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Calculators are not permitted in this examination.

The marking scheme is indicative and is intended only as a guide to the relative weighting of
the questions.

Do not turn over until instructed.

Page 1 of 10



1. Consider the linear model y = Xβ + ε, where E(ε) = 0 and cov(ε) = Iσ2. As usual y is a
response vector, X a full rank n× p model matrix (p < n), β a parameter vector and ε a
vector of residual random variables. Consider the orthogonal decomposition XT = [L,0]U
where L is a lower triangular matrix and U is an orthogonal matrix. Let Uf denote the
�rst p rows of U and Ur denote the remaining n− p rows.

(a) Show that the least squares estimate of β is β̂ = L−TUfy. [5 marks]

(b) Show that the estimator, β̂, from part (a), is unbiased. [2 marks]

(c) Show that β̂ from (a) is equivalent to β̂ = (XTX)−1XTy. [3 marks]

(d) Suppose you are working in an online advertising consultancy, and examining the
relationship between daily time spent online ti and advertising revenue generated ai
for a sample of web users. The model

ai = β0 + β1ti + εi, εi ∼ N(0, σ2)

seems to work well for the data, although σ̂2 is large, so β̂1 has quite high uncertainty.
Your boss (very much an `ideas man') has been reading up on experimental design
and noticed that the design minimizing the variance of β̂1 would place all the ti values
at the extremes of their possible range. He therefore proposes to discard the data
corresponding to the middle half of the ti observations and re�t the model, claiming
that this will reduce the uncertainty of β̂1.

i. Comment on this proposal with reference to the Gauss Markov theorem.

ii. Your boss says he has never heard of the Gauss Markov theorem, stop blinding
him with science. Provide a simpler explanation of why the proposal is unlikely
to work.

[5 marks]

(e) Write down the statistical model being �tted in the following code, and explain how
and why you would modify it in the light of the plots produced.

b <- lm(y~x+z)

par(mfrow=c(1,3))

plot(fitted(b),residuals(b))

plot(x,residuals(b))

plot(z,residuals(b))
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[5 marks]

(f) Assuming the model is corrected as you suggested above, the R default residual plots
for the model, now have the appearance shown below.
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Identify the one problem evident in the plots, commenting on the seriousness or oth-
erwise of this. How might you use a computer intensive approach to check whether
the identi�ed problem was adversely a�ecting con�dence intervals calculated for the
parameters of the �tted model? Write example R code for obtaining a 95% con�dence
interval for the coe�cient associated with z in the model using this computer intensive
method. [5 marks]

2. (a) The department of health wishes to commission research on the e�ects of cycling and
running on health, in order to decide on recommendations for how people can improve
their cardiovascular health (health of heart and rest of blood handling system). A call
for proposals is issued and you are asked to compare the following two proposals (the
�rst of which is somewhat cheaper). Write brief, statistically based, advise on which
study the department should fund, making sure to explain your choice.

i. The research wing of large internet company proposes to enlist 20,000 runners and
cyclists owning personal health monitors (�tbits, etc) to log their weekly running
and/or cycling activity, monitored data on heart rate and body fat, and (with
consent) to gather other information about them from their online pro�les and
activity. They will then model these data using the latest methods in order to
establish the e�ect of exercise on health.

ii. A university public health department proposes to enlist 600 participants aged 40-
60, initially taking less than 30 minutes vigorous exercise a week, to take place in
a study. The participants will be randomly allocated to a control (no additional
exercise), cycling or running treatment, with those on the cycling or running
treatment receiving a tailored programme of running or cycling for 2 hours per
week. Standardized measures of cardiovascular function and body fat mass will
be measured at enrolment, at the end of the study, and at points in between,
along with other data such as subject age, sex, weight, etc. The e�ects of the
treatments and covariates on cardio function and fat mass will be analysed using
linear models. [10 marks]

(b) Brie�y explain, with an example, the meaning of confounding in a statistical model.
[5 marks]
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(c) Explain concisely how randomization is used to set up experiments in a way that
avoids confounding problems. [4 marks]

(d) De�ne an instrumental variable, and give a brief mathematical explanation of how
they can be used to circumvent confounding problems in observational data analysed
with linear models. [6 marks]

3. (a) By considering a Taylor expansion of the derivative of the log likelihood, derive a large
sample approximation for the covariance matrix of the maximum likelihood estimator
of a parameter vector θ. You can assume that the MLE is consistent and the likelihood
su�ciently regular, and you can use standard results on the expectation of derivatives
of the log likelihood without proof. [5 marks]

(b) Explain how the Cramer-Rao lower bound relates to the result from (a). [3 marks]

