
INLA and other approaches to GAMs

Simon Wood

INLA: higher order marginal inference with GAMs

▶ So far we took a basically empirical Bayes approach to GAMs

yi ∼ EF(µi, ϕ) g(µi) =
∑

j

fj(xji)

▶ Smooth functions f were represented using basis expansions of
modest rank and complexity controlled by quadratic penalties
induced by Gaussian smoothing priors.

▶ Smoothing parameters were estimated by Laplace approximate
marginal likelihood, and further inference based on a Gaussian
posterior approximation.

▶ What if the Gaussian approximation is poor? Two options
1. Stochastic simulation (see later).
2. Rue et al. (2009) JRSSB 71:319-392 show how to produce much

more accurate approximations to marginal distributions of the
model coefficients.

Gaussian posterior approximation

▶ π(β|y,θ) ∝ π(y|β)π(β|θ).
▶ Here π(β|θ) = MVN(0,S−

θ).

▶ β̂ = argmax
β

π(β|y,θ) = argmax
β

l(β)* − 1
2β

TSθβ.

▶ Define log posterior Hessian, Hθ = − ∂2l
∂β∂βT

∣∣∣
β̂
+ Sθ.

▶ Second order Taylor expansion of log joint density⇒

π(β|y,θ) ≃ k exp
{
−(β − β̂)THθ(β − β̂)/2

}
= MVN(β̂,H−1

θ)

≡ πg(β|y,θ), say.

*l(β) = log π(y|β)

Laplace approximation

Consider approximating marginal likelihood. . .

π(y|θ) =
∫

π(y|β)π(β|θ)dβ

≃
∫

exp
{

l(β̂) + log π(β̂|θ)− (β − β̂)THθ(β − β̂)/2
}

dβ

= π(y|β̂)π(β̂|θ)
∫

exp
{
−(β − β̂)THθ(β − β̂)/2}

}
dβ

=
π(y|β̂)π(β̂|θ)(2π)p/2

|Hθ|1/2 (Laplace approx.)

=
π(y, β̂|θ)
πg(β̂|y,θ)

. . . i.e. joint density over Gaussian approx. posterior, both at β̂.

Gaussian posterior accuracy and INLA

▶ When n/p→∞ the approximation πg(β̂|y,θ) is usually quite
accurate, at least if p = o(n1/3).

▶ But not always true and anyway it deteriorates in the tails.
▶ Integrated Nested Laplace Approximation (INLA) makes clever

use of partial Gaussian approximations to improve the
approximation of marginal posteriors

π(βi|y,θ)

▶ First consider an example, illustrating how πg performs. . .

Posterior π(β|y,θ) and marginal π(β1|y,θ)

β1

β 2

 0.01

 0.02

 0.03

 0.04
 0.05

 0.06
 0.07

0 2 4 6 8 10

0
2

4
6

8
10

Basic Gaussian approximation, πg(β|y,θ)

β1

β 2

 0.01

 0.02

 0.03

 0.04
 0.05

 0.06
 0.07

0 2 4 6 8 10

0
2

4
6

8
10

 0.01

 0.02

 0.03

 0.04

 0.05 0.06

 0.07

 0.08

 0.09

 0.1 0.11

 0.12

The basic INLA idea

▶ The key idea in INLA is

π(βi|y,θ) =
π(β̃, y,θ)

π(β̃−i|βi, y,θ)
≃ π(β̃, y,θ)

πgg(β̃−i|βi, y,θ)
= π̃(βi|y,θ)

where πgg is some Gaussian approximation to π(β̃−i|βi, y,θ)
and β̃ maximizes the joint density subject to constraint β̃i = βi.

▶ For πgg we could use the distribution of β−i|βi implied by
πg(β|y,θ). This has a fixed covariance matrix and, writing
Σ = H−1

θ , a mean β̃−i = β̂−i +Σ−i,iΣ
−1
i,i (βi − β̂i).

▶ Hence the simplest version of INLA could just use

π̃(βi|y,θ) ∝ π(β̃(βi), y,θ)

and renormalize.

