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Additive smooth models

▶ Given the approach to modelling smooth functions covered
already, it is easy to work with additive models of the form

yi = α+
∑

j

fj(xji) + ϵi

▶ The smooth functions, fj, each get a basis and penalty but now
require sum-to-zero identifiability constraints.

▶ The intercept, α, can be replaced by parametric model terms and
some of the covariates xj might be vector quantities.

▶ Inference methods are similar to those for single smooths, but
1. the model matrix, X, is now made up of the concatenated model

matrices for each model term (smooth and parametric).
2. the penalty matrix is now the sum of multiple penalty matrices,

each multiplied by its own smoothing parameter.

▶ Vector λ makes efficient GCV/REML optimization challenging.



Generalized Additive Models

▶ Another generalization relaxes the Gaussian response
assumption, so that the model becomes

yi ∼
ind.

EF(µi, ϕ) g(µi) = α+
∑

j

fj(xji) (≡ ηi)

▶ EF(µi, ϕ) denotes some exponential family distribution* with
mean µi and scale parameter ϕ. η is the linear predictor.

▶ g is a known smooth monotonic link function.
▶ λ estimation requires GCV or REML criteria to be modified.
▶ The β estimation given λ is now a non-linear optimization and

has to be done using Newton’s method. Let’s look at this first.

*e.g. Gaussian, Poisson, binomial, gamma, Tweedie etc.



Newton’s method: basic idea

▶ Newton’s method is used to maximize or minimize smooth
objective functions, such as quadratically penalized likelihoods,
w.r.t. some parameters.

▶ We start with a guess of the parameter values.
▶ Then evaluate the function and its first and second derivatives

w.r.t. the parameters at the guess.
▶ There is a unique quadratic function matching the value and

derivatives, so we find that and optimize it to find the next guess
at the optimizer of the objective.

▶ This derivative – quadratic approximation – maximize quadratic
cycle is repeated to convergence.

▶ Convergence occurs when the first derivatives are zero†.

†The (negative) Hessian matrix of second derivatives should be positive definite
at a minimum (maximum).



Newton’s method illustrated in one dimension



Newton’s method in more detail

▶ Consider minimizing D(θ) w.r.t. θ. Taylor’s theorem says

D(θ +∆) = D(θ) +∆T∇θD + 1
2∆

T∇2
θD∆+ o(∥∆∥2)

▶ Provided∇2
θD is positive definite, the ∆ minimizing the

quadratic on the right is

∆ = −(∇2
θD)−1∇θD

▶ This also minimizes D in the small ∆ limit, which is the one that
applies near D’s minimum.

▶ Interestingly, ∆ is still a descent direction with any positive
definite matrix in place of the Hessian∇2

θD.
▶ So if∇2

θD is not positive definite we just perturb it to be so.
▶ Far from the optimum ∆ might overshoot. If so, repeatedly

halve ∆ until D(θ +∆) < D(θ) to guarantee convergence,



Newton in 2D with Hessian perturbation and step halving



Why Newton?

▶ Why not not simplify and use a first order Taylor expansion in
place of the Newton method’s second order expansion?

▶ Doing so gives the method of steepest descent and two problems
1. As we approach the optimum the first derivative of the objective

vanishes, so that there is ever less justification for dropping the
second derivative term.

2. Without second derivative information we have nothing to say
how long the step should be.

▶ In practice 1. leads to steepest descent often requiring huge
numbers of steps as the optimum is approached.

▶ To use only first derivatives check out quasi-Newton methods.
▶ What about co-ordinate descent, that worked well for the Lasso?
▶ This can also take forever for some problems.
▶ For the previous example, Newton takes 20 steps and co-ordinate

descent over 4000 (for reduced accuracy). Here are the first 20. . .



First 20 coordinate descent steps



Computing β̂ and π(β|y)
▶ Let l(β) ≡ log π(y|β) and Sλ be the combined penalty matrix.

▶ β̂ = argmax
β

l(β)− βTSλβ/2⇒ ∂l
∂β

∣∣∣
β̂
− Sλβ̂ = 0

▶ Optimized using Newton iteration (until β̂ converged):

β̂ ← β̂ + (Î + Sλ)
−1

(
∂l
∂β

∣∣∣
β̂
− Sλβ̂

)
, where Î = − ∂2l

∂β∂βT .

▶ Taylor expand about β̂ for approximate posterior

log π(β|y) = l(β)− βTSλβ/2 + c

≃ l(β̂)− 1
2
β̂TSλβ̂ −

1
2
(β − β̂)T(Î + Sλ)(β − β̂) + c

▶ Hence‡ approximately πG(β|y) ∝ e−
1
2 (β−β̂)T(Î+Sλ)(β−β̂), so

β|y ∼ N(β̂, (Î + Sλ)
−1)

‡generally requires dim(β) = o(n1/3)



Smoothing parameter selection

▶ Marginal likelihood π(y|β) =
∫
π(y|β)π(β|λ)dβ is intractable.

▶ But we can re-use the Gaussian approximate posterior, πG

π(y|λ) = π(y|β̂)π(β̂|λ)
π(β̂|y)

≃ π(y|β̂)π(β̂)|λ)
πG(β̂|y)

▶ This is tractable and is also equivalent to replacing the log of the
ML integrand with its second order Taylor expansion about β̂
and integrating the tractable result: Laplace Approximation.

2 log π(y|λ) ≃ 2l(β̂)− β̂TSλβ̂ + log |Sλ|+ − log |Î + Sλ|+ c

▶ Proceeding as in the Gaussian case:

EDF = trace{(Î + Sλ)
−1Î}



The penalized least squares link

▶ The above theory was not tied to exponential families, but in the
EF case var(yi) = V(µi)ϕ, and V is known for each distribution.

