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INLA: higher order marginal inference with GAMs

▶ So far we took a basically empirical Bayes approach to GAMs

yi ∼ EF(µi, ϕ) g(µi) =
∑

j

fj(xji)

▶ Smooth functions f were represented using basis expansions of
modest rank and complexity controlled by quadratic penalties
induced by Gaussian smoothing priors.

▶ Smoothing parameters were estimated by Laplace approximate
marginal likelihood, and further inference based on a Gaussian
posterior approximation.

▶ What if the Gaussian approximation is poor? Two options
1. Stochastic simulation (see later).
2. Rue et al. (2009) JRSSB 71:319-392 show how to produce much

more accurate approximations to marginal distributions of the
model coefficients.



Gaussian posterior approximation

▶ π(β|y,θ) ∝ π(y|β)π(β|θ).
▶ Here π(β|θ) = MVN(0,S−

θ ).

▶ β̂ = argmax
β

π(β|y,θ) = argmax
β

l(β)* − 1
2β

TSθβ.

▶ Define log posterior Hessian, Hθ = − ∂2l
∂β∂βT

∣∣∣
β̂
+ Sθ.

▶ Second order Taylor expansion of log joint density⇒

π(β|y,θ) ≃ k exp
{
−(β − β̂)THθ(β − β̂)/2

}
= MVN(β̂,H−1

θ )

≡ πg(β|y,θ), say.

*l(β) = log π(y|β)



Laplace approximation

Consider approximating marginal likelihood. . .

π(y|θ) =
∫

π(y|β)π(β|θ)dβ

≃
∫

exp
{

l(β̂) + log π(β̂|θ)− (β − β̂)THθ(β − β̂)/2
}

dβ

= π(y|β̂)π(β̂|θ)
∫

exp
{
−(β − β̂)THθ(β − β̂)/2}

}
dβ

=
π(y|β̂)π(β̂|θ)(2π)p/2

|Hθ|1/2 (Laplace approx.)

=
π(y, β̂|θ)
πg(β̂|y,θ)

. . . i.e. joint density over Gaussian approx. posterior, both at β̂.



Gaussian posterior accuracy and INLA

▶ When n/p→∞ the approximation πg(β̂|y,θ) is usually quite
accurate, at least if p = o(n1/3).

▶ But not always true and anyway it deteriorates in the tails.
▶ Integrated Nested Laplace Approximation (INLA) makes clever

use of partial Gaussian approximations to improve the
approximation of marginal posteriors

π(βi|y,θ)

▶ First consider an example, illustrating how πg performs. . .



Posterior π(β|y,θ) and marginal π(β1|y,θ)
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Basic Gaussian approximation, πg(β|y,θ)
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The basic INLA idea

▶ The key idea in INLA is

π(βi|y,θ) =
π(β̃, y,θ)

π(β̃−i|βi, y,θ)
≃ π(β̃, y,θ)

πgg(β̃−i|βi, y,θ)
= π̃(βi|y,θ)

where πgg is some Gaussian approximation to π(β̃−i|βi, y,θ)
and β̃ maximizes the joint density subject to constraint β̃i = βi.

▶ For πgg we could use the distribution of β−i|βi implied by
πg(β|y,θ). This has a fixed covariance matrix and, writing
Σ = H−1

θ , a mean β̃−i = β̂−i +Σ−i,iΣ
−1
i,i (βi − β̂i).

▶ Hence the simplest version of INLA could just use

π̃(βi|y,θ) ∝ π(β̃(βi), y,θ)

and renormalize.



Most basic INLA π̃(β1|y,θ)



Rue et al. (2009) INLA

▶ If β̃ were the actual maximiser of π(β, y,θ) given β̃i = βi and
H−i,−i were the corresponding Hessian w.r.t. β−i, then we could
set πgg = MVN(β̃−i,H−1

−i,−i).
▶ Then π̃(βi|y,θ) is the Laplace approx. to

∫
π(β|y,θ)dβ−i

. . . and INLA is rather accurate!
▶ But MVN(β̃−i,H−1

−i,−i) is too expensive to be practical. It has to
be approximated.