Most basic INLA π̃(β1|y,θ)

Rue et al. (2009) INLA

▶ If β̃ were the actual maximiser of π(β, y,θ) given β̃i = βi and
H−i,−i were the corresponding Hessian w.r.t. β−i, then we could
set πgg = MVN(β̃−i,H−1

−i,−i).
▶ Then π̃(βi|y,θ) is the Laplace approx. to

∫
π(β|y,θ)dβ−i

. . . and INLA is rather accurate!
▶ But MVN(β̃−i,H−1

−i,−i) is too expensive to be practical. It has to
be approximated.

▶ Rue et al. (2009) use β̃−i = β̂−i +Σ−i,iΣ
−1
i,i (βi − β̂i) implied by

πg, and an approximation to the required log |H−i,−i|.

Published INLA π̃(β1|y,θ) — approximate β̃

Ideal INLA π̃(β1|y,θ) — exact β̃

The point is . . .

▶ Using easily computed Gaussian approximations we obtain
marginal posterior approximations much more accurate than
naive direct use of posterior Gaussian approximation.

▶ The improved accuracy accrues from several features of

π̃(βi|y,θ) =
π(β̃, y,θ)

πgg(β̃−i|βi, y,θ)

1. we only evaluate the Gaussian approximation at its mean, not out
in its inaccurate tails.

2. the approximation error enters multiplicatively, rather than
growing into the tails

3. a univariate marginal is easy to renormalize.

▶ But what about θ and where is the integration?

Uncertainty in θ

▶ A Laplace approximation is used for the posterior of θ

π̃(θ | y) ∝ π(β̂, y,θ)
πg(β̂ | y,θ)

▶ Then fairly crude quadrature† is used to integrate out θ

π̃(βi | y) =
∫

π̃(βi | θ, y)π̃(θ | y)dθ

and π̃(θi | y) =
∫
π̃(θ | y)dθ−i.

▶ Or skip integration and just use the posterior mode θ̂.

†Numerical integration based on evaluating the integrand on some grid and
forming a weighted sum of the evaluations.

Computational efficiency and approximating log |H−i,−i|

▶ The key step in INLA is the approximation πgg. It must be
computationally efficient.

▶ Rue et al. (2009) use the conditional mode β̃(βi) implied by πg,
and one of two approximations to log |H−i,−i|:

1. Approximate log |H−i,−i| by its first order Taylor expansion
around β̂. Efficient default setting — properties unclear.

2. Use the heuristic that only elements of β−i that are highly enough
correlated with βi according to πg need to be considered when
updating from log |Hθ| to log |H−i,−i|.

These are efficient when Hθ is a high rank sparse matrix, as it is
in the INLA software, but not if Hθ is dense.

▶ Often it makes sense to use an intermediate rank model
representation and a dense Hθ. Then 1 and 2 impractical.

An alternative log |H−i,−i| approximation

1. Given a Cholesky factor R of Hθ, cheaply update it to the
Cholesky factor of H̃0 = Hθ[−i,−i].

2. Given this factor, cheaply run several Newton steps with fixed
H̃0 to find the numerically exact β̃(βi).

3. Approximate H−i,−i at β̃(βi) by a BFGS‡ update of H̃0 using a
small step from β̃(βi) towards β̂. This allows efficient
computation of the corresponding log |H−i,−i|.

▶ The approach works for sparse or dense Hθ. An alternative
version avoids the need for an explicit Cholesky update.

▶ As with the original method, judicious use of interpolation
avoids evaluating at too many βi values.

▶ The log determinant update has some theory. . .

‡An approximate Hessian update used in quasi-Newton optimization

Update properties

Theorem
Let H̃0 and H̃ be respectively the initial Hessian and true Hessian
with respect to β−i at β̃(βi), and assume that log π(β, y,θ) is regular
with bounded third derivative. Let H̃1 denote the BFGS update of H̃0
based on a step h∆ from β̃ where ∥∆∥ = 1. Then
|H̃1| ∈ [|H̃0|+ O(h), |H̃|+ O(h)].

▶ See Wood (2019, Biometrika) for proof and method details
▶ Not all quasi-Newton updates have this property, nor does the

Rue et al. (2009) default method.

Test example from Rue et al. (2009) §5.1

0 10 20 30 40 50

−
8

−
6

−
4

−
2

0
2

i

y

▶ yi − fi ∼ t3 where fi − µ ∼ N{ϕ(fi−1 − µ), 1} if
i = 2, . . . , 50,f1 − µ ∼ N(0, 1), ϕ = 0.85 and µ ∼ N(0, 1).

