
Inference Tutorial 7
1. The following are observations of, x, the length of time in excess of 14 days that it took for a random sample of 10

grasshoppers infected with a fungal disease to die, where the times are measured from infection.

1.6 12.1 5.2 6.2 6.8 9.6 17.8 24.4 4.1 7.8

(
∑
xi = 95.6 and

∑
log(xi) = 20.154). It is believed that a gamma distribution may be a good model here, so that the

p.d.f. of x is

f(x) =
1

βα(α− 1)!
xα−1e−x/β x > 0

In this case the parameter β could be any positive real number, but α can only take positive integer values (because of the
requirements of the simulation model in which the estimated parameters will eventually be used).

Find the maximum likelihood estimates of α and β (a pencil paper and calculator exercise).

Solution
l(α, β) = −nα log(β)− n log[(α− 1)!] + (α− 1)

∑
log(xi)−

∑
xi/β

∂l

∂β
=
−nα
β

+

∑
xi

β2
= 0⇒ β̂ =

∑
xi

nα

Now
∑
xi = 95.6 and

∑
log(xi) = 20.154, so . . .

α = 1⇒ β̂ = 9.56⇒ l = −10 log(9.56)− 10 = −32.58

α = 2⇒ β̂ = 4.78⇒ l = −20 log(4.78) +
∑

log(xi)− 20 = −31.134

α = 3⇒ β̂ = 3.1867⇒ l = −30 log(3.1867)− 10 log(2) + 2
∑

log(xi)− 30 = −31.392
etc. . .

⇒ α̂ = 2, β̂ = 4.78.

2. Suppose that you have n independent measurements, ti, and believe that the probability density function for the tis is of
the form:

f(t) = ke−t
2/θ t ≥ 0

where θ and k are the same for all i.

(a) By considering the p.d.f of the normal distribution, show that:

k =

√
4

πθ

(b) Show thatE(t) =
√
θ/π and that var(t) = θ/2−θ/π (for the latter you should not need to perform any integration).

Finally, use the fact that if X ∼ N(0, σ2) then E(X4) = 3σ4, to show that var(t2) = θ2/2.

(c) Obtain an expression for the maximum likelihood estimator for θ.

(d) Show that your estimator is unbiased.

(e) Does an unbiased estimator exist that has smaller variance than your estimator, at finite sample sizes? Explain your
answer.

Solution

(a) Since the normal pdf is symmetric about µ then if µ = 0:∫ ∞
0

1

σ
√
2π
e−t

2/(2σ2

)dt =
1

2

Setting 2σ2 = θ it’s obvious that the honesty condition:∫ ∞
0

ke−t
2/θdt = 1

requires that k =
√

4/(πθ).
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(b)

E(t) =

∫ ∞
0

√
4

πθ
te−t

2/θdt =

[
−
√

4

πθ

θ

2
e−t

2/θ

]∞
0

=

√
θ

π

Let π(t) denote the pdf of N(0, σ2). We know that
∫∞
−∞ t2π(t)dt = σ2. Hence by symmetry

∫∞
0
t2π(t) = σ2/2,

and
∫∞
0
t22π(t) = σ2. But 2π(t) is the pdf of interest in this question, if we set σ2 = θ/2. So E(t2) = θ/2.

Hence var(t) = E(t2) − E(t)2 = θ/2 − θ/π. By similar reasoning we have E(t4) = 3θ2/4, so var(t2) =
E(t4)− E(t2)2 = 3θ2/4− θ2/4 = θ2/2.

(c) By independence, the joint p.d.f. is:
n∏
i=1

√
4

πθ
e−t

2
i /θ

so the log- likelihood is:

l(λ) = −1

2

∑
i

log θ +
1

2

∑
i

log (4/π)−
∑
i

t2i /θ

differentiating and setting to zero gives:

∂l

∂θ
= −1

2

∑
i

1

θ
+
∑
i

t2i
θ2

= 0⇒ θ̂ =
2
∑
t2i

n

(and the second derivative is clearly negative.)

