Estimating functions

Basis Penalty Smoothers

Simon Wood

School of Mathematics, University of Bristol, U.K.

A space for f

- Taylor's theorem might suggest using the space of polynomials, but look at the middle panel's attempt to approximate the function on the left with a polynomial.

- Trying to pass through the black dots and maintain continuity of all derivatives requires wild oscillation.
- Reducing the continuity requirements gives the better behaved piecewise linear interpolant on the right.
- Here are some ancient data...

- If f is 'a smooth function', a suitable model might be

$$
\operatorname{accel}_{i}=f\left(\text { time }_{i}\right)+\epsilon_{i}
$$

- How to represent f ? What function space should we search?
- A space that is good for approximating known functions would be a sensible starting point.

A simple basis for f

- So, for now, let's represent f as a piecewise linear function, with derivative discontinuities at knots, x_{k}^{*}.

- ...this can be written $f(x)=\sum_{k} \beta_{k} b_{k}(x)$, where the b_{k} are tent functions: there is one per \bullet. The coefficients $\beta_{k} \operatorname{give} f\left(x_{k}^{*}\right)$ directly.

The tent basis

- The $k^{\text {th }}$ tent function is 1 at x_{k}^{*} and descends linearly to zero at $x_{k \pm 1}^{*}$. Elsewhere it is zero.
- The full set look like this...

- Under this definition of $b_{k}(x)$, we would interpolate x_{k}^{*}, y_{k}^{*} data by just setting $\beta_{k}=y_{k}^{*}$.

Prediction matrix

- f is defined by the x_{k}^{*} values defining the tent basis, and coefficients β_{k}.
- Now suppose that we want to evaluate the interpolant at a series of values x_{i}.
- If $\mathbf{f}=\left[f\left(x_{1}\right), f\left(x_{2}\right), \ldots\right]^{T}$, then

$$
\mathbf{f}=\mathbf{X} \boldsymbol{\beta}
$$

where the prediction matrix is given by

$$
\mathbf{X}=\left[\begin{array}{cccc}
b_{1}\left(x_{1}\right) & b_{2}\left(x_{1}\right) & b_{3}\left(x_{1}\right) & \cdot \\
b_{1}\left(x_{2}\right) & b_{2}\left(x_{2}\right) & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right]
$$

(1 row per x_{i} value, one column per x_{k}^{*} value.)

How the tent basis works

- So the function is represented by multiplying each tent function by its coefficient, β_{k}, and summing the results...

- Given the basis functions and coefficients, we can predict the value of f anywhere in the range of the x^{*} values.

Regression with a basis

- Returning to these data...

- We can define a tent basis by choosing some t_{k}^{*} values spread evenly through the range of observed times.
- Then the model, $a_{i}=f\left(t_{i}\right)+\epsilon_{i}$ becomes

$$
\mathbf{a}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

... a straightforward linear model, estimable via least squares.

Estimation in R

- Two lines of R code are enough to produce \mathbf{X}. Then 1 m can be used to fit the model.
tk <- seq(min(t), max (t), length=k) \#\# knots
X<-apply(diag(k),1,function(y) approx(tk,y,t,rule=2) \$y)
$\mathrm{b}<-\operatorname{lm}(\mathrm{a} \sim \mathrm{X}-1)$
- Here is the result ${ }^{1}$ using $\mathrm{K}=40$ evenly spaced t_{k}^{*} (knots).

- Far too wiggly! Reduce K
${ }^{1}$ using plot(t,a); lines(t, $x \% * \%$ coef(b),col=2)

Smoothing

- Using the basis for regression was ok, but there are some problems choosing K and deciding where to put the knots, x_{k}^{*}.
- To overcome these consider using the basis for smoothing.

1. Make K 'large enough' that bias is negligible.
2. Use even x_{k}^{*} spacing.
3. To avoid overfit, penalize the wiggliness of f using, e.g.

$$
\mathcal{P}(f)=\sum_{k=2}^{K-1}\left(\beta_{k-1}-2 \beta_{k}+\beta_{k+1}\right)^{2}
$$

Reducing K

- After some experimentation, $K=15$ seems reasonable...

- . . . but K selection is a bit fiddly and ad hoc.

1. Models with different K are not nested, so we can't use hypothesis testing.
2. We have little choice but to fit with every possible K value if AIC is to be used.
3. Very difficult to generalize this model selection approach to models with more than one function.

Evaluating the penalty

- To get the penalty in convenient form, note that

$$
\left[\begin{array}{c}
\beta_{1}-2 \beta_{2}+\beta_{3} \\
\beta_{2}-2 \beta_{3}+\beta_{4} \\
\cdot
\end{array}\right]=\left[\begin{array}{cccccc}
1 & -2 & 1 & 0 & . & . \\
0 & 1 & -2 & 1 & . . & \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right] \boldsymbol{\beta}=\mathbf{D} \boldsymbol{\beta}
$$

by definition of \mathbf{D}

- Hence

$$
\mathcal{P}(f)=\boldsymbol{\beta}^{\top} \mathbf{D}^{\top} \mathbf{D} \boldsymbol{\beta}=\boldsymbol{\beta}^{\top} \mathbf{S} \boldsymbol{\beta}
$$

by definition of \mathbf{S}.

- In R...

D <- diff(diag(k), d=2)
S <- crossprod(D) \#\# or S <- t(D) \%*\% D

Penalized fitting

- Now the penalized least squares estimates are

$$
\hat{\boldsymbol{\beta}}=\underset{\beta}{\operatorname{argmin}} \sum_{i}\left\{a_{i}-f\left(t_{i}\right)\right\}^{2}+\lambda \mathcal{P}(f)
$$

smoothing parameter λ controls the fit-wiggliness tradeoff.

- For computational purposes this is re-written

$$
\hat{\boldsymbol{\beta}}=\underset{\beta}{\operatorname{argmin}}\|\mathbf{a}-\mathbf{X} \boldsymbol{\beta}\|^{2}+\lambda \boldsymbol{\beta}^{\top} \mathbf{S} \boldsymbol{\beta} .
$$

- Formally,

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{S}\right)^{-1} \mathbf{X}^{\top} \mathbf{a}
$$

but direct use of this expression has sub-optimal computational stability.

Issues raised by smoothing

- Notice the dominant role of the penalty in the smoothed f - the discontinuity of the basis is barely visible, the penalty has so smoothed the results.
- But the dramatic effect of penalization raises questions

1. How do we measure complexity of the model now that penalization has clearly yielded a result much smoother than $\mathrm{K}=40$ would suggest?
2. What distributional properties will \hat{f} have under penalized estimation?
3. How do we go about choosing/estimating the degree of penalization (λ) ?

Computing the smooth fit

- In fact

$$
\|\mathbf{a}-\mathbf{X} \boldsymbol{\beta}\|^{2}+\lambda \boldsymbol{\beta}^{\top} \mathbf{S} \boldsymbol{\beta}=\left\|\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{0}
\end{array}\right]-\left[\begin{array}{c}
\mathbf{X} \\
\sqrt{\lambda} \mathbf{D}
\end{array}\right] \boldsymbol{\beta}\right\|^{2}
$$

- The rhs is the RSS for an augmented linear model, which can be stably fit using lm. Here's an example using $K=40$, but now penalizing...

The natural (Demmler-Reinsch) basis

- To get started on these questions note that any basis-penalty smoother can be reparameterized so that its basis matrix is orthognal and its penalty is diagonal.
- Let a smoother have model matrix \mathbf{X} and penalty matrix \mathbf{S}.
- Form QR decomposition $\mathbf{X}=\mathbf{Q R}$, followed by symmetric eigen-decompostion

$$
\mathbf{R}^{-\top} \mathbf{S R}^{-1}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}
$$

- Define $\mathbf{P}=\mathbf{U}^{\top} \mathbf{R}$. And reparameterize $\boldsymbol{\beta}^{\prime}=\mathbf{P} \boldsymbol{\beta}$.
- In the new parameterization the model matrix is $\mathbf{X}^{\prime}=\mathbf{Q U}$, which has orthogonal columns. $\left(\mathbf{X}=\mathbf{X}^{\prime} \mathbf{P}\right.$.)
- The penalty matrix is now the diagonal matrix $\boldsymbol{\Lambda}$ (eigenvalues in decreasing order down leading diagonal).

Effective Degrees of Freedom

EDF Illustrated

- Penalization restricts the freedom of the coefficients to vary. So with 40 coefficients we have <40 effective degrees of freedom (EDF).
- How the penalty restricts the coefficients is best seen in the natural parameterization. (Let \mathbf{y} be the response.)
- Without penalization the coefficients would be $\tilde{\boldsymbol{\beta}}^{\prime}=\mathbf{X}^{\prime T} \mathbf{y}$.
- With penalization the coefficients are $\hat{\boldsymbol{\beta}}^{\prime}=(\mathbf{I}+\lambda \boldsymbol{\Lambda})^{-1} \mathbf{X}^{\prime T} \mathbf{y}$.
- i.e. $\hat{\beta}_{j}=\tilde{\beta}_{j}\left(1+\lambda \Lambda_{j j}\right)^{-1}$.
- So $\left(1+\lambda \Lambda_{j j}\right)^{-1}$ is the shrinkage factor for the $j^{\text {th }}$ coefficient, and is bounded between 0 and 1 . It gives the EDF for $\hat{\beta}_{j}$.
- So total EDF is $\sum_{j}\left(1+\lambda \Lambda_{j j}\right)^{-1}=\operatorname{tr}(\mathbf{F})$, where $\mathbf{F}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{S}\right)^{-1} \mathbf{X}^{\top} \mathbf{X}$, the 'EDF matrix'.

Smoothing bias

- The formal expression for the penalized least squares estimates is $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{S}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$
- Hence

$$
\begin{aligned}
E(\hat{\boldsymbol{\beta}}) & =\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{S}\right)^{-1} \mathbf{X}^{\top} E(\mathbf{y}) \\
& =\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{S}\right)^{-1} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta} \\
& =\mathbf{F} \boldsymbol{\beta} \neq \boldsymbol{\beta}
\end{aligned}
$$

- Smooths are baised!
- i.e. we control model mis-specification bias by using a large K ... but to control the resulting variance we have to penalize \ldots which leads to smoothing bias (but lower MSE, hopefully).
- The bias makes frequentist inference difficult (including bootstrapping!).

A Bayesian smoothing model

- We penalize because we think that the truth is more likely to be smooth than wiggly.
- Things can be formalized by putting a prior on wiggliness

$$
\text { wiggliness prior } \propto \exp \left(-\lambda \boldsymbol{\beta}^{\top} \mathbf{S} \boldsymbol{\beta} /\left(2 \sigma^{2}\right)\right)
$$

- ... equivalent to a prior $\boldsymbol{\beta} \sim N\left(\mathbf{0}, \mathbf{S}^{-} \sigma^{2} / \lambda\right)$ where \mathbf{S}^{-}is a generalized inverse of \mathbf{S}.
- From the model $\mathbf{y} \mid \boldsymbol{\beta} \sim N\left(\mathbf{X} \boldsymbol{\beta}, \mathbf{I} \sigma^{2}\right)$, so from Bayes' Rule

$$
\boldsymbol{\beta} \mid \mathbf{y} \sim N\left(\hat{\boldsymbol{\beta}},\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{S}\right)^{-1} \sigma^{2}\right)
$$

- Finally $\hat{\sigma}^{2}=\|\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}}\|^{2} /\{n-\operatorname{tr}(\mathbf{F})\}$ is useful.

Consequences of the Bayesian model

Computing as a standard mixed model

- Recall $\mathbf{D}^{\top} \mathbf{D}=\mathbf{S}$, and set $\boldsymbol{\beta}^{\prime}=\mathbf{D}_{+} \boldsymbol{\beta}$ where

$$
\mathbf{D}_{+}=\left[\begin{array}{cc}
\mathbf{I}_{2} & \mathbf{0} \\
\mathbf{D}
\end{array}\right] \text { (assume order } 2 \text { penalty here). }
$$

- Then $\mathbf{X} \boldsymbol{\beta}=\mathbf{X D}_{+}^{-1} \boldsymbol{\beta}^{\prime}$ and $\boldsymbol{\beta}^{\top} \mathbf{S} \boldsymbol{\beta}=\sum_{i=3}^{K} \beta_{i}^{\prime 2}$.
- Let \mathbf{X}^{*} denote the first 2 cols of $\mathbf{X D}_{+}^{-1}$ and \mathbf{Z} the remainder.
- Let $\left(\boldsymbol{\beta}^{* T}, \mathbf{b}^{\boldsymbol{T}}\right)=\boldsymbol{\beta}^{\prime T}$. The Bayesian smooth model becomes

$$
\mathbf{y}=\mathbf{X}^{*} \boldsymbol{\beta}^{*}+\mathbf{Z} \mathbf{b}+\boldsymbol{\epsilon}, \quad \mathbf{b} \sim N\left(\mathbf{0}, \mathbf{I} \sigma_{b}^{2}\right), \quad \boldsymbol{\epsilon} \sim N\left(\mathbf{0}, \mathbf{I} \sigma^{2}\right) .
$$

which is a standard linear mixed model.

- Notice that the columns of \mathbf{X}^{*} form a basis for functions in the null space of the penalty.

Nychka's construction

- Figure shows 500 spline estimates (grey) and their mean (dashed) of the truth shown in black.
- Top left shows distribution of sampling error (black) and bias (dotted) if we evaluate at a random x .
- Mean + bias is approximately normal (dashed + grey), so we can construct an interval with accross the function coverage.
- Bayes covariance matrix contains sampling variance + expected squared bias under prior.

