# INLA and other approaches to GAMs 

Simon Wood

## INLA: higher order marginal inference with GAMs

- So far we took a basically empirical Bayes approach to GAMs

$$
y_{i} \sim \mathrm{EF}\left(\mu_{i}, \phi\right) \quad g\left(\mu_{i}\right)=\sum_{j} f_{j}\left(x_{j i}\right)
$$

- Smooth functions $f$ were represented using basis expansions of modest rank and complexity controlled by quadratic penalties induced by Gaussian smoothing priors.
- Smoothing parameters were estimated by Laplace approximate marginal likelihood, and further inference based on a Gaussian posterior approximation.
- What if the Gaussian approximation is poor? Two options

1. Stochastic simulation (see later).
2. Rue et al. (2009) JRSSB 71:319-392 show how to produce much more accurate approximations to marginal distributions of the model coefficients.

## Gaussian posterior approximation

- $\pi(\boldsymbol{\beta} \mid \mathbf{y}, \boldsymbol{\theta}) \propto \pi(\mathbf{y} \mid \boldsymbol{\beta}) \pi(\boldsymbol{\beta} \mid \boldsymbol{\theta})$.
- Here $\pi(\boldsymbol{\beta} \mid \boldsymbol{\theta})=\operatorname{MVN}\left(\mathbf{0}, \mathbf{S}_{\theta}^{-}\right)$.
- $\hat{\boldsymbol{\beta}}=\underset{\boldsymbol{\beta}}{\operatorname{argmax}} \pi(\boldsymbol{\beta} \mid \mathbf{y}, \boldsymbol{\theta})=\underset{\boldsymbol{\beta}}{\operatorname{argmax}} l(\boldsymbol{\beta})^{*}-\frac{1}{2} \boldsymbol{\beta}^{\mathrm{T}} \mathbf{S}_{\theta} \boldsymbol{\beta}$.
- Define log posterior Hessian, $\mathbf{H}_{\theta}=-\left.\frac{\partial^{2} l}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{\mathrm{T}}}\right|_{\hat{\boldsymbol{\beta}}}+\mathbf{S}_{\theta}$.
- Second order Taylor expansion of log joint density $\Rightarrow$

$$
\begin{aligned}
\pi(\boldsymbol{\beta} \mid \mathbf{y}, \boldsymbol{\theta}) & \simeq k \exp \left\{-(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})^{\mathrm{T}} \mathbf{H}_{\theta}(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}) / 2\right\} \\
& =\operatorname{MVN}\left(\hat{\boldsymbol{\beta}}, \mathbf{H}_{\theta}^{-1}\right) \\
& \equiv \pi_{g}(\boldsymbol{\beta} \mid \mathbf{y}, \boldsymbol{\theta}), \text { say }
\end{aligned}
$$

$$
{ }^{*} l(\boldsymbol{\beta})=\log \pi(\mathbf{y} \mid \boldsymbol{\beta})
$$

## Laplace approximation

Consider approximating marginal likelihood...

$$
\begin{aligned}
\pi(\mathbf{y} \mid \boldsymbol{\theta}) & =\int \pi(\mathbf{y} \mid \boldsymbol{\beta}) \pi(\boldsymbol{\beta} \mid \boldsymbol{\theta}) d \boldsymbol{\beta} \\
& \simeq \int \exp \left\{l(\hat{\boldsymbol{\beta}})+\log \pi(\hat{\boldsymbol{\beta}} \mid \boldsymbol{\theta})-(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})^{\mathrm{T}} \mathbf{H}_{\theta}(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}) / 2\right\} d \boldsymbol{\beta} \\
& \left.=\pi(\mathbf{y} \mid \hat{\boldsymbol{\beta}}) \pi(\hat{\boldsymbol{\beta}} \mid \boldsymbol{\theta}) \int \exp \left\{-(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})^{\mathrm{T}} \mathbf{H}_{\theta}(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}) / 2\right\}\right\} d \boldsymbol{\beta} \\
& =\frac{\pi(\mathbf{y} \mid \hat{\boldsymbol{\beta}}) \pi(\hat{\boldsymbol{\beta}} \mid \boldsymbol{\theta})(2 \pi)^{p / 2}}{\left.\left|\mathbf{H}_{\theta}\right|\right|^{1 / 2}} \quad \text { (Laplace approx.) } \\
& =\frac{\pi(\mathbf{y}, \hat{\boldsymbol{\beta}} \mid \boldsymbol{\theta})}{\pi_{g}(\hat{\boldsymbol{\beta}} \mid \mathbf{y}, \boldsymbol{\theta})}
\end{aligned}
$$

...i.e. joint density over Gaussian approx. posterior, both at $\hat{\boldsymbol{\beta}}$.

