INLA and other approaches to GAMs

Simon Wood

INLA: higher order marginal inference with GAMs

So far we took a basically *empirical Bayes* approach to GAMs

$$y_i \sim \mathrm{EF}(\mu_i, \phi) \ \ g(\mu_i) = \sum_j f_j(x_{ji})$$

- Smooth functions f were represented using basis expansions of modest rank and complexity controlled by quadratic penalties induced by Gaussian smoothing priors.
- Smoothing parameters were estimated by Laplace approximate marginal likelihood, and further inference based on a Gaussian posterior approximation.
- What if the Gaussian approximation is poor? Two options
 - 1. Stochastic simulation (see later).
 - 2. Rue et al. (2009) JRSSB 71:319-392 show how to produce much more accurate approximations to marginal distributions of the model coefficients.

Gaussian posterior approximation

$$\pi(\boldsymbol{\beta}|\mathbf{y},\boldsymbol{\theta}) \propto \pi(\mathbf{y}|\boldsymbol{\beta})\pi(\boldsymbol{\beta}|\boldsymbol{\theta}).$$

$$\text{Here } \pi(\boldsymbol{\beta}|\boldsymbol{\theta}) = \text{MVN}(\mathbf{0}, \mathbf{S}_{\theta}^{-}).$$

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmax}} \pi(\boldsymbol{\beta}|\mathbf{y},\boldsymbol{\theta}) = \underset{\boldsymbol{\beta}}{\operatorname{argmax}} l(\boldsymbol{\beta})^{*} - \frac{1}{2}\boldsymbol{\beta}^{\mathrm{T}}\mathbf{S}_{\theta}\boldsymbol{\beta}.$$

$$\text{Define log posterior Hessian, } \mathbf{H}_{\theta} = -\frac{\partial^{2}l}{\partial\beta\partial\beta^{\mathrm{T}}}\Big|_{\hat{\boldsymbol{\beta}}} + \mathbf{S}_{\theta}.$$

$$\text{Second order Taylor expansion of log joint density} \Rightarrow$$

$$\pi(\boldsymbol{\beta}|\mathbf{y},\boldsymbol{\theta}) \simeq k \exp\left\{-(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^{\mathrm{T}}\mathbf{H}_{\theta}(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})/2\right\}$$

$$= \text{MVN}(\hat{\boldsymbol{\beta}},\mathbf{H}_{\theta}^{-1})$$

$$\equiv \pi_{\theta}(\boldsymbol{\beta}|\mathbf{y},\boldsymbol{\theta}), \text{ say.}$$

$$l(\boldsymbol{\beta}) = \log \pi(\mathbf{y}|\boldsymbol{\beta})$$

Laplace approximation

Consider approximating marginal likelihood...

$$\begin{aligned} \pi(\mathbf{y}|\boldsymbol{\theta}) &= \int \pi(\mathbf{y}|\boldsymbol{\beta})\pi(\boldsymbol{\beta}|\boldsymbol{\theta})d\boldsymbol{\beta} \\ &\simeq \int \exp\left\{l(\hat{\boldsymbol{\beta}}) + \log \pi(\hat{\boldsymbol{\beta}}|\boldsymbol{\theta}) - (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^{\mathrm{T}}\mathbf{H}_{\boldsymbol{\theta}}(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})/2\right\}d\boldsymbol{\beta} \\ &= \pi(\mathbf{y}|\hat{\boldsymbol{\beta}})\pi(\hat{\boldsymbol{\beta}}|\boldsymbol{\theta})\int \exp\left\{-(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^{\mathrm{T}}\mathbf{H}_{\boldsymbol{\theta}}(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})/2\right\}d\boldsymbol{\beta} \\ &= \frac{\pi(\mathbf{y}|\hat{\boldsymbol{\beta}})\pi(\hat{\boldsymbol{\beta}}|\boldsymbol{\theta})(2\pi)^{p/2}}{|\mathbf{H}_{\boldsymbol{\theta}}|^{1/2}} \quad \text{(Laplace approx.)} \\ &= \frac{\pi(\mathbf{y}, \hat{\boldsymbol{\beta}}|\boldsymbol{\theta})}{\pi_{g}(\hat{\boldsymbol{\beta}}|\mathbf{y}, \boldsymbol{\theta})} \end{aligned}$$

... i.e. joint density over Gaussian approx. posterior, both at $\hat{\beta}$.

