
Basis Penalty Smoothers

Simon Wood
School of Mathematics, University of Bristol, U.K.

Estimating functions

I Here are some ancient data. . .

10 20 30 40 50

−
1
0
0

−
5
0

0
5
0

time

a
c
c
e
l

I If f is ‘a smooth function’, a suitable model might be

acceli = f (timei) + εi.

I How to represent f ? What function space should we search?
I A space that is good for approximating known functions would

be a sensible starting point.

A space for f

I Taylor’s theorem might suggest using the space of polynomials,
but look at the middle panel’s attempt to approximate the
function on the left with a polynomial.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

x

y

I Trying to pass through the black dots and maintain continuity of
all derivatives requires wild oscillation.

I Reducing the continuity requirements gives the better behaved
piecewise linear interpolant on the right.

A simple basis for f

I So, for now, let’s represent f as a piecewise linear function, with
derivative discontinuities at knots, x∗k .

0 2 4 6 8

1
2

3
4

x

y

I . . . this can be written f (x) =
∑

k βkbk(x), where the bk are tent
functions: there is one per •. The coefficients βk give f (x∗k)
directly.

The tent basis

I The kth tent function is 1 at x∗k and descends linearly to zero at
x∗k±1. Elsewhere it is zero.

I The full set look like this. . .

0 2 4 6 8

0
1

2
3

4

x

b
k
(x

)

I Under this definition of bk(x), we would interpolate x∗k , y
∗
k data

by just setting βk = y∗k .

How the tent basis works

I So the function is represented by multiplying each tent function
by its coefficient, βk, and summing the results. . .

0 2 4 6 8

0
1

2
3

4

x

y

I Given the basis functions and coefficients, we can predict the
value of f anywhere in the range of the x∗ values.

Prediction matrix

I f is defined by the x∗k values defining the tent basis, and
coefficients βk.

I Now suppose that we want to evaluate the interpolant at a series
of values xi.

I If f = [f (x1), f (x2), . . .]T , then

f = Xβ

where the prediction matrix is given by

X =

b1(x1) b2(x1) b3(x1) .
b1(x2) b2(x2) . .
. . . .
. . . .

(1 row per xi value, one column per x∗k value.)

Regression with a basis
I Returning to these data. . .

10 20 30 40 50

−
1

0
0

−
5

0
0

5
0

time

a
c
c
e

l

I We can define a tent basis by choosing some t∗k values spread
evenly through the range of observed times.

I Then the model, ai = f (ti) + εi becomes

a = Xβ + ε

. . . a straightforward linear model, estimable via least squares.

Estimation in R

I Two lines of R code are enough to produce X. Then lm can be
used to fit the model.
tk <- seq(min(t),max(t),length=k) ## knots
X<-apply(diag(k),1,function(y) approx(tk,y,t,rule=2)$y)
b <- lm(a ~ X-1)

I Here is the result1 using K=40 evenly spaced t∗k (knots).

10 20 30 40 50

−
1

0
0

−
5

0
0

5
0

time

a
c
c
e

l

I Far too wiggly! Reduce K

1using plot(t,a); lines(t,X %*% coef(b),col=2)

Reducing K

I After some experimentation, K = 15 seems reasonable. . .

10 20 30 40 50

−
1

0
0

−
5

0
0

5
0

time

a
c
c
e

l

I . . . but K selection is a bit fiddly and ad hoc.
1. Models with different K are not nested, so we can’t use

hypothesis testing.
2. We have little choice but to fit with every possible K value if AIC

is to be used.
3. Very difficult to generalize this model selection approach to

models with more than one function.

Smoothing

I Using the basis for regression was ok, but there are some
problems choosing K and deciding where to put the knots, x∗k .

I To overcome these consider using the basis for smoothing.
1. Make K ‘large enough’ that bias is negligible.
2. Use even x∗k spacing.
3. To avoid overfit, penalize the wiggliness of f using, e.g.

P(f) =
K−1∑
k=2

(βk−1 − 2βk + βk+1)2

Evaluating the penalty

I To get the penalty in convenient form, note that
β1 − 2β2 + β3
β2 − 2β3 + β4

.

.

 =

1 −2 1 0 . .
0 1 −2 1 ..
.
.

β = Dβ

by definition of D
I Hence

P(f) = βTDTDβ = βTSβ

by definition of S.
I In R. . .

D <- diff(diag(k),d=2)
S <- crossprod(D) ## or S <- t(D) %*% D

Penalized fitting

I Now the penalized least squares estimates are

β̂ = argmin
β

∑
i

{ai − f (ti)}2 + λP(f)

smoothing parameter λ controls the fit-wiggliness tradeoff.
I For computational purposes this is re-written

β̂ = argmin
β
‖a− Xβ‖2 + λβTSβ.

I Formally,
β̂ = (XTX + λS)−1XTa

but direct use of this expression has sub-optimal computational
stability.

Computing the smooth fit

I In fact

‖a− Xβ‖2 + λβTSβ =

∥∥∥∥[a
0

]
−
[

X√
λD

]
β

∥∥∥∥2

I The rhs is the RSS for an augmented linear model, which can be
stably fit using lm. Here’s an example using K = 40, but now
penalizing. . .

10 20 30 40 50

−
1

0
0

−
5

0
0

5
0

time

a
c
c
e

l

Issues raised by smoothing

I Notice the dominant role of the penalty in the smoothed f — the
discontinuity of the basis is barely visible, the penalty has so
smoothed the results.

I But the dramatic effect of penalization raises questions
1. How do we measure complexity of the model now that

penalization has clearly yielded a result much smoother than
K=40 would suggest?

2. What distributional properties will f̂ have under penalized
estimation?

3. How do we go about choosing/estimating the degree of
penalization (λ)?

The natural (Demmler-Reinsch) basis

I To get started on these questions note that any basis-penalty
smoother can be reparameterized so that its basis matrix is
orthognal and its penalty is diagonal.

I Let a smoother have model matrix X and penalty matrix S.
I Form QR decomposition X = QR, followed by symmetric

eigen-decompostion

R−TSR−1 = UΛUT

I Define P = UTR. And reparameterize β′ = Pβ.
I In the new parameterization the model matrix is X′ = QU,

which has orthogonal columns. (X = X′P.)
I The penalty matrix is now the diagonal matrix Λ (eigenvalues in

decreasing order down leading diagonal).

Effective Degrees of Freedom

I Penalization restricts the freedom of the coefficients to vary. So
with 40 coefficients we have < 40 effective degrees of freedom
(EDF).

I How the penalty restricts the coefficients is best seen in the
natural parameterization. (Let y be the response.)

I Without penalization the coefficients would be β̃′ = X′Ty.
I With penalization the coefficients are β̂′ = (I + λΛ)−1X′Ty.
I i.e. β̂j = β̃j(1 + λΛjj)

−1.
I So (1 + λΛjj)

−1 is the shrinkage factor for the jth coefficient, and
is bounded between 0 and 1. It gives the EDF for β̂j.

I So total EDF is
∑

j(1 + λΛjj)
−1 = tr(F), where

F = (XTX + λS)−1XTX, the ‘EDF matrix’.

EDF Illustrated

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

parameter index

E
D

F
 p

e
r

p
a
ra

m
e
te

r

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
1
0

EDF = 4.48

x

y

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

parameter index

E
D

F
 p

e
r

p
a
ra

m
e
te

r

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
1
0

EDF = 11.79

x

y

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

parameter index

E
D

F
 p

e
r

p
a
ra

m
e
te

r

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
1
0

EDF = 28.76

x

y

Smoothing bias

I The formal expression for the penalized least squares estimates
is β̂ = (XTX + λS)−1XTy

I Hence

E(β̂) = (XTX + λS)−1XTE(y)

= (XTX + λS)−1XTXβ

= Fβ 6= β

I Smooths are baised!
I i.e. we control model mis-specification bias by using a large K

. . . but to control the resulting variance we have to penalize

. . . which leads to smoothing bias (but lower MSE, hopefully).
I The bias makes frequentist inference difficult (including

bootstrapping!).

A Bayesian smoothing model

I We penalize because we think that the truth is more likely to be
smooth than wiggly.

I Things can be formalized by putting a prior on wiggliness

wiggliness prior ∝ exp(−λβTSβ/(2σ2))

I . . . equivalent to a prior β ∼ N(0,S−σ2/λ) where S− is a
generalized inverse of S.

I From the model y|β ∼ N(Xβ, Iσ2), so from Bayes’ Rule

β|y ∼ N(β̂, (XTX + λS)−1σ2)

I Finally σ̂2 = ‖y− Xβ̂‖2/{n− tr(F)} is useful.

Consequences of the Bayesian model

I β ∼ N(0,S−σ2/λ)⇒ f ∼ N(0, (XSXT)−σ2/λ), i.e. f is
equivalent to a Gaussian random field with covariance matrix
(XSXT)−σ2/λ.

I The Bayesian model has the same structure as a linear mixed
model, and can be computed as such (Empirical Bayes).

I But even if we compute f using mixed model technology, we are
really being Bayesian in most cases. . .

I . . . usually we do not expect f to be re-drawn from the prior on
each replication of the response data, as a true random effect
would be.

Computing as a standard mixed model

I Recall DTD = S, and set β′ = D+β where

D+ =

[
I2 0

D

]
(assume order 2 penalty here).

I Then Xβ = XD−1
+ β′ and βTSβ =

∑K
i=3 β

′2
i .

I Let X∗ denote the first 2 cols of XD−1
+ and Z the remainder.

I Let (β∗T ,bT) = β′T . The Bayesian smooth model becomes

y = X∗β∗ + Zb + ε, b ∼ N(0, Iσ2
b), ε ∼ N(0, Iσ2).

which is a standard linear mixed model.
I Notice that the columns of X∗ form a basis for functions in the

null space of the penalty.

The Bayesian model in action

I An argument due to Nychka (1988) shows that the intervals for f
based on the Bayesian posterior have good across the function
frequentist coverage, because the Bayesian covariance matrix
can be viewed as including a squared bias component.

I Here is an example of such an interval

10 20 30 40 50

−
1

0
0

−
5

0
0

5
0

time

a
c
c
e

l

EDF = 13.7

Nychka’s construction

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
1
0

x

f(
x
)

I Figure shows 500 spline estimates (grey) and their mean
(dashed) of the truth shown in black.

I Top left shows distribution of sampling error (black) and bias
(dotted) if we evaluate at a random x.

I Mean + bias is approximately normal (dashed + grey), so we can
construct an interval with accross the function coverage.

I Bayes covariance matrix contains sampling variance + expected
squared bias under prior.

Smoothness selection approaches

I The smoothing model yi = f (xi) + εi, εi ∼ N(0, σ2), is
represented via a basis expansion of f , with coefficients β.

I The β estimates are β̂ = argminβ‖y− Xβ‖2 + λβTSβ where X
is the model matrix derived from the basis, and S is the
wiggliness penalty matrix.

I λ controls smoothness — how should it be chosen?
I There are 3 main statistical approaches

1. Choose λ to minimize error in predicting new data.
2. Treat smooths as random effects, following the Bayesian

smoothing model, and estimate λ as a variance parameter using a
marginal likelihood approach (e.g. as linear mixed model, as
above).

3. Go fully Bayesian by completing the Bayesian model with a prior
on λ (requires simulation and not pursued here).

Prediction error: cross validation

0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8

λ too high

x

y

0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8

λ about right

x

y

0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8

λ too low

x

y

1. Choose λ to try to minimize the error predicting new data.

2. Minimize the average error in predicting single datapoints
omitted from the fit. Each datum left out once in average.

3. If A = X(XTX + λS)−1XT, it turns out that

Vo(λ) =
1
n

∑
i

(yi − µ̂[−i]
i)2 =

1
n

∑
i

(yi − µ̂i)
2

(1− Aii)2

OCV not invariant

0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
0

x

y

5 10 15 20

5
6

7
8

9
1
0

1
1

edf

o
c
v

I OCV is not invariant in an odd way. If Q is orthogonal then
fitting objective

‖Qy−QXβ‖2 + λβTSβ

yields identical inferences about β as the original objective, but
it gives a different Vo.