(c) Explain whether the result from (a) is useful for �nding the approximate variance of a
variance parameter estimator σ̂2 when the true value of σ2 is 0 (or very close to zero).
Suggest an alternative approach you might take in this case. [2 marks]

(d) Brie�y explain Newton's method for �nding maximum likelihood estimates and how
it relates to part (a), above. [3 marks]

(e) An electrical goods store chain runs a customer help line, and wants to ensure that it
has enough sta� available to meet demand. The number of calls received in any given
week varies widely, and it is hoped to develop models to better predict demand. One
possible model is that the number of calls in one week depends on the number of sales
in the previous week, and data are available on weekly numbers of calls, together with
sales volume in the previous week, for one year.

i. The base model for the weekly call data is that the number of calls per week is a
Poisson random variable with mean θ. Write an R function, l1, to evaluate the
negative log likelihood of θ, given that 52 weeks of call data are stored in a vector
calls. The �rst argument of l1 should be variable containing a value for θ.

[3 marks]

ii. A second model is suggested in which the weekly calls are still realizations of
Poisson random variables, but now the expected number of calls each week is
given by a `baseline' number of calls plus some small coe�cient multiplied by the
total number of sales the previous week. Both the baseline number and the small
coe�cient are intrinsically positive quantities, so the model is written as:

callsi ∼ Poi(λi) where λi = eβ0 + eβ1 × salesi.

callsi is the number of calls in week i; salesi is the number of sales in the week
before week i and the βj are parameters to be estimated. Write an R function, l2,
to evaluate the negative log likelihood of the parameters given vectors of sales
and calls data. The �rst argument of l2 should be a vector b containing the
values for β0 and β1, in that order. [3 marks]

iii. The following is an R session using the two likelihood functions l1 and l2. Ex-
plain, brie�y, what each R command is doing, what the results mean statistically,
and what large sample distributional result has been used. [3 marks]

> fit0 <- optim(150,l1,method="BFGS",calls=calls)

> fit0$par

[1] 119.8077
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> fit1 <- optim(c(5,-6),l2,method="BFGS",calls=calls,sales=sales)

> fit1$par

[1] 3.606867 -4.677395

> lrt <- 2*(fit0$val-fit1$val)

> lrt

[1] 15.95610

> 1-pchisq(lrt,df=1)

[1] 6.48286e-05

iv. Explain the theoretical problem with part (e), and how you might �x it.
[3 marks]

4. The following plot shows new AIDS cases in Belgium at the start of the epidemic.
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(a) Consider the model yi ∼ Poi{n0 exp(rti)} where yi is the number of AIDS cases in
year ti after 1980. Use R code to write a Metropolis Hastings sampler for n0 and r,
given that the yi and ti values are in vectors y and t respectively. Assume that the
prior distribution for n0 is a gamma distribution with shape and scale parameters 4
and 0.4 respectively (dgamma(x,4,.4) evaluates such a density in R), while the prior
for r is N(0, 0.12). Normal random walk proposals are �ne. [10 marks]

(b) Describe 2 diagnostic plots you would examine and what they can tell you. [2 marks]

(c) The following code analyses the same dataset using JAGS called from R using the
rjags package. Write down mathematically the model being used in this case (you
do not need to worry about knowing the exact parameterizations being used for the
priors, which have been chosen to be vague/uninformative). [5 marks]

library(rjags)

setwd("~sw283/lnotes/brinference/exam-eg")

dat <- list(y=y)

jal <- jags.model("exam.jags",data=dat,inits=list(n=log(y)),n.adapt=1000)

re <- jags.samples(jal,c("n","r"),n.iter=10000)

The �le "exam.jags" contains

model {

n[1] ~ dlnorm(2.5,1)

for (i in 2:13) { n[i] ~ dnorm(n[i-1] + r,tau)}

for (i in 1:13) { y[i] ~ dpois(exp(n[i]))}

r ~ dnorm(.2,100)

tau ~ dgamma(1.0,.1)

}
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(d) Following on from part (c), the following R code is run. Brie�y explain what is being
done and the statistical interpretation of the output. [5 marks]

plot(re$r,type="l")
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par(mfrow=c(1,2),mar=c(5,5,1,1))

acf(re$r[1,,1],main="");hist(re$r)
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plot(t+1980,y,xlab="Year",ylab="New AIDS cases",ylim=c(0,280))

for (i in 1:20*100+1000) {

lines(t+1980,exp(re$n[,i,1]),col="grey")

}

points(t+1980,y)
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(e) Suppose that you want to compare the models from parts (a) and (c) statistically.
Brie�y explain the approach that might be most appropriate here. [3 marks]

End of examination.
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Solutions Theory of Inference Example Exam

1. (a) The basic idea is that the squared Euclidian length of vector y−Xβ is unchanged by
rotation/re�ection by an orthogonal matrix, so

‖y−Xβ‖2 = ‖Uy−UXβ‖2 =
∥∥∥∥( Ufy

Ury

)
−
(

LT

0

)
β

∥∥∥∥2

= ‖Ufy−LTβ‖2+‖Ury‖2.