## Gaussian posterior accuracy and INLA

- When $n / p \rightarrow \infty$ the approximation $\pi_{g}(\hat{\boldsymbol{\beta}} \mid \mathbf{y}, \boldsymbol{\theta})$ is usually quite accurate, at least if $p=o\left(n^{1 / 3}\right)$.
- But not always true and anyway it deteriorates in the tails.
- Integrated Nested Laplace Approximation (INLA) makes clever use of partial Gaussian approximations to improve the approximation of marginal posteriors

$$
\pi\left(\beta_{i} \mid \mathbf{y}, \boldsymbol{\theta}\right)
$$

- First consider an example, illustrating how $\pi_{g}$ performs...


## Posterior $\pi(\boldsymbol{\beta} \mid \mathbf{y}, \boldsymbol{\theta})$ and marginal $\pi\left(\beta_{1} \mid \mathbf{y}, \boldsymbol{\theta}\right)$



## Basic Gaussian approximation, $\pi_{g}(\boldsymbol{\beta} \mid \mathbf{y}, \boldsymbol{\theta})$



## The basic INLA idea

- The key idea in INLA is

$$
\pi\left(\beta_{i} \mid \mathbf{y}, \boldsymbol{\theta}\right)=\frac{\pi(\tilde{\boldsymbol{\beta}}, \mathbf{y}, \boldsymbol{\theta})}{\pi\left(\tilde{\boldsymbol{\beta}}_{-i} \mid \beta_{i}, \mathbf{y}, \boldsymbol{\theta}\right)} \simeq \frac{\pi(\tilde{\boldsymbol{\beta}}, \mathbf{y}, \boldsymbol{\theta})}{\pi_{g g}\left(\tilde{\boldsymbol{\beta}}_{-i} \mid \beta_{i}, \mathbf{y}, \boldsymbol{\theta}\right)}=\tilde{\pi}\left(\beta_{i} \mid \mathbf{y}, \boldsymbol{\theta}\right)
$$

where $\pi_{g g}$ is some Gaussian approximation to $\pi\left(\tilde{\boldsymbol{\beta}}_{-i} \mid \beta_{i}, \mathbf{y}, \boldsymbol{\theta}\right)$ and $\tilde{\boldsymbol{\beta}}$ maximizes the joint density subject to constraint $\tilde{\beta}_{i}=\beta_{i}$.

- For $\pi_{g g}$ we could use the distribution of $\boldsymbol{\beta}_{-i} \mid \beta_{i}$ implied by $\pi_{g}(\boldsymbol{\beta} \mid \mathbf{y}, \boldsymbol{\theta})$. This has a fixed covariance matrix and, writing $\boldsymbol{\Sigma}=\mathbf{H}_{\theta}^{-1}$, a mean $\tilde{\boldsymbol{\beta}}_{-i}=\hat{\boldsymbol{\beta}}_{-i}+\boldsymbol{\Sigma}_{-i, i} \boldsymbol{\Sigma}_{i, i}^{-1}\left(\beta_{i}-\hat{\beta}_{i}\right)$.
- Hence the simplest version of INLA could just use

$$
\tilde{\pi}\left(\beta_{i} \mid \mathbf{y}, \boldsymbol{\theta}\right) \propto \pi\left(\tilde{\boldsymbol{\beta}}\left(\beta_{i}\right), \mathbf{y}, \boldsymbol{\theta}\right)
$$

and renormalize.

Most basic INLA $\tilde{\pi}\left(\beta_{1} \mid \mathbf{y}, \boldsymbol{\theta}\right)$


## Rue et al. (2009) INLA

- If $\tilde{\boldsymbol{\beta}}$ were the actual maximiser of $\pi(\boldsymbol{\beta}, \mathbf{y}, \boldsymbol{\theta})$ given $\tilde{\beta}_{i}=\beta_{i}$ and $\mathbf{H}_{-i,-i}$ were the corresponding Hessian w.r.t. $\boldsymbol{\beta}_{-i}$, then we could set $\pi_{g g}=\operatorname{MVN}\left(\tilde{\boldsymbol{\beta}}_{-i}, \mathbf{H}_{-i,-i}^{-1}\right)$.
- Then $\tilde{\pi}\left(\beta_{i} \mid \mathbf{y}, \boldsymbol{\theta}\right)$ is the Laplace approx. to $\int \pi(\boldsymbol{\beta} \mid \mathbf{y}, \boldsymbol{\theta}) d \boldsymbol{\beta}_{-i}$ $\ldots$ and INLA is rather accurate!
- But $\operatorname{MVN}\left(\tilde{\boldsymbol{\beta}}_{-i}, \mathbf{H}_{-i,-i}^{-1}\right)$ is too expensive to be practical. It has to be approximated.
- Rue et al. (2009) use $\tilde{\boldsymbol{\beta}}_{-i}=\hat{\boldsymbol{\beta}}_{-i}+\boldsymbol{\Sigma}_{-i, i} \Sigma_{i, i}^{-1}\left(\beta_{i}-\hat{\beta}_{i}\right)$ implied by $\pi_{g}$, and an approximation to the required $\log \left|\mathbf{H}_{-i,-i}\right|$.


