Theory of Statistical Inference

Statistical inference is about figuring out what data are telling us about the world. We gather data related
to some question of interest and construct a model of how the data could have been generated. The model is
incomplete, being formulated in terms of parameters whose values are unknown (or perhaps having some other
unknown component). Knowing the values of these unknowns would tell us something useful about the world. The
theory of statistical inference addresses how we can use data to make inferences about the values of the unknowns.
Since models and data are central to this enterprise, we should start with some examples.

1 Some example models of data

A statistical model is a simplified mathematical description of how a set of data might have been generated: a sort
of mathematical cartoon. A key feature is that it describes the random variability in the data generating process,
recognising that gathering a replicate set of data under similar circumstances would not give an identical dataset,
but rather a stochastically similar dataset.

1. Consider the following 60-year record of mean annual temperatures in New Haven, Connecticut (in °F, and
available as nhtemp in R).
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A simple model would treat these data as independent observations from an N (u, 0?) distribution, where
i and o2 are unknown parameters. Then the p.d.f. for the random variable corresponding to a single
measurement, y;, iS
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The joint p.d.f. for the vector y is the product of the p.d.f.s for the individual random variables, because the
model specifies independence of the y;, i.e.
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2. The New Haven temperature data seem to be ‘heavy tailed’ relative to a normal: that is, there are more
extreme values than are implied by a normal with the observed standard deviation. A better model might be
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where i, o and « are unknown parameters. Denoting the p.d.f. of a ¢,, distribution as f;_, standard transfor-
mation theory, combined with independence of the y;, implies that the p.d.f. of y is
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3. Air temperature, a;, is measured at times ¢; (in hours) spaced half an hour apart for a week. The temperature
is believed to follow a daily cycle, with a long-term drift over the course of the week, and to be subject to
random autocorrelated departures from this overall pattern. A suitable model might then be

a; = 0y + 01t; + 69 sin(27rt¢/24) + 03 COS(27Tti/24) + e,

where e¢; = pe;_1 + ¢; and the ¢; are i.i.d. N(0, 02). This model implicitly defines the p.d.f. of a, but
as specified we have to do a little work to actually find it. Writing p; = 6g + 61t; + 02 sin(2nt,; /24) +
03 cos(27t; /24), we have a; = u;+e;. Because e; is a weighted sum of zero mean normal random variables,



it is itself a zero mean normal random variable, with covariance matrix = such that 32; ; = pl'=7l62 /(1—p?).
So the p.d.f. of a,! the vector of temperatures, must be multivariate normal,
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where X depends on parameter p and o, while p depends on parameters 8 and covariate t.

4. Data were collected at the Ohio State University Bone Marrow Transplant Unit to compare two methods of
bone marrow transplant for 23 patients suffering from non-Hodgkin’s lymphoma. Each patient was randomly
allocated to one of two treatments. The allogenic treatment consisted of a transplant from a matched sibling
donor. The autogenic treatment consisted of removing the patient’s marrow, ‘cleaning it’ and returning it
after a high dose of chemotherapy. For each patient the time of death, relapse or last follow up (still healthy)
is recorded. The ‘right-censored’ last follow up times are marked with an over-bar.

Time (Days)
Allo |28 32 49 84 357 933 1078 1183 1560 2114 2144
Auto |42 53 57 63 81 140 176 210 252 476 524 1037

The data are from Klein and Moeschberger (2003). A reasonable model is that the death or relapse times
are observations of independent random variables having exponential distributions with parameters ¢; and
6, respectively (mean survival times are 9;/1l). Medically the interesting question is whether the data are
consistent with 6; = 6,,.

For the allogenic group, denote the time of death, relapse or censoring by ;. So we have

filt) = Ge—0iti uncensored
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where f; is a density for an uncensored ¢; (death) or a probability of dying after ¢; for a censored observation.
A similar model applies for the autogenic sample. For the whole dataset we then have

ft) = Hfl(m I £.t).
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The key point with all these models is that if they are correct, then given appropriate values for their parameters,
they should be able to generate data that is similar to the original data (while almost never being identical to it).

One feature of these example is that the only unknowns they contain are parameters: hence they are known as
parametric models, and the theory for making inferences about them is known as parametric statistical inference.
There other possibilities. For example models sometimes contain unknown functions as well as unknown param-
eter (e.g. a model assumes that the relationship between death rate from respiratory disease and time is a smooth
function). Such models are often known as semi-parametric, in part because we can often turn them back into
something parametric with a lot of parameters, by finding appropriate ways of representing the functions. Finally
there are truly nonparametric models which try to make minimal assumptions about how the data were generated,
beyond those absolutely necessary to answer the question of interest. For example we might have a model: ‘these
2 samples are from the same population’ which we want to compare with the model ‘these two samples come from
populations with different means’. Clearly these are not models from which we could simulate data if we only
knew the values of some unknown parameters, and hence have a rather different character to the (semi) parametric
models. In this course we will focus on parametric inference.

!For aesthetic reasons I will use phrases such as ‘the p.d.f. of y’ to mean ‘the p.d.f. of the random vector of which y is an observation’.



2 Inferential questions and approaches

Statistical inference is about inferring the model unknowns (usually parameters) from the data that the model is
supposed to have generated. This should be done in a way that accounts for the random variability in the data, so
that our conclusions will hold generally, and will not overly reflect the random peculiarities of the particular data
set being analysed. Basically we are interested in answering three questions:

1. What range of parameter values are consistent with the data?
2. Are some pre-specified values (or restrictions) for the parameters consistent with the data?
3. Could our model have generated the data at all?
Question 2 is often generalized to:
Which of several alternative models could most plausibly have generated the data?

This reflects the fact that you can view models with and without some restriction on the parameters as alternative
models to be compared.
There is another closely related question.

How could we better arrange the data gathering process to improve the answers to the preceding
questions?

This is really a question of statistical design, but it is an important one to appreciate, as it will have a bearing on
what we can conclude from statistical inference.

2.1 Basic approaches to inference: Bayesian and frequentist

There are two main approaches to statistical inference: Bayesian and frequentist. Both are useful, but imperfect.

In the frequentist approach we treat model unknowns (usually parameters) as fixed states of nature, which we
want to estimate. Random variability is present in the data generating process, and inherited by our estimates, but
the parameters themselves are unknown fixed quantities and are not random. Probability is used to describe the
variability that would occur under replication of the data gathering and estimation process.

In the Bayesian approach we use probability to describe our knowledge of the model parameters. Specifically,
we augment our model for generating data given parameter values, with a model describing our initial uncertainty
about the parameter values. This initial uncertainty model treats the model parameters as random variables and
takes the form of a probability distribution for these parameters, known as the prior distribution. Inference consists
of updating the prior distribution to a posterior distribution, which is simply the probability distribution of the
parameters given the data.

In this course we will be interested in developing general inferential methods applicable to classes of models
that are as wide as possible. Usually this generality will come at the cost of approximation. In the frequentist
approach we will often use ‘asymptotic’ results which become exact only as the sample size tends to infinity. In
the Bayesian case we will typically have to use simulation methods, which are exact only as the simulation sample
size tends to infinity. But to fix ideas consider application of the frequentist and Bayesian approaches to a simple
(and unusually tractable) example model with one parameter.

2.1.1 A simple example

Suppose that we observe data x1, 2, ...,2, which can be modelled as observations of independent N (u, 1)
random variables, where p is an unknown parameter. We want to make inferences about u, focussing on the
question of the range of 1 values consistent with the data.

Frequentist approach. We need an estimate of p. Later we will look at general principles for finding estimates,
but for now let’s use the obvious estimate ji = T (T = ZZ x;/n). The z; are observations of random variables. [i



considered as a function of those random variables is the estimator of i, and is obviously itself a random variable.
Hence we can consider its expectation, variance and distribution. We have

E(ji) = B(2) ZE x;) = pand var(fi) = nQZvar x;) =

Furthermore, since [ is a linear transformation of normal random variables it must also be a normal random
variable, so

N -1

fi ~ N(p,n™).

So we have an estimate of 1, and know that the standard deviation associated with that estimate is n~'/2. We might
also want to make probability statements about the range of values of p that are plausible. To do so requires a little
work, as the distribution of i depends on the unknown parameter p. The usual way to address such a problem
is to find a pivotal quantity, with a distribution with no unknown parameters, and work from this. For example
(ft = p)n'/? ~ N(0,1), s0

Pr(—1.96 < (i — p)n'/? < 1.96) = 0.95 = Pr(ji — 1.96n"Y/2 < p < fi + 1.96n"/2) = 0.95,

i.e. the confidence interval T + 1.96n~'/2 has a 95% chance of including the true value of £ (notice that it is the
interval that is random here, not ().

Bayesian approach. Now we are going to treat x4 as a random variable, whose distribution describes our beliefs
about the value of y. Therefore we need to augment our model with a prior distribution for p. Let’s use y ~
N(0, ai) (where ai is some fixed constant of our choosing). Bayes rule follows from the observation that the joint
density of x and p is obviously equal to the joint density of x and x, so

Fux) f(x) = f(xlp) f(n) = f(plx) = F(x|p)f(n)/f(x)

(f with different arguments denote different distributions here). We are interested in finding f(u|x) (with the
values of x plugged in), which describes our beliefs about p after observing the data, and is hence known as the
posterior distribution of ,u When f( u|x) is tractable at all, there is a trick to finding it, which avoids the difficult
process of evaluating f(x) = [ f(x|u)f(u)dp

The trick is to start from Flplx) o< f(x] ,u) (1), and to realise that any factor of f(u|x) which only involves
X, but not y, must be part of the normalizing constant of f(u|x). Hence it suffices to find the factor of f(u|x)
containing the dependence on p, and to identify the distribution to which it corresponds. So in the current case
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from which we can recognise that
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The fact that the posterior distribution is the same type of distribution as the prior (i.e. Gaussian) is a rather special
property known as conjugacy. If we had chosen a different distribution for the prior then this would not have

happened. For example a gamma prior for the mean of a Gaussian distribution will not yield a gamma posterior.
There are no unknowns in (1) so producing a 95% credible interval for p is easy:
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This fixed interval has a 95% chance of including the random variable p. Compare this to the interpretation of the
frequentist confidence interval, produced earlier.

Despite the difference in interpretation it is worth comparing the Bayesian credible interval and frequentist
confidence interval when either n or Uﬁ tend to infinity. n — oo corresponds to the sample size tending to infinity
(more data), while Jﬁ — oo corresponds to the prior becoming vaguer (less prior information). In either case the
Bayesian credible interval tends to the frequentist confidence interval, something which applies more widely than
just this simple example. It’s also interesting to compare the distributional results in this large sample/vague prior

limit: o ~ N(u,n~t) versus pu|x ~ N(f,n~1).

2.2 Inference by resampling

The examples of Bayesian and frequentist inference given above used mathematics to make inferences about
parameter values and their uncertainty. An alternative approach substitutes computation for mathematical manip-
ulation. The idea is that uncertainty about parameter values is inherited from the uncertainty in the data sampling
process. When we calculate the uncertainties associated with parameters we are essentially computing the uncer-
tainty that would result from repeating the data gathering and analysis process a large number of times. Continuing
the simple example from above, we could imagine gathering replicate data sets again and again and again, com-
puting Z for each, and thereby building up an empirical distribution for f = z.

In most cases such replication of the data is not possible, and even if we could do it, we would then prefer
to combine all the data to get a larger sample size. However we can simulate repeated replication of the data
gathering process, by simply repeatedly resampling from the one data set that we have. In particular, we can
randomly resample the original data with replacement, to create simulated replicate datasets of the same size as
the original. Unknown parameters can then be estimated from each of these datasets, in the same way as was done
for the original dataset, in order to assess the uncertainty of the parameter estimators. This process is known as
bootstrapping. Here it is applied to the simple example from the previous section. . .

set.seed(l);n <= 50
x <— rnorm(n) + 4 ## simulate data

n.rep <- 1000
mubs <- rep(0,n.rep);mubs[l] <- mean (x)
for (i in 2:n.rep) {
xb <- sample (x,n, replace=TRUE) ## bootstrap resample data
mubs[i] <- mean (xb) ## compute mu.hat for this resample
}
quantile (mubs,c(.025,.975)) ## quantiles of bootstrap distribution give CI
2.5% 97.5%
3.867025 4.315665

For comparison here is the original frequentist interval using the same data.

mu.hat <- mean (x)

mu.sd <- 1/sqgrt (n)

c(mu.hat - 1.96xmu.sd,mu.hat + 1.96*mu.sd)
[1] 3.823262 4.377634

Finally the Bayesian interval, assumming o, = 3.

sig.mu <- 3 ## prior sd

mub <- mean (x)* (nxsig.mu”2)/ (n*sig.mu”2+1)
sdb <- sqgrt(sig.mu”2/ (n*sig.mu”2+1))

c(mub - 1.96*xsdb,mub + 1.96*sdb)

[1] 3.814478 4.368235

Notice how the Bayesian interval is shifted slightly towards the prior mean of zero, relative to the frequentist
interval. The bootstrap interval is slightly narrower than the others. In this case it is slightly foo narrow and its



real coverage probability is slightly under the nominal 95%. This would improve with increasing sample size.
Increasing the sample size causes all the intervals to converge on each other.

Careful consideration of the bootstrapping process might lead you to worry about the way these bootstrap
percentile intervals have been computed - we’ve done it as if the bootstrap ji values were samples from the posterior
|x, rather than being replicates of fi. In fact various approaches can be justified here, but for the moment, let’s
move on. The key point to take from this section is the notion of quantifying uncertainty by resampling from your
data to simulate replication of the data gathering process.

3 Inference for linear models

We are interested in developing fairly general theory for statistical inference, and since statistical models are central
to statistical inference it is therefore helpful to consider some quite general classes of statistical model. The class
of linear models is a good starting point, due to its wide applicability in applied statistics and machine learning,
the elegant theory that it possesses and the wider applicability of many of the ideas that are required to use these
models.

3.1 Linear models

A linear model is one in which a response vector y is linear in some parameters 3 and some zero mean random
errors €, so that
y =XB+e.

The model matrix X is determined by some known predictor variables (also known as covariates?), observed
along with each response observation y;. Usually the elements of € are assumed to be mutually independent with
constant variance o2, For the purposes of finding confidence intervals and testing hypotheses for 3, the ¢; are also
assumed to have a normal distribution.

Two types of predictor variable form the basic ingredients of X.

1. Metric predictor variables are measurements of some quantity that may help to predict the value of the
response. For example, if the response is the blood pressure of patients in a clinical trial, then age, fat mass
and height are potential metric predictor variables.

2. Factor variables are labels that serve to categorize the response measurements into groups, which may have
different expected values. Continuing the blood pressure example, factor variables might be sex and drug
treatment received (drug A, drug B or placebo, for example). Somewhat confusingly, the groups of a factor
variable are referred to as levels although the groups generally have no natural ordering, and even if they do,
the model structure ignores it.

To understand the construction of X it helps to consider an example. Suppose that along with y; we have metric
predictor variables x; and z; and factor variable g;, which contains labels dividing y; into three groups. Suppose
further that we believe the following model to be appropriate:

2 .
Yi = Vg; T Q1T; + oz + @32y + gz + €, 1= 1,...,n,

where there is a different v parameter for each of the three levels of g;. Collecting the v and « parameters into one

2Response and predictor variables are sometimes known as ‘dependent’ and ‘independent’ variables, a particularly confusing terminology,
not used here.



vector, (3, we can rewrite the model in matrix-vector form as

I Y1 i 1 0 0 x1 = zf 21 | [ e ]
Y2 1 0 O o V) Z% Z22X9 [ 71 i €2
Y3 1 0 0 z3 23 23 =233 Y2 €3
Y4 0 1 0 x4 2z zz 2474 Y3 €4

= . . . . . . . a1 +
Q2
a3
. . . . . . . (7]
| Yn | 10 0 1 =z, 2, 2721 ZnTn | ) ) | €n |

where y; - y3 are in group 1, y, is in group 2, and vy, is in group 3 of the factor g. Notice how the factor levels/-
groups each get a dummy indicator column in the model matrix, with elements showing whether the corresponding
y; belongs to the group or not. Notice also how the metric variables can enter the model nonlinearly: the model is
linear in the parameters and error term, but not necessarily in the predictors.

3.1.1 Some simple examples

1. The cars dataframe in R contains data relating stopping distance of cars to their speed at the point
at which the signal to stop is given. Physically we expect stopping distance to be made up of two compo-
nents — a component relating to reaction time, which is therefore proportional to speed and a component
proportional to the kinetic energy of the car, i.e. to speed? (work done by the brakes is braking force times
distance which has to equal initial kinetic energy). This suggests a linear model

distance; = (3;speed, + [2speed’ + ¢;

where the €; are independent zero mean random variables with constant variance. i.e. E(e;) = 0 and
var(e;) = o for all i. We might go a little further and also assume ¢; ~ N (0, 0?).

2. As statisticians we need to be open to the possibility that our model is wrong. In the cars example, we
might mitigate against this by allowing the model a bit more flexibility than the physics suggests. For
example, we might use

distance; = fy + Bi1speed; + ,BQSpeed? + [io,speed;“3 + €;,
and then test statistically whether 3y = 0 and 83 = 0, as expected.

3. The PlantGrowth dataframe in R contains data on the weight of plant seedlings grown under three
alternative experimental conditions.

> PlantGrowth
weight group

1 4.17 ctrl

2 5.58 ctrl

11 4.81 trtl
12 4.17 trtl
21 6.31 trt2
22 5.12 trt2

A model for these data is that each treatment group has a separate mean. i.e.

weighti::ﬁg@)+*g

where ¢(i) indicates which of the 3 groups the i" observation belongs to. The assumptions on ¢; are as
above.



3.2 Linear model estimation and checking

We will start with a frequentist treatment of the linear model. That is we will assume that the parameters 3 and
o2 are fixed states of nature, but unknown to us, and that all the uncertainty is in our estimates, inherited from the
random variability in the data. We will derive results that apply to any linear model, and can be programmed into
a computer to perform the actual calculations for any specific model.