▶ Investigate goodness of fit of various INLA approximations to
long Gibbs sampling runs over 1000 replicates.

Test results

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

3
4

5
6

7
8

9
1

0

node

lo
g

 χ
2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

3
4

5
6

7
8

9
1

0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

3
4

5
6

7
8

9
1

0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

3
4

5
6

7
8

9
1

0

▶ Box-plots over 1000 reps of fit statistic - small is good.
▶ Black - Rue et al. expensive. Grey filled - new method.

Dashed/notched Rue et al. default. Grey open - direct πg.
▶ Rue et al. expensive and new method indistinguishable.

An example
▶ Method implemented in mgcv::ginla in R.
▶ In many real examples πg is actually rather good, and ginla

merely serves to confirm this!
▶ But it makes a difference when modelling the following

over-used data with the model

acceli ∼ N
(

f1(timesi), e2f2(timesi)
)

10 20 30 40 50

−
1

0
0

−
5

0
0

5
0

times

a
c
c
e

l

Example results

10 20 30 40 50

−
1

0
0

−
5

0
0

5
0

times

f 1
(t

im
e
s
)

10 20 30 40 50

0
1

2
3

4

times

f 2
(t

im
e
s
)

▶ Solid and dashed are mean and 95% intervals from πg.
▶ Blue are mean and 90% intervals, red are 95% intervals, both

from ginla.

INLA advantages and software

▶ The major advantage to the INLA approach is that computation
can efficiently exploit sparse matrices.

▶ This allows inference with large sparse Gaussian Markov
Random Fields§.

▶ Such models are especially useful in spatial settings where there
is short range stochastic dependency (autocorrelation) to model.

▶ The INLA software is the major implementation built on sparse
methods: see www.r-inla.org.

▶ ginla in mgcv offers a simple implementation for the
non-sparse case.

§Basically a model with a Gaussian smoothing prior precision matrix that is
sparse – i.e. mostly zeroes.

Other approaches to GAM estimation

▶ These slides have concentrated on quite statistical approaches to
GAMs but there are other estimation methods with more of a
learning algorithm feel.

▶ For example, backfitting and boosting both approach estimation
by iterative smoothing of residuals.

▶ They offer advantages in terms of algorithmic modularity and
efficiency, but some aspects of inference become more difficult.

▶ Backfitting is original method used in Hastie and Tibshirani’s
(1986, 1990) pioneering work on GAMs.

▶ Boosting is notable for providing a rather integrated method for
model term selection.

Backfitting algorithm

▶ Estimate yi = α+
∑m

j=1 f (xji) + ϵi. Let fj = (fj(x1), fj(x2), . . .)
T.

▶ Set α̂ = ȳ, fj = 0 ∀ j and repeat to convergence:
For j = 1, . . . ,m

1. Calculate partial residuals ej = y− α̂−
∑

k ̸=j fk

2. Set fj to the result of smoothing ej w.r.t. xj.

▶ A weighted version can be used on the working penalized linear
model when iteratively fitting a GAM to non-Gaussian data.

▶ Notice we could use any smoother at step 2: e.g. spline, local
regression, running mean etc. although for some we might have
to subtract its mean from fj to ensure the smooth stays centred.

▶ A drawback is that it is not clear how to select smoothing
parameters. See Hastie and Tibshirani (1990) Generalized
Additive Models and R package gam for more.

Backfitting yi = α +
∑4

j=1 f (xji) + ϵi

Boosting

▶ Idea in one dimension, with least squares loss:
1. Construct a low degree of freedom linear ‘base smoother’,

e.g. µ̂ = Ay, where A = X(XTX + λbigS)−1XT.
2. Initialize f̂ = 0 and then iterate f̂← f̂ + A(y− f̂).

▶ Note that if we iterate for ever we end up with the p degrees of
freedom fit f̂ = X(XTX)−1XTy, despite the summed components
each having very low EDF.

▶ Need a stopping rule and further inference not so easy.
▶ One option is the sort of bootstrap cross-validation and inference

suggested for the Lasso.

Basic boosting idea

Gradient boosting with selection of multiple terms

▶ Consider a model with a log likelihood l and multiple smooth
terms, fj, in a linear predictor η.

