
Inference Tutorial 4
These questions cover causal inference and inference for linear models

1. The text file confound.txt can be found on the course web page. It can be read into R using
conf <- read.table("https://people.maths.bris.ac.uk/~sw15190/TOI/confound.txt")
The resulting data frame contains variables y, x, z, v and w. I generated y from a linear model of the structure yi =
β0 + β1xi + β2zi + other terms + εi. conf contains x and z but not the ‘other stuff’ variables. However v and w are
independent of the ‘other stuff’ variables and were not used in generating y. I used integer values for β1 and β2. What is
your best estimate of what they were?

Hint: it should not be necessary to form any model matrices explicitly. The fitted values extracted from an lm model are
the least squares projections of the response data onto the columns of the model matrix. . .

Solution
Here is the wrong answer

> lm(y~x+z,data=dat)

Call:
lm(formula = y ~ x + z, data = dat)

Coefficients:
(Intercept) x z

-0.3196 5.7767 3.7345

It has made no attempt to account for the effects of confounding. Instead try treating v and w as instrumental variables.
We were told that they are uncorrelated with the confounders and not causally related to the response, but we need to
check that they are correlated with x and z

> cor(dat)
y x z v w

y 1.0000000 0.6081628 0.5665199 0.1753082 0.1532012
x 0.6081628 1.0000000 0.7043185 0.6023741 0.8020260
z 0.5665199 0.7043185 1.0000000 0.9053478 0.6110504
v 0.1753082 0.6023741 0.9053478 1.0000000 0.7025802
w 0.1532012 0.8020260 0.6110504 0.7025802 1.0000000

. . . fairly strong correlation. So now project x and z onto the column space of v and w, using lm, in order to orthogonalize
them to the confounders. Then estimate the model with the new predictors

> dat$x1 <- fitted(lm(x~v+w,data=dat))
> dat$z1 <- fitted(lm(z~v+w,data=dat))
> lm(y~x1+z1,data=dat)

Call:
lm(formula = y ~ x1 + z1, data = dat)

Coefficients:
(Intercept) x1 z1

-0.5506 1.2276 1.8380

So, given that integers were used in the simulation, the best estimate is that the values used were 1 and 2.

2. A government statistician under pressure to provide an explanation for the value of the pound more politically expedient
than the obvious one, is trying to build a linear model in terms of a large number of economic variables that he has
available, alongside a decade’s worth of exchange rate data. Being scrupulous, he is acutely aware of the problems of
inferring causation from association, and equally aware that the well known genius heading his department is unlikely
to grasp the distinction. Reading up on instrumental variables late one night, he can not think of any suitable ones, but
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then hits upon an idea. Why not randomly generate instrumental variables to be correlated with the known explanatory
variables: because they are randomly generated they will be independent of any hidden confounder variables. What is
wrong with this idea?

Solution
While it is possible to generate the random data that are correlated with the observed covariates (just add noise to the
observed covariates, for example), the mere fact that this involves some randomness will not ensure that they are uncor-
related with the confounders, given that the observed covariates are correlated with the confounders.

3. A statistician has fitted two alternative models to response data yi. The first is

yi = β0 + β1xi + εi (1)

and the second is
yi = β0 + β1xi + γj + εi if yi from group j. (2)

In R the factor variable containing the group labels is trt. The statistician wants to test the null hypothesis that model
(1) is correct against the alternative that model (2) is correct. To do this, both models are fitted in R, and a fragment of
the summary for each is shown below.

> summary(b0)
lm(formula = y ~ x)
...
Residual standard error: 0.3009 on 98 degrees of freedom

> summary(b1)
lm(formula = y ~ x + trt)
...
Residual standard error: 0.3031 on 95 degrees of freedom

In R this test could be conducted via anova(b0,b1), but instead perform the test using just the information given (with
reference to section 3.4.4. of the notes).

(a) Compute the residual sum of squares for each model.

(b) Compute the F ratio statistic for the test.

(c) Evaluate the p-value for the test in R, and interpret it.

Solution

(a) The residual standard error is the square root of the estimated residual variance, which is the residual sum of squares
over the residual degrees of freedom, so. . .

> rss0 <- .3009^2*98
> rss1 <- .3031^2*95
> rss0;rss1
[1] 8.872999
[1] 8.727613

(b) Directly from section 3.4.4. of the notes. . .