Point estimates of the linear model parameters, 3, can be obtained by the method of least squares; that is, by

minimising the residual sum of squares
n n
S=Y = (y:—m)
i=1 i=1
with respect to 3, where p = X 3. Fitting a model so that we minimise the squared error terms, or equivalently try
to make the p; as close as possible to the y;, has intuitive appeal. Later we will see that it also has some theoretical
justification.

To use least squares with a linear model, written in general matrix-vector form, first recall the link between
the Euclidean length of a vector and the sum of squares of its elements. If v is any vector of dimension, n, then
[v||?=vTv=>3"" v Hence

S=ly—ul?=ly—X8|*

Since S is simply the squared (Euclidian) length of the vector y — X3, its value will be unchanged if y — X3
is rotated or reflected. This observation is the basis for a practical method for finding ﬁ and for developing the
distributional results required to use linear models.

Specifically, as with any real matrix, X can always be decomposed

x-e|§|-ar @

where R is a p x p upper triangular matrix,> and Q is an n x n orthogonal matrix, the first p columns of which
form Q. Recall that orthogonal matrices rotate/reflect vectors, but do not change their length. Orthogonality also
means that QQT = QTQ = I,,. Multiplying y — X3 by QT implies that

2

Iy - Xa1? = 7y - @™xpl = @7y - | ] o

Defining p vector f and n — p vector r so that { i } =oly, yields*

v-xo=| | £]-| 5 ]e

The length of r does not depend on 3 and ||f — R/3||? can be reduced to zero by choosing 3 so that R3 equals f.
Hence, provided that X and therefore R have full column rank,

B=R'f 3)

2
= [If = RBI* + [Ix]*.

is the least squares estimator of 3. Notice that ||r||? = ||y — X3]|2, the residual sum of squares for the model fit.

3.2.1 Unbiasedness and variance
It is easy to show that B is unbiased (has expectation equal to the true 3).
EB) =ER'QTy) =R 'QTE(y) =R!QTXB=R'QTQRS = 3.

The covariance matrix for ,5' is also straightforward. The covariance matrix of y is Io? and so the covariance
matrix of f = QTy is QTQo? = Io2. Hence the covariance matrix of 3 = R™f is

V= R 'R To2 “4)

3Thatis, R; j = 0ifi > j

4If the final equality is not obvious recall that ||x||2 = 3=, 22, soif x = { v\:r }, Ix]12 =3, v2 + 5, w2 = ||v]|? + |w]|%



3.2.2 Checking

Further inference, beyond simply estimating 3, will require that the assumptions of independence and constant
variance of the ¢; hold. This means that we need some means for checking these assumptions, if our inference is
to be sound. Formally we will also assume normality of the ¢;, but in reality there is a certain robustness to this
assumption, as a result of the central limit theorem.

The most useful checks of model assumptions are often graphical, as these tend to indicate not just that an
assumption is violated, but also how it is violated. This in turn may allow us to fix the problem. Once we have
estimated a linear model, all the information about model fit is contained in the model residuals

€ = Yi — [l

(where 1 = X,é, of course). To check the model assumptions the €; are usually plotted against the model predictor
variables and the fitted values, [i;. Systematic pattern in the mean of the residuals will violate the independence
assumption, and often results from something wrong with how the dependence on a predictor variable has been
specified. Systematic pattern in the variability of the residuals indicates violation of the constant variance assump-
tion. This is most often manifested in the plot of €; against fi;.

33 Is B a good estimator? The Gauss Markov Theorem

As presented above, the choice of minimizing the residual sum of squares to find B was essentially arbitrary. Why
not minimise _, ;| or Y, €f or > €7 /u* or something completely different? One of the central questions of
frequentist statistical inference is whether an estimator is in some sense ‘optimal’. To address this we need to
define what makes a good estimator.

An obvious approach is to decide that we want B to be ‘as close as possible’ to 3. For example we might want
to favour estimators that have a low value for |3 — 3]|2, or its expected value. That is we might favour estimators
that have low mean square error. However Hﬁ — B||?, and similar criteria, are somewhat problematic. What if our
data contain lots of information for estimating 3; and very little information for estimating ;: does it then make
sense to give equal weight to (squared) errors in 3; and 3;? Quite perverse outcomes are possible, especially in
high dimensions, if we are not rather careful about such issues.

A somewhat less obvious, but theoretically easier, approach is to require estimators to be unbiased, meaning
that E/ (B) = (. Among unbiased estimators we then favour those with minimum variance. In the case of vector
parameters minimum variance means smallest covariance matrix, in a sense that takes care of some of the issues
around how to weight individual parameters relative to each other.

Unbiasedness has the attraction of a sort of honesty in the estimation process. It means that if we replicated our
data gathering and estimation process repeatedly, then eventually the long run average of our replicate Bs would
settle down to 3. i.e. our B has something of the property of fair dice. Given unbaisedness then minimising the
estimator variance means that we are getting as close as possible to 3.

In the context of linear models these ideas lead us to an optimality result for least squares estimation, the Gauss
Markov Theorem.

Theorem 1. Suppose that p = E(Y) = X3 and V,, = 01, and let gz~5 = cTY be any unbiased linear estimator
of ¢ = tT3, where t is an arbitrary vector. Then:

var(d) > var(9)

where ¢ = tT3 and 8 = R1QTY is the least squares estimator of 3 (X = QR). Notice that, since t is
arbitrary, this theorem implies that each element of 3 is a minimum variance unbiased estimator.

Proof. Since ¢ is a linear transformation of Y, var(é) = cTco?. To compare variances of ¢ and ¢ it is also useful

to express var(é) in terms of c. Because ¢ is unbiased we have
EC"Y)=t"8=c"BE(Y)=t"B=c"XB=t"8=c"X=t".
So the variance of (;3 can be written as

var(¢) = var(t* 3) = var(cTX3) = var(cTQRS).



This is the variance of a linear transformation of 3, and the covariance matrix of 3 is R"'R~T¢2, so
var(¢) = var(cTQRB) = c'"QRR 'R TRTQ"co? = cTQQTco?.
Hence,
var(¢) — var(¢) = ¢T (I — QQ")co?.
Because the columns of Q are orthogonal, QQT = QQTQQ", and it follows that
c'(I-QQMe={I-QQ")c}"(I-QQ")c >0,
since this is just the sum of squares of the elements of the vector (I — QQT)C. Hence the result is proved. O

So amongst estimators that are unbiased and linear in Y, least squares estimators have minimum variance. This
leaves open the possibility that some non-linear estimator might sometimes be even better, and it could be that we
could achieve lower overall error (variance + squared bias) by allowing our estimators to be biased, but we have at
least got some theoretical justification for using least squares.

3.4 Further inference: intervals and testing

Having covered estimation and checking, we are now in a position to consider how to answer the inferential
questions:

1. What range of parameter values are consistent with the data?
2. Are some pre-specified values (or restrictions) for the parameters consistent with the data?

In the specific case of linear models, we are want to find confidence intervals for the 3; and to fest hypotheses
about the ;. For example, we often want to test the null hypothesis that one or several elements of 3 are zero,
corresponding to terms being omitted from the linear model.

Confidence intervals and hypothesis tests are probabilistic concepts, so at this stage we need to turn our linear
model into a fully probabilistic model, by specifying a full distribution for the ¢;. We will simply assume that
independently ¢; ~ N(0, %), which implies that y ~ N (X3, Io?), and hence, upon recycling results from above

B~ N(B,Vj) where V5 = R™'R™"0”.

This is not yet in the most directly usable form: it gives the distribution of B in terms of the unknowns 3 and
o?. As we saw in section 2.1.1, if we want to make inferences about f3; it is helpful if we can start from a pivotal
statistic, which has a distribution with no unknowns.

341 (Bi—Bi)/65 ~tayp

First, consider the distribution of QTy. It is a linear transform of a normal random vector, so must also be a normal
random vector, and from standard theory on transformation matrices its covariance matrix is

Vgr, = Q'1Q90% = Io”.

Since, for the normal distribution only, zero covariance implies independence, the elements of QTy are mutually
independent. Furthermore,

E[ﬁ]zE@Ty):QTXﬂ:[ﬂﬂ
— E(f) = RB and E(r) = 0.

So we have that
f~ N(RB,1,06%) and r ~ N(0,1,,_,0?)

with both vectors independent of each other.
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Now, because the n — p elements of r are i.i.d. N (0, 0?) random variables,

1 1=
2 Z 2 2
72"1‘” =3 Ty~ anp‘
o o° “
i=1
The mean of a X%_p r.v. is n — p, so this result is sufficient (but not necessary) to imply that

6% =|rl*/(n —p) Q)

is an unbiased estimator of 0. The independence of the elements of r and f also implies that ﬁ and 62 are

independent.’
Now consider a single-parameter estimator, [3;, with standard deviation, o 40 given by the square root of element

1,1 of V/?' An unbiased estimator of VB is VB = VBEIQ/U2 =R 1R T42, 50 an estimator, 631, is given by the

square root of element ¢, ¢ of VB’ and it is clear that &3 = Jéﬁ/a. Hence,

Bi_ﬁi _ ﬁ Bz o ( Bz)/aﬁ
%, 93.0/0 L r|2/(n—p) \/xn ,,/n p)

(where the independence of BZ and 62 has been used).

~ tnfp (6)

3.4.2 Confidence intervals for j3;

Suppose we want a (1 — 2a)100% CI for §;. Let t,_,(«) denote the point above which a t,,_, r.v. lies with
probability o. Then

Bﬁz

<tp—p(a )) :Pr(Bi—t pla)og, < Bi < Bi + ta_pla )Uﬁ,)—l—Qa

ie. f; + tn—p(@)og, is the required interval.

3.4.3 Hypothesis tests about j;

Another possibility is that we want to test Hy : 3; = [;9, for some given value (3;9, versus an alternative, such as
Hy : B; # Byio. If Hy is true then

but otherwise we would expect the magnitude of 7" to usually be too large for consistency with a ¢,,_, distribution.
Suppose that 4 is our observed value of 7. We can judge its compatibility with Hj by assessing the probability
of getting a t,s value at least this large, if H is true. Such a probability is known as p-value for Hy. A small value
indicates that ¢, and by extension the data, are improbable under the null hypothesis. This is evidence against
Hy. Conversely if the p-value is large then ¢, and hence the data, are quite probable under H, and we have no
reason to doubt it.

The actual calculation is just a matter of assessing p = Pr(|T"| > |tobs|) Where T' ~ ¢,,_,,. This can easily
be done using the cumulative distribution function of the ¢,,_,, distribution, built in to R, for example. Note two
points:

1. From its definition, the p-value itself is an observation of a U (0, 1) r.v. if Hy is true.

2. A (1 — 2)100% confidence interval for 3; is also the range of ;o values that would result in a p-value
> 2.

SRecall that ||r||2 = ||y — X832
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These days it is usual to compute the p-value and use its magnitude to judge the evidence against the null
hypothesis, Hy. However in the days before widespread availability of computers, calculating the p-value was
difficult, as statisticians relied on printed tables of to assess the probability of test statistics. For this reason it was
common practice to make a binary decision of whether to reject or accept H on the basis of whether the p-value
was above or below some threshold significance level, such as .05 or 0.01. Operating this way you could work out
the range of test statistic values that would cause you to reject the null hypothesis, and see if your observed test
statistic was within that range.

Since we are no longer reliant on tables of probabilities, binary reject/accept decisions are generally avoided in
practice, in favour of quoting the p-value itself. This is because the the actual p-value contains substantially more
information about the evidence against H than is contained in a statement like ‘H was rejected at the 5% level’.
The latter fails to differentiate between p-values of 0.049 and 10~19, for example.

However the notion of accepting and rejecting tests is still useful in two circumstances. The first is in the theory
of testing, when we want to consider what makes a good test. In that case the probability of rejecting a false Hy
is the power of a test, and higher is obviously better. Power depends on the significance level and the true value of
Bi, of course. The second case is when we are performing large numbers of tests on the same dataset. From the
definition of p-values, you can see that if we test at a significance level of 5%, for example, then we will have a
5% probability of rejecting Hy when it is actually true. If we perform a large number of tests, then we can expect
a substantial proportion of our rejected null hypotheses to be this sort of ‘false discovery’. This is a problem that
requires some work to control.

Later on we will return to the theory of testing in more generality. For now let us move on to a slightly more
general linear model testing problem.

34.4 Testing Hy: C8=d

Recall that factor variables serve to classify observations into different groups. In a linear model each factor vari-
able will usually have several associated parameters - in principle, one for each group. If we want to test whether
the factor variable should be in the model or not, we therefore need to test whether all the factor’s parameters could
simultaneously be zero. This is a special case of the general null hypothesis Hy : C3 = d. Note that approaching
such a testing problem with a separate test for each parameter of the factor is a bad idea: how would you go about
combining the different p-values, for example?

Suppose that C is a ¢ X p matrix and d a g vector, where ¢ < p. Under Hy we have CB —d ~ N(0, CVB ch),
from basic properties of the transformation of normal random vectors. Any positive definite matrix can be factored
into the crossproduct of a triangular matrix with itself: a Cholesky decomposition. Forming the Cholesky decom-
position LTL = CVBCT, it is then easy to show that L="(C8 — d) ~ N(0,1), so,

q
(CB—-a)"(CV,CT) H(CA—-d) = (CB—-d)'L'L T (CA—d) ~ > N(0,1)° ~ x;.
i=1
As in the previous section, plugging in \Y% 5= \% 362 /o? gives the computable test statistic and its distribution
under Hy:

2

"o é(CB —T(CV;CT) OB - d) = 5(CH- )T (CV,CT) H(CH - )
_(CB-A)T(CV,CT)H(CB - d)/q /e
sz lrll?/(n—p) ~ 2,/ —p) Fyn—p- (D

This result can be used to compute a p-value for the test.

When our interest is in testing whether several elements of 3 could simultaneously be zero, then d = 0 while
C is made up of a selection of rows of the p x p identity matrix. In that case let RSS; denote the residual sum of
squares for the full model, and RSS denote the residual sum of squares for the reduced model in which the Hj is
true. It can be shown that the above test statistic then reduces to

(RSSQ — RSSl)/q

F= RSS1/(n — p)
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Figure 1: Illustration of the geometry of least squares. Left: a straight line fit to three x, y data. Right: the space in
which the y coordinates of the data define a single point, while the columns of the model matrix (solid and dashed
line) span the subspace shown in grey. The least squares estimate of E(y) is the orthogonal projection of the data
point onto the model subspace.

3.5 The geometry of linear models

Least squares estimation of linear models amounts to finding the orthogonal projection of the n dimensional re-
sponse data y onto the p dimensional linear subspace spanned by the columns of X. The linear model states that
E(y) lies in the space spanned by all possible linear combinations of the columns of the n x p model matrix X,
and least squares seeks the point in that space that is closest to y in Euclidean distance. Figure 1 illustrates this
geometry for the model,

.05 1 .1 ﬂ €1
40 | =11 1 [ 50 } + | e
65 1 6 1 €3

Given this view of least squares fitting as orthogonal projection it is interesting to look at the projection matrix
that maps the data y to the fitted values fi. We have

f=XB8=QRR'Q"y =QQ"y.

So the required projection matrix is A = QQ™, which is often known as the influence matrix, or hat matrix of the
linear model. (Don’t forget that Q is an n X p matrix with orthogonal columns, but non-orthogonal rows, so that
Q'Q=TbutQQ" #1)

One interesting property of A is that it is idempotent: AA = A. In a way this is obvious, as the orthogonal
projection of fi onto the column space of X must be /.

3.6 Results in terms of X

The presentation so far has been in terms of the QR based method actually used to fit linear models in practice.
By taking this approach, results (6) and (7) can be derived relatively easily. However, for historical reasons,
these results are more usually presented in terms of the model matrix, X, rather than the components of its QR
decomposition.

For example the covariance matrix of ﬁ becomes (XTX) 102, which is easily seen to be equivalent to (4):

vV, = (X"X)'0’= (R'Q'QR) o= (R'R) o’
= R'RTo%
The expression for the least squares estimates is 8 = (XTX) "X Ty, which is equivalent to (3):

B _ (XTX)_IXTy _ R—IR—TRTQTy _ R_1QTy _ R_lf.
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It follows that the influence/hat matrix can be written as A = X (XTX)~1XT. These results are of theoretical
interest, but should not usually be used for computational purposes.

3.7 Bayesian analysis

For a fully Bayesian analysis of the linear model we need to supply prior distributions for 3 and o2. To obtain
analytical tractability we need to use conjugate priors. For the regression coefficients use 3 ~ N(Bg, ¥ ') where
Bo and v are given. Defining the precision 7 = 1/0? then 7 ~ G(a,b) is conjugate, where G(a, b) denotes a
gamma random variable with p.d.f. f(7) = b%7% 'e=""/T'(a). So a, b, By and v are quantities to which we
would have to give actual values, for a practical analysis. Now the joint distribution of data and parameters is

F(y,B,7) oc 72 Iy =XBIPT/2=(B=Bo) " $(B—Bo) /2 —b7 pa—1

The distribution of 7|3,y is proportional to this, and can be identified by reading off the factors dependent on 7
(everything else being part of the normalising constant). . .

F(718,y) oc 7/2 et emT(bHIy=XBI%/2),

This is immediately identifiable as a G(n/2 +a, b+ ||y — X/3||?/2) distribution. Similarly the 3 dependent factor
from the joint distribution lets us identify the distribution of 3|7, y.

F(BIr,y) o e 2B XTXBr—2pX yr T pB-23"T )
X

o 3B (XTXr49p) " (7X Ty +4pB0)} T (X T Xr+4p) {B—(XT X7+4p) 1 (rX Ty +4p80) }

which is recognisable as a N (XTX7 + )1 (X Ty +43), (XTX7 4 2p) 1) distribution.

If the sample size tends to infinity so that X T X dominates ), or if the prior precision matrix tends to the zero
matrix, then f(3|7,y) tends to a N (8, (XTX)~102) density, so that once again Bayesian and frequentist intervals
for B will coincide.

