
Inference Tutorial 9
https://people.maths.bris.ac.uk/~sw15190/TOI/jags_user_manual.pdf is a link to the JAGS manual.
The str function in R is useful for examining the structure of an R object that you are unsure of. To use JAGS you have to
produce a text file containing your model specification. On the university windows computers the editors ‘notepad’ or ‘wordpad’
can be used for this (‘word’ tends to create problems with hidden characters). It is probably best to create the file wherever you
usually store your R script files, for example on the network drive accessed by opening the file manager (3rd icon from lower
left in windows), and clicking on ‘Computer’ followed by ‘MyFiles’. If you use this location then setwd("O:") (that’s the
letter, not zero) within R will cause R to look for jags (and other) files in this location (If you stored your files in a directory
called, e.g., ‘foo’ within ‘Myfiles’ then use setwd("O:/foo")). Don’t forget library(rjags).

1. As a simple example of the use of JAGS, consider the grasshopper survival data and model from tutorials 7 and 8, one
more time, but this time allowing the α parameter to take any positive value. Recall that the data are observations of x,
the length of time in excess of 14 days that it took for a random sample of 10 grasshoppers infected with a fungal disease
to die, where the times are measured from infection.
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A gamma distribution may be a good model here, so that the p.d.f. of x is

f(x) =
βα

(α− 1)!
xα−1e−xβ x > 0

in JAGS the gamma distribution (dgamma) is parameterized in terms of α and β, in that order. Use a gamma prior for β
(dgamma(1,.01)) and a log normal prior for α (dlnorm(1,1)).

(a) Use JAGS to sample 10000 values from the posterior density of α, β.

(b) Produce trace plots and ACFs for α and β to check the chain mixing, convergence and correlation.

(c) Compute the correlation lengths and effective sample sizes for the two chains.

(d) Produce histograms illustrating the marginal posterior distributions of α and β and a scatter plot illustrating the
posterior correlation.

(e) Find 95% credible intervals for α and β.

Solution

(a) The JAGS model specification file (‘hopper.jags’, say) contains

model {
for (i in 1:10) { x[i] ~ dgamma(alpha,beta) }
alpha ~ dlnorm(1,1)
beta ~ dgamma(1,.01)

}

(or equivalent code). To use this from R requires something like

x <- c(1.6,12.1,5.2,6.2,6.8,9.6,17.8,24.4,4.1,7.8)
library(rjags)
setwd("where/hopper.jags/is/located") ## replace this with path you are using
dat <- list(x=x)
jmod <- jags.model("hopper.jags",data=dat,inits=list(alpha=2,beta=.2),

n.adapt=1000)
samp <- jags.samples(jmod,c("alpha","beta"),n.iter=10000)

(b) str(samp) ## check out the structure of the returned object
par(mfrow=c(2,1))
plot(samp$alpha[1,,1],type="l")
plot(samp$beta[1,,1],type="l")
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par(mfrow=c(1,2))
cla <- sum(acf(samp$alpha[1,,1])[[1]][,,1])*2 - 1
clb <- sum(acf(samp$beta[1,,1])[[1]][,,1])*2 -1
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So there is some visible autocorrelation, but the chains are mixing reasonably well, and the 1000 steps for adaptation
seems to have been enough to allow convergence.

(c) The correlation lengths were computed above

> cla;clb
[1] 9.549154
[1] 8.82942
> neff.a <- 10000/cla
> neff.b <- 10000/clb
> neff.a;neff.b
[1] 1047.213
[1] 1132.577

(d) par(mfrow=c(1,3))
hist(samp$alpha,xlab=expression(alpha),main="")
hist(samp$beta,xlab=expression(beta),main="")
plot(samp$alpha,samp$beta,xlab=expression(alpha),ylab=expression(beta),pch=".")
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(e) > quantile(samp$alpha,c(.025,.975))
2.5% 97.5%

1.048985 4.648240
> quantile(samp$beta,c(.025,.975))

2.5% 97.5%
0.09830003 0.53002320

2. 20 weeks of new case data for an emergent disease are observed for three neighbouring towns in a remote region. The
data are shown here (towns 1, 2 and 3 are shown solid, dashed and dotted, respectively).
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The public health department trying to control the disease needs to establish whether the underlying case rate is increasing
or decreasing in each town, using the JAGS model specification and R code given at the end of this question. The case
data for the 3 towns are stored in vectors Y1, Y2 and Y3 of list dat. Study the code and answer the following questions
as concisely as possible.

(a) Briefly describe the key principles of Gibbs sampling.

