
Inference Tutorial 2
This sheet covers the basics of linear modelling in R, as well as bootstrapping, and the frequentist notion of a confidence

interval. When working in R, always create a file containing your R code, which you can paste into R to produce the answer to
the question (or work in Rstudio if you prefer).

1. R has built in functions for least squares estimation of linear models, along with other inferential tasks based on the theory
covered in lectures. Since we are mostly interested in linear models to illustrate some principles of statistical inference
we will only cover some aspects of the use of these functions, rather than being comprehensive. As a first introduction
let’s fit the cars model from section 3.1.1 of the notes.

(a) Type head(cars) at the R command prompt. This will print the first few lines of the cars data frame, to give
you an idea of what is there. A data frame is a set of named columns of data, which can be of mixed type. For
example you could have some columns of numbers, some columns representing factor variables, and even some
columns of characters.

(b) The lm function is used to estimate linear models. For example, the model

disti = β1speedi + β2speed
2
i + εi

from the notes, can be estimated using

cars.mod <- lm(dist ~ speed + I(speed^2) -1,data=cars)

<- is the assignment operator in R. Here it is used to assign the fitted model object, returned by lm to a newly
created object cars.mod. The arguments of lm are inside the round brackets on the r.h.s. The first argument is
the model formula dist ~ speed + I(speed^2). Model formulae provide a simple means for specifying
models structures in R. Whatever is to the left of ~ specifies the response variable, while what is to the right
specifies how the expected response depends on predictors. Here we have specified that the expected response
should depend (linearly) on speed and speed2. The I() in the model formula is to ensure that ^2 has its usual
arithmetic meaning, and not the special meaning it would otherwise have in a model formula. Usually R would add
an intercept term to the model by default: ‘-1’ tells it not to. data=cars tells lm that the required variables are
to be found in the cars data frame.
Try it, and then type cars.mod in R, to get a short summary of the fitted model. Identify β̂1 and β̂2.

(c) cars.mod is actually an R object of class "lm". When you typed cars.mod at the R prompt, R tried to print it.
Because of its class, printing got passed to the R function print.lm which resulted in the brief output you saw.
There is alot more that can be extracted from cars.mod. For example type

summary(cars.mod)

From the result, identify β̂1, β̂2 and σ̂β̂1
and σ̂β̂2

. Now identify what tests are being performed to arrive at the
p-values reported in the Coefficients table. Find σ̂.

(d) Use model.matrix(cars.mod) to examine the model matrix (X matrix) of this linear model, confirming it is
as you expected.

(e) Now do a bit more model checking. There are 2 aspects - are the model assumptions of independence and constant
variance of the residuals met, and was the model structure adequate? To address both, fit the model

disti = β0 + β1speedi + β2speed
2
i + β3speed

3
i + εi

Supposing the resulting fitted model is cm1. First type plot(cm1) to check some residual plots for problems with
the assumptions. The first plot shows ε̂i against µ̂i (the red line is a running average of the residuals) - is there any
pattern in the mean or variability of the residuals w.r.t. the fitted values, µ̂i? The next plot is a quantile-quantile plot
(ordered residuals against quantiles of a standard normal distribution), which should be close to a straight line if the
normality assumtion holds for the residuals. The third plot is like the first, but with transformed residuals, making
it a bit easier to judge constant variance (a trend in the running average curve now indicates non constant variance).
We won’t cover the 4th plot here.

(f) Now use the summary function on cm1. Notice how the p-values have all increased. Clearly this can not mean that
all the βi = 0, since when we had only 2 terms in the model then both appeared to be non-zero. What we have here
is a loss of precision as a result of the columns of the model matrix being highly correlated, so that their effects can
not be distinguished. To proceed it makes sense to try re-fitting the model sequentially dropping the least significant
term (highest p-value), until all terms have p-values less than some threshold (e.g. 0.05). Try this. What model do
you end up with? Any caveats?

1

(g) Obtain a 95% confidence interval for reaction time from your final fitted model (use ?cars to get the units of
distance and speed).

Solution

(a) > head(cars)
speed dist

1 4 2
2 4 10

(b) > cars.mod <- lm(dist ~ speed + I(speed^2) -1,data=cars)
> cars.mod
...
Coefficients:

speed I(speed^2)
1.23903 0.09014

So β̂1 ' 1.24 and β̂2 ' 0.090.