Gaussian posterior accuracy and INLA

▶ When $n/p \to \infty$ the approximation $\pi_g(\hat{\beta}|\mathbf{y}, \boldsymbol{\theta})$ is usually quite accurate, at least if $p = o(n^{1/3})$.

But not always true and anyway it deteriorates in the tails.

 Integrated Nested Laplace Approximation (INLA) makes clever use of partial Gaussian approximations to improve the approximation of marginal posteriors

 $\pi(\beta_i | \mathbf{y}, \boldsymbol{\theta})$

First consider an example, illustrating how π_g performs...

Posterior $\pi(\boldsymbol{\beta}|\mathbf{y}, \boldsymbol{\theta})$ and marginal $\pi(\beta_1|\mathbf{y}, \boldsymbol{\theta})$

 β_1

Basic Gaussian approximation, $\pi_g(\boldsymbol{\beta}|\mathbf{y}, \boldsymbol{\theta})$

 β_1

The basic INLA idea

The key idea in INLA is

$$\pi(\beta_i | \mathbf{y}, \boldsymbol{\theta}) = \frac{\pi(\tilde{\boldsymbol{\beta}}, \mathbf{y}, \boldsymbol{\theta})}{\pi(\tilde{\boldsymbol{\beta}}_{-i} | \beta_i, \mathbf{y}, \boldsymbol{\theta})} \simeq \frac{\pi(\tilde{\boldsymbol{\beta}}, \mathbf{y}, \boldsymbol{\theta})}{\pi_{gg}(\tilde{\boldsymbol{\beta}}_{-i} | \beta_i, \mathbf{y}, \boldsymbol{\theta})} = \tilde{\pi}(\beta_i | \mathbf{y}, \boldsymbol{\theta})$$

where π_{gg} is some Gaussian approximation to $\pi(\tilde{\beta}_{-i}|\beta_i, \mathbf{y}, \boldsymbol{\theta})$ and $\tilde{\beta}$ maximizes the joint density subject to constraint $\tilde{\beta}_i = \beta_i$.

For π_{gg} we could use the distribution of $\beta_{-i}|\beta_i$ implied by $\pi_g(\beta|\mathbf{y}, \theta)$. This has a fixed covariance matrix and, writing $\Sigma = \mathbf{H}_{\theta}^{-1}$, a mean $\tilde{\beta}_{-i} = \hat{\beta}_{-i} + \Sigma_{-i,i} \Sigma_{i,i}^{-1} (\beta_i - \hat{\beta}_i)$.

Hence the simplest version of INLA could just use

$$\tilde{\pi}(\beta_i | \mathbf{y}, \boldsymbol{\theta}) \propto \pi(\tilde{\boldsymbol{\beta}}(\beta_i), \mathbf{y}, \boldsymbol{\theta})$$

and renormalize.