Smoothness selection approaches

- The smoothing model $y_{i}=f\left(x_{i}\right)+\epsilon_{i}, \epsilon_{i} \sim N\left(0, \sigma^{2}\right)$, is represented via a basis expansion of f, with coefficients $\boldsymbol{\beta}$.
- The $\boldsymbol{\beta}$ estimates are $\hat{\boldsymbol{\beta}}=\operatorname{argmin}_{\boldsymbol{\beta}}\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}+\lambda \boldsymbol{\beta}^{\top} \mathbf{S} \boldsymbol{\beta}$ where \mathbf{X} is the model matrix derived from the basis, and \mathbf{S} is the wiggliness penalty matrix.
- λ controls smoothness - how should it be chosen?
- There are 3 main statistical approaches

1. Choose λ to minimize error in predicting new data.
2. Treat smooths as random effects, following the Bayesian smoothing model, and estimate λ as a variance parameter using a marginal likelihood approach (e.g. as linear mixed model, as above).
3. Go fully Bayesian by completing the Bayesian model with a prior on λ (requires simulation and not pursued here).

OCV not invariant

- OCV is not invariant in an odd way. If \mathbf{Q} is orthogonal then fitting objective

$$
\|\mathbf{Q y}-\mathbf{Q} \mathbf{X} \boldsymbol{\beta}\|^{2}+\lambda \boldsymbol{\beta}^{\top} \mathbf{S} \boldsymbol{\beta}
$$

yields identical inferences about $\boldsymbol{\beta}$ as the original objective, but it gives a different \mathcal{V}_{o}.

Prediction error: cross validation

1. Choose λ to try to minimize the error predicting new data.
2. Minimize the average error in predicting single datapoints omitted from the fit. Each datum left out once in average.
3. If $\mathbf{A}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{S}\right)^{-1} \mathbf{X}^{\top}$, it turns out that

$$
\mathcal{V}_{o}(\lambda)=\frac{1}{n} \sum_{i}\left(y_{i}-\hat{\mu}_{i}^{[-i]}\right)^{2}=\frac{1}{n} \sum_{i} \frac{\left(y_{i}-\hat{\mu}_{i}\right)^{2}}{\left(1-A_{i i}\right)^{2}}
$$

GCV: generalized cross validation

- If we find the \mathbf{Q} that causes the leading diagonal elements of \mathbf{A} to be constant, and then perform OCV, the result is the invariant alternative GCV:

$$
\mathcal{V}_{g}=\frac{n\|\mathbf{y}-\hat{\boldsymbol{\mu}}\|^{2}}{\{n-\operatorname{tr}(\mathbf{A})\}^{2}}
$$

- It is easy to show that $\operatorname{tr}(\mathbf{A})=\operatorname{tr}(\mathbf{F})$, where \mathbf{F} is the degrees of freedom matrix.
- In addition to invariance, GCV is much easier to optimize efficiently in the multiple smoothing parameter case.

Marginal Likelihood smoothness selection

1. Choose λ to maximize the average likelihood of random draws from the prior implied by λ.
2. If λ too low, then almost all draws are too variable to have high likelihood. If λ too high, then draws all underfit and have low likelihood. The right λ maximizes the proportion of draws close enough to data to give high likelihood.
3. Formally, maximize e.g. $\mathcal{V}_{r}(\lambda)=\log \int f(\mathbf{y} \mid \boldsymbol{\beta}) f_{\lambda}(\boldsymbol{\beta}) d \boldsymbol{\beta}$.Marginal Likelihood.

Summary

- We can construct smoothers from sets of basis functions, with associated quadratic penalties.
- Estimation is then by quadratically penalized least squares.
- Penalization reduces freedom to vary: we need a notion of effective degrees of freedom.
- A Bayesian view of smoothing is useful for further inference.
- The appropriate amount of penalization can be estimated by marginal likelihood or prediction error methods.
- The methods presented here are not restricted to the piecewise linear smoother, we can subsitute better bases and penalties...

Prediction error vs. likelihood $\boldsymbol{\lambda}$ estimation

1. Pictures show GCV and REML scores for different replicates from same truth.
2. Compared to REML, GCV penalizes overfit only weakly, and so is more likely to occasionally undersmooth.

More basis penalty smoothers

Simon Wood

School of Mathematics, University of Bristol, U.K.

Splines

- Most smooths covered here are based on splines. Here's the basic idea...

- Mathematically the red curve is the function minimizing

$$
\sum_{i}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \int f^{\prime \prime}(x)^{2} d x
$$

Smooths for semi-parametric GLMs

- The piecewise linear smoother is not bad, but we can find better and more general basis-penalty smoothers for a variety of modelling purposes.
- In one dimension there are several alternatives, and not alot to choose between them.
- In 2 or more dimensions there is a major choice to make.
- If the arguments of the smooth function are variables which all have the same units (e.g. spatial location variables) then an isotropic smooth may be appropriate. This will tend to exhibit the same degree of flexibility in all directions.
- If the relative scaling of the covariates of the smooth is essentially arbitrary (e.g. they are measured in different units), then scale invariant smooths should be used, which do not depend on this relative scaling.
- The smoothers covered are available in R package mgcv. I'll give pointers as we go.

Splines have variable stiffness

- Varying the flexibility of the strip (i.e. varying λ) changes the spline function curve.

- But irrespective of λ the spline functions always have the same basis.

Why splines are special

- We can produce splines for a variety of penalties, including for functions of several variables. e.g.

$$
\int f^{\prime \prime \prime}(x)^{2} d x \text { or } \iint f_{x x}(x, z)^{2}+2 f_{x z}(x, z)^{2}+f_{z z}(x, z)^{2} d x d z
$$

- Splines always have an n dimensions basis - quadratic penalty representation.
- If $y_{i}=g\left(x_{i}\right)$ and f is the cubic spline interpolating x_{i}, y_{i} then

$$
\max |f-g| \leq \frac{5}{384} \max \left(x_{i+1}-x_{i}\right)^{4} \max \left(g^{\prime \prime \prime \prime}\right)
$$

(best possible - end conditions are a bit unusual for this).

- Bases that are optimal for approximating known functions are a good starting point for approximating unknown functions.

Smoothing

- RKHS are quite useful for constructing smooth models, to see why consider finding \hat{f} to minimize

$$
\sum_{i}\left\{y_{i}-f\left(t_{i}\right)\right\}^{2}+\lambda \int f^{\prime \prime}(t)^{2} d t
$$

- Let \mathcal{H} have $\langle f, g\rangle=\int g^{\prime \prime}(t) f^{\prime \prime}(t) d t$.
- Let \mathcal{H}_{0} denote the RKHS of functions for which $\int f^{\prime \prime}(t)^{2} d t=0$, with finite basis $\phi_{1}(t), \phi_{2}(t)$, say.
- Spline problem seeks $\hat{f} \in \mathcal{H}_{0} \oplus \mathcal{H}$ to minimize

$$
\sum_{i}\left\{y_{i}-f\left(t_{i}\right)\right\}^{2}+\lambda\|P f\|^{2}
$$

General spline theory: some background

- Consider a Hilbert space of real valued functions, f, on some domain τ (e.g. [0, 1]).
- It is a reproducing kernel Hilbert space, \mathcal{H}, if evaluation is bounded. i.e. $\exists M$ s.t. $|f(t)| \leq M\|f\|$.
- Then the Riesz representation thm says that there is a function $R_{t} \in \mathcal{H}$ s.t. $f(t)=\left\langle R_{t}, f\right\rangle$.
- Now consider $R_{t}(u)$ as a function of $t: R(t, u)$

$$
\left\langle R_{t}, R_{s}\right\rangle=R(t, s)
$$

- so $R(t, s)$ is known as reproducing kernel of \mathcal{H}.
- Actually, to every positive definite function $R(t, s)$ corresponds a unique r.k.h.s.

Smoothing solution

- $\hat{f}(t)=\sum_{i=1}^{n} c_{i} R_{t_{i}}(t)+\sum_{i=1}^{2} d_{i} \phi_{i}(t)$. Why?
- Suppose minimizer were $\tilde{f}=\hat{f}+\eta$ where $\eta \in \mathcal{H}$ and $\eta \perp \hat{f}$:

1. $\eta\left(t_{i}\right)=\left\langle R_{t_{i}}, \eta\right\rangle=0$.
2. $\|P \tilde{f}\|^{2}=\|P \hat{f}\|^{2}+\|\eta\|^{2}$ which is minimized when $\eta=0$.

- ... obviously this argument is rather general.
- So if $E_{i j}=\left\langle R_{t_{i}}, R_{t_{j}}\right\rangle$ and $T_{i j}=\phi_{j}\left(t_{i}\right)$ then we seek \hat{c} and \hat{d} to minimize

$$
\|y-T d-E c\|_{2}^{2}+\lambda c^{\mathrm{T}} E c
$$

- RKHS approach is elegant and general, but at $O\left(n^{3}\right)$ cost.

Penalized regression splines

- Full splines have one basis function per data point.
- This is computationally wasteful, when penalization ensures that the effective degrees of freedom will be much smaller than this.
- Penalized regression splines simply use fewer spline basis functions. There are two alternatives:

1. Choose a representative subset of your data (the 'knots'), and create the spline basis as if smoothing only those data. Once you have the basis, use it to smooth all the data.
2. Choose how many basis functions are to be used and then solve the problem of finding the set of this many basis functions that will optimally approximate a full spline.
I'll refer to 1 as knot based and 2 as eigen based.

Eigen based example: "tp"

- The "tp", thin plate regression spline basis is an eigen approximation to a thin plate spline (including cubic spline in 1 dimension)

Knot based example: "cr"

- In mgcv the "cr" basis is a knot based approximation to the minimizer of $\sum_{i}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \int f^{\prime \prime}(x)^{2} d x$ - a cubic spline. " CC " is a cyclic version.

How small a basis: cubic spline example

- A cubic interpolating spline \hat{g} matching a function $g_{\text {true }}$ at k evenly spaced (h) knots, has $O\left(h^{4}\right)=O\left(k^{-4}\right)$ approx. error.
- If we observe $g_{\text {true }}$ at each knot n / k times with noise (independently) then \hat{g} has $O(\sqrt{k / n})$ sampling error.
- So $k=O\left(n^{1 / 9}\right)$ gives optimal asymptotic error rate.
- With penalization use $k=O\left(n^{1 / 9}\right)-O\left(n^{1 / 5}\right)$.

P-splines: "ps", " cp" \& "bs"

- There are many equivalent spline bases.
- With bases for which all the basis functions are translations of each other, it is sometimes possible to penalize the coefficients of the spline directly, rather than penalizing something like $\int f^{\prime \prime}(x)^{2} d x$.
- Eilers and Marx coined the term ' P -splines' for this combination of spline bases with direct discrete penalties on the basis coefficients.
- P-splines allow a good deal of flexibility in the way that bases and penalties are combined, and they provide sparse bases and penalties, which can be useful in big data and Bayesian settings.
- Actually, the same flexibility is available with derivative based penalties (see ?b. spline in mgcv).

An adaptive smoother

- Can let the p-spline penalty vary with the predictor. e.g.

$$
\begin{aligned}
\mathcal{P}_{a} & =\sum_{k=2}^{K-1} \omega_{k}\left(\beta_{k-1}-2 \beta_{k}+\beta_{k+1}\right)^{2}=\boldsymbol{\beta}^{\mathrm{T}} \mathbf{D}^{\mathrm{T}} \operatorname{diag}(\boldsymbol{\omega}) \mathbf{D} \boldsymbol{\beta} \\
\text { where } \mathbf{D} & =\left[\begin{array}{ccccc}
1 & -2 & 1 & 0 & \cdot \\
0 & 1 & -2 & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right] .
\end{aligned}
$$

- Now let ω_{k} vary smoothly with k, using a B-spline basis, so that $\boldsymbol{\omega}=\mathbf{B} \boldsymbol{\lambda}$, where $\boldsymbol{\lambda}$ is the vector of basis coefficients.
- So, writing $\mathbf{B}_{\cdot k}$ for the $k^{\text {th }}$ column of \mathbf{B} we have

$$
\boldsymbol{\beta}^{\mathrm{T}} \mathbf{D}^{\mathrm{T}} \operatorname{diag}(\boldsymbol{\omega}) \mathbf{D} \boldsymbol{\beta}=\sum_{k} \lambda_{k} \boldsymbol{\beta}^{\mathrm{T}} \mathbf{D}^{\mathrm{T}} \operatorname{diag}\left(\mathbf{B}_{k}\right) \mathbf{D} \boldsymbol{\beta}=\sum_{k} \lambda_{k} \boldsymbol{\beta}^{\mathrm{T}} \mathbf{S}_{k} \boldsymbol{\beta} .
$$

P-spline illustration

1D smooths compared

- So cubic regression splines, P-splines and thin plate regression splines give very similar results.
- A cyclic smoother is a little different, of course.
- An adaptive smoother can look very different.

Isotropic smooths

- One way of generalizing splines from 1D to several D is to turn the flexible strip into a flexible sheet (hyper sheet).
- This results in a thin plate spline. It is an isotropic smooth.
- Isotropy may be appropriate when different covariates are naturally on the same scale.
- In mgcv terms like $\mathrm{s}(\mathrm{x}, \mathrm{z})$ generate such smooths.