(b) What is the key feature of a directed acyclic graph (DAG), and why is the DAG of a model useful in the automatic
construction of Gibbs samplers?

(c) Write out the model specified in the JAGS code, mathematically.

(d) What do the r parameters and the alpha parameters mean in terms of the disease?

(e) Comment on the final plots from the point of view of chain convergence, and describe two further diagnostics that
might be examined.

(f) Comment on the implications of the results in terms of the disease outbreak, and suggest a further quantitative
summary that might be useful to compute.

model { ## JAGS model specification
for (i in 1:M) {

Y1[i] ~ dpois(mu1[i]+alpha[1]*mu2[i]+alpha[2]*mu3[i])
d1[i] ~ dnorm(0,tau1)
mu1[i] <- N1*exp(r1*i+d1[i])
Y2[i] ~ dpois(mu2[i]+alpha[3]*mu1[i]+alpha[4]*mu3[i])
d2[i] ~ dnorm(0,tau2)
mu2[i] <- N2*exp(r2*i+d2[i])
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Y3[i] ~ dpois(mu3[i]+alpha[5]*mu1[i]+alpha[6]*mu2[i])
d3[i] ~ dnorm(0,tau3)
mu3[i] <- N3*exp(r3*i+d3[i])

}
for (i in 1:6) {

alpha[i] ~ dunif(0,0.1)
}
tau1 ~ dgamma(1.0,0.1)
r1 ~ dnorm(0,.1)
N1 ~ dnorm(100,0.01)
tau2 ~ dgamma(1.0,0.1)
r2 ~ dnorm(0,.1)
N2 ~ dnorm(300,0.01)
tau3 ~ dgamma(1.0,0.1)
r3 ~ dnorm(0,.1)
N3 ~ dnorm(500,0.01)

} ## end of JAGS code

## R code...
library(rjags)
load("disease.rda") ## load ’dat’ list
dat$M <- length(dat$Y1) ## include number of time points for JAGS
mod <- jags.model("jags.jags",data=dat)
um <- jags.samples(mod,c("r1","r2","r3"),n.iter=50000,thin=10)

par(mfrow=c(2,2),mar=c(4,4,1,1))
plot(um$r1,type="l",ylab="r1")
plot(um$r2,type="l",ylab="r2")
plot(um$r3,type="l",ylab="r3")

0 1000 2000 3000 4000 5000

0
.0

3
0
.0

4
0
.0

5
0
.0

6

Index

r1

0 1000 2000 3000 4000 5000

0
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

Index

r2

0 1000 2000 3000 4000 5000

−
0
.0

2
0

−
0
.0

0
5

0
.0

1
0

Index

r3

Solution

1. Gibbs sampling cycles through the simulation variables, simulating a draw from the conditional distribution of the current
variable, given the most recently simulated values of all the rest. In this way we end up simulating from the joint density
of all the variables.

2. The graph edges have directions. Starting from any node there is no path through the graph that follows the directed
edges to arrive back at the starting node. The DAG encodes the conditional independence structure of the model, so that
once we have the DAG we can immediately identify which other nodes play a part in simulating from the conditional
distribution of any node of interest.

3. The structure for explaining the data is. . .
Y1(t) ∼ Poi{µ1(t) + α1µ2(t) + α2µ3(t)}, µ1(t) = N1 exp{r1t+ d1(t)}, d1(t) ∼ N(0, 1/τ1) Y2(t) ∼ Poi{µ2(t) +
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α3µ1(t) + α4µ3(t)}, µ2(t) = N2 exp{r2t + d2(t)}, d2(t) ∼ N(0, 1/τ2) Y3(t) ∼ Poi{µ3(t) + α5µ1(t) +
α6µ2(t)}, µ3(t) = N3 exp{r3t+ d3(t)}, d3(t) ∼ N(0, 1/τ3)
and the priors are αj ∼ U(0, 0.1), τj ∼ Γ(1, 0.1), r1 ∼ N(0, 10), N1 ∼ N(100, 100), N2 ∼ (300, 100) , N3 ∼
N(500, 100).

4. rj is the underlying case rate growth rate in town j. The α parameters control how many of the cases seen in a particular
town are related to the rate in a neighbouring town (i.e they relate to travel related cases).

5. Convergence looks reasonable here, but it would be sensible to compute effective sample sizes and to look at the ACFs,
and to do the same for the other model components.

6. The number of cases is clearly growing in towns 1 and 2. For town 3 the posterior mode growth rate is negative, but it
would be useful to compute a credible interval to see just how confident we could be about a conclusion of underlying
rate decline in this town.
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