Most basic INLA $\tilde{\pi}(\beta_1 | \mathbf{y}, \boldsymbol{\theta})$

Rue et al. (2009) INLA

- If β̃ were the actual maximiser of π(β, y, θ) given β̃_i = β_i and H_{-i,-i} were the corresponding Hessian w.r.t. β_{-i}, then we could set π_{gg} = MVN(β̃_{-i}, H⁻¹_{-i,-i}).
- ► Then $\tilde{\pi}(\beta_i | \mathbf{y}, \boldsymbol{\theta})$ is the Laplace approx. to $\int \pi(\boldsymbol{\beta} | \mathbf{y}, \boldsymbol{\theta}) d\boldsymbol{\beta}_{-i}$... and INLA is rather accurate!
- ► But $MVN(\tilde{\beta}_{-i}, \mathbf{H}_{-i,-i}^{-1})$ is too expensive to be practical. It has to be approximated.
- ► Rue et al. (2009) use $\tilde{\boldsymbol{\beta}}_{-i} = \hat{\boldsymbol{\beta}}_{-i} + \boldsymbol{\Sigma}_{-i,i} \Sigma_{i,i}^{-1} (\beta_i \hat{\beta}_i)$ implied by π_g , and an approximation to the required log $|\mathbf{H}_{-i,-i}|$.

Published INLA $\tilde{\pi}(\beta_1 | \mathbf{y}, \boldsymbol{\theta})$ — approximate $\tilde{\boldsymbol{\beta}}$

Ideal INLA $\tilde{\pi}(\beta_1 | \mathbf{y}, \boldsymbol{\theta})$ — exact $\tilde{\boldsymbol{\beta}}$

The point is ...

- Using easily computed Gaussian approximations we obtain marginal posterior approximations much more accurate than naive direct use of posterior Gaussian approximation.
- The improved accuracy accrues from several features of

$$ilde{\pi}(eta_i|\mathbf{y}, oldsymbol{ heta}) = rac{\pi(ilde{oldsymbol{eta}}, \mathbf{y}, oldsymbol{ heta})}{\pi_{gg}(ilde{oldsymbol{eta}}_{-i}|eta_i, \mathbf{y}, oldsymbol{ heta})}$$

- 1. we only evaluate the Gaussian approximation at its mean, not out in its inaccurate tails.
- 2. the approximation error enters multiplicatively, rather than growing into the tails
- 3. a univariate marginal is easy to renormalize.
- But what about θ and where is the integration?

Uncertainty in θ

• A Laplace approximation is used for the posterior of θ

$$ilde{\pi}(oldsymbol{ heta} \mid \mathbf{y}) \propto rac{\pi(\hat{oldsymbol{eta}}, \mathbf{y}, oldsymbol{ heta})}{\pi_g(\hat{oldsymbol{eta}} \mid \mathbf{y}, oldsymbol{ heta})}$$

• Then fairly crude quadrature[†] is used to integrate out θ

$$ilde{\pi}(eta_i \mid \mathbf{y}) = \int ilde{\pi}(eta_i \mid m{ heta}, \mathbf{y}) ilde{\pi}(m{ heta} \mid \mathbf{y}) dm{ heta}$$

and $\tilde{\pi}(\theta_i \mid \mathbf{y}) = \int \tilde{\pi}(\boldsymbol{\theta} \mid \mathbf{y}) d\boldsymbol{\theta}_{-i}$.

• Or skip integration and just use the posterior mode $\hat{\theta}$.

[†]Numerical integration based on evaluating the integrand on some grid and forming a weighted sum of the evaluations.

Computational efficiency and approximating $\log |\mathbf{H}_{-i,-i}|$

- The *key* step in INLA is the approximation π_{gg} . It *must* be computationally efficient.
- Rue et al. (2009) use the conditional mode $\tilde{\beta}(\beta_i)$ implied by π_g , and one of two approximations to $\log |\mathbf{H}_{-i,-i}|$:
 - 1. Approximate $\log |\mathbf{H}_{-i,-i}|$ by its first order Taylor expansion around $\hat{\boldsymbol{\beta}}$. Efficient default setting properties unclear.
 - 2. Use the heuristic that only elements of β_{-i} that are highly enough correlated with β_i according to π_g need to be considered when updating from $\log |\mathbf{H}_{\theta}|$ to $\log |\mathbf{H}_{-i,-i}|$.

These are efficient when \mathbf{H}_{θ} is a high rank sparse matrix, as it is in the INLA software, but not if \mathbf{H}_{θ} is dense.

Often it makes sense to use an intermediate rank model representation and a dense H_θ. Then 1 and 2 impractical.