## Published INLA $\tilde{\pi}\left(\beta_{1} \mid \mathbf{y}, \boldsymbol{\theta}\right)$ - approximate $\tilde{\boldsymbol{\beta}}$



## Ideal INLA $\tilde{\pi}\left(\beta_{1} \mid \mathbf{y}, \boldsymbol{\theta}\right)-\operatorname{exact} \tilde{\boldsymbol{\beta}}$



## The point is ...

- Using easily computed Gaussian approximations we obtain marginal posterior approximations much more accurate than naive direct use of posterior Gaussian approximation.
- The improved accuracy accrues from several features of

$$
\tilde{\pi}\left(\beta_{i} \mid \mathbf{y}, \boldsymbol{\theta}\right)=\frac{\pi(\tilde{\boldsymbol{\beta}}, \mathbf{y}, \boldsymbol{\theta})}{\pi_{g g}\left(\tilde{\boldsymbol{\beta}}_{-i} \mid \beta_{i}, \mathbf{y}, \boldsymbol{\theta}\right)}
$$

1. we only evaluate the Gaussian approximation at its mean, not out in its inaccurate tails.
2. the approximation error enters multiplicatively, rather than growing into the tails
3. a univariate marginal is easy to renormalize.

- But what about $\boldsymbol{\theta}$ and where is the integration?


## Uncertainty in $\boldsymbol{\theta}$

- A Laplace approximation is used for the posterior of $\boldsymbol{\theta}$

$$
\tilde{\pi}(\boldsymbol{\theta} \mid \mathbf{y}) \propto \frac{\pi(\hat{\boldsymbol{\beta}}, \mathbf{y}, \boldsymbol{\theta})}{\pi_{g}(\hat{\boldsymbol{\beta}} \mid \mathbf{y}, \boldsymbol{\theta})}
$$

- Then fairly crude quadrature ${ }^{\dagger}$ is used to integrate out $\boldsymbol{\theta}$

$$
\tilde{\pi}\left(\beta_{i} \mid \mathbf{y}\right)=\int \tilde{\pi}\left(\beta_{i} \mid \boldsymbol{\theta}, \mathbf{y}\right) \tilde{\pi}(\boldsymbol{\theta} \mid \mathbf{y}) d \boldsymbol{\theta}
$$

and $\tilde{\pi}\left(\theta_{i} \mid \mathbf{y}\right)=\int \tilde{\pi}(\boldsymbol{\theta} \mid \mathbf{y}) d \boldsymbol{\theta}_{-i}$.

- Or skip integration and just use the posterior mode $\hat{\boldsymbol{\theta}}$.

[^0]
## Computational efficiency and approximating $\log \left|\mathbf{H}_{-i,-i}\right|$

- The key step in INLA is the approximation $\pi_{g g}$. It must be computationally efficient.
- Rue et al. (2009) use the conditional mode $\tilde{\boldsymbol{\beta}}\left(\beta_{i}\right)$ implied by $\pi_{g}$, and one of two approximations to $\log \left|\mathbf{H}_{-i,-i}\right|$ :

1. Approximate $\log \left|\mathbf{H}_{-i,-i}\right|$ by its first order Taylor expansion around $\hat{\boldsymbol{\beta}}$. Efficient default setting - properties unclear.
2. Use the heuristic that only elements of $\boldsymbol{\beta}_{-i}$ that are highly enough correlated with $\beta_{i}$ according to $\pi_{g}$ need to be considered when updating from $\log \left|\mathbf{H}_{\theta}\right|$ to $\log \left|\mathbf{H}_{-i,-i}\right|$.
These are efficient when $\mathbf{H}_{\theta}$ is a high rank sparse matrix, as it is in the INLA software, but not if $\mathbf{H}_{\theta}$ is dense.

- Often it makes sense to use an intermediate rank model representation and a dense $\mathbf{H}_{\theta}$. Then 1 and 2 impractical.