Notice that we have not quite produced the full joint posterior density of 3, 7|y, but rather the conditional
densities of B|7,y and 7|3,y. In practice there are several ways to proceed using just these. One option is
to iteratively find the posterior modes of 3 given the estimated mode of 7 and the posterior mode of 7 given
the estimated modes of 3, until the mode of 7 converges, and then just plug this into the conditional density
of 3. An alternative is to integrate 3 out of f(7|3,y) to obtain f(7|y). This marginal likelihood can then be
maximized to find 7, which is plugged into f(8|7,y) (this procedure is known as ‘empirical Bayes’). Finally we
can simply alternate simulation of 3 from f(8|7,y), given (simulated) 7 with simulation from f(7|3,y) given
the last simulated 3, to generate joint draws 7, 3 from the posterior f(3, 7|y). This approach is known as Gibbs
sampling. The generated 7, 3 vectors have some serial correlation, but otherwise are a random sample from the
posterior, which can be used as the basis for inference. We will look in more detail at this sort of Bayesian
stochastic simulation later.

4 Causality, confounding and randomization

There are several different purposes for which we may wish to use the methods of statistical inference.

1. For prediction. For example we build a model of patients’ probability of heart disease based on lifestyle
factors such as diet and exercise, estimate the model from a representative group of subjects whose heart
disease status is known, and use it to predict the status of new subjects.

2. To establish association between variables. For example we suspect that being educated in a single sex
school may be negatively associated with length of marriage, and use statistical modelling to assess whether
this putative association is real, or could just be due to chance variability in the data.

3. To establish causation. Often, especially in science, we want to know whether something is an actual cause
of something else. Famous examples are: does smoking cause cancer? and does the MMR vaccine cause
autism?
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The methods we have covered so far are quite sufficient for addressing 1 and 2, but the causal inference required
in 3 is more difficult, and the sort of methods covered so far are not sufficient to establish causality on their own.

To understand the issues, it is important to really have grasped the difference between correlation (association)
and causality. An oft quoted example is the correlation between the population of storks and the birth rate, in
Europe. The correlation is real, but there is obviously no causation. Rather, industrialization raised health care,
living and educational standards in Europe leading to reduced birth rates, but that same industrialization led to a
reduction in suitable habitat for storks. That is, the association is caused by other factors which may be causative
to both variables of interest.

Confusing correlation with causation is a famously good way of selling newspapers. A study from the univer-
sity of Bath was reported as revealing that men who preferred women with a smaller than usual hip to waist ratio
were more likely to have autistic children. The association was real, but it was the interpretation in terms of the
preference being somehow causative that made the story interesting. In fact, the likely explanation of the associ-
ation is that higher than average testosterone in the womb seems to be a causative factor in autism, and women
with higher than average testosterone tend to have smaller than usual hip to waist ratio. For obvious reasons they
also tend to have children with men who find them attractive. This explanation makes for a duller press release, of
course. Again the key is a hidden variable related to the variables of direct interest.

4.1 Confounding: some simulated examples

To appreciate the effect of correlated predictors on interpretation and attempts at causal inference, it is worth
looking at some simulations, where we are in complete control of the correlation structure between variables. The
following code simulates two correlated predictor variables,  and h:

require (mgcv) ## supplies rmvn

V <- matrix(c(1l,.95,.95,1),2,2) ## cov matrix
n <- 1000 ## number of data

set.seed(7) ## just for reproducibility

X <- rmvn(n,rep(0,2),V)

x <— X[,1];h <- X[, 2]

Now consider the case when y; = x; + €;, but we fit the model y; = By + S1x; + B2hi + €.

>y <— x + rnorm(n)
> summary (lm(y ~ x + h))

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.003268 0.031170 -0.105 0.9165

X 0.812568 0.098924 8.214 6.59e-16 *#*x*
h 0.209603 0.099475 2.107 0.0354 =
> summary (Im(y ~ x ))

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.002117 0.031219 -0.068 0.9406
X 1.010417 0.031191 32.395 <2e-16 **=*

Because of the high correlation between x and h it is difficult to distinguish their effects, with the result that when
both are included in the model the ‘explanation’ of the response tends to get shared out between them, leading to
rather variable estimates of the real effect of z. In contrast when the spurious h term is omitted from the model,
the estimate of 51 is much more accurate. Actually, for most replicates of the data simulation, 35 would not have
appeared to be significantly different from zero, so we would have been likely to drop the term, and arrive at the
correct model using just the inferential tools already developed.

However, it is worth also looking at what would have happened if we had only observe h but not x:
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> summary (Im(y ~ h))

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.007193 0.032187 -0.223 0.823
h 0.985161 0.032336 30.466 <2e-16 **=*

The high correlation between h and = means that we find a strongly significant association between h and y, despite
the fact that i played no part at all in the simulation of y! In this case x is an example of a hidden confounding
variable: it is correlated with both our predictor, h, and our response y, and therefore messes up our inference
about the true causal influence of h on y (which is zero in this case).

Here is a second example of confounding. Now both h and x have a causal effect on y, and if we only observe
x, we will overestimate its true effect (overestimate, because the correlation is positive).

>y <= x + h + rnorm(n)
> summary (lm(y ~ x ))

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 0.01714 0.03249 0.528 0.598
X 1.92020 0.03246 59.155 <2e-16 *x*

> summary (lm(y ~ x + h))

Estimate Std. Error t value Pr(>|t])

(Intercept) 0.01257 0.03145 0.400 0.689
b4 1.13516 0.09980 11.374 < 2e-16 *xx
h 0.83168 0.10036 8.287 3.71le-16 *x*x

i.e. when h is hidden from us, our estimate of 3; is almost twice as large as it should be in this case.

Note that this tendency of the model fitting to try and compensate for missing confounding variables, is a
profound difficulty for causal inference, but a blessing for prediction. The fact that the model has adjusted for the
missing confounders in this way actually improves prediction.

4.2 Controlled experiments and randomization

The gold standard for establishing causality is to analyse data from a properly designed experiment, in which
we use the process of randomization to break any possible association between unmeasured confounders and the
predictor whose effect we want to measure. The idea is basically to turn the systematic variation in the response
caused by confounders into something that we can model as independent random variability between experimental
units.

An example is the most useful way to convey the idea. Suppose that we want to examine the relationship
between exercise and fat mass in people aged 40 to 50. There are a huge number of factors contributing to people’s
fat mass, and if we simply look at a sample of people who already exercise by different amounts it will be very
difficult to isolate the effect of exercise separate from all the other confounders (diet, working hours, profession,
whether they have children, drinking habits, smoking, wealth etc.). Suppose instead that we set up a study in
which participants enrol and are then assigned to one of several ‘treatments’, consisting of exercise programs of
differing intensity (or a control of none). Now if we assign subjects to the different treatments randomly then there
can be no possible association between all the other variables contributing to fat mass, and the one that we are
interested in: amount of exercise. Indeed all the variability in fat mass attributable to the confounders can now be
treated as random variability within each treatment. Any effect of exercise that we then find is causal: the thing
we controlled having an effect on the variable we are interested in. Of course this approach does not stop us from
including measured covariates in the analysis model, in order to reduce the amount of variability being modelled
as random, and thereby increase precision, but it does mean that we no longer have to worry about the effect of
hidden confounders.
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To appreciate the issue mathematically, consider a linear model for which the full model matrix is (X, H)
(w.l.o.g. assume that the colulpns of H are centred). If we had not observed the variables in H, then our estimates
of the effects of X would be 3, = (XTX)~!XTy, whereas if we observed all the data then it would be

B XTX XTH ]7'[ XT

A = T T T |Y-

B H*'X H'H H
Clearly if XTH # 0 then 3, # (., that is the missing confounders in H interfere with the estimation of 3, .
However if the confounders are independent of X, then at least in the large sample limit, X"H = 0, so that

) [5 ] [5 [ e )

i.e. when the confounders are independent of the response we get the same estimate of 3, whether or not they are
included in the model (and its expected value is correct). Randomization ensures that this occurs.

4.3 Instrumental variables

So properly designed controlled experiments with random allocation of experimental units to treatments are the
best way of establishing causal effects. However there are many cases in which experimental manipulation is
impractical, unethical and/or illegal. For example, if we are interested in establishing the causative effect of
alcohol consumption on heart disease, it is simply unethical to conduct a study in which we randomly allocate
subjects to a heavy drinking treatment (the same goes for any treatment where we have prior cause to suspect it
may be harmful). Economics is another field beset with such problems: for example it is impractical to conduct
a controlled experiment to establish the causative factors controlling a company’s share price, and anything that
came close would likely count as illegal market manipulation. This sort of problem is so ubiquitous in economics
that it is from the field of econometrics that much of the work on causal inference from observational data comes.

In this section we will look at one method: instrumental variables. The approach can be applied more widely
than just to linear models, but the ideas are easiest to grasp in the linear model context. Let’s again use the setup
in which X is the model matrix for the observed effects, H is the (column centred) model matrix for the hidden
confounders and the response data are generated by,

y =XB: + HBi + €

Since we don’t have access to H we fit y = X3, + e, and therein lies the problem, since in reality e = H3, + €,
which is unlikely to meet the linear model assumptions about the residual vector. Indeed,

B(B,) = (X™X)"'X"(X,H)B = 3, + (X"X) 'XTHB,, # B..

Now the problem here is that the space spanned by X is not orthogonal to e, because of the interdependence of X
and H. This would not be a problem if we could somehow orthogonalize X and e, for example by projecting X
onto a space that is orthogonal to e.

Suppose then, that we have available some instrumental variables giving rise to a (column centred) model
matrix Z, where Z is not part of the true model for y, but is correlated with X and is independent of H (and hence
e). We’ll assume that Z has at least as high a rank as X, and w.l.o.g. its columns are centred to have zero mean.
We could then project X onto the column space of Z. That is replace X with A, X where A, = Z(ZTZ)"'Z7,
and regress y on A, X. In that case

B, = (XTA.X)'XTA.y
and we now have
EB,) = (XTA.X)"'XTA.XB, + (XTA.X)'XTA HB, ~ 3.,

since A,H ~ 0 as a result of ZTH ~ 0 by the independence of Z and H (alternatively we could also take
expectations over the distribution of the predictors to obtain equality).

Here is a simulated illustration. First simulate observed x, confounder h and instrument z, by simulating
multivariate random variables with appropriate correlation structure, using x and h to simulate response .
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V <- matrix(c(1,.7,0.9,.7,1,0,.9,0,1),3,3)
library(mgcv); n <—- 1000; set.seed(0)

X <- rmvn(n,rep(0,3),V)

X <—- X[,1]; h <= X[,2]; z <- X[, 3]

y <- x + h + rnorm(n)*.3

Now fit the model naively, and then again using the instrumental variable.

> summary (Im(y ~ x)) ## naive fit

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 0.01760 0.02426 0.726 0.468
b4 1.70146 0.02425 70.173 <2e—-16 **x*

> zx <- fitted(lm(x~z-1)) ## project x onto z
> summary (Im(y ~ zx)) ## fit iv model

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.08042 0.05434 1.48 0.139
zZX 1.01547 0.07557 13.44 <2e-16 *x*xx%

Clearly the IV model gives an estimate that is much closer to correct. The price paid is precision: the standard
error is substantially larger than we would get if & had been available for inclusion in the model (and that is without
correcting for the uncertainty in the regression of x on z). This approach is not the only way of using instrumental
variables, and their use is not restricted to linear models, but this method is sufficient for introducing the idea.

The success of such methods rests on being able to find good instrumental variables, which are independent
of the potential confounders, but strongly correlated with the observed variables (weak correlation will inflate the
standard errors of the estimates). Another way of stating this is that the instrumental variables must be correlated
with the response variable only via the instrument’s correlation with the observed predictor variables.

Finding such variables is obviously not easy, and one might question how often such a magical combination
of correlation with X but independence of H can really apply, and be knowable when the confounders are not.
However the technique of ‘Mendelian randomization’, provides an application of instrumental variable use that
does seem to be practical. Take the example of alcohol and heart disease. There are genetic polymorphisms that
predict the propensity to consume alcohol, but are completely unrelated to any other plausible predictors of heart
disease. Hence a subject’s genotype (with respect to this polymorphism) can be used as an instrumental variable.
The method is called ‘Mendelian randomization’ after the genetic pioneer Gregor Mendel, and the fact that the
genotype is assigned randomly by meiosis when passed from parents to offspring, thereby avoiding correlation
with things that it does not actually cause.

‘Mendelian randomization’ is important in epidemiology when trying to uncover health effects of environmen-
tal exposures that can not (ethically) be manipulated experimentally, however finding appropriate polymorphisms
and establishing that they are uncorrelated with any unobserved confounders is obviously challenging.

5 Beyond linear models

Suitably chastened by the difficulties associated with ascertaining causation, let’s move on with some more straight-
forwardly mathematical theory. In particular, it is time to move on from the linear model, to consider statistical
models in greater generality. Here are some motivating examples.

1. The linear models covered so far admit a rich range of possibilities for modelling the expected value of the
response variable, while permitting only the simplest possible model of variability about that mean. Many
situations demand a richer structure to model the randomness in the response, and linear mixed models
provide this by allowing a linear structure for the randomness that is similar to that allowed for the mean.
Specifically,

y = X3+ Zb + e where b ~ N(0,1(8)) and € ~ N(0,10?).
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Z is a model matrix constructed in a similar way to X, but b is a vector of random effects. The random effects
covariance matrix 1 (0) typically has some relatively simple structure and is dependent on a parameter vector
@ which is the target of inference, alongside 3 and o2. For example, suppose we want to model the time
course of repeated blood pressure measurements of patients starting on different blood pressure treatments.
As well as the dependence of blood pressure on treatment and time, included in X3 we should also allow
for the differences between individual patients, and might model these by including a random effect for each
patient, and perhaps also some random slope with respect to time for each patient: these random components
are included in Zb. Our existing linear model theory is insufficient for inference with these linear mixed
models.

2. In many situations a Gaussian distribution is inappropriate as a model for a response variable of interest,
although a linear model structure might be appropriate for the expected value of the response. For example a
discrete response variable might follow a Poisson or binomial distribution, or a positive continuous response
variable might be better described by a gamma distribution. Our existing theory is then insufficient: for a
start all of these distributions break the ordinary linear model constant variance assumption.

3. The bone marrow survival model, in section 1, is similarly different to anything we can express as a linear
model.

So without actually straying very far from the linear model (these models all still have a univariate ‘response
variable’, for example), we have several obvious motivations to develop inference methods that apply beyond the
linear model.

Whether we take a Bayesian or frequentist approach to these models, the likelihood will be central to the infer-
ence methods we will discuss here. That is, if € denotes the model parameters and y the data that we are treating
as random, everything will depend on f(y|@), the probability density® of y given 0, evaluated at the observed data.
For the frequentist approach the theory will revolve around using the likelihood to estimate parameters, and in-
volves developing some general methods for doing this. In the Bayesian case, there are no new principles involved:
we use Bayes’ theorem as before, however to make this practical in general we have to develop new methods for
either approximating, or simulating from, the posterior.

The methods we will cover here are not the only approaches to frequentist or Bayesian inference. In the
frequentist case there are alternatives and generalizations, such as the method of moments and M-estimation, which
my be useful when we require robustness to getting some aspect of the model specification wrong. Similarly
Approximate Bayesian Computation is a method that is useful when it is too difficult to work directly with the
likelihood, but simulation from the model is relatively easy.

6 Maximum likelihood estimation

We’ll start with the frequentist approach: parameters are fixed states of nature and the uncertainty is all in our
estimates of those parameters. The key idea of maximum likelihood estimation is simply this:

Parameter values that make the observed data appear relatively probable are more likely to be correct
than parameter values that make the observed data appear relatively improbable.

For example, we would much prefer an estimate of @ that assigned a probability density of 0.1 to our observed y,
according to the model, to an estimate for which the density was 0.00001.

So the idea is to judge the likelihood of parameter values using fy(y), the model p.d.f. according to the given
value of 6, evaluated at the observed data. Because y is now fixed and we are considering the likelihood as a
function of 6, it is usual to write the likelihood as L(0) = fy(y). In fact, for theoretical and practical purposes it
is usual to work with the log likelihood [(0) = log L(8). The maximum likelihood estimate (MLE) of 8 is then

0 = argmax[(6).
0

%Unless noted otherwise, everything discussed for probability densities applies equally to probability functions, provided we replace inte-
gration with summation where appropriate.
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Figure 2: Left: 50 Poisson data, y, dependent on predictor data, «, and described by the model in section 6.1. The
black curve is the maximum likelihood estimate of the Poisson mean as a function of z. Right: the log likelihood
function for the model parameter 3, computed using the data in the left panel and as described in the text.

In general, numerical methods will be needed to actually find 6, but reliable and general methods are available.
There is more to maximum likelihood estimation than just its intuitive appeal. As we will see shortly, under
some regularity conditions and in the large sample limit as n — oo,

6~ N(@O,IT7Y, ®)

where Z = —FE(9%1/90000™) — the expected second derivative matrix of the negative log likelihood (also known
as the information matrix). This turns out to be the best that can be achieved for an unbiased estimator (although
MLEs are only unbiased in the large sample limit). In fact a similar result applies in terms of the observed (rather
than expected) second derivative matrix. If T =-02 / 00007 then in the n — oo limit,

6~ N@OI .

Another large sample result is also useful. Suppose that we want to compare two nested models, meaning that
one model can be written as the other model subject to r restrictions on its parameters, 8, that can be written as
R(6) = 0. Let 0, denote the MLEs under the restriction. Then we can test Hy : R(6) = 0 (i.e. test the null
hypothesis that the restricted model is correct), by using the large sample result that

2{1(6) — 1(60)} ~ X ©)

if the null hypothesis is correct. If the null hypothesis is not correct then the log likelihood ratio statistic on the left
hand side will tend to be too large for consistency with a x? distribution. To actually judge compatibility of data
and null hypothesis we compute a p-value — the probability of a 2 random variable being at least as large as the
observed test statistic. As usual a small p-value is evidence against the null hypothesis.

6.1 A simple example

Consider the one parameter Poisson model:
yi ~ Poisson{exp(Sz;)}
mn

and suppose that we have n pairs of x;, y; data. Generally the probability function for a Poisson random variable
with mean \; is f(y;) = A\Y" exp(—\;)/y;!. So for our model

f(yi) = exp(Bz;)¥" exp{—exp(Bzi)}/yi!
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Figure 3: Three steps of Newton’s method applied to the log likelihood for the Poisson example of section 6.1,
starting on the left from 5 = 4. The dashed curve shows the approximating quadratic matching the value and
first two derivatives of the log likelihood at the previous best estimate of 3. The panel headings give the value, B
maximising the approximating quadratic at each step. In this case no step length control is needed and the second
derivative is always negative.