An alternative $\log |\mathbf{H}_{-i,-i}|$ approximation

- 1. Given a Cholesky factor **R** of \mathbf{H}_{θ} , cheaply update it to the Cholesky factor of $\tilde{\mathbf{H}}_0 = \mathbf{H}_{\theta}[-i, -i]$.
- 2. Given this factor, cheaply run several Newton steps with fixed $\tilde{\mathbf{H}}_0$ to find the numerically exact $\tilde{\boldsymbol{\beta}}(\beta_i)$.
- Approximate H_{-i,-i} at β̃(β_i) by a BFGS[‡] update of H̃₀ using a small step from β̃(β_i) towards β̂. This allows efficient computation of the corresponding log |H_{-i,-i}|.
- The approach works for sparse or dense H_θ. An alternative version avoids the need for an explicit Cholesky update.
- As with the original method, judicious use of interpolation avoids evaluating at too many β_i values.
- ► The log determinant update has some theory...

[‡]An approximate Hessian update used in quasi-Newton optimization

Update properties

Theorem

Let $\tilde{\mathbf{H}}_0$ and $\tilde{\mathbf{H}}$ be respectively the initial Hessian and true Hessian with respect to β_{-i} at $\tilde{\beta}(\beta_i)$, and assume that $\log \pi(\beta, \mathbf{y}, \theta)$ is regular with bounded third derivative. Let $\tilde{\mathbf{H}}_1$ denote the BFGS update of $\tilde{\mathbf{H}}_0$ based on a step $h\Delta$ from $\tilde{\beta}$ where $\|\Delta\| = 1$. Then $|\tilde{\mathbf{H}}_1| \in [|\tilde{\mathbf{H}}_0| + O(h), |\tilde{\mathbf{H}}| + O(h)]$.

- See Wood (2019, *Biometrika*) for proof and method details
- Not all quasi-Newton updates have this property, nor does the Rue et al. (2009) default method.

Test example from Rue et al. (2009) §5.1

- $y_i f_i \sim t_3$ where $f_i \mu \sim N\{\phi(f_{i-1} \mu), 1\}$ if $i = 2, \dots, 50, f_1 - \mu \sim N(0, 1), \phi = 0.85$ and $\mu \sim N(0, 1)$.
- Investigate goodness of fit of various INLA approximations to long Gibbs sampling runs over 1000 replicates.

Test results

- Box-plots over 1000 reps of fit statistic small is good.
- Black Rue et al. expensive. Grey filled new method.
 Dashed/notched Rue et al. default. Grey open direct π_g.
- Rue et al. expensive and new method indistinguishable.

An example

- Method implemented in mgcv::ginla in R.
- In many real examples π_g is actually rather good, and ginla merely serves to confirm this!
- But it makes a difference when modelling the following over-used data with the model

$$\texttt{accel}_i \sim N\left(f_1(\texttt{times}_i), e^{2f_2(\texttt{times}_i)}\right)$$

Example results

- Solid and dashed are mean and 95% intervals from π_g .
- Blue are mean and 90% intervals, red are 95% intervals, both from ginla.

INLA advantages and software

- The major advantage to the INLA approach is that computation can efficiently exploit sparse matrices.
- This allows inference with large sparse Gaussian Markov Random Fields[§].
- Such models are especially useful in spatial settings where there is short range stochastic dependency (autocorrelation) to model.
- The INLA software is the major implementation built on sparse methods: see www.r-inla.org.
- ginla in mgcv offers a simple implementation for the non-sparse case.

[§]Basically a model with a Gaussian smoothing prior precision matrix that is sparse – i.e. mostly zeroes.

Other approaches to GAM estimation

- These slides have concentrated on quite statistical approaches to GAMs but there are other estimation methods with more of a learning algorithm feel.
- For example, *backfitting* and *boosting* both approach estimation by iterative smoothing of residuals.
- They offer advantages in terms of algorithmic modularity and efficiency, but some aspects of inference become more difficult.
- Backfitting is original method used in Hastie and Tibshirani's (1986, 1990) pioneering work on GAMs.
- Boosting is notable for providing a rather integrated method for model term selection.