## An alternative $\log \left|\mathbf{H}_{-i,-i}\right|$ approximation

1. Given a Cholesky factor $\mathbf{R}$ of $\mathbf{H}_{\theta}$, cheaply update it to the Cholesky factor of $\tilde{\mathbf{H}}_{0}=\mathbf{H}_{\theta}[-i,-i]$.
2. Given this factor, cheaply run several Newton steps with fixed $\tilde{\mathbf{H}}_{0}$ to find the numerically exact $\tilde{\boldsymbol{\beta}}\left(\beta_{i}\right)$.
3. Approximate $\mathbf{H}_{-i,-i}$ at $\tilde{\boldsymbol{\beta}}\left(\beta_{i}\right)$ by a $\mathrm{BFGS}^{\ddagger}$ update of $\tilde{\mathbf{H}}_{0}$ using a small step from $\tilde{\boldsymbol{\beta}}\left(\beta_{i}\right)$ towards $\hat{\boldsymbol{\beta}}$. This allows efficient computation of the corresponding $\log \left|\mathbf{H}_{-i,-i}\right|$.

- The approach works for sparse or dense $\mathbf{H}_{\theta}$. An alternative version avoids the need for an explicit Cholesky update.
- As with the original method, judicious use of interpolation avoids evaluating at too many $\beta_{i}$ values.
- The log determinant update has some theory...

[^1]
## Update properties

## Theorem

Let $\tilde{\mathbf{H}}_{0}$ and $\tilde{\mathbf{H}}$ be respectively the initial Hessian and true Hessian with respect to $\boldsymbol{\beta}_{-i}$ at $\tilde{\boldsymbol{\beta}}\left(\beta_{i}\right)$, and assume that $\log \pi(\boldsymbol{\beta}, \mathbf{y}, \boldsymbol{\theta})$ is regular with bounded third derivative. Let $\tilde{\mathbf{H}}_{1}$ denote the BFGS update of $\tilde{\mathbf{H}}_{0}$ based on a step $h \boldsymbol{\Delta}$ from $\tilde{\boldsymbol{\beta}}$ where $\|\boldsymbol{\Delta}\|=1$. Then
$\left|\tilde{\mathbf{H}}_{1}\right| \in\left[\left|\tilde{\mathbf{H}}_{0}\right|+O(h),|\tilde{\mathbf{H}}|+O(h)\right]$.

- See Wood (2019, Biometrika) for proof and method details
- Not all quasi-Newton updates have this property, nor does the Rue et al. (2009) default method.


## Test example from Rue et al. (2009) §5.1



- $y_{i}-f_{i} \sim t_{3}$ where $f_{i}-\mu \sim N\left\{\phi\left(f_{i-1}-\mu\right), 1\right\}$ if $i=2, \ldots, 50, f_{1}-\mu \sim N(0,1), \phi=0.85$ and $\mu \sim N(0,1)$.
- Investigate goodness of fit of various INLA approximations to long Gibbs sampling runs over 1000 replicates.


## Test results



- Box-plots over 1000 reps of fit statistic - small is good.
- Black - Rue et al. expensive. Grey filled - new method. Dashed/notched Rue et al. default. Grey open - direct $\pi_{g}$.
- Rue et al. expensive and new method indistinguishable.


## An example

- Method implemented in mgcv: : ginla in R.
- In many real examples $\pi_{g}$ is actually rather good, and ginla merely serves to confirm this!
- But it makes a difference when modelling the following over-used data with the model

$$
\operatorname{accel}_{i} \sim N\left(f_{1}\left(\text { times }_{i}\right), e^{2 f_{2}\left(\text { times }_{i}\right)}\right)
$$



## Example results



- Solid and dashed are mean and $95 \%$ intervals from $\pi_{g}$.
- Blue are mean and $90 \%$ intervals, red are $95 \%$ intervals, both from ginla.


## INLA advantages and software

- The major advantage to the INLA approach is that computation can efficiently exploit sparse matrices.
- This allows inference with large sparse Gaussian Markov Random Fields ${ }^{\S}$.
- Such models are especially useful in spatial settings where there is short range stochastic dependency (autocorrelation) to model.
- The INLA software is the major implementation built on sparse methods: see www.r-inla.org.
- ginla in mgcv offers a simple implementation for the non-sparse case.

[^2]
## Other approaches to GAM estimation

- These slides have concentrated on quite statistical approaches to GAMs but there are other estimation methods with more of a learning algorithm feel.
- For example, backfitting and boosting both approach estimation by iterative smoothing of residuals.
- They offer advantages in terms of algorithmic modularity and efficiency, but some aspects of inference become more difficult.
- Backfitting is original method used in Hastie and Tibshirani's $(1986,1990)$ pioneering work on GAMs.
- Boosting is notable for providing a rather integrated method for model term selection.