To compute the likelihood we need to compute the joint probability of all the data. Because our model says that
the data are independent, this joint probability is just the product of the individual probabilities for each y;, i.e. the

likelihood function is just
n

xp(B;)Y" exp{—exp(Bz;)
He ) e;:! exp }

L(B) =

=1

and repeatedly using the facts that log(a®) = blog(a) and log(ab) = log(a)+log(b), the log likelihood is therefore

U(B) = Zyiﬁl‘i — exp(Bx;) — logy;!
=1

Figure 2 shows some z, y data (left) for which this model is appropriate, and plots the log-likelihood function
for a range of § values (right). B = 2.41 is the MLE, and the continuous curve overlaid on the left panel is the
Poisson mean that this implies.

The key idea then, is that the log likelihood function provides us with a generic way of measuring how well a
model fits data, and which parameter values do the best job at explaining the data. The simple Poisson example
only considered a single parameter, but in principle we can compute the log likelihood for a model with as many
parameters as we like, although we do need to be sure that we have sufficient data if we are intending to estimate
large numbers of parameters.

6.1.1 Practical likelihood maximization

It is rarely possible to find explicit expressions for the maximum likelihood estimates, and instead we must maxi-
mize the log likelihood numerically. Newton’s method is the gold standard for doing this, and works my optimizing
successive quadratic approximations to the log likelihood. We start with an initial parameter value guess, and try to
obtain a quadratic approximation to the log-likelihood that behaves like the log-likelihood itself in the vicinity of
that guess. To do this we can use a Taylor approximation to the log-likelihood, discarding the terms above second
order. That is we evaluate the log likelihood and its first two derivatives’ at the parameter value, and then find the
unique quadratic function which also has this value and derivatives at the parameter value. Hopefully the approxi-
mation has a maximum close to the maximum of the log-likelihood itself, and it is easy to write down an explicit

Tfirst derivative vector and second derivative matrix in usual case of a parameter vector.
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Figure 4: Log likelihood functions (grey) for 100 replicates of the section 6.1 Poisson dataset, when 5 = 2.5.
The black dots show the maximum of each curve. The corresponding MLEs, /3, are shown as vertical bars on the
x-axis (a rug plot). The continuous black curve is a (rescaled and vertically shifted) kernel density estimate of the
distribution of 3 based on the shown 100 estimates. Notice how the distribution of B is approximately normal,
with mean at the true value, 5 = 2.5, although there is zero probability that 5 = 2.5 exactly.

form for the maximizer of the approximating quadratic, using this as our updated parameter guess. Iterating this
procedure we eventually reach the maximum of the log likelihood itself.

There are two modifications required to guarantee that Newton’s method converges to the MLE. Firstly we need
to ensure that the approximating quadratic is one that actually has a maximum (as opposed to a minimum, or even,
in more than one dimension, a saddlepoint). In one dimension this is a matter of checking that the second derivative
is negative and replacing it with a negative number if it isn’t. In more dimensions there is also an equivalent fix
(check that the negative of the second derivative matrix is positive definite, and if necessary modify it to force
this condition to hold). The second modification is to check that the proposed change in parameter values actually
increases the log likelihood itself. If it doesn’t we just move the parameter back towards the previous parameter
guess, until the log likelihood is increased at the new values. With these modifications Newton’s method will find
a maximum of the log likelihood, provided it has one.

Figure 3 illustrates Newton’s method for the case of the single parameter Poisson regression model. In this
case the maximum is reached in 3 steps (to graphical accuracy). Notice how the final quadratic matches the log
likelihood in the vicinity of the MLE.

6.1.2 Illustrating 0 uncertainty

Figure 4 shows log likelihood curves for 100 replicates of the data shown in the left panel of figure 2, when
the true § is 2.5, along with the corresponding MLEs of B and the corresponding non-parametric estimate of the
distribution of ,6’ Notice how the likelihood function and ,6’ vary from replicate to replicate, but how the distribution
of 6 is approximately normal and centred on the true parameter value of 2.5. This is exactly what (8) implies will
happen.

22



7 MLE via numerical optimization

To use MLE theory for all but the simplest practical problems requires numerical optimization of the likelihood.
So if we are interested in practical statistical inference we need some idea how this works. We will look only at
the Newton type methods already introduced, since these have the appeal of being based on exactly the second
derivative matrix of the log likelihood that occurs in the distributional result for 6.

7.1 Numerical optimisation

Most optimisation literature and software, including in R, concentrates on the minimisation of functions. This
section follows this convention, bearing in mind that our goal of maximising log likelihoods can always be achieved
by minimising negative log likelihoods. Generically, then, we are interested in automatic methods for finding

6 = argmin f(0). (10)
0

There are some very difficult problems in this class, so some restrictions are needed. Specifically, assume that the
objective function, f, is a sufficiently smooth function, bounded below, and that the elements of € are unrestricted
real parameters. So f might be a negative log likelihood, for example. f may also depend on other known
parameters and data, but there is no need to clutter up the notation with these. The assumption that € is unrestricted
means that, if we want to put restrictions on 8, we need to be able to implement them by writing 8 = r(0,.), where
r is a known function and 6, is a set of unrestricted parameters. Then the problem becomes ming, f{r(0,)}.

Even given these assumptions, it is not possible to guarantee finding a solution to (10) unless we know that f
is convex, which is generally an assumption too far. Pragmatically, the best we can hope for is to develop methods
to find a local minimum; that is, a point 6 such that f (é +A)>f (é), for any sufficiently small perturbation A.
The resulting methods are adequate for many statistical problems.

7.2 Newton’s method

A very successful optimisation method is based on iteratively approximating f by a truncated Taylor expansion and
seeking the minimum of the approximation at each step. With a little care, this can be made into a method that is
guaranteed® to converge to a local minimum. Taylor’s theorem states that if f is a twice continuously differentiable
function of 8, and A is of the same dimension as 6, then for some ¢ € (0,1),

fO@+A)=f(0)+VfOTA+ %ATWf(e +tA)A (11)
o _ 9Ff . *f
where Vf(0*) = 2, and V2f(0*) = 20007 |,

From (11), the condition f (é +A)>f (é), for any sufficiently small perturbation A, is equivalent to
V(@) =0 and V2f(8) positive semi-definite, (12)

which are the useful conditions for a minimum.

A second consequence of (11) is that for sufficiently small v, a 8 that is not a turning point, and any positive
definite matrix H of appropriate dimension, then f{6 — cHV f(8)} < f(0). Under the given conditions we
can approximate f by a first-order Taylor approximation. Hence, in the small « limit, f{0 — cHV f(0)} =
f(0) —aVf(0)THVf(0) < f(0), where the inequality follows from the fact that V f(0)THV f(8) > 0 since
H is positive definite and V f(6) # 0. In short,

A =—HVf(0) (13)

is a descent direction if H is any positive definite matrix. After Taylor’s theorem, this is probably the second most
important fact in the optimisation of smooth functions.

8The statistical literature contains many statements about the possibility of Newton’s method diverging, and the consequent difficulty of
guaranteeing convergence. These statements are usually outdated, as a look at any decent textbook on optimisation shows.
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Now consider Newton’s method itself. Suppose that we have a guess, €', at the parameters minimising ().
Taylor’s theorem implies that

f0+A)~ f(0)+VfO)TA+ %ATVQf(O’)A.

Provided that V2 (') is positive semi-definite, the right-hand-side of this expression can be minimised by differ-
entiating with respect to A and setting the result to zero, which implies that

V2f(0)A = -V f(0). (14)

So, in principle, we simply solve for A given 8’ and update 8’ +— 6’ + A repeatedly until the conditions (12) are
met. By Taylor’s theorem itself, this process must converge if we start out close enough to the minimising 6. But
if we knew how to do that we perhaps would not need to be using Newton’s method in the first place.

The method should converge when started from parameter guesses that are a long way from 0, requiring two
modifications of the basic iteration:

1. V2f(@) is only guaranteed to be positive (semi) definite close to . So V2f(6’) must be modified to
make it positive definite, if it is not. The obvious alternatives are (i) to replace V2 f(8') by V2£(8') + 41,
where 6 is chosen to be just large enough to achieve positive definiteness;’ or (ii) take the symmetric eigen-
decomposition V2f(8') = UAUT, where A is the diagonal matrix of eigenvalues, and replace V2 f(8’)
by UAUT, where A is A with all nonpositive eigenvalues replaced by positive entries (e.g. |A;;]). Using
the perturbed version in (14), results in a step of the form (13), so if we are not at a turning point, then a

sufficiently small step in the direction A is guaranteed to reduce f.

2. The second-order Taylor approximation about a point far from 6 could be poor at 6, so that there is no guar-
antee that stepping to its minimum will lead to a reduction in f. However, given the previous modification,
we know that the Newton step is a descent direction. A small enough step in direction A must reduce f.
Therefore, if f(0' + A) > f(6'), repeatedly set A < A /2, until a reduction in f is achieved.

With these two modifications each step of Newton’s method must reduce f until a turning point is reached.
In summary, starting with k& = 0 and a guesstimate 0!}, iterate these steps:

1. Evaluate f(0*), V(") and V2 f(0IF]).

2. Test whether 8% is a minimum using (12), and terminate if it is.'”
3. If H = V2 £(0[¥) is not positive definite, perturb it so that it is.

4. Solve HA = —V f(0!*) for the search direction A.

5. If £(0F 4 A) is not < f(8!*]), repeatedly halve A until it is.

6. Set 8-+ = @Ikl 1 A increment k by one and return to step 1.

In practice V f is not tested for exact equality to zero at 2, and we instead test whether ||V £ (8| < | f(0!F])|e, +
€4, for small constants ¢, and €.
7.2.1 Newton’s method examples

As a single-parameter example, consider an experiment on antibiotic efficacy. A 1-litre culture of 5 x 10° cells is
set up and dosed with antibiotic. After 2 hours, and then every subsequent hour up to 14 hours after dosing, 0.1ml

9Positive definiteness can be tested by attempting a Choleski decomposition of the matrix concerned: it will succeed if the matrix is positive
definite and fail otherwise. Use a pivoted Choleski decomposition to test for positive semi-definiteness. Alternatively, simply examine the
eigenvalues returned by any symmetric eigen routine.

101f the objective function contains a saddlepoint, then theoretically Newton’s method might find it, in which case the gradient would be zero
and the Hessian indefinite: in this rare case further progress can only be made by perturbing the Newton step directly.
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Figure 5: Newton’s method for the antibiotic example of Section 7.2. Each panel shows one step of Newton’s
method, with the log likelihood (black) and the second-order Taylor approximation about e (dashed). Vertical lines
show the estimated value of ¢ at the start and end of the step. Each panel title gives the end estimate. a starts from
19 = 0. b to d show subsequent iterations until convergence.

of the culture is removed and the live bacteria in this sample counted under a microscope, giving counts, y;, and
times, t; (hours). The data are

t; 12 3 4 5 6 7 8 9 10 11 12 13 14
yi |35 33 33 39 24 25 18 20 23 13 14 20 18

A simple model for the sample counts, y;, is that their expected value is E(Y;) = p; = 50e~%%  where § is an
unknown ‘death rate’ parameter (per hour) and ¢; is the sample time in hours. Given the sampling protocol, it is
reasonable to assume that the counts are observations of independent Poi(y;) random variables, with probability
function f(y;) = p*e " /y;! So the log likelihood is

8) = > {wilog(ps) — i —log(y:))} = D wi{log(50) — 6t;} — > 50~ = "log(yi!),
=1 i=1 i=1 =1

where n = 13. Differentiating w.r.t. ¢,

Zylt +Z50t e %% and 662 = —502t2 —9ts

The presence of the t; term in e =% precludes a closed-form solution for 91/36 = 0, and Newton’s method can
be applied instead. Figure 5 illustrates the method’s progression. In this case the second derivatives do not require
perturbation, and no step-length halving is needed.

Now consider an example with a vector parameter. The following data are reported AIDS cases in Belgium, in
the early stages of the epidemic.

Year (19-) |81 82 83 84 85 86 87 88 89 90 91 92 93
Cases 12 14 33 50 67 74 123 141 165 204 253 246 240
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Figure 6: Newton’s method for the AIDS example of Section 7.2. Each panel shows one step, with the log
likelihood contoured in black, the second order Taylor approximation about e in grey, and the quadratic given
by the positive definite corrected Hessian as dotted. The panel caption and o give the Newton method proposed
parameter values at the end of each step. The iteration starts at the top left and has converged by the lower right.

One important question, early in such epidemics, is whether control measures are beginning to have an impact
or whether the disease is continuing to spread essentially unchecked. A simple model for unchecked growth
leads to an ‘exponential increase’ model. The model says that the number of cases, y;, is an observation of an
independent Poisson r.v., with expected value 1; = ae®t where t; is the number of years since 1980. So the log
likelihood is

o, 8) = 3 wiflog(a) + Bt} — Y (ae®™ — i),
i=1 i=1

and hence,

_ | Xyi/a— ) exp(Bti) [ =S yifa? =Y el
Vs [ 2 yiti — a ) tiexp(Bt;) ] and V¥ = [ — S tiefti —a Y t2efh } .

A swift glance at the expression for the gradients should be enough to convince you that numerical methods will
be required to find the MLEs of the parameters. Starting from an initial guess a[%) = 4, g% = .35, here is the first
Newton iteration:

N N ! Loy | 884372 ] o _ [ —101.375 —3409.25
gl | = | .35 T | 1850.02 |77 T | —3409.25 —154567

_ —1.820 alll alo] N 5.82
= (V)= [ 0.028 ] - [ pt ] - [ B! } - (VTS [ 0.322 } '

After eight more steps the likelihood is maximised at & = 23.1, B = 0.202. Figure 6 illustrates six Newton steps,

starting from the more interesting point &y = 4, /3’0 = 0.35. Perturbation to positive definiteness is required in the
first two steps, but the method converges in six steps.

26



7.2.2 Newton variations: avoiding f evaluation and the expected Hessian

Occasionally we have access to V f and V2 £, but f itself is either unavailable or difficult to compute in a stable
way. Newton’s method only requires evaluation of f in order to check that the Newton step has led to a reduction
in f. It is usually sufficient to replace the condition f(0 + A) < f(0) with the condition that f must be non-
increasing in the direction A at ' + A. Thatis, V (6’ + A)T A < 0. In many circumstances, step-length control
based on this condition ensures convergence in cases where the iteration would otherwise have diverged, but unlike
the function-value based control, pathological cases can easily be dreamt up to defeat it. Such step-length reduction
should only be applied after testing that the step has not already met the convergence criteria.

Another common variation on the method, used in maximum likelihood estimation, is to replace —V2l(0) by
—E{V?1(0)} (so-called Fisher scoring). Because the replacement is always positive (semi-)definite, perturbation
to positive definiteness is not required and by the arguments surrounding (13) the method converges when used
with simple step-length control.

7.3 Other optimization methods

Optimization is a huge subject, but two alternative methods are worth a brief mention here. Quasi-Newton methods
are Newton type methods in which an approximation to the Hessian matrix, or its inverse, is built up iteratively
from the first derivative information computed at each trial set of parameter values. Not requiring the computation
of second derivative information makes implementation simpler and sometimes more efficient, at the cost of re-
quiring somewhat more effort with step length control than is required for Newton’s method. In R quasi-Newton
is available using optim(. .., method="BFGS").

A word of warning. Truncating the Taylor expansion of the objective at first order leads to the ‘obvious’ first
derivative based method, of steepest descent, where the trial step is set to a multiple of the negative of the gradient
of the objective w.r.t. 8. Step length control is always needed in this case, as the first order Taylor expansion tells
you nothing about how far to step. Worse than that, the first order term in the Taylor expansion always becomes
smaller than the higher order terms as we approach 0, so that it is a useless approximation to the objective function
at exactly the point we are most interested in. The result is that steepest descent is often absurdly slow to converge,
and is rarely worth using.

There are also methods that optimize based only on function values. Of these, the most useful in a likelihood
context is the ‘Nelder Meade simplex (or polytope) method’. We will not cover how this works here, but it the
default method for the R opt im function.

8 MLE theory in more detail

Having resolved the issue of how to actually compute MLEs, it is time to consider where the large sample inferen-
tial results come from. This section briefly covers the derivation of the key results at a level suitable for ensuring
their reliable application. See Cox and Hinkley (1974), Silvey (1970) and Davison (2003) for more detail.

8.1 Some properties of the expected log likelihood

Large sample theory for maximum likelihood estimators relies on some results for the expected log likelihood and
on the observed likelihood tending to its expected value as the sample size tends to infinity. The results for the
expected log likelihood are derived here. Recall that [(8) = log fp(y), and let 8, be the vector of true parameter

values.
=0, (15)
0t

1.
where the expectation is taken at 8;. Proof is straightforward provided that there is sufficient regularity to
allow the order of differentiation and integration to be exchanged:

) _ 1 0f _ (9, _ O _o0_
p{ s satn} = [ =iy = [ Gty = 2 [ niay - 55 -0
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which follows directly from the previous result and the definition of a covariance matrix. Recall here that
01/08 is a column vector and d1/00T a row vector.
. 17
04

ol 0%l
( 00 9t> ( 060007
Z, is known as the Fisher information matrix. The terminology relates to the fact that a likelihood containing

lots of information about @ will be sharply peaked (Z will have large magnitude eigenvalues), whereas a less
informative likelihood will be less sharply peaked.

o
0, 00T

Proof is straightforward. From (15) we have

2
[ FeE rawray M/—a e oty + DL 2l 4y — 0

00007 00 00T ’
0 1og fg N 1 afg 62 1og fg - 0 log f9 0 log f@
U HeT = 7, 00T G000 1)y = 0 oot 1Y)
and the result is proven.
4. The expected log likelihood has a global maximum at ;. i.e.
B{1(6,)} > BE{1(8)} V6. (18)

Since log is a concave function, Jensen’s inequality'! implies that

F [log{ﬁt((?) H =log [E {ﬁt((};)) H los ﬁ(& fo )iy = og. [ oty = 1ox(1) =0,

and the result is proven.