GCV: generalized cross validation

I If we find the Q that causes the leading diagonal elements of A
to be constant, and then perform OCV, the result is the invariant
alternative GCV:

Vg =
n‖y− µ̂‖2

{n− tr(A)}2

I It is easy to show that tr(A) = tr(F), where F is the degrees of
freedom matrix.

I In addition to invariance, GCV is much easier to optimize
efficiently in the multiple smoothing parameter case.

Marginal Likelihood smoothness selection

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
−

5
0

5
1

0
1

5
2

0

λ too low, prior variance too high

x

y

0.0 0.2 0.4 0.6 0.8 1.0
−

1
0

−
5

0
5

1
0

1
5

2
0

λ and prior variance about right

x

y

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
−

5
0

5
1

0
1

5
2

0

λ too high, prior variance too low

x

y

1. Choose λ to maximize the average likelihood of random draws
from the prior implied by λ.

2. If λ too low, then almost all draws are too variable to have high
likelihood. If λ too high, then draws all underfit and have low
likelihood. The right λ maximizes the proportion of draws close
enough to data to give high likelihood.

3. Formally, maximize e.g. Vr(λ) = log
∫

f (y|β)fλ(β)dβ. -
Marginal Likelihood.

Prediction error vs. likelihood λ estimation

0.0 0.2 0.4 0.6 0.8 1.0

−
4

0
2

4
6

8

x

s
(x

,1
2
.0

7
)

−15 −10 −5 0 5

0
.0

0
.5

1
.0

1
.5

log(λ)

lo
g
 G

C
V

−15 −10 −5 0 5

1
.4

1
.6

1
.8

2
.0

2
.2

log(λ)

−
R

E
M

L
/n

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

x

s
(x

,1
)

−15 −10 −5 0 5

0
.0

0
.1

0
.2

0
.3

log(λ)

lo
g
 G

C
V

−15 −10 −5 0 5

1
.4

1
.6

1
.8

log(λ)

−
R

E
M

L
/n

1. Pictures show GCV and REML scores for different replicates
from same truth.

2. Compared to REML, GCV penalizes overfit only weakly, and so
is more likely to occasionally undersmooth.

Summary

I We can construct smoothers from sets of basis functions, with
associated quadratic penalties.

I Estimation is then by quadratically penalized least squares.
I Penalization reduces freedom to vary: we need a notion of

effective degrees of freedom.
I A Bayesian view of smoothing is useful for further inference.
I The appropriate amount of penalization can be estimated by

marginal likelihood or prediction error methods.
I The methods presented here are not restricted to the piecewise

linear smoother, we can subsitute better bases and penalties. . .

More basis penalty smoothers

Simon Wood
School of Mathematics, University of Bristol, U.K.

Smooths for semi-parametric GLMs

I The piecewise linear smoother is not bad, but we can find better
and more general basis-penalty smoothers for a variety of
modelling purposes.

I In one dimension there are several alternatives, and not alot to
choose between them.

I In 2 or more dimensions there is a major choice to make.
I If the arguments of the smooth function are variables which all

have the same units (e.g. spatial location variables) then an
isotropic smooth may be appropriate. This will tend to exhibit the
same degree of flexibility in all directions.

I If the relative scaling of the covariates of the smooth is essentially
arbitrary (e.g. they are measured in different units), then scale
invariant smooths should be used, which do not depend on this
relative scaling.

I The smoothers covered are available in R package mgcv. I’ll
give pointers as we go.

Splines

I Most smooths covered here are based on splines. Here’s the
basic idea . . .

1.5 2.0 2.5 3.0

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

size

w
e
a
r

I Mathematically the red curve is the function minimizing∑
i

(yi − f (xi))
2 + λ

∫
f ′′(x)2dx.

Splines have variable stiffness

I Varying the flexibility of the strip (i.e. varying λ) changes the
spline function curve.

1.5 2.0 2.5 3.0

2
.0

3
.0

4
.0

size

w
e
a
r

1.5 2.0 2.5 3.0

2
.0

3
.0

4
.0

size

w
e
a
r

1.5 2.0 2.5 3.0

2
.0

3
.0

4
.0

size

w
e
a
r

1.5 2.0 2.5 3.0

2
.0

3
.0

4
.0

size

w
e
a
r

I But irrespective of λ the spline functions always have the same
basis.

Why splines are special

I We can produce splines for a variety of penalties, including for
functions of several variables. e.g.∫

f ′′′(x)2dx or
∫ ∫

fxx(x, z)2 + 2fxz(x, z)2 + fzz(x, z)2dxdz

I Splines always have an n dimensions basis - quadratic penalty
representation.

I If yi = g(xi) and f is the cubic spline interpolating xi, yi then

max |f − g| ≤ 5
384

max(xi+1 − xi)
4 max(g′′′′)

(best possible — end conditions are a bit unusual for this).
I Bases that are optimal for approximating known functions are a

good starting point for approximating unknown functions.

General spline theory: some background

I Consider a Hilbert space of real valued functions, f , on some
domain τ (e.g. [0, 1]).

I It is a reproducing kernel Hilbert space,H, if evaluation is
bounded. i.e. ∃M s.t. |f (t)| ≤ M‖f‖.

I Then the Riesz representation thm says that there is a function
Rt ∈ H s.t. f (t) = 〈Rt, f 〉.

I Now consider Rt(u) as a function of t: R(t, u)

〈Rt,Rs〉 = R(t, s)

— so R(t, s) is known as reproducing kernel ofH.
I Actually, to every positive definite function R(t, s) corresponds a

unique r.k.h.s.

Smoothing

I RKHS are quite useful for constructing smooth models, to see
why consider finding f̂ to minimize∑

i

{yi − f (ti)}2 + λ

∫
f ′′(t)2dt.

I LetH have 〈f , g〉 =
∫

g′′(t)f ′′(t)dt.
I LetH0 denote the RKHS of functions for which

∫
f ′′(t)2dt = 0,

with finite basis φ1(t), φ2(t), say.
I Spline problem seeks f̂ ∈ H0 ⊕H to minimize∑

i

{yi − f (ti)}2 + λ‖Pf‖2.

Smoothing solution

I f̂ (t) =
∑n

i=1 ciRti(t) +
∑2

i=1 diφi(t). Why?
I Suppose minimizer were f̃ = f̂ + η where η ∈ H and η ⊥ f̂ :

1. η(ti) = 〈Rti , η〉 = 0.
2. ‖Pf̃‖2 = ‖Pf̂‖2 + ‖η‖2 which is minimized when η = 0.

I . . . obviously this argument is rather general.
I So if Eij = 〈Rti ,Rtj〉 and Tij = φj(ti) then we seek ĉ and d̂ to

minimize
‖y− Td − Ec‖2

2 + λcTEc.

I RKHS approach is elegant and general, but at O(n3) cost.

Penalized regression splines

I Full splines have one basis function per data point.
I This is computationally wasteful, when penalization ensures that

the effective degrees of freedom will be much smaller than this.
I Penalized regression splines simply use fewer spline basis

functions. There are two alternatives:
1. Choose a representative subset of your data (the ‘knots’), and

create the spline basis as if smoothing only those data. Once you
have the basis, use it to smooth all the data.

2. Choose how many basis functions are to be used and then solve
the problem of finding the set of this many basis functions that
will optimally approximate a full spline.

I’ll refer to 1 as knot based and 2 as eigen based.

Knot based example: "cr"

I In mgcv the "cr" basis is a knot based approximation to the
minimizer of

∑
i(yi − f (xi))

2 + λ
∫

f ′′(x)2dx — a cubic spline.
"cc" is a cyclic version.

0.0 0.2 0.4 0.6 0.8 1.0

−
0

.2
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

full spline basis

x

b
i(

x
)

0.0 0.2 0.4 0.6 0.8 1.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

data to smooth

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

function estimate: full black, regression red

x

s
(x

)

0.0 0.2 0.4 0.6 0.8 1.0

−
0

.2
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

simple regression spline basis

x

b
i(

x
)

Eigen based example: "tp"

I The "tp", thin plate regression spline basis is an eigen
approximation to a thin plate spline (including cubic spline in 1
dimension).

0.0 0.2 0.4 0.6 0.8 1.0

−
0

.2
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

full spline basis

x

b
i(

x
)

0.0 0.2 0.4 0.6 0.8 1.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

data to smooth

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

function estimate: full black, regression red

x

s
(x

)

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2

thin plate regression spline basis

x

b
i(

x
)

How small a basis: cubic spline example

x1 x2 x3 x4 x5 x6

h

O(h4)

a knot

a piecewise cubic section

a
gtrue

ĝ

x1 x2 x3 x4 x5 x6

h

O(h4)

O(k n)

b
gtrue

ĝ∞

ĝ

I A cubic interpolating spline ĝ matching a function gtrue at k
evenly spaced (h) knots, has O(h4) = O(k−4) approx. error.

I If we observe gtrue at each knot n/k times with noise
(independently) then ĝ has O(

√
k/n) sampling error.

I So k = O(n1/9) gives optimal asymptotic error rate.
I With penalization use k = O(n1/9)− O(n1/5).

P-splines: "ps", "cp" & "bs"

I There are many equivalent spline bases.
I With bases for which all the basis functions are translations of

each other, it is sometimes possible to penalize the coefficients of
the spline directly, rather than penalizing something like∫

f ′′(x)2dx.
I Eilers and Marx coined the term ‘P-splines’ for this combination

of spline bases with direct discrete penalties on the basis
coefficients.

I P-splines allow a good deal of flexibility in the way that bases
and penalties are combined, and they provide sparse bases and
penalties, which can be useful in big data and Bayesian settings.

I Actually, the same flexibility is available with derivative based
penalties (see ?b.spline in mgcv).

P-spline illustration

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

y

basis functions

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8
1

0

x

y

∑
i

(βi−1 − 2βi + βi+1)
2

= 207

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8
1

0

x

y

∑
i

(βi−1 − 2βi + βi+1)
2

= 16.4

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8
1

0

x

y

∑
i

(βi−1 − 2βi + βi+1)
2

= 0.04

An adaptive smoother

I Can let the p-spline penalty vary with the predictor. e.g.

Pa =

K−1∑
k=2

ωk(βk−1 − 2βk + βk+1)
2 = βTDTdiag(ω)Dβ

where D =

 1 −2 1 0 ·
0 1 −2 1 ·
.

.

I Now let ωk vary smoothly with k, using a B-spline basis, so that
ω = Bλ, where λ is the vector of basis coefficients.

I So, writing B·k for the kth column of B we have

βTDTdiag(ω)Dβ =
∑

k

λkβ
TDTdiag(B·k)Dβ =

∑
k

λkβ
TSkβ.

1D smooths compared

10 20 30 40 50

−
1
0
0

−
5
0

0
5
0

times

a
c
c
e
l

tp

cr

ps

cc

ad

I So cubic regression splines, P-splines and thin plate regression
splines give very similar results.

I A cyclic smoother is a little different, of course.
I An adaptive smoother can look very different.

Isotropic smooths

I One way of generalizing splines from 1D to several D is to turn
the flexible strip into a flexible sheet (hyper sheet).

I This results in a thin plate spline. It is an isotropic smooth.
I Isotropy may be appropriate when different covariates are

naturally on the same scale.
I In mgcv terms like s(x,z) generate such smooths.

x

0.2

0.4

0.6

0.8

z

0.2

0.4

0.6

0.8

lin
e
a
r p

re
d
ic

to
r

0.0

0.2

0.4

0.6

0.8

x

0.2

0.4

0.6

0.8

z

0.2

0.4

0.6

0.8

lin
e
a
r p

re
d
ic

to
r

0.0

0.2

0.4

0.6

0.8

x

0.2

0.4

0.6

0.8

z

0.2

0.4

0.6

0.8

lin
e
a
r p

re
d
ic

to
r

0.0

0.2

0.4

0.6

0.8

Thin plate spline details

I In 2 dimensions a thin plate spline is the function minimizing∑
i

{yi − f (xi, zi)}2 + λ

∫
f 2
xx + 2f 2

xz + f 2
zzdxdz

I This generalizes to any number of dimensions, d, and any order
of differential, m, such that 2m > d + 1.

