INLA and other approaches to GAMs
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INLA: higher order marginal inference with GAMs

P So far we took a basically empirical Bayes approach to GAMs

vi ~ EF(ui,6) g(mi) = > fi(xi)
J

» Smooth functions f were represented using basis expansions of
modest rank and complexity controlled by quadratic penalties
induced by Gaussian smoothing priors.

» Smoothing parameters were estimated by Laplace approximate
marginal likelihood, and further inference based on a Gaussian
posterior approximation.

» What if the Gaussian approximation is poor? Two options

1. Stochastic simulation (see later).

2. Rue et al. (2009) JRSSB 71:319-392 show how to produce much
more accurate approximations to marginal distributions of the
model coefficients.



Gaussian posterior approximation

> m(Bly, 0) o< w(y|B)m(8]6).

» Here 7(3]6) = MVN(0,S, ).

> 3 = argmax n(A3ly,0) = argmax [(B)* — 187SyB.
B B

» Define log posterior Hessian, Hy = — %;lm 5 + So.

v

Second order Taylor expansion of log joint density =

7(Bly, 8) = kexp { ~(8— B)"Hy(8 - B)/2}
= MVN(3,H, ")
= Wg(13|ya 9), SaY'

*1(B) = log 7 (y|B)



Laplace approximation

Consider approximating marginal likelihood. ..
7(v16) = [ =(s1B)x(8l6)d0
= [ exp {18) + 10g(816) — (8- )"Ha(8 - )2} aB

—7(41B)7(816) [ exp {~(8 - BHA(8 - B)/2}} db

_ 7(yIB)x(B16)(2m)/?
|H9’1/2
_ 7(y,819)
Trg(l@|y7 0)

(Laplace approx.)

...1.e. joint density over Gaussian approx. posterior, both at B .



Gaussian posterior accuracy and INLA

» When n/p — oo the approximation 7, (Bly, 0) is usually quite
accurate, at least if p = o(n'/3).

P But not always true and anyway it deteriorates in the tails.

» Integrated Nested Laplace Approximation (INLA) makes clever
use of partial Gaussian approximations to improve the
approximation of marginal posteriors

7T(Bi|y7 0)

» First consider an example, illustrating how 7, performs. ..



Posterior 7(3|y, @) and marginal 7(5|y, 0)
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Basic Gaussian approximation, m,(3|y, )
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The basic INLA idea

» The key idea in INLA is

m(8,y.6) _ _ 7(B.y.6)
m(B-ilBi,y,0)  Tee(B-ilBiy, 0)

F(ﬁlb’?e) = = fr(ﬁl’yv 0)

where 7., is some Gaussian approximation to 77( _ilBi, Y 0)
and 3 maximizes the joint density subject to constraint B: = Bi.

» For 7y, we could use the distribution of 3_;|; implied by
me(Bly, @). This has a fixed covariance matrix and, writing

Y= Hglaameanﬁt—/@ +3_ 112”(@ Bz)
» Hence the simplest version of INLA could just use

77r(ﬁi|ya 0) X W(B(/Bi)v Y, 0)

and renormalize.



Most basic INLA 7(8y, 6)
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Rue et al. (2009) INLA

> If 3 were the actual maximiser of (3, y, 0) given 3; = /3; and
H_; _; were the cgrresponding Hessian w.r.t. 3_;, then we could
set mge = MVN(B_;, H~! ).

» Then 7(Sily, 0) is the Laplace approx. to [ w(8ly, 0)d3_;
...and INLA is rather accurate!

> But MVN([:L,-7 H:}ﬁi) is too expensive to be practical. It has to
be approximated.

> Rue etal. (2009) use B_; = B_; + X_;;3;;' (5; — f;) implied by
g, and an approximation to the required log [H_; _;|.



Published INLA 7 (3, |y, ) — approximate (3
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Ideal INLA 7(3,|y, 8) — exact B
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The point is ...

» Using easily computed Gaussian approximations we obtain
marginal posterior approximations much more accurate than
naive direct use of posterior Gaussian approximation.

» The improved accuracy accrues from several features of

m(8.y,0)
ﬂgg(ﬁfiWi’ y, 9)

ﬁ-(ﬁi|ya 0) =

1. we only evaluate the Gaussian approximation at its mean, not out
in its inaccurate tails.

2. the approximation error enters multiplicatively, rather than
growing into the tails

3. aunivariate marginal is easy to renormalize.

> But what about 8 and where is the integration?



Uncertainty in 6

> A Laplace approximation is used for the posterior of 0

7(83,y,0)

7Tg(/é | Y, 0)

» Then fairly crude quadrature’ is used to integrate out 8

(0 |y)

76 |y) = / #(5:16,y)7(0 | y)d6

and 7(0; | y) = [ 7(0 | y)dO_;.

» Or skip integration and just use the posterior mode 6.

"Numerical integration based on evaluating the integrand on some grid and
forming a weighted sum of the evaluations.



Computational efficiency and approximating log [H_; _|

>

| 4

The key step in INLA is the approximation mge. It must be
computationally efficient.

Rue et al. (2009) use the conditional mode 3(/3;) implied by 7,
and one of two approximations to log [H_; _;|:

1. Approximate log |H_; _;| by its first order Taylor expansion
around ﬁ Efficient default setting — properties unclear.

2. Use the heuristic that only elements of 3_; that are highly enough
correlated with 3; according to 7, need to be considered when
updating from log [Hy| to log [H_; _;].

These are efficient when Hy is a high rank sparse matrix, as it is
in the INLA software, but not if Hy is dense.

Often it makes sense to use an intermediate rank model
representation and a dense Hy. Then 1 and 2 impractical.