(c) > summary(cars.mod)

Call:
lm(formula = dist ~ speed + I(speed^2) - 1, data = cars)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
speed 1.23903 0.55997 2.213 0.03171 *
I(speed^2) 0.09014 0.02939 3.067 0.00355 **

Residual standard error: 15.02 on 48 degrees of freedom
Multiple R-squared: 0.9133,Adjusted R-squared: 0.9097
F-statistic: 252.8 on 2 and 48 DF, p-value: < 2.2e-16

Parameter estimates as above, σ̂β̂1
' 0.56 and σ̂β̂2

' 0.029. Test statistics and p-values for two tests are reported
H0 : β1 = 0 and H0 : β2 = 0, the low p-values indicate that there is evidence against both, quite strong evidence
in the second case. σ̂ = 15.02.

(d) > model.matrix(cars.mod)
speed I(speed^2)

1 4 16
2 4 16
3 7 49
. . .

(e) > cm1 <- lm(dist ~ speed + I(speed^2) + I(speed^3),data=cars)
> par(mfrow=c(2,2)) ## 4 plots in one
> plot(cm1)

0 20 40 60 80

−
2
0

0
2
0

4
0

Fitted values

R
e
s
id

u
a
ls

Residuals vs Fitted

23

4935

−2 −1 0 1 2

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

Normal Q−Q

23

49
35

0 20 40 60 80

0
.0

0
.5

1
.0

1
.5

Fitted values

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

Scale−Location
23

49
35

0.0 0.1 0.2 0.3 0.4

−
2

−
1

0
1

2
3

Leverage

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

Cook’s distance
1

0.5

0.5

1

Residuals vs Leverage

49

23

35

2

First and third plots suggest that constant variance is not quite right. QQ-plot reflects this (but is no where near bad
enough to suggest a problem on its own). It might be slightly better to fix this, but for now we’ll push on.

(f) > summary(cm1)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -19.50505 28.40530 -0.687 0.496
speed 6.80111 6.80113 1.000 0.323
I(speed^2) -0.34966 0.49988 -0.699 0.488
I(speed^3) 0.01025 0.01130 0.907 0.369
...
> cm2 <- lm(dist ~ speed + I(speed^2) + I(speed^3)-1,data=cars)
> summary(cm2)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
speed 2.299945 1.802672 1.276 0.208
I(speed^2) -0.038399 0.209557 -0.183 0.855
I(speed^3) 0.003638 0.005871 0.620 0.539
...
> cm3 <- lm(dist ~ speed + I(speed^3)-1,data=cars)
> summary(cm3)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
speed 1.9751471 0.3250123 6.077 1.91e-07 ***
I(speed^3) 0.0025727 0.0008204 3.136 0.00292 **

...

So it could be that the braking distance dependence on speed is even worse than the physics suggests — we have
ended up selecting a cubic, rather than quadratic dependence of distance on speed.

(g) Assume we can still interpret β1 as relating to ‘thinking distance’. Distances are in feet, and speeds in mph. To see
how to convert, first consider converting all the distance units to feet. To convert speed into feet per hour we would
have to multiply by 5280 (feet per mile). β̂1 would consequently be divided by 5280 (otherwise the model predicted
distances would change). The newly scaled β̂1 would now have units of hours. To convert to units of seconds
we have to multiply the scaled β̂1 by 3600 (seconds per hour). So, to convert the original β̂1 to units of seconds,
as desired, we have to multiply by 3600/5280. Hence the estimated reaction time is 1.975 × 3600/5280 = 1.35

seconds. Similarly to get the 95% CI compute the CI for β̂1 and apply the same unit conversion factor

> beta1 <- coef(cm3)[1]
> sig1 <- vcov(cm3)[1]^.5
> t.crit <- qt(0.975,df=48)
> c(beta1-t.crit*sig1,beta1+t.crit*sig1)*3600/5280

speed speed
0.901136 1.792246

– a caveat however. The interpretation of β1speed as the thinking distance was based on the original physically
based model. Having selected a slightly different model it is not clear that the same reasoning really holds. Perhaps
the cubic dependence effects thinking distance as well, for example due to psychological factors we did not think
of.

2. A 95% frequentist confidence interval is supposed to include the true value of a parameter with probability 0.95, where
the probability is taken over an infinite series of replications of the data gathering and inference process. For a correct
linear model, with p parameters and n data, a 95% interval for a parameter βi is β̂i ± tn−p(.975)σ̂β̂i

, where β̂i is the
parameter estimate, and σ̂β̂i

is its estimated standard error. tn−p(.975) denotes the value below which a tn−p random
variable lies with probability 0.975. This question examines the coverage probability of such intervals by simulation.
That is we simulate data with known true parameter values, and then see how well our statistical methods do at making
inferences about them.