Backfitting algorithm

- Estimate $y_i = \alpha + \sum_{j=1}^m f(x_{ji}) + \epsilon_i$. Let $\mathbf{f}_j = (f_j(x_1), f_j(x_2), \ldots)^{\mathrm{T}}$.
- Set $\hat{\alpha} = \bar{y}$, $\mathbf{f}_j = \mathbf{0} \forall j$ and repeat to convergence: For $j = 1, \dots, m$
 - 1. Calculate *partial residuals* $\mathbf{e}_j = \mathbf{y} \hat{\alpha} \sum_{k \neq j} \mathbf{f}_k$
 - 2. Set \mathbf{f}_j to the result of smoothing \mathbf{e}_j w.r.t. \mathbf{x}_j .
- A weighted version can be used on the working penalized linear model when iteratively fitting a GAM to non-Gaussian data.
- ► Notice we could use any smoother at step 2: e.g. spline, local regression, running mean etc. although for some we might have to subtract its mean from f_j to ensure the smooth stays centred.
- A drawback is that it is not clear how to select smoothing parameters. See Hastie and Tibshirani (1990) Generalized Additive Models and R package gam for more.

Backfitting $y_i = \alpha + \sum_{j=1}^4 f(x_{ji}) + \epsilon_i$

Boosting

► Idea in one dimension, with least squares loss:

- 1. Construct a low degree of freedom linear 'base smoother', e.g. $\hat{\mu} = \mathbf{A}\mathbf{y}$, where $\mathbf{A} = \mathbf{X}(\mathbf{X}^{\mathrm{T}}\mathbf{X} + \lambda_{\mathrm{big}}\mathbf{S})^{-1}\mathbf{X}^{\mathrm{T}}$.
- 2. Initialize $\hat{\mathbf{f}} = \mathbf{0}$ and then iterate $\hat{\mathbf{f}} \leftarrow \hat{\mathbf{f}} + \mathbf{A}(\mathbf{y} \hat{\mathbf{f}})$.
- Note that if we iterate for ever we end up with the *p* degrees of freedom fit f = X(X^TX)⁻¹X^Ty, despite the summed components each having very low EDF.
- Need a stopping rule and further inference not so easy.
- One option is the sort of bootstrap cross-validation and inference suggested for the Lasso.

Basic boosting idea

Gradient boosting with selection of multiple terms

- Consider a model with a log likelihood *l* and multiple smooth terms, f_j , in a linear predictor η .
- Set up base smoothers (hat matrix A_j) for each f_j potentially in the model. Iterate[¶]...
 - 1. Compute $e_i = -\frac{\mathrm{d}l}{\mathrm{d}\eta_i}$.
 - 2. For all *j* compute $\tilde{\mathbf{f}}_j = \mathbf{A}_j \mathbf{e}$ and find $\hat{\alpha}_j = \operatorname{argmax}_{\alpha} l(\boldsymbol{\eta} + \alpha \tilde{\mathbf{f}}_j)$.
 - 3. Find $k = \operatorname{argmax}_{j} l(\boldsymbol{\eta} + \hat{\alpha}_{j} \tilde{\mathbf{f}}_{j})$.
 - 4. Set $\eta \leftarrow \eta + \hat{\alpha}_k \tilde{\mathbf{f}}_k$, and add k to set of selected terms.
- Notes:
 - This is a very efficient forward selection method, but contains no means for going backwards. Again we need a stopping rule, and have to bootstrap for further inference.
 - We have an ascent direction at step 2 because we are multiplying the gradient by a positive definite matrix.
 - Without the $\hat{\alpha}$ search, term selection is sensitive to base EDF.

[¶]Schmid and Hothorn (2008) CSDA; Mayr et al. (2012) Applied Statistics