▶ Rue et al. (2009) use β̃−i = β̂−i +Σ−i,iΣ
−1
i,i (βi − β̂i) implied by

πg, and an approximation to the required log |H−i,−i|.



Published INLA π̃(β1|y,θ) — approximate β̃



Ideal INLA π̃(β1|y,θ) — exact β̃



The point is . . .

▶ Using easily computed Gaussian approximations we obtain
marginal posterior approximations much more accurate than
naive direct use of posterior Gaussian approximation.

▶ The improved accuracy accrues from several features of

π̃(βi|y,θ) =
π(β̃, y,θ)

πgg(β̃−i|βi, y,θ)

1. we only evaluate the Gaussian approximation at its mean, not out
in its inaccurate tails.

2. the approximation error enters multiplicatively, rather than
growing into the tails

3. a univariate marginal is easy to renormalize.

▶ But what about θ and where is the integration?



Uncertainty in θ

▶ A Laplace approximation is used for the posterior of θ

π̃(θ | y) ∝ π(β̂, y,θ)
πg(β̂ | y,θ)

▶ Then fairly crude quadrature† is used to integrate out θ

π̃(βi | y) =
∫

π̃(βi | θ, y)π̃(θ | y)dθ

and π̃(θi | y) =
∫
π̃(θ | y)dθ−i.

▶ Or skip integration and just use the posterior mode θ̂.

†Numerical integration based on evaluating the integrand on some grid and
forming a weighted sum of the evaluations.



Computational efficiency and approximating log |H−i,−i|

▶ The key step in INLA is the approximation πgg. It must be
computationally efficient.

▶ Rue et al. (2009) use the conditional mode β̃(βi) implied by πg,
and one of two approximations to log |H−i,−i|:

1. Approximate log |H−i,−i| by its first order Taylor expansion
around β̂. Efficient default setting — properties unclear.

2. Use the heuristic that only elements of β−i that are highly enough
correlated with βi according to πg need to be considered when
updating from log |Hθ| to log |H−i,−i|.

These are efficient when Hθ is a high rank sparse matrix, as it is
in the INLA software, but not if Hθ is dense.

▶ Often it makes sense to use an intermediate rank model
representation and a dense Hθ. Then 1 and 2 impractical.



An alternative log |H−i,−i| approximation

1. Given a Cholesky factor R of Hθ, cheaply update it to the
Cholesky factor of H̃0 = Hθ[−i,−i].

2. Given this factor, cheaply run several Newton steps with fixed
H̃0 to find the numerically exact β̃(βi).

3. Approximate H−i,−i at β̃(βi) by a BFGS‡ update of H̃0 using a
small step from β̃(βi) towards β̂. This allows efficient
computation of the corresponding log |H−i,−i|.

▶ The approach works for sparse or dense Hθ. An alternative
version avoids the need for an explicit Cholesky update.

▶ As with the original method, judicious use of interpolation
avoids evaluating at too many βi values.

▶ The log determinant update has some theory. . .

‡An approximate Hessian update used in quasi-Newton optimization



Update properties

Theorem
Let H̃0 and H̃ be respectively the initial Hessian and true Hessian
with respect to β−i at β̃(βi), and assume that log π(β, y,θ) is regular
with bounded third derivative. Let H̃1 denote the BFGS update of H̃0
based on a step h∆ from β̃ where ∥∆∥ = 1. Then
|H̃1| ∈ [|H̃0|+ O(h), |H̃|+ O(h)].

▶ See Wood (2019, Biometrika) for proof and method details
▶ Not all quasi-Newton updates have this property, nor does the

Rue et al. (2009) default method.



Test example from Rue et al. (2009) §5.1
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▶ yi − fi ∼ t3 where fi − µ ∼ N{ϕ(fi−1 − µ), 1} if
i = 2, . . . , 50,f1 − µ ∼ N(0, 1), ϕ = 0.85 and µ ∼ N(0, 1).

▶ Investigate goodness of fit of various INLA approximations to
long Gibbs sampling runs over 1000 replicates.



Test results
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▶ Box-plots over 1000 reps of fit statistic - small is good.
▶ Black - Rue et al. expensive. Grey filled - new method.