I Any thin plate spline is computed as

f̂ (x) =
n∑

i=1

δiηi(x) +
M∑

i=1

αiφi(x)

where ηi and φi are basis functions of known form and α, δ
minimize ‖y− Eδ − Tα‖2 + δTEδ s.t. TTδ = 0, where E and
T are computed using the ηi and φi.

Thin plate regression splines

I Full thin plate splines have n parameters and O(n3)
computational cost.

I This drops to O(k3) if we replace E by its rank k eigen
approximation, Ek, at cost O(n2k). Big saving if k� n

I Out of all rank k approximations this one minimizes

max
δ 6=0

‖(E− Ek)δ‖
‖δ‖

and max
δ 6=0

δT(E− Ek)δ

‖δ‖2

i.e. the approximation is somewhat optimal, and avoids choosing
‘knot locations’.

I For large datasets, randomly subsample nr data (k� nr � n)
and work out the truncated basis from the subsample, at O(n2

r k)
cost.

TPRS illustration

I As the theory suggests, the eigen approximation is quite
effective. The following figure compares reconstructions of of
the true function on the left, using and eigen based thin plate
regression spline (middle), and one based on choosing knots.
Both are rank 16 approximations.

truth

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

t.p.r.s. 16 d.f.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

16 knot basis

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Duchon Splines s(x,z,bs="ds")

I The m > d/2 requirement causes thin plate splines in more than a few
dimensions to be impractical, as the null space of the penalty rapidly
becomes too high dimensional.

I But thin plate splines are only one special case of the splines
introduced by Duchon (1977). He also considered penalties∫

Rd
‖τ‖2s

∑
ν1+···+νd=m

m!

ν1! . . . νd!

(
F

∂mf
∂xν1

1 . . . ∂xνd
d

(τ)

)2

dτ

where F denotes Fourier transform and τ is frequency.

I With s = 0 this is a thin plate spline penalty, but with s > 0 higher
frequencies of the derivative field are penalized more heavily.

I Smoothers using this penalty exist if m + s > d/2, and have the form
of a TPS, with a reduced dimensional null space. e.g. m = 2,
s = d/2− 1 gives null space dimension d + 1.

I Eigen-approximation is as for TPS.

Scale invariant smoothing: tensor product smooths
I Isotropic smooths assume that a unit change in one variable is

equivalent to a unit change in another variable, in terms of
function variability.

I When this is not the case, isotropic smooths can be poor.
I Tensor product smooths generalize from 1D to several D using a

lattice of bendy strips, with different flexibility in different
directions.

xz
f(x

,z
)

Tensor product smooths

I Carefully constructed tensor product smooths are scale invariant.
I The following recipe for generating them is implemented by
te() terms in mgcv (t2() is an alternative construction).

I Consider constructing a smooth of x, z.
I Start by choosing marginal bases and penalties, as if

constructing 1-D smooths of x and z. e.g.

fx(x) =
∑

αiai(x), fz(z) =
∑

βjbj(z),

Jx(fx) =
∫

f ′′x (x)
2dx = αTSxα & Jz(fz) = BTSzB

Marginal reparameterization

I Suppose we start with fz(z) =
∑6

i=1 βjbj(z), on the left.

0.0 0.2 0.4 0.6 0.8 1.0

0
.1

0
.3

0
.5

z

f z
(z

)

0.0 0.2 0.4 0.6 0.8 1.0

0
.1

0
.3

0
.5

z

f z
(z

)

I We can always re-parameterize so that its coefficients are
functions heights, at knots (right). Do same for fx.

Making fz depend on x
I Can make fz a function of x by letting its coefficients vary

smoothly with x

xz

f(z
)

xz

f(x
,z

)

The complete tensor product smooth
I Use fx basis to let fz coefficients vary smoothly (left).
I Construct is symmetric (see right).

xz

f(x
,z

)

xz

f(x
,z

)

Tensor product penalties - one per dimension
I x-wiggliness: sum marginal x penalties over red curves.
I z-wiggliness: sum marginal z penalties over green curves.

xz

f(x
,z

)

xz

f(x
,z

)

Tensor product expressions

I So the tensor product basis construction gives:

f (x, z) =
∑∑

βijbj(z)ai(x)

I With double penalties

J∗z (f) = β
TII ⊗ Szβ and J∗x (f) = β

TSx ⊗ IJβ

I The construction generalizes to any number of marginals and
multi-dimensional marginals.

I Can start from any marginal bases & penalties (including
mixtures of types).

I Note that the penalties maintain the basic meaning inherited
from the marginals.

Isotropic vs. tensor product comparison

x

2

4

6

8

z

2

4

6

8

z

0.0

0.2

0.4

Isotropic Thin Plate Spline

x

2

4

6

8

z

2

4

6

8

z

0.0

0.2

0.4

Tensor Product Spline

x

0.5

1.0

1.5

z

2

4

6

8

z

0.0

0.2

0.4

0.6

x

0.5

1.0

1.5

z

2

4

6

8

z

0.0

0.2

0.4

. . . each figure smooths the same data. The only modification is that x
has been divided by 5 in the bottom row.

Functional ANOVA and ti terms

I The basis for a te tensor product smooth, f (x, z), contains a
subspace of functions of the form f (x) + f (z) (similar applies in
higher dimensions).

I This is because the marginal bases include the constant function
in their span.

I Applying sum-to-zero constraints to the marginal bases before
forming the tensor product smooth removes this f (x) + f (z)
component. See ti() terms in mgcv.

I Such a construction facilitates a ‘mean effect plus interactions’
smooth model.

I e.g. f (x) + f (z) + f (x, z) can be fitted via
ti(x) + ti(z) + ti(x,z), in a stably interpretable
manner. t2 smooths are an alternative. See Chong Gu’s book
‘Smoothing Spline ANOVA’.

ti example

truth

 0.05

 0
.0

5

 0.1

 0.1

 0.15

 0.15

 0.2

 0
.2

 0.25

 0.25

 0.3

 0
.3

 0.35

 0.35

 0.35

 0.4

 0.4

 0.45

 0
.4

5

 0.5

 0.55

 0.6

 0.65

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.2

−
0
.1

0
.0

0
.1

x

s
(x

,6
.3

)

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.2

−
0
.1

0
.0

0
.1

z

s
(z

,4
.7

)

 −0.25

 −0.2

 −
0.

15

 −0.15

 −0.1

 −0.1

 −
0.1

 −0.05

 −0.05

 0 0
 0.05

 0.05

 0.1

 0.1

 0.15

 0.15

 0.2

ti(x,z,19.47)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

z

 −0.2

 −
0.1

5

 −0.1

 −0.1

 −0.05

 −0.05

 −
0.05

 0 0 0.05

 0.05

 0.1

 0.1

 0.15

 0.15

 0.2

 0.2

 0.25

−1se

 −0.25

 −0.2
 −

0.
15

 −0.15

 −
0.1

5

 −0.1

 −0.1

 −
0.1

 −0.05

 −0.05
 0

 0

 0.05

 0.05

 0.1

 0.1

 0.15

 0.15

 0.2

+1se

The basis dimension

I You have to choose the number of basis functions to use for each
smooth (using the k argument of s or te in mgcv).

I Any default is essentially arbitrary.
I Provided k is not too small its exact value is not critical, as the

smoothing parameters control the actual model complexity.
However

1. if k is too small then you will oversmooth.
2. if k is much too large then computation will be very slow.

I Checking that k is not too small will be covered in a later
segment.

W
ood

G
eneralized A

dditive M
odels

Texts in Statistical Science

Simon N. Wood

Generalized
Additive Models

K25925

w w w . c r c p r e s s . c o m

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

ISBN: 978-1-4987-2448-7

9 781498 724487

90000

STATISTICS

SECON
D EDITION

An Introduction with R
SECOND EDITION

Discrete spatial smoothing: Markov random fields

I Sometimes data come allocated to irregular partitions of space
(e.g. administrative regions).

I Markov random fields area a popular way of smoothing such
data.

I The smooth has a coefficient, γi, for each region.
I The neighbouring regions of each region are found, and a

quadratic penalty constructed. If Ni is the set of indices of the
neighbours of region i, then the simplest penalty is∑

i

(
∑
j∈Ni

(γi − γj))
2

I Eigen based rank reduction is effective here.

Markov random field illustration
data(columb.polys) ## district shapes list
xt <- list(polys=columb.polys)
gam(crime ~ s(district,bs="mrf",xt=xt),data=columb)

−
4

−
2

0
2

4
6

8
1
0

s
(d

is
tr

ic
t,
2
.7

1
)

Smoothing on the globe

I Thin plate spline like smoothers can be constructed for the
sphere [s(la,lo,bs="sos")]. . .

 −
3
0

 −20
 −10

 0

 10

 20

 30

 40

 4
0

 50

 5
0

 60

 70

 80

 −160
 −160

 −140

 −120

 −100

 −80

 −
60

 −
40

 −20 0

 2
0

 4
0

 60

 80

 100

 120

 1
4
0

 1
6
0

 −0.8

 −0.6

 −0.4

 −0.2

 0

 0
.2

 0
.4

 0
.6

 0
.8

 −
0
.8

 −
0
.6

 −
0
.4

 −
0
.2

 0

 0.2
 0.4

 0.6

 0.8

 1

 −
20

 −10

 0

 0

 10

 10

 20

 20

 30

 40

 50

 60

 70

 80

 −
1
6
0

 −
1
4
0

 −120

 −100

 −80

 −
60

 −
4
0

 −
2
0
 0

 20

 40

 60

 80

 100

 120

 140

 160

 1
8
0

Finite area smoothing

I Suppose now want to smooth samples from this function

−1 0 1 2 3−
1
.0

−
0
.5

0
.0

0
.5

1
.0

x

y

I . . . without ‘smoothing across’ the gap in the middle?
I Let’s use a soap film . . .

The domain

x

y
z

The boundary condition

x

y

z

The boundary interpolating film

x

y

z

x

y

z

Distorted to approximate data

x

y

z

x

y

z

Soap film smoothers s(...,bs="so")

I Mathematically this smoother turns out to have a basis-penalty
representation.

I It also turns out to work. . .

−1 0 1 2 3

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

x

y

−1 0 1 2 3

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

x

y

−1 0 1 2 3

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

x

y

−1 0 1 2 3

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

x

y

−1 0 1 2 3

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

x

y

−1 0 1 2 3

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

x

y

Random effect s(...,bs="re")

I Statistically, smooths consist of a basis and a quadratic penalty,
where the penalty matrix can be treated as the generalized
inverse of a covariance matrix.

I They can therefore be estimated as random effects.
I Reversing this, we can treat simple random effects as (zero

dimensional) smooths.
I s(a,b,bs="re") creates a terms with model matrix
model.matrix(~a:b-1) and a scaled identity
penalty/covariance matrix.

I Any number of covariates are possible.
I Function gam.vcomp helps later interpretation by converting

smoothing parameters to variance components.

Summary

I We can treat simple random effects as 0 dimensional smooths.
I In 1 dimension, the choice of basis is not critical. The main

decisions are whether it should by cyclic or not and whether or
not it should be adaptive.

I In 2 dimensions and above the key decision is whether an
isotropic smooth, s, or a scale invariant smooth, ti/te/t2, is
appropriate. (te/i/2 terms may be isotropic in some
marginals.)

I Spatial smoothing may sometimes require more specialized
smoothers (Markov random fields, spherical splines, finite area
smooths).

I The basis dimension is a modelling decision that should be
checked.

Generalized Additive Models

Simon Wood
School of Mathematics, University of Bristol, U.K.