The rightmost expression is clearly minimized by β̂ = L−TUfy.

(b) E(β̂) = L−TUfE(y) = L−TUfXβ = L−TLTβ = β.

(c) β̂ = (XTX)−1XTy = (LLT )−1LUfy = L−T
f Ufy.

(d) i. The suggestion would produce a linear unbiased estimator of the model that is
not the least squares estimator (it is basically a weighted least squares estimate,
with weights of zero or one depending on the value of ti). The Gauss Markov
theorem tells us that this can not result in estimators with lower variance than
the un-weighted least squares estimator, for this model.

ii. The bosses suggestion amounts to discarding information � unless there is really
something wrong with the model or the discarded information, that can not reduce
uncertainty!

(e) The model being �tted is

yi = β0 + β1xi + β2zi + εi,

where the εi are i.i.d. N(0, σ2). The plot of residuals against xi shows a quadratic
pattern, so the model should probably be modi�ed to

yi = β0 + β1xiβ2x
2
i + β3zi + εi.

(f) The plots look ok, except that the residuals seem to have more extreme values than
the normal assumption would imply (the residuals are heavy tailed � QQ plot makes
this very clear). This is probably not as important as violating the independence or
constant variance assumptions would be, but might have some a�ect. To check, we
could try bootstrapping to get con�dence intervals for the model coe�cients. Here is
some example code:

n.rep <- 1000

b <- rep(0,n.rep)

dat <- data.frame(y=y,x=x,z=z)

n <- length(y)

for (i in 1:n.rep) {

ii <- sample(1:n,n,replace=TRUE) ## sample indices of data with replacement

b[i] <- coef(lm(y~x+I(x^2)+z),data=dat[ii,])[4] ## beta_3 for this rep

}

quantile(b,c(.025,0.975)) ## 95% CI

2. (a) The �rst study is not really suitable for the health departments purposes. The data
will be observational data, in which people essentially report what they are doing
anyway. It is likely that the study will recruit only health conscious people who will
have all sorts of other lifestyle factors in�uencing their health (which are unlikely to all
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be found via online pro�ling). i.e. there will almost surely be a massive problem with
confounding here, and it will not be possible to say much about whether cycling and
running cause health improvements. The second study has a much smaller sample
size, but properly targets the question of whether increasing exercise will improve
health. Randomization of subjects to treatments, with a proper control group, enables
inferences about causality to be made. The relatively small sample size might mean
that we fail to detect small e�ects, but the health department probably doesn't want
to promote a scheme if the bene�ts are only small.

(b) A confounding variable is one that is correlated with both the response of interest
and covariates of interest. Unobserved confounding variables seriously compromise
our ability to infer the causal e�ect of one variable on another. For example if we
are examining the relationship between obesity and cancer rates, there are many
confounding variables such as poor diet and poverty that may be associated with
both.

(c) If we randomly allocate experimental units (e.g. subjects) to di�erent treatments, then
we automatically avoid any possibility of correlation between unobserved covariates
and treatment. In e�ect all variability in the response attributable to other covariates
can now be modelled as random variability. Hence there is no problem with hidden
confounders.

(d) An instrumental variable is a variable that is correlated with the observed covariates
(aka predictor variables) of interest, but is independent of the confounders. It has no
direct e�ect on the response (being correlated with it only because of its correlation
with the covariates of interest). Mathematically, we suppose that y is generated by

y = Xβx +Hβh + ε

where we have observed X but not H, and XTH 6= 0. If we try to estimate βx
by �tting y = Xβx + ε we will get a biased estimate. Suppose that we have some
instrumental variables giving a model matrix Z (of as high a rank as X). We have
ZTH ' 0 and ZTH 6= 0. We then replace X by a version in which each column of X
is regressed on Z. That is we replace X by AX where A = Z(ZTZ)ZT , and �t the
model y = AXβx + ε to get

β̂x = (XTAX)−1XTAy

Taking expectations:

E(β̂x) = (XTAX)−1XTAXβx + (XTAX)−1XTAHβh ' βx

since AH ' 0 follows from ZTH ' 0.