Dashed/notched Rue et al. default. Grey open - direct πg.
▶ Rue et al. expensive and new method indistinguishable.



An example
▶ Method implemented in mgcv::ginla in R.
▶ In many real examples πg is actually rather good, and ginla

merely serves to confirm this!
▶ But it makes a difference when modelling the following

over-used data with the model

acceli ∼ N
(

f1(timesi), e2f2(timesi)
)
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Example results
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▶ Solid and dashed are mean and 95% intervals from πg.
▶ Blue are mean and 90% intervals, red are 95% intervals, both

from ginla.



INLA advantages and software

▶ The major advantage to the INLA approach is that computation
can efficiently exploit sparse matrices.

▶ This allows inference with large sparse Gaussian Markov
Random Fields§.

▶ Such models are especially useful in spatial settings where there
is short range stochastic dependency (autocorrelation) to model.

▶ The INLA software is the major implementation built on sparse
methods: see www.r-inla.org.

▶ ginla in mgcv offers a simple implementation for the
non-sparse case.

§Basically a model with a Gaussian smoothing prior precision matrix that is
sparse – i.e. mostly zeroes.



Other approaches to GAM estimation

▶ These slides have concentrated on quite statistical approaches to
GAMs but there are other estimation methods with more of a
learning algorithm feel.

▶ For example, backfitting and boosting both approach estimation
by iterative smoothing of residuals.

▶ They offer advantages in terms of algorithmic modularity and
efficiency, but some aspects of inference become more difficult.

▶ Backfitting is original method used in Hastie and Tibshirani’s
(1986, 1990) pioneering work on GAMs.

▶ Boosting is notable for providing a rather integrated method for
model term selection.



Backfitting algorithm

▶ Estimate yi = α+
∑m

j=1 f (xji) + ϵi. Let fj = (fj(x1), fj(x2), . . .)
T.

▶ Set α̂ = ȳ, fj = 0 ∀ j and repeat to convergence:
For j = 1, . . . ,m

1. Calculate partial residuals ej = y− α̂−
∑

k ̸=j fk

2. Set fj to the result of smoothing ej w.r.t. xj.

▶ A weighted version can be used on the working penalized linear
model when iteratively fitting a GAM to non-Gaussian data.

▶ Notice we could use any smoother at step 2: e.g. spline, local
regression, running mean etc. although for some we might have
to subtract its mean from fj to ensure the smooth stays centred.

▶ A drawback is that it is not clear how to select smoothing
parameters. See Hastie and Tibshirani (1990) Generalized
Additive Models and R package gam for more.



Backfitting yi = α +
∑4

j=1 f (xji) + ϵi



Boosting

▶ Idea in one dimension, with least squares loss:
1. Construct a low degree of freedom linear ‘base smoother’,

e.g. µ̂ = Ay, where A = X(XTX + λbigS)−1XT.
2. Initialize f̂ = 0 and then iterate f̂← f̂ + A(y− f̂).

▶ Note that if we iterate for ever we end up with the p degrees of
freedom fit f̂ = X(XTX)−1XTy, despite the summed components
each having very low EDF.

▶ Need a stopping rule and further inference not so easy.
▶ One option is the sort of bootstrap cross-validation and inference

suggested for the Lasso.



Basic boosting idea



Gradient boosting with selection of multiple terms

▶ Consider a model with a log likelihood l and multiple smooth
terms, fj, in a linear predictor η.

▶ Set up base smoothers (hat matrix Aj) for each fj potentially in
the model. Iterate¶ . . .

1. Compute ei = −dl/dηi.
2. For all j compute f̃j = Aje and find α̂j = argmaxαl(η + αf̃j).
3. Find k = argmaxjl(η + α̂j̃fj).
4. Set η ← η + α̂k f̃k, and add k to set of selected terms.

▶ Notes:
▶ This is a very efficient forward selection method, but contains no

means for going backwards. Again we need a stopping rule, and
have to bootstrap for further inference.

▶ We have an ascent direction at step 2 because we are multiplying
the gradient by a positive definite matrix.

▶ Without the α̂ search, term selection is sensitive to base EDF.

¶Schmid and Hothorn (2008) CSDA; Mayr et al. (2012) Applied Statistics
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