8.2 The Cramér-Rao lower bound

In the context of linear models, the discussion of the properties of a good estimator came to the conclusion that
minimum variance unbiased estimation was a reasonable goal to aim for. The Gauss-Markov theorem then pro-
vided the justification for least squares estimation of linear models. But in general how do we know when we have
achieved minimum variance? The following result is part of the answer.

The Cramér-Rao lower bound. Z ~1 provides a lower bound on the variance matrix of any unbiased estimator 0,
in the sense that cov(8) — Z ™ is positive semi-definite.

Proof: Since fdlog f/00 = df /96, 90,/00] =T and 6 is unbiased,

- ~ Ol
/ 0, (y)dy = 6, = / o 208t
06

fo.(y)dy =L
0,

Hence, given (15), the matrix of covariances of elements of 6, with elements of O log fp, /00; can be obtained:

cov (é, dlog o, ) e <é 010t i
o 6]

00,
1 For any random variable X and concave function ¢, c{ E(X)} > E{c(X)}.
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Combining this with (16) we obtain the variance-covariance matrix,

cov | o1 2 - [ cov(é) I ]
og Jo, - )
“56 ", | S

which is positive semi-definite by virtue of being a variance-covariance matrix. It follows that

[1 —z7'] [ cov(6) I ] [ ! } = cov(f) — T

I z -7

is positive semi-definite, and the result is proven.
If the~sense in which Z~! is a lower bound is unclear, consider the variance of any linear transformation of the
form aT 6. By the result just proven, and the definition of positive semi-definiteness,

0 <aT{cov(d) — Z'}a =var(aTh) —a"Z 'a,

= var(aT@) > aTZ'a. For example, the lower bound on var(6;) is given by the i element on the leading
diagonal of Z7!.

The importance of this result in the current context is that, in the large sample limit subject to regularity
conditions, maximum likelihood estimators are unbiased and achieve the CR bound.

8.3 Consistency of MLE

Maximum likelihood estimators are usually consistent, meaning that as the sample size tends to infinity, 6 tends
to 0, (provided that the likelihood is informative about the parameters). This occurs because in regular situations
1(0)/n — E{1(0)}/n as the sample size, n, tends to infinity, so that eventually the maximum of [(6) and E{l(0)}
must coincide at 8; by (18). The result is easy to prove if the log likelihood can be broken down into a sum of
independent components (usually one per observation), so that the law of large numbers implies convergence of
the log likelihood to its expectation. Consistency can fail when the number of parameters is growing alongside the
sample size in such a way that, for at least some parameters, the information per parameter is not increasing with
sample size.

8.4 Large sample distribution of MLE

Taylor’s theorem implies that
N 0?1
g, 000607

ol

ol ol
00

.= 6

66,
0

with equality in the large sample limit, for which 6 — 0, — 0. From the definition of @, the left-hand side is 0. So
assuming Z /n is constant (at least in the n — oo limit), then as the sample size tends to infinity,

1 9%

.0l
E W s while

o n 99

0+

).12

is a random vector with mean 0 and covariance matrix Z by (16) and (15).'~ Therefore in the large sample limit,

implying that E(é —6;) = 0 and var (é -6 = Z~'. Hence in regular situations in the large sample limit,
maximum likelihood estimators are unbiased and achieve the Cramér-Rao lower bound. This partly accounts for
their popularity.

121n the limit the random deviation of n=19%1/0008T from its expected value, n =1 Z, is negligible relative to n =1 Z itself (provided it is
positive definite). This is never the case for the 9l/08, because its expected value is zero.
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It remains to establish the large sample distribution of 6 — 0. In the case in which the likelihood is based on
independent observations, then [(08) = ). [;(0), where [; denotes the contribution to the log likelihood from the
i™ observation. In that case 91/060 = Y, 9l;/00, so that 01 /98 is a sum of independent random variables. Hence,
under mild conditions, the central limit theorem applies, and in the large sample limit

6~ N(@O,T7Y). (19)

In any circumstance in which (19) holds, it is also valid to use —3%1/0098T in place of Z itself. When the
likelihood is not based on independent observations, it is very often the case that 91/06 has a limiting normal
distribution so that (19) holds anyway. The key is that the expected information increases without limit with
increasing sample size. In any case, achievement of the Cramér-Rao lower bound does not depend on normality.

8.5 Hypothesis testing

When introducing inference in the context of the linear model, we derived hypothesis testing procedures based on
p-values, without much consideration of the basis of the testing process. Now that we are considering statistical
inference in greater generality, it is time to examine the process of hypothesis testing in more generality. The basic
question of interest is whether some defined restriction on 6 is consistent with y?

8.5.1 p-values: the fundamental idea

Suppose that we have a model defining a p.d.f., fy(y), for data vector y and that we want to test the null hypothesis,
Hp : 8 = 6, where 6 is some specified value. That is, we want to establish whether the data could reasonably
be generated from fy,(y). An obvious approach is to ask how probable data like y are under Hy. It is tempting
to simply evaluate fy,(y) for the observed y, but then deciding what counts as ‘probable’ and ‘improbable’ is
difficult to do in a generally applicable way.

A better approach is to assess the probability, py say, of obtaining data at least as improbable as y under Hy
(better read that sentence twice). For example, if only one dataset in a million would be as improbable as y,
according to Hy, then assuming we believe our data, we ought to seriously doubt Hy. Conversely, if half of all
datasets would be expected to be at least as improbable as y, according to Hy, then there is no reason to doubt it.

A quantity like py makes good sense in the context of goodness of fit testing, where we simply want to assess
the plausibility of fp, as a model without viewing it as being a restricted form of a larger model. But when we are
really testing Hy : @ = 6 against the alternative H; : ‘0 unrestricted’ then pg is not satisfactory, because it makes
no distinction between y being improbable under H, but probable under Hy, and y being improbable under both.

A very simple example illustrates the problem. Consider independent observations y1, y from N(u, 1), and
the test Hy : & = O versus Hy : p # 0. Figure 7 shows the p.d.f. under the null, and, in grey, the region over
which the p.d.f. has to be integrated to find py for the data point marked by . Now consider two alternative values
for y1,yo that yield equal pg = 0.1. In one case (black triangle) y; = —y2, so that the best estimate of y is 0,
corresponding exactly to Hy. In the other case (black circle) the data are much more probable under the alternative
than under the null hypothesis. So because we include points that are more compatible with the null than with the
alternative in the calculation of pg, we have only weak discriminatory power between the hypotheses.

Recognizing the problems with py, a possible solution is to standardise fp,(y) by the highest value that
fo(y) could have taken for the given y. That is, to judge the relative plausibility of y under Hy on the basis
of fo,(y)/f;(y) where 6 is the value maximising fy(y) for a given y. In the context of the example in Figure 7
this approach is much better. The black triangle now has relative plausibility 1, reflecting its compatibility with the
Hy, whereas the black circle has much lower plausibility, reflecting the fact that it would be much more probable
under a model with a mean greater than zero. So we could now seek a revised measure of consistency of the data
and null hypothesis:

p is the probability, under the null hypothesis, of obtaining data at least as relatively implausible as
that observed.

Actually the reciprocal of this relative plausibility is generally known as the likelihood ratio f4(y)/ fa,(y) of the
two hypotheses, because it is a measure of how likely the alternative hypothesis is relative to the null, given the
data. So we have the more usual equivalent definition:
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Figure 7: Why the alternative hypothesis is needed in defining the p-value, and pg will not do. Contour plot of the
joint p.d.f. for the null model that y;, y- are independent N (0, 1). The dashed line illustrates the possible values
for the expected values of y; and yo, under the alternative model that they are independent N (u,1). The black
triangle and black circle show two possible values for y;, y2, while the grey region shows the region of at least as
improbable y1, yo pairs, corresponding to pp = 0.1. The problem is that although the black circle is much more
probable under the alternative model, it has the same pg value as the black triangle, for which y; = —y» and the
estimated u would be exactly the null model value of zero. The dotted line is y1 = —ys.

p is the probability, under the null hypothesis, of obtaining a likelihood ratio at least as large as that
observed.

p is generally referred to as the p-value associated with a test. If the null hypothesis is true, then from its definition,
the p-value should have a uniform distribution on [0, 1] (assuming its distribution is continuous). By convention
p-values in the ranges 0.1 > p > 0.05, 0.05 > p > 0.01, 0.01 > p > 0.001 and p < 0.001 are sometimes
described as providing, respectively, ‘marginal evidence’, ‘evidence’, ‘strong evidence’ and ‘very strong evidence’
against the null model, although the interpretation should really be sensitive to the context.

8.5.2 Generalisations

For the purposes of motivating p-values, the previous subsection considered only the case where the null hypothesis
is a simple hypothesis, specifying a value for every parameter of f, while the alternative is a composite hypothesis,
in which a range of parameter values are consistent with the alternative. Unsurprisingly, there are many situations
in which we are interested in comparing two composite hypotheses, so that Hy specifies some restrictions of 6,
without fully constraining it to one point. Less commonly, we may also wish to compare two simple hypotheses,
so that the alternative also supplies one value for each element of 6. This latter case is of theoretical interest, but
because the hypotheses are not nested it is somewhat conceptually different from most cases of interest.

All test variants can be dealt with by a slight generalisation of the likelihood ratio statistic to f5(y)/fs, (¥)
where féo (y) now denotes the maximum possible value for the density of y under the null hypothesis. If the null
hypothesis is simple, then this is just fy,(y), as before, but if not then it is obtained by finding the parameter vector
that maximises fy(y) subject to the restrictions on 6 imposed by Hp.

In some cases the p-value can be calculated exactly from its definition, and the relevant likelihood ratio. When
this is not possible the large sample result (9) from section 6 can be employed to compute an approximate p-value.

f4(y)/ fg,(y) is an example of a test statistic, which takes low values when the H is true, and higher values
when H; is true. Other test statistics can be devised in which case the definition of the p-value generalises to:
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p is the probability of obtaining a test statistic at least as favourable to H; as that observed, if Hy is
true.

This generalisation immediately raises the question: what makes a good test statistic? The answer is that we would
like the resulting p-values to be as small as possible when the null hypothesis is not true (for a test statistic with a
continuous distribution, the p-values should have a U (0, 1) distribution when the null is true). That is, we would
like the test statistic to have high power to discriminate between null and alternative hypotheses.

8.5.3 The Neyman-Pearson lemma

The Neyman-Pearson lemma provides some support for using the likelihood ratio as a test statistic, in that it shows
that doing so provides the best chance of rejecting a false null hypothesis, albeit in the restricted context of a simple
null versus a simple alternative. The result can be seen as formalizing some of the considerations that originally
led us to the likelihood ratio statistic and associated p-value.

Formally, consider testing Hy : @ = 0 against Hy : @ = 0. Suppose that we decide to reject Hy if the p-value
is less than or equal to some value «. Let 3(8) be the probability of rejection if the true parameter value is 6 —
the test’s power-.

In this accept/reject setup the likelihood ratio test rejects Hy if y € R = {y : fo,(y)/fo,(y) > k} and k
is such that Prg0 (y € R) = a. It is useful to define the function ¢(y) = 1if y € R and O otherwise. Then

= [ ¢(y)fo(y)dy. Note that 3(8¢) = cv.

Now cons1der using an alternative test statistic and again rejecting if the p-value is < «a. Suppose that the test
procedure rejects if

y € R* where Prg,(y € R*) < «

Let ¢*(y) and 3*(0) be the equivalent of ¢(y) and 3(0) for this test. Here 8*(0y) = Pry,(y € R*) < «.

The Neyman-Pearson Lemma then states that 3(61) > *(67) (i.e. the likelihood ratio test is the most powerful
test possible).

Proof follows from the fact that

{o(y) — " (y)H o, (y) — kfo,(y)} > 0,

since from the definition of R, the first bracket is non-negative whenever the second bracket is non-negative, and
it is non-positive whenever the second bracket is negative. In consequence,

0 < /w Y Jor (v) — kfoo (v) )y
- — B7(81) — K{B(60) — 5°(60)} < B(6:) — 5 (1),

since {5(0p) — 5*(00)} > 0. So the result is proven. Casella and Berger (1990) give a fuller version of the lemma,
on which this proof is based.

8.6 Distribution of the generalised likelihood ratio statistic

Having examined the motivation for p-values, and the justification for using the likelihood ratio as a test statistic,
it is time to derive the general result (9). Consider testing:

Hy:R(0) =0 vs. Hy:R(0)#0,

where R is a vector-valued function of 8, such that Hy imposes r restrictions on the parameter vector. If Hy is
true, then in the limit as n — oo,

2X = 2{1(6) — 1(60)} ~ 2. (20)

where [ is the log-likelihood function and 0 is the MLE of 6. 8 is the value of 0 maximising the likelihood subject
to the constraint R(6) = 0. This result is used to calculate approximate p-values for the test.

To derive (20), first re-parameterise so that 8T = (¢»™,~™), where 4 is » dimensional and the null hypothesis
can be rewritten Hy : ¢ = 1pg. Such re-parameterisation is always possible, but is only necessary for deriving
(20), not for its use.
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Let the unrestricted MLE be (¢™,4T), and let (43, 4T) be the MLE under the restrictions defining the null
hypothesis. To make progress, <o must be expressed in terms of 1, 4 and 1po. Taking a Taylor expansion of [
around the unrestricted MLE, 6, yields

Z(e):z(é)—%(e—é)TH(a—é), 1)

where H; ; = — §%1/00,00; ] - Exponentiating produces
~ A T ~
L(6) ~ L() exp {— (9 - e) H (0 - 0) /2]

(i.e. the likelihood can be approximated by a function proportional to the p.d.f. of an NV (é, H~!) random vector).
So, in the large sample limit and defining 3 = H~!, the likelihood is proportional to the p.d.f. of

(313 2]
Y Yoy By
If ¢p = 4pg then this p.d.f. will be maximised by 49 = FE(v|1g), which, from general properties of MVN
densities!?, is X
Fo =4+ BBy (o — ). (22)

If the null hypothesis is true, then in the large sample limit 1,@ — 1pg (in probability) so that the approximate
likelihood tends to the true likelihood, and we can expect (22) to hold for the maximisers of the true likelihood.
It helps to express (22) in terms of the partitioned version of H. Writing 3 H = I in partitioned form

[Eww EMHHW Hm]:{l 0],
EWJ E’Y’Y va H’w 0 I

and multiplying out, results in two useful equations:
ByyHyy + By Hyy =T and ByyHyo + By, Hyy = 0. (23)
Rearranging (23) while noting that, by symmetry, H;g,y =H,y and EE,Y = Xy, yields

%, =Hyy —HyH JH,, (24)

and —-HJH,, = ., E;}b Substituting the latter into (22), we obtain
o =4+ H T H, (4 — o). (25)

Now provided that the null hypothesis is true so that 1& is close to 10y, we can reuse the expansion (21) and
write the log likelihood at the restricted MLE as

) 1 —a 1" -
l(z/:o,&o)fvl(zb,ﬁ)zmg_ﬂ H[fg_ﬂ
Hence

2\ = 2{1(¢, ) — l(%0,40)} =~ [ ﬁg:j ]TH[ fgifrb ]

13Suppose that Z and X are random vectors with a multivariate normal joint distribution. Partitioning their joint covariance matrix

> { 3. DI

then X|z ~ N(pte + 02271z — p2), B — B0 27 1820).
Z:IIJZ EIIJ
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Substituting for 4 from (25) and writing out H in partitioned form gives

T
o — P ] {wa Hw}{ o — P
H T H, (% — o) Hypy Hoyy HJH, (¢ — o)
Y — o))" [Hyy — Hyy H T H ] (4 — tbo)
P — o) TSy (P — o),
where the final equality follows from (24). If Hj is true, then as n — oo this expression will tend towards

exactness as 1/3 — 1pg. Furthermore, provided H — Z as n — oo, then X tends to Z _1, and hence X, tends to
the covariance matrix of 4, by (19). Hence, by the asymptotic normality of the MLE 1, 2\ ~ x?2, under Hy.

2X

1R

(
(

8.7 Confidence intervals: what range of hypotheses would we accept?

Everyone who has done any statistics is familiar with the notion of testing a hypothesis by looking to see whether a
hypothetical value lies within a confidence interval. For example, to test Hy : § = .5 at the 5% level, we just need
to see whether .5 lies within the 95% CI for 6, or not. We can also reverse this construction, and use a hypothesis
test to create a confidence interval.

A frequentist 100(1 — «)% confidence set is a random set with a probability of 1 — « of including the true
parameter value. When hypothesis testing, if we choose to accept a null hypothesis whenever the p-value is >> «
(and reject otherwise), then we will accept the null hypothesis with probability 1 — « if it is true.

So suppose we find the set containing the values that we would have accepted in a hypothesis test. Over
multiple replicates of the data gathering process such a set must have a probability of 1 — « of including the true
parameter value (since with probability 1 — « the test will accept the true parameter value, and with probability «
will reject it). Hence our set of acceptable values is a 100(1 — )% confidence set. For a scalar parameter the set
is often continuous within some interval, and we have a confidence interval.

Finding confidence intervals/sets by finding the range of values that would be accepted as the null hypothesis
in a test is known as fest inversion. For example we can look at the range of 6 values that would be accepted when
testing Hy : 0 = 0 vs. Hy : 0 # 6 using a GLRT. This usually has to be done numerically (e.g. produce a fine
grid of possible 6y values, and produce a p-value for each: the interval is then all the values for which the p-value
is > the threshold «).

A nice property of such Wilks (approximate) confidence intervals is that every parameter value inside the
interval has a higher likelihood than every value outside the interval. This contrasts with intervals based on ap-
proximation (19), which are symmetric about 6, and hence may even include impossible values (e.g. negative
values for a variance parameter).

8.8 Regularity conditions

The preceding results depend on some assumptions.

1. The densities defined by distinct values of @ are distinct. If this is not the case the parameters need not be
identifiable, and there is no guarantee of consistency.

2. 8, is interior to the space of possible parameter values. This is necessary in order to be able to approximate
the log likelihood by a Taylor expansion in the vicinity of 6.

3. Within some neighbourhood of 6,, the first three derivatives of the log likelihood exist and are bounded,
while the Fisher information matrix satisfies (17) and is positive definite and finite. The various Taylor
expansions and the arguments leading to (19) depend on this.

