
Inference Tutorial 3
This sheet covers some slightly less basic linear modelling and inference in R.

1. An online advertising company is interested in modelling the relationship between the number of adverts clicked by
customers (a standardized monthly rate), xi, and their on line spending, yi (per year), on a set of websites that they are
involved with. They also have (inferred) data on customers office for national statistics socio-economic status (categories
1-7). They want to estimate a model

yi = αse(i) + γxi + εi

under the usual linear modelling assumptions, where α1, . . . α7 and γ are parameters and se(i) is the socio-economic
class of customer i. The dataset contains wildly different numbers in the different social classes, so it is suggested to even
things out by estimating the model parameters to minimise the weighted least squares objective

n∑
i=1

(yi − µi)
2/(nse(i))

where nj is the total number of customers in socio-economic group j.

(a) Show that, for an appropriate choice of diagonal matrix W, the weighted least squares objective is equivalent to an
un-weighted least squares objective ‖ỹ − X̃β‖2, where ỹ = Wy and X̃ = WX. (β is the vector of all model
parameters.)

(b) Is β̂, obtained by minimizing the weighted least squares objective, a linear unbiased estimator?
(c) After fitting the model by weighted least squares, careful residual checking suggests that the model is a good fit

and the residual assumptions are met, overall and within each socio-economic group. Would you recommend the
weighted least squares estimator here? Explain your answer.

Solution

(a) Let Wii = n
−1/2
se(i) . Then

n∑
i=1

(yi − µi)
2/(nse(i)) =

n∑
i=1

W 2
ii(yi − µi)

2 = ‖W(y −Xβ)‖2 = ‖Wy −WXβ‖2.

(b) It’s a linear estimator, since the weighted least squares estimator will be linear in ỹ from the previous part, and ỹ
is linear in y. It’s also unbiased, as E(Wy) = WXβ, so unbiasedness follows by the same argument as in the
unweighted case.

(c) Not really. The Gauss Markov theorem tells us that the un-weighted least squares estimator would have lower
variance than (or at worst equal variance to) the weighted least squares estimator. The companies reasoning only
really makes sense if they know that the model is wrong, but in that case it might be better to try a better model, for
example allowing a different slope parameter within each socio-economic group.

2. A ‘quant’ working for prestigious international financial firm Soldman Craps, proposes the following model for predicting
the half hour return rate, ri, on a particular short term trade, based on simple market index and volatility data:

ri = β0 + β1 cos(2tiπ/48) + β2 sin(2tiπ/48) + β3DJi−1 + β4DAXi−1 + β5FTi−1

+ β6(DJi−1 − DJi−2)
2 + β7(DAXi−1 − DAXi−2)

2 + β8(FTi−1 − FTi−2)
2 + εi (1)

where the εi are i.i.d. N(0, σ2), ri is the return in the ith half hour period, ti is the time measured in half hours from
some arbitrary start point, DJi, DAXi and FTi are the state of the Dow Jones, DAX and FT100 indices in the ith half hour
period. The sin and cos terms are there to model daily fluctuations. The model is to be estimated by least squares using
data for the fortnight leading up to the trading half hour of interest. There is money to be made if ri can be predicted
along with accurate assessment of the prediction uncertainty. In test runs the prediction accuracy seems reasonable.

What basic thing is likely to be wrong with this model, and how might you plot the model residuals to investigate the
problem?

Solution
The εi will almost certainly not be independent, since there will be short-term carry-over in r from one time point to
the next, not captured by the model. Plotting residuals, ε̂i, against lagged residuals, ε̂i−1 would be likely to show up the
effect (via an obvious correlation).
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3. (a) Consider the R dataset PlantGrowth from §3.1.1 of the notes. Often people would like to use the model

weighti = µ+ βg(i) + εi,

where µ is the overall population mean weight, and βg(i) represents the departure from the overall mean as a result
of being in group g(i). What is the problem with estimating this model from data, and how will it manifest itself in
the rank of the model matrix?

(b) R deals with the problem identified in part 1 automatically. Try fitting the model using R. . .

m1 <- lm(weight ~ group,data=PlantGrowth)

and now use model.matrix(m1) to see how R has dealt with the problem. R’s solution changes the interpreta-
tion of the model parameters. Explain the new interpretation.

(c) Suppose we want to test whether group is really needed in the model. How might you formulate an appropriate
hypothesis test for this? For this simple model anova(m1) conducts such a test. Which result from the notes is it
using? And what do you conclude about the hypothesis?