3

(a) The following code simulates data from the model yi = 0.5+xi+10x2i + εi where the xi are uniformly distributed
predictor variables, and εi ∼ N(0, 0.32).

n <- 100 ## sample size
b.true <- c(.5,1,10) ## true parameter values
ct <- qt(.975,n-3) ## critical points for CIs
cp <- b.true*0 ## coverage probability array
n.rep <- 1000 ## number of replicates to run
for (i in 1:n.rep) {

x <- runif(n) ## simulated covariate
mu <- b.true[1] + b.true[2]*x + b.true[3]*x^2
y <- mu + rnorm(n)*.3 ## simulated data
m1 <- lm(y~x+I(x^2)) ## fit model to this replicate
b <- coef(m1) ## extract parameter estimates
sig.b <- diag(vcov(m1))^.5 ## and standard errors
accumulate count of how often intervals include
true value...
cp <- cp + as.numeric(b-ct*sig.b <= b.true & b+ct*sig.b >= b.true)

}
cp/n.rep ## observed coverage probability

Read through the code to make sure that you understand what each line is doing. Then run the code to see how
close the observed coverage probability is to the nominal coverage of 0.95. You can cut and paste the code from the
pdf version of this sheet.

(b) What happens if the yi data have the same dependence of the expected response on x, but the yi are Poisson deviates?
That is we simulate yi, not as above, but using y <- rpois(n,mu). Modify your coverage probability loop so
that the response is Poisson, but the confidence intervals and their coverage is computed as before. How does the
observed coverage probability compare to the nominal 0.95 now? Why do you think this might be?

(c) Given the results from the previous part, we might try bootstrapping as an alternative for computing the intervals.
The simplest way to do this is to resample the x and y data together as pairs. For example the following code snippet
performs nb bootstrap resamples, fitting a linear model to each and storing the fitted coefficients in the rows of a
matrix B.

for (j in 1:nb) {
bi <- sample(1:n,n,replace=TRUE)
yb <- y[bi]
xb <- x[bi]
m1 <- lm(yb~xb+I(xb^2))
B[j,] <- coef(m1)

}

The quantile function can be applied to each column of B to compute the confidence intervals. Using this code,
or otherwise, write code to find the observed coverage probabilities of bootstrap confidence intervals for the linear
model with Poisson response, as in part (b). This will involve nested loops – an outer one simulating new x, y data,
and an inner one doing the bootstrap re-sampling. Make sure that your code is doing something sensible with small
values of n.rep and nb before setting it to run with nb=400 and n.rep=1000. The bootstrap interval should
give more reasonable coverage.

Solution

(a) On running the code I got

[1] 0.959 0.951 0.952

Of course random error (often termed Monte Carlo error) will mean that your answer may be a little different, but
the key point is that the coverages are close to nominal.

(b) n <- 100
b.true <- c(.1,1,10)
cp <- b.true*0
n.rep <- 1000

4

for (i in 1:n.rep) {
x <- runif(n)
mu <- b.true[1] + b.true[2]*x + b.true[3]*x^2
y <- rpois(n,mu)
m1 <- lm(y~x+I(x^2))
b <- coef(m1)
sig.b <- diag(vcov(m1))^.5
cp <- cp + as.numeric(b-ct*sig.b < b.true & b+ct*sig.b > b.true)

}
cp/n.rep
[1] 0.997 0.972 0.930

So now the coverages are far from nominal (0.997 is really very far from 0.95, for example). This happens because a
Poisson random variable does not have constant variance. The variance increases with the mean, which undermines
the theoretical variance calculation for the model coefficients.

(c) The final part is a bit more involved (and takes 5-10 minutes to run). Here is one possible solution. . .

cp <- b.true*0
nb <- 400;n <- 100
B <- matrix(0,nb,3)
for (i in 1:n.rep) {

x <- runif(n)
mu <- b.true[1] + b.true[2]*x + b.true[3]*x^2
y <- rpois(n,mu) ## replicate Poisson data
for (j in 1:nb) { ## bootstrapping loop

bi <- sample(1:n,n,replace=TRUE)
yb <- y[bi]
xb <- x[bi]
m1 <- lm(yb~xb+I(xb^2)) ## model fit to bs rep
B[j,] <- coef(m1) ## store resulting parameter estimates

}
for (j in 1:3) { ## get the 3 bs CIs for this rep

ci <- quantile(B[,j],c(.025,.975))
if (ci[1]<=b.true[j]&&ci[2]>=b.true[j]) cp[j] <- cp[j] + 1

}
if (i%%50==0) cat(".") ## just to let you know it’s doing something

}
cp/n.rep
[1] 0.944 0.946 0.945

This is obviously a great improvement on computing intervals using theory for which the assumptions did not hold.

5