When these assumptions are met the results of this section are very general and apply in many situations well
beyond the i.i.d setting. When they are not met, some or all of the results of Sections 8.3 to 8.6 will fail.
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8.9 AIC: Akaike’s information criterion

Suppose that we want to decide between two models that are not nested, so that the GLRT is inapplicable. Equally
we might not want to follow the hypothesis testing approach to model selection, which is essentially stick with the
simplest model not obviously inconsistent with the data. We might want to simply choose the model that is ‘best’
in some sense. Obviously we can not do this by choosing the model that just has the highest likelihood, since more
complicated models always tend to have higher likelihood, whether or not the extra complication really reflects
something in the true data generating process.

One approach is to select models that are as close as possible to the true model in the probabilistic average
sense of minimising the Kullback-Leibler divergence

K(fo i) = / {log fu(y) — log fo(y)} fu(¥)dy. 26)

where f; is the true density of y and f is the model approximation to it. To make this aspiration practical, we
need to choose some version of K that can be estimated, and it turns out that the expected value of K'(fj, f;) is
tractable, where 0 is the MLE.

Although we cannot compute it, consider the value of € that would minimise (26), and denote it by 6. Now
consider the Taylor expansion

5 1 Olog fy

~ 2
log f;(y) ~ log fo, (y) + (6 — k) +1(9*0K)T 9% log fo

Tt (0 6k). 27
00 |, 2 0000T GK( ) &7

If 0 minimises K then [ dlog fo/00|s, frdy = 0, so substituting (27) into K (f4, f¢), while treating 0 as fixed™
results in

K (fgo ) = K (faer ) + 56— 010 "o, (6 — ), (28)

where Zy,. is the information matrix at 8. Now assume that the model is sufficiently correct that E£(6) ~ Ok

and cov(0) ~ Ty,_, at least for large samples. In this case, and reusing results from the end of Section 8.6,

E{l(0) —1(0x)} ~ E {;(é —0x)"Zy,. (0 — 0K)} ~p/2 (29)

where p is the dimension of 6. So taking expectations of (28) and substituting an approximation from (29),
EK(fg, ft) = K(for, f1) +p/2- (30)
Since this still involves the unknownable f;, consider
E{-16)} = E[-U6x)—{l(6) —(6x))]
= / log{fox (¥)} fi(y)dy —p/2 by (29)

1

K(fors fi) — p/2 — / log{f,(y)}fo(v)dy.

Using this result to eliminate K (fy,., f;) from (30) suggests the estimate

o — ~

ER (5, 1) = —1(0) +p+ / log{f:(y)} () dy.

Since the last term on the right-hand side only involves the truth, this last estimate is minimised by whichever
model minimises

AIC = —21(8) + 2p,

14By treating 8 as fixed we are effectively assessing the expected likelihood ratio between model and truth for new data.
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where the factor of 2 is by convention, to put AIC on the same scale as 2\ from Section 8.6. A possible concern
here is that (29) is not justified if the model is oversimplified and hence poor, but in practice this is unproblematic,
because the log likelihood decreases sharply as the approximation deteriorates. See Davison (2003) for a fuller
derivation.

An objection to AIC is that it is not consistent: as n — oo, the probability of selecting the correct model
does not tend to 1. For nested models (20) states that the difference in —2/ (é) between the true model and an
overly complex model follows a x?2 distribution, where r is the number of spurious parameters. Neither x2 nor 2p
depends on n, so the probability of selecting the overly complex model by AIC is nonzero and independent of n
(for n large). The same objection could also be made about hypothesis testing, unless we allow the accept/reject
threshold to change with n."

9 Bayesian Inference

When we applied Bayes’ theorem to the linear model, it was fairly straightforward to compute the posterior distri-
bution, but in general such direct calculations are not possible, and to apply the Bayesian approach we must do one
of two things: either approximate the posterior, or posterior expectations that are of more direct interest, or find a
way of simulating from the posterior that avoids the difficulties inherent in trying to compute posterior densities
directly. You can appreciate why working with the posterior directly is difficult by looking at the form of Bayes

theorem:
_ f(yl|0)f(0)

The top of the r.h.s. is readily computable directly from the model specification, but what about f(y)? To evaluate
it we have to evaluate

f(y) = / f(y10)/(8)d6

but the integral is only tractable in special cases, and high dimensional numerical integration is usually very diffi-
cult.

Since this course is of finite length, we will only cover the simulation approach here. The key is to use the fact
that

f8ly) < f(8,y) (= f(y|0)f(8)),

to devise methods for simulating from f(6]y), which only require evaluation of f(6,y) with the observed data
values plugged in for y. The resulting Markov chain Monte Carlo (MCMC) methods simulate (correlated) samples
from the distribution of the model unknowns (parameters and any random effects), given the data. Based on the
unknowns at one step, a new set of unknowns is generated in such a way that the stable distribution of the resulting
Markov chain is the distribution of interest.

9.1 Markov chains

To use MCMC we do not require much theoretical background on Markov chains, but some basic concepts are
needed. A sequence of random vectors, X1, Xo, X3, .. ., constitutes a Markov chain if, for any j,

Fxjlxj-1, %52, .., x1) = f(x;]x;-1).

For notational convenience let us rewrite the density of x; given x;_1 as P(x;|x;_1), the transition kernel of the
Markov chain. If there exists a density f, such that

f(x%5) :/P(Xj|xj—1)fz(xj—1)dxj—1

15The inconsistency of AIC is not in itself the reason for the empirical observation that AIC tends to select increasingly complex models as
n increases. If the true model is among those considered then (20) does not imply that the probability of rejecting it increases with sample size.
However, if all the models under consideration are wrong, then we will tend to select increasingly complex approximations as the sample size
increases and the predictive disadvantages of complexity diminish.
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(where f, denotes the same density on both sides), then this is the stationary distribution of the chain. Existence
of a stationary distribution depends on P being irreducible, meaning that wherever we start the chain, there is a
positive probability of visiting all possible values of X. If the chain is also recurrent, meaning that if its length
tends to infinity it will revisit any non-negligible set of values an infinite number of times, then its stationary
distribution is also its limiting distribution. This means that the chain can be started from any possible value of X,
and its marginal distribution will eventually converge on f,. In consequence as the simulation length, J, tends to

infinity,
J

537 60%,) = B, {9(X)}

j=1
(also known as ergodicity). This extension of the law of large numbers to this particular sort of correlated sequence
is what makes MCMC methods useful, so the methods discussed in this section will be set up to produce chains
with the required properties.

9.2 Reversibility

Now we turn to the issue of constructing Markov chains to generate sequences 61, 65, . .. from f(6|y). An MCMC
scheme will generate samples from f(@|y), if it satisfies the detailed balance condition (also termed reversibility).
Let P(6;]0;) be the p.d.f. of 8; given 6;, according to the chain. We require

P(0;16;-1)f(0;-1ly) = P(6;-1(0;)f(6;]y). 3D
The left hand side of (31) is the joint p.d.f. of 6;,8;_; from the chain, if 6;_; is from f(@|y). Integrating w.r.t.
0;_, gives the corresponding marginal density of 6,

[ P00, 00y = [ Po;10)50,ly)d0;-
= [f9;ly)-

That is, given 8;_; from f(6|y), the chain generates 8, also from f(@|y) as result of (31). So provided that we
start with a 0, that is not impossible according to f(0|y), then the chain will generate from the target distribution.
How quickly it will converge to the high-probability region of f(6|y) is another matter.
9.3 Metropolis Hastings

The Metropolis-Hastings method constructs a chain with an appropriate P. It works as follows:

1. Pick a proposal distribution q(0,]6;_1) (e.g. a normal centred on 6;_1). Then pick a value 6y, set j = 1
and iterate steps 2 and 3:

2. Generate 6 from q(6;(60;_1).

3. Set 8; = 0’; with probability

(32)

e min 1 f(y65)£(67)a(0;-1167)
T f(y10;-1)f(68-1)q(0510;-1) [

otherwise setting 8; = 6;_;. Increment j.

Note that the g terms cancel if ¢ depends only on the magnitude of 8; —60;_; (e.g. if ¢ is a normal centred on 8;_).
The same goes for the prior densities, f(8), if they are improper uniform. If both of these simplifications hold then
we have o = min {1, L(0%)/ L(6;_1)}, so that we are accepting or rejecting on the basis of the likelihood ratio.

An important consideration is that 8; may be very improbable so that the chain may take many iterations to
reach the high-probability region of f(80|y). For this reason we usually need to discard a burn-in period consisting
of the first few hundred or thousand 6; vectors simulated.
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9.4 Why Metropolis Hastings works

As we saw in Section 9.2, the Metropolis-Hastings (MH) method will work if it satisfies detailed balance. It does,
and proof is easy. To simplify notation let 7(0) = f(0]y) o f(y|€)f(8), so that the MH acceptance probability

from 0 to 0’ is (0)4(010")
/ . ™ q
«a(6',0) = mln{l, W} .

We need to show that 7(0)P(6'|0) = 7(6")P(0]0"). This is trivial if &’ = 6. Otherwise we know that P(6'|0) =
q(0'|60)x(6’,0), from which it follows that

m(0)P(0'10) = m(8)q(6'|6)min {17 m}

= min {m(0)q(6'|6),7(6")q(6]6")} = =(6")(6]6"),

where the final equality is by symmetry of the third term above.

9.5 A toy example with Metropolis Hastings

To illustrate the basic simplicity of the approach, consider an example for which simulation is certainly not re-
quired. Suppose we have 20 independent observations ;, that can each be modelled as N (u, ) random variables,
and we are interested in inference about i and o. In the absence of real prior knowledge about these parameters,
suppose that we decide on prior independence and improper prior densities, so that f(x) o< k and f(logo) x ¢
where k and c are constants (values immaterial). We work with log o, because o is inherently positive.'®

This specification sets up the Bayesian model. To simulate from the corresponding posterior for the parameters
using MH we also need a proposal distribution. In this case let us choose independent scaled t3 distributions
centred on the current parameter values for both parameters. This means that we will propose new parameter
values by simply adding a multiple of ¢35 random deviates to the current parameter values: this is an example of a
random walk proposal. The proposed values are then accepted or rejected using the MH mechanism.

Here is some R code to implement this example, using simulated = data from N(1,2). The parameters are
assumed to be in vectors @ = (1, log )T to be stored columnwise in a matrix theta.

set.seed(l);x <— rnorm(20)*2+1 ## simulated data
n.rep <- 10000; n.accept <= 0
theta <- matrix(0,2,n.rep) ## storage for sim. values
110 <- sum(dnorm(x,mean=thetall,1],
sd=exp (thetal2,1]),1log=TRUE))
for (i in 2:n.rep) { ## The MH loop
thetal[,i] <- thetal[,i-1] + rt(2,df=3)x.5 ## proposal
111 <- sum(dnorm(x,mean=thetall,i],
sd=exp (theta[2,i]),1log=TRUE))
if (exp(111-110)>runif (1)) { ## MH accept/reject
110 <= 111; n.accept <- n.accept + 1 ## accept
} else thetal[,i] <- thetal,i-1] ## reject
}

n.accept/n.rep ## proportion of proposals accepted

Working on the log probability scale is a sensible precaution against probabilities underflowing to zero (i.e. being
evaluated as zero, merely because they are smaller than the smallest number the computer can represent). The
acceptance rate of the chain is monitored, to try to ensure that it is neither too high, nor too low. Too low an
acceptance rate is obviously a problem, because the chain then stays in the same state for long periods, resulting
in very high correlation and the need for very long runs in order to obtain a sufficiently representative sample.
A low acceptance rate may result from a proposal that tries to make very large steps, which are almost always
rejected. Less obviously, very high acceptance rates are also a problem because they only tend to occur when the

16Note that a uniform prior on log o puts a great deal of weight on o ~ 0, which can cause problems in cases where the data contain little
information on o.
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Figure 8: Results of the Metropolis-Hastings method applied to the toy model in Section 9.5. The left panels
show the simulated values for the parameters at each step of the chain, joined by lines. The chains converge very
rapidly and mix well in this case. The right panels show histograms of the simulated values of the parameters after
discarding the first 1000 steps as burn-in.

proposal is making very small steps, relative to the scale of variability suggested by the posterior. This again leads
to excessively autocorrelated chains and the need for very long runs. It turns out that in many circumstances it
is near optimal to accept about a quarter of steps (Roberts et al., 1997). Here we can control the acceptance rate
through the standard deviation of the proposal distribution: some experimentation was needed to find that setting
this to 0.5 gave an acceptance rate of about 23%.

We need to look at the output. The following code nicely arranges plots of the chain components against
iteration, and histograms of the chain components after discarding a burn-in period of 1000 iterations:

layout (matrix(c(1,2,1,2,3,4),2,3))

plot(l:n.rep,thetall,],type="1",xlab="iteration",
ylab=expression (mu))

plot(l:n.rep,exp(thetal2,]),type="1",xlab="iteration",
ylab=expression(sigma))

hist (theta[l,-(1:1000)],main="", xlab=expression (mu))

hist (exp(theta[2,-(1:1000)]),main="",
xlab=expression(sigma))

The results are shown in Figure 8. The left-hand plots show that the chains appear to have reached a stable state
very quickly (rapid convergence) and then move rapidly around that distribution (good mixing). The right-hand
histograms illustrate the shape of the marginal distributions of the parameters according to the posterior.

9.6 Designing proposal distributions

The catch with Metropolis-Hastings is the proposal distribution. To get the chain to mix well we have to get it right,
and for complex models it is seldom the case that we can get away with updating all elements of the parameter
vector with independent random steps, all with the same variance, as in the toy example from the last section. In
most practical applications, several pilot runs of the MH sampler will be needed to ‘tune’ the proposal distribution,
along with some analysis of model structure. In particular:

1. With simple independent random walk proposals, different standard deviations are likely to be required for
different parameters.

2. Asits dimension increases it often becomes increasingly difficult to update all elements of 8 simultaneously,
unless uselessly tiny steps are proposed. The difficulty is that a purely random step is increasingly unlikely
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to land in a place where the posterior is non-negligible as dimension increases. In addition it is hard to tune
componentwise standard deviations if all elements are proposed together. A solution is to break the proposal
down into smaller parts and to only update small mutually exclusive subsets of the parameter vector at each
step. The subset to update can be chosen randomly, or we can systematically work through all subsets in
some order. This approach only affects the computation of the proposal; the computation of the acceptance
ratio is unchanged. But notice that we increase the work required to achieve an update of the whole vector,
because the computations required for the accept/reject decision have to be repeated for each subset of
parameters.

3. It may be necessary to use correlated proposals, rather than updating each element of 8 independently.
Bearing in mind the impractical fact that the perfect proposal would be the posterior itself, it is tempting to
base the proposal on a Gaussian approximation to the posterior, obtained analytically, or from a pilot run.

9.7 Gibbs sampling

When considering the design of proposal distributions, two facts were important. First, it is often necessary to
update parameters in blocks. Second, the perfect proposal is the posterior itself: substituting it for ¢ in (32), we
find that o = 1, so that such proposals would always be accepted. On its own the second fact is impractical, but
applied blockwise it can result in a very efficient scheme known as Gibbs sampling.!”

The basic idea is this. Suppose we have a random draw from the joint posterior distribution of 8l=1 =
(62,05, ...0,)T, and would like a draw from the joint posterior distribution of the whole of 8. This is easy given
that f(@ly) = f(0:10!=1,y)f(01=|y): simulate §; from (6|0~ y), append the result to 8!~ and we are
done. There is nothing special about #; in this process. The same thing would have worked for any other 6;, or
indeed for several §; simultaneously. In fact, if we have access to the conditional distributions for all elements of
6 then we could simply cycle through the 6; updating each in turn and thereby generating a (correlated) sequence
of draws from f(0|y).

In general then, suppose that the parameter row vector is partitioned into subvectors 8 = (811, 912 ... glK]),
Further define (A 0 a2 h=1] plk+1] (K]
< - +
0, " =(0;11,0;11,...,0; 1,0, ",....0;).

Then, given an initial 6, J steps of the Gibbs sampler proceed as follows

1. Forj =1,...,J repeat...
2. Fork =1,..., K simulate 03['13]-1 ~ f(O[k]|9~J[._k]7y).

Notice from the definition of 9~J[7 M that we always condition on the most recently simulated values.

At this point, the obvious question is how all those conditional distributions are to be found. It is often natural
to specify a model in terms of a hierarchy of conditional dependencies, but these dependencies all run in one
direction, leaving the problem of working out the conditional dependencies in the other direction. Alternatively, if
we attempt to specify the model directly in terms of all its conditional distributions, we will have the no less tricky
problem of checking that our specification actually corresponds to a properly defined joint distribution.

Actually, the problem of identifying the conditionals is less daunting than it first seems, and even if we cannot
recognise the conditionals as belonging to some standard distribution, it is always possible to devise some way
of simulating from them, as the last resort simply using a Metropolis Hastings step for the component. The main
trick for recognising conditionals is to use the fact that, for any p.d.f., multiplicative factors that do not involve
the argument of the p.d.f. must be part of the normalising constant. To identify a p.d.f. it therefore suffices to
recognise its form, to within a normalising constant. The following example helps to clarify this.