Introduction

I We have seen how to
1. turn model yi = f (xi) + εi into y = Xβ + ε and a wiggliness

penalty βTSβ.
2. estimate β given λ as β̂ = argminβ‖y− Xβ‖2 + λβTSβ.
3. estimate λ by GCV, AIC, REML etc.
4. use β|y ∼ N(β̂, (XTX + λS)−1σ2) for inference.

I . . . all this can be extended to models with multiple smooth
terms, for exponential family response data and beyond. . .

Additive Models

I Consider the model

yi = Aiθ +
∑

j

fj(xji) + εi, εi ∼ N(0, σ2)

I Ai is the ith row of the model matrix for any parametric terms,
with parameter vector θ. Assume it includes an intercept.

I fj is a smooth function of covariate xj, which may be vector
valued.

I The fj are confounded via the intercept, so that the model is only
estimable under identifiability constraints on the fj.

I The best constraints are
∑

i fj(xji) = 0 ∀ j.
I If f = [f (x1), f (x2), . . .] then the constraint is 1Tf = 0, i.e. f is

orthogonal to the intercept. Other constraints give wider CIs for
the constrained fj.

Representing the model

I Choose a basis and penalty for each fj.
I Let the model matrix for fj be X and let λβTSβ be the penalty

(more generally
∑

j λjβ
TSjβ).

I Reparameterize to absorb the constraint 1TXβ = 0. The simplest
recipe is as follows

1. Subtract the column mean from each column of X to give X′.
2. Drop the column of X′ with lowest variance to give constrained

model matrix X[j], and drop the corresponding row and column of
S to give constrained penalty matrix Sj.

3. After fitting, when creating a new version of X[j] for predicting at
new covariate values, it’s important to subtract the original
column means x from the new matrix’s columns, and to drop the
same column as before (simply repeating steps 1 and 2 on the
new model matrix will lead to an interesting mess).

The estimable AM

I Now yi = Aiθ +
∑

j fj(xji) + εi becomes y = Xβ + ε where

X = [A : X[1] : X[2] : · · ·]

and β contains θ followed by the basis coefficients for the fj.
I After suitable padding of the Sj with zeroes the penalty becomes∑

j λjβ
TSjβ.

I Now β̂ = argminβ‖y− Xβ‖2 +
∑

j λjβ
TSjβ.

I Again λ can be estimated by GCV, REML etc.

Simple example

I Response observations yi and predictors xji.
I yi = f0(x0i) + f1(x1i) + f2(x2i) + εi where εi ∼ N(0, σ2).
I b <- gam(y~s(x0)+s(x1)+s(x2),method="REML")
plot(b)

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4
6

x0

s
(x

0
,3

.0
2
)

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4
6

x1

s
(x

1
,2

.8
5
)

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4
6

x2

s
(x

2
,8

.0
3
)

Linear functional generalization

I Occasionally we may want a model that depends on an fj in some
way other than simple evaluation. So let Lij be a linear operator
and consider an extended model

yi = Aiθ +
∑

j

Lijfj(xj) + εi

e.g. Lijfj =
∫

ki(x)fj(x)dx, or Lijfj = f (xji)zi (ki and zi known).
I Dropping j for now, we can discretize Lif (x) '

∑
k L̃ikf (xk).

I So Lif (x) '
∑

k L̃ikX̃kβ, where X̃k is kth row of model matrix
evaluating f (x) at the points xk.

I Then the model matrix for Lif (x) is L̃X̃ (assuming same xks for
each i). The penalties are just those for f .

I Hence the extended model can be written in the same general
form as the simple AM.

Example: scalar on function regression

1000 1200 1400 1600

0
.0

0
.4

0
.8

1
.2

octane = 85.3

wavelength (nm)

lo
g

(1
/R

)

I yi = α+
∫

f (x)ki(x)dx + εi

f (x) is a smooth of wavelength.
I gam(y ~ s(X,by=K))

Xij = xj, Kij = ki(xj)/h

1000 1200 1400 1600

−
8

−
4

0
2

4
6

Estimated function

nm

s
(n

m
,7

.9
):

N
IR

84 85 86 87 88 89

8
4

8
6

8
8

octane

fitted

m
e
a
s
u
re

d

Generalized Additive Models

I Generalizing again, we have

g(µi) = Aiθ +
∑

j

Lijfj(xj), yi ∼ EF(µi, φ)

g is a known smooth monotonic link function, EF an exponential
family distribution so that var(yi) = V(µi)φ.

I Set up model matrix and penalties as before.
I Estimate β by penalized MLE. Defining the Deviance.

D(β) = 2{lmax − l(β)} (lmax is saturated log likelihood). . .

β̂ = argmin
β

D(β) +
∑

j

λjβ
TSjβ

I λ estimation is by generalizations of GCV, REML etc.

GAM computation: β̂|y

I Penalized likelihood maximization is by Penalized IRLS.
I Initialize η̂ = g(y) and iterate the following to convergence.

1. Compute pseudodata zi = g′(µ̂i)(yi − µ̂i)/αi + η̂i and iterative
weights, wi = αi/

{
V(µ̂i)g′(µ̂i)

2
}

as for any GLM.
2. Compute a revised β estimate

β̂ = argmin
β

∑
i

wi(zi − Xiβ)2 +
∑

λjβ
TSjβ

and hence revised estimates η̂ = Xβ̂ and µ̂ = g−1(η̂).

I αi = 1 + (yi − µ̂i)(V ′i/Vi + g′′i /g′i) gives Newton’s method.
I αi = 1 gives Fisher scoring, where the expected Hessian of the

likelihood replaces the actual Hessian in Newton’s method.
I Newton based versions of wi and zi are best here, as it makes λ

estimation easier.

Example: Poisson regression

0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
0

1
5

x0

y

0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
0

1
5

x1

y

0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
0

1
5

x2

y

I yi ∼ Poi(µi) where log(µi) = f0(x0i) + f1(x1i) + f2(x2i).
I gam(y~s(x0)+s(x1)+s(x2),family=poisson(link=log))

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.5

0
.0

0
.5

x0

s
(x

0
,2

.6
9
)

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.5

0
.0

0
.5

x1

s
(x

1
,1

.9
8
)

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.5

0
.0

0
.5

x2

s
(x

2
,7

.0
5
)

EDF, β|y and φ̂

I Let S =
∑

j λjSj and W = diag{E(wi)} (Fisher version).
I The Effective Degrees of Freedom matrix becomes

F = (XTWX + S)−1XTWX

I Then the EDF is tr(F). EDFs for individual smooths are found
by summing the Fii values for their coefficients.

I In the n→∞ limit

β|y ∼ N(β̂, (XTWX + S)−1φ)

I φ̂ =
∑

i wi(zi −Xiβ̂)2/{n− tr(F)} is a Pearson based φ estimate
(but Fletcher, 2012 Biometrika, better)

λ estimation

I There are 2 basic computational strategies for λ selection.
1. Single iteration schemes estimate λ at each PIRLS iteration step,

by applying GCV, REML or whatever to the working penalized
linear model. This approach need not converge.

2. Nested iteration, defines a λ selection criterion in terms of the
model deviance and optimizes it directly. Each evaluation of the
criterion requires an ‘inner’ PIRLS to obtain β̂λ. This converges,
since a properly defined function of λ is optimized.

I The second option is usually preferable on grounds of reliability,
but the first option can be made very memory efficient with very
large datasets.

I The first option simply uses the smoothness selection criteria for
the linear model case, but the second requires that these be
extended. . .

Deviance based λ selection criteria

I GCV generalizes to

Vg = nD(β̂λ)/{n− tr(F)}2

I Laplace approximate (negative twice) REML is

Vr =
D(β̂) + β̂TSβ̂

φ
− 2ls(φ)

+ (log |XTWX + S| − log |S|+)−Mp log(2πφ),

well founded if dim(β) = O(nα), α ≤ 1/3 (Shun and
McCullagh, JRSSB, 1995), but this result is not sharp.

Nested iteration strategy (Wood, 2011, JRSSB)

I Optimization wrt ρ = logλ is by Newton’s method, using
analytic derivatives.

I For each trial λ used by Newton’s method. . .
1. Re-parameterize for maximum numerical stability in computing
β̂ and terms like log |S|+.

2. Compute β̂ by PIRLS (full Newton version).
3. Calculate derivatives of β̂ wrt ρ by implicit differentiation.
4. Evaluate the λ selection criterion and its derivatives wrt ρ

I . . . after which all the ingredients are in place for Newton’s
method to propose a new λ value.

I As usual with Newton’s method, some step halving may be
needed, and the Hessian will have to be peturbed if it is not
positive definite.

GAMM

I A generalized additive mixed model has the form

g(µi) = Aiθ+
∑

j

Lijfj(xj)+Zib, b ∼ N(0,ψ), yi ∼ EF(µi, φ)

I . . . actually this is not much different to a GAM. The random
effects term Zb is just like a smooth with penalty bTψ−1b.

I If ψ−1 can be written in the form
∑

k λkSk then the GAMM can
be treated exactly like a GAM. (gam).

I Alternatively, using the mixed model representation of the
smooths, the GAMM can be written in standard GLMM form
and estimated as a GLMM. (gamm/gamm4).

I The latter option is often preferable when there are many random
effects, and the former when there are fewer.

Simple GAMM example
I yi ∼ Poi(µi) where log(µi) = f (zi) + bid(i) if observation i is

from group id(i). b ∼ N(0, Iσ2
b).

I gam(y ~ s(z,k=20)+s(id,bs="re"),family=poisson,

method="REML")

I gamm(y~s(z,k=20),family=poisson,

random=list(id=~1))

I gamm4(y~s(z,k=20),family=poisson,random=~(1|id)

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

z

s
(z

,1
0

.9
4

)

−2 −1 0 1 2

−
0

.6
0

.0
0

.4

s(id,32.66)

Gaussian quantiles

e
ff
e

c
ts

GAM functions in mgcv

I gam. Main modelling function. Can use all distributions listed in
?family.mgcv. Tems like s(...,bs="re") in model
implement simple random effects.

I bam. Big data version of gam. Exponential family distributions
only. See discrete and nthreads options for bigger and
faster still.

I gamm. Uses Bayesian duality of smooths and random effects to
estimate generalized additive mixed models using lme. Random
effects as lme. See package gamm4 for lme4 version.

I jagam. Writes JAGS (BUGS dialect) code to fit GAM using
JAGS. Idea is to edit code to add more complicated random
effect structures, different distributions etc.

Model checking overview

I Since a GAM is just a penalized GLM, residual plots should be
checked exactly as for a GLM.

I It should be checked that smoothing basis dimension is not
restrictively low. Defaults are essentially arbitrary.

I The GAM analogue of co-linearity is often termed ‘concurvity’.
I It occurs when one predictor variable could be reasonably well

modelled as a smooth function of another predictor variable.
I A common example is ‘spatial confounding’: the model contains

a spatial smoother, but some of the covariates also vary smoothly
over space.

I Like co-linearity it is statistically destabilising and complicates
interpretation, (in mgcv see ?concurvity).

Residual checking

I Deviance, Pearson, working and raw residuals are defined for a
GAM in the same way as for any GLM.

I In mgcv the residuals function will extract them, defaulting
to deviance residuals.

I Residuals should be plotted against
1. fitted values.
2. predictor variables (those included and those dropped).
3. time, if the data are temporal.

I Residual plotting aims to show that there is something wrong
with the model assumptions. It’s good to fail.

I The key assumptions are
1. The assumed mean variance relationship is correct, so that scaled

residuals have constant variance.
2. The response data are independent, so that the residuals appear

approximately so.

Distribution checking

I If the independence and mean-variance assumptions are met then
it is worth checking the distributional assumption more fully.

I The implication of quasi-likelihood theory is that provided the
mean variance relationship is right, the other details of the
distribution are not important for many inferential tasks.

I QQ-plots of residuals against standard normal quantiles can be
misleading in some circumstances: for example low mean
Poisson data, with many zeroes.

I It is better to obtain the reference quantiles for the deviance
residuals by repeated simulation of response data, and hence
residuals, from the fitted model. mgcv function qq.gam will do
this for you.

