5

 −0.5

 0

 0

 0.5

 1

s(x1,x2,26.94)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

 −0.5

 −
0.

5

 −0.5

 0

 0

 0.5

 1

−1se

 −1

 −1

 −1 −0.5

 −0.5

 0

 0.5

 0.5

 1

+1se

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

x3

s(
x3

,0
)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

x4

s(
x4

,0
)

Prediction

I Suppose we want to predict the expected response for new
predictor values.

I Produce a Prediction Matrix, Xp based on the new
predictor values . . .

1. . . . use the new data to produce Xp exactly as the model
fitting data were used to produce original model matrix X

2. . . . except, that anything about the shape of basis functions
that is data dependent, is determined from the original fit
data, not the new data.

I The vector of predictions is then µ̂p = Xpβ̂, and

µp ∼ N(Xpβ̂, Xp(XTWX +
∑

j

λjSj)
−1XpTφ).

predict.gam

I predict.gam(x,newdata,type,se) is the function
used for predicting from an estimated gam model. Main
arguments are:

x a fitted model object of class "gam".
newdata a dataframe or list containing the values of the covariates

for which model predictions are required. If omitted,
predictions are produced for covariate values used in fitting.

type one of
"response" return predictions (and s.e.s) on the response variable scale.

"link" return predictions (and s.e.s) on the linear predictor scale.
"terms" return linear predictor scale predictions (and s.e.s) split up

by term.
"lpmatrix" return the matrix mapping the model coefficients to the

predicted linear predictor.

se should standard errors be returned? (TRUE/FALSE)

NOx prediction example
I Consider a simple smooth model for prediction of NOX

emissions from ‘equivalence ratios’ in an engine.

b <- gam(nox˜s(equi,k=20),Gamma(link=log),NOX)
plot(b,residuals=TRUE,pch=19,cex=.5)}

0.6 0.7 0.8 0.9 1.0 1.1 1.2

−
4

−
2

0
2

equi

s(
eq

ui
,8

.1
7)

NOx response scale prediction
I Suppose we want to plot the smooth on the response

scale. The following uses predict.gam to do this.

pd <- data.frame(equi=seq(.5,1.3,length=200))
pv <- predict(b,newdata=pd,type="response")
with(NOX,plot(equi,nox,ylim=c(0,100),col=3))
lines(pd$equi,pv,col=2)

0.6 0.7 0.8 0.9 1.0 1.1 1.2

0
20

40
60

80
10

0

equi

no
x

NOx response scale CI
I Normality tends to hold best on the linear predictor scale.

So rather than use se=TRUE and type="response" it is
usually better to do something like.

pv <- predict(b,newdata=pd,type="link",se=TRUE)
with(NOX,plot(equi,nox,ylim=c(0,100),col=3))
lines(pd$equi,exp(pv$fit+2*pv$se.fit),col=2)
lines(pd$equi,exp(pv$fit-2*pv$se.fit),col=2)

0.6 0.7 0.8 0.9 1.0 1.1 1.2

0
20

40
60

80
10

0

equi

no
x

Locating the peak NOx

I Suppose we want a CI for the equi value giving peak nox.
I We could do something crude, by finding the gradient of

the smooth as a function of equi, and looking at where its
95% CI cuts zero.

I This is quite easy to do using
predict.gam(...,type="lpmatrix"), but simulating
from the distribution of β|y is more direct, and more
accurate in this case.

Posterior simulation

I Recall the Bayesian result that

β|y ·∼ N(β̂, (XTWX +
∑

j

λjSj)
−1φ)

I If we plug in the estimates φ̂ and λ̂, then it is
straightforward (and very quick) to simulate from this
posterior.

I If we have a sample from the posterior, then we can obtain
a sample from the posterior of any quantity that the model
can predict.

I This includes the location of peak NOx

Locating peak NOx?

I The following R code finds the peak location to 3
significant figures
> eq <- seq(.6,1.2,length=1000)
> pd <- data.frame(equi=eq)
> fv <- predict(b,pd)
> eq[fv==max(fv)]
[1] 0.9291291

I Different model coefficients would give different answers.
I If we simulate replicate coefficient vectors from the

posterior, then the peak location can be obtained for each.
I For computational efficiency first form

Xp <- predict(b,pd,type="lpmatrix")

Xp is the matrix mapping the model coefficients to the
model predictions at the equi values supplied in pd.

Simulate from β|y and evaluate the CI

I Next simulate 1000 coefficient vectors from the posterior
for β, using mvrnorm from the MASS library.
library(MASS)
br <- mvrnorm(1000,coef(b),vcov(b))

I Now we can use these draws from the posterior of β to
generate draws from the posterior of the peak location.
> max.eq <- rep(NA,1000)
> for (i in 1:1000)
+ { fv <- Xp%*%br[i,]
+ max.eq[i] <- eq[fv==max(fv)]
+ }

I From which a CI is easily obtained
> ci <- quantile(max.eq,c(.025,.975))
> ci

2.5% 97.5%
0.8552553 0.9561562

Remarks

I Notice how this is much faster than bootstrapping, to get
CIs for non-linear functionals of the model.

I For linear functionals the lpmatrix and model covariance
matrix can be used to find the posterior directly, without
simulation.

I Everything has been presented conditional on the
smoothing parameters... this is not always satisfactory but
can be avoided — see Wood (2006) Generalized Additive
Models: An introduction with R (order now for Christmas).