9.8 Toy Gibbs sampling example

Consider again the toy example from Section 9.5, but this time with proper priors on the parameters of the normal
model. So we have n = 20 observations of a N (u, ¢) random variable, where 1/¢ ~ G(a,b) (a gamma random

17In honour of the physical model to which it was first applied.
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Figure 9: Results of Gibbs sampling applied to the toy model in Section 9.8. The left panels show the simulated
values for the parameters at each step of the chain, joined by lines. The right panels show histograms of the
simulated values of the parameters after discarding the first 1000 steps.

variable, with p.d.f. f(y) = b%*te~"/I'(a)) and (independently) yu ~ N(c,d). a, b, c and d are constants to be
specified. The joint density is given by the product of the three densities involved:

L S (@imn)?/(26) —(u—c)?/2d) L b
f(x, 1, h) ox ¢n/26 2i(@i—p)*/(29) g—(1—c)*/( )Fe /¢
where factors not involving x, ¢ or u have been omitted because they only contribute to the normalising constant.
As we saw in section 2.1.1 and 9, the conditional densities are proportional to the joint density, at the conditioning
values. So we can read off the conditional for 1/¢, again ignoring factors that do not contain ¢ (and hence
contribute only to the normalising constant):

1 - zi—p)? _
f(1/¢|X,,LL) o8 We >i(@i—p)*/(20)—b/¢

If this is to be a p.d.f., then it is recognisable as a G(n/2 + a, >, (z; — pn)?/2 + b) p.d.f.
The conditional for y is more tedious,

flulx,¢) o< e” Si(wi—m)?/(2¢)~(u—c)?/(2d)
x e*(nu272571#)/(2¢),(u272uc)/(2d)
b a3 —) _ =358 (-2 5 482)

__dn+o ( _ dni+<}>c)2
o< e 2¢d dn+d¢

= €

where terms involving only >, x? and ¢? were absorbed into the normalising constant at the second ‘x’, and the
constant required to complete the square at the final ‘o<’ has been taken from the normalising constant. From the

final line, we see that
dnz + ¢c  ¢d
dn+¢ "dn+¢ /)"

ulx,¢~N(

Now it is easy to code up a Gibbs sampler:

n <— 20;set.seed(l);x <- rnorm(n)*2+1 ## simulated data

n.rep <- 10000;
thetag <- matrix (0,2,n.rep)

a <-1; b <- .1; ¢ <= 0; d <- 100 ## prior constants
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xbar <- mean (x) ## store mean
thetag[,1] <= c(mu <- 0,phi <= 1) ## initial guesses
for (j in 2:n.rep) { ## the Gibbs sampling loop
mu <- rnorm(l,mean=(d+nxxbar+phi*c)/ (dxn+phi),
sd=sqgrt (phi*d/ (d*n+phi)))
phi <= 1/rgamma(1l,n/2+a,sum( (x-mu)"2)/2+b)
thetag([, j] <- c(mu,phi) ## store results
}

The equivalent of Figure 8 is shown in Figure 9. Notice the rather limited effect of the change in prior between
the two figures. This is because even the proper priors used for the Gibbs sampler are very vague, providing very
limited information on the probable parameter values (plot the I'(1,.1) density to see this), while the data are
informative.

9.9 Limitations of Gibbs sampling

Gibbs sampling largely eliminates the difficulty of choosing a good proposal that complicates Metropolis Hastings,
but this is not quite the free lunch that it might appear. The catch is that Gibbs sampling produces slowly moving
chains if parameters have high posterior correlation, because sampling from the conditionals then produces very
small steps. Sometimes updating parameters in blocks or re-parameterising to reduce posterior dependence can
then help to improve mixing. The other practical consideration is that if improper priors are used with Gibbs
sampling then it is important to check that the posterior is actually proper: it is not always possible to detect
impropriety from the output of the sampler.

9.10 Checking for convergence

The great appeal of MCMC methods is their impressive generality. In principle we can work with almost any
model, and if we are prepared to simulate for enough iterations, then we will generate a sample from its posterior.
The difficulty is in identifying what is enough iterations. Well-designed samplers for relatively benign posteriors
may require only several thousand or several hundred thousand iterations. In other situations all the computer
power on earth running for the age of the universe might be required to adequately sample from the posterior: for
example, when the posterior consists of several well-separated and compact modes in a high-dimensional space,
where proposing a move that will take us from one mode to another is all but impossible, let alone doing it often
enough to sample from the modes in the correct proportion.

So it is important to check for apparent convergence of MCMC chains. Obvious checks are the sort of plots
produced in the left-hand panels of Figures 8 and 9, which give us some visual indication of convergence and how
well the chain is mixing. If there is any suspicion that the posterior could be multimodal, then it is sensible to
run multiple chains from radically different starting points to check that they appear to be converging to the same
distribution. If interest is actually in some scalar valued function of the parameters h(8), then it makes sense to
produce the plots and other diagnostics directly for this quantity.

One step up in sophistication from the simple trace plots is to examine how specific quantiles of the sample,
up to iteration j, behave when plotted against j. For example, the following code produces plots that overlay the
0.025, 0.5 and 0.975 quantiles of the sample so far, on top of a simple line plot of the chain’s progress:

gtplot <- function(theta,n.plot=100,ylab="") { ## simple MCMC chain diagnostic plot
cug <- Vectorize (function(n,x) ## cumul. quantile func.
as.numeric(quantile(x[1l:n],c(.025,.5,.975))),

vectorize.args="n")
n.rep <- length(theta)
plot(l:n.rep,theta,col="1lightgrey",xlab="iter",

ylab=ylab,type="1")

iter <- round(seqg(l,n.rep,length=n.plot+1l) [-1])
tg <- cug(iter, theta)
lines (iter,tql2,1])
lines(iter,tqll,],1lty=2);lines (iter,tql3,],1lty=2)
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Figure 10: Basic MCMC checking plots, relating to the example from Section 9.5 as discussed in Section 9.10. The
left panels show trace plots for the two chain components (grey) overlaid with the evolution of the chain median
(continuous), 0.025 and 0.975 quantiles (dashed). Everything is stabilising nicely here. The right-hand panels show
the equivalent autocorrelation function plots for the chains, illustrating the substantial degree of autocorrelation
when using this sampler, which is higher for the ;- component than for the o component.

Acalltogtplot (thetall, ], ylab=expression (mu)) produces the upper left plot in Figure 10, with a slightly
modified call producing the lower left plot. In both cases it appears that the median and both the other quantiles
stabilise rapidly.

For slightly more formal checking it helps to have some idea of the effective sample size of the chains. Roughly
speaking, what size of independent sample from f(8|y) would be equivalent to the correlated sample from our
MCMC scheme? Or, if we were to retain only every A*" sample from the chain, how large would & have to be
before we could reasonably treat the resulting thinned sample as approximately independent? To answer these
questions it is helpful to examine the autocorrelation function (ACF) of the chain components, as shown in the
plots on the right hand side of Figure 10, which are produced by, for example, acf (theta[1,]) in R. Apparently
retaining every 25th p value and every 20th ¢ value from the chain would give us almost independent samples.

Actually the acf function also returns the estimated correlations at each lag (silently). For example,

> mu.ac <- acf(thetall,])[[1]1][,,1];mu.ac
[1] 1.0000000 0.8831924 0.7777484 0.6863556 0.6096274
[6] 0.5406225 0.4834136 0.4303171 0.3796966 0.3389512

The autocorrelation length associated with a chain is defined as twice the sum of the correlations minus 1. The
summation is strictly over all lags up to infinity, but in practice we can sum over the lags up to the point at which
autocorrelation appears to have vanished (see R package coda for a better method). The corresponding effective
sample size is then defined as the sequence length divided by the autocorrelation length. For example,

> acl <- 2*sum(mu.ac)-1; acl

[1] 16.39729

> n.rep/acl ## effective sample size
[1] 609.8569

So the effective sample size for the ;. component is about 600 (although usually we would discard the burn-in
period before computing this). Repeating the exercise for o gives an autocorrelation length of around 10 and an
effective sample size of about 1000. For the Gibbs sampler in this simple case the autocorrelation length for p
drops to close to 1.
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Armed with this information, more formal tests are possible. For example, given multiple chains, we can
subsample to obtain approximately independent samples between each chain and then apply ANOVA methods to
see if there appear to be variance components associated with the difference between chains. With a single chain,
we might want to divide the apparently converged chain into two parts and formally test whether the two samples
appear to come from the same distribution. A two-sample Kolmogorov-Smirnov test is appropriate here, provided
that the two samples are of independent draws from the two distributions, so again sub-sampling is needed. Here
is an example, for the simple u chain:

th0 <- thetal[l,1001:5500]
thl <- thetall,5501:10000]
ind <- seq(1l,4500,by=16) ## subsampling index
ks.test (thO[ind],thl[ind])

vV V. V V

Two-sample Kolmogorov-Smirnov test

data: thO[ind] and thl[ind]
D = 0.0745, p-value = 0.4148
alternative hypothesis: two-sided

With a p-value of 0.4 there is no evidence for a difference in distribution between the two halves of the chain, so this
result provides no reason to doubt convergence. The exact choice of sampling interval is not important: increasing
the sampling interval to 25, as might be implied by simply examining the ACF, leads to the same conclusion.
However, using a much lower sampling rate is a disaster: failure to subsample at all completely violates the
independence assumption of the test, resulting in a computed p-value around 10~13, and even a sampling interval
of five results in an erroneously low p-value of 0.016.

This section only scratches the surface of convergence checking. See Robert and Casella (2009, Ch. 8) for
more information, and the coda package in R for an extensive set of checking functions (Plummer et al., 2006).

9.11 Interval estimation

Given reliable posterior simulations from a chain, interval estimates and quantities for model comparison can be
computed. The former is straightforward, because intervals can be based directly on the observed quantiles of the
simulated parameters. For example, with the simple toy model of Section 9.8, it is easy to produce 95% credible
intervals (Cls) for u and o, as follows (discarding the first 1000 samples as burn-in):

quantile (thetag[l,-(1:1000)],c(0.025,0.975)) ## CI mu
quantile (thetag[2,-(1:1000)]7.5,c(0.025,0.975)) # CI sig

which yields 0.52 < p < 2.22 and 1.39 < ¢ < 2.67.

10 Graphical models and automatic Gibbs sampling

The implementation of MCMC samplers is obviously rather time consuming, and the question of automating the
construction of samplers arises. It turns out that automatic Gibbs sampling can be very successfully implemented
for Bayesian graphical models in which the dependency structure between variables in the model can be repre-
sented by a directed acyclic graph (DAG). The basic trick is to break down simulation from a high-dimensional
posterior into a sequence of Gibbs sampling steps of intrinsically low dimension.

The automation process is bound up with the model’s DAG structure, so we need to explore the concepts here.
A directed graph consists of a set of nodes connected by directed edges: arrows. These arrows run from parents to
children. Every variable in a graphical model is a node, and the key feature of such models is that the distribution
of a variable/node is completely known if you know the values of all its parent nodes. The fact that the graphs are
acyclic means that no node is its own ancestor: you cannot find a path through the graph that follows edges in the
direction of the arrows and arrives back at the node you started from.

It is helpful to distinguish three types of node.

1. Stochastic nodes are variables with a distribution that depends stochastically on other nodes. They may be
observed (i.e. correspond to data), or unobserved (parameters or random effects).
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Figure 12: Part of the DAG for the algal model introduced in Section 10.1. The figure focuses on a section of
the graph relating to an observation at time 7 lying between discrete simulation times ¢ and ¢ + 1. Most of the
edges connected to nodes n;_o and n;41 are not shown. Notice how the left and rightmost nodes, which are fixed
constants defining priors, have no parents. Conversely, the observed data node y; has no children, but this is a
feature of this model, rather than being a requirement of the formalism.

2. Deterministic nodes are nodes that are deterministic (logical) functions of other nodes. They cannot be
observed.

3. Constants are fixed numbers and have no parents.

There are two types of arrows. Deterministic/logical relationships between nodes are usually shown as dashed
arrows, whereas stochastic relationships are shown as solid arrows.

10.1 A non-trivial example

Figure 11 shows counts of algal cells in samples drawn from a laboratory chemostat experiment. A possible model
for the population growth in the chemostat is that it follows a self-damping growth model, such as

Nigp1 = " Nye  Ne/EFee o« N(0,02), (33)

where the independent e; terms reflect the fact that the population growth will not be fully deterministic. This

model would usually operate with a fixed timestep (e.g. ¢ might index hour, or two hour period). If we want to
estimate NV between IV; and N, then we might use linear interpolation. The cell population, y, is then modelled
as being a noisy observation of the underlying population N, perhaps Gaussian, with unknown variance, o2. The
data plotted in Figure 11 are not evenly spaced in time. The spacing ranges from 0.4 to 5.1 hours. Hence we will
need to interpolate the solution to (33) in order to use this model for the data.

Figure 12 illustrates a portion of the DAG for this model, assuming that proper gamma(a;, A;) priors have
been specified for 7, K, 1/02 and 1/02. The parentless nodes at the far left and right of the figure are the constants
specifying the various gamma priors: actual numbers would have to be supplied here. The portion of the graph
shown surrounds a data node y, whose time of observation lies between discrete update times ¢ and t+ 1, so that its
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expected value is obtained by linear interpolation between nodes n; and n;1. The fact that this linear interpolation
is purely deterministic is the reason that the arrows from n; and n;_; to deterministic node p, are dashed.

10.2 Exploiting the DAG

Now consider what makes graphical models convenient for automatic Gibbs sampling. Generically, let x; denote
the variable corresponding to the i*" node of the graph. From the dependencies encoded in the graph it follows
that the joint density of the (non constant) nodes is

fx)= H f(z;|parent{z;}), (34)

where the product is over the non constant nodes. If this is not obvious, start with the childless (terminal) nodes
and work back using the basic relations between conditional and joint densities.

Gibbs sampling involves simulating from the full conditionals of all stochastic nodes other than those corre-
sponding to data, which are fixed at their observed values. It turns out that these conditionals usually involve far
fewer terms than the full joint density. From the definition of a conditional p.d.f.,

_f60 L fedparen(ad)
[ f(x)dz;  [T1; f(xi|parent{z;})dz;’

but the only terms in the product that have to stay inside the integral are those that involve x;: the conditional
density of x; given its parents, and the conditional densities of each child of x;, given that child’s parents. All
other terms in (34) can be taken out of the integral and therefore cancel between the top and bottom of f(x;|x_;).
In short,

f(xjlx—;)

f(x;|parent{z;}) Hiechild{j} f(xi|parent{z;})
| f(x;|parent{z;}) HiEChﬂdm f(z;|parent{x; } )dx;
f(ajlparent{z;}) ] f(a:lparent{z,}),

i€child{j}

flxjlx—;) =

K

so that, however complicated the model and corresponding DAG, f(x;|x_;), required for the Gibbs update of z;,
depends only on the parent-conditional-densities of x; and its children.

10.3 Building the samplers

The preceding discussion forms the basis for the automatic construction of Gibbs samplers. The model’s DAG
structure is used to identify the relatively small number of terms that play a part in each f(z;|x_;), an attempt is
made to identify the exact distribution for f(x;|x_;), and when this is not possible a more costly general-purpose
sampler is constructed. Identification of the exact distributions rests on known conjugacy relationships between
distributions, while the ingenious method of slice sampling is often useful otherwise.

10.3.1 Conjugate distributions

Again consider,

Flzjlx—j) o< f(zjlparent{z;}) [T f(zilparent{z:}).

i€child{j}

The right hand side has exactly the structure of a prior, f(x;|parent{z,}), for z;, multiplied by a likelihood term for
2, in which the children x; play the role of data. This fact allows what is known about conjugacy of distributions
to be exploited in automatically ascertaining the density that gives f(z;|x_;).

If the prior and posterior distribution for some quantity are from the same family'®, for a given likelihood,
then that distribution is said to be conjugate for that likelihood. We have already seen an example of this when

18For example, a normal prior yields a normal posterior, or a gamma prior yields a gamma posterior. Of course, the parameters of the
distributions change from prior to posterior.
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constructing the simple Gibbs sampler in Section 9.8: there the normal distribution was shown to be conjugate for
the mean of a normal likelihood term, while the gamma distribution was conjugate for the precision (reciprocal
variance) of a normal. A whole library of such standard conjugacy results is known and can therefore be exploited
in the automatic construction of Gibbs samplers.

10.3.2 Slice sampling

When no convenient analytic form for a density f(z;|x_;) can be obtained, then some other stochastic simulation
method must be employed for that density. A beautifully simple approach is slice sampling (Neal, 2003). The
basic observation is this: if we plot & f () against = for any finite non-zero &, and then generate a coordinate x, y
from a uniform density over the region bounded by k f(x) and the x axis, then the resulting = value will be a draw
from f(z).

The problem, of course, is that generating directly from the required uniform density of x, y is no easier than
generating from f(x) itself. The simplicity arises when we consider a Gibbs update of  and y. Trivially

fyle) ~ U0, kf(x))
while
faly) ~ Ul kf(z) 2 y),

so a Gibbs update would draw a y uniformly from the interval (0, & f(z)) and then draw = uniformly from the set
of = values for which kf(z) > y (the ‘slice’ of the technique’s name). The only problem now is identifying the
required set of « values. For a unimodal distribution, this set will constitute a single interval, which may be easy to
locate, but for multimodal distributions several intervals may need to be identified. Of course, in practice it is only
necessary to identify an interval or a set of intervals that bracket the required set: then we can generate uniformly
on the bracketing interval(s) until we obtain an x such that k f(x) > y. If the bracketing interval(s) are too wide
this will be inefficient, of course.

10.4 BUGS and JAGS

The most widely used software for statistics via automatically constructed Gibbs samplers is BUGS (Bayesian
Updating via Gibbs Sampling), now followed by openBUGS, which has an R package interface brugs. BUGS
established a simple language for the specification of graphical models, leading to other implementations including
JAGS (Just Another Gibbs Sampler), with the R interface package rjags, which is covered here.

JAGS has to be installed as a standalone program and can be used as such, but it is very convenient to use it
via rjags, which is the method covered here. rjags also provides easy integration with the coda package for
convergence diagnostics. JAGS models are specified in a text file using a dialect of the BUGS language. The name
of this file, together with a list providing the corresponding data, is supplied to the jags.model function, which
calls JAGS itself to automatically generate a sampler, returned as an object of class "jags". This object can then
be used to generate samples using calls to jags.samples or the closely related coda.samples (depending on
exactly what format you would like the data returned in).

10.4.1 Toy example

Recall the toy normal model example of Section 9.8 in which we have n = 20 observations y; ~ N (u, ¢), where
1/¢ ~ G(a,b) (a gamma random variable) and (independently) y ~ N(c,d). a, b, ¢ and d are constants. In
graphical model terms each y;, p and 7 = 1/¢ are stochastic nodes, whereas a, b, ¢ and d are constant nodes:
the graph has 26 nodes in total. The BUGS language is set up for convenient specification of each node, and their
relationships (directed edges). Here is the contents of the file norm. jags coding up our toy model

model {
for (i in 1:N) {
y[i] ~ dnorm(mu,tau)

}

mu ~ dnorm (0.0, 0.01)

tau ~ dgamma (0.05,0.005)
}
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Figure 13: ACFs computed by autocorr.plot from the coda package for the toy model simulated using JAGS
in Section 10.4.1. There is little autocorrelation here: to get more detail on the low correlations the acfplot
function could be used.