▶ Let α(µi) = 1 + (yi − µi)(V ′(µi)/V(µi) + g′′(µi)/g′(µi)) and
wi = α(µi)V(µi)

−1g′(µi)
−2 (and note that E(α) = 1).

▶ The Hessian of the negative log likelihood Î = XTWX where W
is diagonal and Wii = wi.

▶ Defining zi = g′(µi)(yi − µi)/α(µi) + ηi Newton’s method is
identical to Penalized Iteratively Re-weighted Least Squares§. . .

1. Set µ̂i = yi + ιi and iterate 2 and 3 to convergence.
2. Compute zi and wi from the current η̂i and µ̂i = g−1(η̂i).
3. Find β̂ = argminβ ∥z− Xβ∥W + βTSλβ and η̂ = Xβ̂.

▶ Replacing wi with E(wi) is known as Fisher Scoring.
▶ A simple approach estimates λ for each the working model.

§ιi is usually zero, but may be a small constant ensuring finite η̂i. ∥V∥2
W = vTWv.



Deviance based GCV

▶ For exponential family GAM/GLM there is a generalization of
the residual sum of squares, know as the deviance:

D(β) = 2(ls − l(β))ϕ

where ls is the saturated likelihood — the highest value the
likelihood could take if there was a parameter for each yi.

▶ For Gaussian data the deviance is the residual sum of squares.
▶ The GCV criterion then generalizes to

GCV = nD(β̂)/(n− EDF)2.



Nested optimization for λ̂ and implicit differentiation

▶ ML or GCV are optimized w.r.t. ρ = logλ by Newton’s method.
▶ Each trial ρ vector proposed by Newton’s method requires an

inner Newton iteration for the corresponding β̂, plus evaluation
of the gradient and Hessian of the ML or GCV criterion.

▶ These derivatives in turn require derivatives of β̂ w.r.t. ρ.

By definition of β̂,
∂l
∂β

∣∣∣∣
β̂

− Sλβ̂ = 0

▶ Noting that Sλ =
∑

j λjSj and differentiating w.r.t. ρj

∂2l
∂β∂βT

∣∣∣∣
β̂

dβ̂
dρj
−λjSjβ̂−Sλ

dβ̂
dρj

= 0⇒ dβ̂
dρj

= −λj(Î+Sλ)
−1Sjβ̂.

▶ 2nd derivs follow similarly. Criterion derivs are then routine.



Example: diabetic retinopathy

▶ The wesdr data¶ look at the relationship between development
of retinopathy, duration of disease, BMI and percentage
glycocylated haemoglobin in a cohort of diabetics.
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¶see Chong Gu’s gss package in R



A retinopathy model

▶ A possible model for these data is reti ∼ bin(1, µi)

logit(µi) = α+ f1(duri) + f2(glyi) + f3(bmii)

+ f4(duri,glyi) + f5(duri,bmii) + f6(glyi,bmii)

where logit(µ) = log{µ/(1− µ)}.
▶ The model can be estimated using gam from R package mgcv:

k <- 7 ## choosing basis size
b <- gam(ret˜s(dur,k=k)+s(gly,k=k)+s(bmi,k=k)+

ti(dur,gly,k=k)+ti(dur,bmi,k=k)+ti(gly,bmi,k=k),
select=TRUE,data=wesdr,family=binomial,method="REML")

▶ ti are tensor product smooths with main effects excluded as
covered previously.

▶ select=TRUE adds a penalty for each smooth, so that it can be
penalized to zero. Consider the eigen decomposition of a penalty
matrix S = UΛUT. Let U0 be the cols of U with corresponding
eigenvalues 0. S0 = U0UT

0 is a penalty on the null space of S.



Retinopathy results

▶ Using plot(b,scheme=1,...) we see that there is a
non-zero interaction between gly and bmi.
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Retinopathy summary

> summary(b)

Family: binomial
Link function: logit

Formula:
ret ˜ s(dur, k = k) + s(gly, k = k) + s(bmi, k = k) + ti(dur,

gly, k = k) + ti(dur, bmi, k = k) + ti(gly, bmi, k = k)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.40366 0.08979 -4.496 6.93e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(dur) 3.347e+00 6 15.092 0.00103 **
s(gly) 9.892e-01 6 87.169 < 2e-16 ***
s(bmi) 2.263e+00 6 11.724 0.00138 **
ti(dur,gly) 2.539e-04 36 0.000 0.64886
ti(dur,bmi) 8.409e-05 36 0.000 0.61919
ti(gly,bmi) 1.706e+00 35 7.505 0.00581 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.221 Deviance explained = 18.4%
-REML = 387.27 Scale est. = 1 n = 669

. . . the interaction seems to be ‘significant’.



Retinopathy interpretation

▶ So the duration effect can be interpreted alone — steadily
increasing risk for the first decade, then a decline — this may be
an age or ‘harvesting effect’ the long duration individuals being
those with good disease control.

▶ For the interaction we need to look at the combined effect. e.g.
vis.gam(b,view=c("gly","bmi"),se=T,phi=30,theta=-30,too.far=.15)
vis.gam(b,view=c("gly","bmi"),plot.type="contour",too.far=.15)
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Temporary page!

LATEX was unable to guess the total number of pages correctly. As
there was some unprocessed data that should have been added to the
final page this extra page has been added to receive it.
If you rerun the document (without altering it) this surplus page will
go away, because LATEX now knows how many pages to expect for this
document.
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