> F <- ((rss0-rss1)/3)/(rss1/95);F
[1] 0.5275101

(c) We need the probability of getting this large an F if the null model is true. . .

> pf(F,3,95,lower.tail=F)
[1] 0.6644552

. . . so no reason to doubt the null model.

4. This question is about using R to get a ‘hands on’ understanding of the linear model fitting theory in the notes as well
as brushing up some practical matrix skills. You will need to use some basic matrix operators and functions for working
with matrices and vectors:
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t(A) returns the transpose of any matrix A.

A%*%B performs a matrix multiplication of matrices A and B.

solve(A,b) returns A−1b.

solve(A) returns A−1.

b[3:7] returns elements 3 to 7 of vector b (obviously any range can be supplied).

as.numeric(t(b)%*%b) turns the results of a matrix-vector computation (evaluating bTb in this example) into (an)
ordinary number(s): can be useful in part h.

Should you require an arbitrary vector of length n, for some reason, then runif(n) is one possibility.

The aim of the question is to use the theory in section 3.2 of the notes to calculate least squares estimates, and a corre-
sponding estimator covariance matrix, for the linear model for the cars data, which we met in section 3.1.1 of the notes
(and in a previous tutorial). Letting yi be stopping distance for the ith trial, and xi the corresponding initial speed, then
the model is:

µi = β1 + β2xi + β3x
2
i , yi ∼ N(µi, σ

2)

where the yi are independent.

It is a good idea to build up the R code answering these questions in a text file, so that you can cut and paste it into R,
and end up with a complete solution to the practical.

(a) Create a model matrix X, for the above model, using the data in the cars data frame and the model.matrix
function e.g. X <- model.matrix(~speed+I(speed^2)) will do the trick.

(b) Now form the QR decomposition of X as follows

qrx <- qr(X) ## returns a QR decomposition object
Q <- qr.Q(qrx,complete=TRUE) ## extract Q
R <- qr.R(qrx) ## extract R

(c) Look at R to confirm its structure. Confirm that Q is and orthogonal matrix. Confirm that ‖Qx‖2 = ‖x‖2 for any x
of appropriate dimension, by trying some example x’s (why does this happen?).

(d) Obtain f and r (in the notation of section 3.2).

(e) Evaluate β̂ using R and f .

(f) Confirm that ‖r‖2 = ‖y −Xβ̂‖2, for this model.

(g) Estimate σ2 as σ̂2 = ‖r‖2/(n− p).
(h) Using σ̂2 and R, obtain an estimate of the estimator covariance matrix Vβ̂ corresponding to β̂.

(i) The following code obtains β̂ and V̂β̂ using lm.

lm.fit <- lm(dist~speed+I(speed^2),data=cars)
beta.lm <- coef(lm.fit)
V.beta.lm <- vcov(lm.fit)

Compare these results to the ones that you have obtained.

Solution

## 1.
X <- model.matrix(~speed+I(speed^2),data=cars)

## 2.
qrx <- qr(X)
Q <- qr.Q(qrx,complete=TRUE)
R <- qr.R(qrx)

## 3.
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R ## ooh! it’s upper triangular
## look at properties of Q
Q%*%t(Q) ## it’s orthogonal!
n <- nrow(cars)
x <- runif(n)
x.norm <- t(x)%*%x
Qx <- Q%*%x
Qx.norm <- t(Qx)%*%Qx
x.norm;Qx.norm
## Qx.norm = t(x)%*%t(Q)%*%Q%*%x = t(x)%*%x,
## by orthogonality of Q

## 4.
Qty <- t(Q)%*%cars$dist
f <- Qty[1:3]
r <- Qty[-(1:3)]

## 5.
beta.hat <- solve(R,f) ## backsolve more efficient

## 6.
r.norm <- as.numeric(t(r)%*%r)
rss <- sum((cars$dist-X%*%beta.hat)^2)
r.norm;rss

## 7.
sigma2.hat <- r.norm/(n-3)

## 8.
R.inv <- solve(R)
V.beta <- R.inv%*%t(R.inv)*sigma2.hat

## 9.
lm.fit <- lm(dist~speed+I(speed^2),data=cars)
beta.lm <- coef(lm.fit)
V.beta.lm <- vcov(lm.fit)

beta.lm;beta.hat
V.beta.lm;V.beta
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