▶ Set up base smoothers (hat matrix Aj) for each fj potentially in
the model. Iterate¶ . . .

1. Compute ei = −dl/dηi.
2. For all j compute f̃j = Aje and find α̂j = argmaxαl(η + αf̃j).
3. Find k = argmaxjl(η + α̂j̃fj).
4. Set η ← η + α̂k f̃k, and add k to set of selected terms.

▶ Notes:
▶ This is a very efficient forward selection method, but contains no

means for going backwards. Again we need a stopping rule, and
have to bootstrap for further inference.

▶ We have an ascent direction at step 2 because we are multiplying
the gradient by a positive definite matrix.

▶ Without the α̂ search, term selection is sensitive to base EDF.

¶Schmid and Hothorn (2008) CSDA; Mayr et al. (2012) Applied Statistics

	4.Plus:
	4.Reset:
	4.Minus:
	4.EndRight:
	4.StepRight:
	4.PlayPauseRight:
	4.PlayRight:
	4.PauseRight:
	4.PlayPauseLeft:
	4.PlayLeft:
	4.PauseLeft:
	4.StepLeft:
	4.EndLeft:
	anm4:
	4.101:
	4.100:
	4.99:
	4.98:
	4.97:
	4.96:
	4.95:
	4.94:
	4.93:
	4.92:
	4.91:
	4.90:
	4.89:
	4.88:
	4.87:
	4.86:
	4.85:
	4.84:
	4.83:
	4.82:
	4.81:
	4.80:
	4.79:
	4.78:
	4.77:
	4.76:
	4.75:
	4.74:
	4.73:
	4.72:
	4.71:
	4.70:
	4.69:
	4.68:
	4.67:
	4.66:
	4.65:
	4.64:
	4.63:
	4.62:
	4.61:
	4.60:
	4.59:
	4.58:
	4.57:
	4.56:
	4.55:
	4.54:
	4.53:
	4.52:
	4.51:
	4.50:
	4.49:
	4.48:
	4.47:
	4.46:
	4.45:
	4.44:
	4.43:
	4.42:
	4.41:
	4.40:
	4.39:
	4.38:
	4.37:
	4.36:
	4.35:
	4.34:
	4.33:
	4.32:
	4.31:
	4.30:
	4.29:
	4.28:
	4.27:
	4.26:
	4.25:
	4.24:
	4.23:
	4.22:
	4.21:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	3.Plus:
	3.Reset:
	3.Minus:
	3.EndRight:
	3.StepRight:
	3.PlayPauseRight:
	3.PlayRight:
	3.PauseRight:
	3.PlayPauseLeft:
	3.PlayLeft:
	3.PauseLeft:
	3.StepLeft:
	3.EndLeft:
	anm3:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	2.Plus:
	2.Reset:
	2.Minus:
	2.EndRight:
	2.StepRight:
	2.PlayPauseRight:
	2.PlayRight:
	2.PauseRight:
	2.PlayPauseLeft:
	2.PlayLeft:
	2.PauseLeft:
	2.StepLeft:
	2.EndLeft:
	anm2:
	2.88:
	2.87:
	2.86:
	2.85:
	2.84:
	2.83:
	2.82:
	2.81:
	2.80:
	2.79:
	2.78:
	2.77:
	2.76:
	2.75:
	2.74:
	2.73:
	2.72:
	2.71:
	2.70:
	2.69:
	2.68:
	2.67:
	2.66:
	2.65:
	2.64:
	2.63:
	2.62:
	2.61:
	2.60:
	2.59:
	2.58:
	2.57:
	2.56:
	2.55:
	2.54:
	2.53:
	2.52:
	2.51:
	2.50:
	2.49:
	2.48:
	2.47:
	2.46:
	2.45:
	2.44:
	2.43:
	2.42:
	2.41:
	2.40:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.88:
	1.87:
	1.86:
	1.85:
	1.84:
	1.83:
	1.82:
	1.81:
	1.80:
	1.79:
	1.78:
	1.77:
	1.76:
	1.75:
	1.74:
	1.73:
	1.72:
	1.71:
	1.70:
	1.69:
	1.68:
	1.67:
	1.66:
	1.65:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