An alternative log |H_; _;| approximation

1. Given a Cholesky factor R of Hy, cheaply update it to the
Cholesky factor of Hy = Hyg[—i, —i].

2. Given this factor, cheaply run several Newton steps with fixed
H to find the numerically exact 3(/3;).

3. Approximate H_; _; at ,8(5,-) by a BEGS? update of Hj using a
small step from (3(;) towards 3. This allows efficient
computation of the corresponding log [H_; _;|.

» The approach works for sparse or dense Hy. An alternative
version avoids the need for an explicit Cholesky update.

> As with the original method, judicious use of interpolation
avoids evaluating at too many [; values.

» The log determinant update has some theory. ..

*An approximate Hessian update used in quasi-Newton optimization



Update properties

Theorem

Let Hy and H be respectively the initial Hessian and true Hessian
with respect to B_; at 3(;), and assume that log 7(8,y, 0) is regular
with bounded third derivative. Let H; denote the BFGS update of H,
based on a step hA from B where |A| = 1. Then

B[ € [[Ho| + O(h), [H| + O(h).

> See Wood (2019, Biometrika) for proof and method details

P> Not all quasi-Newton updates have this property, nor does the
Rue et al. (2009) default method.



Test example from Rue et al. (2009) §5.1

y

8 6 -4 -2

> yi —fi ~ t3 where fi — i ~ N{&(fi—1 — p), 1} if
i=2,...,50f1 —pu~N(0,1),¢p=0.85and u ~ N(0, 1).

> Investigate goodness of fit of various INLA approximations to
long Gibbs sampling runs over 1000 replicates.



Test results
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» Box-plots over 1000 reps of fit statistic - small is good.

» Black - Rue et al. expensive. Grey filled - new method.
Dashed/notched Rue et al. default. Grey open - direct .

P> Rue et al. expensive and new method indistinguishable.



An example

> Method implemented in mgcv: :ginlainR.

» In many real examples 7 is actually rather good, and ginla
merely serves to confirm this!

P> But it makes a difference when modelling the following
over-used data with the model

accel; ~N <f1(timesi)7ezfz(timesl-))

accel




Example results

f;(times)
fp(times)

» Solid and dashed are mean and 95% intervals from 7.
» Blue are mean and 90% intervals, red are 95% intervals, both

from ginla.



INLA advantages and software

» The major advantage to the INLA approach is that computation
can efficiently exploit sparse matrices.

» This allows inference with large sparse Gaussian Markov
Random Fields®.

» Such models are especially useful in spatial settings where there
is short range stochastic dependency (autocorrelation) to model.

» The INLA software is the major implementation built on sparse
methods: see www.r-inla.org.

» ginla in mgcv offers a simple implementation for the
non-sparse case.

$Basically a model with a Gaussian smoothing prior precision matrix that is
sparse — i.e. mostly zeroes.



Other approaches to GAM estimation

» These slides have concentrated on quite statistical approaches to
GAMs but there are other estimation methods with more of a
learning algorithm feel.

» For example, backfitting and boosting both approach estimation
by iterative smoothing of residuals.

» They offer advantages in terms of algorithmic modularity and
efficiency, but some aspects of inference become more difficult.

» Backfitting is original method used in Hastie and Tibshirani’s
(1986, 1990) pioneering work on GAMs.

» Boosting is notable for providing a rather integrated method for
model term selection.



Backfitting algorithm

> Estimate y; = a + > 7L, f(x:) + €. Let 5 = (fi(x1),fj(x2), - - JT.
» Set & =y, f; = 0V j and repeat to convergence:
Forj=1,....m
1. Calculate partial residuals ¢; =y — & — > _; fi
2. Setf; to the result of smoothing e; w.r.t. X;.
> A weighted version can be used on the working penalized linear
model when iteratively fitting a GAM to non-Gaussian data.

» Notice we could use any smoother at step 2: e.g. spline, local
regression, running mean etc. although for some we might have
to subtract its mean from f; to ensure the smooth stays centred.

P> A drawback is that it is not clear how to select smoothing

parameters. See Hastie and Tibshirani (1990) Generalized
Additive Models and R package gam for more.



Backfitting y; = a + ijlf(xji) + €
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Boosting

P Idea in one dimension, with least squares loss:
1. Construct a low degree of freedom linear ‘base smoother’,
e.g. i = Ay, where A = X(X"X + \pieS) ~'XT.
2. Initialize f = 0 and then iterate f — £+ A(y — f).
P Note that if we iterate for ever we end up with the p degrees of
freedom fit f = X(XTX) !XTy, despite the summed components
each having very low EDF.

» Need a stopping rule and further inference not so easy.

» One option is the sort of bootstrap cross-validation and inference
suggested for the Lasso.



Basic boosting idea
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Gradient boosting with selection of multiple terms

» Consider a model with a log likelihood / and multiple smooth
terms, f;, in a linear predictor 7).
» Set up base smoothers (hat matrix A;) for each f; potentially in
the model. Iteratel ...
1. Compute ¢; = —dl/dn;. R
2. For all j compute f; = Aje and find &; = argmax_ /(1 + of;).
3. Find k = argmax;l(n + &f;).
4. Setm + 1 + &ufy, and add k to set of selected terms.
> Notes:

> This is a very efficient forward selection method, but contains no
means for going backwards. Again we need a stopping rule, and
have to bootstrap for further inference.

> We have an ascent direction at step 2 because we are multiplying
the gradient by a positive definite matrix.

» Without the & search, term selection is sensitive to base EDF.

ISchmid and Hothorn (2008) CSDA; Mayr et al. (2012) Applied Statistics
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