Thin plate regression splines

- Full thin plate splines have n parameters and $O\left(n^{3}\right)$ computational cost.
- This drops to $O\left(k^{3}\right)$ if we replace \mathbf{E} by its rank k eigen approximation, \mathbf{E}_{k}, at cost $O\left(n^{2} k\right)$. Big saving if $k \ll n$
- Out of all rank k approximations this one minimizes

$$
\max _{\delta \neq \boldsymbol{0}} \frac{\left\|\left(\mathbf{E}-\mathbf{E}_{k}\right) \boldsymbol{\delta}\right\|}{\|\boldsymbol{\delta}\|} \text { and } \max _{\delta \neq \boldsymbol{0}} \frac{\boldsymbol{\delta}^{\mathrm{T}}\left(\mathbf{E}-\mathbf{E}_{k}\right) \boldsymbol{\delta}}{\|\boldsymbol{\delta}\|^{2}}
$$

i.e. the approximation is somewhat optimal, and avoids choosing 'knot locations'.

- For large datasets, randomly subsample n_{r} data $\left(k \ll n_{r} \ll n\right)$ and work out the truncated basis from the subsample, at $O\left(n_{r}^{2} k\right)$ cost.

Thin plate spline details

- In 2 dimensions a thin plate spline is the function minimizing

$$
\sum_{i}\left\{y_{i}-f\left(x_{i}, z_{i}\right)\right\}^{2}+\lambda \int f_{x x}^{2}+2 f_{x z}^{2}+f_{z z}^{2} d x d z
$$

- This generalizes to any number of dimensions, d, and any order of differential, m, such that $2 m>d+1$.
- Any thin plate spline is computed as

$$
\hat{f}(\mathbf{x})=\sum_{i=1}^{n} \delta_{i} \eta_{i}(\mathbf{x})+\sum_{i=1}^{M} \alpha_{i} \phi_{i}(\mathbf{x})
$$

where η_{i} and ϕ_{i} are basis functions of known form and $\boldsymbol{\alpha}, \boldsymbol{\delta}$ minimize $\|\mathbf{y}-\mathbf{E} \boldsymbol{\delta}-\mathbf{T} \boldsymbol{\alpha}\|^{2}+\boldsymbol{\delta}^{\mathrm{T}} \mathbf{E} \boldsymbol{\delta}$ s.t. $\mathbf{T}^{\mathrm{T}} \boldsymbol{\delta}=\mathbf{0}$, where \mathbf{E} and \mathbf{T} are computed using the η_{i} and ϕ_{i}.

TPRS illustration

- As the theory suggests, the eigen approximation is quite effective. The following figure compares reconstructions of of the true function on the left, using and eigen based thin plate regression spline (middle), and one based on choosing knots. Both are rank 16 approximations.

Duchon Splines s(x,z,bs="ds")

- The $m>d / 2$ requirement causes thin plate splines in more than a few dimensions to be impractical, as the null space of the penalty rapidly becomes too high dimensional.
- But thin plate splines are only one special case of the splines introduced by Duchon (1977). He also considered penalties

$$
\int_{\mathbb{R}^{d}}\|\boldsymbol{\tau}\|^{2 s} \sum_{\nu_{1}+\cdots+\nu_{d}=m} \frac{m!}{\nu_{1}!\ldots \nu_{d}!}\left(\mathfrak{F} \frac{\partial^{m} f}{\partial x_{1}^{\nu_{1}} \ldots \partial x_{d}^{\nu_{d}}}(\boldsymbol{\tau})\right)^{2} \mathrm{~d} \boldsymbol{\tau}
$$

where \mathfrak{F} denotes Fourier transform and $\boldsymbol{\tau}$ is frequency.

- With $s=0$ this is a thin plate spline penalty, but with $s>0$ higher frequencies of the derivative field are penalized more heavily.
- Smoothers using this penalty exist if $m+s>d / 2$, and have the form of a TPS, with a reduced dimensional null space. e.g. $m=2$, $s=d / 2-1$ gives null space dimension $d+1$.
- Eigen-approximation is as for TPS.

Tensor product smooths

- Carefully constructed tensor product smooths are scale invariant.
- The following recipe for generating them is implemented by te () terms in mgcv (t2() is an alternative construction).
- Consider constructing a smooth of x, z.
- Start by choosing marginal bases and penalties, as if constructing 1-D smooths of x and z. e.g.

$$
\begin{gathered}
f_{x}(x)=\sum \alpha_{i} a_{i}(x), \quad f_{z}(z)=\sum \beta_{j} b_{j}(z), \\
J_{x}\left(f_{x}\right)=\int f_{x}^{\prime \prime}(x)^{2} d x=\boldsymbol{\alpha}^{\mathrm{T}} \mathbf{S}_{x} \boldsymbol{\alpha} \& J_{z}\left(f_{z}\right)=\mathcal{B}^{\mathrm{T}} \mathbf{S}_{z} \mathcal{B}
\end{gathered}
$$

Scale invariant smoothing: tensor product smooths

- Isotropic smooths assume that a unit change in one variable is equivalent to a unit change in another variable, in terms of function variability.
- When this is not the case, isotropic smooths can be poor.
- Tensor product smooths generalize from 1D to several D using a lattice of bendy strips, with different flexibility in different directions.

Marginal reparameterization

- Suppose we start with $f_{z}(z)=\sum_{i=1}^{6} \beta_{j} b_{j}(z)$, on the left.

- We can always re-parameterize so that its coefficients are functions heights, at knots (right). Do same for f_{x}.

Making f_{z} depend on x

- Can make f_{z} a function of x by letting its coefficients vary smoothly with x

Tensor product penalties - one per dimension

- x-wiggliness: sum marginal x penalties over red curves.
- z-wiggliness: sum marginal z penalties over green curves.

The complete tensor product smooth

- Use f_{x} basis to let f_{z} coefficients vary smoothly (left).
- Construct is symmetric (see right).

Tensor product expressions

- So the tensor product basis construction gives:

$$
f(x, z)=\sum \sum \beta_{i j} b_{j}(z) a_{i}(x)
$$

- With double penalties

$$
J_{z}^{*}(f)=\boldsymbol{\beta}^{\mathrm{T}} \mathbf{I}_{I} \otimes \mathbf{S}_{z} \boldsymbol{\beta} \text { and } J_{x}^{*}(f)=\boldsymbol{\beta}^{\mathrm{T}} \mathbf{S}_{x} \otimes \mathbf{I}_{J} \boldsymbol{\beta}
$$

- The construction generalizes to any number of marginals and multi-dimensional marginals.
- Can start from any marginal bases \& penalties (including mixtures of types).
- Note that the penalties maintain the basic meaning inherited from the marginals.

Isotropic vs. tensor product comparison

...each figure smooths the same data. The only modification is that x has been divided by 5 in the bottom row.

Functional ANOVA and $t i$ terms

- The basis for a te tensor product smooth, $f(x, z)$, contains a subspace of functions of the form $f(x)+f(z)$ (similar applies in higher dimensions).
- This is because the marginal bases include the constant function in their span.
- Applying sum-to-zero constraints to the marginal bases before forming the tensor product smooth removes this $f(x)+f(z)$ component. See ti () terms in mgcv.
- Such a construction facilitates a 'mean effect plus interactions' smooth model.
- e.g. $f(x)+f(z)+f(x, z)$ can be fitted via ti(x) $+\mathrm{ti}(z)+\mathrm{ti}(\mathrm{x}, \mathrm{z})$, in a stably interpretable manner. t 2 smooths are an alternative. See Chong Gu's book 'Smoothing Spline ANOVA'.

The basis dimension

- You have to choose the number of basis functions to use for each smooth (using the k argument of s or te in mgcv).
- Any default is essentially arbitrary.
- Provided k is not too small its exact value is not critical, as the smoothing parameters control the actual model complexity. However

1. if k is too small then you will oversmooth.
2. if k is much too large then computation will be very slow.

- Checking that k is not too small will be covered in a later segment.

Discrete spatial smoothing: Markov random fields

- Sometimes data come allocated to irregular partitions of space (e.g. administrative regions).
- Markov random fields area a popular way of smoothing such data.
- The smooth has a coefficient, γ_{i}, for each region.
- The neighbouring regions of each region are found, and a quadratic penalty constructed. If N_{i} is the set of indices of the neighbours of region i, then the simplest penalty is

$$
\sum_{i}\left(\sum_{j \in N_{i}}\left(\gamma_{i}-\gamma_{j}\right)\right)^{2}
$$

- Eigen based rank reduction is effective here.

Markov random field illustration

```
data(columb.polys) ## district shapes list
xt <- list(polys=columb.polys)
gam(crime ~ s(district,bs="mrf",xt=xt),data=columb)
```

Smoothing on the globe

- Thin plate spline like smoothers can be constructed for the sphere[s(la,lo,bs="sos")]...

Finite area smoothing
The domain

- Suppose now want to smooth samples from this function

- ... without 'smoothing across' the gap in the middle?
- Let's use a soap film ...

The boundary condition

The boundary interpolating film

Distorted to approximate data

Random effect s (...., bs="re")

- Statistically, smooths consist of a basis and a quadratic penalty, where the penalty matrix can be treated as the generalized inverse of a covariance matrix.
- They can therefore be estimated as random effects.
- Reversing this, we can treat simple random effects as (zero dimensional) smooths.
- $s(a, b, b s=" r e ")$ creates a terms with model matrix model.matrix ($\sim a: b-1$) and a scaled identity penalty/covariance matrix.
- Any number of covariates are possible.
- Function gam.vcomp helps later interpretation by converting smoothing parameters to variance components.

Soap film smoothers s (. . . , bs="so")

- Mathematically this smoother turns out to have a basis-penalty representation.
- It also turns out to work...

Summary

- We can treat simple random effects as 0 dimensional smooths.
- In 1 dimension, the choice of basis is not critical. The main decisions are whether it should by cyclic or not and whether or not it should be adaptive.
- In 2 dimensions and above the key decision is whether an isotropic smooth, s, or a scale invariant smooth, ti/te/t 2 , is appropriate. (te/i/2 terms may be isotropic in some marginals.)
- Spatial smoothing may sometimes require more specialized smoothers (Markov random fields, spherical splines, finite area smooths).
- The basis dimension is a modelling decision that should be checked.

Generalized Additive Models

Simon Wood
School of Mathematics, University of Bristol, U.K.

Additive Models

- Consider the model

$$
y_{i}=\mathbf{A}_{i} \boldsymbol{\theta}+\sum_{j} f_{j}\left(x_{j i}\right)+\epsilon_{i}, \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

- \mathbf{A}_{i} is the $i^{\text {ih }}$ row of the model matrix for any parametric terms, with parameter vector $\boldsymbol{\theta}$. Assume it includes an intercept.
- f_{j} is a smooth function of covariate x_{j}, which may be vector valued.
- The f_{j} are confounded via the intercept, so that the model is only estimable under identifiability constraints on the f_{j}.
- The best constraints are $\sum_{i} f_{j}\left(x_{j i}\right)=0 \forall j$.
- If $\mathbf{f}=\left[f\left(x_{1}\right), f\left(x_{2}\right), \ldots\right]$ then the constraint is $\mathbf{1}^{\top} \mathbf{f}=0$, i.e. \mathbf{f} is orthogonal to the intercept. Other constraints give wider CIs for the constrained f_{j}.
- We have seen how to

1. turn model $y_{i}=f\left(x_{i}\right)+\epsilon_{i}$ into $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ and a wiggliness penalty $\boldsymbol{\beta}^{\top} \mathbf{S} \boldsymbol{\beta}$.
2. estimate $\boldsymbol{\beta}$ given $\boldsymbol{\lambda}$ as $\hat{\boldsymbol{\beta}}=\operatorname{argmin}_{\beta}\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}+\lambda \boldsymbol{\beta}^{\boldsymbol{\top}} \mathbf{S} \boldsymbol{\beta}$.
3. estimate $\boldsymbol{\lambda}$ by GCV, AIC, REML etc.
4. use $\boldsymbol{\beta} \mid \mathbf{y} \sim N\left(\hat{\boldsymbol{\beta}},\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{S}\right)^{-1} \sigma^{2}\right)$ for inference.

- ... all this can be extended to models with multiple smooth terms, for exponential family response data and beyond...

Representing the model

- Choose a basis and penalty for each f_{j}.
- Let the model matrix for f_{j} be \mathbf{X} and let $\lambda \boldsymbol{\beta}^{\top} \mathbf{S} \boldsymbol{\beta}$ be the penalty (more generally $\sum_{j} \lambda_{j} \boldsymbol{\beta}^{\top} \mathbf{S}_{j} \boldsymbol{\beta}$).
- Reparameterize to absorb the constraint $\mathbf{1}^{\top} \mathbf{X} \boldsymbol{\beta}=0$. The simplest recipe is as follows

1. Subtract the column mean from each column of \mathbf{X} to give \mathbf{X}^{\prime}.
2. Drop the column of \mathbf{X}^{\prime} with lowest variance to give constrained model matrix $\mathbf{X}^{[j]}$, and drop the corresponding row and column of \mathbf{S} to give constrained penalty matrix \mathbf{S}_{j}.
3. After fitting, when creating a new version of $\mathbf{X}^{[j]}$ for predicting at new covariate values, it's important to subtract the original column means \mathbf{x} from the new matrix's columns, and to drop the same column as before (simply repeating steps 1 and 2 on the new model matrix will lead to an interesting mess).

The estimable AM

- Now $y_{i}=\mathbf{A}_{i} \boldsymbol{\theta}+\sum_{j} f_{j}\left(x_{j i}\right)+\epsilon_{i}$ becomes $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ where

$$
\mathbf{X}=\left[\mathbf{A}: \mathbf{X}^{[1]}: \mathbf{X}^{[2]}: \cdots\right]
$$

and $\boldsymbol{\beta}$ contains $\boldsymbol{\theta}$ followed by the basis coefficients for the f_{j}.

- After suitable padding of the \mathbf{S}_{j} with zeroes the penalty becomes $\sum_{j} \lambda_{j} \boldsymbol{\beta}^{\top} \mathbf{S}_{j} \boldsymbol{\beta}$.
- Now $\hat{\boldsymbol{\beta}}=\operatorname{argmin}_{\beta}\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}+\sum_{j} \lambda_{j} \boldsymbol{\beta}^{\top} \mathbf{S}_{j} \boldsymbol{\beta}$.
- Again $\boldsymbol{\lambda}$ can be estimated by GCV, REML etc.

Linear functional generalization

- Occasionally we may want a model that depends on an f_{j} in some way other than simple evaluation. So let $L_{i j}$ be a linear operator and consider an extended model

$$
y_{i}=\mathbf{A}_{i} \boldsymbol{\theta}+\sum_{j} L_{i j} f_{j}\left(x_{j}\right)+\epsilon_{i}
$$

e.g. $L_{i j} f_{j}=\int k_{i}(x) f_{j}(x) d x$, or $L_{i j} f_{j}=f\left(x_{j i}\right) z_{i}\left(k_{i}\right.$ and z_{i} known $)$.

- Dropping j for now, we can discretize $L_{i} f(x) \simeq \sum_{k} \tilde{L}_{i k} f\left(x_{k}\right)$.
- So $L_{i} f(x) \simeq \sum_{k} \tilde{L}_{i k} \tilde{\mathbf{X}}_{k} \boldsymbol{\beta}$, where $\tilde{\mathbf{X}}_{k}$ is $k^{\text {th }}$ row of model matrix evaluating $f(x)$ at the points x_{k}.
- Then the model matrix for $L_{i} f(x)$ is $\tilde{\mathbf{L}} \tilde{\mathbf{X}}$ (assuming same $x_{k} s$ for each i). The penalties are just those for f.
- Hence the extended model can be written in the same general form as the simple AM.

Simple example

- Response observations y_{i} and predictors $x_{j i}$.
- $y_{i}=f_{0}\left(x_{0 i}\right)+f_{1}\left(x_{1 i}\right)+f_{2}\left(x_{2 i}\right)+\epsilon_{i}$ where $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$.
- b <- gam(y~s (x0) +s(x1)+s(x2),method="REML") plot (b)

Example: scalar on function regression

Generalized Additive Models

- Generalizing again, we have

$$
g\left(\mu_{i}\right)=\mathbf{A}_{i} \boldsymbol{\theta}+\sum_{j} L_{i j} f_{j}\left(x_{j}\right), \quad y_{i} \sim \mathrm{EF}\left(\mu_{i}, \phi\right)
$$

g is a known smooth monotonic link function, EF an exponential family distribution so that $\operatorname{var}\left(y_{i}\right)=V\left(\mu_{i}\right) \phi$.

- Set up model matrix and penalties as before.
- Estimate $\boldsymbol{\beta}$ by penalized MLE. Defining the Deviance. $D(\boldsymbol{\beta})=2\left\{l_{\text {max }}-l(\boldsymbol{\beta})\right\}\left(l_{\text {max }}\right.$ is saturated log likelihood $) \ldots$

$$
\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\operatorname{argmin}} D(\boldsymbol{\beta})+\sum_{j} \lambda_{j} \boldsymbol{\beta}^{\top} \mathbf{S}_{j} \boldsymbol{\beta}
$$

- $\boldsymbol{\lambda}$ estimation is by generalizations of GCV, REML etc.

Example: Poisson regression

- $y_{i} \sim \operatorname{Poi}\left(\mu_{i}\right)$ where $\log \left(\mu_{i}\right)=f_{0}\left(x_{0 i}\right)+f_{1}\left(x_{1 i}\right)+f_{2}\left(x_{2 i}\right)$.
- $\operatorname{gam}(\mathrm{y} \sim \mathrm{s}(\mathrm{x} 0)+\mathrm{s}(\mathrm{x} 1)+\mathrm{s}(\mathrm{x} 2)$, family=poisson(link=log))

GAM computation: $\hat{\boldsymbol{\beta}} \mid \mathbf{y}$

- Penalized likelihood maximization is by Penalized IRLS.
- Initialize $\hat{\boldsymbol{\eta}}=g(\mathbf{y})$ and iterate the following to convergence.

1. Compute pseudodata $z_{i}=g^{\prime}\left(\hat{\mu}_{i}\right)\left(y_{i}-\hat{\mu}_{i}\right) / \alpha_{i}+\hat{\eta}_{i}$ and iterative weights, $w_{i}=\alpha_{i} /\left\{V\left(\hat{\mu}_{i}\right) g^{\prime}\left(\hat{\mu}_{i}\right)^{2}\right\}$ as for any GLM.
2. Compute a revised $\boldsymbol{\beta}$ estimate

$$
\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\operatorname{argmin}} \sum_{i} w_{i}\left(z_{i}-\mathbf{X}_{i} \boldsymbol{\beta}\right)^{2}+\sum \lambda_{j} \boldsymbol{\beta}^{\boldsymbol{\top}} \mathbf{S}_{j} \boldsymbol{\beta}
$$

and hence revised estimates $\hat{\boldsymbol{\eta}}=\mathbf{X} \hat{\boldsymbol{\beta}}$ and $\hat{\boldsymbol{\mu}}=g^{-1}(\hat{\boldsymbol{\eta}})$.

- $\alpha_{i}=1+\left(y_{i}-\hat{\mu}_{i}\right)\left(V_{i}^{\prime} / V_{i}+g_{i}^{\prime \prime} / g_{i}^{\prime}\right)$ gives Newton's method.
- $\alpha_{i}=1$ gives Fisher scoring, where the expected Hessian of the likelihood replaces the actual Hessian in Newton's method.
- Newton based versions of w_{i} and z_{i} are best here, as it makes $\boldsymbol{\lambda}$ estimation easier.

EDF, $\boldsymbol{\beta} \mid \mathbf{y}$ and $\hat{\phi}$

- Let $\mathbf{S}=\sum_{j} \lambda_{j} \mathbf{S}_{j}$ and $\mathbf{W}=\operatorname{diag}\left\{E\left(w_{i}\right)\right\}$ (Fisher version).
- The Effective Degrees of Freedom matrix becomes

$$
\mathbf{F}=\left(\mathbf{X}^{\top} \mathbf{W} \mathbf{X}+\mathbf{S}\right)^{-1} \mathbf{X}^{\top} \mathbf{W} \mathbf{X}
$$

- Then the EDF is $\operatorname{tr}(\mathbf{F})$. EDFs for individual smooths are found by summing the $F_{i i}$ values for their coefficients.
- In the $n \rightarrow \infty$ limit

$$
\boldsymbol{\beta} \mid \mathbf{y} \sim N\left(\hat{\boldsymbol{\beta}},\left(\mathbf{X}^{\top} \mathbf{W} \mathbf{X}+\mathbf{S}\right)^{-1} \phi\right)
$$

- $\hat{\phi}=\sum_{i} w_{i}\left(z_{i}-\mathbf{X}_{i} \hat{\boldsymbol{\beta}}\right)^{2} /\{n-\operatorname{tr}(\mathbf{F})\}$ is a Pearson based ϕ estimate (but Fletcher, 2012 Biometrika, better)
- There are 2 basic computational strategies for $\boldsymbol{\lambda}$ selection.

1. Single iteration schemes estimate $\boldsymbol{\lambda}$ at each PIRLS iteration step, by applying GCV, REML or whatever to the working penalized linear model. This approach need not converge.
2. Nested iteration, defines a $\boldsymbol{\lambda}$ selection criterion in terms of the model deviance and optimizes it directly. Each evaluation of the criterion requires an 'inner' PIRLS to obtain $\hat{\boldsymbol{\beta}}_{\lambda}$. This converges, since a properly defined function of $\boldsymbol{\lambda}$ is optimized.

- The second option is usually preferable on grounds of reliability, but the first option can be made very memory efficient with very large datasets.
- The first option simply uses the smoothness selection criteria for the linear model case, but the second requires that these be extended...

Nested iteration strategy (Wood, 2011, JRSSB)

- Optimization wrt $\rho=\log \boldsymbol{\lambda}$ is by Newton's method, using analytic derivatives.
- For each trial $\boldsymbol{\lambda}$ used by Newton's method. .

1. Re-parameterize for maximum numerical stability in computing $\hat{\boldsymbol{\beta}}$ and terms like $\log |\mathbf{S}|_{+}$.
2. Compute $\hat{\boldsymbol{\beta}}$ by PIRLS (full Newton version).
3. Calculate derivatives of $\hat{\boldsymbol{\beta}}$ wrt $\boldsymbol{\rho}$ by implicit differentiation.
4. Evaluate the $\boldsymbol{\lambda}$ selection criterion and its derivatives wrt $\boldsymbol{\rho}$

- ... after which all the ingredients are in place for Newton's method to propose a new $\boldsymbol{\lambda}$ value.
- As usual with Newton's method, some step halving may be needed, and the Hessian will have to be peturbed if it is not positive definite.
- GCV generalizes to

$$
\mathcal{V}_{g}=n D\left(\hat{\boldsymbol{\beta}}_{\lambda}\right) /\{n-\operatorname{tr}(\mathbf{F})\}^{2}
$$

- Laplace approximate (negative twice) REML is

$$
\begin{aligned}
\mathcal{V}_{r}= & \frac{D(\hat{\boldsymbol{\beta}})}{}+\hat{\boldsymbol{\beta}}^{\top} \mathbf{S} \hat{\boldsymbol{\beta}} \\
& \phi \\
& +\left(\log \left|\mathbf{X}^{\top} \mathbf{W} \mathbf{X}+\mathbf{S}\right|-\log |\mathbf{S}|_{+}\right)-M_{p} \log (2 \pi \phi)
\end{aligned}
$$

well founded if $\operatorname{dim}(\boldsymbol{\beta})=O\left(n^{\alpha}\right), \alpha \leq 1 / 3$ (Shun and McCullagh, JRSSB, 1995), but this result is not sharp.

GAMM

- A generalized additive mixed model has the form

$$
g\left(\mu_{i}\right)=\mathbf{A}_{i} \boldsymbol{\theta}+\sum_{j} L_{i j} f_{j}\left(x_{j}\right)+\mathbf{Z}_{i} \mathbf{b}, \quad \mathbf{b} \sim N(\mathbf{0}, \boldsymbol{\psi}), \quad y_{i} \sim \mathrm{EF}\left(\mu_{i}, \phi\right)
$$

- ... actually this is not much different to a GAM. The random effects term $\mathbf{Z b}$ is just like a smooth with penalty $\mathbf{b}^{\top} \boldsymbol{\psi}^{-1} \mathbf{b}$.
- If ψ^{-1} can be written in the form $\sum_{k} \lambda_{k} \mathbf{S}_{k}$ then the GAMM can be treated exactly like a GAM. (gam).
- Alternatively, using the mixed model representation of the smooths, the GAMM can be written in standard GLMM form and estimated as a GLMM. (gamm/gamm4).
- The latter option is often preferable when there are many random effects, and the former when there are fewer.

Simple GAMM example

- $y_{i} \sim \operatorname{Poi}\left(\mu_{i}\right)$ where $\log \left(\mu_{i}\right)=f\left(z_{i}\right)+b_{\mathrm{id}(i)}$ if observation i is from $\operatorname{group} \operatorname{id}(i) . \mathbf{b} \sim N\left(\mathbf{0}, \mathbf{I} \sigma_{b}^{2}\right)$.
- gam(y ~ s(z,k=20)+s(id,bs="re"),family=poisson, method="REML")
- gamm(y~s $(z, k=20)$, family=poisson, random=list (id=~1))
- gamm4 (y~s (z,k=20), family=poisson, random=~(1|id)
s(id,32.66)

Model checking overview

- Since a GAM is just a penalized GLM, residual plots should be checked exactly as for a GLM.
- It should be checked that smoothing basis dimension is not restrictively low. Defaults are essentially arbitrary.
- The GAM analogue of co-linearity is often termed 'concurvity'.
- It occurs when one predictor variable could be reasonably well modelled as a smooth function of another predictor variable.
- A common example is 'spatial confounding': the model contains a spatial smoother, but some of the covariates also vary smoothly over space.
- Like co-linearity it is statistically destabilising and complicates interpretation, (in mgcv see ?concurvity).

GAM functions in mgcv

- gam. Main modelling function. Can use all distributions listed in ?family.mgcv. Tems like $s(. . ., b s=$ "re") in model implement simple random effects.
- bam. Big data version of gam. Exponential family distributions only. See discrete and nthreads options for bigger and faster still.
- gamm. Uses Bayesian duality of smooths and random effects to estimate generalized additive mixed models using lme. Random effects as lme. See package gamm 4 for lme 4 version.
- jagam. Writes JAGS (BUGS dialect) code to fit GAM using JAGS. Idea is to edit code to add more complicated random effect structures, different distributions etc.

Residual checking

- Deviance, Pearson, working and raw residuals are defined for a GAM in the same way as for any GLM.
- In mgcv the residuals function will extract them, defaulting to deviance residuals.
- Residuals should be plotted against

1. fitted values.
2. predictor variables (those included and those dropped).
3. time, if the data are temporal.

- Residual plotting aims to show that there is something wrong with the model assumptions. It's good to fail.
- The key assumptions are

1. The assumed mean variance relationship is correct, so that scaled residuals have constant variance.
2. The response data are independent, so that the residuals appear approximately so.

Distribution checking

- If the independence and mean-variance assumptions are met then it is worth checking the distributional assumption more fully.
- The implication of quasi-likelihood theory is that provided the mean variance relationship is right, the other details of the distribution are not important for many inferential tasks.
- QQ-plots of residuals against standard normal quantiles can be misleading in some circumstances: for example low mean Poisson data, with many zeroes.
- It is better to obtain the reference quantiles for the deviance residuals by repeated simulation of response data, and hence residuals, from the fitted model. mgcv function qq. gam will do this for you.
- gam. check produces some default residual plots for you.

gam. check plots

Residual checking example
$>b<-\operatorname{gam}(y \sim s(x 0)+s(x 1, x 2, k=40)+s(x 3)+s(x 4)$,

+ family=poisson,data=dat,method="REML")
> gam.check(b)
Method: REML Optimizer: outer newton
full convergence after 8 iterations.
Gradient range [-0.0001167555,3.321004e-05]
(score 849.8484 \& scale 1).
Hessian positive definite, eigenvalue range [9.66288e-05,10.52249]

[edited]

- The printed output is rather detailed information about smoothing parameter estimation convergence.
- 4 residual plots are produced, the first is from qq. gam, unless quasi-likelihood is used, in which case we have to fall back on a normal QQ-plot (but anyway don't care about this plot). The rest are self explanatory.

More residual plots
rsd <- residuals(b)
qq.gam(b,rep=100); plot(fitted(b),rsd) plot (dat $\$ x 0, r s d) ;$ plot (dat $\$ x 1, r s d)$

Basis dimension checking

- If the basis dimension for a smooth, $f(z)$, is too small then it will oversmooth, and leave pattern (autocorrelation) in the model residuals with respect z.
- This leads to several checking methods:

1. Add the residuals to $\hat{f}(z)$, to obtain partial residuals and overlay these on a plot of $\hat{f}(z)$, to look for patterns.
2. Order the residuals w.r.t. z and compute their mean (squared) first differences, $\bar{\Delta}$. Approximate the distribution of $\bar{\Delta}$ under the null hypothesis of zero auto-correlation by randomization of the residuals. Hence compute a p-value for this null. (Similar possible for multi-dimensional z).
3. Smooth the deviance residuals w.r.t. z using a higher basis dimension (e.g. doubled): a non-flat smooth may be evidence for residual pattern.

- Checks are important if the EDF is close to the basis dimension.

Model selection

- A large part of what would usually be thought of as model selection is performed by smoothing parameter estimation, but smoothing selection does not usually remove terms altogether.
- There are three common approaches to deciding what terms to include.

1. Get smoothing parameter estimation to do all the work, by adding a penalty for the un-penalized space of each term.
2. Compute approximate p -values for testing terms for equality to zero, and use conventional selection strategies (backwards, forwards, backwards-forwards, etc).
3. Use similar strategies based on AIC (or on the GCV or ML scores for the model).

Practical basis dimension check example

```
b <- gam(y ~ s (x1,k=6) + s(x2,k=6),method="REML")
plot ( b, pages=1, residuals=TRUE)
```



```
> gam.check(b)
k' edf \(k\)-index p-value
\(\begin{array}{llll}s(x 2) & 5.000 \quad 4.983 & 0.827 & 0.00\end{array}\)
> rsd <- residuals(b)
\(>\operatorname{gam}(r s d \sim s(x 2, k=12)\), method="REML")
Estimated degrees of freedom:
9.9 total \(=10.9\)
```


Penalizing the penalty null space

- The penalty for a term is of the form $\boldsymbol{\beta}^{\top} \mathbf{S} \boldsymbol{\beta}$.
- Usually \mathbf{S} is not full rank so some finite (M) dimensional space of functions is un-penalized.
- In consequence penalization can not completely remove the term from the model.
- Consider eigen-decomposition $\mathbf{S}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$. The last M eigenvalues will be zero. Let $\tilde{\mathbf{U}}$ denote their corresponding eigenvectors.
- $\boldsymbol{\beta}^{\top} \tilde{\mathbf{U}}^{\top} \boldsymbol{\beta}$ can be used as an extra penalty on just the component of the term that is unpenalized by $\boldsymbol{\beta}^{\top} \mathbf{S} \boldsymbol{\beta}$.
- Adding such a penalty to all the smooth terms in the model allows smoothing parameter selection to remove terms from the model altogether.

Fish egg modelling example

p-values for smooth terms

- A p-values for smooth term, f, with a finite dimensional un-penalized space can be computed by a rather involved inversion of the Bayesian intervals for a smooth, which give good frequentist performance.
- The test statistic is $\hat{\mathbf{f}}^{\top} \mathbf{V}_{f}^{\tau-} \hat{\mathbf{f}}$ where $\mathbf{V}_{f}^{\tau^{\prime}-}$ is a generalized $\operatorname{rank} \tau^{\prime}$ pseudoinverse of the Bayesian covariance matrix for \mathbf{f} the vector of f evaluated at the observed covariate values. τ^{\prime} is a version of the effective degrees of freedom of \hat{f}, based on $2 \mathbf{F}-\mathbf{F F}$ in place of \mathbf{F}.
- Under the null hypothesis that $\mathbf{f}=\mathbf{0}$ the statistic has a χ_{τ}^{2} distribution for integer τ, and a weighted sum of χ^{2} distributions otherwise.
- See Wood (2013) Biometrika, 100, 221-228.

Null space penalization in action

```
> gm <- gam(egg.count~s(lon,lat,k=100)+s(I(b.depth^.5))+
    s(c.dist) + s(temp.surf)
    +s(salinity)+s(temp.20m) +offset(log.net.area),
    data=mack,family=quasipoisson,method="REML", select=TRUE)
gm
Family: quasipoisson
Link function: log
Formula:
egg.count ~ s(lon, lat, k = 100) + s(I(b.depth^0.5)) + s(c.dist) +
    s(temp.surf) + s(salinity) + s(temp.20m) + offset(log.net.area)
Estimated degrees of freedom:
60.60 2.17 0.42 0.00 1.83 5.17 total = 71.19
REML score: 515.0758
```

- So temp. surf is penalized out, and c.dist nearly so!

summary(gm)

```
Family: quasipoisson
Link function: log
Parametric coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.9506 0.1237 23.85 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
Approximate significance of smooth terms:
\begin{tabular}{|c|c|c|c|c|}
\hline & edf & Ref.df F & p-value & \\
\hline s(lon,lat) & 61.280 & 73.6023 .094 & 5.28e-13 & *** \\
\hline s(I (b.depth^0.5) ) & 2.593 & 3.1643 .154 & 0.02354 & * \\
\hline s(c.dist) & 1.000 & 1.0001 .532 & 0.21688 & \\
\hline s(temp.surf) & 1.000 & 1.0000 .133 & 0.71597 & \\
\hline s(salinity) & 1.001 & 1.0018 .891 & 0.00313 & \\
\hline s(temp. 20 m ) & 5.960 & 6.9413 .504 & 0.00136 & ** \\
\hline Signif. codes: 0 & '***' 0 & \(0.001{ }^{\prime} * *{ }^{\prime} 0.0\) & \(01{ }^{\prime}{ }^{\prime}\) ' 0. & \(5^{\prime}\) \\
\hline
\end{tabular}
R-sq.(adj) = 0.825 Deviance explained = 90.2%
REML score = 510.79 Scale est. = 4.4062 n = 330
```


p-values for random effect terms

- The test for smooth terms does not work for random effects the notion of effective degrees of freedom is much less meaningful, and the approximations break down as the effect tends to zero.
- Tests for random effects/variance components are difficult: the null hypothesis restricts the variance parameter to the edge of the parameter space.
- This problem can be addressed by:

1. Fix all smoothing/variance parameters other than the parameter of interest at their estimated values.
2. Re-express the log likelihood ratio statistic for the test in terms of the predicted random effect coefficients of the term.
3. Under the null, this statistic is distributed as a weighted sum of χ^{2} random variables.

- Details are in Wood (2013) Biometrika, 100, 1005-1010.
- The test is exact in the case of a single random Gaussian effect model, and approximate otherwise.

A better AIC

- Let $\boldsymbol{\beta}_{d}$ be the coefficients minimizing the KL-divergence, and \boldsymbol{I}_{d} the information at this point.
- Penalization does not alter AIC derivation up to

$$
\mathrm{AIC}=-2 l(\hat{\boldsymbol{\beta}})+2 \mathbb{E}\left\{\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{d}\right)^{\top} \boldsymbol{\mathcal { I }}_{d}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{d}\right)\right\}
$$

\ldots but it does alter the expectation term (variance \downarrow bias \uparrow).

- Accounting for penalization we get

$$
\mathrm{AIC}=-2 l(\hat{\beta})+2 \operatorname{tr}\left(\boldsymbol{\mathcal { I }} \mathbf{V}_{\beta}\right)
$$

where \mathbf{V}_{β} is the Bayesian posterior covariance matrix.

- So far the trace term is just the EDF, but we can correct \mathbf{V}_{β} for smoothing parameter uncertainty, to get a corrected EDF and AIC.
- Wood, Pya and Säfken (2016, JASA) give the full details
- There are two possibilities:

1. Marginal AIC. Integrate the penalized terms/ random effects out of the likelihood. Base the AIC on the resulting marginal likelihood: the number of parameters is taken as the number of fixed effects, un-penalized coefficients, smoothing parameters and variance parameters.
2. Conditional AIC. Base the AIC on the likelihood of the penalized and un-penalized model coefficients (including random effect coefficients), replacing the number of parameters with the effective degrees of freedom.

- There are problems with both.

1. Marginal likelihood underestimates variance components (over-smooths), so the marginal AIC over-favours simple models (REML is not comparable between models with any difference in fixed effect/ un-penalized structure).
2. Conditional AIC is much too likely to select the over-complicated model, by virtue of the neglect of smoothing/variance parameter uncertainty in the effective degrees of freedom (Greven and Kneib, 2010, Biometrika).

Better AIC example

- How often AIC selects a term as the effect size of the term increases...

- Left, for a random effect, middle the different effective degrees of freedom for the left plot. Right for a smooth. Dotted is the new AIC computation.

Key help files in mgcv

Other software: R packages and SAS

- Best to navigate help using HTML via help. start ().
- ?mgcv.package is an overview, with links to key information.
- Each modelling function has a help page.
- ?plot.gam, ?predict.gam ?summary.gam, ?anova. gam, ?AIC. gam and ? gam. check describe key functions for use with fitted model.
- ?family.mgcv describes the distributions available.
- ?smooth.terms describes the range of smoothers.
- ? gam. models gives some information on specifying models.
- ?random.effects is a mixed GAM overview.

Summary

- A GAM is simply a GLM in which the linear predictor partly depends linearly on some unknown smooth functions.
- GAMs are estimated by a penalized version of the method used to fit GLMs.
- An extra criterion has to be optimized to find the smoothing parameters.
- A GAMM is simply a GLMM in which the linear predictor partly depends linearly on some unknown smooth functions.
- From the mixed model representation of smooths, GAMMs can be estimated as GAMs or GLMMs.
- Checking is as for a GLM, bit we should also check smoothing basis dimensions.
- Selection can be done using penalties or adaptations of familiar regression modelling techniques.
- GAMP L in SAS implements the framework described here.
- gam provides Hastie and Tibshirani’s original GAM methods.
- VGAM and gamlss extend the GAM model class using the H\& T computational approach.
- semiPar is based on Ruppert Wand and Carroll's 2003 book.
- gss, assist and bigSplines implement the smoothing spline ANOVA methods of Wahba, Gu et al.
- R2BayesX and INLA provide fully Bayesian approaches (INLA is especially good for high rank spatial fields).
- Natalya Pya's scam offers shape constrained additive models.
- refund provides FDA using mgcv as fitting engine.

Extending the model

Additive models beyond exponential families.

Simon Wood

Mathematical Sciences, University of Bristol, U.K.

Simple example extension

- Here are some mass spectra for samples from patients with normal, enlarged and cancerous prostate.

- Scalar on function regression ${ }^{1}$ model for prediction? Category (normal, enlarged or cancer) determined by a logistically distributed latent variable with mean

$$
\mu_{i}=\alpha+\int f(D) \nu_{i}(D) d D
$$

- This is somewhat beyond a standard GAM, but methods can be developed.
- Many extensions have been proposed. . .

1. GAM type linear predictor with non-exponential family distribution for independent response variable. Examples: scaled t for heavy tails, beta regression for proportions, ordered categorical models, Tweedie and negative binomial distributions
2. GAM type linear predictor without a separable log-likelihood.
E.g. Cox Proportional hazards and Cox Process.
3. Models with multiple GAM type linear predictors: E.g.

GAMLSS (Rigby \& Stasinopoulus, 2005), or multivariate additive models (e.g. Yee and Wild, 1996).

- Let us consider producing a general framework for the extensions allowing us to do (almost) everything that can be done with an exponential family GAM.

Ordered categorical signal regression results

- Smooth adaptive f and category cut points to be estimated.
- library (mgcv)
gam(hs ~ s(D,by=M,bs="ad",k=100),family=ocat (R=3)) D and M are matrices. Each row contains Masses and Spectral intensity, for one subject.
- Results are...

- How is this done, and can we improve on it?

[^0]
Basic aims

- To produce a general framework for the various GAM extensions that is as useful as the GAM framework. i.e.

1. Allow numerically reliable smoothing parameter estimation for a wide range of smooths, including those with multiple smoothing penalties.
2. Allow access to the same inferential machinery that is available for GAMs.

- General framework should reduce implementation of new model classes to the implementation of some standard derivatives of the log likelihood.
- See Wood, Pya \& Säfken (2016, JASA) for full details.

Estimation methods: Laplace approximate ML

- We want to estimate log smoothing parameters as

$$
\hat{\rho} \simeq \underset{\rho}{\operatorname{argmax}} \log \int f(\mathbf{y} \mid \boldsymbol{\beta}) f(\boldsymbol{\beta}) d \boldsymbol{\beta}
$$

- Can't generally do the integral.
- Approximate intergrand by exponential of $2^{\text {nd }}$ order Taylor approx. of log intergrand (almost a multivariate normal).
- We get the Laplace Approximate ML

$$
\mathcal{V}(\boldsymbol{\lambda})=\mathcal{L}(\hat{\boldsymbol{\beta}})+\frac{1}{2} \log \left|\mathbf{S}^{\lambda}\right|_{+}-\frac{1}{2} \log |\boldsymbol{\mathcal { H }}|+\frac{M_{p}}{2} \log (2 \pi)
$$

where $-\mathcal{H}$ is Hessian of penalized \log likelihood, \mathcal{L}, at $\hat{\boldsymbol{\beta}}$.

Strategy

- Consider models, for data \mathbf{y}, in which the log likelihood, l, depends on smooth functions f_{j}.
- Represent the f_{j} using intermediate rank basis expansions with quadratic penalties, so that coefficient estimates, given smoothing parameters, $\boldsymbol{\lambda}$, are

$$
\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\operatorname{argmax}} \mathcal{L}(\boldsymbol{\beta})=l(\boldsymbol{\beta})-\frac{1}{2} \sum_{j} \lambda_{j} \boldsymbol{\beta}^{\top} \mathbf{S}^{j} \boldsymbol{\beta} .
$$

- Writing $\mathbf{S}_{\lambda}=\sum_{j} \lambda_{j} \mathbf{S}^{j}$, we can motivate the above by a prior $\boldsymbol{\beta} \sim N\left(\mathbf{0}, \mathbf{S}_{\lambda}^{-}\right)$.
- Can then estimate $\boldsymbol{\lambda}$ by Marginal Likelihood (REML).

Estimation methods: numerical strategy

- Nested Newton optimization...
- Optimize LAML \mathcal{V} w.r.t. ρ by Newton's method.
- Each trial set of $\boldsymbol{\rho}$ values require corresponding $\hat{\boldsymbol{\beta}}$, also by Newton's method. Efficient as starting values excellent after first trial!
- Use implicit differentiation to obtain $\mathrm{d} \hat{\boldsymbol{\beta}} / \mathrm{d} \boldsymbol{\rho}$ etc, and hence derivatives of LAML w.r.t. ρ.
- Problem: naïve computation is unstable. Worst parts are the log determinants, e.g. $\log \left|\sum_{j} \lambda_{j} \mathbf{S}^{\mathbf{j}}\right|_{+} \cdots$
- Some $\lambda_{j} \rightarrow \infty$ is legitimate, which can lead to taking logs of 'numerical zeroes' in the log determinant terms.

The problem with $\log |\mathbf{S}|_{+}$

- Naive $|\mathbf{S}|_{+}$evaluation can go badly wrong.
- Consider $\log \left|\mathbf{S}_{1}+\lambda \mathbf{S}_{2}\right|_{+}$when $\lambda \rightarrow 0$

> $\mathrm{S}<-\mathrm{S} 1+\mathrm{S} 2 * 1 \mathrm{e}-18 ; \mathrm{S}$						
[1,]	1	-1	0	$0 \mathrm{e}+00$	$0 \mathrm{e}+00$	$0 \mathrm{e}+00$
[2,]	-1	2	-1	$0 \mathrm{e}+00$	$0 \mathrm{e}+00$	$0 \mathrm{e}+00$
[3,]	0	-1	1	$0 \mathrm{e}+00$	$0 \mathrm{e}+00$	$0 \mathrm{e}+00$
[4,]	0	0	0	$1 \mathrm{e}-18$	-1e-18	$0 \mathrm{e}+00$
[5,]	0	0	0	-1e-18	$2 \mathrm{e}-18$	-1e-18
[6,]	0	0	0	$0 \mathrm{e}+00$	-1e-18	$1 \mathrm{e}-18$
> sum(log(eigen(S) \$values [1:4])) \#\# na						
[1] -73.39584						
> sum(log(eigen(S1)\$values[1:2])) + \#\# true						
> sum(log(eigen(S2) \$values [1:2]*1e-18)						
[1] -80.69584						
> eigen(S) \$values \#\# why?						
[1] 3	0000	$00 \mathrm{e}+0$	01.	00000 e	$02.220446 \mathrm{e}-15$	
[5] 1.000000e-18 1.000000e-18						

Solution for $\log |\mathbf{S}|$

- Similarity transform to confine \mathbf{S}_{1} to a block of size corresponding to its rank.
- Consider eigen-decomposition $\mathbf{U D U}^{\top}=\mathbf{S}_{1}$. Then $\left|\mathbf{S}_{1}+\lambda \mathbf{S}_{2}\right|=\left|\mathbf{D}+\lambda \mathbf{U}^{\top} \mathbf{S}_{2} \mathbf{U}\right|$. If zero eigenvalues in \mathbf{D} are set to exactly 0 , then r.h.s. evaluates correctly.

[^1]
Further problems with $\log |\mathbf{S}|$

- Suppose that the non-zero sub matrices of \mathbf{S}_{i} need not be full rank, but overlap...

- Are either of these right? No. \mathbf{S}_{1} is only rank 2, but its 'numerical footprint' extends beyond the first 2 columns of \mathbf{S}, obliterating part of the rank 3 matrix, \mathbf{S}_{2}.
... why did that work, and does it generalize?
- The large elements for \mathbf{S}_{1} got confined to a 2×2 block, in the similarity transformed version of \mathbf{S}
> Sp
$\left[\begin{array}{llrrr}{[1,]} \\ {[1,1]} & {[, 2]} & {[, 3]} & {[, 4]} & {[, 5]} \\ 3.000000 \mathrm{e}+00 & -2.886751 \mathrm{e}-19 & -2.357023 \mathrm{e}-19 & \mathrm{e}+00 & 0 \mathrm{e}+00\end{array}\right.$
$[2]-,2.886751 e-19 \quad 1.000000 e+00 \quad 4.082483 e-19 \quad 0 e+000 e+00$
$[3]-,2.357023 e-19 \quad 4.082483 e-19 \quad 3.333333 e-19 \quad 0 e+00 \quad 0 e+00$
$[4] \quad 0.000000 e+,00 \quad 0.000000 e+00 \quad 0.000000 e+00 \quad 1 e-18 \quad 0 e+00$
$[5] \quad 0.000000 \mathrm{e}+,00 \quad 0.000000 \mathrm{e}+00 \quad 0.000000 \mathrm{e}+000 \mathrm{e}+00 \quad 1 \mathrm{e}-18$
- QR decomposition to get the determinant doesn't mix columns, so the determinant calculation is now stable.
- This approach can be generalized to more than two \mathbf{S}_{j} matrices (and to rank deficient \mathbf{S}).
- Re-parameterization tends to stabilize other computations as well.
- Having sorted out the instability of $\log |\mathbf{S}|_{+}$, we can push on with a general method.
- But some expressions required to implement general methods become incomprehensibly complex without a reasonable notation ...

1. Let differentiation with respect to (Greek) parameters be denoted $f_{\beta}^{j}=\partial f / \partial \beta_{j}, g_{\alpha \beta}^{j k}=\partial^{2} g / \partial \alpha_{j} \partial \beta_{k}$ etc.
2. Greek superscripts without a subscript are labels.
3. Repeated Roman indices occurring on only one side of an equation should be summed over. e.g. $a_{j}=b_{\beta}^{i} w_{i j}=\sum_{i} b_{\beta}^{i} w_{i j}$

- e.g. $\mathcal{L}_{\beta \beta}^{i j}$ is the Hessian of the penalized log-likelihood, $p_{i}=\mathcal{L}_{\beta \beta}^{i j} \mathcal{L}_{\beta}^{j}$ is the product of the Hessian and the gradient.

Implicit differentiation example

- $\mathcal{L}_{\hat{\beta}}^{i}=l_{\hat{\beta}}^{i}-\lambda_{k} S_{i j}^{k} \hat{\beta}_{j}=0$
- Differentiating w.r.t. $\rho_{k}=\log \lambda_{k}$ yields

$$
\mathcal{L}_{\hat{\beta} \rho}^{i k}=l_{\hat{\beta} \hat{\beta}}^{i j} \frac{\mathrm{~d} \hat{\beta}_{j}}{\mathrm{~d} \rho_{k}}-\lambda_{k} S_{i j}^{k} \hat{\beta}_{j}-\lambda_{l} S_{i j}^{l} \frac{\mathrm{~d} \hat{\beta}_{j}}{\mathrm{~d} \rho_{k}}=0 .
$$

- Re-arranging and defining $\mathcal{L}_{i j}^{\hat{\beta} \hat{\beta}}$ as inverse of $\mathcal{L}_{\hat{\beta} \hat{\beta}}^{i j}$,

$$
\frac{\mathrm{d} \hat{\beta}_{i}}{\mathrm{~d} \rho_{k}}=\mathcal{L}_{i j}^{\hat{\beta} \hat{\beta}} \lambda_{k} S_{j l}^{k} \hat{\beta}_{l}
$$

- Now can compute $l_{\hat{\beta} \hat{\beta} \hat{\beta}}^{i j l}=l_{\hat{\beta} \hat{\beta} \hat{\beta}}^{i j} \mathrm{~d} \hat{\beta}_{\boldsymbol{k}} / \mathrm{d} \rho_{l}$ etc.
- In general require \log likelihood derivatives to $4^{\text {th }}$ order.

1. Reparameterize each smooth so that $\log \left|\mathbf{S}^{\lambda}\right|_{+}$is stable.
2. Find $\hat{\boldsymbol{\beta}}$ by stabilized Newton method.
3. Drop unidentifiable $\hat{\boldsymbol{\beta}}$ elements at convergence. If necessary repeat Newton optimization to allow other coefficients to adjust. Let $\mathcal{L}_{i j}^{\hat{\beta} \hat{\beta}}$ be the inverse Hessian of \mathcal{L} at $\hat{\boldsymbol{\beta}}$.
4. Compute d $\hat{\beta}_{i} / \mathrm{d} \rho_{k}=\mathcal{L}_{i j}^{\hat{\beta} \hat{\beta}} \lambda_{k} S_{j l}^{k} \hat{\beta}_{l}$.
5. Given $\mathrm{d} \hat{\boldsymbol{\beta}} / \mathrm{d} \rho_{k}$ compute $l_{\hat{\boldsymbol{\beta}} \hat{\boldsymbol{\beta}} \rho}^{i j}$.
6. Given $l_{\hat{\beta} \hat{\beta} \rho}^{i j k}$, compute $\mathrm{d}^{2} \hat{\boldsymbol{\beta}} / \mathrm{d} \rho_{k} \mathrm{~d} \rho_{l}$.
7. Compute $\mathcal{L}_{k j}^{\hat{\beta} \hat{p}} l_{\hat{\beta} \hat{\beta} \rho \rho}^{k p v}\left(\right.$ model specific, $\left.O\left(M n p^{2}\right)\right)$.
8. The derivatives of \mathcal{V} can now be computed.

General case examples

- Cox PH, Cox Process, single index models, MV GAMs...
- Also GAMLSS models (Rigby \& Stasinopoulus, 2005)...
- \log likelihood for the $i^{\text {th }}$ datum is $l\left(y_{i}, \eta_{i}^{1}, \eta_{i}^{2}, \ldots\right)$ where the $\eta^{k}=\mathbf{X}^{k} \boldsymbol{\beta}^{k}$ are K linear predictors.
- Newton estimation of $\hat{\boldsymbol{\beta}}+$ implicit differentiation requires

$$
\dot{\beta}_{\beta^{l}}^{j}=l_{\eta^{\prime}}^{i} X_{i j}^{l}, \quad \quad_{\beta^{\prime} \beta^{m}}^{\dot{\prime}} k_{i}^{i} l_{\eta^{\prime} \eta^{m}}^{i} X_{i j}^{l} X_{i k}^{m} .
$$

- First derivatives of \mathcal{V} then require

$$
\begin{aligned}
& \underset{\hat{\beta}^{\prime} \hat{\beta}^{n} \rho}{j^{j} p}=\underset{\hat{\beta}^{\prime} \hat{\beta}^{n} \hat{\beta}^{q}}{j}{ }^{k} r \frac{\mathrm{~d} \hat{\beta}_{r}^{q}}{\mathrm{~d} \rho_{p}}=l_{\hat{\eta}^{\prime} \hat{\eta}^{i} \hat{\eta}^{q}}^{i} X_{i j}^{l} X_{i k}^{m} X_{i r}^{q} \frac{\mathrm{~d} \hat{\beta}_{r}^{q}}{\mathrm{~d} \rho_{p}} \\
& =l_{\hat{\eta}_{i} \hat{\eta}^{i} \hat{\eta}^{\prime}}^{i}{ }^{i}{ }_{i j}^{l} X_{i k}^{m} \frac{\mathrm{~d} \hat{\eta}_{i}^{q}}{\mathrm{~d} \rho_{p}}
\end{aligned}
$$

- Second derivatives not much worse. Generically require mixed partials of log density up to 4th order.

Less general case and software

- For a single linear predictor and a log likelihood that is the sum of separate components for each observation, then methods that exploit the regression model structure are better. Details omitted!
- These are the cases where we really have a GAM, except that the response is not exponential family distributed.
- e.g. Beta regression, ordered categorical regression, Tweedie or negative binomial with estimation of all parameters etc.
- Methods implemented in mgcv 1.8-x. e.g.
gam(time ~ $s(x)+s(z), f a m i l y=c o x . p h$, weights=censor) gam(list (y ~ s(x) + s(z), ~ s(v)+s(w)),family=ziplss)
- ... follow up as for regular GAM.

Multinomial prostate screening results

- Estimated coefficient functions

- Classification. Upper: ordered; Lower: multinomial.

Example: multinomial prostate screening model

- The ordered categorical prostate screening model was not great: categories not really ordered?
- 3 categories: $y=0,1,2$ (healthy, enlarged, cancer).
- Model - smooth linear predictor, η_{j}, for all categories except 0 .

$$
L= \begin{cases}\exp \left(\eta_{y}\right) /\left\{1+\sum_{j} \exp \left(\eta_{j}\right)\right\} & y>0 \\ 1 /\left\{1+\sum_{j} \exp \left(\eta_{j}\right)\right\} & y=0\end{cases}
$$

- Use 'signal regression' linear predictors for each η_{j}

$$
\eta_{j i}=\alpha_{j}+\int f_{j}(D) \nu_{i}(D) d D
$$

- gam(list (y ~s(D,by=M), $\sim(D, b y=M))$, family=multinom (K=2), data=prostate)

Example: Colon cancer survival

Colon cancer survival times against covariates.

Colon cancer Cox PH model

- Cox PH model with smooth effects for age (by sex) and nodes.
- gam(time~s (age, by=sex) +sex+s (nodes) +perfor +rx+obstruct+adhere, family=cox.ph(), data=coll,weights=status)

Location-scale fitting

b <- gam(list (accel~s(times,k=20,bs="ad"), ~s(times)), data=mcycle,family=gaulss())
plot (b, pages=1, scale=0, scheme=1)

Example: location-scale model

- Mean and variance are clearly varying with time
- A model: $y_{i}=f_{1}\left(t_{i}\right)+\epsilon_{i}, \epsilon_{i} \sim N\left(0, \sigma_{i}^{2}\right), \log \sigma_{i}=f_{2}\left(y_{i}\right)$.

Another example: Swiss rainfall extremes

- Annual maximum 12-hour rainfall from 65 Swiss weather stations, 1981-2015. Black is average over years, grey is maximum across years.

- GEV model with predictors for location, scale and shape
gam(list (exra~s (nao) +s (elev) +clim.reg+s (N, E),

$$
\begin{aligned}
& \sim s(\text { year })+s(\text { elev })+c l i m . r e g+s(N, E) \\
& \sim \text { clim.reg), family=gevlss, data=swer })
\end{aligned}
$$

Swiss rainfall posterior simulation

Smooth additive quantile regression

- Draw model coefficients from MVN approximate posterior, and then draw annual extreme rainfall from implied GEV distribution for each station (very fast).

Summary

- Smooth models can be extended well beyond the exponential family, and well beyond strictly additive settings.
- The extensions fit readily into a unified computational framework, that allows efficient and reliable smoothness estimation, and re-use of most of the inferential tools available for GAMs.
- A number of practically useful examples of these extensions are available in mgcv.
- Extensions to other loss functions also seem to be possible.
- The framework presented here can be extended to quantile regression.
- Idea is to replace the \log likelihood with a smoothed version of the 'pinball' loss function used for quantile regression.
- Formally this uses the Bayesian belief updating framework of Bissiri et al (2016, JRSSB, 78(5)).
- We have to estimate an overall 'learning rate' parameter balancing smoothness prior and loss - this is done by a bootstrap calibration step.

Example motivation: London smog 1952

Smooth additive models for large datasets

Simon Wood

School of Mathematics, University of Bristol, U.K.
-5-9 Dec 1952.

- 4-12 thousand premature deaths.
- Black smoke (particulates) and sulphur from domestic coal fires.
- Clean air act 1956.
- Monitoring from

Daily BS data

Black smoke monitoring...

- 4 decades of daily 'black smoke' monitoring at a variable subset of the $2400+$ stations shown.
- Started in 1961 to monitor air pollution (then mostly from coal), in wake of 1950s smog deaths.
- Epidemiological studies need estimates of daily exposure away from stations.
- $O\left(10^{7}\right)$ measurements and suitable smooth latent Gaussian models have $O\left(10^{4}\right)$ coefficients with $10-30$ variance parameters.
 1961.

Black smoke previous work

- Shaddick \& Zidek ${ }^{1}$ modelled annual average black smoke:

$$
\log \left(b_{i}\right)=f_{1}\left(e_{i}, n_{i}\right)+f_{2}\left(e_{i}, n_{i}\right) y_{i}+f_{2}\left(e_{i}, n_{i}\right) y_{i}^{2}+\epsilon_{i}
$$

using INLA ${ }^{2}$ for inference.

- Modelling reduces the impact of preferential sampling.
- But annual averages fail to capture the acute pollution events, on the time scale of days, that accelerate deaths, and are likely to be of long term health significance.
- A daily model for all the 10^{7} data is appealing, but potentially expensive (e.g. no chance with INLA on a 24 core 128 Gb machine).

[^2]
Wide range of basis penalty smoothers available

The model class: recap

- Concentrate on models of the form $y_{i} \sim \operatorname{EF}\left(\mu_{i}, \phi\right)$

$$
g\left(\mu_{i}\right)=\mathbf{A}_{i} \boldsymbol{\theta}+\sum_{j} f_{j}\left(x_{j i}\right)+\mathbf{Z}_{i} \mathbf{b}
$$

\mathbf{A}, \mathbf{Z} are model matrices, f_{j} are smooth functions, $\boldsymbol{\theta}$ is parameters, \mathbf{b} contains independent Gaussian random effects. g is a known link function. x_{j} may be vector.

- Represent smooth functions, f, using spline basis expansions with coefficients $\boldsymbol{\beta}$

$$
f(x)=\sum_{k=1}^{K} \beta_{k} b_{k}(x)
$$

- ... and define a quadratic smoothing penalty, e.g. $\int f^{\prime \prime 2} d x=\boldsymbol{\beta}^{\mathrm{T}} \mathbf{S} \boldsymbol{\beta}$ (suggesting $K=O\left(n^{1 / 9-1 / 5}\right)$).

Estimation of model coefficients (recap)

- Given bases for the smooths, the model can be written as

$$
y_{i} \sim \mathrm{EF}\left(\mu_{i}, \phi\right), \quad g\left(\mu_{i}\right)=\mathbf{X}_{i} \boldsymbol{\beta}
$$

where $\mathbf{X}(n \times p)$ contains \mathbf{A}, \mathbf{Z} and evaluated basis functions, and $\boldsymbol{\beta}$ is a combine coefficient vector.

- The combined penalty can be written $\sum_{j} \lambda_{j} \boldsymbol{\beta}^{\mathrm{T}} \mathbf{S}_{j} \boldsymbol{\beta}$, where the λ_{j} are smoothing parameters.
- Then $\hat{\boldsymbol{\beta}}=\operatorname{argmax}_{\beta} l(\boldsymbol{\beta})-\sum_{j} \lambda_{j} \boldsymbol{\beta}^{\mathrm{T}} \mathbf{S}_{j} \boldsymbol{\beta} / 2$.
- ...this penalized log likelihood can be given Bayesian motivation using the prior ${ }^{3}$

$$
\boldsymbol{\beta} \sim N\left\{\mathbf{0},\left(\sum_{j} \lambda_{j} \mathbf{S}_{j}\right)^{-}\right\} .
$$

[^3]
A fitting algorithm ($\mathrm{PQL} /$ performance iteration)

- The GLM likelihood means that $\boldsymbol{\beta}$ can be estimated by penalized iteratively re-weighted least squares.
- i.e. we iteratively use penalized least squares to fit a working linear model:

$$
\mathbf{z}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}, \quad \operatorname{cov}(\boldsymbol{\epsilon})=\mathbf{W}^{-1} \phi, \quad E(\boldsymbol{\epsilon})=\mathbf{0}
$$

where $z_{i}=g^{\prime}\left(\hat{\mu}_{i}\right)\left(y_{i}-\hat{\mu}_{i}\right)+\hat{\eta}_{i}, W_{i i}^{-1}=V\left(\hat{\mu}_{i}\right) g^{\prime}\left(\hat{\mu}_{i}\right)^{2}$ and $\eta_{i}=g\left(\mu_{i}\right) . V$ is a known and determined by EF.

- Or we use the prior on $\boldsymbol{\beta}$ and iteratively estimate

$$
\mathbf{z}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}, \quad \boldsymbol{\beta} \sim N\left(\mathbf{0}, \mathbf{S}_{\lambda}^{-}\right) \boldsymbol{\epsilon} \sim N\left(\mathbf{0}, \mathbf{W}^{-1} \phi\right),
$$

including $\boldsymbol{\lambda}$, as a linear mixed model (this is PQL^{4}). $\mathbf{S}_{\lambda}=\sum \lambda_{j} \mathbf{S}_{j}$. $\boldsymbol{\lambda}$ estimation uses REML.

[^4]
$Q R$ updating for \mathbf{R} and \mathbf{f}

- Let $\mathbf{X}=\left[\begin{array}{l}\mathbf{X}_{0} \\ \mathbf{X}_{1}\end{array}\right], \mathbf{y}=\left[\begin{array}{l}\mathbf{y}_{0} \\ \mathbf{y}_{1}\end{array}\right]$
- Form $\mathbf{X}_{0}=\mathbf{Q}_{0} \mathbf{R}_{0} \&\left[\begin{array}{l}\mathbf{R}_{0} \\ \mathbf{X}_{1}\end{array}\right]=\mathbf{Q}_{1} \mathbf{R}$.
- Then $\mathbf{X}=\mathbf{Q R}$ where $\mathbf{Q}=\left[\begin{array}{cc}\mathbf{Q}_{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}\end{array}\right] \mathbf{Q}_{1}$.
- Also $\mathbf{f}=\mathbf{Q}^{\mathrm{T}} \mathbf{y}=\mathbf{Q}_{1}^{\mathrm{T}}\left[\begin{array}{c}\mathbf{Q}_{0}^{\mathrm{T}} \mathbf{y}_{0} \\ \mathbf{y}_{1}\end{array}\right]$
- Applying these results recursively, \mathbf{R} and \mathbf{f} can be accumulated from sub-blocks of \mathbf{X} without forming \mathbf{X} whole.
- Above applies equally well to weighted \mathbf{X} and \mathbf{z}.

Justifying the REML step and a big data method

- Let $\mathbf{Q R}=\sqrt{\mathbf{W}} \mathbf{X}$ and $\mathbf{f}=\mathbf{Q}^{\mathrm{T}} \sqrt{\mathbf{W}} \mathbf{z}$. Assume $\phi=1$.
- Then $\mathbf{f}=\mathbf{R} \boldsymbol{\beta}+\mathbf{e}, \boldsymbol{\beta} \sim N\left(\mathbf{0}, \mathbf{S}_{\lambda}^{-}\right)$and, by CLT, $\mathbf{e} \sim N(\mathbf{0}, \mathbf{I})$.
- If $\hat{\boldsymbol{\beta}}_{\lambda}=\operatorname{argmin}_{\beta}\|\mathbf{f}-\mathbf{R} \boldsymbol{\beta}\|^{2}+\boldsymbol{\beta}^{\mathrm{T}} \mathbf{S}_{\lambda} \boldsymbol{\beta}$ then

$$
-2 l_{r}=\left\|\mathbf{f}-\mathbf{R} \hat{\boldsymbol{\beta}}_{\lambda}\right\|^{2}+\hat{\boldsymbol{\beta}}_{\lambda}^{\mathrm{T}} \mathbf{S}_{\lambda} \hat{\boldsymbol{\beta}}_{\lambda}+\log \left|\mathbf{R}^{\mathrm{T}} \mathbf{R}+\mathbf{S}_{\lambda}\right|+\log \left|\mathbf{S}_{\lambda}\right|_{+}
$$

- But to within an additive constant this is identical to $-2 l_{r}$ for working model $\mathbf{z}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}, \boldsymbol{\beta} \sim N\left(\mathbf{0}, \mathbf{S}_{\lambda}^{-}\right), \boldsymbol{\epsilon} \sim N\left(\mathbf{0}, \mathbf{W}^{-1}\right)$.
- Similar argument if $\phi \neq 1$ using Pearson estimator.
- This justification also gives a low memory footprint big data algorithm ${ }^{5}$. We iterate:

1. Iterative blockwise QR accumulates \mathbf{R} and \mathbf{f}.
2. Smoothing parameters and model coefficients are obtained by fitting the Gaussian model for \mathbf{f}.
[^5]
$\mathbf{X}^{\mathrm{T}} \mathbf{X}$ updating and Cholesky

- \mathbf{R} is also the Cholesky factor of $\mathbf{X}^{\mathrm{T}} \mathbf{X}$.
- Partitioning \mathbf{X} row-wise into sub-matrices $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots$, we have

$$
\mathbf{X}^{\mathrm{T}} \mathbf{X}=\sum_{j} \mathbf{X}_{j}^{\mathrm{T}} \mathbf{X}_{j}
$$

which can be used to accumulate $\mathbf{X}^{\mathrm{T}} \mathbf{X}$ without needing to form \mathbf{X} whole.

- At same time accumulate $\mathbf{X}^{\mathrm{T}} \mathbf{y}=\sum_{j} \mathbf{X}_{j}^{\mathrm{T}} \mathbf{y}$.
- Cholesky decomposition gives $\mathbf{R}^{\mathrm{T}} \mathbf{R}=\mathbf{X}^{\mathrm{T}} \mathbf{X}$, and $\mathbf{f}=\mathbf{R}^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y}$. ${ }^{6}$
- This is twice as fast as QR approach, but less numerically stable.

[^6]
Death \& Air pollution example

- Around 5000 daily death rates, for Chicago, along with time, ozone, pm10, tmp (last 3 averaged over preceding 3 days). Peng and Welty (2004).
- Appropriate GAM is: death $\mathrm{h}_{\mathrm{i}} \sim$ Poi,
$\log \left\{\mathbb{E}\left(\right.\right.$ death $\left.\left._{i}\right)\right\}=f_{1}\left(\right.$ time $\left._{i}\right)+f_{2}\left(\right.$ ozone $_{i}$, tmp $\left._{i}\right)+f_{3}\left(\right.$ pm1 $\left._{i}\right)$.
- f_{1} and f_{3} penalized cubic regression splines, f_{2} tensor product spline.
- Results suggest a very strong ozone - temperature interaction.

Death \& Air pollution: all cities

- To test the truth of ozone-temp interaction it would be good to fit to the equivalent data for around 100 other cities, simultaneously.
- Model is

$$
\log \left\{E\left(\text { death }_{i}\right)\right\}=\gamma_{j}+\alpha_{k}+f_{k}\left(\circ 3_{i}, \text { temp }_{i}\right)+f_{4}\left(t_{i}\right)
$$

if observation i is from city j and age group k (there are 3 age groups recorded).

- Model has 802 coefs and is estimated from 1.2M data.
- Fitting takes 12.5 minutes using 4 cores of a $\$ 600$ PC.
- Same model to just Chicago, takes 11.5 minutes by previous methods.

Death \& Air pollution all cities results

- Unfortunately the methods described so far would still take a couple of months of computing time to fit a reasonable model for the black smoke data.
- Initially we tried to address this issue by simple minded parallelization of the methods described above, and purchase of a 24 core workstation.
- This was not altogether successful.
- It is quite instructive to look at why.

The messy realities of parallel computing

1. Hyper-threading can make parallel slower than serial...

2. Dynamic core clock speed management for power efficiency can make low work thread take most time.

3. Thermal limits: n cores are not n times faster than 1 core.

4. A floating point operation (flop) may take one or two CPU cycles, retrieving a number from memory 10 times that.

- Numerical computation is memory bandwidth limited.

Parallelizing the GAM fit method

- Aim: parallelize preceding big additive model methods.
- Hope: 24 cores turns one day of computing into 1 hour.
- Reality: what happened when we parallelized all steps of flop cost $\geq O\left(p^{3}\right)$ in preceding (mgcv: bam) method...

Memory bandwidth, Cache, block algorithms

- Cache is small fast access memory between CPU and main memory.
- Big speed up if most flops involve data already in Cache.
- Consider two 10^{6} flop computations

1. C is a 1000×1000 matrix, and \mathbf{y} a 1000 -vector. Compute $\mathbf{C y}$. Each of 10^{6} elements of \mathbf{C} read once, no re-use.
2. A and \mathbf{B} are both 100×100 matrices. Form AB. Repeatedly revisits the 2×10^{4} elements of \mathbf{A} and \mathbf{B}.
\ldots provided \mathbf{A} and \mathbf{B} fit in Cache, 2 is much faster.

- Structure algorithms around Cache friendly blocks! e.g.

$$
\left[\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{B}_{11} & \mathbf{B}_{12} \\
\mathbf{B}_{21} & \mathbf{B}_{22}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{A}_{11} \mathbf{B}_{11}+\mathbf{A}_{12} \mathbf{B}_{21} & \mathbf{A}_{11} \mathbf{B}_{12}+\mathbf{A}_{12} \mathbf{B}_{22} \\
\mathbf{A}_{21} \mathbf{B}_{11}+\mathbf{A}_{22} \mathbf{B}_{21} & \mathbf{A}_{21} \mathbf{B}_{12}+\mathbf{A}_{22} \mathbf{B}_{22}
\end{array}\right]
$$

Parallel block pivoted QR \& Cholesky

- There are parallelizable block pivoted QR^{7} and Cholesky ${ }^{8}$ algorithms published,
- Here's how they scale with openMP parallelization...

- Pivoted QR has alot of unavoidable matrix-vector operations (instead of matrix-matrix).
- ...this caused the poor scaling of the GAM fitting method.

[^7]
Gradient only Newton optimization

- Newton step, Δ, uses only 1 st and 2 nd derivatives of \mathcal{V}.
- Function values only required for step control
- 'halve Δ if $\mathcal{V}(\lambda+\Delta)>\mathcal{V}(\lambda)$.'
- Instead 'halve Δ if $\nabla \mathcal{V}^{\mathrm{T}} \Delta>0$ '.

- This eliminates the ' $\log (0)$ problem'. e.g., if $\rho=\log \lambda$,

$$
\frac{\partial \log \left|\mathbf{X}^{\mathrm{T}} \mathbf{W} \mathbf{X}+\sum \lambda_{j} \mathbf{S}_{j}\right|}{\partial \rho_{j}}=\operatorname{tr}\left\{\left(\mathbf{X}^{\mathrm{T}} \mathbf{W} \mathbf{X}+\sum \lambda_{j} \mathbf{S}_{j}\right)^{-1} \mathbf{S}_{j} \lambda_{j}\right\}
$$

Scalable fitting: Cholesky only?

- The (restricted) marginal likelihood used for $\boldsymbol{\lambda}$ estimation

$$
\begin{array}{r}
\mathcal{V}(\boldsymbol{\lambda})=\frac{\left\|\sqrt{\mathbf{W}}\left(\mathbf{z}-\mathbf{X} \hat{\boldsymbol{\beta}}_{\lambda}\right)\right\|^{2}+\hat{\boldsymbol{\beta}}_{\lambda}^{\mathrm{T}} \mathbf{S}_{\lambda} \hat{\boldsymbol{\beta}}_{\lambda}+k}{2 \phi}+\frac{n-M_{p}}{2} \log (2 \pi \phi) \\
+\frac{\log \left|\mathbf{X}^{\mathrm{T}} \mathbf{W} \mathbf{X}+\mathbf{S}_{\lambda}\right|-\log \left|\mathbf{S}_{\lambda}\right|_{+}}{2}
\end{array}
$$

is difficult because of the $\log |\cdot|$ terms: naive computation can be equivalent to taking logs of numerical zeroes!

- Stable $\log |\cdot|$ requires pivoted QR (\& eigen) decomposition, but we would prefer Cholesky only to get scalability.
- Simple idea: avoid QR and eigen-decompostions by avoiding evaluating log determinants during optimization.

Simple idea 2

1. Conventional PQL finds best fit variance/smoothing parameters for working model.
2. Waste of effort to find best fit when working model will anyway be discarded at next iteration!
3. Just find improved smoothing parameters by taking one Newton step each iteration.
4. With care we can still step control properly (can even prove convergence for some cases).
5. Actual iteration omitted for reasons of tediousness...

Simple idea 3: discrete covariate methods

- The methods so far scale like the pivoted Cholesky (rather than QR) and turn months of computing into days-weeks.
- Formation of $\mathbf{X}^{\mathrm{T}} \mathbf{W} \mathbf{X}$ is the leading order cost: $O\left(n p^{2}\right)$.
- Lang et al. ${ }^{9}$ point out that for a single 1D smooth, $f(x)$, the product $\mathbf{X}^{\mathrm{T}} \mathbf{W} \mathbf{X}$ is very efficiently computable if x has only $m \ll n$ discrete values.
- As statisticians we should be prepared to discretise x to $m=O(\sqrt{n})$ bins.
- It is possible to find (novel) efficient computational methods for the multiple discretised covariate case, both for multiple 1D smooths and for 'tensor product' smooths of multiple covariates.
${ }^{9}$ Lang, Umlauf, Wechselberger, Harttgen \& Kneib, 2014, Statistics \& Computing.

Black smoke modelling

- Method based on parallel Cholesky, determinant free iteration and discretization of covariates implemented in mgcv function bam (. . ., discrete=TRUE).
- The current 'best' daily black smoke model is

$$
\begin{aligned}
& \quad \log \left(\mathrm{bs}_{i}\right)=f_{1}\left(\mathrm{y}_{i}\right)+f_{2}\left(\mathrm{doy}_{i}\right)+f_{3}\left(\mathrm{dow}_{i}\right) \\
& \quad+f_{4}\left(\mathrm{y}_{i}, \mathrm{doy}_{i}\right)+f_{5}\left(\mathrm{y}_{i}, \mathrm{dow}_{i}\right)+f_{6}\left(\mathrm{doy}_{i}, \mathrm{dow}_{i}\right) \\
& +f_{7}\left(\mathrm{n}_{i}, \mathrm{e}_{i}\right)+f_{8}\left(\mathrm{n}_{i}, \mathrm{e}_{i}, \mathrm{y}_{i}\right)+f_{9}\left(\mathrm{n}_{i}, \mathrm{e}_{i}, \mathrm{doy}_{i}\right)+f_{10}\left(\mathrm{n}_{i}, \mathrm{e}_{i}, \mathrm{dow}_{i}\right) \\
& +f_{11}\left(\mathrm{~h}_{i}\right)+f_{12}\left(\mathrm{~T}_{i}^{0}, \mathrm{~T}_{i}^{1}\right)+f_{13}\left(\overline{\mathrm{~T}}_{i},{\left.\overline{\mathrm{~T}} 2_{i}\right)}\right)+f_{14}\left(\mathrm{r}_{i}\right)+\alpha_{k(i)}+b_{\mathrm{id}(i)}+e_{i}
\end{aligned}
$$

The model has around 10^{4} coefficients and $r^{2}=0.79$.

- With the new parallel discretised methods fit time is <1 hour.

We estimate that previous methods would have required >1 month. Memory footprint is about 15 Gb .

Simple discrete method example

- For a single smooth, its $n \times p_{j}$ model matrix becomes

$$
X_{j}(i, l)=\bar{X}_{j}\left(k_{j}(i), l\right)
$$

where $\overline{\mathbf{X}}_{j}$ is an $m_{j} \times p_{j}$ matrix evaluating the smooth at the corresponding gridded values.

- Then, for example

$$
X_{j}^{\mathrm{T}} y=\bar{X}_{j}^{\mathrm{T}} \bar{y} \text { where } \bar{y}_{l}=\sum_{k_{j}(i)=l} y_{i}
$$

Cost: $O(n)+O\left(m_{j} p_{j}\right)$ - for $m_{j} \ll n$ this a factor of p_{j} saving.

- In general all required (cross)products are a factor of p_{j} more efficient, where p_{j} is the largest (marginal) basis dimension involved in the term.

Daily black smoke model-10 day timestep

BS residuals in time

Aside: penalty choice matters - a bad model movie

BS variograms in space

- Black solid is raw data, open is model residuals.
- Lines are permutation based reference intervals.
- Top row, day 40. Bottom row, day 200.

Derived maps — Posterior exceedance probabilities

- Map shows average daily probability of exceeding current EU daily limit, for 4 years in the 1960s.
- Notice how the switch from coal to gas for domestic heating cleans up the London area quite quickly.
- The northern industrial city areas take longer.

Conclusions

- Possible to obtain three orders of magnitude computational speed-up in large additive model fitting by combining

1. A new iterative algorithm for REML based additive model estimation. Requires only Cholesky decomposition, and avoids evaluation of unstable \log determinants.
2. OpenMP parallelization of modern pivoted block Cholesky.
3. New methods to efficiently compute all the model matrix products required in fitting, based on discretization of covariates (including tensor product smooths).

- The methods facilitate the first daily models of UK black smoke densities based on the multi-decade daily data from the UK black smoke monitoring network.
- See Wood, Li, Shaddick and Augustin (2017) JASA.

[^0]: ${ }^{1}$ AKA 'signal regression'

[^1]: $>S$
 $\begin{array}{lrrrcr} & {[, 1]} & {[, 2]} & {[, 3]} & {[, 4]} & {[, 5]} \\ {[1,]} & 1 & -1 & 0 & 0 e+00 & 0 e+00 \\ {[2,]} & -1 & 2 & -1 & 0 e+00 & 0 e+00 \\ {[3,]} & 0 & -1 & 1 & 0 e+00 & 0 e+00 \\ {[4,]} & 0 & 0 & 0 & 1 e-18 & 0 e+00 \\ {[5,]} & 0 & 0 & 0 & 0 e+00 & 1 e-18\end{array}$
 > es <- eigen(S1); U <- es\$vectors
 > D <- es\$values; D[3:5] <- 0
 $>\mathrm{Sp}<-\operatorname{diag}(\mathrm{D})+\mathrm{t}(\mathrm{U}) \% * \% S 2 \% * \% \mathrm{U} *$ lambda
 > $\operatorname{sum}(\log (a b s(\operatorname{diag}(q r . R(q r(S p))))))$
 [1] -124.3396

[^2]: ${ }^{1}$ 2014, Spatial Statistics
 ${ }^{2}$ Rue, Martino, Chopin, 2009

[^3]: ${ }^{3}$ which also covers simple Gaussian random effects.

[^4]: ${ }^{4}$ Breslow \& Clayton, 1993, JASA

[^5]: ${ }^{5}$ Wood, Goude and Shaw, 2015, JRSSC

[^6]: ${ }^{6}$ A slight variant deals with the case of rank deficient \mathbf{X}.

[^7]: ${ }^{7}$ Quintana-Ortí, Sun and Bishop, 1998, SIAM J. Sci. Comp.
 ${ }^{8}$ Lucas 2004, LAPACK working paper