I gam.check produces some default residual plots for you.

Residual checking example

> b <- gam(y~s(x0)+s(x1,x2,k=40)+s(x3)+s(x4),
+ family=poisson,data=dat,method="REML")
>
> gam.check(b)

Method: REML Optimizer: outer newton
full convergence after 8 iterations.
Gradient range [-0.0001167555,3.321004e-05]
(score 849.8484 & scale 1).
Hessian positive definite, eigenvalue range [9.66288e-05,10.52249].

[edited]

I The printed output is rather detailed information about smoothing
parameter estimation convergence.

I 4 residual plots are produced, the first is from qq.gam, unless
quasi-likelihood is used, in which case we have to fall back on a
normal QQ-plot (but anyway don’t care about this plot). The rest are
self explanatory.

gam.check plots

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

theoretical quantiles

d
e
v
ia

n
c
e
 r

e
s
id

u
a
ls

0.5 1.0 1.5 2.0 2.5

−
3

−
2

−
1

0
1

2

Resids vs. linear pred.

linear predictor

re
s
id

u
a
ls

Histogram of residuals

Residuals

F
re

q
u
e
n
c
y

−3 −2 −1 0 1 2

0
2
0

4
0

6
0

8
0

2 4 6 8 10 12 14

0
5

1
0

1
5

2
0

Response vs. Fitted Values

Fitted Values

R
e
s
p
o
n
s
e

More residual plots

rsd <- residuals(b)
qq.gam(b,rep=100); plot(fitted(b),rsd)
plot(dat$x0,rsd); plot(dat$x1,rsd)

−3 −2 −1 0 1 2 3

−
3

−
1

0
1

2
3

theoretical quantiles
d

e
v
ia

n
c
e

 r
e

s
id

u
a

ls

2 4 6 8 10 12 14

−
3

−
2

−
1

0
1

2

fitted(b)

rs
d

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2

dat$x0

rs
d

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2

dat$x1

rs
d

Basis dimension checking

I If the basis dimension for a smooth, f (z), is too small then it will
oversmooth, and leave pattern (autocorrelation) in the model
residuals with respect z.

I This leads to several checking methods:
1. Add the residuals to f̂ (z), to obtain partial residuals and overlay

these on a plot of f̂ (z), to look for patterns.
2. Order the residuals w.r.t. z and compute their mean (squared) first

differences, ∆̄. Approximate the distribution of ∆̄ under the null
hypothesis of zero auto-correlation by randomization of the
residuals. Hence compute a p-value for this null. (Similar
possible for multi-dimensional z).

3. Smooth the deviance residuals w.r.t. z using a higher basis
dimension (e.g. doubled): a non-flat smooth may be evidence for
residual pattern.

I Checks are important if the EDF is close to the basis dimension.

Practical basis dimension check example

b <- gam(y ~ s(x1,k=6) + s(x2,k=6),method="REML")
plot(b,pages=1,residuals=TRUE)

0.0 0.2 0.4 0.6 0.8 1.0

−
6

−
2

0
2

4
6

x1

s
(x

1
,3

.1
6
)

0.0 0.2 0.4 0.6 0.8 1.0

−
6

−
2

0
2

4
6

x2

s
(x

2
,4

.9
8
)

> gam.check(b)
...

k’ edf k-index p-value
s(x1) 5.000 3.160 0.948 0.23
s(x2) 5.000 4.983 0.827 0.00
> rsd <- residuals(b)
> gam(rsd~s(x2,k=12),method="REML")
...
Estimated degrees of freedom:
9.9 total = 10.9

Model selection

I A large part of what would usually be thought of as model
selection is performed by smoothing parameter estimation, but
smoothing selection does not usually remove terms altogether.

I There are three common approaches to deciding what terms to
include.

1. Get smoothing parameter estimation to do all the work, by adding
a penalty for the un-penalized space of each term.

2. Compute approximate p-values for testing terms for equality to
zero, and use conventional selection strategies (backwards,
forwards, backwards-forwards, etc).

3. Use similar strategies based on AIC (or on the GCV or ML scores
for the model).

Penalizing the penalty null space

I The penalty for a term is of the form βTSβ.
I Usually S is not full rank so some finite (M) dimensional space

of functions is un-penalized.
I In consequence penalization can not completely remove the term

from the model.
I Consider eigen-decomposition S = UΛUT. The last M

eigenvalues will be zero. Let Ũ denote their corresponding
eigenvectors.

I βTŨŨTβ can be used as an extra penalty on just the component
of the term that is unpenalized by βTSβ.

I Adding such a penalty to all the smooth terms in the model
allows smoothing parameter selection to remove terms from the
model altogether.

Fish egg modelling example

44 46 48 50 52 54 56 58

2
4

6
8

1
0

1
2

1
4

lat

−
lo

n

Null space penalization in action

> gm <- gam(egg.count~s(lon,lat,k=100)+s(I(b.depth^.5))+
+ s(c.dist) + s(temp.surf)
+ +s(salinity)+s(temp.20m)+offset(log.net.area),
+ data=mack,family=quasipoisson,method="REML",select=TRUE)
> gm

Family: quasipoisson
Link function: log

Formula:
egg.count ~ s(lon, lat, k = 100) + s(I(b.depth^0.5)) + s(c.dist) +

s(temp.surf) + s(salinity) + s(temp.20m) + offset(log.net.area)

Estimated degrees of freedom:
60.60 2.17 0.42 0.00 1.83 5.17 total = 71.19

REML score: 515.0758

I So temp.surf is penalized out, and c.dist nearly so!

p-values for smooth terms

I A p-values for smooth term, f , with a finite dimensional
un-penalized space can be computed by a rather involved
inversion of the Bayesian intervals for a smooth, which give
good frequentist performance.

I The test statistic is f̂TVτ−
f f̂ where Vτ ′−

f is a generalized rank τ ′

pseudoinverse of the Bayesian covariance matrix for f the vector
of f evaluated at the observed covariate values. τ ′ is a version of
the effective degrees of freedom of f̂ , based on 2F− FF in place
of F.

I Under the null hypothesis that f = 0 the statistic has a χ2
τ

distribution for integer τ , and a weighted sum of χ2 distributions
otherwise.

I See Wood (2013) Biometrika, 100, 221-228.

summary(gm)
Family: quasipoisson
Link function: log

...

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.9506 0.1237 23.85 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’

Approximate significance of smooth terms:
edf Ref.df F p-value

s(lon,lat) 61.280 73.602 3.094 5.28e-13 ***
s(I(b.depth^0.5)) 2.593 3.164 3.154 0.02354 *
s(c.dist) 1.000 1.000 1.532 0.21688
s(temp.surf) 1.000 1.000 0.133 0.71597
s(salinity) 1.001 1.001 8.891 0.00313 **
s(temp.20m) 5.960 6.941 3.504 0.00136 **

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

R-sq.(adj) = 0.825 Deviance explained = 90.2%
REML score = 510.79 Scale est. = 4.4062 n = 330

p-values for random effect terms
I The test for smooth terms does not work for random effects —

the notion of effective degrees of freedom is much less
meaningful, and the approximations break down as the effect
tends to zero.

I Tests for random effects/variance components are difficult: the
null hypothesis restricts the variance parameter to the edge of the
parameter space.

I This problem can be addressed by:
1. Fix all smoothing/variance parameters other than the parameter of

interest at their estimated values.
2. Re-express the log likelihood ratio statistic for the test in terms of

the predicted random effect coefficients of the term.
3. Under the null, this statistic is distributed as a weighted sum of χ2

random variables.

I Details are in Wood (2013) Biometrika, 100, 1005-1010.
I The test is exact in the case of a single random Gaussian effect

model, and approximate otherwise.

AIC
I There are two possibilities:

1. Marginal AIC. Integrate the penalized terms/ random effects out
of the likelihood. Base the AIC on the resulting marginal
likelihood: the number of parameters is taken as the number of
fixed effects, un-penalized coefficients, smoothing parameters
and variance parameters.

2. Conditional AIC. Base the AIC on the likelihood of the penalized
and un-penalized model coefficients (including random effect
coefficients), replacing the number of parameters with the
effective degrees of freedom.

I There are problems with both.
1. Marginal likelihood underestimates variance components

(over-smooths), so the marginal AIC over-favours simple models
(REML is not comparable between models with any difference in
fixed effect/ un-penalized structure).

2. Conditional AIC is much too likely to select the over-complicated
model, by virtue of the neglect of smoothing/variance parameter
uncertainty in the effective degrees of freedom (Greven and
Kneib, 2010, Biometrika).

A better AIC

I Let βd be the coefficients minimizing the KL-divergence, and Id

the information at this point.
I Penalization does not alter AIC derivation up to

AIC = −2l(β̂) + 2E
{

(β̂ − βd)TId(β̂ − βd)
}

. . . but it does alter the expectation term (variance ↓ bias ↑).
I Accounting for penalization we get

AIC = −2l(β̂) + 2tr(IVβ),

where Vβ is the Bayesian posterior covariance matrix.
I So far the trace term is just the EDF, but we can correct Vβ for

smoothing parameter uncertainty, to get a corrected EDF and
AIC.

I Wood, Pya and Säfken (2016, JASA) give the full details.

Better AIC example

I How often AIC selects a term as the effect size of the term
increases. . .

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Effect size

N
u

ll
m

o
d

e
l
re

je
c
ti
o

n
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

3
0

4
0

5
0

Effect size

E
ff
e

c
ti
v
e

 d
e

g
re

e
s
 o

f
fr

e
e

d
o

m

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Effect size

N
u

ll
m

o
d

e
l
re

je
c
ti
o

n
 r

a
te

I Left, for a random effect, middle the different effective degrees
of freedom for the left plot. Right for a smooth. Dotted is the
new AIC computation.

Key help files in mgcv

I Best to navigate help using HTML via help.start().
I ?mgcv.package is an overview, with links to key information.
I Each modelling function has a help page.
I ?plot.gam, ?predict.gam ?summary.gam,
?anova.gam, ?AIC.gam and ?gam.check describe key
functions for use with fitted model.

I ?family.mgcv describes the distributions available.
I ?smooth.terms describes the range of smoothers.
I ?gam.models gives some information on specifying models.
I ?random.effects is a mixed GAM overview.

Other software: R packages and SAS

I GAMPL in SAS implements the framework described here.
I gam provides Hastie and Tibshirani’s original GAM methods.
I VGAM and gamlss extend the GAM model class using the H&

T computational approach.
I semiPar is based on Ruppert Wand and Carroll’s 2003 book.
I gss, assist and bigSplines implement the smoothing

spline ANOVA methods of Wahba, Gu et al.
I R2BayesX and INLA provide fully Bayesian approaches

(INLA is especially good for high rank spatial fields).
I Natalya Pya’s scam offers shape constrained additive models.
I refund provides FDA using mgcv as fitting engine.

Summary

I A GAM is simply a GLM in which the linear predictor partly
depends linearly on some unknown smooth functions.

I GAMs are estimated by a penalized version of the method used
to fit GLMs.

I An extra criterion has to be optimized to find the smoothing
parameters.

I A GAMM is simply a GLMM in which the linear predictor
partly depends linearly on some unknown smooth functions.

I From the mixed model representation of smooths, GAMMs can
be estimated as GAMs or GLMMs.

I Checking is as for a GLM, bit we should also check smoothing
basis dimensions.

I Selection can be done using penalties or adaptations of familiar
regression modelling techniques.

Additive models beyond exponential families.

Simon Wood
Mathematical Sciences, University of Bristol, U.K.

Extending the model

I Many extensions have been proposed. . .
1. GAM type linear predictor with non-exponential family

distribution for independent response variable. Examples: scaled
t for heavy tails, beta regression for proportions, ordered
categorical models, Tweedie and negative binomial distributions

2. GAM type linear predictor without a separable log-likelihood.
E.g. Cox Proportional hazards and Cox Process.

3. Models with multiple GAM type linear predictors: E.g.
GAMLSS (Rigby & Stasinopoulus, 2005), or multivariate
additive models (e.g. Yee and Wild, 1996).

