
Inference Tutorial 1

This week’s questions cover background material, and the frequentist and Bayesian approaches to
statistical inference.

1. https://people.maths.bris.ac.uk/~sw15190/TOI/ (also linked from Blackboard) provides some
background reading for the course.

(a) Review Chapter 1 of Core Statistics, which revises random variables and probability.

(b) Review matrix.pdf which covers essential matrix algebra needed for the course.

2. This question covers a background result that will be used several times in the course.

(a) If Y and X are random vectors such that Y = DX where D is a matrix of fixed coefficients,
show that if Vx and Vy are the covariance matrices for X and Y respectively then

Vy = DVxD
T .

(Recall that if µy ≡ E(Y), Vy = E[(Y − µy)(Y − µy)T ].)

(b) Consider a multivariate normal random vector X ∼ N(µx,Vx), and suppose that the co-
variance matrix can be decomposed Vx = CCT (this can always be done for a full rank
covariance matrix using e.g. a Choleski decomposition). Show that V−1x = C−TC−1 and that
Y = C−1(X− µx) ∼ N(0, I).

(c) Assuming that X ∼ N(µx,Vx), show that

(X− µx)TV−1x (X− µx) = YTY where Y ∼ N(0, I)

(d) If Zi are i.i.d. N(0, 1) random variables then

n∑
i=1

Z2
i ∼ χ2

n.

What is the distribution of
(X− µx)TV−1x (X− µx)

if X ∼ N(µx,Vx)?

Solution

(a)

Vy = E[(Y − µy)(Y − µy)T ]

= E[(DX−Dµx)(DX−Dµx)T ]

= DE[(X− µx)(X− µx)T ]DT

= DVxD
T

(b) Y = C−1(X− µx) ⇒ E(Y) = C−1[E(X)− µx] = 0. By the result from (a)

Vy = C−1CCTC−T = I.

Each Yi is a weighted linear sum of normal r.v.s and is hence a normal r.v. so Y ∼ N(0, I).

(c)
(X− µx)TV−1x (X− µx) = (X− µx)TC−TC−1(X− µx) = YTY

where Y ∼ N(0, I), by (b), above.
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(d) The Yi from (c) are i.i.d. N(0, 1) and YTY =
∑n
i=1 Y

2
i and hence

(X− µx)TV−1x (X− µx) ∼ χ2
n

where n = dim(X).

3. Basic matrix algebra revision. You should find these easy, but if not please study the matrix notes
from the course web page again.

(a) If y = (1,−3)T and

B =

(
−1 2 −1
2 −3 0

)
Find BTy.

(b) A is a full rank 3 × 3 matrix and B is a full rank 5 × 3 matrix. State the dimensions (i.e.
number of rows and columns) of the following if they exist. For those that do not exist, explain,
in one sentence each, why not.

i. A−1BT .

ii. A−1B.

iii. B−1A.

iv. BA.

v. B−1AT .

vi. BA−1.

vii. (BA)−1.

viii. BTA.

ix. B + A.

x. B + AT .

Solution

(a) BTy = (−7, 11,−1)T

(b) i. 3× 5.

ii. Doesn’t exist A−1 has fewer columns than B has rows.

iii. Doesn’t exist. B is not square, so inverse does not exist.

iv. 5× 3.

v. Doesn’t exist. B is not square, so inverse does not exist.

vi. 5× 3.

vii. Does not exist. BA is not square, so inverse does not exist.

viii. Does not exist. BT has more columns than A has rows.

ix. Does not exist. B and A have different dimensions.

x. Does not exist, B and AT have different dimensions.

4. The exponential distribution is often a reasonable model of the times between random events.
Suppose then, that x1, x2, . . . xn are observations of times between hardware faults on a computer
network, and it is reasonable to treat the faults as independent. To plan for fault tolerance the net-
work managers need a reasonable model for the fault occurrence rate. The p.d.f. of an exponential
distribution is

f(x) = λe−λx x ≥ 0,

where λ is a positive parameter. The variance of an exponential random variable is λ−2.

(a) If X is a random variable from an exponential distribution with parameter λ, find E(X).

(b) Hence suggest an estimator, λ̂, for λ.
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(c) What is the variance of λ̂−1?

(d) Let x̄ =
∑
i xi/n. Find a first order Taylor expansion of λ̂ about E(x̄), considering λ̂ as a

function of x̄.

(e) Hence find an approximation for the variance of λ̂, in terms of n and x̄. This use of Taylor
expansions to compute approximate variances via linearization is known as the delta method
in statistics (but goes by other names in physics and engineering, for example).

Solution

(a) This is just an integration by parts

E(X) =

∫ ∞
0

xλe−λxdx =

[
−xλe

−λx

λ
+

∫
λ
e−λx

λ
dx

]∞
0

=

[
xe−λx − e−λx

λ

]∞
0

=
1

λ

(b) So the obvious estimator is λ̂ = x̄−1.

(c) λ̂−1 = x̄ which has variance λ−2n−1.

(d)

λ̂(x̄) ' E(x̄)−1 +
dλ̂

dx̄
(x̄− E(x̄)) = E(x̄)−1 − 1

E(x̄)2
(x̄− E(x̄)).

(e) Hence

var(λ̂) ' 1

E(x̄)4
E(x̄− E(x̄))2 = λ−2n−1E(x̄)−4 ' x̄−2n−1.

5. Consider again the setup from the previous question, but now taking a Bayesian approach. This
means that we need to augment our model with a prior distribution for the parameter: λ ∼
gamma(α, θ). So the prior p.d.f. of λ is

f(λ) =
λα−1e−λ/θ

θαΓ(α)

which has expectation αθ and variance αθ2.

(a) Write down the p.d.f. for the joint distribution of the data x1, x2, . . . given λ.

(b) By considering the joint distribution of the λ and x (the vector of xi ’s), identify the posterior
distribution of λ given x.

(c) What are the posterior expectation and variance of λ?

(d) Consider the situation in which n → ∞. What happens to the Bayesian and frequentist
inferences about λ in this case?

Solution

(a) By independence of the observations the joint p.d.f. is

f(x|λ) =

n∏
i=1

λe−λxi = λne−λ
∑

i xi .

(b) f(λ|x) ∝ f(x, λ) = f(x|λ)f(λ) ∝ λne−λ
∑

i xiλα−1e−λ/θ = λn+α−1e−λ(
∑

i xi+1/θ).
i.e. λ|x ∼ gamma(n+ α, (

∑
i xi + 1/θ)−1).

(c) From the given mean and variance of a gamma distribution

E(λ|x) =
n+ α∑
i xi + 1/θ

and var(λ|x) =
n+ α

(
∑
i xi + 1/θ)2

.

(d) As n → ∞, E(λ|x) → x̄−1 and var(λ|x) → x̄−2n−1. i.e. the Bayesian posterior expectation

for λ tends to the frequentist λ̂, and the Bayesian posterior variance tends to the frequentist
estimator variance. Of course our frequentist variance was an approximation, but actually it
is one for which the error tends to zero as n→∞.
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