3. (a) Taylor expansion around the MLE gives

∂l

∂θ

∣∣∣∣
θ̂

' ∂l

∂θ

∣∣∣∣
θt

+
∂2l

∂θ∂θT

∣∣∣∣
θt

(θ̂ − θt)

with equality in the large sample limit, for which θ̂ − θt → 0. From the de�nition of
θ̂, the left-hand side is 0. So assuming I/n is constant (at least in the n→∞ limit),
then as the sample size tends to in�nity,

1

n

∂2l

∂θ∂θT

∣∣∣∣
θt

→ −I
n
, while

∂l

∂θ

∣∣∣∣
θt
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is a random vector with mean 0 and covariance matrix I. Therefore in the large
sample limit,

θ̂ − θt ∼ I−1 ∂l

∂θ

∣∣∣∣
θt

,

implying that E(θ̂− θt) = 0 and (using standard results on transformation of covari-
ance matrices) var (θ̂ − θt) = I−1.

(b) The CR lower bound says that I−1 is the lower bound on the covariance matrix of
an unbiased estimator. So in the large sample limit MLEs are minimum variance
unbiased estimators.

(c) It is not, since we can not reasonably use a Taylor expansion about a point at the
edge of the parameter space in this way.

(d) Newton's method operates by successively maximizing quadratic approximations to
the log likelihood, where the quadratic approximation is based on the second order
Taylor expansion at the current best estimate of the MLE. Hence at convergence
Newton's method automatically provides the observed version of I, which can then
be used for (large sample approximate) interval estimation for θ.

(e) i. l1 <- function(b,calls)

{ -sum(log(dpois(calls,b)))

}

ii. l2 <- function(b,calls,sales)

{ b<-exp(b)

E.calls <- b[1]+b[2]*sales

-sum(log(dpois(calls,E.calls)))

}

iii. The code maximizes the likelihood of both models, computed a GLRT statistic
and corresponding p-value. This strongly suggests that the second model is better
than the �rst.

iv. The null model is restricting a parameter of the alternative to the edge of the
feasible parameter space, invalidating the distributional result. Either shift to
using AIC here, or re-formulate the second model without the restriction on the
slope parameter.

4. (a) Obviously solution is not unique. Here is an acceptable one.

lf <- function(theta,t,y) {

## log joint density of parameters and data

## initial pop prior is dgamma(.,4,.4) r prior is N(.2,.1^2)

if (theta[1]<=0) return(-Inf) ## zero prob according to prior

mu <- theta[1]*exp(t*theta[2]) ## expected number of cases

sum(dpois(y,mu,log=TRUE)) + dgamma(theta[1],4,.4,log=TRUE) +

dnorm(theta[2],.2,.1)

} ## lf

n.rep <- 100000 ## chain length

th <- matrix(0,2,n.rep) ## 2 row matrix to hold n_0 and r sims

th[,1] <- c(12,.2) ## initial values

ll0 <- lf(th[,1],t,y) ## initial log joint density
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psd <- c(1,.01) ## proposal standard deviations (needs tuning)

accept <- 0 ## acceptance counter

for (i in 2:n.rep) { ## MH loop

th[,i] <- th[,i-1] +rnorm(2)*psd ## proposal

ll1 <- lf(th[,i],t,y) ## joint density of proposal

if (runif(1)<exp(ll1-ll0)) { ## MH accept

ll0 <- ll1;accept <- accept + 1

} else { ## reject

th[,i] <- th[,i-1]

}

} ## MH loop end

accept/n.rep ## acceptance rate

(b) Plot simulated n0 and r against iteration number, to get an impression of convergence
and degree of autocorrelation. Plot ACFs for r and n0 to examine the autocorrelation
length of the chains. Some adjustment of the proposal might be appropriate if there
are high correlations at long lags (high `correlation length').

(c) The model is
Yt ∼ Poi(Nt), Nt = Nt−1e

r+zt , zt ∼ N(0, τ)

(τ = σ−2 is a precision parameter). A gamma prior is used for τ and a Gaussian prior
for r, while (oddly) logN1 is given a log normal distribution.

(d) Firstly the chain for r is examined. Convergence appears very quick, and mixing
is good (autocorrelation appears low in this plot). Next an ACF for r is plotted,
con�rming low auto-correlation. The histogram then shows the approximate posterior
distribution of r (mostly lying between 0.1 and 0.35). Finally 20 example draws from
the posterior distribution of N are overlaid on the raw case data. These latter plots
are plausible, but it is possible that the model is a bit too variable in the later stages.

(e) Ideally we might look at the Bayes factor, but this would be problematic here since
we have been told that the priors in (c) are chosen to be uninformative, rather than
being precise statements of prior knowledge. BIC is di�cult to compute in this case
(we would need to integrate out the Nts). So probably DIC is the least bad option for
a formal criterion.
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