I Let us consider producing a general framework for the
extensions allowing us to do (almost) everything that can be
done with an exponential family GAM.

Simple example extension
I Here are some mass spectra for samples from patients with

normal, enlarged and cancerous prostate.

5000 10000 15000 20000

0
1
0

2
0

3
0

4
0

5
0

6
0

Healthy

Daltons

In
te

n
s
it
y

5000 10000 15000 20000

0
1
0

2
0

3
0

4
0

5
0

6
0

Enlarged

Daltons

In
te

n
s
it
y

5000 10000 15000 20000

0
1
0

2
0

3
0

4
0

5
0

6
0

Cancer

Daltons

In
te

n
s
it
y

I Scalar on function regression1 model for prediction? Category
(normal, enlarged or cancer) determined by a logistically
distributed latent variable with mean

µi = α+

∫
f (D)νi(D)dD.

I This is somewhat beyond a standard GAM, but methods can be
developed.

1AKA ‘signal regression’

Ordered categorical signal regression results

I Smooth adaptive f and category cut points to be estimated.
I library(mgcv)

gam(hs ~ s(D,by=M,bs="ad",k=100),family=ocat(R=3))

D and M are matrices. Each row contains Masses and Spectral
intensity, for one subject.

I Results are. . .

5000 10000 15000 20000−
0
.0

5
0
.0

5
0
.1

5
0
.2

5
a

Daltons

f(
D

)

1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

b

−3 −2 −1 0 1 2

−
3

−
1

0
1

2
3

c

theoretical quantiles

d
e
v
ia

n
c
e
 r

e
s
id

u
a
ls

I How is this done, and can we improve on it?

Basic aims

I To produce a general framework for the various GAM extensions
that is as useful as the GAM framework. i.e.

1. Allow numerically reliable smoothing parameter estimation for a
wide range of smooths, including those with multiple smoothing
penalties.

2. Allow access to the same inferential machinery that is available
for GAMs.

I General framework should reduce implementation of new model
classes to the implementation of some standard derivatives of the
log likelihood.

I See Wood, Pya & Säfken (2016, JASA) for full details.

Strategy

I Consider models, for data y, in which the log likelihood, l,
depends on smooth functions fj.

I Represent the fj using intermediate rank basis expansions with
quadratic penalties, so that coefficient estimates, given
smoothing parameters, λ, are

β̂ = argmax
β

L(β) = l(β)− 1
2

∑
j

λjβ
TSjβ.

I Writing Sλ =
∑

j λjSj, we can motivate the above by a prior
β ∼ N(0,S−

λ).
I Can then estimate λ by Marginal Likelihood (REML).

Estimation methods: Laplace approximate ML

I We want to estimate log smoothing parameters as

ρ̂ ' argmax
ρ

log
∫

f (y|β)f (β)dβ

I Can’t generally do the integral.
I Approximate intergrand by exponential of 2nd order Taylor

approx. of log intergrand (almost a multivariate normal).
I We get the Laplace Approximate ML

V(λ) = L(β̂) + 1
2

log |Sλ|+ −
1
2

log |H|+
Mp

2
log(2π).

where −H is Hessian of penalized log likelihood, L, at β̂.

Estimation methods: numerical strategy

I Nested Newton optimization. . .
I Optimize LAML V w.r.t. ρ by Newton’s method.
I Each trial set of ρ values require corresponding β̂, also by

Newton’s method. Efficient as starting values excellent after first
trial!

I Use implicit differentiation to obtain dβ̂/dρ etc, and hence
derivatives of LAML w.r.t. ρ.

I Problem: naïve computation is unstable. Worst parts are the log
determinants, e.g. log |

∑
j λjSj|+ . . .

I Some λj →∞ is legitimate, which can lead to taking logs of
‘numerical zeroes’ in the log determinant terms.

The problem with log |S|+

I Naive |S|+ evaluation can go badly wrong.
I Consider log |S1 + λS2|+ when λ→ 0

> S <- S1 + S2*1e-18; S
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 -1 0 0e+00 0e+00 0e+00
[2,] -1 2 -1 0e+00 0e+00 0e+00
[3,] 0 -1 1 0e+00 0e+00 0e+00
[4,] 0 0 0 1e-18 -1e-18 0e+00
[5,] 0 0 0 -1e-18 2e-18 -1e-18
[6,] 0 0 0 0e+00 -1e-18 1e-18
> sum(log(eigen(S)$values[1:4])) ## naive
[1] -73.39584
> sum(log(eigen(S1)$values[1:2])) + ## true
> sum(log(eigen(S2)$values[1:2]*1e-18))
[1] -80.69584
> eigen(S)$values ## why?
[1] 3.000000e+00 1.000000e+00 2.220446e-15 2.000000e-18
[5] 1.000000e-18 1.000000e-18

Further problems with log |S|

I Suppose that the non-zero sub matrices of Si need not be full
rank, but overlap. . .

> S1;S2
[,1] [,2] [,3] [,4] [,5] [,1] [,2] [,3] [,4] [,5]

[1,] 1 -1 0 0 0 [1,] 0 0 0 0 0
[2,] -1 2 -1 0 0 [2,] 0 0 0 0 0
[3,] 0 -1 1 0 0 [3,] 0 0 1 0 0
[4,] 0 0 0 0 0 [4,] 0 0 0 1 0
[5,] 0 0 0 0 0 [5,] 0 0 0 0 1
> S <- S1 + S2*1e-18
> sum(log(eigen(S)$values))
[1] -115.5355
> sum(log(abs(diag(qr.R(qr(S))))))
[1] -118.3859

I Are either of these right? No. S1 is only rank 2, but its
‘numerical footprint’ extends beyond the first 2 columns of S,
obliterating part of the rank 3 matrix, S2.

Solution for log |S|

I Similarity transform to confine S1 to a block of size
corresponding to its rank.

I Consider eigen-decomposition UDUT = S1. Then
|S1 + λS2| = |D + λUTS2U|. If zero eigenvalues in D are set to
exactly 0, then r.h.s. evaluates correctly.
> S

[,1] [,2] [,3] [,4] [,5]
[1,] 1 -1 0 0e+00 0e+00
[2,] -1 2 -1 0e+00 0e+00
[3,] 0 -1 1 0e+00 0e+00
[4,] 0 0 0 1e-18 0e+00
[5,] 0 0 0 0e+00 1e-18
> es <- eigen(S1); U <- es$vectors
> D <- es$values; D[3:5] <- 0
> Sp <- diag(D) + t(U)%*%S2%*%U * lambda
> sum(log(abs(diag(qr.R(qr(Sp))))))
[1] -124.3396

. . . why did that work, and does it generalize?

I The large elements for S1 got confined to a 2× 2 block, in the
similarity transformed version of S
> Sp

[,1] [,2] [,3] [,4] [,5]
[1,] 3.000000e+00 -2.886751e-19 -2.357023e-19 0e+00 0e+00
[2,] -2.886751e-19 1.000000e+00 4.082483e-19 0e+00 0e+00
[3,] -2.357023e-19 4.082483e-19 3.333333e-19 0e+00 0e+00
[4,] 0.000000e+00 0.000000e+00 0.000000e+00 1e-18 0e+00
[5,] 0.000000e+00 0.000000e+00 0.000000e+00 0e+00 1e-18

I QR decomposition to get the determinant doesn’t mix columns,
so the determinant calculation is now stable.

I This approach can be generalized to more than two Sj matrices
(and to rank deficient S).

I Re-parameterization tends to stabilize other computations as
well.

Simplified notation

I Having sorted out the instability of log |S|+, we can push on with
a general method.

I But some expressions required to implement general methods
become incomprehensibly complex without a reasonable
notation . . .

1. Let differentiation with respect to (Greek) parameters be denoted
f j
β = ∂f/∂βj, gjk

αβ = ∂2g/∂αj∂βk etc.
2. Greek superscripts without a subscript are labels.
3. Repeated Roman indices occurring on only one side of an

equation should be summed over. e.g. aj = bi
βwij =

∑
i bi

βwij

I e.g. Li j
ββ is the Hessian of the penalized log-likelihood,

pi = Li j
ββL

j
β is the product of the Hessian and the gradient.

General case Newton step computation for ρ = logλ

1. Reparameterize each smooth so that log |Sλ|+ is stable.

2. Find β̂ by stabilized Newton method.

3. Drop unidentifiable β̂ elements at convergence. If necessary
repeat Newton optimization to allow other coefficients to adjust.
Let Lβ̂β̂i j be the inverse Hessian of L at β̂.

4. Compute dβ̂i/dρk = Lβ̂β̂i j λkSk
jlβ̂l.

5. Given dβ̂/dρk compute li j k
β̂β̂ρ

.

6. Given li j k
β̂β̂ρ

, compute d2β̂/dρkdρl.

7. Compute Lβ̂β̂k j lj k pv
β̂β̂ρρ

(model specific, O(Mnp2)).

8. The derivatives of V can now be computed.

Implicit differentiation example

I Li
β̂
= li

β̂
− λkSk

ijβ̂j = 0

I Differentiating w.r.t. ρk = logλk yields

Li k
β̂ρ

= li j
β̂β̂

dβ̂j

dρk
− λkSk

ijβ̂j − λlSl
ij

dβ̂j

dρk
= 0.

I Re-arranging and defining Lβ̂β̂i j as inverse of Li j
β̂β̂

,

dβ̂i

dρk
= Lβ̂β̂i j λkSk

jlβ̂l,

I Now can compute li j l
β̂β̂ρ

= li j k
β̂β̂β̂

dβ̂k/dρl etc.

I In general require log likelihood derivatives to 4th order.

General case examples

I Cox PH, Cox Process, single index models, MV GAMs. . .
I Also GAMLSS models (Rigby & Stasinopoulus, 2005). . .

I log likelihood for the ith datum is l(yi, η
1
i , η

2
i , . . .) where the

ηk = Xkβk are K linear predictors.
I Newton estimation of β̂ + implicit differentiation requires

lj
βl = liηl Xl

ij, lj k
βlβm = li i

ηlηm Xl
ijX

m
ik .

I First derivatives of V then require

lj k p
β̂lβ̂mρ

= lj k r
β̂lβ̂mβ̂q

dβ̂q
r

dρp
= li i i

η̂lη̂mη̂q Xl
ijX

m
ikXq

ir
dβ̂q

r

dρp

= li i i
η̂lη̂mη̂q Xl

ijX
m
ik

dη̂q
i

dρp

I Second derivatives not much worse. Generically require mixed
partials of log density up to 4th order.

Less general case and software

I For a single linear predictor and a log likelihood that is the sum
of separate components for each observation, then methods that
exploit the regression model structure are better. Details omitted!

I These are the cases where we really have a GAM, except that the
response is not exponential family distributed.

I e.g. Beta regression, ordered categorical regression, Tweedie or
negative binomial with estimation of all parameters etc.

I Methods implemented in mgcv 1.8-x. e.g.
gam(time ~ s(x) + s(z),family=cox.ph,weights=censor)
gam(list(y ~ s(x) + s(z),~ s(v)+s(w)),family=ziplss)

I . . . follow up as for regular GAM.

Example: multinomial prostate screening model

I The ordered categorical prostate screening model was not great:
categories not really ordered?

I 3 categories: y = 0, 1, 2 (healthy, enlarged, cancer).
I Model - smooth linear predictor, ηj, for all categories except 0.

L =

{
exp(ηy)/{1 +

∑
j exp(ηj)} y > 0

1/{1 +
∑

j exp(ηj)} y = 0.

I Use ‘signal regression’ linear predictors for each ηj

ηji = αj +

∫
fj(D)νi(D)dD.

I gam(list(y ~ s(D,by=M),~ s(D,by=M)),
family=multinom(K=2),data=prostate)

Multinomial prostate screening results
I Estimated coefficient functions

5000 10000 15000 20000

−
1

0
−

5
0

5
1

0
1

5
2

0

Daltons

f1
(D

)

5000 10000 15000 20000

−
1

0
−

5
0

5
1

0
1

5
2

0

Daltons

f2
(D

)

I Classification. Upper: ordered; Lower: multinomial.