For anyone who has read this far, the language is very intuitive. The symbol ~ specifies a stochastic dependence
(i.e. a — in the graph), with the BUGS/JAGS statement y[i] ~ dnorm(mu, tau) being exactly equivalent to
the mathematical statement y; ~ N(u,1/7). By default the normal distribution is parameterised in terms of its
precision, rather than its variance. Notice the use of loops to deal with vectors. R programmers are used to avoiding
loops for populating vectors, but here there is no problem: this code is going to be compiled by JAGS to produce
a sampler, and the R efficiency concerns do not apply.

Here is the R code to get JAGS to build a sampler from R, given 20 observations in a vector, y:

library (rjags)
setwd ("some/directory/somewhere")
jan <- jags.model ("norm. jags",data=list (y=y,N=20))

Function setwd sets R’s working directory to the location of norm. jags. jags.model then creates the sampler,
setting the nodes identified in data to their observed values. JAGS counts N as a constant node in the model, so it
reports that the model has 27 nodes, rather than the 26 counted before.

The jags.model function also runs a number of adaptation iterations, tuning those component samplers that
can be tuned to try to optimise their performance. The n.adapt argument controls the number of adaptation
iterations and has a default value of 1000. At this stage jan contains a JAGS model object, which is ready to use
to generate samples. Once built and initialized the sampler can be used:

> um <- jags.samples (jan,c("mu","tau"),n.iter=10000)
I*************************************************‘ 100%

The second argument, c ("mu", "tau"), specifies the nodes that should be monitored at each step, and n.iter
gives the number of steps (by setting argument thin to an integer greater than 1, we could monitor every thin
steps). The results are stored in a two element list um, which could be used to produce a plot almost identical to
Figure 9.

rjags can also create output in a manner convenient for use with the MCMC diagnostics package coda. Here
is some code to do this, plot the chain ACFs shown in Figure 13 and compute effective sample sizes:

> er <- coda.samples (jan,c("mu","tau"),n.iter=10000)
[k kkhkkhkhkhkhkkhkkkkkkhkkkkkhkkhkkhkkhkkhkxkxkxkxkxkkxkxxxx| 100%
> autocorr.plot (er)
> effectiveSize (er)
mu tau
9616.071 10000.000

JAGS has a built-in function dic.samples for obtaining the Deviance Information Criterion (DIC) for a model,
which is an AIC like model selection criterion, computable by MCMC (see section 11.1.4). Relative to the standard
computation given in section 11.1.4, JAGS uses a slightly different computation for pp which requires samples
from two independent chains (see argument n.chains of jags.model). For example,
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jan <- jags.model ("norm. jags",data=list (y=y,N=20),
n.chains=2)
dic.samples (jan,n.iter=10000)

10.5 JAGS algal population example

The algal population growth model of Section 10.1 can easily be implemented in JAGS. The graph in this case has
874 nodes, and a portion of it is shown in Figure 12. The contents of the model specification file are as follows:

model {
n{l] ~ dnorm(n0O,tau)
for (1 in 2:M) {
n[i] ~ dnorm(n[i-1] + r - exp(n[i-11) /K, tau)

}

for (1 in 1:N) {
muli] <— wm[i]*n[im[i]] + wp[ilxn[ip[i]]
y[i] ~ dnorm(exp(mufi]),tau0)

}

K ~ dgamma (1.0, .001)

tau ~ dgamma (1.0, .1)

r ~ dgamma (1.0,.1)

n0 ~ dgamma (1.0, .1)

tau0 ~ dgamma (1.0, .1)

}

Notice that there are two loops now. The first iterates the dynamic model for the log population for M steps.
The second loop works through the NV observed population nodes v [1 ], relating them to the n[1i]. The required
linear interpolation is implemented via the deterministic nodes mu [i], using pre-computed interpolation indices
and weights as generated by the function 1int, below. The notation ‘<-’ is equivalent to the dashed arrows in
Figure 12.

The interpolation weight routine 1int returns vectors im, ip, wm and wp, each of the same length as t, such
that if N is the m vector of evenly spaced NN values, N[im] xwm + N[ip] =wp gives the vector of interpolated
N estimates, corresponding to t. It also returns dt and an appropriate value for m:

lint <- function(t,t0=0,dt=1) {
## produce interpolation indices and weights.
n <- length(t)
ts <- seqg(t0,max(t),by=dt)
ts <—- c(ts,max(ts) +dt)
m <- length(ts)
im <- floor ((t-t0)/dt)+1l;ip <- im+l;ip[ip>m] <- m
list (im=im, ip=ip,wm=(ts[ip] - t)/dt,
wp=(t - ts[im])/dt,m=m,dt=dt)

The R code to use this model is a little more involved for this example, because we need to produce interpolation
weights and an initial value for the state vector n. Without a reasonable initial value JAGS is unsuccessful at
initialising this model.

library(rjags)

setwd ("~location/of/model/file")

1i <= lint (algS$hour,t0=0,dt=4)

dat <- list (y=alg$cell.pop,N=length(alg$Scell.pop),M=1iSm,
ip=1i$ip,im=1i$im, wp=11iSwp, wn=11S$Swm)

## initial state for n by linear interpolation of data...
ni <- log(c(alg$cell.popl[l],approx(algShour,algS$cell.pop,
1:(1li$m-2)%x1is$dt) Sy, max (algScell.pop)))
jal <- jags.model ("algae.jags",data=dat,inits=1ist (n=ni),

n.adapt=10000)
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Figure 14: 40 replicates of the underlying state exp(n) of the algal population model of section 10.5, as simulated
using JAGS, shown as grey lines. The observed data are shown as open circles. Clearly the state is too variable
towards the end of the data.

ug <- coda.samples(jal,c("nO","r","K","taul"),
n.iter=40000,thin=10)

Here only every 10th sample has been stored in ug. According to coda the effective sample sizes are 2600, 615,
1514 and 4000 for K, ng, r and 79, respectively, and other diagnostic plots look reasonable. Let us look at the
underlying state n, by having JAGS monitor it every 1000 iterations:

pop <- jags.samples(jal,c("n"),n.iter=40000,thin=1000)
plot (alg)

ts <— 0:(1liSm—-1)«*1isdt

for (i in 1:40) lines(ts,exp(pop$n[,i,1]),col="grey")
with (alg,points (hour,cell.pop))

The results are shown in Figure 14: clearly the state is too variable at high population sizes, and the model would
benefit from some modification.

11 More Bayesian Inference

We have already seen how to obtain interval estimates under the Bayesian approach. Under the Bayesian paradigm
we do not estimate parameters: rather we compute a whole distribution for the parameters given the data. Even so,
we can still pose the question of which parameters are most consistent with the data. A reasonable answer is that
it is the most probable value of @ according to the posterior: the posterior mode,

6 = argmax f(0)y).
0

More formally, we might specify a loss function quantifying the loss associated with a particular 6 and use the
minimiser of this over the posterior distribution as the estimate. This decision theory based approach has consid-
erable philosophical appeal, and leads to some very elegant theory, but it can also lead us to parameter ‘estimates’
that are in the far tails of the posterior probability distribution, if we are not very careful about how the loss is
specified (especially in high dimensions).

If we specify an improper uniform prior f(0) = k, then f(0]y) x f(y|@) and the posterior modes are exactly
the maximum likelihood estimates (given that f(y) does not depend on 6). In fact, for data that are informative
about a fixed dimension parameter vector @, then as the sample size tends to infinity the posterior modes tend to
the maximum likelihood estimates in any case, because the prior is then dominated by the likelihood.
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The connection to MLE goes further. In many circumstances in the large sample limit when the likelihood
dominates the prior, R
fly ~N(0,.I7),

where 0 and Z are as in (8), as we saw in the case of the linear model. However there are real differences when it
comes to model selection.

11.1 Model comparison, Bayes factors, prior sensitivity, BIC, DIC

Hypothesis testing does not fit easily with the Bayesian approach, and a criterion somehow similar to AIC is also
not straightforward. The obvious approach to Bayesian model selection is to include all possible models in the
analysis and then to compute the marginal posterior probability for each model (e.g. Green, 1995). This sounds
clean, but it turns out that those probabilities are sensitive to the priors put on the model parameters, which is
problematic when these are ‘priors of convenience’ rather than well-founded representations of prior knowledge.
Computing such probabilities is also not easy. This section examines the issue of sensitivity to priors and then
covers two of the attempts to come up with a Bayesian equivalent to AIC.

11.1.1 Marginal likelihood, the Bayes factor and sensitivity to priors

In the Bayesian framework the goal of summarising the evidence for or against two alternative models can be
achieved by the Bayes factor (which therefore plays a somewhat similar role to frequentist p-values). A natural
way to compare two models, M; and My, is via the ratio of their probabilities.'® As a consequence of Bayes
theorem, the prior probability ratio transforms to the posterior probability ratio as

Pr(Mily)  f(y|Mi)Pr(My) Pr(M;)

= = B _—
1OPI'(M0)7

Pr(Moly)  f(y|Mo)Pr(Mo)
by definition of By(, which is known as the Bayes factor for comparing M; with M. So By measures the amount
by which the data have shifted the prior probability ratio in favour of M;. As with p-values, there are conventions
about how to describe the degree of evidence that different magnitudes of Bayes factor represent (Kass and Raftery,
1995). Working with 2log B (for comparability with the log likelihood ratio) we have

2log B1p Evidence against M
0—-2 Barely worth mentioning
2—-6 Positive
6 —10  Strong
> 10 Very strong

To actually compute By we need to obtain the marginal density of y given each model, also known as the
marginal likelihood. For example,

FylM) = / F(y16:)£(61)d8;, 35)

where 6, denotes the parameters of M;. The need to integrate over all possible parameter values is a major
difference between the Bayes factor and the likelihood ratio statistic for model comparison, but integration gives
the Bayes factor some advantage. The likelihood ratio statistic is a ratio of maximised likelihoods evaluated at
both models’ best fit parameters, giving the larger model an inevitable advantage, which we then have to allow for
in interpreting the ratio; hence the need for p-values or AIC. By integrating over all possible parameter values, the
marginal likelihood does not suffer from this bias towards large models — irrelevant flexibility can decrease the
marginal likelihood. Computing (35) is generally not straightforward. Since part of the motivation for MCMC is
to avoid having to evaluate the marginal likelihood, it is unsurprising that it requires substantially more effort to get
marginal likelihood estimates by simulation. The alternative is to use approximations to the posterior. However,
there is also a more fundamental problem to consider.

91f M; and My are the only two possibilities then the probability ratio is also the odds of M7; that is, the probability of M; over the
probability of not M .
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Examination of (35) indicates an immediate problem with the use of vague, uninformative or improper priors
(i.e. with any prior that is chosen to represent a broad statement of ignorance, rather than a precise characterisation
of prior knowledge). The difficulty is that the value of (35) is very sensitive to the prior. It is easy to see the
problem by example. Suppose the likelihood indicates that a single parameter 6 is almost certain to lie in the
interval (0, 1), but because we had no real prior information on 6, we used a U (—100, 100) prior, obtaining a value
for the marginal likelihood of k. Now suppose that we replace the prior with U(—1000, 1000). This produces a
negligible change in the posterior for 6, but reduces the marginal likelihood to approximately & /10 (corresponding
to a ‘positive’ change in the Bayes factor in the earlier table). If we had used an improper prior then it would only
have been possible to compute the marginal likelihood to within an arbitrary multiplicative constant, rendering the
Bayes factor completely useless unless the same improper priors apply to both models.

Another way of seeing the problem with the marginal likelihood is to recognise that it is the likelihood for the
fixed parameters of the prior (that is, for those parameter values we chose during model specification), all other
parameters having been integrated out. Choosing between models on the basis of the relative likelihood of the
fixed parameters of the prior is not always a natural approach. Indeed it is completely arbitrary if those values were
selected merely to be as uninformative as possible about 6.

In summary, because the prior is inescapably part of the model in the Bayesian approach, marginal likelihoods,
Bayes factors and posterior model probabilities are inescapably sensitive to the choice of prior. In consequence, it
is only when those priors that differ between alternative models are really precise and meaningful representations
of prior knowledge that we can justify using Bayes factors and posterior model probabilities for model selection.
Even then, the computation of the marginal likelihood is often difficult. These difficulties are part of the motivation
for attempting to produce AIC-like model selection criteria in the Bayesian setting. But before looking at these, let
us consider fixing the Bayes Factor.

11.1.2 Intrinsic, fractional and partial Bayes factors

Given that Bayes factors require meaningfully informative priors, which are often not available at the model for-
mulation stage, it is worth considering the alternative of using part of the data to generate priors. The basic idea
is to split the data y into two parts x and z, and to use f(6|x) as the prior for computing the marginal likelihood
based on z. That is, marginal likelihoods of the form

f(2|M; %) = / /(2165 %) £ (8;]x)d6;

are used to form a sort of partial Bayes factor. Substitute f(6;|x) = f(x|0;)f(0;)/ | f(x|0;)f(0;)d6; into the
preceding expression to see why this improves matters,

J (2]6:,x) f(x]0:) f(6:)d8;
[ f(x6:)f(6:)de;

J f(y|6:)f(6:)de;

J f(x|6:)f(6:)d6;

Since we have the same prior on the top and bottom of this last expression, the sensitivity to priors seen in the full

marginal likelihood is much reduced.

Two variants of this basic idea are intrinsic and fractional Bayes factors. Intrinsic Bayes factors (Berger and
Pericchi, 1996) use a subset x just large enough to ensure that f(8;|x) is proper, and then average the resulting
partial Bayes factors over all such subsets to remove the arbitrariness attendant on any particular choice of x. The
required averaging can be somewhat computationally costly. Hence fractional Bayes factors (O’Hagan, 1995) use
the fact that if b = dim(x)/dim(y), then f(x|0;) ~ f(y|6:)® (at least for large dimensions and exchangeable
observations) and this approximation can be plugged into (36). Note that if the fractional Bayes factors are to
select the right model in the large sample limit, then b — 0 as the sample size tends to infinity. This consistency is
automatic for intrinsic Bayes factors.

f(2|M;,x) =

(36)

11.1.3 BIC: the Bayesian information criterion

An older approach, avoiding the difficulties of sensitivity to priors, is due to Schwarz (1978). Dropping the notation
relating to particular models in the interests of clarity, the computation of the Bayes factor requires the evaluation
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of the marginal likelihood,
p= [ rslo)s®)de.

for each model. Let n be the dimension of y and p be the dimension of 8, and define f,(0) = f(y|0)f(0) (y is
the observed data vector here). Let 6 be the value of 6 maximising f,. A Taylor expansion gives

R

log f,(0)

~ ~ 2 ~
g £,(6) - 56 - 0" (-5l ) (60

=50 = KO {-30-07 (-22E8) 0-0).

Recognising the term in {} from the multivariate normal p.d.f., we have
75‘2 log fp -1/

P= / fp(0)d6 = £,(8)(2m)""? | —— 2T

Now assume, at least in the n — oo limit, that —0? log fo/ 00007 = nT,, where I, is a matrix such that |Zol,
is bounded above and below by finite positive constants, independent of n (and ideally close to 1). In the case of
ii.d. data, then Zj is the (fixed) information matrix for a single observation. Under this assumption we have

‘ d?log f,

~ 00 |~ "ol

and so ]
log P ~ log f(y|@) + log f() + glog(%r) - glogn ~3 log |Zy|.

Now as n — 00, 8 — 6 (the MLE) while the terms that do not depend on n become negligible compared to those
that do. So we arrive at .
BIC = —2log f(y|@) + plogn (=~ —2log P).

Hence the difference in BIC between two models is a crude approximation to twice the log Bayes factor, and all
other things being equal, we would select the model with the lowest BIC. Notice some arbitrariness here: there is
really nothing in the preceding derivation to stop us from multiplying n in BIC by the finite positive constant of
our choice. One interesting feature of BIC is that because it drops the prior, it is not susceptible to the problem
with sensitivity to priors that affects the Bayes factor itself, but on the other hand the justification for dropping the
prior seems somewhat artificial.

11.1.4 DIC: the deviance information criterion

In complex Bayesian models it is not always clear how to count the number of free parameters in the model.
For example, the distinction between random effects and parameters in models is really terminological rather
than formal in the Bayesian setting. This makes application of BIC problematic, as does BIC’s dependence on
knowledge of the posterior modes, which are not directly available via simulation.

In essence, the problem with counting free parameters is the introduction of priors. A prior restricts the freedom
of a parameter to vary. In the limit in which the prior was a Dirac delta function, then the corresponding parameter
would behave as a fixed constant, insensitive to the data, and should clearly not count in the tally of free parameters
at all. Moving smoothly from this extreme to the other extreme of a fully uninformative prior, it seems reasonable
that the contribution of the corresponding parameter to the free parameter count should increase smoothly from 0
to 1. This idea leads us to the notion of effective degrees of freedom.

Spiegelhalter et al. (2002) suggest a measure of the effective degrees of freedom of a Bayesian model that is
readily computed from simulation output. They first define the deviance as

D(6) = —2log f(y|6) + ¢,
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where c is a neglectable constant depending only on the y (and hence not varying between models of a given y).
Using the notation Z for ‘mean of =’, the proposed definition of the effective degrees of freedom is

Pp = W — D(6).

The definition is appealing because in the large sample limit in which the likelihood dominates the prior and the
posteriors are approximately Gaussian, then D(0) — D{E(6)} ~ x?2, by the same argument that leads to (9). But
pp is a direct estimate of E[D(0) — D{E(0)}], and E(x?) = r. The deviance information criterion is then

DIC = D(0) + 2pp,

which clearly has a somewhat similar form to AIC. Derivation of DIC in the context of approximately Gaussian
posteriors is relatively straightforward, but it is applied much more widely, with some associated controversy. In
any case the DIC cannot be justified if pp is not small relative to the number of data in y. It has the pragmatic
appeal of being readily computable from simulation output, while being much less sensitive to the choice of vague
priors than the marginal likelihood.
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