## Backfitting algorithm

- Estimate $y_{i}=\alpha+\sum_{j=1}^{m} f\left(x_{j i}\right)+\epsilon_{i}$. Let $\mathbf{f}_{j}=\left(f_{j}\left(x_{1}\right), f_{j}\left(x_{2}\right), \ldots\right)^{\mathrm{T}}$.
- Set $\hat{\alpha}=\bar{y}, \mathbf{f}_{j}=\mathbf{0} \forall j$ and repeat to convergence: For $j=1, \ldots, m$

1. Calculate partial residuals $\mathbf{e}_{j}=\mathbf{y}-\hat{\alpha}-\sum_{k \neq j} \mathbf{f}_{k}$
2. Set $\mathbf{f}_{j}$ to the result of smoothing $\mathbf{e}_{j}$ w.r.t. $\mathbf{x}_{j}$.

- A weighted version can be used on the working penalized linear model when iteratively fitting a GAM to non-Gaussian data.
- Notice we could use any smoother at step 2: e.g. spline, local regression, running mean etc. although for some we might have to subtract its mean from $\mathbf{f}_{j}$ to ensure the smooth stays centred.
- A drawback is that it is not clear how to select smoothing parameters. See Hastie and Tibshirani (1990) Generalized Additive Models and R package gam for more.

Backfitting $y_{i}=\alpha+\sum_{j=1}^{4} f\left(x_{j i}\right)+\epsilon_{i}$


## Boosting

- Idea in one dimension, with least squares loss:

1. Construct a low degree of freedom linear 'base smoother', e.g. $\hat{\boldsymbol{\mu}}=\mathbf{A y}$, where $\mathbf{A}=\mathbf{X}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}+\lambda_{\text {big }} \mathbf{S}\right)^{-1} \mathbf{X}^{\mathrm{T}}$.
2. Initialize $\hat{\mathbf{f}}=\mathbf{0}$ and then iterate $\hat{\mathbf{f}} \leftarrow \hat{\mathbf{f}}+\mathbf{A}(\mathbf{y}-\hat{\mathbf{f}})$.

- Note that if we iterate for ever we end up with the $p$ degrees of freedom fit $\hat{\mathbf{f}}=\mathbf{X}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y}$, despite the summed components each having very low EDF.
- Need a stopping rule and further inference not so easy.
- One option is the sort of bootstrap cross-validation and inference suggested for the Lasso.


## Basic boosting idea



## Gradient boosting with selection of multiple terms

- Consider a model with a $\log$ likelihood $l$ and multiple smooth terms, $f_{j}$, in a linear predictor $\boldsymbol{\eta}$.
- Set up base smoothers (hat matrix $\mathbf{A}_{j}$ ) for each $f_{j}$ potentially in the model. Iterate ${ }^{\text {II }}$..

1. Compute $e_{i}=-\mathrm{d} l / \mathrm{d} \eta_{i}$.
2. For all $j$ compute $\tilde{\mathbf{f}}_{j}=\mathbf{A}_{j} \mathbf{e}$ and find $\hat{\alpha}_{j}=\operatorname{argmax}_{\alpha} l\left(\boldsymbol{\eta}+\alpha \tilde{\mathbf{f}}_{j}\right)$.
3. Find $k=\operatorname{argmax}_{j} l\left(\boldsymbol{\eta}+\hat{\alpha}_{j} \tilde{\mathbf{f}}_{j}\right)$.
4. Set $\boldsymbol{\eta} \leftarrow \boldsymbol{\eta}+\hat{\alpha}_{k} \tilde{\mathbf{f}}_{k}$, and add $k$ to set of selected terms.

- Notes:
- This is a very efficient forward selection method, but contains no means for going backwards. Again we need a stopping rule, and have to bootstrap for further inference.
- We have an ascent direction at step 2 because we are multiplying the gradient by a positive definite matrix.
- Without the $\hat{\alpha}$ search, term selection is sensitive to base EDF.

[^3]
[^0]:    ${ }^{\dagger}$ Numerical integration based on evaluating the integrand on some grid and forming a weighted sum of the evaluations.

[^1]:    ${ }^{\ddagger}$ An approximate Hessian update used in quasi-Newton optimization

[^2]:    ${ }^{\S}$ Basically a model with a Gaussian smoothing prior precision matrix that is sparse - i.e. mostly zeroes.

[^3]:    ${ }^{\text {II}}$ Schmid and Hothorn (2008) CSDA; Mayr et al. (2012) Applied Statistics