1 2 3

0
.0

0
.4

0
.8

true status

P
r(

h
e

a
lt
h
y
/1

)

1 2 3

0
.0

0
.4

0
.8

true status

P
r(

h
e

a
lt
h
y
/1

)

1 2 3

0
.0

0
.2

0
.4

true status

P
r(

e
n

la
rg

e
d

/2
)

1 2 3

0
.0

0
.4

0
.8

true status

P
r(

e
n

la
rg

e
d

/2
)

1 2 3

0
.0

0
.4

0
.8

true status

P
r(

c
a

n
c
e

r/
3

)

1 2 3

0
.0

0
.4

0
.8

true status

P
r(

c
a

n
c
e

r/
3

)

Example: Colon cancer survival

Obs Lev Lev+5FU
0

5
0

0
1

5
0

0
2

5
0

0
20 30 40 50 60 70 80

0
5

0
0

1
5

0
0

2
5

0
0

age

ti
m

e

0 1

0
5

0
0

1
5

0
0

2
5

0
0

sex (0 − female)

0 2 4 6 8 11 14 17 22 33

0
5

0
0

1
5

0
0

2
5

0
0

nodes

0 1

0
5

0
0

1
5

0
0

2
5

0
0

obstruction

0 1

0
5

0
0

1
5

0
0

2
5

0
0

adhere

Colon cancer survival times against covariates.

Colon cancer Cox PH model

I Cox PH model with smooth effects for age (by sex) and nodes.
I gam(time~s(age,by=sex)+sex+s(nodes)+perfor

+rx+obstruct+adhere,family=cox.ph(),
data=col1,weights=status)

20 30 40 50 60 70 80

−
0

.5
0

.0
0

.5
1

.0
1

.5
2

.0
2

.5

age

s
(a

g
e
,1

):
s
e
x
0

20 30 40 50 60 70 80

−
0

.5
0

.0
0

.5
1

.0
1

.5
2

.0
2

.5

age

s
(a

g
e
,1

.3
8

):
s
e
x
1

0 5 10 15 20 25 30

−
0

.5
0

.0
0

.5
1

.0
1

.5
2

.0
2

.5

nodes

s
(n

o
d

e
s
,3

.1
3

)

Example: location-scale model

10 20 30 40 50

−
1
0
0

−
5
0

0
5
0

times

a
c
c
e
l

I Mean and variance are clearly varying with time
I A model: yi = f1(ti) + εi, εi ∼ N(0, σ2

i), logσi = f2(yi).

Location-scale fitting

b <- gam(list(accel~s(times,k=20,bs="ad"),~s(times)),
data=mcycle,family=gaulss())

plot(b,pages=1,scale=0,scheme=1)

10 20 30 40 50

−
1

0
0

−
5

0
0

5
0

times

s
(t

im
e

s
,1

0
.5

8
)

10 20 30 40 50

−
3

−
2

−
1

0
1

times

s
.1

(t
im

e
s
,7

.2
6

)

Another example: Swiss rainfall extremes

I Annual maximum 12-hour rainfall from 65 Swiss weather
stations, 1981-2015. Black is average over years, grey is
maximum across years.

6 7 8 9 10

4
6

.0
4

6
.5

4
7

.0
4

7
.5

E
N

I GEV model with predictors for location, scale and shape
gam(list(exra~s(nao)+s(elev)+clim.reg+s(N,E),

~s(year)+s(elev)+clim.reg+s(N,E)
~clim.reg),family=gevlss,data=swer)

Swiss rainfall posterior simulation

I Draw model coefficients from MVN approximate posterior, and
then draw annual extreme rainfall from implied GEV distribution
for each station (very fast).

40 50 60 70 80 90 100

4
0

6
0

8
0

1
0
0

1
2
0

mean annual maximum

s
im

u
la

te
d
 v

e
rs

io
n

100 150 200

5
0

1
0
0

1
5
0

2
0
0

2
5
0

maximum

s
im

u
la

te
d
 9

8
th

 p
e
rc

e
n
ti
le

6 7 8 9 10

4
6
.0

4
6
.5

4
7
.0

4
7
.5

E

N

Smooth additive quantile regression

I The framework presented here can be extended to quantile
regression.

I Idea is to replace the log likelihood with a smoothed version of
the ‘pinball’ loss function used for quantile regression.

I Formally this uses the Bayesian belief updating framework of
Bissiri et al (2016, JRSSB, 78(5)).

I We have to estimate an overall ‘learning rate’ parameter
balancing smoothness prior and loss — this is done by a
bootstrap calibration step.

Summary

I Smooth models can be extended well beyond the exponential
family, and well beyond strictly additive settings.

I The extensions fit readily into a unified computational
framework, that allows efficient and reliable smoothness
estimation, and re-use of most of the inferential tools available
for GAMs.

I A number of practically useful examples of these extensions are
available in mgcv.

I Extensions to other loss functions also seem to be possible.

Smooth additive models for large datasets

Simon Wood
School of Mathematics, University of Bristol, U.K.

Example motivation: London smog 1952

I 5-9 Dec 1952.
I 4-12 thousand

premature deaths.
I Black smoke

(particulates) and
sulphur from
domestic coal fires.

I Clean air act 1956.
I Monitoring from

1961.

Black smoke monitoring. . .

0 100 200 300 400 500 600

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

Black smoke monitoring network

Easting (in km)

N
o
rt

h
in

g
 (

k
m

)

I 4 decades of daily ‘black smoke’
monitoring at a variable subset of the
2400+ stations shown.

I Started in 1961 to monitor air
pollution (then mostly from coal), in
wake of 1950s smog deaths.

I Epidemiological studies need
estimates of daily exposure away
from stations.

I O(107) measurements and suitable
smooth latent Gaussian models have
O(104) coefficients with 10-30
variance parameters.

Daily BS data

0 100 200 300 400 500 600

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

east (km)

n
o
rt

h
 (

k
m

)

a

1960 1970 1980 1990 2000

1
2

3
4

5
6

7

year

lo
g
(b

s
)

b

0 100 200 300

2
.5

3
.5

4
.5

day

lo
g
(b

s
)

c

0 5000 10000 15000

2
4

6
8

day
lo

g
(b

s
)

d

Black smoke previous work

I Shaddick & Zidek1 modelled annual average black smoke:

log(bi) = f1(ei, ni) + f2(ei, ni)yi + f2(ei, ni)y2
i + εi

using INLA2 for inference.
I Modelling reduces the impact of preferential sampling.
I But annual averages fail to capture the acute pollution events, on

the time scale of days, that accelerate deaths, and are likely to be
of long term health significance.

I A daily model for all the 107 data is appealing, but potentially
expensive (e.g. no chance with INLA on a 24 core 128Gb
machine).

12014, Spatial Statistics
2Rue, Martino, Chopin, 2009

The model class: recap

I Concentrate on models of the form yi ∼ EF(µi, φ)

g(µi) = Aiθ +
∑

j

fj(xji) + Zib

A,Z are model matrices, fj are smooth functions, θ is
parameters, b contains independent Gaussian random effects. g
is a known link function. xj may be vector.

I Represent smooth functions, f , using spline basis expansions
with coefficients β

f (x) =

K∑
k=1

βkbk(x)

I . . . and define a quadratic smoothing penalty, e.g.∫
f ′′2dx = βTSβ (suggesting K = O(n1/9−1/5)).

Wide range of basis penalty smoothers available

10 20 30 40 50

−
1

0
0

−
5

0
0

5
0

1
0

0

a

times

s
(t

im
e

s
,1

0
.9

)

10 20 30 40 50

5
0

6
0

7
0

8
0

b

Y

X

 −
0.4

 −0.2

 −0.2

 0

 0.2

 0.2

 0.2

 0.4

 0.4

 0.4 0.4

 0.4

 0.4

 0.6

 0
.6

 0.6

 1.4

xz

f(x,z)

c

−
0

.6
−

0
.4

−
0

.2
0

.0
0

.2
0

.4
0

.6
0

.8

s
(r

e
g

io
n

,6
3

.0
4

)

d

58.0 58.5 59.0 59.5 60.0 60.5

4
4

.0
4

4
.5

4
5

.0
4

5
.5

4
6

.0

e

lon

la
t

 −4

 −3

 −3

 −
2

 −2

 −
1

 −1

 −1

 0

 0

 0

 1

 1

 2

 2

 2

 3

 4 5
 5

 6

 6

 7

 −30
 −20 −10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 −160

 −140

 −120

 −100

 −80

 −
60

 −
40

 −20
 0

 2
0

 40 60

 80

 120 1
4
0

 1
6
0

 180

 −20

 −10

 −10

 0

 10
 20

 30

 40

f

Estimation of model coefficients (recap)

I Given bases for the smooths, the model can be written as

yi ∼ EF(µi, φ), g(µi) = Xiβ

where X (n× p) contains A, Z and evaluated basis functions, and
β is a combine coefficient vector.

I The combined penalty can be written
∑

j λjβ
TSjβ, where the λj

are smoothing parameters.
I Then β̂ = argmaxβl(β)−

∑
j λjβ

TSjβ/2.
I . . . this penalized log likelihood can be given Bayesian

motivation using the prior3

β ∼ N{0, (
∑

j

λjSj)
−}.

3which also covers simple Gaussian random effects.

A fitting algorithm (PQL/performance iteration)

I The GLM likelihood means that β can be estimated by penalized
iteratively re-weighted least squares.

I i.e. we iteratively use penalized least squares to fit a working
linear model:

z = Xβ + ε, cov(ε) = W−1φ, E(ε) = 0

where zi = g′(µ̂i)(yi − µ̂i) + η̂i, W−1
ii = V(µ̂i)g′(µ̂i)

2 and
ηi = g(µi). V is a known and determined by EF.

I Or we use the prior on β and iteratively estimate

z = Xβ + ε, β ∼ N(0,S−λ) ε ∼ N(0,W−1φ),

including λ, as a linear mixed model (this is PQL4).
Sλ =

∑
λjSj. λ estimation uses REML.

4Breslow & Clayton, 1993, JASA

Justifying the REML step and a big data method

I Let QR =
√

WX and f = QT
√

Wz. Assume φ = 1.
I Then f = Rβ + e, β ∼ N(0,S−λ) and, by CLT, e ∼ N(0, I).

I If β̂λ = argminβ‖f− Rβ‖2 + βTSλβ then

−2lr = ‖f− Rβ̂λ‖2 + β̂T
λSλβ̂λ + log |RTR + Sλ|+ log |Sλ|+

I But to within an additive constant this is identical to −2lr for
working model z = Xβ + ε, β ∼ N(0,S−λ), ε ∼ N(0,W−1).

I Similar argument if φ 6= 1 using Pearson estimator.
I This justification also gives a low memory footprint big data

algorithm5. We iterate:
1. Iterative blockwise QR accumulates R and f.
2. Smoothing parameters and model coefficients are obtained by

fitting the Gaussian model for f.

5Wood, Goude and Shaw, 2015, JRSSC

QR updating for R and f

I Let X =

[
X0
X1

]
, y =

[
y0
y1

]
I Form X0 = Q0R0 &

[
R0
X1

]
= Q1R.

I Then X = QR where Q =

[
Q0 0
0 I

]
Q1.

I Also f = QTy = QT
1

[
QT

0 y0
y1

]
I Applying these results recursively, R and f can be accumulated

from sub-blocks of X without forming X whole.
I Above applies equally well to weighted X and z.

XTX updating and Cholesky

I R is also the Cholesky factor of XTX.
I Partitioning X row-wise into sub-matrices X1,X2, . . ., we have

XTX =
∑

j

XT
j Xj

which can be used to accumulate XTX without needing to form
X whole.

I At same time accumulate XTy =
∑

j XT
j y.

I Cholesky decomposition gives RTR = XTX, and f = R−1XTy.6

I This is twice as fast as QR approach, but less numerically stable.