(d) An alternative approach to the test is to formulate a null model

weighti = µ+ εi

without the group effect, and to compare its fit to that of the original model.

m0 <- lm(weight ~ 1,data=PlantGrowth)
anova(m0,m1)

Which result from the notes do you think is being used now? Note that the p-value has not changed!

(e) Look at the results from summary(m1). What hypotheses are being tested here. Comment on the p-values
obtained here compared to the previous test.

(f) Find a 90% confidence interval for the difference between treatment 2 and the control.

Solution

(a) There is not a unique mapping from the parameters to E(yi). For any set of values for µ and βj , the same E(yi)
would result from µ+ k and βj − k for any finite constant k. Hence we can not uniquely estimate the parameters.
Writing out the model matrix we have:

X =



1 1 0 0
1 1 0 0
. . . .
1 1 0 0
1 0 1 0
. . . .
1 0 1 0
1 0 0 1
. . . .
1 0 0 1


which is clearly rank 3 and not rank 4 (any column is a linear combination of the other 3). In consequence the
factor R in its QR decomposition is only rank 3, not 4, and hence R−1 does not exist and we can not compute the
parameter estimates.

(b) > m1 <- lm(weight ~ group,data=PlantGrowth)
> model.matrix(m1)

(Intercept) grouptrt1 grouptrt2
1 1 0 0
2 1 0 0
...
9 1 0 0
10 1 0 0
11 1 1 0
12 1 1 0
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13 1 1 0
...
20 1 1 0
21 1 0 1
22 1 0 1
...

R has just dropped the column of the model matrix corresponding to β0, the effect for the control group. This is
equivalent to constraining the control group effect to be zero (β0 = 0). This restores full column rank to the model
matrix and ensures that we can uniquely estimate the remaining parameters. The parameter interpretations have
changed, however. Clearly in the new model, E(yi) = µ for the control group. So µ is now the control group mean
(expected value). E(yi) = µ + βg(i) for the two treatment groups, so β1 and β2 are now the differences between
the expected values for treatment 1 and the control group, and between treatment 2 and the control group.

(c) Appropriate null hypothesis is H0 : β1 = β2 = 0.

> anova(m1)
Analysis of Variance Table

Response: weight
Df Sum Sq Mean Sq F value Pr(>F)

group 2 3.7663 1.8832 4.8461 0.01591 *
Residuals 27 10.4921 0.3886
...

This is using result (7) from section 3.4.4 of the notes. The fairly low p-value is evidence against the null hypothesis
— at least one of the treatments seems to have an effect on weight.

(d) > m0 <- lm(weight ~ 1,data=PlantGrowth)
> anova(m0,m1)
Analysis of Variance Table

Model 1: weight ~ 1
Model 2: weight ~ group

Res.Df RSS Df Sum of Sq F Pr(>F)
1 29 14.258
2 27 10.492 2 3.7663 4.8461 0.01591 *
...

This is using the alternative formulation of the test statistic (7) in terms of the residual sums of squares of alternative
models. The fact that it amounts to a re-writing of the same test statistic is why the p-value is identical.

(e) > summary(m1)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.0320 0.1971 25.527 <2e-16 ***
grouptrt1 -0.3710 0.2788 -1.331 0.1944
grouptrt2 0.4940 0.2788 1.772 0.0877 .
...
Residual standard error: 0.6234 on 27 degrees of freedom
Multiple R-squared: 0.2641,Adjusted R-squared: 0.2096
F-statistic: 4.846 on 2 and 27 DF, p-value: 0.01591

The p-values in the coefficients table are testing the individual hypotheses H0 : β1 = 0 and H0 : β2 = 0.
The p-values are substantially larger than in the previous part. We don’t seem to have enough evidence to reject
either individual null hypothesis. So the combined test is more powerful (more able to reject) than the individual
hypotheses. We can say with some confidence that at least one of the treatment groups differs from the control, but
which one is more difficult (probably treatment 2). This sort of effect is part of the reason for testing the effects of
factor variables all in one go, rather than starting with the tests about the factor’s individual coefficients.

(f) > beta2 <- coef(m1)[3]
> sigb2 <- diag(vcov(m1))[3]^.5
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> crit <- qt(.95,df=27)
> c(beta2 - crit*sigb2,beta2 + crit*sigb2)
grouptrt2 grouptrt2

0.01915451 0.96884549
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