(d) It’s unbiased:

E(θ̂) =
2
∑
iE(t2i )

n
= θ.

(e) The (exact) variance is:

var(θ̂) =
4

n2

∑
i

var(t2i ) =
2θ2

n

To find out whether this is the minimum possible for an unbiased estimator, we need to evaluate the CR lower bound

−E
(
∂2l

∂θ2

)−1
=

(
−1

2

n

σ2
+

2
∑
iE(t2i )

θ3

)−1
=

2θ2

n
.

So the variance of our estimator achieves the CR lower bound, implying that a lower variance unbiased estimator
does not exist.

3. bc <- read.table("https://people.maths.bris.ac.uk/~sw15190/TOI/bccd.dat",header=TRUE)
reads into R some data from a study on the side effects of radio-therapy on women with breast cancer. The data relate to
the onset of breast retardation after the commencement of radiotherapy for early stage breast cancer. Due to the nature
of the study the point of onset of retardation is not known — all that is known is that it lies within some interval, and
for some patients only the lower limit of the interval is known (these patients may never have experienced retardation,
or may have left the study or died). In assessing treatment regimes it is helpful to have a model for the time of onset of
retardation, and a very simple first model might be that the onset time, ti, is an observation of a random variable with
p.d.f

f(ti) = λe−λti .

where λ is a rate parameter to be estimated. Notice that ti is not observed directly, we only know the interval it occurs
in, and our likelihood will need to reflect this fact. The columns of bccd.dat are headed ok for the last time at which
there was known to be no deterioration, and not for the first time at which deterioration was observed — the actual time
of onset will be between these two values.

(a) Derive an expression for the probability that ti lies between any two values a and b where b > a.

(b) Hence write down an expression for the likelihood of the parameter λ.

(c) Write an R function to evaluate the log likelihood of λ (or better still p = log λ, since λ is inherently positive). Note
that R can handle numbers with value inf.

(d) By appropriate use of optim obtain a 95% CI for λ (a starting value of 0.01 is ok).
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(e) From the above CI obtain a 95% CI for the mean time of onset of retardation.

Solution

(a)

Pr[a < Ti < b] =

∫ b

a

λe−λtdt =
[
−e−λt

]b
a
= e−λa − e−λb

(b) Let ai and bi be respectively the lower and upper interval limits for subject i.

L(λ) =

n∏
i=1

(
e−λai − e−λbi

)
(c) lli <- function(p,a,b) {

# negative log likelihood for breast retardation interval data
# p is parameter a is array of lower limits, b array of upper limits

lambda <- exp(p)
-sum(log(exp(-lambda*a)-exp(-lambda*b)))

}

(d) bc <- read.table("https://people.maths.bris.ac.uk/~sw15190/TOI/bccd.dat",header=TRUE)
p <- log(0.01)
bc.fit <- optim(p,lli,method="BFGS",hessian=TRUE,a=bc$ok,b=bc$not)
p.hat <- bc.fit$par
sig.p <- (1/bc.fit$hessian)^0.5
ci <- exp(c(p.hat - 1.96*sig.p , p.hat + 1.96*sig.p))

which gives a 95% CI for λ of

> ci
[1] 0.0106158 0.0249902

(e) The m.l.e. of the expected time to retardation is 1/λ̂ (by invariance). So a 95% CI for the mean time can be obtained
by taking the reciprocals of the end points of the interval for λ.

> sort(1/ci)
[1] 40.01569 94.19920

(d-e) Alternatively, a Wilks interval could be computed (what range of parameter values would be accepted for the null
hypothesis using a GLRT).

crit <- qchisq(.95,df=1)/2

ll <- p <- seq(-5,-2,length=1000)
for (i in 1:length(p)) { ## find log lik for various parameter values

ll[i] <- -lli(p=p[i],a=bc$ok,b=bc$not)
}
## find the range of parameter values giving a log likelihood high
## enough to accept....
wilks.ci <- exp(range(p[ll > -bc.fit$value - crit]))
wilks.ci
sort(1/wilks.ci) ## interval for expected onset time.
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