6A slight variant deals with the case of rank deficient X.

Death & Air pollution example

I Around 5000 daily death rates, for Chicago, along with time,
ozone, pm10, tmp (last 3 averaged over preceding 3 days).
Peng and Welty (2004).

I Appropriate GAM is: deathi ∼ Poi,

log{E(deathi)} = f1(timei)+ f2(ozonei,tmpi)+ f3(pm10i).

I f1 and f3 penalized cubic regression splines, f2 tensor product
spline.

I Results suggest a very strong ozone - temperature interaction.

Death & Air pollution Chicago results

−2000 −1000 0 1000 2000

−
0

.1
0

.0
0

.1
0

.2

time

s
(t

im
e

,1
3

6
.8

5
)

te(o3,tmp,38.63)

−50 0 50 100

0
1

0
0

2
0

0
3

0
0

o3

tm
p

−1se +1se

10 12 14 16 18

−
0

.1
0

.0
0

.1
0

.2

pm10

s
(p

m
1

0
,3

.4
2

)

Death & Air pollution: all cities

I To test the truth of ozone-temp interaction it would be good to fit
to the equivalent data for around 100 other cities, simultaneously.

I Model is

log{E(deathi)} = γj + αk + fk(o3i,tempi) + f4(ti)

if observation i is from city j and age group k (there are 3 age
groups recorded).

I Model has 802 coefs and is estimated from 1.2M data.
I Fitting takes 12.5 minutes using 4 cores of a $600 PC.
I Same model to just Chicago, takes 11.5 minutes by previous

methods.

Death & Air pollution all cities results

−2000 −1000 0 1000 2000

−
0
.1

0
.0

0
.1

0
.2

0
.3

time

s
(t

im
e
,2

7
7
.3

6
)

<65

o3

tm
p

 −
0.5

 −
0.3

 −
0.2

 −0.2
 −0.2

 −
0
.1

 −0.1

 −0.1

 0

 0

 0

 0

 0.1
 0.2

 0.3

−100 0 100 200

0
1
0
0

2
0
0

3
0
0

4
0
0

65−74

o3

tm
p

 −0.05

 0

 0

 0

 0
.0

5

 0.05

 0.05

 0
.1

 0
.1

 0.1

 0.15

 0.15

−100 0 100 200

0
1
0
0

2
0
0

3
0
0

4
0
0

>74

o3

tm
p

 −0.02

 −0.02

 0

 0

 0

 0

 0.02

 0
.0

2

 0.02

 0.04
 0.04 0.04

 0
.0

4

 0.04

 0.04

 0.06

 0.06

 0.06

 0
.0

6

 0.06
 0.08

 0
.0

8

 0.08

 0.1

 0.12 0.14

−100 0 100 200

0
1
0
0

2
0
0

3
0
0

4
0
0

. . . and Black Smoke?

I Unfortunately the methods described so far would still take a
couple of months of computing time to fit a reasonable model for
the black smoke data.

I Initially we tried to address this issue by simple minded
parallelization of the methods described above, and purchase of a
24 core workstation.

I This was not altogether successful.
I It is quite instructive to look at why.

Parallelizing the GAM fit method

I Aim: parallelize preceding big additive model methods.
I Hope: 24 cores turns one day of computing into 1 hour.
I Reality: what happened when we parallelized all steps of flop

cost ≥ O(p3) in preceding (mgcv:bam) method. . .

5 10 15 20

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

bam scaling

cores

1
/t
im

e

The messy realities of parallel computing
1. Hyper-threading can make parallel slower than serial. . .

FPUFPU

INT

CPU core

faster than serial execution

FPUFPU

INT

CPU core

slower than serial execution

2. Dynamic core clock speed management for power efficiency can
make low work thread take most time.

CPU

core 1

slow fast
light workload finished later!

core 2

slow fast
heavy workload finished earlier!

3. Thermal limits: n cores are not n times faster than 1 core.
CPU

slow fast slow fast

slow fastslow fast

CPU

slow fast slow fast

slow fastslow fast

CPU

slow fast slow fast

slow fastslow fast

CPU would fry itself!!

4. A floating point operation (flop) may take one or two CPU
cycles, retrieving a number from memory 10 times that.

I Numerical computation is memory bandwidth limited.

Memory bandwidth, Cache, block algorithms

I Cache is small fast access memory between CPU and main
memory.

I Big speed up if most flops involve data already in Cache.
I Consider two 106 flop computations

1. C is a 1000× 1000 matrix, and y a 1000-vector. Compute Cy.
Each of 106 elements of C read once, no re-use.

2. A and B are both 100× 100 matrices. Form AB. Repeatedly
revisits the 2× 104 elements of A and B.

. . . provided A and B fit in Cache, 2 is much faster.
I Structure algorithms around Cache friendly blocks! e.g.[

A11 A12
A21 A22

] [
B11 B12
B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

]

Parallel block pivoted QR & Cholesky

I There are parallelizable block pivoted QR7 and Cholesky8

algorithms published,
I Here’s how they scale with openMP parallelization. . .

5 10 15 20

0
.0

0
.1

0
.2

0
.3

0
.4

QR scaling

cores

1
/t

5 10 15 20

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Cholesky scaling

cores

1
/t

I Pivoted QR has alot of unavoidable matrix-vector operations
(instead of matrix-matrix).

I . . . this caused the poor scaling of the GAM fitting method.

7Quintana-Ortí, Sun and Bishop, 1998, SIAM J. Sci. Comp.
8Lucas 2004, LAPACK working paper

Scalable fitting: Cholesky only?

I The (restricted) marginal likelihood used for λ estimation

V(λ) =
‖
√

W(z− Xβ̂λ)‖2 + β̂T
λSλβ̂λ + k

2φ
+

n−Mp

2
log(2πφ)

+
log |XTWX + Sλ| − log |Sλ|+

2

is difficult because of the log | · | terms: naive computation can
be equivalent to taking logs of numerical zeroes!

I Stable log | · | requires pivoted QR (& eigen) decomposition, but
we would prefer Cholesky only to get scalability.

I Simple idea: avoid QR and eigen-decompostions by avoiding
evaluating log determinants during optimization.

Gradient only Newton optimization

I Newton step, ∆, uses only 1st and 2nd derivatives of V .
I Function values only required for step control

I ‘halve ∆ if V(λ+ ∆) > V(λ).’

I Instead ‘halve ∆ if ∇VT∆ > 0’.

0 1 2 3 4 5 6

0
.0

1
.0

2
.0

3
.0

λ

V
(λ

)

0 1 2 3 4 5 6

0
.0

1
.0

2
.0

3
.0

λ

V
(λ

)

I This eliminates the ‘log(0) problem’. e.g., if ρ = logλ,

∂ log |XTWX +
∑
λjSj|

∂ρj
= tr

{
(XTWX +

∑
λjSj)

−1Sjλj

}

Simple idea 2

1. Conventional PQL finds best fit variance/smoothing parameters
for working model.

2. Waste of effort to find best fit when working model will anyway
be discarded at next iteration!

3. Just find improved smoothing parameters by taking one Newton
step each iteration.

4. With care we can still step control properly (can even prove
convergence for some cases).

5. Actual iteration omitted for reasons of tediousness. . .

Simple idea 3: discrete covariate methods

I The methods so far scale like the pivoted Cholesky (rather than
QR) and turn months of computing into days-weeks.

I Formation of XTWX is the leading order cost: O(np2).
I Lang et al.9 point out that for a single 1D smooth, f (x), the

product XTWX is very efficiently computable if x has only
m� n discrete values.

I As statisticians we should be prepared to discretise x to
m = O(

√
n) bins.

I It is possible to find (novel) efficient computational methods for
the multiple discretised covariate case, both for multiple 1D
smooths and for ‘tensor product’ smooths of multiple covariates.

9Lang, Umlauf, Wechselberger, Harttgen & Kneib, 2014, Statistics & Computing.

Simple discrete method example

I For a single smooth, its n× pj model matrix becomes

Xj(i, l) = X̄j(kj(i), l)

where X̄j is an mj × pj matrix evaluating the smooth at the
corresponding gridded values.

I Then, for example

XT
j y = X̄T

j ȳ where ȳl =
∑

kj(i)=l

yi

Cost: O(n) + O(mjpj) – for mj � n this a factor of pj saving.
I In general all required (cross)products are a factor of pj more

efficient, where pj is the largest (marginal) basis dimension
involved in the term.

Black smoke modelling

I Method based on parallel Cholesky, determinant free iteration
and discretization of covariates implemented in mgcv function
bam(...,discrete=TRUE).

I The current ‘best’ daily black smoke model is

log(bsi) = f1(yi) + f2(doyi) + f3(dowi)

+ f4(yi,doyi) + f5(yi,dowi) + f6(doyi,dowi)

+ f7(ni,ei) + f8(ni,ei,yi) + f9(ni,ei,doyi) + f10(ni,ei,dowi)

+f11(hi)+f12(T0
i ,T

1
i)+f13(T̄1i, T̄2i)+f14(ri)+αk(i)+bid(i)+ei

The model has around 104 coefficients and r2 = 0.79.
I With the new parallel discretised methods fit time is < 1 hour.

We estimate that previous methods would have required > 1
month. Memory footprint is about 15Gb.

Daily black smoke model - 10 day timestep

BS residuals in time

A
C

F

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 5000 10000 15000

−
4

−
2

0
2

4

day

re
s
id

u
a

ls

BS variograms in space

50 100 150 200 250

0
.0

0
.4

0
.8

1966

distance (km)

s
e
m

iv
a
ri

a
n
c
e

50 100 150 200 250

0
.0

0
.4

0
.8

distance (km)

s
e
m

iv
a
ri

a
n
c
e

0 50 100 200

0
.0

0
.4

0
.8

1976

distance (km)

s
e
m

iv
a
ri

a
n
c
e

0 50 100 200

0
.0

0
.2

0
.4

distance (km)

s
e
m

iv
a
ri

a
n
c
e

50 100 150 200 250

0
.0

0
.4

0
.8

1986

distance (km)

s
e
m

iv
a
ri

a
n
c
e

50 100 150 200 250

0
.0

0
.2

0
.4

distance (km)

s
e
m

iv
a
ri

a
n
c
e

50 100 150 200 250

0
.0

0
.1

0
.2

0
.3

0
.4

1996

distance (km)

s
e
m

iv
a
ri

a
n
c
e

50 100 150 200 250

0
.0

0
.2

0
.4

0
.6

distance (km)

s
e
m

iv
a
ri

a
n
c
e

I Black solid is raw data, open is model residuals.
I Lines are permutation based reference intervals.
I Top row, day 40. Bottom row, day 200.

Aside: penalty choice matters - a bad model movie Derived maps — Posterior exceedance probabilities

0 100 200 300 400 500 600 700

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0 1963

km east

k
m

 n
o
rt

h

0 100 200 300 400 500 600 700

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0 1965

km east

k
m

 n
o
rt

h

0 100 200 300 400 500 600 700

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0 1967

km east

k
m

 n
o
rt

h

0 100 200 300 400 500 600 700

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0 1969

km east

k
m

 n
o
rt

h

I Map shows average daily probability of exceeding current EU
daily limit, for 4 years in the 1960s.

I Notice how the switch from coal to gas for domestic heating
cleans up the London area quite quickly.

I The northern industrial city areas take longer.

Conclusions

I Possible to obtain three orders of magnitude computational
speed-up in large additive model fitting by combining

1. A new iterative algorithm for REML based additive model
estimation. Requires only Cholesky decomposition, and avoids
evaluation of unstable log determinants.

2. OpenMP parallelization of modern pivoted block Cholesky.
3. New methods to efficiently compute all the model matrix

products required in fitting, based on discretization of covariates
(including tensor product smooths).

I The methods facilitate the first daily models of UK black smoke
densities based on the multi-decade daily data from the UK black
smoke monitoring network.

I See Wood, Li, Shaddick and Augustin (2017) JASA.

	wid@mmdefaultlabel1:
	wid@mmdefaultlabel2:

